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Chapter 1

Introduction

In the present work the effects of noise on multistable nonlinear systems are ana-
lyzed, thus combining nonlinear dynamics with classical stochastic theory.

Multistable systems, i.e. systems with a large number of coexisting stable states, are
very common in nature. While bistable systems have been investigated in the phys-
ical literature for a very long time, multistable systems are the subject of increasing
interest only in the last two decades. It has been the discovery of multiple stable
states in laser systems (Kitano et al., 1981; Agarwal, 1982; Arecchi et al., 1982;
Wiesenfeld et al., 1990; Brambilla et al., 1991) that triggered the research in many
other fields. As a result, multistable behavior was found in a wide range of differ-
ent areas of science. These include ocean circulation (Thual & McWilliams, 1992;
Rahmstorf, 1995), ecosystems (Scheffer, 1990), neuroscience (Schiff et al., 1994;
Foss et al., 1996), and chemistry (Marmillot et al., 1991; Hunt et al., 1992). Mul-
tistable behavior was also reported in mechanical systems (Ryabov & Ito, 1995),
semiconductor physics (Prengel et al., 1994), plasma physics (Chern & I, 1991),
solid state physics (Carroll et al., 1987), for coupled oscillators (Wiesenfeld & Hadley,
1989), and time delay systems (Kim et al., 1997a). Likewise, multistability arises in
the dynamics of the Duffing oscillator with a double-well potential (Arecchi et al.,
1985) and in discrete maps, describing physical systems (Hénon, 1976; Ikeda, 1979;
Grebogi et al., 1987a; Feudel et al., 1996). Since the phenomenon of multistability
appears to be very common in nature, it is naturally to study its properties in detail.

Another important feature of physical systems is the presence of noise. Perturba-
tions to a system, which are either of random nature or can be modeled as random,
are practically inevitable. Every measurement of a macroscopic physical system
is necessarily contaminated with noise. These processes are usually described by
Langevin and Fokker-Planck equations (Risken, 1989). The addition of noise to a
physical model has also led to several interesting phenomena (van Kampen, 1983),
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2 1. Introduction

most notably noise-induced transitions (Horsthemke & Lefever, 1984). With the
development of the theory of nonlinear dynamical systems, the role of noise was
intensively studied (Crutchfield et al., 1982), whereby main focus was laid on the
smoothing of the invariant density through noise and the noise-scaling behavior of
bifurcations. This has also been undertaken with mathematical rigor (Arnold, 1998).
Today, noise in nonlinear dynamical systems is a well established field of research
(Moss & McClintock, 1989; Millonas, 1996).

The influence of noise on dynamical systems has several, sometimes counterintu-
itive consequences, which could not take place, if the governing equations were lin-
ear. The most prominent phenomenon is stochastic resonance, where the addition
of noise to a periodically driven system produces a maximum of the signal-to-noise
ratio at a particular noise value (Benzi et al., 1981; Gammaitoni et al., 1998). Fur-
ther effects are coherence resonance (Pikovsky & Kurths, 1997), noise-induced order
(Matsumoto & Tsuda, 1983), noise-induced chaos (Iansiti et al., 1985), noise-induced
stabilization (Wackerbauer, 1995), noise enhanced stability (Mantegna & Spagnolo,
1996; Mielke, 2000), noise-induced chaos-order transitions (Gassmann, 1997), noise-
induced nonequilibrium phase transitions (Van den Broeck et al., 1994), and noise
suppression by noise (Vilar & Rub́ı, 2001). This enumeration demonstrates, that
noise introduces a plethora of phenomena in nonlinear systems that are a topic of
utmost interest and the subject of ongoing research.

The present work aims at the study of the effects of noise on multistable nonlin-
ear systems. The first investigation of the role of noise on a system exhibiting
‘generalized’ multistability was performed in (Arecchi et al., 1985), addressing the
question of jumps between the metastable states induced by noise. The term ‘gen-
eralized’ is used in order to distinguish it from the bistable case. It has also been
found, that noise can induce multistability in a laser system (Barbéroshie et al.,
1993) and in coupled oscillators (Kim et al., 1997b). Moreover, noise-induced se-
lection of attractors in coupled systems was detected (Kaneko, 1997). The jump-
ing between metastable states, also called attractor-hopping, is related to the phe-
nomenon of ‘chaotic itinerancy’, which occurs in laser systems (Ikeda et al., 1989;
Otsuka, 1990) and has been confirmed experimentally as well (Arecchi et al., 1990).

Although a generally accepted definition of complexity is still missing, many dif-
ferent proposals for its definition have been put forward (Badii & Politi, 1997). One
of these suggestions states, that a system is complex if it (i) is composed of many
parts that are interacting in a complicated manner, (ii) possesses both ordered and
random behavior, and (iii) exhibits a hierarchy of structures; that is, nontrivial struc-
tures exist over a wide range of time and/or length scales (Grassberger, 1989b). It
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has been pointed out in (Poon & Grebogi, 1995), that the noise-induced attractor-
hopping process in a multistable system with a fractal basin boundary separating
the metastable states can be considered as complex dynamics in the above stated
sense. The first point is fulfilled through the coexistence of many stable states. The
second condition applies, since ordered behavior takes place close to the metastable
states and random behavior on the fractal basin boundary, or, more specific, on the
chaotic saddles embedded in the fractal basin boundary. Finally, the metastable
states are grouped in a hierarchical manner, as they originate from a complicated
bifurcation scenario. Typically, the stability with respect to random perturbations
differs for the various metastable states.

In this work, the attractor-hopping process in complex systems with fractal basin
boundaries is scrutinized and the crucial role of chaotic saddles, residing on the
fractal basin boundary, is elucidated. They are responsible for the new phenomenon
of preference of attractors. Utilizing the tools of symbolic dynamics, the impor-
tance of bifurcations of the chaotic saddles for the complexity of the attractor-
hopping process is emphasized. Furthermore, the role of chaotic saddles for the
noise-induced escape process out of a metastable state is exposed. This is done
using the theory of quasipotentials (Graham & Tél, 1984; Graham et al., 1991;
Hamm & Graham, 1992a), which defines a potential for nonequilibrium systems
and maps, which were otherwise not describable in the framework of potentials.
Quasipotentials allow to calculate the scaling of noise on invariant densities and
escape processes. In this study, they are used to establish the novel phenomenon of
enhancement of noise-induced escape through the existence of chaotic saddles. This
phenomenon is remarkable since it occurs even in the case, when the chaotic saddle
is completely embedded in the open neighborhood of the basin of attraction of one
attractor and the basin boundary is not fractal.

This work is organized as follows: Chapter 2 introduces the dissipative standard map
as a paradigmatic model for multistable behavior. After the derivation of the map
from the well known standard map, its basic properties are presented. The number
of coexisting stable states is very large (> 100). Addition of noise leads to several
interesting consequences, in particular noise-induced chaos and attractor-hopping.
Both effects are treated quantitatively with the help of Lyapunov exponents, includ-
ing finite-time Lyapunov exponents. With these tools the noise-induced transition
into chaos is unveiled. The existence of spectra with a 1/f divergence is shown, and
necessary conditions for their occurrence are discussed, which have been proposed
only for bistable systems up to now. Noise-induced preference of attractors is found,
implying that some attractors become more likely to occur for a random initial con-
dition. They attain a maximum probability of occurrence at a certain noise level,
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to the disadvantage of other attractors, with a decreasing likelihood of appearance.
By increasing the noise strength, some attractors become even extinct, completely
‘hidden’ by the noise. The mechanism for this effect to take place is explained, con-
sisting of a combination of the structure of chaotic saddles on the basin boundary
and the different sizes of the basins of attraction. This mechanism is pointed out to
be distinct from the phenomenon of noise-induced selection of attractors in coupled
systems (Kaneko, 1997), since the attractors in both cases have qualitatively differ-
ent stability properties. In our case, the metastable states are surrounded by an open
neighborhood of the basin of attraction, rendering the effect much more nontrivial.
The problem of noise-induced escape out of a metastable state is examined in an ele-
mentary fashion, which was hitherto only executed for bistable systems (Kautz, 1988;
Beale, 1989; Grassberger, 1989a). Finally, the relationship between the attractor-
hopping process and chaotic saddles is investigated, which is done in much more
detail in the next chapter for a different system.

Since for the dissipative standard map the attractor-hopping process and its con-
nection to chaotic saddles is too involved to unveil the structure in detail, Chapter
3 introduces as a simpler, yet still complex, model two coupled logistic maps. The
complexity of the hopping process is analyzed by employing symbolic dynamics and
by computing the Shannon entropy and the topological entropy to provide a measure
of complexity. With the variation of a parameter, a steep increase of the topological
entropy at a certain parameter value suggests a change in the dynamics of the sys-
tem. This change is due to a bifurcation of chaotic saddles. This novel bifurcation
is explored in detail. The most prominent new feature is a merging of two chaotic
saddles accompanied by the emergence of additional points filling the gap between
the formerly separated saddles. This bifurcation is mediated by a snap-back repellor,
whose properties are explained. Finally, scaling laws for the transient life-times on
one chaotic saddle and the increase of the fractal dimension of the connected chaotic
saddle slightly above the bifurcation point are presented, involving the eigenvalues
of the mediating repellor in analogy to crisis. Both scaling laws should be observable
in experiments.

Chapter 4 deals with noise-induced escape out of a metastable state. This question
was already treated in Chapter 2 for the dissipative standard map in a preliminary
way. Here we give a more detailed account of this problem and present in particular
the new phenomenon of enhancement of noise-induced escape through the existence
of chaotic saddles, as a parameter is varied. First, the noise-induced escape problem
is exposed for nonequilibrium systems, and recent progress in this field is presented,
with emphasis on the prehistory probability density and the most probable exit
path. Then the theory of quasipotentials is introduced as a minimization method
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and its main features are explained. After describing the Ikeda map, which is a
basic model for a laser cavity with a delay, the new phenomenon of enhancement
of noise-induced escape through the existence of chaotic saddles is shown to occur
for this system. The effect can be explained utilizing the theory of quasipotentials,
which is demonstrated in detail. This effect is of importance for optical systems
with delay described by the Ikeda map. It should be detectable in experiments and
is supposed to occur in other systems of physical relevance as well.

Finally, in Chapter 5, the results of this work are summarized, discussed and some
directions for future work are proposed.





Chapter 2

A basic model of multistable
behavior under the influence of
noise

In this Chapter a prototype model of a multistable system under the influence of
noise is investigated. The basic model without noise exhibits not only a very large
number of coexisting states, where the specific number depends on the choice of the
parameters, but also a fractal basin boundary separating these states. Thus, there
exist two distinct sources of complex behavior in the system: The accessibility to
many different states because of the multistability and the final state sensitivity due
to the fractal basin boundary.

The addition of noise has several consequences, which are described in this Chapter.
In Section 2.1 the dissipative standard map as a basic model is introduced and the
most relevant properties are presented. Section 2.2 deals with the most important
consequences through the addition of noise to the system, namely noise-induced
chaos and attractor-hopping. Both effects are treated quantitatively with the help
of Lyapunov exponents in Section 2.2.1, where also finite-time Lyapunov exponents
are considered, and the noise-induced transition into chaos is elucidated. In Section
2.2.2 the existence of spectra with a 1/f divergence is shown, and necessary condi-
tions for their occurrence are discussed. The next Section 2.2.3 establishes the effect
of noise-induced preference of attractors, while in 2.2.4 the problem of noise-induced
escape out of a metastable state is studied in an elementary fashion. A more de-
tailed account of this topic is given in Chapter 4. Finally, Section 2.2.5 is dedicated
to the relationship between the attractor-hopping process and chaotic saddles. The
content of this Chapter has been published in (Kraut et al., 1999)

7



8 2. A basic model of multistable behavior under the influence of noise

2.1 The dissipative standard map

As our basic model of multistable behavior, we investigate a two-dimensional map,
which describes the time evolution of a mechanical pendulum, with no gravity and
friction at the pivot (Zaslavskii, 1978; Ott, 1993). There is a bar of moment of
inertia E and length l, which is fastened at one end to a frictionless pivot. The
other end is subjected to a periodic impulsive force of impulse strength f0/l applied
at discrete times t = 0, τ, 2τ, ... and from a fixed direction. The system is regarded
to be without gravity. Using canonically conjugate variables pθ (representing the
angular momentum) and θ (the angular position of the rotor), we have that the
Hamiltonian for this system and the corresponding equations of motions obtained
from Hamilton’s equations

dp/dt = −∂H(p,q, t)/∂q (2.1)
dq/dt = ∂H(p,q, t)/∂p (2.2)

are given by

H(pθ, θ, t) = p2
θ/(2E) + f0 cos(θ)

∑
k

δ(t− kτ) (2.3)

d(pθ)/dt = f0 sin(θ)
∑
k

δ(t− kτ)

d(θ)/dt = pθ/E,

where δ(...) denotes the Dirac delta function. From Eqs. (2.3) we see that pθ is
constant between the kicks but changes discontinuously at each kick. The position
variable θ varies linearly with t between the kicks (since pθ is constant) and is
continuous at each kick. Examining the values pθ and θ just after each kick builds the
surface of section. Let pk and θk denote the values of pθ and θ at times t = kτ + 0+,
where 0+ denotes a positive infinitesimal. By integrating the equation for d(pθ)/dt
through the delta function at t = (k + 1)τ , we then obtain

pk+1 − pk = f0 sin(θk+1) (2.4)

and from the equation for d(θ)/dt

θk+1 − θk = pkτ/E. (2.5)

Without loss of generality we can take τ/E = 1 to arrive at the map

θk+1 = θk + pk(mod 2π) (2.6)
pk+1 = pk + f0 sin(θk + pk), (2.7)
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where we have added a modulo 2π, since θ is an angle, and we wish to restrict its
values to be between zero and 2π.

This is the well known standard map (Chirikov, 1979; Greene, 1979; Schmidt, 1980),
which has been intensively studied (Lichtenberg & Liebermann, 1992), and plays a
fundamental role in understanding the transition in Hamiltonian systems from reg-
ular to chaotic motion. The standard map is believed to possess infinitely many
stable but nonattracting periodic orbits. The two eigenvalues of these periodic or-
bits are complex conjugate but their absolute values are exactly 1. In the vicinity of
these marginally stable periodic orbits, there exists regular motion on the invariant
Kolmogorov-Arnold-Moser (KAM) tori. Around these islands of stability there also
exist regions in the phase space with persistent chaotic motion. Depending on the
parameters, these areas of different dynamical behavior can be complexly interwo-
ven. In Fig. 2.1 the phase portrait is shown for f0 = 3.5. The dynamics takes

Figure 2.1: Phase portrait of the Hamiltonian standard map (ν = 0) with f0 = 3.5.
Chaotic motion exists around the islands of stability.

place on the torus [0, 2π] × [−π, π]. In particular, the family of period 1 orbits is
given by (x = π, y = m2π),m = 0,±1, ..., which are, due to mod 2π also in the y
coordinate, all mapped onto the one with m = 0. Orbits of higher periods, so-called
secondary islands, are grouped around these period 1 orbits, which correspond to
primary islands. These islands around islands build a highly intricate hierarchy.

However, we are interested in the dissipative form of the standard map, which we get
by introducing a dissipation parameter ν, which corresponds to the consideration of
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dissipation at the pivot. Doing this, and writing x for θ and y for p, results in

xk+1 = xk + yk (mod 2π)
yk+1 = (1− ν) yk + f0 sin(xk + yk). (2.8)

The limit (ν = 0) corresponds to the Hamiltonian standard map, while the other
limiting case (ν = 1 ) is also well understood (Schmidt & Wang, 1985; Wenzel et al.,
1991). It results in a one-dimensional circle map with zero phase shift. If the damp-
ing lies between these two limiting cases (0 < ν < 1), the periodic orbits are turned
into sinks (Lieberman & Tsang, 1985; Chen et al., 1986), with absolute values of both
eigenvalues now slightly less than one and the chaotic motion is replaced by transient
motion, before the trajectory settles eventually in one of these sinks. The motion is
now located on a cylinder [0, 2π]× IR and the periodic orbits for different m values
become discernible. The number of periodic orbits is in this case finite, but can be
made arbitrarily large by reducing the damping. The mechanism for the creation
of an arbitrarily large number of coexisting attractors is different from the New-
house phenomenon in which infinitely many attractors can coexist (Newhouse, 1979;
Robinson, 1983), but only for special sets of parameters (Tedeschini-Lalli & Yorke,
1986; Nusse & Tedeschini-Lalli, 1992).

Fixing the damping but varying the kick strength f0, a complex bifurcation dia-
gram is obtained. Periodic orbits of low periods are generated through saddle-node
bifurcations and they eventually undergo a period doubling cascade that ends in
chaos (Feudel et al., 1996). However, the chaotic intervals in, say, the parameter
f0 are extremely small and hardly detectable numerically, as chaotic attractors are
generally rare in multistable systems (Feudel & Grebogi, 1997; 2000).

In the following, the parameters will be fixed at ν = 0.02, which is a rather small
damping, and f0 = 3.5 for the kick strength. For these values no chaotic attractors
are found and the period 1 orbits have not yet undergone the first period doubling.
Numerically, we find 111 coexisting periodic attractors, the highest period being 32,
by iterating 106 initial conditions on a grid in the state space [0, 2π]× [−f0

ν ,
f0

ν ]. This
part of the cylinder is the trapping region in state space, where all attractors are
located, as can be seen by

|yk+1| ≤ (1− ν) |yk|+ f0. (2.9)

Thus

|yk| < f0/ν  |yk+1| < f0/ν. (2.10)

More than 99.9% of all initial conditions converge to orbits of periods 1 and 3, so
all other periods do not play an important role in the following. The basin for
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(a) (b)

Figure 2.2: (a): Basin of attraction for the fixed point (x = π, y = 0) and a fraction
of the phase space in y-direction y ∈ [−14π, 14π]. (b): Same as in (a) but for the
period 3 orbit located around the fixed point (x = π, y = 0).

the fixed point (x = π, y = 0) is shown in Fig. 2.2a. To gain more insight in
the basin structure, in the y-direction not the complete phase space [−f0

ν ,
f0

ν ] =
[−175, 175] is depicted, but only the fraction [−14π, 14π]. It is clearly visible, that
the basin boundary extends over the whole phase space in a very intricate fashion,
symmetrically with respect to y = 0. The horizontally stretched white regions
correspond to basins of fixed points y = m2π with m = ±1,±2, .... For m 6= 0
the basins have lost their symmetry with respect to y = m2π, as the number of
initial conditions attracted below and above y = m2π is not equal anymore. This
question will be dealt with in Section 2.2.5. Fig. 2.2b shows for the same phase
space region the basin for one of the two period 3 orbits around the period 1 fixed
point (x = π, y = 0). Again, the basin boundary extends over the whole area, but
is much more sparse.

2.1.1 Fractal basin boundaries

The possibility of a basin boundary between two stable solutions of a dynamical
systems to become fractal has been first pointed out in (Mira, 1979) and system-
atically explored in(Grebogi et al., 1983b). Fractal in these works means, that the
curve separating the two basins of attraction is of noninteger box-counting dimen-
sion. The box-counting dimension is a simple measure for the dimension of fractal
sets. It has integer values for ordinary sets (lines, surfaces, etc.) and noninteger val-



12 2. A basic model of multistable behavior under the influence of noise

ues for fractal sets, see e.g. (Ott, 1993). If the fractal curve representing the basin
boundary permeates large regions of the phase space, it might become increasingly
difficult to predict the evolution of an initial condition accurately. This obstruction
to predictability has been termed ‘final state sensitivity’ and as a quantitative mea-
sure the uncertainty exponent has been introduced in (Grebogi et al., 1983a), where
also a new form of fractal basin boundaries is discussed, which is a Cantor set and
cannot be presented by a continuous curve anymore.

A schematic illustration for the motivation of the uncertainty exponent is given
in Fig. 2.3. There are two possible final states, denoted by A and B. Initial condi-
tions on one side of the boundary, Σ, eventually asymptote to B, while those on the
other side of Σ eventually go to A. The regions to the left and right of Σ are the
basins of attraction for A and B, respectively. Σ is the basin boundary. If the initial
conditions are uncertain with respect to a perturbation of size ε, then for those initial
conditions within ε on the boundary, we cannot predict a priori to which attractor
the orbit will go. In Fig. 2.3 the point marked 1 will tend to B with certainty of

Figure 2.3: A region in phase space divided by the basin boundary Σ into basins of
attraction for the two attractors A and B. 1 and 2 represent two initial conditions
with uncertainty ε.

ε, while point 2 is uncertain within the resolution of ε, since it cannot be predicted,
on which attractor it will terminate. The uncertainty exponent is defined as follows.
Let f be the fraction of initial conditions in a well defined region in the phase space,
which is uncertain with respect to ε, i.e. which terminate on another attractor if a
perturbation of strength ε is applied. Then there exists typically a scaling relation

f ∼ εα (2.11)

with the resolution of ε. The scaling exponent α is the uncertainty exponent. If α < 1
than there exists a final state sensitivity. In such cases, a substantial improvement
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in the initial condition uncertainty, ε, yields only a relatively small decrease in the
uncertainty of the final state. Furthermore, it has been proven in (Grebogi et al.,
1988) that for a special class of systems (Axiom A) the relation

α = D − d (2.12)

holds, where D is the dimension of the phase space and d is the dimension of the
basin boundary. This relation is believed to hold for more general systems, like ours,
as well. Thus, a small value of α implies that the dimension of the basin boundary
is close to the dimension of the phase space. A generalization of the uncertainty
exponent to parameter variations and noise has been undertaken in (Siapas, 1994).

For the dissipative standard map and our set of parameters, f0 = 3.5, ν = 0.02,
the calculation of the uncertainty exponent is shown in Fig. 2.4. The scaling re-
gion extends over at least 8 orders of magnitude, showing very nicely where the
scaling starts to hold and where it breaks down. We obtain an uncertainty ex-
ponent of α = 0.003, which means, that the basin boundary has a dimension of
d = D − α = 2− 0.003 = 1.997, very close the the phase space dimension.

Figure 2.4: Log-log plot of the fraction of uncertain initial conditions f versus the
resolution ε for f0 = 3.5, ν = 0.02. The slope yields an uncertainty exponent of
α = 0.003.

For cases, where α is close to 1, i.e. d is close to D − 1 and the basin boundary is
only slightly fractal, the uncertainty method is very inefficient, as a extremely large
number of initial conditions has to be considered to get a sufficiently good statistics,
since only very few change with ε. This turns out to be computationally not feasible
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if α > 0.5. To overcome this difficulty, an improved method of output function evalu-
ation has been proposed in (de Moura & Grebogi, 2001), which proves to be efficient.

Further investigations of basin boundaries yielded a distinction between locally con-
nected and unconnected basin boundaries (McDonald et al., 1985) and intertwined
basin boundaries, where the boundary has the property that in some regions it is
smooth while in other regions it is fractal (has noninteger box-counting dimension).
Furthermore, for any region where the boundary is fractal, one can find within that
region a subregion where the boundary is smooth (Grebogi et al., 1987a). This has
been extended to systems, where in spite of the basin boundary being smooth ‘al-
most everywhere’, its fractal dimension exceeds one for a two-dimensional system.
These were termed ’sporadically fractal basin boundaries’ (Hunt et al., 1999). The
basin boundary of the dissipative standard map seems to be intertwined.

Another interesting property is that of a Wada basin (Kennedy & Yorke, 1991).
A fractal basin boundary exhibits the Wada property, if each point that is on
the boundary of one basin is also simultaneously on the boundary of at least two
other basins. This has been found numerically for the driven damped pendu-
lum and later explained with the concept of the basin cell (Nusse et al., 1995;
Nusse & Yorke, 1996). This concept was applied to the mixing of chaotic flows
(Nusse & Yorke, 2000). The Wada property has also been experimentally confirmed
in a simple model of chaotic scattering (Sweet et al., 2000). It is not clear, if the
dissipative standard map exhibits the Wada property, since numerical tests are not
sufficient for establishing it and the construction of a basin cell has not been achieved
up to now. However, numerical analysis shows, that zooming into the phase space
and estimating the number of basins present in smaller and smaller parts of the
phase space yields always the same number of basins of attraction. Therefore, the
numerical result strongly hints on the basin boundary being of Wada type.

A new kind of basin was introduced in (Alexander et al., 1992) and called riddled.
A basin of attraction is riddled if it is such that every point in the attractor’s basin
has pieces of another attractor’s basin arbitrarily nearby. This is a very extreme
case of fractality and renders predictability even more difficult if not impossible, as
α ≈ 0. It is not only the basin boundary, which is riddled, but the whole basin of
attraction. A riddled basin does not contain any open sets and can only occur in
systems exhibiting a certain symmetry. The concept was further explored in (Som-
merer & Ott, 1993), the scaling behavior was investigated in (Ott et al., 1993) and
first experimental evidence has been provided in (Heagy et al., 1994). The basin
of the dissipative standard map is clearly not riddled, as every periodic solution is
surrounded by open neighborhoods.
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2.2 Basic properties of the noisy dynamics

After the description of the basic properties of the system, we introduce noise to the
dynamics, in the form

xk+1 = xk + yk + δx (mod 2π)
yk+1 = (1− ν) yk + f0 sin(xk + yk) + δy, (2.13)

where δx and δy are the amplitudes of the uniformly distributed noise, restricted

by
√
δ2
x + δ2

y ≤ δ, with no temporal correlation. Thus δ serves as an overall noise
strength. However, using noise with a Gaussian distribution does not change the
findings in this Chapter. The trajectory of the noisy dynamics alternates between al-
most periodic motion in the neighborhood of an attractor and chaotic motion in the
basin boundary region in a very complex way. This is illustrated in Fig. 2.5, where
the x- and y-coordinates of the system are plotted for a large number of iterations
and a noise level of δ = 0.1. Clearly, there is almost periodic motion interspersed
by random bursts.

Almost periodic motion takes place close to an attractor and the noise is not able
to kick the trajectory out of the basin of attraction of this metastable state. The
motion thus fluctuates around this attractor until the trajectory leaves the vicinity
of the attractor and the motion takes place on the fractal basin boundary. These are
the random bursts. After the trajectory has wandered around in an erratic fashion
on the fractal basin boundary for some time, it is caught again from a metastable
state (the same or another one as before). The whole process, consisting of an alter-
nation of almost periodic motion and random bursts, which repeats itself forever, is
called attractor-hopping.

This behavior has also been observed in numerical simulations of the Duffing oscil-
lator (Arecchi et al., 1985) and the damped driven pendulum (Gwinn & Westervelt,
1985), where it was termed noise-induced intermittency. In both cases the fractal
basin boundary is the origin of the behavior. Closely related is the effect of ‘chaotic
itinerancy’ (Ikeda et al., 1989; Otsuka, 1990; Tsuda, 1991) in optical systems, where
the phase of a laser is jumping between different solutions. However, the mechanism
of the chaotic itinerancy is not caused by noise, but by the existence of unstable
orbits localized around supermodes, which are called ‘attractor ruins’. The latter
phenomenon has also been confirmed in experiments (Arecchi et al., 1990).

Another typical feature can be seen by Fig. 2.6, where we use 1000 initial con-
ditions, randomly distributed in the rectangle [0, 2π] × [−3π, 3π], and iterate each
one for 10000 steps. This region of the state space is covered with a 300 × 300
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Figure 2.5: Dynamics of the dissipative standard map under the influence of noise
with intensity δ = 0.1. Top: angular velocity y; bottom: phase of the rotor x

grid and every visit of a grid cell is counted, creating thus numerically a probability
density. As can be seen, the peaks of the 3 period 1 and corresponding period 3
orbits get increasingly broad (Fig. 2.6b and c) until almost no structure is present
anymore (Fig. 2.6d), indicating the predominance of diffusion due to the noise.

The washing out of the fine structure of the invariant measure due to the noise has
been investigated numerically for the logistic map in (Meyer-Kress & Haken, 1981;
Crutchfield et al., 1982) and subsequently with semi-analytical methods using a
matrix continued-fraction approach for solving the Fokker-Planck equation for a re-
sistively shunted junction (Jung & Hänggi, 1990). It has been treated analytically
in (Reimann & Talkner, 1991) with path integral methods for very simple one-
dimensional maps and with an asymptotic expansion for a three-dimensional system
in (Kuske & Papanicolaou, 1998). The invariant measure of a noisy system can
also be found employing the theory of quasipotentials, as presented in Section (4.2).
However, all these techniques are much too complicated for the highly multistable
system presented here and the figure merely demonstrates the basic consequences of
the noise.
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Figure 2.6: Probability density P (x, y) in the rectangle [0, 2π] × [−3π, 3π] for in-
creasing noise levels. (a) δ = 0.001; (b) δ = 0.01; (c) δ = 0.1; (d) δ = 0.3. On the
top of each figure, a contour plot of a certain probability density Pc(x, y) is shown.
Pc(x, y) has the values (a) 2.4× 10−4; (b) 2.5× 10−5; (c) 2.3× 10−4; (d) 2.2× 10−5.

It is also interesting to examine how the basins of attraction for different attractors
change as we vary the noise level. For this purpose, we stop iterating the trajectory
as soon as it reaches for the first time the neighborhood of an attractor. Hereby we
disregard the fact that the trajectory can be kicked out of this neighborhood by the
noise at a later time. The noisy dynamics is treated such, that we ascertain that
the motion is in the vicinity of a given periodic orbit in the following way. Every
initial condition is checked after each k (∼ 30) iterations, whether the orbit stays
for a certain number of time steps l (∼ 5 ∗ period) close to the periodic orbit of the
noiseless system, whereby closeness was specified by a maximum distance of about
j ≈ 10 ∗ δ. If these conditions are satisfied, the orbit is considered to be trapped
in the neighborhood of the specific attractor. However, the exact numerical values
of these choices (k, l, j) do not possess any crucial meaning and changing them by
moderate amounts yields similar results.
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Figure 2.7: Basin of the fixed point (x = π, y = 0) for increasing noise levels. (a)
δ = 0; (b) δ = 0.01; (c) δ = 0.1; (d) δ = 0.3

The result is shown in Fig. 2.7 for the same noise levels as in Fig. 2.6, except
for Fig. 2.7a, where we now can allow the zero noise limit, which wasn’t possible for
the natural measure because of the δ-peaked distribution. For a tiny noise ampli-
tude (δ = 0.01) a great similarity with the noiseless basin is seen, including the two
embedded open neighborhoods of the two period 3 attractors. The fine structure
becomes increasingly blurred with increasing noise intensity, e.g. (δ = 0.1). For a
large noise level (δ = 0.3) the basic structure is still present, but it starts getting
washed out. For each initial condition different noise realizations are used to create
the picture of the basin of attraction. The size of the basins and the qualitative
structure remain the same under other noise realizations.
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Figures 2.7 and 2.6 also justify our numerical procedure. For instance, they show
that the period 3 orbits are still present in the noisy dynamics as well as in the long-
term behavior as approximated by the first visit to a periodic orbit. Both figure
sequences, Fig. 2.7 and 2.6, illustrate qualitatively in the same way the process of
loss of fine-scale structure of the basins of attraction with increasing noise intensity.

One might be interested in stabilizing one metastable state for a long time. While
there is an immense literature on controlling a chaotic system, only recently the
question of controlling a multistable system with noise has been addressed. It has
been considered for the first time in (Poon & Grebogi, 1995), dealing with the
double rotor map, which is a generalization to two rods of the dissipative stan-
dard map, employing a simple feedback scheme. For the noisy dissipative stan-
dard map, this method has been applied in (Feudel & Grebogi, 1997). Algorithms
for reducing the number of control perturbations and the waiting time, at which
the control can be switched on, have been devised in (Macau & Grebogi, 1999;
Gadaleta & Dangelmayr, 2001).

2.2.1 Quantifying the dynamics with Lyapunov exponents

In the theory of chaotic systems, the Lyapunov exponents (λj , j = 1, ..., d) for a
d-dimensional system, are of crucial importance, as they give a measure for the
stretching and contracting of distances between trajectories in the phase space and
allow therefore to classify whether the motion is chaotic (max(λj) > 0), periodic
(max(λj) < 0), or neutrally stable (max(λj) = 0). They are defined as

λj = lim
N→∞

1
N

N∑
i=1

ln |( df
dx

)i|, (2.14)

where N is the length of the time interval and ( dfdx)i is the Jacobian matrix of the
map at each time step i. For a numerical computation one can only use a finite
time interval N , yet in general the computation of λj according to Eq. (2.14) should
converge for ‘sufficiently’ large N , where the necessary minimum length depends on
the system. In pathological cases, it might not be possible to decide, whether the
computation has already converged or not, but in our system we did not encounter
this problem. Also, in the general case, there should be no dependence on the
starting point. For a d-dimensional system there are d Lyapunov exponents, but
only the non-negative ones are relevant for the different dynamical regimes. In our
case, like in most dynamical systems of low dimension, we will consider here only
the largest Lyapunov exponent.
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Figure 2.8: Maximum Lyapunov exponent (♦) and average ratio of the length of
transients (4) to laminar motion versus noise level. For each noise intensity, λmax
and the length of the transients are calculated by averaging over 50 trajectories with
106 iterations each. The inset shows the crossing of the Lyapunov exponent curve
through zero. This takes place at δc ≈ 0.047 with a slope of 0.27.

The result of the computation is shown in Fig. 2.8, where also the average ratio of
the length of the chaotic bursts to regular motion in the neighborhood of attractors
(compare to Fig. 2.5) is plotted. We measure this length of the chaotic transients
by splitting 50 trajectories of 106 iterations into blocks of 5 iterations and checking
each of these blocks whether the motion is in the vicinity of an attractor or chaotic.
The functional form of these averaged lengths of the chaotic bursts resembles very
closely the behavior of the Lyapunov exponents, indicating that it is the motion on
the fractal basin boundary during the bursts that gives rise to the chaotic compo-
nent. The inset is a blow up of the region, where the Lyapunov exponent becomes
positive, which happens at δ ≈ 0.047.

The effect of noise leading to a positive Lyapunov exponent of otherwise non-chaotic
dynamics has been called ‘noise-induced chaos’ and was found for the first time in
the logistic map (Meyer-Kress & Haken, 1981; Crutchfield et al., 1982) and later on
in a variety of systems, like in experiments with Josephson junctions (Iansiti et al.,
1985), SQUIDs (Bulsara & Jacobs, 1990), biological systems (Herzel et al., 1987),
and the Kramers oscillator (Schimansky-Geier & Herzel, 1993). In all these cases a
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smoothing of the Lyapunov exponent due to the noise has been observed. Also the
opposite effect, namely stabilization by noise, has been reported (Herzel, 1988b).
However, ‘noise-induced chaos’ is still to be discerned from truly chaotic dynamics,
as it is only the interplay between a complex basin boundary between the stable
states and the noise that is responsible for the positive Lyapunov exponent, and
not a real divergence of nearby trajectories. A method to classify the complexity
introduced by the noise with a refined Lyapunov exponent has been proposed in
(Paladin et al., 1995).

To gain a better understanding of the noise-induced chaos transition, it is use-
ful to consider finite-time Lyapunov exponents (Grassberger & Procaccia, 1984;
Fujisaka, 1983), where the time interval T stays finite λT = 1

T

∑T
i=1 ln |( dfdx)i|. When

we compute those λT for an ensemble of L (L � 1) trajectories at a given time
interval T , we obtain a set of positive finite-time exponents λ+

i and a set of negative
ones λ−i corresponding to chaotic or almost periodic motion, respectively. Using
this distribution of finite-time Lyapunov exponents, we can again estimate the noise
intensity for which the asymptotic Lyapunov exponent λ becomes positive. This
noise value δc satisfies

λ(δc) =
1

K + L
(
K∑
i=1

λ+
i +

L∑
i=1

λ−i ) ≈ 0. (2.15)

Here K + L is the total number of trajectories, while K(L) is the number of tra-
jectories yielding positive (negative) finite-time Lyapunov exponents λ+

i (λ−i ), re-
spectively. It is also very interesting to look at the distribution of these finite-time
Lyapunov exponents. They are computed for T = 5000, using 50 time series of
length 1,000,000. It yields 10,000 Lyapunov exponents, a sufficiently high number
to get good statistics. Smaller time intervals T do not yield good results, since the
eigenvalues are complex and, by this fact, spurious peaks appear in the histograms,
due to the rotation of the eigenvectors.

For the noiseless system, the motion is attractive and hence the finite-time Lya-
punov exponents are negative, peaking about the maximum Lyapunov exponent,
whose numerical value is λmax ≈ −0.01. As the noise intensity increases, the
peak is shifted towards higher values of λmax and starts to flatten out. At a
noise level of δ = 0.075, there is no negative Lyapunov exponent any longer and
a second peak at a higher value begins to develop, see Fig. 2.9a. This second
peak becomes increasingly dominant and develops into a Gaussian distribution,
displayed in Fig. 2.9b and c. For δ = 0.125 (Fig. 2.9e) the Gaussian part is
fully developed and the peak associated with the periodic motion is not visible
anymore. By increasing the noise further, it yields a single Gaussian distribution
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Figure 2.9: Histograms of finite-time Lyapunov exponents for different noise levels.
The interval length is 5000, altogether 10,000 Lyapunov exponent values are com-
puted for each picture, using 50 trajectories. The bin size is 0.002. (a) δ = 0.075;
(b) δ = 0.09; (c) δ = 0.1; (d) δ = 0.11; (e) δ = 0.125; (f) δ = 0.5. Note the different
scale in the y-axis.

(Fig. 2.9f), whose mean is in accordance with the maximal Lyapunov exponent of
Fig. 2.8. The peak corresponding to the periodic motion has disappeared com-
pletely. This transition thus takes place around 0.08 < δ < 0.11. The features
of the crossover behavior of Fig. 2.9b, consisting of a pronounced peak and an
only weakly decaying tail, i.e. a significant departure from the Gaussian distribu-
tion, are also typical for intermittent dynamics, where, although without noise, an
interplay between regular and chaotic motion is taking place (Benzi et al., 1985;
Prasad & Ramaswamy, 1999).
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2.2.2 1/f noise

The occurrence of 1/f noise, i.e. the divergence of the power spectrum Sf at low
frequencies with a power law

S(f) ∼ 1/fα, (α ≈ 1), (2.16)

where the power spectrum is defined as the square of the Fourier transform, is ubiq-
uitous in nature (Weissman, 1988; Press, 1978). It can be found in the current
fluctuations of metal films, semiconductors, and various types of diodes (Dutta &
Horn, 1981). It has also been detected in such disparate systems as water fluctuation
in rivers (Mandelbrot & Wallis, 1969), human speech data (Voss & Clarke, 1978),
music (Voss & Clarke, 1975), biological membranes (Derksen & Verveen, 1966),
ion channels (Bezrukov & Winterhalter, 2000), Josephson junctions (Iansiti et al.,
1985), traffic flows (Musha & Higuchi, 1976), granular flows (Schick & Vervear,
1974), heartbeat variability (Kobayashi & Musha, 1982), self-organized criticality
(Bak et al., 1987; Rios & Zhang, 1999), DNA sequences (Voss, 1992), intermittent
dissipative systems (Manneville, 1980) and non-integrable Hamiltonian dynamics
(Geisel et al., 1987). Despite its ubiquity, no universal mechanism for its origin has
been established so far.

We want to investigate, if the noisy dissipative standard map is generating 1/f noise,
since it has been observed, that the hopping mechanism between different states can
be responsible for 1/f noise. The original proposal, which used the Duffing oscilla-
tor with two states (Arecchi et al., 1982), has been questioned (Beasley et al., 1983;
Voss, 1983) and refined in (Arecchi & Califano, 1987). As necessary conditions (i)
at least two stable states, (ii) the presence of noise and (iii) a fractal basin boundary
have been distilled. The last point guarantees, that the motion between the stable
states is highly irregular and contributes a large variety of different time scales.
To check these conditions for the noisy dissipative standard map, we compute the
power spectrum for three different noise levels, see Fig. 2.10, 2.11, and 2.12. In the
first case (Fig. 2.10), the noise level is very small (δ = 0.01) and not strong enough
to kick the orbit out of the stable state. Therefore, the process is dominated by only
one single correlation time τ and the spectrum can be fitted by a Lorentzian

S(f) ∼ τ/(a+ τ2f2) (2.17)

with a constant low frequency part and a high frequency part S(f) ∼ 1/f2. The
same holds for Fig. 2.12, where the noise is very large (δ = 0.2), and the motion
diffuses over large parts of the phase space, without staying for a longer time close
to a metastable state. However, for an intermediate noise level, Fig. 2.11 with
(δ = 0.085), the typical attractor-hopping occurs, with a broad distribution of res-
idence times. These different time scales cause a low frequency part S(f) ∼ 1/f
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Figure 2.10: Time series of the angular velocity y (top) and the corresponding power
spectrum S(f) (bottom) for a noise level of δ = 0.01 and a length of 216 = 65536.
The noise is not strong enough to kick the orbit out of one of the attractors, therefore
no hopping takes place and the whole spectrum follows a Lorentzian.

Figure 2.11: Time series of the angular velocity y (top) and the corresponding power
spectrum S(f) (bottom) for a noise level of δ = 0.085. Here a competition between
hopping and remaining in an attractor exists, which results in the low frequency
part of the spectrum, which can be fitted by S(f) ∼ 1/fα for f < 0.005 (solid line).
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Figure 2.12: Time series of the angular velocity y (top) and the corresponding power
spectrum S(f) (bottom) for a noise level of δ = 0.2. For such a high noise intensity
diffusive motion dominates and the trajectory does not remain for an appreciable
length of time in the neighborhood of an attractor. The entire spectrum is again
very well fitted by a Lorentzian.

for more than two orders of magnitude. Thus, the above mentioned three criteria
are confirmed as sufficient conditions for the existence of 1/f noise. Moreover, in
multistable systems with a fractal basin boundary 1/f noise is expected to be much
more pronounced than in bistable systems, since not only two, but many metastable
states coexist, with the consequence of many different average residence times and
a much more complicated basin boundary.

2.2.3 Preference of attractors

As a consequence of the preceding analysis, there is a quite distinct behavior of the
system for small and large noise levels, with the more interesting features for small
noise. Accordingly, we will focus on this case. With the method described above,
which has been applied to compute Fig. 2.7, we now explore the influence of the
noise on the size of the basins. For this purpose, the number of initial conditions
terminating (with the numerical criterion specified) on the period 1 orbits with dif-
ferent m is computed, where the fixed points with different m resulted from the
introduction of the dissipation ν and the splitting of the phase space in a cylinder.
The basin of the fixed points for different m is visualized in Fig. 2.2 for m = 0
in black and m = ±1,±2, .... in white. For higher m values the distance from the
symmetry-axis y = 0 increases and the size of the basins decreases for increasing m.
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(a) (b)

Figure 2.13: (a): Number of initial conditions converging to period 1 attractors
with increasing m from top (m = 0) to bottom (m = 10). Because of the symmetry
m = +k and m = −k are averaged. Altogether 106 initial conditions are iterated.
(b): Same as in (a) for m = 0 (top) to m = 7 (bottom), but with multiplicative
noise.

The computation of the number of initial conditions is depicted in Fig. 2.13a. It can
be clearly seen that the curves for different m all possess roughly the same features,
namely there is an increase up to a maximum value, followed by an exponential de-
crease taking place at lower noise intensity for higher m values. The starting points
of the decrease versus m yields an exponential scaling, as can be seen in Fig. 2.14a.
The determination of the slopes of these exponential decays reveals that they yield
a logarithmic scaling in m (inset of Fig. 2.14a). These findings are robust against
other forms of noise distributions, like Gaussian noise.

It is further interesting to investigate, if these results also hold when multiplica-
tive noise is used. Generally, multiplicative noise is applied by perturbing the form
of the function. In our case this amounts to altering the kick strength f0 and we do
that by introducing a noise-term via f0 7→ f0 + δ into the second of equations (2.8).
This results in the additive term δ sin(xk + yk) acting on the angular velocity only.
The multiplicative noise reduces therefore to a special form of additive noise, whose
strength depends on the location of the trajectory in the phase space and is always
≤ δ. Fig. 2.13b shows the result in analogy to Fig. 2.13a. The expected behavior



2.2. Basic properties of the noisy dynamics 27

occurs at higher noise intensities as a consequence of the effective reduction of the
influence of the noise by multiplying δ with the sin-term. In particular, for the fixed
points y = 2πm, x is close to π and consequently the sin-term is very small. For mul-
tiplicative noise the exponential decay is even more pronounced. Again, the snap-off
points scale exponentially and the slopes logarithmically with m, as depicted in Fig.
2.14b.

(a) (b)

Figure 2.14: (a): Exponential scaling of the snap-off points, where the exponential
decrease starts, of Fig. 2.13a versus m. The inset shows the logarithmic scaling
of the slopes of the exponential decay versus m. (b) Same as (a), but for the case
multiplicative noise in Fig. 2.13b.

For higher noise strengths the attractors with small basins lose part of their basins,
while the ones with an already large basin are preferred. Thus the fine structure of
the system is washed out due to the noise. This leads to an important consequence
for the behavior of multistable systems. Even if the number of coexisting attractors
is very high in a deterministic system, one observes only few of those attractors in
the presence of noise. The behavior is dominated by a few preferred attractors, while
the majority of them ‘disappears’. Since in nature or in experimental systems noise
is always inevitable, one can expect that only a tiny number of asymptotic states
can be ‘measured’ while the majority remains ‘hidden’.
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On the other hand, if the noise level corresponds to the maxima in Fig. 2.13a
and b, the opposite effects occurs, namely attractors with a small basin gain more
initial conditions, the basins of many of them become even larger as compared with
the noiseless basin. This is especially true in the case of the period 3 attractors as
can be seen in Fig. 2.15. In Fig. 2.15a the number of initial conditions terminating

(a) (b)

Figure 2.15: (a): Number of initial conditions terminating on the period 3 (m = 0)
attractor versus the noise level. A clear maximum at δ ≈ 0.1 is visible. (b): Number
of initial conditions terminating on the sum of all period 1 (stars) and period 3
(diamonds) attractors.

on the period 3 attractor for m = 0 is shown versus the noise level. There is a
clear maximum at δ ≈ 0.1. This phenomenon is similar to the effect of stochastic
resonance, where the signal to noise ratio of a periodically driven system reaches
some maximum at a special noise value, originally observed in a bistable system
(Benzi et al., 1981), and subsequently found in a large variety of different fields,
reviewed in (Gammaitoni et al., 1998). In contrast to the general case, in our sys-
tem no forcing is present. However, even in such systems stochastic resonance can
occur (Gang et al., 1993). For higher noise values the period 3 attractors become
extinct. Fig. 2.15b depicts the sum of all period 1 and 3 basins, with the same result.



2.2. Basic properties of the noisy dynamics 29

The remarkable effect of the preference of period 3 attractors may be explained
by the fact, that the eigenvalues of the period 3 orbits are slightly smaller than
those of the period 1 fixed points. Additionally, the open neighborhoods of the pe-
riod 3 attractors are located within the open neighborhood of the fixed points, see
Fig. 2.7. For f0 = 4, this is not the case and the effect cannot be observed. This
effect of a noise-induced increase in the size of the basin of attraction has also been
found in coupled map lattices (Kaneko, 1997; 1998) and in a bistable system (Yang
et al., 1995). The bistable system exhibits two coexisting periodic orbits with a
fractal basin boundary and the condition, that one basin has to be ‘inside’ the other
one is therefore trivially fulfilled. In the coupled map lattice case, the attractors
possess riddled basins of attraction. This riddling also provides intertwined basins
of attraction as a necessary condition for the appearance of noise-induced selectiv-
ity of certain attractors. Furthermore, the attractors studied in this coupled map
lattice are chaotic, which makes them to Milnor attractors (Milnor, 1985), i.e. they
are intrinsically unstable against perturbations, and the system leaves the attractor
with certainty at a finite time, even if only an arbitrarily small amount of noise
is applied. It is the coexistence of Milnor and stable attractors, which causes the
noise-induced selectivity of attractors in the coupled map lattice. By contrast, in the
dissipative standard map for our set of parameters only periodic orbits are present,
with basins consisting of open sets. The preference of certain attractors in our sys-
tem originates thus from a different mechanism as a finite noise level is required for
the phenomenon to occur.

2.2.4 Noise-induced escape

Let us now discuss the mechanism how the trajectory can leave the open neighbor-
hood of a metastable state. This process corresponds to a noise-induced escape from
a periodic orbit. The escape rate W over a barrier of a metastable potential, often
referred to as Kramers’ law, has been successfully derived by Kramers in his seminal
work (Kramers, 1940), leading to an expression

W = κ exp(−∆U/δ2), (2.18)

where the escape rate is the product of the Arrhenius factor exp(−∆U/δ2) (Arrhe-
nius, 1889) and a pre-exponential term κ, that depends only weakly on the noise,
the friction and the details of the potential, with δ2 � ∆U . The derivation is valid
for the underdamped and overdamped limit. The mean first passage time 〈τ〉 of the
barrier crossing is the inverse of the escape rate

〈τ〉 =
1
κ

exp(∆U/δ2). (2.19)
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Since in our system no potential exists, and furthermore not only one metastable
but a large number of metastable states, it is interesting to see, whether Kramers’
law is still applicable.

To gain a better understanding of the effect of noise and the relation to the eigenval-
ues of the system, we study as a preliminary step a trivial linear system with noise
given by

xk+1 = αxk + δx

yk+1 = β yk + δy, (2.20)

where α and β are less than 1. A stable fixed point exists at (x = 0, y = 0), from
which the orbit cannot escape. The maximum distance D = max(|x|, |y|) of the
orbit from the fixed point is related to the eigenvalues and given by

D =
∞∑
i=0

max(|α|, |β|)iδ =
δ

1−max(|α|, |β|)
. (2.21)

m |λ| min(δescape) ∆U ∆U
min(δescape)2

0 0.98994952 0.061 0.034 9.14
1 0.98994952 0.05 0.022 8.80
2 0.98994952 0.041 0.015 8.92
3 0.98994952 0.031 0.0086 8.95
4 0.98994952 0.027 0.0065 8.92
5 0.98994952 0.021 0.0038 8.61

Table 2.1: The modulus of the eigenvalues, the minimal noise intensity necessary for
escape, the height of the ‘potential’ ∆U from Kramers’ law, and the ratio ∆U

min(δescape)2 .

In our nonlinear system, though, the norm of the maximal eigenvalues for the
period-1 fixed points |λ| is identical for all m, while the minimum noise intensity
min(δescape), for which the trajectories leave the attractors for the first time, de-
creases with m, as shown in Tab. (2.1).

This result underlines the importance of the nonlinearities in this model, as the
escape rate has no connection to the eigenvalues of the metastable states whatso-
ever. Furthermore, it is important to note that the eigenvalues are close to the
stability threshold |λ| = 1. For noise intensities larger than the minimum noise
intensity min(δescape) the trajectories leave eventually the open neighborhood of the
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(a) (b)

Figure 2.16: (a): Distribution of escape times 〈τ〉 for the fixed point m = 0 (bin
size = 50,000). (b): Escape times 〈τ〉 for different fixed points in semi logarithmic
plot (m = 0, 1, 2, 3) from top to bottom. The slopes ∆U correspond to the potential
values of Kramers’ law for the mean escape times 〈τ(δ)〉 ∼ exp(∆U

δ2 )

attractor. This is clearly only true for our choice of the noise distribution; when
using Gaussian noise, there does not exist a minimum noise intensity for escape.
The escape times differ for each noise realization yielding an exponential distribu-
tion P (τ) ∼ γ exp(−γ[τ − τopt]), as shown in Fig. 2.16a for m = 0. In principle,
by using the relation 〈τ − τopt〉 = 1

γ , the optimal escape time can be determined.
However, we get numerically only the approximate result τopt ≤ 300. In Fig. 2.16b
the scaling of the mean escape times with increasing noise level for different m
values is depicted. They follow Kramers’ law (2.19) very well, which is far from
trivial in cases where, like here, no potential U exists (Kautz, 1988; Beale, 1989;
Grassberger, 1989a). The ratio ∆U

min(δescape)2 for all m is roughly constant, which
suggests that, in first order, the stability of each attractor can be approximated by
a parabolic potential. This can be seen by the equation

∆U = Usp − Ufp =
1
2
M

2∑
α,β=1

Qαβρrαρrβ, (2.22)

where sp denotes the saddle point on the basin boundary, across which the escape
takes place, fp is the fixed point (x = π, y = 0), M is a constant, Q is the curvature
matrix, and ρr are the displacements from the fixed point. Eq. (2.22) has been used
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for the first time for the escape from a multidimensional potential in (Brinkman,
1956; Landauer & Swanson, 1961). Assuming, that there is a linear relation between
the displacement and the minimal noise strength for escape (we were using bounded
noise)

ρr ∼ min(δescape) (2.23)

we arrive at

∆U
min(δescape)2

= M. (2.24)

The problem of noise-induced escape for systems without a potential and the role of a
fractal basin boundary and the implications of chaotic saddles will be treated in much
more detail in Chapter 4. There we report an enhancement of noise-induced escape
caused by the existence of a chaotic saddle embedded in the open neighborhood of
a metastable state.

2.2.5 Phase space and attractor-hopping

As described above, the periodic orbits in the dissipative standard map are located
in the state space in a hierarchical structure. Therefore, it is an interesting question,
whether this hierarchy is reflected in the transition probabilities of the jumps be-
tween the attractors. Furthermore, it is noteworthy that a typical noisy trajectory
is not exploring the whole phase space uniformly, but seems to be confined to a
much smaller interval in the y direction than the entire trapping region. This can
be seen in Fig. 2.5 and Fig. 2.11 with a small noise level and even in Fig. 2.12,
where a much larger noise amplitude was applied. Thus this phenomenon seems to
be robust against different noise levels.

As the transition from one metastable state to another occurs via the fractal basin
boundary, its properties are relevant for the attractor-hopping process, as explained
in Section 2.2. To review briefly, a fractal basin boundary entails saddle points,
i.e. points whose tangent spaces are direct sums of stable and unstable subspaces.
The union of these saddle points forms a geometrically strange, invariant, and non-
attracting set. It is called a chaotic saddle, where the term ‘chaotic’ refers to the
fact, that the motion on this invariant set exhibits a positive Lyapunov exponent.
A much more refined account of the importance of chaotic saddles for the attractor-
hopping dynamics, the exact definitions of the terms involved, and the numerical
algorithms will be presented in the following Chapter.

The chaotic saddle for various forcing strengths f0 is shown in Fig. 2.17. As is
clearly visible, the chaotic saddle evolves with increasing forcing f0, exploring a
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Figure 2.17: Chaotic saddle for the dissipative standard map. The values of the
forcing strength f0 are (a) 1.0, (b) 1.5, (c) 2.0, (d) 2.5, (e) 3.0 and (f) 3.5.

growing part of the phase space (note the different scale of the y-axis), yet never
covering the whole trapping region −f0/ν ≤ y ≤ f0/ν. At the maximum value
of f0 = 3.5 in Fig. 2.17f the chaotic saddle covers exactly that region in phase
space, which is also found in the noisy timeseries Fig. 2.5, Fig. 2.11 and Fig.
2.12. The same applies for all other values of the forcing f0 in Fig. 2.17, which
has been confirmed numerically, with the exception of Fig. 2.17b. Here, the chaotic
saddle consists of non-connected, separate parts and no jumps between the period
1 solutions m = 0 and m = 1 are possible. In all other cases, the chaotic saddle
is one large connected strange set and all connections between metastable states
seem to be possible. However, this question can not be answered thoroughly for
the dissipative standard map, since so many metastable states coexist. Moreover,
the change in the topology of the chaotic saddle through parameter variation (f0 in
our case) and the resulting change in the hopping dynamics between the metastable
states is a problem of high relevance for understanding the hopping process. Again,
the dissipative standard map is too complicated for that purpose. Consequently we
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investigate in the following Chapter a different prototype model to address these
important questions.

2.3 Summary

In this Chapter the dissipative standard map as a prototype model of multistable
behavior has been introduced. After describing its basic properties, noise was ap-
plied to the system. This resulted in the attractor-hopping process, in which long
laminar-like motion is interrupted by sudden bursts. Another consequence is the
washing out of the fine structure of the system, which was visualized through the
probability density and some noisy basins of attractions. With the help of Lyapunov
exponents the effect of ‘noise-induced chaos’ was explained, and utilizing finite-time
Lyapunov exponents we were able to determine this transition into chaos in detail.
The phenomenon of 1/f -noise has been reported and recent criteria for its occur-
rence in the attractor-hopping process were tested with the result, that multistable
systems favor its occurrence over bistable ones. This is caused through the introduc-
tion of many different time scales and a more intertwined basin boundary. Using a
specific numerical procedure, the phenomenon of preference of attractors was found,
which implies, that for special noise levels the system is more likely to be steered to
certain attractors than others. The relationship to similar findings in the literature
was pointed out. Then, the noise-induced escape from a metastable state was pre-
sented in a preliminary fashion, and the applicability of Kramers’ theory suggested.
Finally, the importance of the chaotic saddle for the attractor-hopping dynamics
was addressed. This point will be dealt with in the following Chapter.



Chapter 3

Noise-induced attractor-hopping
and the crucial role of chaotic
saddles

The result of the last Chapter revealed the importance of the chaotic saddles for
the attractor-hopping process. Since the dissipative standard map exhibits a very
complicated evolution in the phase space, we turn here to a more basic map to inves-
tigate the role of the chaotic saddles. Therefore, in this Chapter, the noise-induced
attractor-hopping process is studied using a more elementary model, namely two
coupled logistic maps. Yet this model exhibits still the main features necessary for a
complex attractor-hopping process: (i) more than two stable states, to discriminate
it from the bistable case and (ii) a fractal basin boundary separating the metastable
states, giving rise to a final state sensitivity and to long chaotic transients, when the
motion takes place far from the metastable states.

In Section 3.1 we introduce the model of two coupled logistic maps and choose
parameters to gain a multistable system. Section 3.1.1 lists the main properties
of the system when noise is applied to it, which are basically the same as for the
dissipative standard map. The concept of symbolic dynamics is presented in Section
3.1.2, and in turn the complexity of the timeseries resulting from the noise-induced
attractor-hopping process by transforming it into a string of symbols is studied uti-
lizing the tools of symbolic dynamics. The Shannon entropy and the topological
entropy are computed, which can both be regarded as measures of complexity for
the attractor-hopping process. As a system parameter is varied, a sudden increase
for both entropies at a certain parameter value is observed. After establishing the
invariant quantity of a chaotic saddle with definitions and examples in Section 3.1.3,
we explain this increase of the entropies with a novel bifurcation of the underlying

35
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chaotic saddles in Section 3.1.4, namely a merging of two chaotic saddles accom-
panied by the emergence of additional points filling the gap between the formerly
separated saddles. This bifurcation is mediated by a snap-back repellor, whose prop-
erties are explained in detail. Finally, a scaling law for the transient life-times on one
chaotic saddle close to the bifurcation point is presented in Section 3.1.4, involving
the eigenvalues of the mediating repellor in analogy to crisis. The results of this
Chapter are summarized in (Kraut & Feudel, 2001b)

3.1 Two coupled logistic maps

As was mentioned at the end of the last Chapter, the noise-induced attractor-
hopping process of the dissipative standard map is too involved to elucidate the
basic mechanisms. Therefore, we focus in this Chapter on a model, which is more
elementary, but still sufficiently complex. The basic presuppositions for the complex
behavior are the existence of more than two metastable states and a fractal basin
boundary between these states. The first point guarantees, in contrast to a bistable
system, that there may exist attractors, between which no direct transitions are
possible. The second point causes the trajectory far from the metastable states to
wander erratically around in the phase space and introduces a final state sensitivity.
Our basic prototype model of multistablity is given by the 10-fold iterate of two
coupled logistic maps:

xk+1 = 1.0− αx2
k + γ(yk − xk)

yk+1 = 1.0− αy2
k + γ(xk − yk). (3.1)

There are two parameters, the nonlinearity α and the coupling strength γ. The
space spanned by these two parameters is shown in Fig. 3.1a. Inside the region
marked with P10 stable solutions exist. Also shown is the line, above which the
dynamics is homoclinic as hatched. We will fix the coupling strength at γ = 0.29
and vary α, the nonlinearity, in the range α ∈ [0.720, 0.785]. For this parameter set,
there exists a stable period 10-orbit for the two coupled logistic maps themselves.
Since we consider the 10-fold iterate, our map exhibits 10 coexisting fixed point
attractors, where each 5 lie above and below the symmetry axis x = y, respectively.
Using only initial conditions below the symmetry axis, we can restrict our study to a
system possessing 5 coexisting fixed point attractors; there are also 5 repellers with
two unstable directions and 10 saddle points. Each of the 5 attractors is surrounded
by an open neighborhood of different size, in which all initial conditions converge to
the corresponding attractor inside this neighborhood.

The basin of attraction for one of these fixed point attractors is shown in Fig.
3.1b. In this figure also the location of the fixed points, saddle points and repellers
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(a) (b)

Figure 3.1: (a): Region of stable solutions in the γ − α plane. Also the line, above
which homoclinic intersections occur, is shown hatched. P10 marks the region, where
10 fixed points for the 10th iterate exist. (b): Basin of attraction of map (3.1) for
the fixed point marked with ∗, where α = 0.74 and γ = 0.29. The other fixed points
are marked with +, the saddle points with � and the repellers with 4.

is presented. Around each fixed point there exists an open neighborhood, about
the attractor, in which all initial conditions converge to this attractor. The saddle
points and repellers are located at the border of this open neighborhood.

3.1.1 Noisy dynamics

Since our investigation is focused on the attractor-hopping process, as a next step we
apply noise to the system. We use Gaussian white noise with a standard deviation δ,
added to the x and y component. Uniformly distributed noise does not change any of
the results. Since we consider the 10-fold iterate of the map, the noise is consequently
added only at every 10th iterate. The dynamics is depicted in Fig. 3.2. It exhibits,
like the dissipative standard map, noise-induced chaos, which was first described
for this system in (Anishchenko & Herzel, 1988). The characteristic features of the
attractor-hopping process are present here as well, namely almost regular motion
near a fixed point, and bursts similar to intermittent behavior, taking place on
the chaotic saddles. However, in this system only 5 metastable states coexist and
we can treat the question, in which way and by which mechanism the topology of
the hopping dynamics changes as a system parameter is varied, in a much more
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Figure 3.2: Noisy time series of equation (3.1) for α = 0.73, γ = 0.29 and δ = 0.012.
There are clearly 5 distinct almost periodic states, marked with Roman numbers on
the right hand side. These states are interrupted by bursts, where the motion takes
place on a chaotic saddle.

systematic fashion. This will be done employing symbolic dynamics to the noisy
time series.

3.1.2 Symbolic dynamics

For many purposes, it is possible and advantageous to describe the dynamics of a
complex system with symbolic dynamics, see (Badii & Politi, 1997; Hao, 1989). The
phase space X ∈ Rd, where the motion takes place, is divided into a finite set of
partitions B = B0, ....Bb−1 consisting of b disjoint subsets: i.e.,

⋃b−1
j=0Bj = X and

Bj ∩Bk = 0 for j 6= k. Under the action of the dynamics, the trajectory xni=0 defines
a sequence of visited partition elements. The set A = 0, ...., b− 1 of labels of the
partition elements is called the alphabet. Denoting with the symbol si ∈ A the index
of the domain Bsi ∈ B visited at time i, the trajectory is mapped to the symbolic
sequence S = s0, s1, ...., sn. This reduction of the real trajectory makes, of course,
only sense, if the relevant features of the dynamics are still present in the symbolic
description. It is equivalent to the real trajectory if every infinitely long symbol
sequence corresponds to one single point (initial condition) x0 in phase space: that
is, if there is a map φ such that limn→∞ S = φ(x0). If this is the case, the partition
is called generating.

For one-dimensional maps, a generating partition is easily found and given by the
coordinates of the critical points (maxima, minima, vertical asymptotes). As an
example, the logistic map xn+1 = rxn(1− xn) can be transformed into a symbolic
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representation with the two symbols 0 and 1, according to whether 0 ≤ xn < xc = 0.5
or xc ≤ xn ≤ 1. For multidimensional non-hyperbolic maps, there is no clear rule
for the construction of a generating partition. However, a method has been pro-
posed (Grassberger & Kantz, 1985), consisting of connecting homoclinic tangencies
together. This technique has been refined, using tangencies and finite pieces of in-
variant manifolds (Christiansen & Politi, 1995). Another approach is based on an
algorithm involving unstable periodic orbits (Davidchack et al., 2000). The effect of
a misplacement of the partition has been investigated in (Bollt et al., 2000).

For several reasons, we do not use the encoding scheme outlined above. First,
our system is two-dimensional, which makes it quite hard to find the right partition,
as described. Second, we have noise applied to our system, which blurs the borders
between partitioning lines and makes it impossible to decide, which element the
trajectory ‘really’ visited. Lastly, the trajectory stays often for a very large number
of iterations close to a fixed point, which would result in a redundant number of
identical symbols. Notwithstanding the fact, that methods have been developed to
cope with the last problem (Abel et al., 2000), we use a different encoding scheme
(Poon & Grebogi, 1995), which is more appropriate for our purpose, as we are mainly
interested in the topology of the attractor-hopping process. Neglecting the number
of iterations the trajectory spends close to a fixed point, a symbol is given to every
fixed point and only after a jump out of an attractor a new symbol is bestowed,
according to the attractor where the trajectory lands at. Thus, our alphabet con-
sists of 5 elements, the number of attractors. No symbol is given to the motion far
from any attractor. Using this scheme, we focus only on the structural properties
of the jumps, not taking fully into account the complete temporal evolution in each
iteration.

A measure for the complexity of the attractor-hopping process is now introduced
via the Shannon entropy (Shannon, 1948)

hn = lim
n→∞

Hn

n
= lim

n→∞
(Hn+1 −Hn)

= lim
n→∞

1
n

− ∑
|S|=n

p(S) log p(S)

 , (3.2)

where S = s1s2...sn denotes a finite symbol sequence consisting of n elements si =
1, 2, ..., 5, p(S) its probability of occurrence and Hn the block entropy of block length
n. If the symbols are given in accordance to the underlying generating partition,
the Shannon entropy hn is identical to the Kolmogorov-Sinai or metric entropy K1

(Kolmogorov, 1958; Sinai, 1959). With the coding scheme used here, these two
quantities differ, though. Yet both are a measure of unpredictability (Wackerbauer
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et al., 1994). The difference hn = Hn+1−Hn between block entropies at consecutive
hierarchy levels can be interpreted as the information needed to specify the symbol
n+ 1, given the previous n symbols. If the process is Markovian of order k, i.e. the
memory does extend only to the previous k iterations,

hk+l = hk ∀ l ∈ N. (3.3)

If the process is not Markovian,

hl > hk ∀ l < k. (3.4)

In this case, the system is said to exhibit long-range correlations. To test, which class
of process the attractor-hopping dynamics belongs to, the quantity hn = Hn+1−Hn

is computed for different values of α, as shown in Fig. 3.3. For each case, a time

Figure 3.3: Shannon entropy hn for γ = 0.29 and various values of α vs n. From
bottom to top: α = 0.72, 0.73, 0.74, 0.75, 0.78. For n ≥ 1 hn remains constant with
respect to n, but increases with α.

series with N = 1000 symbols has been created and the noise level has been chosen
in such a way, that the lengths of the original time series were of the same order of
magnitude (∼ 109). However, it is important to note, that the specific noise level is
of no relevance, as long as the dynamics is characterized by attractor-hopping and
not by diffusion or trapping in the neighborhood of one attractor. All the findings
remain unchanged for noise levels 10−5 < δ < 10−2. Only the time series would
become restrictively long by using a too small noise level. Furthermore, we stress
that, although the escape times out of the stable states depend on the noise level, the
transition probabilities remain constant for a wide range of noise values. Therefore,
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the considered entropies are not affected by the noise amplitude for the interval of
noise levels, which has been used.

As can be seen, for n = 0 all curves coincide. Equally obvious is the fact, that
for all curves the values for n = 1 and n = 2 are identical, at least by taking the
numerical error into account, which is about the size of the plot symbols. To cope
with finite size effects, the first order correction hn = hn+m(n)−1

2N , derived by (Grass-
berger, 1988; Herzel, 1988a), has been used, where m(n) is the number of blocks of
length n occurring in the symbol sequence (out of 5n possible ones), and N is the
length of the symbol sequence. For n = 3 the finite size effects are for higher α
even more pronounced. But because of equation (3.3), hn has to be constant for
all n for theoretical reasons and it is not necessary to care about the finite size effects.

The crucial point is, that the attractor-hopping dynamics is a Markov process of
first order. This corresponds to the intuitive expectation, that the dynamics pos-
sesses only memory of the last state it was dwelling on, since higher correlations
are suppressed by the long laminar-like motion. During this motion, the trajectory
‘forgets’ about the former states. Only for α ≥ 0.755 the dynamics changes into a
Markov process of zeroth order, not even ‘remembering’ the last state. This transi-
tion will be explained in Section 3.1.3.

Another interesting quantity for the investigation of the symbol sequence is the
topological entropy (Adler et al., 1965). It is defined as the exponential growth rate
of the number N(n) of allowed sequences as a function of their length n and thus
classifies the ‘richness’ of a dynamical system mapped to a symbol sequence

lim
n→∞

N(n) ∼ exp(nhT ). (3.5)

The strict inequality hT = K0 > K1 applies. The most straightforward way to
compute the topological entropy is using equation (3.5)

hT = lim
n→∞

logN(n)
n

. (3.6)

This might become a quite cumbersome computation, as the number of possible se-
quences N(n) can become very large, but the result of quite a few n values is needed,
to obtain a sufficiently large scaling region. Moreover, the topological entropy counts
only the number of sequences independently of their probability of occurrence. Thus
extremely long trajectories are needed to catch also sequences which are extremely
rare. However, in our case there is a much more elegant way of computing the topo-
logical entropy. As was found above, we are dealing with a first order Markov process.
Consequently it is possible to construct a 5×5 transition Matrix M , called the Stefan
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transition matrix, entailing as entries 1 or 0, depending on whether a transition be-
tween the corresponding states has taken place or not, respectively. The topological
entropy is the logarithm of the largest eigenvalue of this matrix (Derrida et al., 1978;
Hao, 1989).

In our numerical implementation, we use a certain very small cutoff limit of 10−3 for
the transition probabilities, below which we regard the value as zero. Consequently,
we neglect transitions, having extremely small probabilities compared to the other
transitions, extinguishing by this procedure numerical artifacts. However, the exact
value of this cutoff does not change the results significantly, as long as it is small
enough. The topological entropy remains unchanged for cutoff limits between 10−2

to 10−4. (For some control simulations N = 10000 was used to check, if these rare
transitions depend on the length of the time series.) The Shannon entropy hn can
also be found using the Matrix representation, the entries are the actual transition
probabilities. The result for both entropies is depicted in Fig. 3.4. The topological

Figure 3.4: The Shannon entropy (♦) and the topological entropy (�) of the sym-
bol sequence under variation of the nonlinearity parameter α. Both quantities are
normalized to 1.

entropy is always larger than the Shannon entropy, as it has to be. The Shannon
entropy grows monotonically, in a smooth fashion, whereas the topological entropy
seems to exhibit a devil’s staircase behavior, which is defined as remaining constant
for almost all values and increasing only at values of a Lebesgue measure zero (Ott,
1993). Devil’s staircase behavior has for the first time been theoretically proposed
in (Mandelbrot, 1977).
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For physical systems, it was analyzed using a simple one-dimensional model with
external pressure in (Aubry, 1978) and later in phase transitions of CeSb in (von
Boehm & Bak, 1979). The first rigorous derivation of the existence of a devil’s stair-
case was presented in (Bak & Bruinsma, 1982), dealing with the ground state of the
Ising model with long-range interactions. It has also been discovered in the rotation
numbers describing mode-locking in the circle map (Jensen et al., 1983) and was
found experimentally in a variety of systems, like in a periodically driven pendulum
with an additional constant external torque (Jensen et al., 1984) and in the voltage
spectrum of a periodically driven Barium-Sodium-Niobate (BSN) crystal (Martin
& Martienssen, 1986). Devil’s staircase behavior has further been detected in the
pressure dependence of the number of metastable configurations in a chain of par-
ticles (Häner & Schilling, 1989) and in chaotic scattering systems (Rückerl & Jung,
1994). Recently, it has been predicted to occur in the magnetoresistance of electron
transport in two-dimensional periodic arrays of scatterers under the influence of a
uniform magnetic field as well (Wiersig & Ahn, 2001).

The devil’s staircase for the topological entropy was originally detected numerically
in (Biham & Wenzel, 1989) and subsequently analytically investigated in (Brey-
mann & Vollmer, 1997; Lai et al., 1999). The phenomenon occurs also in systems
exhibiting chaotic scattering (Lai & Grebogi, 1994; Życzkowski & Lai, 2000) and
in communication with chaos (Bollt et al., 1997). The general mechanism is the
existence of forbidden words for certain parameter regions, which has been termed
‘pruning’ in the context of unstable periodic orbits (Cvitanovic et al., 1988).

In our case, this corresponds to the prohibited transitions between certain attrac-
tors. The matrix M changes only, if a new transition between hitherto unconnected
attractors is created (turning a 0 into a 1), which happens only at finitely many α
values. Otherwise the matrix remains constant. Below the homoclinic bifurcation
α < 0.72, where the basin boundaries are smooth, only one transition per fixed
point attractor is possible, as the fixed points are located on a closed curve formed
by the unstable manifolds of the saddle points. These unstable manifolds impose a
direction. Consequently, the topological entropy is zero. Above a value of α ≈ 0.75,
all transitions can occur and the maximum of the topological entropy is reached. Be-
sides the overall increase of both entropies, the plateau between 0.740 < α < 0.744
suggests, that there is a change in the dynamical behavior beyond it, as the entropies
are rising steeply for α > 0.744. This change is due to a change in the structure
of the chaotic saddles of the system. Already at the end of Chapter 2 the impor-
tance of the chaotic saddle for the attractor-hopping process was mentioned. In the
following, the crucial role of the chaotic saddles will be pointed out in detail.
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3.1.3 Chaotic saddles

A chaotic saddle is a geometrically strange, invariant, non-attracting set. It resem-
bles in some sense a strange attractor, yet missing the property of attractiveness.
It is called ‘chaotic’, since it exhibits a positive Lyapunov exponent, if the motion
is taking place strictly on the invariant set. It is geometrically strange, because
it possesses a Cantor-like structure. If the motion is not exactly on the saddle,
which will always be the case in numerics and experiments, the trajectory leaves
the saddle after some time. The transient life-times decrease exponentially in time
and can be expressed in terms of Lyapunov exponents (Kantz & Grassberger, 1985;
Hsu et al., 1988). A trajectory starting from a random initial condition in a phase
space region containing a chaotic saddle typically stays near the saddle exhibiting a
chaotic-like dynamics for a finite amount of time before exiting the region eventually
and asymptoting to a final stable state. Chaos in this case is only transient.

Necessary conditions for the occurrence of a chaotic saddle are homoclinic or hete-
roclinic intersections of manifolds of the system. A homoclinic intersection, where
the stable and unstable manifolds of a periodic orbit of the system intersect, implies
horseshoe type dynamics, which in turn makes the invariant set describable by sym-
bolic dynamics (Smale, 1967). The horseshoe type dynamics consists of stretching
and folding, which is the soul of chaotic dynamics. All points belonging to a chaotic
saddle are direct sums of stable and unstable subspaces.

Mathematically, chaotic saddles are closed, bounded, invariant sets having a dense
orbit. Physically, they play a fundamental role in fractal basin boundaries (Mc-
Donald et al., 1985), transient motion (Grebogi et al., 1983b; Jánosi et al., 1994),
even superlong chaotic transients (Grebogi et al., 1985; Crutchfield & Kaneko, 1988;
Lai & Winslow, 1995), chaotic scattering (Bleher et al., 1989), open hydrodynamic
flows (Eckhardt & Aref, 1988; Péntek et al., 1995), fractal distribution of chemicals
in environmental flows (Toroczkai et al., 1998), chaotic communication (Bollt et al.,
1997), and the fluctuation of finite-time Lyapunov exponents in high-dimensional
systems (Dawson, 1996; Moresco & Dawson, 1997). As will be demonstrated in
Chapter 4, chaotic saddles are also of crucial importance in the noise-induced es-
cape problem from a metastable state. Here we elucidate the role of the chaotic
saddles for the hopping process.

Since a chaotic saddle is non-attracting, a special algorithm is needed for com-
puting it. We use the PIM-triple (proper interior maximum) method of Nusse and
Yorke (Nusse & Yorke, 1989). Two initial points of the phase space are chosen at
the upper right and lower left corner, respectively. They are connected by a line,
and on this line about 30 − 50 equidistant points are selected. All these points are
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iterated with respect to the dynamics of the system until they terminate in a stable
state. The point, which needed the highest number of iterations is marked and the
two neighboring points are taken as new initial conditions. This process is repeated,
until a desired precision of the distance of the two points, say with a threshold of
10−12, is reached. Thereby one saddle point has been found, at least in the frame of
our numerical precision. This point is iterated, to generate more points pertaining
to the saddle, until the threshold is crossed. Then the refinement procedure starts
again and so on. Using this iterative scheme, in principle an infinitely long trajec-
tory of points on the saddle can be created. At least in two dimensions this method
works very well and is believed to typically generate the natural measure on the
chaotic saddle (Jacobs et al., 1997). In higher dimensional systems the algorithm
requires some modifications (Sweet et al., 2001).

3.1.4 Merging bifurcation of chaotic saddles

The result of the computation for the coupled logistic maps is shown in Fig. 3.5 for 4
values of α. In Fig. 3.5a slightly above the homoclinic bifurcation (α = 0.72), there
exist two separate saddles, which is graphically accentuated by the use of two dif-
ferent gray scales. Initial conditions starting exactly on one of the rings would stay
there forever. Thus, there exist two disjoint invariant sets. Moreover, the saddles
are very thin, since there are very few homoclinic intersections. Also, the structure
of the manifolds imposes a clockwise direction on the dynamics on the rings, which
makes only transitions to one nearest neighbor and some next nearest neighbors
possible, hence both entropies are small (compare Fig. 3.4). For α = 0.740 (Fig.
3.5b) the saddles have enlarged, causing more transitions in the hopping dynamics,
yet the separation of the two rings is still present. Increasing α to 0.745 (Fig. 3.5c)
results in a bifurcation, which leads to only one large chaotic saddle. Above the
critical value, the connected piece of the chaotic saddle enables the trajectory to
jump between the formerly separated parts, thereby causing a sharp increase in the
number of the possible transitions, as can be seen from the topological entropy above
α = 0.744 in Fig. 3.4. The gaps of the former separated pieces are filled successively,
until also the distinction between former gaps and saddle rings has vanished in Fig.
3.5d. This point will be discussed in more detail in Section 3.1.5.

For the value of α = 0.78 both entropies have already attained their maxima, and
the hopping dynamics has undergone a transition from a Markov process of first
order to zeroth order. This means, that the trajectory is injected after an excursion
on the chaotic saddle to an attractor without memory on the last attractor it was
staying on before.
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Figure 3.5: The chaotic saddles for the 10-fold iterates of equations (3.1).The values
for α are (a) : 0.725, (b): 0.740, (c): 0.745 and (d): 0.780. In (a) and (b) the separate
rings are depicted in a different gray scale. In (c) and (d) only one connected, large
saddle is present.

To investigate the nature of the bifurcation more specifically, in Fig. 3.6 the chaotic
saddle is shown again for 2 values of α below and above the bifurcation, together
with the 4-fold preimages (marked +) of the repellor (marked �). It is clearly visi-
ble, that the repellor, formerly located outside of the saddles (like in Fig. 3.6a and
for smaller α values), is now embedded in the large saddle (Fig. 3.6a and for larger α
values). The same is true for the some preimages of the repellor, respectively. Hence,
we have discovered a new merging crisis, mediated by a repellor. This can only take
place because our system is non-invertible. That the repellor can be embedded in
the chaotic saddle is at first sight counterintuitive, since it is repelling in both direc-
tions, while every point on the chaotic saddle has one stable direction. However, we
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(a) (b)

Figure 3.6: (a): Two chaotic saddle rings in different gray scale together with the
4-fold preimages (+) of the repellor R marked with a � for α = 0.740. (b): Chaotic
saddle together with the 4-fold preimages (+) of the repellor R marked with a � for
α = 0.743.

have encountered a special form of a repellor, namely a snap-back repellor (Marotto,
1978). A fixed point p is called a snap-back repellor, if

• all eigenvalues of p have absolute values larger than 1,

• there exists a q ∈ W u
loc(p), the unstable manifold of p, such that the M -fold

iterate of the map FM (q) = p for some positive integer M ,

• detDFM (q) 6= 0.

The first condition is obviously fulfilled, since p is a repellor. The third condition can
also be checked explicitly, using the formalism of the critical lines for non-invertible
discrete systems (Mira et al., 1996; Abraham et al., 1997). The critical curve of
zeroth order

L0 := {(x, y) | detDF(x, y) = 0} (3.7)

marks the regions in the phase space, where the Jacobian is zero. With the iterates
of this critical curve

Lk = Fk(L0), (3.8)

the absorbing area A can be constructed with the properties (i) that once the tra-
jectory has entered this area, it can never leave again, and (ii) all points from the
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neighborhood will be mapped into the absorbing area in a finite number of itera-
tions. The absorbing area is analogous to the trapping region used in Section (2.1).
Its boundary ∂A can be generated by

∂A =
M⋃
k=1

Fk(L0) (3.9)

for some suitable M . With the help of the absorbing area, the bifurcation scenario
of the same system, Eqs. (3.1), has been successfully revealed in the context of
synchronization (Maistrenko et al., 1998). A numerical calculation shows, that the
critical curve L0 does not coincide with any of the preimages of the repellor, confirm-
ing the last condition. Only the second criterion remains to be scrutinized, which is
done in Fig. 3.7b for α = 0.7428, where the bifurcation takes place.

Figure 3.7: Saddle and preimages for α = 0.7428. In (a) the unstable manifold of
the repellor is also shown, demonstrating the collision with some preimages of the
repellor. In (b) the same region is presented, indicating that the critical curves touch
some preimages, too.

3.1.5 Scaling laws of saddle merging bifurcation

The critical curves Lk, k 6= 0 are building the border of the saddle and collide with
some preimages of the repellor. The same holds for the unstable manifold, depicted
in Fig. 3.7a. Actually, only the one-dimensional projection in the most unstable
direction of the unstable manifold is shown, as it is clearly two-dimensional (orig-
inating from a repellor with two unstable directions). Both pictures confirm the
presented mechanism for the development of the snap-back repellor, which makes it
‘attractive’ for certain points.
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One feature of the bifurcation is worth further discussion. Increasing the bifurca-
tion parameter α slowly beyond the saddle merging value of α = 0.7428, additional
points between the two rings are created smoothly. This can be seen in Fig. 3.6b,
where some points not belonging to one of the two rings are visible. Increasing α
further results in more points (compare Fig. 3.5c), until the former gap is filled in
such a way, that the two rings cannot be distinguished from it anymore (Fig. 3.5d).

Similar bifurcations of chaotic saddles have been reported recently. An abrupt fill-
ing of a chaotic saddle during the crisis has been investigated in (Szabó et al., 1996;
2000), where also a scaling law for the topological entropy close to the crisis has been
derived. Explosions of non-attracting chaotic sets have been treated in (Robert et al.,
1998; 2000), where the term explosion refers to the creation of new pieces of the in-
variant set located at a finite distance, when changing a bifurcation parameter. A
scaling law describing the creation of unstable periodic orbits following such a bifur-
cation is provided as well. The merging of two chaotic saddles without the creation
of additional points was found in a system of chaotic scattering (Lai et al., 1993;
Lai & Grebogi, 1994).

However, in none of these cases an effect like in our system has been observed,
namely that additional points are created (for α ≥ 0.7428) before the actual merg-
ing of the two invariant sets is taking place (the repellor becomes embedded in the
chaotic saddle at α = 0.743). This effect has been described in two-dimensional sys-
tems before, but only for the union of chaotic attractors. In (Chin et al., 1992) it has
been termed ‘spilling’ and conditions for the occurrence have been established. In
(Maistrenko & Sushko, 1998), also dealing with chaotic attractors, a contact bifur-
cation of the first kind was investigated and ‘rare points’ before the actual merging
were found. The authors suspect a repellor responsible for this phenomenon, but
did not elucidate its role in detail, as is done in the present work.

In the following, we want to motivate the application of a scaling law of the transient
life-times in analogy to crisis. Sudden changes, caused by the collision of a chaotic
attractor with an unstable periodic orbit or, equivalently, its stable manifold, have
been called crisis (Grebogi et al., 1982). There exist three main types of crises: (i)
A boundary crisis, where a chaotic attractor is suddenly destroyed, because the at-
tractor collides with a periodic orbit on its basin boundary as the parameter passes
through its critical value. (ii) An interior crisis, where the attractor is suddenly
blown up in size, as it collides with a periodic orbit in the interior of its basin. (iii)
A merging crisis, where two or more attractors merge caused by the collision with a
periodic orbit on the basin boundary separating them.
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After a boundary crisis, chaotic transients result (after which the trajectory leaves
the former attractor), while in the latter two cases ‘crisis-induced intermittency’ can
be observed, with sudden bursts away from the attractor, after which the trajec-
tory returns to it. For all types, scaling laws, for the average transient life-times
have been derived for the heteroclinic and the homoclinic case, respectively (Grebogi
et al., 1986a; 1987b), and read

τ ∼ |p− pc|−ε, (3.10)

where pc is the critical parameter at which the crisis occurs and ε is the universal
exponent, given by an expression depending on the eigenvalues of the mediating
saddle point for each case.

Experimentally, the transient life-times are an important quantity, as they are rela-
tively easily measurable. The scaling laws have been experimentally observed for all
the three types in various systems, e. g. the interior crisis for the homoclinic case in
nonlinear oscillators (Jeffries & Perez, 1983), diodes (Rollins & Hunt, 1984) and a
gravitationally buckled, parametrically driven, magnetoelastic ribbon (Ditto et al.,
1989); for the heteroclinic case in NMR-lasers (Finardi et al., 1992). Boundary crisis
have been found in CO2-lasers (Dangoisse et al., 1986) and spin-wave experiments
(Carroll et al., 1987), while a merging crisis was observed in a semiconductor in
(Karakotsou & Anagnostopoulos, 1996).

When two parameters of a system are varied simultaneously, vertices in parame-
ter space can be found, where sudden changes of both the chaotic attractor and
of its basin boundary take place (Gallas et al., 1993). This can also cause the oc-
currence of a generalized crisis, at which an interior and a boundary crisis coincide
(Stewart et al., 1995).

Also of interest is the effect of noise-induced crisis, where the existence of noise
changes the scaling law into a generalized form. This phenomenon was examined
numerically (Arecchi et al., 1984), analytically (Sommerer et al., 1991b), and has
also been confirmed experimentally (Sommerer et al., 1991a). The noisy scaling law
is given by

τ ∼ δεg((p− pc)/δ). (3.11)

Here δ is a measure of the strength of the noise, g(.) is a non-universal function de-
pending on the specific system under investigation and the distribution function of
the noise, and ε is the universal critical exponent of the corresponding deterministic
crisis. Noise near crisis has also been found to lead to stabilization of the transient
motion (Franaszek, 1991; Reimann, 1994).
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To establish the connection between crisis and the saddle merging bifurcation, we
define the transient life-times in our system as the average number of iteration of
points on the chaotic saddle calculated with the PIM-triple method and using as
initial condition a point pertaining to one of the former rings, before the algorithm
produces points on the other former ring. If these transient life-times obey any
scaling relation, they should do so for values of the nonlinearity slightly above the
bifurcation value of α = 0.7428, at which the two rings become connected through
the additional points. The calculation is shown in Fig. 3.8. The graph exhibits

Figure 3.8: Scaling of the transient life-time to stay in one ring of the chaotic saddle
with the nonlinearity α and αc = 0.7428. The slope of the log-log plot is ε = −1.86.

clearly a power-law scaling of the form of Eq. (3.10). The best fit to the data yields
an exponent ε = 1.86. It is worth mentioning, that some oscillations are superim-
posed on the power-law scaling of Fig. 3.8. They are a direct consequence of the
fractal structure of the basins of attraction (Kacperski & Holyst, 1999). While at a
crisis a saddle point is the mediating link of the bifurcation, in our system a repellor
mediates the merging. Although the bifurcation entailing a snap-back repellor is
homoclinic (Devaney, 1989), the way the repellor is approached differs qualitatively
from the way a stable fixed point or saddle point is approached, as is demonstrated
in Fig. 3.9 for a one-dimensional map schematically. While in the first case, the dis-
tance of the trajectory and the fixed point decreases monotonically in size until the
distance becomes infinitesimal, the snap-back repellor is approached with a jump
of finite size from some distance. This behavior resembles more the heteroclinic
tangency. Hence, we argue that the scaling of the transient life-times of the saddle
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Figure 3.9: (a): Schematic presentation of a one-dimensional map with a stable
fixed point. Every iteration comes closer to the fixed point, until the distances is
infinitesimal. (b): Schematic presentation of a one-dimensional map with a snap-
back repellor. At the dashed lines, the trajectory leaves the repellor, until (at solid
lines) it jumps at the unstable fixed point from a finite distance.

merging can be described by the law of the heteroclinic case, given by

ε = 1/2 + (ln(β1)/ ln(β2)). (3.12)

In the original derivation of this formula, β1 and β2 are the expanding and contract-
ing eigenvalues of the mediating saddle point (Grebogi et al., 1986a). However, in
our case both, β1 and β2, are expanding eigenvalues of the mediating repellor. When
using the numerical values, we obtain

ε = 1/2 + (ln(2.45)/ ln(1.9)) = 1.85, (3.13)

reproducing the exponent ε with a very good accuracy. To further verify the correct-
ness of Eq. (3.12), we use other values of the coupling strength γ. For γ = 0.292 the
result is shown in Fig. 3.10. The best fit to the data yields an exponent of ε = 1.93,
while Eq. (3.12) gives

ε = 1/2 + (ln(2.07)/ ln(1.66)) = 1.935, (3.14)

which again is an excellent agreement. More values of γ have been tested, which all
confirm the applicability of Eq. (3.12).
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Figure 3.10: Scaling of the transient life-time to stay in one ring of the chaotic saddle
with γ = 0.292, the nonlinearity α and αc = 0.7353. The slope of the log-log plot is
ε = 1.93.

The topological entropy has been computed in Section 3.1.2 only for the symbolic
dynamics of the attractor-hopping process. It is also interesting to determine the
topological entropy for the saddle itself, as the devil’s staircase behavior was en-
countered there in a variety of systems, compare Section 3.1.2. Since no generating
partition is known for our system, we computed the topological entropy employing
an algorithm using stretching rates developed in (Jacobs et al., 1998). In our case,
due to the nonhyperbolicity of the system, there exists a nonmonotonic behavior of
the topological entropy versus the nonlinearity α (not shown). These fluctuations
are also present in the graphs of the uncertainty exponent of the basin boundary
and of the generalized dimensions D0, D1 and D2 (box-counting dimension, infor-
mation dimension and correlation dimension) of the saddle versus the nonlinearity
α (not shown). Similar findings for a one-dimensional map have been reported in
(Życzkowski & Lai, 2000). However, the box-counting dimension close to the value
of the merging of the two saddle rings obeys a scaling relation, as depicted in Fig.
3.11. The plot D0(α)−D0(αmerge) versus α−αmerge yields a straight line, extending
over almost three orders of magnitude, whose slope is the exponent of the scaling
relation

D0(α)−D0(αmerge) ∼ (α− αmerge)ζ (3.15)

It is important to note, that in Eq. (3.15) the critical value of Eq. (3.10) is not
the critical value αc = 0.7428, where the bifurcation takes place, but the value
αmerge = 0.743, where the actual merging of the two saddle rings occurs, since the
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Figure 3.11: Scaling of the box-counting dimensions D0(α)−D0(αmerge) versus the
nonlinearity α − αmerge in a log-log plot, where αmerge = 0.743 is the value of the
actual merging. The slope of the log-log plot is ζ = 0.585.

box-counting dimension is unaffected by the rare points and increases only after the
merging occurred.

A similar scaling relation for fractal dimensions of the basin boundaries has been
found for various types of intermittency in (Park et al., 1989). There the scaling
exponent was ζ = 0.5, while in our case it is ζ = 0.585. We argue, that in our case
the increase of the size of the chaotic saddle, described by the exponent ζ in Eq.
(3.15) can be related to the expansion rates of the mediating repellor via the form

ζ = ln(β1) ln(β2) (3.16)

since the unstable manifolds build the border of the chaotic saddle and are deter-
mined by the stretching rates of the eigenvalues β1, β2. If we set in the eigenvalues,
we get

ζ = ln(2.46) ln(1.94) = 0.596, (3.17)

which is a good agreement. Thus, the transient life-times on the saddle as well as
the box-counting dimension of the saddle are determined by the eigenvalues of the
repellor mediating the bifurcation.

3.2 Summary

This Chapter treated the role of chaotic saddles in the attractor-hopping process
in detail. Two coupled logistic maps were used as a basic model. It was chosen
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to be as simple as possible yet as complex as necessary, exhibiting more than two
attractors and a fractal basin boundary. After introducing the basic concepts of
symbolic dynamics, a special encoding procedure was utilized, which proved to be
very adequate for our aims. The symbol string attained this way was found to reflect
a Markov process of order 1. It was analyzed employing the Shannon entropy and
the topological entropy. A sudden increase in both entropies with the variation of the
nonlinearity parameter at a special value was observed. This increase was explained
by a novel merging bifurcation of the underlying chaotic saddles involving a snap-
back repellor. The bifurcation was further highlighted with a scaling relation of the
transient life-times on one separated part of the chaotic saddle before the merging
took place, in analogy to crisis. For the increase of the size of the chaotic saddle after
the merging, a scaling relation has been presented as well. The bifurcation and the
scaling law for the transient life-times should in principle be observable performing
experiments with such systems.





Chapter 4

Enhancement of noise-induced
escape through chaotic saddles

This Chapter deals with noise-induced escape out of a metastable state. This ques-
tion was already treated in Section 2.2.4 for the dissipative standard map in a
preliminary way. Here we give a more detailed account of this problem and present
in particular the new phenomenon of enhancement of noise-induced escape through
the existence of chaotic saddles, as a parameter is varied. Our findings are ex-
plained employing the theory of quasipotentials. In Section 4.1 the noise-induced
escape problem is exposed for nonequilibrium systems and recent progress in this
field is presented, with emphasis on the prehistory probability density and the most
probable exit path. Section 4.2 introduces the theory of quasipotentials as a min-
imization method and explains its main features. After describing the Ikeda map,
which is a basic model for a laser cavity, the novel phenomenon of enhancement of
noise-induced escape through the existence of chaotic saddles is shown to occur for
this system in 4.3. The effect can be explained, when the theory of quasipotentials
is applied to the problem, as is done in Section 4.3.1. The results obtained in this
Chapter will be published in (Kraut & Feudel, 2001a).

4.1 Noise-induced escape: Recent developments

Since the seminal treatment of the noise-induced escape problem by Kramers, cul-
minating in the escape rate given by Eq. (2.18) (Kramers, 1940), major progress has
been made by Onsager and Machlup, who realized, that the escape process consists
of large fluctuations, which are very rare, and peaks sharply around some optimal
(most probable) escape trajectory (Onsager & Machlup, 1953a; 1953b). Thus, despite
the stochastic nature of the escape process, caused by the noise, the escape path is of
almost deterministic nature, as other paths than the most probable one have an ex-

57
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ponentially smaller probability. That theory was derived for a small noise level δ → 0
and systems in thermal equilibrium. For multidimensional potential wells, the theory
has been generalized in (Landauer & Swanson, 1961), including also the prefactor of
Eq. (2.18). A measurement confirming the scaling behavior in a three-dimensional
bistable optical trap has been conducted in (McCann et al., 1999). The whole
topic with the most important advancements is reviewed in (Hänggi et al., 1990;
Mel’nikov, 1991)

In the last decade, one has realized, that systems that are not in thermal equi-
librium or are lacking the property of detailed balance, can give rise to a large
variety of interesting phenomena in the noise-induced escape problem. Only in the
last years experiments on this problem have been conducted, utilizing Josephson
junctions (Vion et al., 1996), electronic circuits (Luchinsky & McClintock, 1997)
and an electron in a Penning trap (Lapidus et al., 1999). Some of the most in-
teresting novel theoretical findings include a pre-exponential factor of the Kramers
rate (2.18) (Maier & Stein, 1992), a symmetry breaking bifurcation of the optimal
escape path (Maier & Stein, 1993) and a critical broadening of the distribution of
the escape paths originating from a cusp point singularity (Dykman et al., 1996).
Further, the very intriguing phenomenon of saddle-point avoidance in noise-induced
escape for a particular bistable system has been discovered (Luchinsky et al., 1999),
which is remarkable, since the trajectory in general always leaves the metastable
state via a saddle point located at a local maximum of the potential (at the basin
boundary). For systems where the escape occurs over a fluctuating barrier the
effect of resonant activation has been theoretically predicted (Doering & Gadoua,
1992) and experimentally confirmed in a tunnel diode (Mantegna & Spagnolo, 1996).
The question of short time scales in the Kramers problem has also been addressed,
leading to a stepwise growth of the escape rate, if the quasistationary distribu-
tion within the wells has not been achieved (Soskin et al., 2001b). Recently, also
the escape from a multiwell potential has been considered. An oscillation of the
escape rate in dependence of the friction has been demonstrated (Soskin, 1999;
Arrayás et al., 2000). For periodically driven systems a number of interesting re-
sults has been obtained as well, like a resonantly decrease in the activation energy
(Dykman et al., 1997), a logarithmic susceptibility of the fluctuation probability
(Smelyanskiy et al., 1997), time oscillations of escape rates (Smelyanskiy et al.,
1999) and enhancement of escape due to transient chaos (Soskin et al., 2001a).

Since the escape process is governed by large fluctuations, which occur, however,
very rarely, numerical and experimental investigations are very timeconsuming, be-
cause the theoretical results are only valid for the noise strength δ → 0 and the time
scales exponentially with the inverse noise strength. One way to overcome these
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difficulties consists in the construction of the prehistory probability density. This
approach exploits the fact, that the tail of the probability density distribution must
be formed by large occasional outbursts of noise that push the system far from the
metastable state. The probabilities of such outbursts are small, and the chance to
reach a given remote point in phase space will actually be determined by the proba-
bility of the most probable outburst among those bringing the system to this point.
This particular realization is just the optimal fluctuation.

This method has been introduced in (Dykman et al., 1992) and made it possi-
ble to conduct experiments with analogue electrical circuits (Dykman et al., 1996;
Luchinsky & McClintock, 1997), and semiconductor lasers (Hales et al., 2000). It
has also been employed to study in detail the escape process from chaotic attractors,
namely for a nonlinear oscillator (Luchinsky & Khovanov, 1999) and the Lorenz at-
tractor (Anishchenko et al., 2001). The most probable exit path plays an important
role in control problems as well. If an additive function is sought, which minimizes
the energy necessary to steer the system out of a metastable state, the optimal
function is found to evolve the system exactly along the most probable exit path
(Khovanov et al., 2000).

4.2 Theory of quasipotentials

An approach, conceptually similar to the most probable escape path, to describe
systems not in thermodynamic equilibrium, which are under the influence of noise,
has been established with the theory of quasipotentials, also referred to as nonequi-
librium potentials. In the mathematical literature, they have been introduced by
Freidlin and Wentzell for time-continuous systems (Freidlin & Wentzell, 1984) and
transferred to the discrete time case by Kifer (Kifer, 1988). For systems of physical
interest, they were first proposed in (Graham & Tél, 1984) and extended to systems
with coexisting attractors in (Graham & Tél, 1986). Discrete systems with strange
invariant sets were for the first time treated in (Graham et al., 1991).

With the help of quasipotentials, invariant densities, mean first exit times, and the
noise scaling behavior of invariant probabilities can be calculated. The nonequilib-
rium potential can exhibit discontinuities along certain surfaces in the configuration
space, which are created by the coexistence of attractors (Graham & Tél, 1986;
Reimann & Talkner, 1991). These discontinuities may have intriguing consequences
on measurable quantities, such as mean first passage times. Also noise scaling of
golden critical circle maps (Hamm & Graham, 1992b) and noise-induced attractor
explosions have been investigated (Hamm et al., 1994). A detailed account for noise
scaling properties in discrete systems can be found in (Hamm, 1993), which also
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treats the scaling for non-Gaussian noise distributions. Good reviews can be found
in (Graham, 1989; Graham & Hamm, 1992; Hamm & Graham, 1992a).

One derivation for the quasipotential is as follows. Let a dynamical system be
described by a set of differential equations

q̇ν = Kν(q) (4.1)

and let some positive-definite ‘transport matrix’ Qνµ(q) be given. A nonequilibrium
potential Φ(q) may be introduced as a continuous but not necessarily continuously
differentiable solution of

Kν(q) = rν(q)− 1
2
Qνµ(q)∂µΦ(q) (4.2)

rµ(q)∂µΦ(q) = 0 (4.3)

with the constraint that Φ should be minimal in attractors. Here the drift Kν(q)
has been split in two parts

Kν(q) = dν(q) + rν(q), (4.4)

in such a way that rν(q) conserves the quasipotential Φ and dν(q) is given by

dν(q) = −1
2
Qνµ(q)∂µΦ(q). (4.5)

The conditions (4.2) and (4.3) combined determine nonequilibrium potentials locally
as solutions of a Hamilton-Jacobi equation

Kν∂νΦ +
1
2
Qνµ∂νΦ∂µΦ = 0. (4.6)

Using in the first step the sum rule, in the second (4.1) and in the third (4.2) together
with (4.3), we find that Φ decreases like

Φ̇(q(t)) = ∂νΦ q̇ν = ∂νΦKν(q) = −1
2
Qνµ∂νΦ∂µΦ ≤ 0. (4.7)

The dynamics may be interpreted as a relaxation in the potential Φ subject to the
Φ-conserving part rν(q) of the drift Kν(q). Under the dynamics q̇ν = Kν(q) the
quasipotential Φ decreases monotonically and takes a minimum value on attractors.

Φ can equivalently be determined by solving a set of Hamiltonian differential equa-
tions or by minimizing the action integral

S[q] =
1
2

∫ T

0
Qνµ(q)[q̇ν −Kν(q)][q̇µ −Kµ(q)]d τ (4.8)
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where Qνµ is the matrix inverse of Qνµ. Among different coexisting local minima
of the action integral the infimum is chosen. The Hamilton-Jacobi formalism is
of fundamental importance, which confirms, that the theory of quasipotentials is
dealing with least actions and a minimization procedure. For escape problems, this
establishes the connection with the most probable escape path of Section 4.1.

Another way of motivating the quasipotential is the noisy equation

q̇ν = Kν(q) + gνiξi(t), (4.9)

where ξi is Gaussian white noise of infinitesimal intensity with no temporal correla-
tions

〈ξi(t)ξj(0)〉 = σ2δij(t) (4.10)

and with a ‘diffusion’ matrix
∑

i g
νigµi = Qνµ(q).

Now, two central quantities can be derived. The probability density Wσ2(q) in
the steady state is given by

Wσ2(q) ∼ exp[−Φ(q)/σ2]. (4.11)

Eq. (4.11) must be a time-independent solution ∂W/∂t = 0 of the Fokker-Planck
equation corresponding to (4.9)

∂W

∂t
=

∂

∂qν

[
−Kν(q) +

1
2
∂

∂qµ
Qνµ(q)W

]
, (4.12)

leading to the Eq. (4.6) and the conditions (4.2) and (4.3).

The mean first passage time 〈τσ2〉 out of the basin of attraction G of an attrac-
tor A with basin boundary ∂G can be written as

〈τσ2〉 ∼ exp[∆Φ(q)/σ2]. (4.13)

In both cases Φ is a solution to the Hamilton-Jacobi equation with diffusion matrix
Qνµ and

∆Φ := min{Φ(y)− Φ(a) : a ∈ A, y ∈ ∂G}. (4.14)

Eq. (4.13) is a generalization of Eq. (2.19). In Eq. (2.19) we only assumed a
potential-like quantity, while in Eq. (4.13) the quasipotential Φ was rigorously de-
rived. The quasipotential approach is especially useful for systems having strange
sets, like attractors or chaotic saddles. For both quantities, the quasipotential is con-
stant along the closure of unstable manifolds of some periodic orbits or the unstable
manifold itself, respectively. This property will be exploited in the next Section.



62 4. Enhancement of noise-induced escape through chaotic saddles

Since we are interested in studying maps, we need a formulation of quasipoten-
tials for the discrete time case. This was done in (Kifer, 1988; Graham et al., 1991;
Hamm, 1993). Most of the derivation is completely analogous to the time-continuous
case and will thus not be presented in the following. The underlying equation has
the form

qn+1 = f(qn) +
√
σ2Qξn, (4.15)

where f is a map characterizing the system and Q can be set to 1 for simplicity.
The action S of a sequence {qj}0≤j≤N is defined, in analogy to (4.8), as

S[(qj)] =
1
2

N−1∑
j=0

[qj+1 − f(qj)]2. (4.16)

Let V N
x (y) be its minimal values for fixed N and given initial and final points q0 =

x, qN = y. The infimal action from x to y is defined by Vx(y) := inf{V N
x (y) : N ≥ 1}.

In systems with only one attractor A the quasipotential Φ(x), satisfying the relations
(4.11) and (4.13), is

Φ(x) = Va(x), a ∈ A. (4.17)

For systems with two attractors, the global quasipotential is a combination of the two
local ones. However, the construction of the global quasipotential for systems with
a high number of coexisting states becomes prohibitively difficult, as the number
of combinations scales exponentially with the number of coexisting states (Hamm,
1993). This is the reason, why the theory could not successfully be applied to the
dissipative standard map in Chapter 2 and the two coupled logistic maps in Chapter
3. By contrast, in this Chapter we investigate the noise-induced escape of a bistable
system, where the theory proves to be very useful.

4.3 Noise-induced escape in the Ikeda map

Here we want to analyze the noise-induced escape process in the Ikeda map (Ikeda,
1979; Hammel et al., 1985). This is an idealized model of a laser pulse in an optical
cavity. With complex variables it has the form

zn+1 = a+ bzn exp
[
iκ− iη

1 + |zn|2

]
, (4.18)

where zn is a complex quantity zn = xn + iyn related to the amplitude and phase of
the nth laser pulse exiting the cavity. The parameter a is the laser input amplitude
and corresponds to the forcing of the system. The damping (1− b) accounts for the
reflection properties of mirrors in the cavity. The empty cavity detuning is given
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by κ and the detuning due to the nonlinear dielectric medium by η. The Ikeda
map gives rise to rich dynamical behavior, exhibiting for some parameters even
highly multistable behavior (Feudel & Grebogi, 1997). When transformed into a
two-dimensional map with real variables and additive Gaussian white noise added,
it reads

xn+1 = a+ b (xn cos(w)− yn sin(w)) + δx (4.19)
yn+1 = b (xn sin(w) + yn cos(w)) + δy,

where w = κ− η/(1 + x2
n + y2

n).

We fix the parameters at a = 0.85, b = 0.9 and κ = 0.4 and vary only η in the
range 2.6 < η < 12. For these values for the noiseless system, two stable states
are present, one fixed point (state A), that undergoes a period doubling scenario
and becomes a chaotic attractor at η ≈ 5.5 and another fixed point (state B), that
stays a fixed point over the whole range considered. The noise-induced escape from
state A is investigated. The basin boundary separating these two stable states is a
smooth curve. For some very small intervals, there exist additional stable periodic
orbits, but they can be neglected in the following.

(a) (b)

Figure 4.1: (a): Grey dots represent the basin of attraction for the period 3 orbit
marked with a 4 for η = 3.8. The two fixed points are also depicted (♦ and �).
The chaotic saddle is shown with black dots. (b): Grey dots represent the basin of
attraction for the fixed point marked with a ♦ for η = 4.1. The other fixed point is
also depicted (�). The chaotic saddle is shown with black dots.

With the above mentioned features of the system, there are no unusual effects
expected in the noise-induced escape problem. However, for a critical value of
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ηc = 3.5686 an additional period 3 solution close to the fixed point (state A) comes
into existence, with a fractal basin boundary between these two solutions and a
chaotic saddle embedded in this fractal basin boundary. This is shown in Fig. 4.1a
for η = 3.8. It is important to note, that the basin boundary between the two fixed
points remains smooth over the whole parameter range considered here. Increas-
ing η further, the period 3 solution becomes unstable, yet a chaotic saddle is still
present, completely embedded in the open neighborhood of the basin of the stable
solution, as can be seen in Fig. 4.1b for η = 4.1. It is this chaotic saddle, which has
a remarkable effect on the escape times out of the stable fixed point.

Figure 4.2: Average potential height according to Eq. (2.19) for the Ikeda map
versus η. For each value of η 100 runs have been averaged over. Error bars are
smaller than the size of the plot symbol.

As a preliminary treatment, we compute the mean first passage time out of the sta-
ble fixed point in the same fashion as in Section 2.2.4. The result for the potential
height, computed according to Eq. (2.19), corresponding to the escape energy, is
depicted in Fig. 4.2. There is a pronounced non-monotonic behavior of the potential
height ∆U for values 3.5 ≤ η ≤ 6.

In the linear approximation, the stability of a fixed point is determined by its eigen-
values. The eigenvalues are found to be λ = 0.9 for the whole range, where periodic
solutions exist. Consequently, the linear approximation is of no relevance to the
noise-induced escape problem whatsoever, as its range of validity is much smaller
than the region for the escape, which is the whole open set of the basin of attraction
shown in Fig. 4.1. The same situation has been encountered in Section 2.2.4.
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Figure 4.3: Scaling of the ratio of the size of the basin of attraction of state A. The
curves correspond to a larger frame of reference from top to bottom, with the values
x ∈ [−3.0, 2.0], y ∈ [−3.5, 4.0] (marked with ∗) ; x ∈ [−5.0, 5.0], y ∈ [−7.0, 7.0]
(marked with 4); x ∈ [−10.0, 10.0], y ∈ [−10.0, 10.0] (marked with �), respectively.

Figure 4.4: Average potential height (= escape energy) divided by the ratios of the
sizes of the basins of attraction (curves of Fig. 4.3 with the same plot symbols).

As a next step, it seems to be reasonable to consider the relative size of the basin
of attraction. It is obvious, that the relative size of the basin plays a role in the
stability of the metastable state located in the basin, although we are not aware of



66 4. Enhancement of noise-induced escape through chaotic saddles

any theoretical work dealing with this relation directly. In Fig. 4.3 the ratio of the
relative sizes of the basin of attraction of state A to the overall area is shown for 3
different areas. The sizes of the area increase from top to bottom. For the largest
one, an almost linear increase takes place. The most important fact is, however,
that the increase is monotonic. Therefore the non-monotonic behavior of Fig. 4.2
can not be explained by the scaling of the basin of attraction of state A. On the
contrary, a combination of the two quantities, potential height and basin size, yields
a pronounced minimum at η ≈ 5.0 for all 3 curves of Fig. 4.3, as highlighted in Fig.
4.4.

4.3.1 Application of quasipotentials for the noise-induced escape in
the Ikeda map

Now we employ the theory of quasipotentials, to treat the problem of noise-induced
escape in greater detail. In Fig. 4.5, 4.6, 4.7, 4.8, the quasipotentials are computed
for the values η = 3.0, η = 4.1, η = 5.0 and η = 7.0. For details of the numerical
code, see (Hamm, 1993; 1999). In Fig. 4.5, there is a single peak, generated by
the fixed point. There are no other dynamically relevant properties, hence the
quasipotential decreases in every direction. In Fig. 4.6, as a new feature, a plateau
region of a practically constant quasipotential emerges, which reflects the existence
of the chaotic saddle. For η = 5.0 the fixed point (state A) has period doubled two
times, exhibiting 4 peaks of a stable period 4 solution, surrounded by a large chaotic
saddle. Finally, in Fig. 4.8 the fixed point has turned into a chaotic attractor,
which is expressed in the quasipotential through a large number of peaks. Actually,
every point on the chaotic attractor should be represented by a peak, not visible
here through the finite spatial resolution. Again the plateau of the chaotic saddle is
visible slightly below the attractor.

To demonstrate, how accurately the quasipotential describes the chaotic saddle, in
Fig. 4.9 the chaotic saddle for η = 5.0 is compared with a contour plot of Fig. 4.7
at the height, where the chaotic saddle has fully developed, − log Φ(x, y) = 7.5. An
excellent agreement is found, extending even to the fine structure and confirming
the applicability of the nonequilibrium potentials to this investigation.

Utilizing the quasipotential for the noise-induced escape problem, the minimum
value of Φ(x, y) has to be determined, where the quasipotential touches the basin
boundary. This is exactly the minimum escape energy ∆Φ(x, y), since the quasipo-
tential at the stable solution (fixed point, periodic orbit or chaotic attractor) is zero.
The point on the basin boundary, where this happens, is generally a saddle point
of the system, which is also the case for the Ikeda map. This situation is depicted
in Fig. 4.10a, for η = 4.1, where the contour of the quasipotential is drawn exactly
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Figure 4.5: Quasipotential Φ(x, y) for the Ikeda map with η = 3.0 and a 300× 300
grid. The single peak corresponds to the fixed point, which is the minimum of the
quasipotential (the maximum of the graph, because of the minus operation). The
form of − log Φ(x, y) has been chosen to gain a better visual representation.

Figure 4.6: Quasipotential Φ(x, y) for the Ikeda map with η = 4.1 and a 300× 300
grid. The single peak corresponds again to the fixed point. Also, an extended
plateau at − log Φ(x, y) ≈ 5.0 is visible, caused by the chaotic saddle.
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Figure 4.7: Quasipotential Φ(x, y) for the Ikeda map with η = 5.0 and a 300× 300
grid. The 4 peaks correspond to a period 4 attractor. The plateau at − log Φ(x, y) ≈
7.5 is due to a very large chaotic saddle.

Figure 4.8: Quasipotential Φ(x, y) for the Ikeda map with η = 7.0 and a 300× 300
grid. The complex peak structure corresponds to a chaotic attractor. Again, an
extended plateau at − log Φ(x, y) ≈ 7.0 slightly below the attractor is visible, caused
by the chaotic saddle.
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(a) (b)

Figure 4.9: (a): Chaotic saddle for η = 5.0 computed with the PIM-triple method.
(b): Contour plot of Fig. 4.7 at the height, where the chaotic saddle has fully
developed, − log Φ(x, y) = 7.5.

at the minimum value of Φ(x, y), where the quasipotential touches the saddle point
located at the basin boundary. The basin boundary is also shown in dark grey. In
Fig. 4.10b, for a slightly higher value of Φ(x, y), a very narrow escape path emerges,
located at the unstable manifold of the saddle point on the basin boundary, on which
the trajectory can leave the metastable state and jump to the other solution of the
system. This narrow path is equivalent to the most probable exit path of Section
4.1. For an infinitesimal noise strength, the system can only leave the metastable
state along this path. However, at a slightly higher value, several tongues of the
quasipotential touch the basin boundary, which is a typical situation. It is analogous
to homoclinic or heteroclinic intersections at e. g. a basin boundary metamorpho-
sis (Grebogi et al., 1986b). In that case also many tongues on the stable manifold
segment accumulate through a period one saddle point.

To quantify the escape process with the quasipotential, we plot for every value of η
the corresponding minimal escape energy ∆Φ(x, y) in Fig. 4.11. To elucidate the
role of the chaotic saddle as the origin of an enhancement of noise-induced escape, we
include in the plot also the value of the height of the plateau in the quasipotential.
In the framework of quasipotentials, the difference in height of the escape energy
and the saddle plateau corresponds to the distance of the basin boundary and the
chaotic saddle, whereas the height of the saddle is related to the distance between
the attractor and the saddle.
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(a) (b)

Figure 4.10: (a): Contour plot of Fig. 4.6 at the minimal value of the quasipotential
Φ(x, y), where it touches the basin boundary, − log Φ(x, y) = 4.915, the latter shown
in dark grey. The saddle point on the basin boundary is shown as ∗. (b) At a
slightly higher value, − log Φ(x, y) = 4.9, it is clearly visible how a narrow escape
path emerges along the unstable manifold of the saddle point on the basin boundary,
again marked with a ∗.

Let us note, that for η = 5.5 it is not clear, if there exists a chaotic saddle, which is
the case for all other values of η ≥ 3.5686 we have tested. The PIM-triple method as
well as the quasipotential yield for η = 5.5 no conclusive result, as a chaotic saddle
may exist very close to the chaotic attractor, which can numerically not easily be
resolved. The points evolved with the PIM-triple method converge very rapidly to
the chaotic attractor, while an apparent plateau in the quasipotential (not shown)
may simply be a numerical artifact of the insufficient spatial resolution, as discussed
above. For this reason, in Fig. 4.11 the line, which is anyway only meant to guide
the eyes, is shown broken at η = 5.5. In any case, the value of η = 5.5 does not
possess any extraordinary meaning, and we can safely neglect this possible exception.

What is important to stress, is the mechanism of the escape process through the
existence of an embedded chaotic saddle. It consists of two steps, namely of a noise-
induced fluctuation from the attractor (state A) to the chaotic saddle, and then from
the chaotic saddle via the saddle point on the boundary to the fixed point (state
B). The escape can also be incomplete, as the trajectory may fall back from the
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Figure 4.11: Minimal escape energy (♦) and height of the saddle plateau (4) in
logarithmic scale versus η.

chaotic saddle to the attractor. In a successful escape, the chaotic saddle works as a
‘shortcut’, as its existence lowers the overall escape energy. This behavior seems to
be especially pronounced, if the chaotic saddle is closer to the basin boundary than
to the attractor, compare the region 3.6 ≤ η ≤ 4.5 of Fig. 4.11.

Moreover, other values of the Ikeda map, where no chaotic saddle is present, have
been investigated as well, and the effect could not be found, confirming, that the
existence of the chaotic saddle is of crucial importance for the occurrence of the
enhancement of noise-induced escape.

It is further important to note, that the reported mechanism of the lowering of
the escape energy is of qualitatively different nature from a recently found effect,
where also an enhancement of noise-induced escape through transient motion (typ-
ical for chaotic saddles) has been found (Soskin et al., 2001a). In this scenario, a
nonadiabatically, periodically driven system exhibits a facilitation of noise-induced
interwell transitions. This occurs, because the basin boundary becomes fractal and
the distance between the two states is effectively reduced. In our case, we always
have a smooth basin boundary between the two states and the chaotic saddle is
embedded in the basin of one state, not in the basin boundary between the states.

Noise-induced escape over a fractal basin boundary has also been studied numeri-
cally in a two-dimensional system in (Grassberger, 1989a) and analytically with the
help of the reactive flux method in (Reimann et al., 1994). For a noisy map with
a smooth basin it was calculated in (Reimann & Talkner, 1995) with basically the



72 4. Enhancement of noise-induced escape through chaotic saddles

same result. However, the analytical treatment could only be performed for a very
simple, piecewise linear one-dimensional map and no variation of a control parame-
ter has been undertaken.

Since we obtain with the quasipotentials accurate escape energies, it is worthwhile
to check, whether these results coincide with the ‘naive’ potential ∆U computed
from the straightforward calculation of the average escape times, which was used in
Fig. 4.2. In Fig. 4.12, we also include therefore the numerical estimates of ∆U in
logarithmic scale. ∆U is shifted with a constant term, to give the best fit, as ∆U
and ∆Φ are only determined up to a constant value. The coincidence is striking.

Figure 4.12: Escape energies from ∆U (♦) and ∆Φ (�). A very good coincidence
can be observed.

This justifies the use of the simple potential ∆U in Section 2.2.4. Nevertheless, the
quasipotentials reveals much more details of the structure of the escape process, like
the exact path or the height of plateaus through invariant sets (like chaotic saddles).

4.4 Summary

This Chapter dealt with the noise-induced escape problem out of a metastable state.
The concept of the most probable escape path has been introduced and recent find-
ings on the noise-induced escape problem for nonequilibrium systems were reported.
Subsequently, the theory of quasipotentials was presented for the time continuous
and for the time discrete case, and the most important properties were pointed out.
These include the possibility to compute the noisy invariant density and the mean
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escape time for an arbitrary noise distribution. The effect of enhancement of noise-
induced escape through the existence of a chaotic saddle in the open neighborhood of
the metastable state was shown to exist for the Ikeda map as a parameter is varied.
Utilizing the theory of quasipotentials, it was possible to understand this lowering
of the escape threshold. This was achieved through the ability of the quasipotentials
to translate the location of the chaotic saddle in phase space to differences in escape
energies. The reported new phenomenon is of general relevance for many physical
and chemical problems, it is predicted to occur in a variety of systems, and should
experimentally be observable.





Chapter 5

Conclusion

5.1 Summary and Discussion

The present work was devoted to an investigation of nonlinear multistable systems
under the influence of noise. Several prototype models exhibiting multistability were
analyzed, and three main new phenomena due to noise in multistable systems were
discovered. Preference of attractors was found, meaning that for a certain noise level
some attractors gain a higher probability to be observed than others. On the other
hand, some attractors may be completely ‘hidden’ through the action of noise. The
noise-induced attractor-hopping dynamics was analyzed in detail for two coupled
logistic maps. It was found, that the structure of the underlying chaotic saddles em-
bedded in the fractal basin boundary is of crucial importance for the complexity of
the attractor-hopping process and that bifurcations of chaotic saddles cause a dras-
tic change in the dynamics. The relevance of chaotic saddles was further highlighted
in the study of the noise-induced escape problem. It was shown, that the mean first
escape time out of one metastable state of the Ikeda map attains some pronounced
nonmonotonic form as a parameter is varied. This phenomenon is caused by the
existence of a chaotic saddle embedded in the open neighborhood of the metastable
state, acting as a ‘shortcut’ in the escape process. The result was obtained utilizing
the theory of quasipotentials.

Altogether the results stressed the importance of chaotic saddles in nonlinear mul-
tistable systems with noise. In the purely deterministic case without noise, only
transient motion takes place on chaotic saddles and they don’t need to be taken into
account when investigating the long-term behavior of the system. By contrast, noise
is able to kick the trajectory on a chaotic saddle and turns it into a dynamically
relevant quantity. Thus, noise makes the saddle ‘visible’.

75
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The dissipative standard map as a prototype model of multistable behavior was
introduced and noise was applied to the system. For a small noise level, the motion
is taking place close to one of the stable states and the trajectory cannot leave the
open neighborhood of the attractor. If the noise level is large, the trajectory dif-
fuses over the whole phase space. We focused on an intermediate noise level. For
this intermediate noise level we observed the attractor-hopping process, in which
long laminar-like motion close to an attractor is interrupted by sudden bursts on a
chaotic saddle. Another consequence is the washing out of the fine structure of the
system, which was visualized through the probability density and some noisy basins
of attractions. With the help of Lyapunov exponents the effect of ‘noise-induced
chaos’ was explained, and utilizing finite-time Lyapunov exponents we were able to
determine this transition into chaos in detail. The phenomenon of 1/f -noise has
been reported and criteria for its occurrence in the attractor-hopping process were
scrutinized. As a result, 1/f -noise should be more common in multistable systems
than in bistable ones. This is caused by the introduction of many different time
scales and a more intertwined basin boundary.

Employing a specific numerical procedure, the phenomenon of preference of attrac-
tors was found, which implies, that for special noise levels the system is more likely
to be steered to some attractors than to others. For these attractors, their probabil-
ity of occurrence starting with a random initial condition is considerably enhanced
compared to the noiseless case. This effect bears some resemblance to stochastic
resonance, albeit no external force is applied to the system. The mechanism of pref-
erence of attractors is highly relevant for experimental observations of multistable
systems, since measurements, which are inevitably contaminated with noise, might
reveal a much smaller number of stable states, as the noisefree system actually pos-
sesses. Many metastable states may simply be ‘hidden’ through the noise. On the
other hand, a judiciously chosen external noise strength enhances the probability to
obtain desirable states. The noise-induced escape from a metastable state was pre-
sented in a preliminary fashion and the applicability of Kramers’ theory, originally
developed for bistable systems, was suggested to hold also in multistable systems.

Using two coupled logistic maps, the role of chaotic saddles in the attractor-hopping
process was analyzed in detail. This could be achieved through the concept of sym-
bolic dynamics. Since no generating partition is known for this system, a special
encoding procedure was chosen, which proved to be adequate for the examination
of the attractor-hopping process. Each metastable state was given a symbol and
only after this state has been left, a new symbol was bestowed, independent of the
number of iterations the dynamics was residing on this state. The symbol string
attained this way was found to reflect a Markov process of order 1. It was analyzed
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using the Shannon entropy and the topological entropy. With the variation of the
nonlinearity parameter at a special value of this parameter a sudden increase of the
topological entropy was observed. This increase was explained by a novel merging
bifurcation of the underlying chaotic saddles involving a snap-back repellor. This
bifurcation is similar to the well known merging of chaotic attractors, except for the
fact, that it is a bifurcation of saddles, not attractors, that the mediating periodic
orbit is a repellor, with one additional unstable direction, not a saddle point, and
that ‘rare’ points emerge in the gap of the formerly separated saddles. The bifur-
cation was further highlighted with a scaling relation of the transient life-times on
one formerly separated part of the chaotic saddle before the merging took place,
in analogy to crisis. For the increase of the size of the chaotic saddle after the
merging, a scaling relation was presented as well. Both scaling laws are determined
by the eigenvalues of the repellor mediating the bifurcation. It is an experimental
challenge to observe the bifurcation and the scaling laws for the transient life-times
and for the increase of the box-counting dimension of the chaotic saddle. Contrari-
wise, detecting a sudden change in the hopping-dynamics while varying a parameter
of the system is a clear indication for a bifurcation of the underlying chaotic saddles.

An essential difference for the attractor-hopping process in bistable and multistable
systems was found. Whatever the structure of saddles in a bistable system might
be, the hopping dynamics is always trivial, as there is only the possibility to leave
one state and then either jump to the other state or return to the state left and
vice versa. In multistable systems, as was shown through the symbolic dynamics
analysis, there might exist ‘forbidden’ transitions caused by the chaotic saddles.
The ’accessibility’ of the metastable state is determined through the structure of the
chaotic saddles. As a consequence, the hopping-process can adopt a complex form.

The noise-induced escape problem out of a metastable state was investigated. The
theory of quasipotentials was introduced for the time continuous and for the time
discrete case, and the most important properties were pointed out. These include
the possibility to compute the noisy invariant density and the mean escape time for
an arbitrary noise distribution. The effect of enhancement of noise-induced escape
through the existence of a chaotic saddle in the open neighborhood of the metastable
state was shown to appear for the Ikeda map as a parameter is varied. Utilizing
the theory of quasipotentials, it was possible to understand this lowering of the
escape threshold. This was achieved through the ability of the quasipotentials to
translate the location of the chaotic saddle in phase space into differences in escape
energies. The reported new phenomenon is of general relevance for many physical
and chemical problems and is predicted to occur in a variety of systems. It should
experimentally be observable in optical systems with delay described by the Ikeda
map and, due to the generality of the phenomenon, in other systems as well.
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5.2 Outlook

Several interesting questions arise from the present level of understanding reached
with this work, pointing to possible promising directions of future investigations in
this field.

Noisy basins of attraction have been computed for the dissipative standard map
for various noise values. An analysis of these basins using measures of complexity is
an open task. Specifically, it is of interest, which amount of information can still be
extracted out of a basin contaminated with noise, as this is a situation encountered
in experiments.

For our purpose, it was not possible to give a symbol for every iteration in the sym-
bolic analysis of the attractor-hopping process, for this would result in an extremely
redundant symbol string and a prohibitively long timeseries would be required. Re-
cently, a method to deal with such systems has been developed (Abel et al., 2000).
The application of this method to the symbol string is currently under investigation,
in order to employ the usual encoding procedure and to compare the results.

For the model of two coupled logistic maps, no dependence of the complexity of
the hopping process on the noise strength has been found. Only the escape times
changed, whereas the transition probabilities remained constant for a wide range
of noise values. In the last years, there has been a controversy, whether noise has
an influence on the length of chaotic transients. Some authors claim, that noise
can indeed reduce the transient time (Franaszek, 1991; Gassmann, 1997), while oth-
ers report no such effects (Blackburn et al., 1995; Lai, 1995). That question can
probably be answered by investigating the structure of the chaotic saddle of the
corresponding system.

The relevance of chaotic saddles for the attractor-hopping process is of general na-
ture. Therefore, for many high-dimensional problems it is expected that bifurcations
of the chaotic saddles are hitherto unnoticed, although they determine the dynamics
in an essential way. With a recent modification of the PIM-triple algorithm for the
computation of high-dimensional chaotic saddles (Sweet et al., 2001) these systems
can be examined in detail and new and interesting bifurcations are believed to occur.
This includes hydrodynamical and coupled systems.

The escape process in the Ikeda map consisted of two steps. First, the trajec-
tory had to fluctuate from the metastable state (periodic orbit or chaotic attractor)
to the chaotic saddle, and then from the chaotic saddle to the saddle point located
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on the basin boundary. Since the application of symbolic dynamics proved to be
successful for the attractor-hopping process, it might be equally interesting to use
symbolic dynamics for the escape process. This was done in (Witt et al., 1997) for
the usual Kramers problem and for the case with a fluctuating potential barrier.
With one additional state (the chaotic saddle) the application of measures of com-
plexity should reveal more details of the escape process.

Furthermore, the noise-induced escape in maps has been analyzed with Fokker-
Planck equations (Reimann & Talkner, 1995), including the escape from a chaotic
saddle (Reimann et al., 1994). However, this has only been undertaken for very
simple one-dimensional maps, the chaotic saddle was located on the basin bound-
ary, and no control parameter has been varied. It seems worthwhile to extend this
approach to the case treated in this work, namely the escape from a map with a
chaotic saddle embedded in the open neighborhood of the basin of attraction.

Finally, the relevance of the size of the basin of attraction for the escape process is
still an unsolved problem. Although it is clear, that the eigenvalues of the periodic
orbit to be left are only relevant as long as the linearization is valid, the limit of the
validity of the linearization has not been determined so far. For this aim, quasipo-
tentials might be the right tool, as they provide a global measure of stability for the
whole basin of attraction.
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Lai, Y.-C., C. Grebogi, R. Blümel & I. Kan (1993). Crisis in chaotic scat-
tering. Phys. Rev. Lett., 71, 2212–2215.

Lai, Y.-C. & R. L. Winslow (1995). Geometric properties of the chaotic saddle
responsible for supertransients in spatiotemporal chaotic systems. Phys. Rev. Lett.,
74, 5208–5211.
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