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Abstract. In hydrological models, parameters are used to
represent the time-invariant characteristics of catchments and
to capture different aspects of hydrological response. Hence,
model parameters need to be identified based on their role in
controlling the hydrological behaviour. For the identification
of meaningful parameter values, multiple and complemen-
tary performance criteria are used that compare modelled and
measured discharge time series. The reliability of the identifi-
cation of hydrologically meaningful model parameter values
depends on how distinctly a model parameter can be assigned
to one of the performance criteria.

To investigate this, we introduce the new concept of con-
nective strength between model parameters and performance
criteria. The connective strength assesses the intensity in
the interrelationship between model parameters and perfor-
mance criteria in a bijective way. In our analysis of connec-
tive strength, model simulations are carried out based on a
latin hypercube sampling. Ten performance criteria includ-
ing Nash–Sutcliffe efficiency (NSE), Kling–Gupta efficiency
(KGE) and its three components (alpha, beta and r) as well as
RSR (the ratio of the root mean square error to the standard
deviation) for different segments of the flow duration curve
(FDC) are calculated.

With a joint analysis of two regression tree (RT) ap-
proaches, we derive how a model parameter is connected to
different performance criteria. At first, RTs are constructed
using each performance criterion as the target variable to
detect the most relevant model parameters for each perfor-

mance criterion. Secondly, RTs are constructed using each
parameter as the target variable to detect which performance
criteria are impacted by changes in the values of one distinct
model parameter. Based on this, appropriate performance cri-
teria are identified for each model parameter.

In this study, a high bijective connective strength between
model parameters and performance criteria is found for low-
and mid-flow conditions. Moreover, the RT analyses empha-
sise the benefit of an individual analysis of the three compo-
nents of KGE and of the FDC segments. Furthermore, the RT
analyses highlight under which conditions these performance
criteria provide insights into precise parameter identification.
Our results show that separate performance criteria are re-
quired to identify dominant parameters on low- and mid-flow
conditions, whilst the number of required performance crite-
ria for high flows increases with increasing process complex-
ity in the catchment. Overall, the analysis of the connective
strength between model parameters and performance criteria
using RTs contribute to a more realistic handling of parame-
ters and performance criteria in hydrological modelling.

1 Introduction

In rainfall–runoff models, hydrological processes are repre-
sented in a simplified way. Fluxes and changes in states are
described by mathematical equations. To adapt the model to
the hydrological conditions of the study catchments, multiple

Published by Copernicus Publications on behalf of the European Geosciences Union.



5664 B. Guse et al.: Connective strength between parameters and performance criteria

parameters are included in the model structure. Each of them
has a specific role representing one or multiple processes.

For hydrologically reliable model simulations, it is re-
quired to identify parameter values that lead to a reasonable
reproduction of their corresponding hydrological processes
(Wagener et al., 2003; Pfannerstill et al., 2015). Typically,
model parameters are identified using performance criteria
which minimise the differences between measured and mod-
elled discharge. In this context, we use “performance crite-
ria” as an overall term both for statistical performance met-
rics and signature measures.

It is assumed that a performance criterion contributes to a
better interpretation of the hydrological behaviour if it is re-
lated directly to the corresponding components of the model
structure and controlled by the selected model parameter
(Yilmaz et al., 2008; Gupta et al., 2009; Martinez and Gupta,
2010; Pechlivanidis et al., 2014). Thus, it is important to es-
tablish a strong relationship between a model parameter and
a performance criterion which is appropriate for the asso-
ciated process (Fenicia et al., 2007). An appropriate set of
performance criteria should be selected so that all relevant
hydrological conditions in a catchment are represented by at
least one performance criterion. However, the selection of the
most appropriate performance criteria for precise parameter
identification is still a challenge. To investigate this, the in-
terrelationship between model parameters and performance
criteria needs to be identified as an initial step towards accu-
rate parameter identification.

In this context, the relevance of model parameters is site-
specific depending on the prevailing dominant processes
(Gupta et al., 2014; Guse et al., 2016). The number and
type of performance criteria which are required to explain
the hydrological behaviour in a study catchment is unclear
and depends on catchment characteristics and its underlying
process complexity (Wagener and Montanari, 2011; Pokhrel
et al., 2012).

To ensure a hydrologically reliable parameter identifi-
cation, it is currently commonly agreed that multiple and
contrasting performance criteria are required to determine
whether parameters are only relevant specifically for a certain
performance criterion (Gupta et al., 1998, 2009; Vrugt et al.,
2003; Krause et al., 2005; Reusser et al., 2009; Guse et al.,
2014). Each performance criterion emphasises different hy-
drological conditions with respect to, for example, discharge
dynamics, discharge magnitude, water balance, or high or
low flows (Madsen, 2000; Boyle et al., 2001; Wagener et al.,
2001). By selecting a specific performance criterion, a cer-
tain part of the hydrograph is inevitably weighted higher than
other parts and thus, different parts of the hydrograph are em-
phasised or neglected during parameter identification (Gupta
et al., 1998; Yapo et al., 1998; Pokhrel et al., 2012; Pech-
livanidis et al., 2014; Pfannerstill et al., 2014b; Haas et al.,
2016).

In order to capture magnitude and dynamic in the mod-
elled discharge time series, a combination of statistical

performance metrics and signature measures in the model
evaluation is recommended (van Werkhoven et al., 2008,
2009; Pfannerstill et al., 2014b). Typical statistical perfor-
mance metrics are the Nash–Sutcliffe efficiency (NSE) (Nash
and Sutcliffe, 1970) and the Kling–Gupta efficiency (KGE)
(Gupta et al., 2009; Kling et al., 2012), which separately
considers the three components bias (KGE_beta), variabil-
ity (KGE_alpha) and correlation (KGE_r) to improve the
estimation of the performance error compared to the NSE.
Signature measures are directly related to catchment func-
tions with the aim to consider the relevance of a certain
hydrological component individually (Yilmaz et al., 2008;
van Werkhoven et al., 2009; Pokhrel et al., 2012). Signa-
ture measures based on flow duration curves (FDC) provide
diagnostic information of how a model performs for differ-
ent discharge magnitudes (Yilmaz et al., 2008; Cheng et al.,
2012; Yaeger et al., 2012; Pfannerstill et al., 2014b). Pfan-
nerstill et al. (2014b) showed that a separation of the flow
duration curve into five segments improved the model results
for different discharge magnitudes and reduced the trade-off
between satisfying results both for high and low flows in
the same model run. By using different signature measures,
the hydrologic behaviour is represented better in the perfor-
mance assessment (Martinez and Gupta, 2011; Singh et al.,
2011; Euser et al., 2013) and precise interpretation of the ac-
curacy in reproducing hydrological components is achieved.

The relevance of model parameters for a performance cri-
terion can be derived using sensitivity analyses. In addi-
tion to using model results directly for a sensitivity analysis
(Reusser et al., 2011; Guse et al., 2014), performance criteria
could be used to detect the most relevant model parameters.
Several studies have shown that the relevance of model pa-
rameters changes if different performance criteria are used
(van Werkhoven et al., 2008; Abebe et al., 2010; Herman
et al., 2013). Gupta et al. (2009) emphasised the need to in-
vestigate how changes in model parameter values influence
the three components of the Kling–Gupta efficiency (KGE).

Given the variety of performance criteria and the related
amount of possible relationships between model parameters
and performance criteria, Gupta et al. (2008, 2009) argue
that a better understanding of the interrelationship between
model parameters and performance criteria should be a core
idea of diagnostic model analysis. To our knowledge, the re-
lationship of model parameter and performance criteria has
only been analysed up to now in one direction, namely from
model parameters to model outputs and performance criteria.
Thus, the opposite direction which is the suitability of a cer-
tain performance criterion to identify a certain model param-
eter, which can be directly used to improve the representation
of the corresponding hydrological component in the model,
remains so far unconsidered and is still a challenging task.

To investigate the interrelationship between performance
criteria and model parameters in a bidirectional manner, we
built on the approach of Singh et al. (2014a) and Pechlivani-
dis and Arheimer (2015), who used classification and regres-
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sion trees (CART) to classify performance criteria with re-
spect to their appropriateness for different catchment charac-
teristics. Both studies showed how different catchment char-
acteristics and derived signatures resulted in a typical model
performance. We adapted this idea to the relationship be-
tween performance criteria and model parameters and sug-
gest an innovative concept of bijective connective strength
between model parameters and performance criteria with the
aim to improve the parameter identification.

The connective strength assesses how strongly model pa-
rameters and performance criteria are interrelated using re-
gression trees (RTs). (1) We investigate how the most influ-
encing parameters vary for the selected performance criteria
to analyse how strongly a set of model parameters affects
different performance criteria. (2) Looking from the side of
the model parameters, we analyse which performance crite-
ria are impacted by changes in a certain model parameter. In
this way, performance criteria are detected which are able to
represent changes in a certain parameter. A high connective
strength is given in the case where (1) a performance crite-
rion is controlled by one model parameter and (2) this model
parameter influences the same performance criterion to a rel-
evant extent.

With this study, we present a way to detect the appropri-
ateness of performance criteria that are most helpful in the
identification of hydrologically sound model parameter val-
ues. We analyse how performance criteria are controlled by
different model parameters by using regression trees, how
selective model parameters and performance criteria are re-
lated and how this relationship changes for different types of
performance criteria.

2 Methods and materials

2.1 Study catchments

In contrasting catchments, different hydrological processes
are of major relevance (Atkinson et al., 2002; Merz and
Blöschl, 2004; Jothityangkoon and Sivapalan, 2009; Guse
et al., 2016) and thus also the ability of a certain perfor-
mance criterion in identifying a certain model parameter
varies. With increasing relevance of a process, an accurate
reproduction in the model becomes more important. There-
fore, two catchments with different catchment characteristics
were selected in this study to check the applicability of the
proposed approach (Fig. 1). For the analysis, measured daily
discharge time series from their catchment outlets were used
to assess model performance.

2.1.1 Treene

The Treene catchment (up to the hydrological station Treia,
481 km2), located in northern Germany is a typical lowland
catchment with strong groundwater dominance of total dis-
charge even under high-flow conditions (Guse et al., 2014;

Treia

Elevation
860 m asl

2 m asl

Blankenstein

0 10 205 Kilometers

Hydrological stations
Major rivers

Treene

Upper Saale

Sources:
DGM (LVERMA-SH)
DAV (LAND-SH)
River network (UBA)
SRTM 90 (Jarvis et al., 2008)

Figure 1. Two study catchments (Treene and Saale) and their catch-
ment elevation. The same elevation legend is used for both catch-
ments.

Pfannerstill et al., 2015; Guse et al., 2016). Moreover, tile
flow is a relevant process since large parts of its agriculture
area are drained (Kiesel et al., 2010). Other fast runoff com-
ponents are of minor relevance as expected from the low to-
pographic gradient in the catchment (maximum elevation of
80 m). The Treene catchment is dominated by agricultural ar-
eas whilst only a minor part is covered by forests and urban
areas (Guse et al., 2015). Mean annual precipitation is about
995 mm a−1 with the highest values in summer months and
monthly average temperature ranges from 1.5 ◦C (January) to
17.6 ◦C (July) with an average annual temperature of 9.2 ◦C.
Mean discharge at the catchment outlet is 6.23 m3 s−1.

2.1.2 Upper Saale

The Upper Saale catchment (hydrological station Blanken-
stein, 1013 km2) is located in mid-range mountains in south-
east Germany. This catchment is characterised by a higher di-
versity in dominant processes compared to the Treene catch-
ment, with temporal changes in the relevance of snowmelt,
surface runoff and groundwater flow (Guse et al., 2016). The
landscape is covered mostly by forest (upper parts) and agri-
cultural fields (lower parts). Contrary to the Treene catch-
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ment, the altitude in the Upper Saale catchment is higher
(between 415 and 856 m) and slopes are steeper. Thus, fast
runoff components are of higher relevance in this catchment.
Mean annual precipitation is 929 mm a−1 and monthly aver-
age temperature ranges from −1.7 ◦C (January) to 17.2 ◦C
(July) with an annual mean temperature of 7.9 ◦C. Mean dis-
charge at the catchment outlet is 13.04 m3 s−1.

2.2 Soil and Water Assessment Tool (SWAT)

The conceptual and process-based eco-hydrological model
SWAT (Soil and Water Assessment Tool; Arnold et al., 1998)
is used in this study. The SWAT model is spatially discre-
tised into subbasins which are subdivided into hydrological
response units (HRUs) based on unique underlying informa-
tion on land use, soil and slope. All water balance compu-
tations are conducted with daily temporal resolution at the
scale of individual HRUs as the central calculation unit. The
change in soil water storage is influenced by inputs (e.g. pre-
cipitation) and outputs (e.g. evapotranspiration, runoff com-
ponents).

In this study, the SWAT3S version (Pfannerstill et al.,
2014a), which is a modification of the SWAT model, was
used. In SWAT3S, the groundwater modelling has been im-
proved by subdividing the active aquifer contributing to river
discharge into a fast and a slow responding one. Different
runoff components (surface runoff, lateral flow, groundwa-
ter flow) are separately computed for each HRU and sum-
marised as water yield of a subbasin. A detailed description
of the SWAT model set-up for both catchments is described
in Guse et al. (2016).

To analyse the relationship of performance criteria to
model parameters, 12 SWAT model parameters from differ-
ent hydrological components which control different parts of
the hydrograph are selected in this study (Table 1). The fi-
nal selection is based on studies with successful applications
of the SWAT model within the studied catchments (Guse
et al., 2016; Pfannerstill et al., 2015). Thus, parameter ranges
were constrained according to authors’ previous knowledge
with the aim of reducing unrealistic parameter combinations
which may lead to physically implausible process descrip-
tion.

Within the set of 12 parameters, 2 snow parameters reg-
ulate snowfall and snowmelt. Infiltration and surface runoff
are captured by CN2 which is included in the curve number
approach (SCS, 1972). The timing of different runoff com-
ponents within the land phase is represented by lag time pa-
rameters (SURLAG, LATTIME, GDRAIN). Three soil pa-
rameters were included. For each soil layer, available water
capacity (SOL_AWC) and saturated hydraulic conductivity
(SOL_K) can be differentiated. The contribution of soil wa-
ter from different soil depth for evaporation is regulated by
a nonlinear function which is parameterised by ESCO. The
groundwater module is parameterised with a retention time
from soil to groundwater (GW_DELAYfsh), a partitioning

coefficient between the two aquifers (RCHRGssh) and the
baseflow recession factor (ALPHA_BFssh).

Based on the physically meaningful selection of these 12
model parameters, their values were varied within a set of
model simulations. The intention of these model simulations
was to derive the interrelationship between model param-
eters and performance criteria. For this, model simulations
for the period from 2000 to 2010 were carried out based on
2000 different parameter sets that were generated with the
latin hypercube sampling approach as implemented in the
R package FME (Soetaert and Petzoldt, 2010). In the latin
hypercube sampling, all model parameters were changed si-
multaneously within the whole parameter space. For a more
detailed description, readers are referred to Pfannerstill et al.
(2014b).

All parameters values were already in a hydrologically
plausible range according to prior modelling experience with
the study sites. These constrained parameter ranges allowed
for selecting an efficient but appropriate number of simula-
tions to perform our analyses. Please note that the intention
of the presented study was not to identify the parameter val-
ues exactly, which allowed us to keep the sampling of the
parameter space relatively sparse. Instead, we aimed to test
and suggest the new connective strength approach. For this
purpose, the number of 2000 model runs ensured a sufficient
number of combinations at each node of the RTs.

2.3 Performance criteria

Ten performance criteria including five performance metrics
and five signature measures were selected to capture differ-
ent aspects of hydrological behaviour in models and as it
was recommended in recent diagnostic model studies (Kling
et al., 2012; Pechlivanidis et al., 2014; Pfannerstill et al.,
2014b; Haas et al., 2016)

Nash–Sutcliffe efficiency (NSE) criterion (Eq. 1) is one of
the most often used performance criteria in hydrology (Nash
and Sutcliffe, 1970). NSE focuses on variability in measured
discharge time series. It is known to give higher weights
to high flows than to low flows (Schaefli and Gupta, 2007;
Gupta et al., 2009; Pfannerstill et al., 2014b).

NSE= 1−

N∑
i=1
(Qo−Qs)

2

N∑
i=1
(Qo−Qo)2

, (1)

whereQo is measured discharge,Qs modelled discharge and
Qo mean of measured discharge.

Kling–Gupta efficiency (KGE) criteria (Gupta et al., 2009;
Kling et al., 2012) is based on a decomposition of NSE into
its three components (Eq. 2), which can be separately consid-
ered for each model run. Thus, model errors can be directly
related to variability (KGE_alpha), bias (KGE_beta) and cor-
relation (KGE_r) between measured and modelled discharge
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Table 1. List of SWAT models parameters. Lower and upper ranges are given as absolute range (r), additive (a) or multiplicative (m) value.
Further information can be found in the theoretical documentation of the SWAT model (Neitsch et al., 2011).

Parameter name Abbreviation Process Units Range Lower Upper
type range range

Snow fall temperature SFTMP Snow ◦C r −2.5 2.5
Snow melt temperature SMTMP Snow ◦C r −2.5 2.5
Curve number CN2 Surface runoff a −10 10
Surface runoff lag time SURLAG Surface runoff r 0.8 4
Lateral flow lag time LATTIME Lateral flow days r 0.2 8
Tile flow lag time GDRAIN Tile flow hours m 0.5 1.5
Available water capacity of a soil layer SOL_AWC Soil water mm H2O mm soil−1 a −0.02 0.1
Saturated hydraulic conductivity of a soil layer SOL_K Soil water mm h−1 m 0.5 3
Soil evaporation compensation factor ESCO Evapotranspiration r 0.2 1
Groundwater delay time (fast aquifer) GW_DELAYfsh Groundwater days r 1 50
Aquifer fraction coefficient (slow aquifer) RCHRGssh Groundwater r 0.2 0.8
Baseflow alpha factor (slow aquifer) ALPHA_BFssh Groundwater 1/days r 0.001 0.2

time series. KGE_alpha is the variability ratio between the
standard deviation of modelled (σs) and measured (σo) dis-
charge values. KGE_alpha larger than 1 shows that variabil-
ity in modelled discharge time series is higher than in mea-
sured discharge time series, while KGE_alpha lower than 1
represents the opposite case. KGE_beta is the bias ratio be-
tween average values for modelled (µs) and measured (µo)
discharge. KGE_beta larger than 1 represents an overestima-
tion of discharge, i.e. a positive bias, while values lower than
1 illustrate an underestimation. KGE_beta and KGE_alpha
represent the reproduction of the first and the second mo-
ments, respectively, as emphasised by Kling et al. (2012).
KGE_r represents the correlation coefficient according to
Pearson. KGE_r is used to analyse the agreement in tem-
poral dynamics between measured and modelled discharge
time series. To calculate KGE, the Euclidean distance to the
ideal point in the 3-D criteria space which is created by its
three components is calculated (Gupta et al., 2009). All three
KGE components as well as KGE have an ideal value of one.

KGE= (2)

1−
√
(KGE_alpha− 1)2+ (KGE_beta− 1)2+ (KGE_r− 1)2

KGE_alpha= σs/σo
KGE_beta= µs/µo
KGE_r= correlation coefficient

In addition to these five performance metrics, five signa-
ture measures are selected based on FDC. The FDC only con-
siders the discharge magnitude without considering the tem-
poral occurrence of discharge values (Vogel and Fennessey,
1996; Yilmaz et al., 2008; Westerberg et al., 2011). To eval-
uate the model performance, the FDC is subdivided into
five FDC segments (very high, 0–5 % days of exceedance;
high, 5–20 %; medium, 20–70 %; low, 70–95 %; very low,
95–100 %) as proposed by Pfannerstill et al. (2014b) and

evaluated separately. FDC signatures consider that different
discharge magnitudes are controlled by different processes.
Whilst the high-flow segment is mainly impacted by precip-
itation and fast runoff components, low flows are controlled
by evapotranspiration and deep groundwater storages (Yil-
maz et al., 2008; Cheng et al., 2012; Pokhrel et al., 2012;
Yaeger et al., 2012; Guse et al., 2016)

For the evaluation of each FDC segment, the RSR, the ra-
tio of the root mean square error to the standard deviation,
was calculated for each FDC segment (Eq. 3) (Moriasi et al.,
2007), which allows fair comparison between different seg-
ments (Haas et al., 2016). The optimal value for RSR is 0.
Using these five signature measures, the relation of model
parameters to different discharge magnitudes can be derived
(Pfannerstill et al., 2014b; Guse et al., 2016).

RSR=

√
1
N

N∑
i=1
(Qo−Qs)2√

1
N

N∑
i=1
(Qo−Qo)2

(3)

These 10 different performance criteria were calculated for
all 2000 simulation runs. Both parameter sets and calculated
performance criteria from these simulations were then used
for the following analyses.

To analyse the relationship among different performance
criteria the correlation coefficients between all pairwise com-
binations were computed. This correlation analysis enables
the detection of (dis-)similarities between performance crite-
ria. (Dis-)similarities in performance criteria as indicated by
a linear relationship in the dotty plots shows that these perfor-
mance criteria (do not) capture a similar type of model error
for this catchment. The intention here is to detect whether
each performance criterion provides additional information
of model error and whether such a hypothesis is valid for
both catchments with different characteristics.

www.hydrol-earth-syst-sci.net/21/5663/2017/ Hydrol. Earth Syst. Sci., 21, 5663–5679, 2017
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2.4 Regression trees

Regression trees (RTs) are a method used to order the re-
lationship between several explaining variables and a single
target variable (Breiman et al., 1984). It is a binary algorithm
based on logical expressions. In a sequence of regressions,
the explaining variable is subsequently determined from a
set of variables that has the highest predictive value for the
target variable being analysed. At each node of a regression
tree, the (sub)set of model simulations is subdivided into two
subsets based on a threshold value for one of the explaining
variables (Singh et al., 2014a, b). All simulations with a value
in the explaining variable above the threshold belong to the
one group, and those with a value below the threshold to the
other group. For each node, this approach is repeated until
no further subdivision of a variable at a certain node explains
the target variable.

The sequence of decisions is visualised in a tree diagram
to detect the importance of different explaining variables for
the target variable. A regression tree consists of multiple
branches. Either a different or an already chosen explaining
variable is selected in the next branch of the tree. The com-
plexity of the tree reflects the complexity of the relationship
between explaining and target variables.

The earlier a variable is used in the construction of an RT,
the higher its importance is. The variable used in the first split
has thus the maximum importance. The gain in information
is maximised by defining clearly separated subgroups of the
whole simulation set (Singh et al., 2014b).

For our analyses, we used the R package rpart (Therneau
et al., 2015). In the rpart package, the contribution of each
explaining variable on changes in the target variable is calcu-
lated. The variable importance describes how the prediction
is reduced when removing this explaining variable. Thus, it
summarises the contribution of the explaining variables in all
nodes in explaining the changes in the target variable.

Thus, it is considered both that the explaining variable can
be the most important one (and thus defines the subdivision
of the subset) and that a variable has lower explanation power
than the primary variable and is thus not shown in the trees.
Thus, explaining variables that are not shown in the tree can
also have a relevant value of variable importance. The per-
centage contribution of each explaining variable shows its
importance for the target variable (Singh et al., 2014b).

2.4.1 Regression trees using performance criteria as
target variables (RTperf)

RTs are applied in this study in two approaches using 2000
model simulations with pre-selected model parameters and
calculated performance criterion. In our case, the set of 2000
parameter sets and performance criteria are large enough to
ensure a sufficient number of combinations at each node of
RT. In the first application the selected 10 performance cri-
teria are used consecutively as target variables to construct

regression trees for each performance criterion (named RT-
perf). As explaining variables, model parameters are used to
detect which of them lead to changes in a performance crite-
rion. The relevance of each model parameter is derived from
regression trees by calculating the percentage contribution of
each model parameter in explaining the variability in a per-
formance criterion. This leads to identification of the most
relevant model parameters for each performance criterion.

2.4.2 Regression trees using model parameters as
target variables (RTpar)

Furthermore, we aim to detect more than the most relevant
parameters for a certain performance criterion. Thus, in the
second application, the importance of performance criteria
which are most strongly impacted by changes in the value of
a certain parameter is identified. This cannot be derived from
RTperf. To achieve this, a bijective approach is required by
looking from the point of model parameters.

Thus, this step was initialised in the opposite way to RT-
perf to analyse how changes in model parameters influence
performance criteria. To achieve this, explaining and target
variables in RT are permuted. Each model parameter is used
as the target variable in RT and all performance criteria as
explaining variables (named RTpar). In RTpar model param-
eters are analysed individually. Similarly to RTperf, the per-
centage contribution of each performance criterion is calcu-
lated to explain the impact of changes in values of a certain
model parameter.

2.4.3 Connective strength by comparing both
regression tree approaches

A core advantage of RT is that subsets of simulation runs
are constructed in a structured way. By subdividing the sim-
ulation set based on the major influencing variables at each
branch, two distinct subsets occur which differ with respect
to values of model parameters as well as with respect to per-
formance criteria. With this subset construction, the model
parameter or performance criteria which has the highest ex-
planatory power in an RT branch can be detected. This allows
for a bijective analysis of the relationship between model pa-
rameters and performance criteria.

In addition to RTperf and RTpar, the percentage contri-
butions as derived from both RT approaches are compared
to analyse the connective strength between model parame-
ters and performance criteria. Thus, four cases of connective
strength for each pair of model parameter and performance
criterion can be differentiated (Fig. 2).

1. High percentage contributions in both RTs (RTperf, RT-
par): similar results of high percentage contributions
in both RTs indicate a high bijective relationship be-
tween model parameter and performance criterion. In
this case, the model parameter is clearly identifiable
by using the selected performance criterion. This is the
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Figure 2. Chart of four cases of connective strength between model
parameters and performance measures. A thicker blue line shows a
higher impact of the model parameter on the performance criteria

optimal case representing a high connective strength
and occurs if a certain parameter influences one per-
formance criterion to a large extent without influencing
other performance criteria significantly.

2. High percentage contribution in RTperf, but low in RT-
par: in this case, a certain model parameter controls the
selected performance criterion. However, this model pa-
rameter also influences other performance criteria. This
case occurs if the corresponding hydrological compo-
nent is very dominant and influences multiple perfor-
mance criteria. Here, the connective strength cannot be
fully understood when using performance criteria as tar-
get variables. From the side of the model parameter,
further investigation is required regarding which perfor-
mance criterion is most appropriate for parameter iden-
tification.

3. Low percentage contribution in RTperf, but high in RT-
par: in this case, the model parameter is not the ma-
jor controlling parameter on the selected performance
criterion as detected in RTperf. However, its impact on
other performance criteria is even lower which results in
a high value in RTpar. Thus, the selected performance
criterion is appropriate to explain the impact of changes
in this model parameter, but the performance criterion
is even more strongly impacted by other model parame-
ters. This case occurs if the corresponding hydrological
component is of minor relevance in describing the hy-
drological system of the catchment. Thus, due to its low
relevance, the connective strength is also low and a pa-
rameter identification is not precise.

4. Low percentage contributions in both RTs: in this case,
this model parameter does not impact the performance
criterion to a relevant extent, nor is the performance cri-
terion impacted by changes in the parameter. Thus, the
connective strength is low. This parameter is not identi-
fiable due to low relevance of the corresponding hydro-
logical component and no distinct relationship with one
of the performance criteria.

By applying this approach in two catchments with differ-
ent characteristics, we analyse how strongly a certain perfor-
mance criterion is connected to a specific model parameter
and how this connective strength depends on the relevance
of the corresponding hydrological component.

3 Results

3.1 Correlation between performance criteria

In order to understand similarities of performance criteria,
pairwise correlation analysis of all performance criteria is
carried out separately for each catchment. In the Treene
catchment (Fig. 3, upper panel), NSE, KGE and RSR of
very high and high segments of FDC are strongly correlated.
Moreover, RSR of low and very low flows are highly corre-
lated. KGE is mainly controlled by its variability component
(KGE_alpha) meaning that good performance of KGE_alpha
(optimum= 1) also results in high performance in KGE.
KGE_beta (bias component) is correlated with the middle
segment of FDC. Concerning values of the performance cri-
teria, KGE_alpha and KGE_beta are mostly higher than one,
indicating an overestimation and higher variability in mod-
elled discharge than in the measured one. Good performance
in a certain segment of FDC occurs in the case of good per-
formance in the adjacent segment(s). In the case of good per-
formance for low flows, very low flows also perform well.
Similarly, good performance for very high flows was also
detected in model runs with good performance in high flows.
However, correlations between RSR of (very) high and (very)
low flows are lower which indicates that there are less model
runs with good performance in both high and low flows.

In the Saale catchment (Fig. 3, lower panel), correlations
are overall lower. The strongest correlation is observed be-
tween NSE and KGE_r. KGE is correlated to KGE_alpha
and KGE_r. Thus, both variability and correlation in mod-
elled discharge time series are relevant for good performance
of KGE. KGE_beta in contrast, which is balanced between
overestimation and underestimation, is of lower relevance.
The correlation among signatures of FDC segments is lower
compared to the Treene catchment, even between adjacent
segments. Here, good performance of low flows does not
result in good performance of very low flows. Worse per-
formance of KGE_alpha (higher or lower than one) leads
to a decrease in KGE since it increases the Euclidean dis-
tance of the three KGE components. However, as shown in
Fig. 3, a different result was obtained between KGE_alpha
and NSE. KGE_alpha larger than 1 indicates that variabil-
ity is higher in modelled discharge time series which leads
to a strong reduction of NSE. In contrast, lower variability
in modelled rather than in measured discharge time series
(KGE_alpha< 1) only results in a small reduction of NSE.
This corresponds with the calculation of NSE which strongly
emphasises variability in measured time series.
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Figure 3. Scatter plot matrix of performance criteria of Treene (in black, a) and Saale (in grey, b) catchment showing pairwise performance
criteria plots for 2000 model simulations. The scales on the sides show values of the respective performance criterion.

3.2 Impact of model parameters on performance
criteria (RTperf)

The connective strength between model parameters and per-
formance criteria was investigated using regression trees
(RTs). At first, RTs were constructed using the 10 perfor-
mance criteria (RTperf) as target variables. The aim of this
step was to detect which model parameter most strongly af-
fects a certain performance criterion.

Figure 4 shows the regression tree for KGE for the Treene
catchment exemplarily for RTperf. Looking from top down,
the most influencing model parameters for KGE are pro-
vided. The first branch is defined by groundwater retention
time of the first aquifer (GW_DELAYfsh) and the second
one on the right side again by GW_DELAYfsh and on the left
side by the aquifer partitioning coefficient (RCHRGssh). In
total, only groundwater parameters affect KGE to a relevant
extent. When going along the right side of the branch, pa-
rameter settings of the controlling model parameter at these

nodes are identified which lead to the best KGE on average
(0.83).

To assess the connective strength between model param-
eters and performance criteria, the percentage contribution
of model parameters as explaining variables for each per-
formance criterion is shown for both catchments (Fig. 5).
The parameter contribution in the Treene catchment to ex-
plain variability in performance criteria can be classified into
three groups (Fig. 5). At first, six performance criteria are
mainly influenced by GW_DELAYfsh and to a lower ex-
tent by RCHRGssh which shows the strong dominance of
groundwater processes (see also Guse et al., 2014). How-
ever, since multiple performance criteria are influenced by
GW_DELAYfsh and RCHRGssh, the most appropriate per-
formance criterion to identify the impact of these parameter
is not detectable. The second group consists of KGE_beta
and RSR of mid-flow FDC segment. Both are controlled
strongly by soil evaporation (ESCO) and available soil water
capacity (SOL_AWC). Thirdly, low and very low flows are
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Figure 4. Example of a regression tree (RT) using (a) KGE as the target variable and model parameters as explaining variables and (b) the
model parameter GW_DELAYfsh as the target variable and performance criteria as explaining variables for the Treene catchment.

controlled by the baseflow recession coefficient of the second
aquifer (ALPHA_BFssh) in addition to GW_DELAYfsh.
Seven of twelve model parameters, namely fast runoff (CN2,
SURLAG, GDRAIN, LATTIME), soil (SOL_K) and snow
parameters (SFTMP, SMTMP), have only a minor impact on
all performance criteria and cannot be identified by the se-
lected performance criterion.

Figure 5 shows that the relationship between model pa-
rameters and performance criteria is more complex in the
Saale catchment compared to the Treene catchment. A clear
classification into groups of performance criteria which are
controlled by certain model parameters is more difficult. Four
performance criteria (NSE, KGE_alpha, KGE_r, very high-
flow segment of FDC) are controlled by lateral flow lag
time (LATTIME). But these performance criteria are also
influenced by groundwater parameters (GW_DELAYfsh,

RCHRGssh). Furthermore, RSR for high flows is not con-
trolled by LATTIME but by these two groundwater param-
eters and hydraulic conductivity in soil (SOL_K). KGE is
controlled by a parameter (GW_DELAYfsh) which does
not have the largest percentage contribution for one of its
three components. Water balance (KGE_beta) is controlled
by ESCO and SOL_AWC, while mid-flows are mainly
influenced by SOL_AWC. Low flows are controlled by
GW_DELAYfsh and very low flows by ALPHA_BFssh.
Snow and fast runoff parameters except LATTIME do not
influence any of the performance criteria to a great extent.
Thus, parameters exist without significant impact and LAT-
TIME controls multiple performance criteria in the Saale
catchment as well.

When detecting the controlling model parameters for each
performance criterion, in both catchments no appropriate
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Figure 5. Regression trees (RTs) using performance criteria as target variables. The percentage contribution of model parameters in explain-
ing performance criteria is shown for Treene (a) and Saale (b) catchment. In every row the percentage contributions sum up to 100 %.

performance criteria are found for several model parame-
ters (e.g. CN2), which shows the low connective strength
between these model parameters and performance criteria.
This leads to more challenging identification of parameter
values. It is important to detect whether the low relevance of
a model parameter is related to the minor relevance of the
corresponding process or whether the selected performance
criterion is inappropriate to identify this model parameter.
Moreover, some model parameters highly influence multiple
performance criteria (e.g. GW_DELAYfsh and RCHRGssh
in the Treene, LATTIME in the Saale), which leads to unclear
results in the connective strength between model parameters
and performance criteria. This suggests that these parameters
govern the overall hydrological system in the model.

3.3 Impact of changes in model parameters on
performance criteria (RTpar)

In the second RT application, the roles of model parameters
and performance criteria are permuted. The relationship be-

tween model parameters and performance criteria is analysed
using 12 model parameters consecutively as target variables.
It is investigated which performance criteria are impacted by
changes in model parameters (RTpar, Fig. 6).

Figure 4 shows the regression tree exemplarily for the
model parameter GW_DELAYfsh for the RTpar approach in
the Treene catchment. Here, KGE_alpha separates the data
set at the first node and occurs once at the two following
branches. Moreover contrasting performance criteria are in-
cluded (KGE_r, RSR for very high flows and very low flows).

In the Treene catchment (Fig. 6), curve number (CN2) is
most significantly related to RSR for very high flows and
furthermore to NSE, KGE and RSR for high flows. This
shows that CN2 and thus surface runoff controls high-flow
conditions. Snow parameters (SFTMP, SMTMP), the tim-
ing parameters for surface runoff (SURLAG) and tile flow
(GDRAIN), and soil hydraulic conductivity (SOL_K) highly
influence KGE_r (correlation). Thus, variations in these pa-
rameters lead to changes in correlation between measured
and modelled discharge time series. Concerning the soil
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Figure 6. Regression trees (RTs) using model parameters as target variables (RTpar) for Treene (a) and Saale (b) catchment and performance
criteria as explaining variables. All values of a parameter are in white in the case that the resulting variation among performance criteria for
this parameter was too low to construct a regression tree. In every row the percentage contributions sum up to 100 %.

model component, SOL_AWC and ESCO are strongly re-
lated to water balance (KGE_beta) and to a lower extent to
RSR for mid-flows. ALPHA_BFssh is related to RSR of low
and very low flows as well as to NSE. For the two groundwa-
ter parameters (GW_DELAYfsh, RCHRGssh), four perfor-
mance criteria (NSE, KGE, KGE_alpha, RSR for high flows)
have a similar percentage contribution. This point shows that
both groundwater parameters control different aspects of hy-
drological model behaviour without having a clear relation-
ship with a certain part of the hydrograph.

In the Saale catchment (Fig. 6), snow parameters
(SFTMP, SMTMP) and LATTIME affect both KGE_r and
NSE. Changes in curve number (CN2) mainly influence
KGE_alpha and RSR for very high flows. Thus, variability
between measured and modelled discharge time series and in
particular high flows are influenced by CN2. All three soil

parameters (SOL_AWC, SOL_K, ESCO) influence water
balance (KGE_beta) and mid-flow segment of FDC. How-
ever, evaporation (ESCO) is more related to KGE_beta while
SOL_AWC has the largest impact on mid-flows. In the case
of GW_DELAYfsh several performance criteria are affected
to a similar extent, but none of them has a high percentage
contribution. While RCHRGssh affects KGE and high flows,
ALPHA_BFssh strongly controls very low flows.

3.4 Comparing RTperf and RTpar

Subsequently, both RT approaches are compared by relat-
ing the percentage contribution from RTperf to RTpar and
analysing these patterns for each performance criterion for
both catchments (Fig. 7). The joint consideration of both
RTs finally yields the bijective connective strength between
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Figure 7. Connective strength between performance criteria and model parameters. The percent contribution of pairs of model parameter and
performance criterion are shown as derived from RTperf (x axis) and RTpar (y axis). A high value along the x axis shows a high contribution
of a model parameter in explaining variability in the performance criterion as detected by RTperf. A high value along the y axis (RTpar)
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model parameter and performance criteria. A high connec-
tive strength between a distinct model parameter and a dis-
tinct performance criterion is given if (1) the model param-
eter is one of the dominant controls for the performance cri-
terion and (2) the same performance criterion is sensitive to
changes in the model parameter values to a relevant extent.

For mid-and low-flow conditions, both RTperf and RTpar
provide strong connective strength with high percentage con-
tribution in RTperf and RTpar for the same pair of model
parameter and performance criterion in both catchments.
The strong relationship of evaporation (ESCO) and available
soil water capacity (SOL_AWC) to RSR of mid-flows and
KGE_beta is derived in both RT approaches (Fig. 7). Wa-
ter balance (KGE_beta) is hereby more controlled by ESCO,
whilst SOL_AWC is the dominant parameter for mid-flows
especially in the Saale catchment.

Similarly, the connection between RSR for the very low
segment of FDC and the baseflow recession coefficient (AL-
PHA_BFssh) is strong particularly in the Saale catchment. In
both catchments the retention time of recharge into ground-
water (GW_DELAYfsh) is also relevant.

KGE is dominated by GW_DELAYfsh and the aquifer
partitioning coefficient (RCHRGssh) in a similar way in both
catchments despite contrasting catchment characteristics. In
RTperf, KGE is most strongly impacted by GW_DELAYfsh.
However, in RTpar, KGE has a higher percentage con-
tribution in explaining changes in RCHRGssh than in
GW_DELAYfsh.

In contrast, performance criteria related to high flows
(NSE and RSR for very high flows) are controlled in
the Treene catchment by groundwater (GW_DELAYfsh,
RCHRGssh) and in the Saale catchment by lateral flow (LAT-
TIME). This pattern shows that NSE focuses on model errors
at high flows. A lower connective strength between model
parameters and performance criteria was detected for high-
flow conditions. A bijective relationship between high-flow-
related performance criteria and certain model parameters is
more difficult to detect. The five performance criteria rep-
resenting high-flow conditions in the Treene catchment are
related to the same two groundwater parameters (GWDE-
LAYfsh and RCHRGssh). However, whilst GWDELAYfsh
and RCHRGssh are the most dominant model parameters in
RTperf, the percentage contribution in RTpar is lower. These
two parameters dominate five performance criteria, but it
remains unclear which is the best performance criterion in
terms of parameter identification. Thus, while model errors
in mid- and low flows are identified in both catchments by the
same performance criteria (case 1; see Sect. 2.4.3), it is more
complex to find appropriate performance criteria for errors
in high flows. Here, more complex hydrological behaviour
is detected, particularly in the Saale catchment, as indicated
by different controlling parameters on the performance crite-
rion (case 2 and 3 in Sect. 2.4.3). Moreover, the most domi-
nant parameters in both catchments (GW_DELAYfsh in the
Treene, LATTIME in the Saale) have a high percentage con-
tribution in particular in RTperf both for high and low flows.
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A very specific pattern is detected for KGE_r in the
Treene catchment. In RTpar, a high percentage contribution
of KGE_r for model parameters of lower relevance is de-
tected. High values for RTpar and low values for RTperf in
Fig. 7 show that KGE_r is the most appropriate performance
criterion to assess changes in these model parameters. How-
ever, due to low relevance of snow or surface runoff, KGE_r
is controlled by groundwater parameters. Here, we see a large
difference in the interrelationship between model parameters
and performance criteria by comparing RTperf and RTpar.

4 Discussion

The aim of this study was to improve the understanding of the
relationship between model parameters and performance cri-
teria. To this end, the concept of connective strength between
model parameters and performance criteria was introduced,
based on two approaches of regression trees first using per-
formance criteria and then model parameters as target vari-
ables. Based on this, we discuss how the connective strength
to the performance criteria varies between different model
parameters and how the use of different performance criteria
help in identifying model parameters.

4.1 Benefit of analysing bijectively the relationship
between model parameters and performance
criteria

By analysing the connective strength, the performance crite-
ria which are appropriate to best constrain the model param-
eters are identified. The novelty of this study lies in the as-
sessment of the relationship between model parameters and
performance criteria bijectively (RTperf, RTpar).

In RTperf, detection for 10 performance criteria is per-
formed to ascertain whether the same model parameters af-
fect different performance criteria. It is shown that not all
model parameters influence one of the selected performance
criteria (see Fig. 5). This indicates that not all model pa-
rameters can be identified with this approach since either
the model parameters are not relevant or appropriate perfor-
mance criteria are still missing to describe the changes in this
model parameter. The impact of model parameters on perfor-
mance criteria depends on the relevance of the correspond-
ing process. In the case that the relevance of the associated
process is very low, parameters from other more dominant
processes control performance criteria. This is for example
shown for curve number (CN2). Its impact on performance
criteria in Treene catchment is low due to higher contribution
of groundwater flow compared to surface runoff.

In RTpar with model parameters as target variables, each
model parameter is individually assessed. By comparing RT-
par for different model parameters, the influence of model
parameters on different performance criteria is identified. It
can be derived whether parameters and their associated pro-

cesses are of low relevance or whether an appropriate perfor-
mance criterion for a model parameter is missing. The RTpar
approach shows for the majority of the model parameters that
changes in their values are detectable at least by one selected
performance criteria. This indicates that the impact of model
parameters related to processes of minor relevance on perfor-
mance criteria can be derived with RTpar.

Differences between RTperf and RTpar are also obtained
for parameters related to the most dominant process(es).
The groundwater parameters (mainly GW_DELAYfsh) con-
trol most of performance criteria for the Treene catchment
(Fig. 5). A similar result is obtained for the Saale catchment
with a dominance of lateral flow lag time (LATTIME). Com-
paring results of two RT approaches, a higher similarity be-
tween both catchments is detected in RTpar (Fig. 6).

Comparing the results of both RT approaches (Figs. 5 and
6), it becomes apparent that the performance criterion with
the highest percent contribution for a given model parameter
in Fig. 5 is in some cases not identical with the performance
criterion with highest percent contribution in Fig. 6. Thus, the
analysis from the side of the model parameters provides addi-
tional information about the interrelationship between model
parameters and performance criteria.

The interpretation of the relationship between model pa-
rameters and performance criteria from both sites by means
of the suggested connective strength extends the classical
one-sided analysis of the impact of model parameters on per-
formance criteria as in, for example, sensitivity analyses (van
Werkhoven et al., 2008; Herman et al., 2013). In our ap-
proach both performance criteria and model parameters were
analysed separately as target variables. In comparison to the
established one-sided approaches, this yields additional in-
formation on which performance criteria are appropriate for
a certain model parameter.

Thus, we investigate not only how variations are prop-
agated in the model up to the output but also which out-
puts (i.e. performance criteria) are impacted by a certain
model parameter. The comparison of parameter relevance
with former studies on temporally resolved parameter sensi-
tivity analyses (Guse et al., 2014, 2016) shows that the over-
all ranking of model parameters is similar.

4.2 Benefit of using different performance criteria

Furthermore, we analysed how the use of different perfor-
mance criteria helps in identifying model parameters. The
differences in the relevance of model parameters on 10 per-
formance criteria emphasised the benefit of using this set
of performance criteria. The separate consideration of KGE
components demonstrates that different parameters are re-
lated to these three performance metrics of KGE. While rel-
evant parameters on KGE and KGE_alpha are similar in the
Treene catchment, the most relevant parameter on KGE in
the Saale catchment (GW_DELAY) is not the relevant one
for the three KGE components. Since each KGE component
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can be clearly related to a specific part of hydrological be-
haviour (Kling et al., 2012), the RT shows whether a model
parameter is more relevant in representing variability, bias
or correlation in modelled discharge time series. By compar-
ing the performance in KGE with its components, the most
important aspect in evaluating the model performance with
KGE becomes apparent. For example, in the Treene catch-
ment variability is the most important one, as indicated by
KGE_alpha.

The differences in pairwise correlations of performance
criteria between both catchments also result in differences
in the relationship between model parameters and a certain
performance criterion. Similar results in KGE and NSE are
calculated in the case of high correlation between KGE and
KGE_alpha and thus the most relevant model parameters on
these two performance criteria are similar. The opposite re-
sult is obtained in the Saale catchment. Due to low values
of KGE_alpha, different parameters control KGE and NSE.
This pattern is reasonable since both KGE_alpha and NSE
focus on assessment of variability in discharge time series,
while the three components (variability, bias, correlation) are
equally weighted in KGE.

Concerning signature measures, this study shows that dif-
ferent parameters are related to FDC segments. This is in line
with studies stating that each FDC segment can be related
to certain catchment processes (Yilmaz et al., 2008; Yaeger
et al., 2012; Pfannerstill et al., 2015). The strong connec-
tive strength of model parameters regulating water balance
to mid-flows as well as of parameters from slow reacting
aquifer storages to very low flows is derived in this study.
However, a typical sequence of a high connective strength
of high flows to surface runoff parameters is not identified.
Moreover, we observe that dominant processes, i.e. ground-
water flow in the Treene and lateral flow in the Saale catch-
ment, influence both high and low flows. This leads to a
trade-off in parameter identification since the same model
parameters control high and low flows. This shows that per-
formance criteria should be specific for different model pa-
rameters, in this case specific for either high or low flow, to
avoid a high parameter uncertainty and equifinality in the es-
timation of behavioural parameter sets.

4.3 Number of required performance criteria

The analysis of the bijective connective strength between
pairs of model parameters and performance criteria in the
two catchments shows that the most appropriate performance
criterion varies depending on different model parameters.
Pairs with a high connective strength were detected and
grouped. This results in a minimum number of three re-
quired performance criteria related to high-, mid- and low-
flow conditions since the most relevant parameters between
these three types of performance criteria vary. This is in line
with other studies on performance criteria stating that three
or four performance criteria are needed at a minimum to cap-

turing different parts of the hydrological system (Madsen,
2000; Boyle et al., 2001; van Werkhoven et al., 2008, 2009).

In addition, an individual performance criterion for a sin-
gle model parameter might be needed, e.g. to assess the
importance of mid-flows (van Werkhoven et al., 2008; Wa-
gener et al., 2009; Herman et al., 2013). This is shown in the
RT analysis, where the controlling parameters for KGE_beta
and RSR for mid-flows are different compared to other per-
formance criteria and these dominant model parameters are
from soil components and related to water balance. In these
cases, the connective strength is very high.

In addition, for the assessment of low-flow conditions, an
individual performance criterion is needed which was in this
case RSR for low and very low flows. A high connective
strength between model parameter and performance criterion
was detected for very low flows. Moreover, the requirement
for a segmentation of FDC into very low and low flows as in-
troduced by Pfannerstill et al. (2014b) is emphasised by iden-
tifying different relevant model parameters. The high corre-
lation between RSR for very low and low flows in the Treene
catchment also results in similar dominant parameters, while
different parameters control these signature measures in the
Saale catchment (see Fig. 5). Thus, similar influencing pa-
rameters in RTperf for different performance criteria are de-
tected if both are highly correlated.

High flows are driven by interacting and overlaying pro-
cesses from different hydrological components. Here, the
most influential parameters and the most appropriate perfor-
mance criterion vary depending on the type of errors which
are dominant in the modelling process. The complexity in
the representation of high flows depends on the involved
processes. In the groundwater-dominated Treene catchment,
the RT analysis for five performance criteria related to high
flows provides very similar results. The RT analysis using
model parameters as explaining variables (RTpar) however
highlights differences in the relationship of model parame-
ters and these five performance criteria. In the Saale catch-
ment, relevant model parameters largely vary between all
performance criteria related to high flows. Here, all selected
performance criteria capture different types of errors in mod-
elled discharge time series. The analysis of deviations be-
tween measured and modelled discharge in this catchment is
more complex so that more than one performance criterion
for high flows is required. With higher heterogeneity in dom-
inant processes and strong interaction of different processes
in controlling hydrological behaviour, a more distinct selec-
tion of a larger set of performance measures is required.

Thus, we recommend including several performance cri-
teria to capture all types of potential errors both in the dy-
namic and magnitude of modelled discharge. In addition, it
is relevant to consider which model parameters dominate per-
formance criteria. This can help to understand why a certain
model error might occur and to which processes this model
error is related.
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As demonstrated in this study, the results vary between dif-
ferent catchments. Further studies in other catchments might
additionally improve the understanding of the connective
strength between model parameters and performance crite-
ria using this methodology. A separate approach for specific
time periods, for example, in winter to capture the impact of
snow parameters, might be an upcoming interest. Due to the
generality of the suggested approach, applicability with other
models is expected.

5 Conclusion

For achieving precise parameter identification, the connec-
tive strength between model parameters and different per-
formance criteria is analysed. For this, two regression tree
(RT) approaches are applied using consecutively perfor-
mance criteria and model parameters as target variables.
This method derives which model parameters affect a per-
formance criterion (RTperf) and which performance crite-
ria are impacted by changes in model parameters (RTpar).
By detecting the connective strength between model param-
eters and performance criteria, appropriate performance cri-
teria can be derived for different model parameters. Based on
precise parameter identification and a better understanding of
model parameters, parameter uncertainty and thus equifinal-
ity among different model runs can be reduced.

Thus, the main outcomes of this study are as follows:

1. The pairwise correlation between performance criteria
varies between the two catchments depending on the
model error. Thus, different performance criteria are re-
quired to disentangle the impact of different hydrolog-
ical behaviour on modelled discharge. The number of
required performance criteria is higher for catchments
with a higher process complexity.

2. In RTperf, it becomes apparent how largely the rele-
vance of model parameters varies between different per-
formance criteria. Our study emphasises the importance
of a separate consideration of KGE components and of a
signature-based analysis of different FDC segments for
precise parameter identification. Differences in domi-
nant parameters are detected between performance cri-
teria related to high-, mid- or low-flow conditions.

3. RTpar, which uses model parameters as target vari-
ables, shows which performance criterion is appropri-
ate to identify a model parameter. Similar results in RT-
perf and RTpar demonstrate high capability of a per-
formance criterion to consider the impact of a model
parameter accurately. Contrasting results are in particu-
lar derived for model parameters which are related to
processes of minor relevance. A bijective connective
strength between model parameters and performance
criteria is detected for low and mid-flows, whilst mod-
elling of high flows is more complex both in terms of

relevant model parameters and appropriate performance
criteria.

Overall, this study shows that multiple performance crite-
ria are required for accurate parameter identification for re-
liable hydrological modelling. However, no general conclu-
sion regarding universal performance criteria can be drawn,
since the connective strength between model parameters and
performance criteria varies between catchments depending
on hydrological complexity of the catchments with respect
to processes and their relevance in controlling hydrological
behaviour in models. Using the presented approach, one can
derive how precisely reasonable values of model parameters
can be identified by a set of performance criteria.
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