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Abstract
Monoclonal antibodies (mAbs) are an innovative group of drugs with increasing clin-
ical importance in oncology, combining high specificity with generally low toxicity.
There are, however, numerous challenges associated with the development of mAbs
as therapeutics. Mechanistic understanding of factors that govern the pharmacoki-
netics (PK) of mAbs is critical for drug development and the optimisation of effective
therapies; in particular, adequate dosing strategies can improve patient quality life
and lower drug cost. Physiologically-based PK (PBPK) models offer a physiological
and mechanistic framework, which is of advantage in the context of animal to human
extrapolation. Unlike for small molecule drugs, however, there is no consensus on
how to model mAb disposition in a PBPK context. Current PBPK models for mAb
PK hugely vary in their representation of physiology and parameterisation. Their
complexity poses a challenge for their applications, e.g., translating knowledge from
animal species to humans.
In this thesis, we developed and validated a consensus PBPK model for mAb disposi-
tion taking into account recent insights into mAb distribution (antibody biodistri-
bution coefficients and interstitial immunoglobulin G (IgG) pharmacokinetics) to
predict tissue PK across several pre-clinical species and humans based on plasma
data only. The model allows to a priori predict target-independent (unspecific) mAb
disposition processes as well as mAb disposition in concentration ranges, for which
the unspecific clearance (CL) dominates target-mediated CL processes. This is often
the case for mAb therapies at steady state dosing.
The consensus PBPK model was then used and refined to address two important
problems: 1) Immunodeficient mice are crucial models to evaluate mAb efficacy in
cancer therapy. Protection from elimination by binding to the neonatal Fc receptor
is known to be a major pathway influencing the unspecific CL of both, endogenous
and therapeutic IgG. The concentration of endogenous IgG, however, is reduced in
immunodeficient mouse models, and this effect on unspecific mAb CL is unknown,
yet of great importance for the extrapolation to human in the context of mAb cancer
therapy. 2) The distribution of mAbs into solid tumours is of great interest. To com-
prehensively investigate mAb distribution within tumour tissue and its implications
for therapeutic efficacy, we extended the consensus PBPK model by a detailed tumour
distribution model incorporating a cell-level model for mAb-target interaction. We
studied the impact of variations in tumour microenvironment on therapeutic effi-
cacy and explored the plausibility of different mechanisms of action in mAb cancer
therapy.
The mathematical findings and observed phenomena shed new light on therapeutic
utility and dosing regimens in mAb cancer treatment.
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Zusammenfassung
Monoklonale Antikörper (mAK) stellen durch ihre hohe Spezifität und geringe
Toxizität eine innovative Arzneistoffklasse mit großer klinischer Bedeutung in der
Krebstherapie dar. Es gibt jedoch eine Vielzahl an Herausforderungen, die mit
der Entwicklung von mAK als Krebstherapeutika verbunden sind. Mechanistisches
Verständnis der Pharmakokinetik (PK) von mAK ist wichtig für die Arzneimittel-
entwicklung sowie für die Therapieoptimierung. Adäquate Dosierungsstrategien
können die Lebensqualität der Patienten erhöhen und die Gesundheitskosten senken.
Physiologie-basierte PK (PBPK) Modelle bieten einen physiologischen und mecha-
nistischen Rahmen für die Extrapolation von Tiermodellen auf den Menschen. Im
Gegensatz zu kleinen chemischen Molekülen besteht für die PBPK Modellierung von
mAK kein Konsens: Aktuelle Modelle unterscheiden sich stark hinsichtlich Physiolo-
gie und deren Parameterisierung. Die Komplexität dieser Modelle stellt eine große
Herausforderung für ihre Anwendung dar.
In der vorliegenden Arbeit entwickelten und validierten wir ein Konsens-PBPK-
Modell für die mAK Disposition. Dabei wurden aktuelle Erkenntnisse zur mAK
Verteilung berücksichtigt, um basierend auf Plasmadaten Vorhersagen für die PK
im Gewebe verschiedener präklinischer sowie klinischer Spezies zu treffen. Das
Modell erlaubt a priori Vorhersagen für die unspezifische (target-unabhängige) mAK
Disposition als auch für die mAK Disposition in einem Konzentrationsbereich, für
den die unspezifische Clearance (CL) die target-abhängige CL dominiert. Dies ist oft
der Fall für mAK Therapien bei Steady-state-Dosierung.
Anschließend wurde das Konsens-PBPK-Modell genutzt und verfeinert, um zwei
wichtige Aspekte näher zu untersuchen: 1) Immundefiziente Mäuse sind wichtige
Tiermodelle für die Evaluierung der mAK Wirksamkeit in der Tumortherapie. Die
Bindung von Antikörpern an den neonatalen Fc Rezeptor schützt diese vor dem
Abbau und beeinflusst somit maßgeblich die unspezifische CL von endogenen sowie
therapeutischen Antikörpern. Die Konzentration von endogenem IgG in immunde-
fizienten Mäusen ist reduziert. Dieser Effekt auf die unspezifische mAK CL ist
unbekannt, jedoch wichtig für die Extrapolation auf den Menschen in der mAK
Tumortherapie. 2) Die Verteilung von mAK innerhalb eines soliden Tumors ist
von großer Bedeutung. Für die umfassende Untersuchung der mAK Verteilung
innerhalb des Tumorgewebes wurde das Konsens-PBPK-Modell um ein detailliertes
Tumor-Verteilungsmodell, welches die mAK-Target Interaktion auf Zellebene berück-
sichtigt, erweitert. Wir untersuchten den Einfluss von Variationen in der Tumor-
Mikroumgebung auf die klinische Wirksamkeit von mAK und untersuchten die
Plausibilität verschiedener Wirkmechanismen in der mAK Tumortherapie.
Die mathematischen Ergebnisse sowie beobachteten Phänomene werfen ein neues
Licht auf den therapeutischen Nutzen sowie Dosierungsschemata in der mAK Krebs-
therapie.
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1Motivation and Objectives

Monoclonal antibodies (mAbs) are an innovative group of drugs with increasing
clinical importance in oncology, combining high specificity with generally low toxicity
[1]. There are, however, numerous challenges associated with the development of
mAbs as therapeutics [2]. Mechanistic understanding of factors that govern the
pharmacokinetics (PK) of mAbs is critical for drug development and the optimisation
of effective therapies; in particular, adequate dosing strategies can improve patient
quality life and lower drug cost.

Physiologically-based PK (PBPK) models offer a physiological and mechanistic frame-
work, which is of advantage in the context of animal to human extrapolation. PBPK
models for small molecule drugs (sMDs) are used throughout all stages of drug
development [3]. However, in comparison to sMDs, for mAbs, the potential of
PBPK modelling has so far not yet been fully exploited [3]. Current approaches for
mAb PBPK modelling lack a consensus on the representation of physiology and its
parameterisation [4]. In addition, the existing models are often over-parameterised
(which potentially leads to identifiability issues), require large amounts of in vivo
tissue distribution data to fit unknown parameters, or only allow to predict plasma
PK. “More effort is needed to use PBPK models to address critical issues in antibody
development, such as subcompartment concentrations, tissue target engagement, first-
in-human dose, pH-dependent FcRn or target binding, immunogenicity, and disease
influence on antibody disposition.” [5, p. 171]

The overall aim of the present thesis was to establish a consensus PBPK model for
mAb disposition that can be used to answer relevant questions within pre-clinical
and clinical development of mAbs and ultimately offers a framework to reflect on
therapeutic utility and treatment regimens in mAb cancer treatment.

For sMD PBPK models, the advent of methods to predict tissue-to-plasma partition
coefficients significantly increased their application in drug discovery and devel-
opment. With the development of antibody biodistribution coefficients (ABCs) for
mAbs [6]—the analog to tissue-to-plasma partition coefficient of sMDs—, a similar
advancement can be expected for mAbs. Fronton et al. [7] have derived a link
between tissue partition coefficients and ABCs within a simplified PBPK model for
mAb PK in mice. So far, however, ABCs have not been used in PBPK models to
predict mAb PK across diverse species and strains.
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ABC values and readily available physiological and drug-specific parameters for
various species allow to fully specify mAb distribution; the only unknown mAb PK
parameter(s) relate to clearance (CL) processes. There are two distinctive routes for
the elimination of mAbs: target-mediated CL and unspecific (target-independent)
CL. As mAbs bind to specific antigens with high affinity, research has largely focussed
on target-mediated CL [8–13]. Conversely, unspecific elimination processes, have
attracted much less attention. These CL processes, however, are important for
mAb PK at typical therapeutic doses, since linear unspecific CL then dominates
target-mediated CL processes.

Protection of mAbs from elimination by binding to the neonatal Fc receptor (FcRn) is
known to be major pathway influencing the unspecific CL of both, endogenous and
therapeutic immunoglobulin G (IgG) [14]. Experimental data of immunodeficient
mouse models are most widely used to study mAb PK and examine the therapeutic
response to mAbs in xenograft mice. The concentration of endogenous IgG (IgGendo)
in immunodeficient mice, however, is ‘by design’ reduced, with unknown effect on the
FcRn protection mechanism and subsequently on mAb CL, yet of great importance
for the interpretation of mAb PK data. Assessment of the impact of altered IgGendo
concentrations on unspecific mAb clearance is of both, pre-clinical, but also of clinical
relevance, e.g., for immunosuppressed cancer patients treated with mAbs [15–17].

Im mAb cancer therapy, various factors make effective tumour targeting difficult [18].
Antibody-drug conjugates (ADC) are among the most promising classes of antibody-
based cancer therapeutics [2]. In current literature [19, 20], the distribution of
ADCs is claimed to be a major factor contributing to overall ADC efficacy. In addition,
for mAbs competing for receptor binding with natural ligands (e.g. growth factors),
the dynamics of receptor and natural ligand play a crucial role in determining mAb
efficacy. Better understanding of antibody distribution within tumour tissue can be
expected to aid improving the efficacy and safety of cancer therapies and gaining
insights for the design of new treatment strategies.

The main objectives of this thesis were to:
• develop and validate a consensus PBPK model taking into account recent

insights into mAb distribution (ABC values, interstitial IgG pharmacokinetics
[21]) to predict common target-independent PK across several pre-clinical
species and humans;

• analyse the influence of altered endogenous IgG concentrations—as present in
immunodeficient mice—competing with therapeutic IgG for FcRn binding and
salvage, on unspecific mAb CL;

• comprehensively investigate mAb and ligand distribution within tumour tissue
and its implications on therapeutic efficacy.

2 Chapter 1 Motivation and Objectives



Chapter 2 ‘Background on mAbs’ provides both, the biological and modelling back-
ground that is relevant for the modelling sections within this thesis. In Chapter 3
‘Consensus PBPK model for mAbs’, we proposed a novel consensus PBPK model that
integrates the relevant aspects of mAb target-independent PK by leveraging the
concept of ABCs. The model was parameterised with parameters related to the inter-
stitial space fluid (ISF) and tissues were modelled based on their capillary structure,
which allows more realistic model-based predictions of the PK in the interstitial
space. The model can be readily used in non-cross-reactive species to predict tissue
PK, requiring only plasma data to fit a single unknown parameter, the unspecific
plasma CL. For humans, we determined a median unspecific CL suitable to a priori
predict mAb PK in healthy volunteers, and importantly to estimate the extent of
target-mediated CL processes.

The consensus PBPK model was then used and refined to address two important
problems:
1) In Chapter 4 ‘Impact of endogenous IgG on unspecific mAb clearance’, we present
a refinement of the consensus PBPK model that was used to elucidate the impact of
altered IgGendo on unspecific mAb clearance in immunodeficient mice.
2) In Chapter 5 ‘Cell-level-based tumour PBPK model for mAbs’, we coupled the
consensus PBPK model with a detailed tumour distribution model incorporating a
cell-level target-mediated drug disposition (TMDD) model to describe the dynamics
of receptor and natural ligand. The model allows to study the plausibility of different
mechanisms of action in mAb cancer therapy.

Chapter 1 Motivation and Objectives 3





2Background on mAbs

Today, mAbs are one of the largest and fastest growing classes of drugs globally
[22, 23]. Due to their high specificity, mAbs play an important role in diagnostics,
research and therapy. The overall aim of this thesis is to establish a consensus PBPK
model for mAb PK that can be used to answer relevant questions within pre-clinical
and clinical development of mAbs and offers a framework to study therapeutic
utility and treatment regimens in mAb cancer treatment. This chapter provides
the background that is relevant for the modelling sections within this thesis and
is structured as follows: First, we introduce mAbs and provide an overview on
the disposition of mAbs to better understand the physiological processes to be
considered within mAb PBPK models. Subsequently, we provide a summary of the
mechanisms of action that are relevant for the anti-cancer mAbs to be studied within
this thesis and describe briefly the PK characteristics of a promising class of mAb-
based cancer therapeutics—ADCs. Lastly, we introduce the modelling approaches
for mAb disposition.

Part (section 2.5.3) of the present Chapter has been published as W. Huisinga,
S. Fuhrmann, L. Fronton, B.-F. Krippendorff, “Target-Driven Pharmacokinetics of
Biotherapeutics”, in: ADME Transl. Pharmacokinet. Ther. Proteins. Appl. Drug Discov.
Dev., Eds.: H. Zhou and F.-P. Theil, Wiley, 2015, pp. 197-209.

2.1 Physicochemical properties

The physicochemical properties of mAbs largely influence their PK. mAbs are large
hydrophilic proteins with a molecular weight (MW) of approx. 150 kDa. Their
structure is similar to endogenous immunoglobulins comprising of two important
regions:

• the antigen binding region (Fab fragment) determining the affinity and speci-
ficity of an antibody towards a target antigen (e.g. epidermal growth factor
receptor, EGFR);

• the fragment crystallisable (Fc fragment), which contains the complement
binding site and the Fc receptor binding site (important for effector functions
of the antibody such as the interactions with macrophages via Fc receptors and
binding to FcRn).
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Figure 2.2 provides a simplified schematic representation of the structure of an
antibody molecule. In mammals, there are five isotypes of Igs: IgA, IgD, IgE, IgG,
and IgM. Furthermore, there are a number of subclasses, e.g., IgG consists of four
subclasses, i.e., IgG1 to IgG4, which normally represent 67%, 22%, 7% and 4% of
the total serum IgG concentration in humans [24]. All currently (2017) clinically
used therapeutic mAbs are of IgG isotype [25, Table1] since they have very long
elimination half-lives (20-21 days) compared to the other isotypes. Therapeutic
mAbs are further classified by their origin into murine, chimeric, humanised and
fully human. The origin is important because xenogenic parts can cause immune
responses and allergic reactions.

2.2 Disposition

In the sequel, the principal properties of mAb disposition are presented to understand
the relevance of processes to be incorporated into mAb PBPK models. The processes
that influence mAb absorption are not reviewed in detail here, since the thesis
focusses on mAb disposition processes following intravenous (i.v.) administration,
which is the most common route of administration [25].

2.2.1 Distribution

General distribution processes

In general, mAb distribution is determined by
• extravasation from blood into the interstitial space of the tissue,
• distribution within the tissue and
• clearance processes.

Due to their large size and hydrophilic nature, mAb passive diffusion is limited
and extravasation from blood to tissues occurs predominantly via convection or
transcytosis across the epithelial barriers [25]. Convection is driven by a hydrostatic
gradient between blood and tissue. Furthermore, convection is influenced by the
sieving effect of the pores of the vascular epithelial cells. The latter effect is deter-
mined by species and drug properties, such as pore size as well as size, shape and
charge of the antibody [25]. In tissues, in which extravasation via convection is
limited, transcytosis, mediated via FcRn, is another important route of extravasation
[25].

mAb distribution within the tissue depends on mAb diffusion and convection
through the interstitial space of tissues and binding of the antibody to antigens.
Tissue distribution can be hindered by the composition of the extracellular tissue

6 Chapter 2 Background on mAbs



matrix (ECM). The fraction of ECM not available for mAb distribution is termed the
exclusion volume.

mAb clearance processes include distributive antibody removal from interstitial
space of tissues via lymphatic drainage and elimination via catabolism (for more
details on IgG elimination see section 2.2.2).

The ratio of extravasation into tissues and removal via lymphatic drainage deter-
mines the unbound mAb concentrations in the interstitial fluid of tissues that are
often substantially lower than in plasma [25, 26]: The concentration in the inter-
stitial space ranges from 30% to 75% of the plasma concentration [6, 27]. The
efficiency of convection from interstitial tissue space into the lymph is higher than
the convection from blood into tissues due to larger pore size of tissue lymphatic
capillaries compared to tissue blood capillaries [28].
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Fig. 2.1.: Relevant processes determining mAb distribution; modified after [1, 25].

Tumour distribution characteristics

The inefficient distribution of drugs to malignant cells within solid tumour is often
discussed in the context of limiting the success of anti-cancer therapies [18, 29–31].
In this section, we highlight the main differences between healthy tissue and solid
tumour tissue with impact on mAb distribution.

There are various clinical presentations of tumours: The term (i) solid tumour
describes a localised mass of tissue; in contrast to (ii) tumours of the haematopoietic
and lymphoid tissues. Small numbers of malignant cells can spread from the primary
tumour to other parts of the body and form (iii) micrometastases. The characteristics
of small pre-vascular metastases embedded in healthy tissue are more similar to
healthy tissue than solid tumours whose physiology differs from healthy tissues
[32].
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Solid tumours are described as abnormal organs [1, 29] with the following major
differences compared to healthy tissue:

• tumour vasculature:
– abnormal blood vessels with increased branching and tortuosity [1, 30,

33]
– blood flow velocities much slower [1]
– high variability in blood flow leading to distinct regions within tumours,

i.e., highly perfused vs. hypoxic regions [1]
– increased vascular permeability of tumour blood vessels for large molecules

[1, 33]
– non-functional and absent lymph vessels [1]

• tumour interstitial space fluid:
– large interstitial volume fraction [33–35]
– high concentrations of supportive proteins and collagen (stiff stroma)

[29]
– high interstitial fluid pressure (IFP) [29, 34]

Elevated permeability of tumour blood vessels for large molecules and reduced
lymphatic drainage results in an increase in tumour IFP [34]. The high IFP lowers
the necessary gradient for mAb convection driven by hydrostatic pressure gradient.
Whereas in healthy tissues, mAb extravasation across the capillary wall is mainly
driven via convection and transcytosis, mAb extravasation into solid tumours is
primarily mediated by passive diffusion, which is limited due to the large molecular
weight of mAbs. In addition, mAb distribution within interstitial space of solid
tumours can be retarded by their high-affinity binding to target antigens expressed
on tumour cells (often referred as ‘binding site barrier’) [1] and by the stiff stroma
creating a physical barrier for mAb distribution within tumour tissue [1, 34].

The above mentioned aspects are considered to be limiting factors for mAb distribu-
tion within large solid tumours. These limitations, however, have to be discussed in
relation to the fact that ‘many [antibody] molecules have demonstrated promising
outcomes in the clinic’ [1, p. 226]. This will be exploited in detail in Chapter 5,
where intra-tumoural mAb distribution is comprehensively investigated within a
developed mechanistic modelling framework.

2.2.2 Elimination

The elimination of therapeutic mAbs is often described by linear and/or non-linear
clearances [36] with

• non-linear clearance typically attributed to receptor-mediated endocytosis
(RME) via specific interaction between the IgG’s Fab fragment and the target
antigen expressed on cell surface receptors [25], and
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• linear clearance resulting from antibody-target interaction in the non-saturated
regimen or unspecific (not Fab-mediated) elimination following non-specific
fluid-phase endocytosis into a cellular endosomal compartment or following
RME via interaction between the IgG’s Fc fragment and receptors expressed on
phagocytic cells of the immune system, e.g., Fc gamma receptors (FcγRs) [25].
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Fig. 2.2.: Simplified schematic representation of an antibody and its clearance processes;
modified after [36]. Fab: antigen binding region, Fc: fragment crystallisable
region, CDR: complement determining regions, FcRn: neonatal Fc receptor, FcγR:
Fc gamma receptor.

The process of Fab-mediated RME and subsequent intracellular proteolytic catabolism
of the antibody-target complex is also known as target-mediated drug disposition.
TMDD is highly influenced, e.g., by the expression level of the target, the mAb dose,
the affinity of the mAb for the target as well as the mAb’s rate of internalisation [25].
As mAbs typically bind with high affinity to specific antigens, much research focussed
on target-mediated clearance (see section 2.5.3). Following mAb concentrations
resulting from therapeutic mAb doses, however, the process is often saturated and is
not a major contributor to the overall mAb clearance [36]. We argue that unspecific
clearance processes are important regarding mAb PK, in particular in two situations:
(i) high mAb doses resulting in concentrations that saturate the target, and (ii) mAbs
binding to soluble targets, since they are often present in low concentrations. mAbs
binding soluble targets often exhibit linear clearance and are primarily eliminated
via FcγR-mediated endocytosis [37].

IgG can be rapidly endocytosed and intracellularly degraded following engagement
of FcγRs on macrophages and on other innate immune effector cells such as mono-
cytes, dendritic cells, basophils and mast cells [38]. This process is a common
pathway for endogenous and therapeutic IgG. Considering the relatively high affin-
ity of IgG for FcγRs and the high endogenous concentrations of IgG in plasma,
FcγR-mediated elimination is unlikely to be important for monomeric IgG. It may
be dominant in cases where antibody is able to form soluble immune complexes
containing three or more IgG molecules [39].
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In addition, IgG, like other proteins found in plasma and interstitial fluid, may enter
cells unspecifically in all tissues of the body via fluid-phase endocytosis (pinocytosis)
[39], but particularly in tissues that are rich in capillary beds with endothelial cells.
Intracellularly, a mechanism is present that protects endogenous and therapeutic
IgG from unspecific degradation (see section below).

Protection from elimination via the neonatal Fc receptor

When studying mAb PK, protection from elimination by binding to FcRn is known
to be a major process influencing unspecific therapeutic IgG elimination as well
as the kinetics of endogenous IgG and explains its long elimination half-life [14,
40]. In the following, we present the information that is relevant for the modelling
analyses within Chapter 4, where we analyse the influence of altered endogenous
IgG concentrations competing with therapeutic IgG for FcRn binding and salvage,
on unspecific mAb CL.

Figure 2.3 illustrates the mechanism of IgG protection via the neonatal Fc receptor.
Following uptake of IgG into cells via non-specific fluid-phase endocytosis, IgG binds
to FcRn in the acidified endosome. The IgG-FcRn complex is transported back to
the cell surface where it is released at physiological pH into the systemic circulation.
Unbound IgG is degraded within endo-lysosomes in the cell. The site of salvage is
assumed to be characterised via sorting endosomes: IgG bound to FcRn is sorted
into tubules leading to its return to plasma membrane, whereas unbound IgG is
not sorted into tubules [41]. Albumin is protected from degradation by FcRn in
a similar way, however, the albumin and IgG binding sites to FcRn are distinct
[42]. The FcRn salvage mechanism is present in a wide variety of tissue types.
The tissue distribution pattern of FcRn across a variety of species and tissues was
qualitatively assessed for the first time by Latvala et al. in 2017 [43]. They detected
FcRn in a wide variety of tissue and cell types such as endothelial cells, interstitial
cells, epithelial cells as well as professional antigen-presenting cells. FcRn resides
within the endosomal vesicles of these cell types. Still today, however, there is no
quantitative information of FcRn abundance within human tissues. Furthermore,
so far, there is very limited quantitative knowledge about the processes involved
in the FcRn protection mechanism, e.g., fluid-phase endocytosis and endosomal
sorting [44]. There are variations in the binding affinities of human and mouse FcRn
for IgG from different species [40]. As an example, human FcRn is unable to bind
to endogenous murine IgG, whereas mouse FcRn binds IgG from many different
species with high affinity [40, 45]. The binding affinities towards murine FcRn,
however, differ for murine and human IgG [45]. The impact of the antibody binding
affinity towards FcRn on unspecific mAb clearance will be studied in more detail in
Chapter 4.
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Fig. 2.3.: Protection of IgG from degradation via the neonatal Fc receptor [40]. See text for
details.

2.3 Mechanisms of action in oncology

mAbs are an innovative group of drugs with increasing clinical importance in on-
cology [1]. Clinically used anti-cancer mAbs often exert their therapeutic effect
via multiple mechanisms; they disrupt cell signalling pathways, dampen inhibitory
checkpoints, deliver toxic payloads – to name just a few [1, 46]. A detailed review
of mechanisms of action of therapeutic antibodies used in oncology can be found in
[46]. In this section, we only focus on the mechanisms of action that are relevant for
the anti-cancer mAbs to be studied in Chapter 5.

mAbs exhibit high affinity binding to tumour specific targets. mAb binding with
their Fab region to a specific target, e.g., can induce a specific signal blockade. As
an example, trastuzumab binding to the human epidermal growth factor receptor
2 (HER2) prevents receptor dimerisation with other HER family members, and
subsequently inhibits the activation of cellular downstream signalling pathways [47,
48]. Moreover, mAb target binding may also prevent receptor binding of a growth
factor and thus inhibit downstream signalling pathways [1]. For example, cetuximab
and panitumumab compete for binding to EGFR with the epidermal growth factor
(EGF) [13].

Several targets have been validated, however, mAbs can also exert their effects
via their Fc domain: mAb binding with their Fc part or a secondary binding
site may induce multiple cytotoxic effects, e.g., recruitment of complement factors
(complement dependent cytotoxicity, CDC) or recruitment of immune cells via
binding to FcγRs on these cells (antibody-dependent cell-mediated cytotoxicity,
ADCC) [1].
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In addition, cell-killing mechanisms can result from mAb delivery of toxic payloads
to tumour cells, e.g., delivery of small molecule cytotoxic drugs (antibody drug
conjugates) or radioisotopes (antibody-radionuclide conjugates) [49].

Since clinically used mAbs often exert their therapeutic effect via multiple mech-
anisms, various efficacy measures may be relevant. The therapeutic efficacy of
anti-cancer mAbs and the plausibility of different mechanisms of action in mAb
cancer therapy will be examined in Chapter 5.

2.4 Antibody drug conjugates

ADCs are among the most-promising anti-cancer therapeutics that are developed
at present with currently (late 2017) four by the Food and Drug Administration
(FDA) approved ADCs and over 70 in clinical development [2, 20]. The PK and
intra-tumoural distribution of ADCs (with respect to their therapeutic efficacy in
cancer therapy) will be examined in Chapter 5.

ADCs are mAbs covalently attached to highly potent cytotoxic sMDs by chemical
linkers [49]. The ADC approach combines the specificity of mAbs (binding a specific
antigen expressed at the cell surface of tumour cells), with the potency of cytotoxic
sMDs to reduce systemic toxicity (compared to standard chemotherapy). ADCs
require the release of the toxic payload within the target cell for their activation
[33]. Upon target binding and subsequent internalisation into the tumour cell, the
ADC is trafficked to and degraded within the lysosome, which leads to liberation of
the cytotoxic payload within the cell [50].

The distribution properties of conjugated mAb (ADC) and unconjugated mAb (naked
mAb) are often reported to be similar owing to their similarity in size and binding
kinetics [2, 19, 51, 52]. The PK of ADCs, however, is largely determined by its
components and therefore much more complex compared to unconjugated mAbs
[52]. ADCs represent a heterogeneous mixture of various molecules with different
drug to antibody ratios (DAR) and a small amount of unconjugated mAb [52].
Location and degree of conjugation, e.g., can affect the internalisation rate and the
clearance of an ADC. In addition, deconjugation is an important component of the
elimination of ADCs. Deconjugation leads to a decrease in average DAR over time
and subsequently impacts the PK of ADCs [52].

Linker stability, sMD potency, DAR as well as the kinetics and efficacy of ADC
internalisation are important parameters for ADC development and clinical success
[33]. Second-generation ADCs are characterised by an improved linker stability in
the bloodstream with brentuximab vedotin and trastuzumab emtansine (T-DM1)
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being approved by the FDA in 2011 and 2013 [53]. Despite these improvements,
yet, major challenges in achieving consistently high clinical success rates exist [20].
It is claimed in current literature [19, 20] that intra-tumoural ADC distribution
appears to be a major factor contributing to the overall ADC efficacy and that a
better understanding of the relationship of ADC penetration and therapeutic efficacy
is needed to improve the clinical response rates of ADCs [20].

2.5 Models of mAb disposition

Mathematical models play an important role in supporting the discovery and de-
velopment of new drugs as well as the optimisation of therapies [54–56]. In the
present section, we briefly describe classical compartmental modelling approaches
and PBPK modelling approaches as they are relevant for the present thesis. We
discuss the benefits of PBPK approaches and present the main characteristics of
published PBPK models for mAbs. Furthermore, we briefly state different modelling
approaches capable of analysing, simulating and inferring target-driven PK of mAbs
and in particular, we highlight the advantages of the cell -level TMDD model that is
applied within Chapter 5 of this thesis.

2.5.1 Classical vs. PBPK approaches

The plasma PK of mAbs is often described by classical compartmental modelling
approaches using one or two compartment (CMT) models. Elimination is often
modelled as a linear clearance or as parallel linear and non-linear clearance from
the central compartment [25, 36]. Non-linear clearance reflects the elimination of
the antibody via TMDD and is often described using a simple Michaelis-Menten term
[36]. Importantly, both, the structure and the parameters of classical compartmental
modelling approaches are based on in vivo drug disposition data, limiting a mecha-
nistic and physiological interpretation. Due to their empirical nature, extrapolation
beyond the investigated dose range, species and population used for model develop-
ment is often limited and classical compartmental modelling is typically applied in
the context of population PK analysis of clinical mAb data [36].

Whereas classical compartmental models allow to describe mAb plasma PK, PBPK
models can be used to also predict mAb tissue concentration-time profiles and enable
a more mechanistic understanding of mAb disposition processes. PBPK models are
multi-compartmental models with compartments explicitly representing well-defined
organs or tissues that are interconnected by blood and/or lymph flows. There is
a wealth of anatomical and physiological data for various species available (see
e.g. [57, 58]). In addition, during the drug discovery and development process,
various drug-specific in vitro data are generated. PBPK models aim at integrating
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such species- and drug-specific data into the modelling process and translate them
into the in vivo context. This enables a priori predictions, i.e., predictions prior to
any in vivo experiments [59], and also facilitates covariate modelling [60].

The use of PBPK models for sMDs was significantly advanced with the development
of a priori methods to predict tissue-to-plasma partition coefficients (see [61]). Today,
PBPK models for sMDs are widely applied in drug development, e.g., to predict
human PK before first-in-human studies [62], to predict drug-drug interactions, and
to predict PK in special populations [3]. Unlike for sMDs, there is no consensus on
how to model mAb disposition in a PBPK context, which limits their application [3,
63]. Published PBPK models for mAbs are quite heterogeneous with respect to their
representations of physiology and parameterisation of the mechanisms involved in
mAb disposition (see section below).

2.5.2 mAb PBPK models: detailed vs. reduced

In the following, we briefly present the main characteristics and highlight the
differences of PBPK models for mAbs.

Concerning their complexity, published PBPK models for mAbs can be categorised
into

• full (also termed detailed) models, which integrate known mechanisms for
mAb PK in detail, e.g., detailed tissue models to characterise mAb disposition;
and

• reduced PBPK models, where the dimensionality of detailed PBPK models is
reduced focussing only on the essential physiological processes.

Various detailed whole-body PBPK models for mAb PK in mice and/or men were
developed [26, 64–70]. The models differ with respect to, e.g.,

• the definition of tissue distribution spaces,
• the parameterisation of the unspecific elimination involving FcRn and IgGendo,
• their extravasation models.

Within detailed PBPK models, tissues are subdivided into three sub-CMTs accounting
for vascular, interstitial and cellular tissue space [64], or two sub-CMTs (vascular
and interstitial tissue space) [65, 67] or the tissue model includes an additional
endosomal CMT [66]. In addition, as an example, PBPK models developed by
Ferl et al. [67] and Garg et al. [66] explicitly incorporate saturable binding to
FcRn occurring in the vascular endothelial endosome: The authors assumed that
endogenous IgG and therapeutic mAb compete for binding to FcRn in the endosome
of muscle and skin [67] or in the endosomal CMT of each tissue [66]. Chen,
Balthasar and co-workers [69–71] further subdivided the endosomal space using
transit compartments to account for pH-dependent FcRn binding. Note that unbound
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FcRn concentration was estimated (or based on unpublished FcRn-mRNA data [69])
and since it continues to be unknown, its physiological value remains questionable.
Due to a lack of experimental data of the endosome and since rates of endocytotic
uptake at a whole body level are difficult to measure experimentally, the reliability of
such detailed models on the endosomal compartment remains questionable. Several
detailed PBPK models [64, 66] include mAb extravasation across the capillary wall
using a one-pore model that is a simplified version of the two-pore formalism
published by Rippe and Haraldsson [72] (where large molecules extravasate through
large pores being unable to pass the small pores). On the other hand, extravasation
was described by both, convective and diffusive transport according to the two-pore
formalism, e.g., by Baxter et al. [65].

The existing detailed PBPK models are often over-parameterised (which leads to
identifiability issues) or require large amounts of in vivo tissue distribution data to fit
unknown parameters; in addition, there is lack of a consensus on the representation of
physiology and its adequate parameterisation. Jones et al. explicitly stated that over-
parameterisation of detailed PBPK models poses a challenge for their application,
e.g., for dose projections within the pharmaceutical industry [4].

To overcome this problem, Cao et al. [73, 74] took a reductionist approach and
developed a minimal PBPK model that offers system-average rather than tissue-
specific PK parameters in fitting of only plasma concentration versus time data.
The model includes four compartments, i.e., plasma, lymph compartment and two
interstitial spaces accounting for two groups of tissues classified as leaky and tight
with non-specific clearance from plasma and/or from interstitial compartments. As
part of their efforts, they analysed the relevance of explicitly taking into account
the endothelial endosomal space and concluded that it has negligible relevance as a
distributional space.

Fronton et al. [7] developed a simplified whole-body PBPK model that does allow
to also predict tissue-specific mAb concentrations. This model is parameterised by
a small number of parameters to allow stable parameter estimation. The model is
characterised by a single ordinary differential equation for each tissue. Exchange
between plasma and tissue is described in terms of the organ lymph flow, a tissue
partition coefficient and vascular reflection coefficients accounting for the fact that
only a fraction of plasma can move into the tissue space. It includes an extravasation
rate-limited tissue distribution model. Each tissue is potentially involved in elimina-
tion with intrinsic tissue clearance in addition to a plasma clearance. Importantly,
in comparison to previous described PBPK models, it only implicitly considers the
endosomal space and implicitly accounts for endogenous IgG and FcRn salvage
mechanism. The interstitial and endosomal spaces of each tissue are lumped due to
the large uncertainty of parameters related to the endosomal space.
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Through the development of those second-generation (reduced) PBPK models [7,
73], the applicability to study mAb PK was significantly advanced: While detailed
PBPK models require large amounts of in vivo data for fitting [4], this is not the case
for second generation mAb PBPK models that still enable to consider physiological
and mechanistic processes of mAb disposition.

There is a strong motivation to develop more predictive models (versus data fitting)
so that the typical mAb PK behaviour can be simulated [19]. A critical advance in the
development of PBPK modelling for sMDs was the development of in silico methods
to a priori predict tissue-to-plasma partition coefficients. With the development of
ABCs for mAbs [6]—the analog to tissue-to-plasma partition coefficient of sMDs—, a
similar advancement can be expected for mAbs (as in Chapter 3). Fronton et al. [7]
derived a link between tissue partition coefficients and ABCs within their simplified
PBPK model for mAb PK in mice. So far, however, ABCs have not been used in PBPK
models to predict mAb PK across diverse species and strains.

2.5.3 Modelling target-driven mAb PK

TMDD models have been designed for drugs that bind with high affinity and to a
significant extent (relative to dose) to a pharmacologic target, and as a consequence
may exhibit non-linear PK behaviour [8]. Although not specifically designed for anti-
bodies, TMDD models (and various approximations) are now widely used to study
the PK of mAbs. In this section we only briefly state different modelling approaches
capable of analysing, simulating and inferring target-driven PK of mAbs:

• the classical (whole-body) TMDD modelling approach,
• including its various approximations;
• and the cell-level TMDD modelling approach.

For a comprehensive review see [27]. Furthermore, we highlight the advantages of
the cell-level TMDD model [13] that is applied and described in more detail within
Chapter 5 of this thesis.

A generic TMDD model has been proposed in [8]; it is based on a classical two-CMT
model extended by two target CMTs accounting for free and drug-bound target.
Since the two target CMTs represent the concentration of the target in the entire
body, we use the term ‘whole-body TMDD model’. The generic whole-body TMDD
model assumes the target to be present in the central compartment. For a given
targeted system, the target might alternatively be assumed to be in the peripheral
compartment, or in both. It is worth noticing that the generic whole-body TMDD
model does not include any endogenous ligands that potentially competitively bind
to the target (see also cell-level TMDD model).
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It was noticed that identifiability of classical (whole-body) TMDD model parameters
from PK data alone is difficult, in particular when dealing with relatively sparse
clinical data, and/or if only either the free or the total drug concentration is available
[10], see also [75]. One reason for this identifiability problems is the large time-scale
difference between the cellular level (drug-target interaction, often on a minutes or
hours time scale) and the PK level (characteristic half-lives of days or weeks).

Motivated by the problem of parameter identifiability for the full TMDD model,
approximations of the full TMDD model that are characterised by less variables and
parameters (see, e.g., [10, 12, 75]) are widely applied. Typically, those reduced
TMDD models are used in a data-driven modelling context.

An alternative approach to resolve the problem of parameter identifiability for the
full TMDD model, is to integrate prior information on the targeted system into
the modelling process. This results into the so-called cell-level TMDD model that
is particularly suited to translate data from in vitro to in vivo. In contrast to the
whole-body TMDD model, the cell-level model is parameterised using rate constants
that have been experimentally determined and validated in vitro, it allows to study
the impact of the internalised receptor, and it allows to include the competition
between natural ligand and mAb for binding to the receptor. This will be exploited
in detail in Chapter 5.
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3Consensus PBPK model for
mAbs

Unlike for sMDs, there is no consensus on how to model mAb disposition in a
PBPK context. Consequently, the potential of PBPK modelling for mAbs has not
yet been fully exploited [3]. The existing models are often over-parameterised
(which potentially leads to identifiability issues), require large amounts of in vivo
tissue distribution data to fit unknown parameters, or only allow to predict plasma
PK. “More effort is needed to use PBPK models to address critical issues in antibody
development, such as subcompartment concentrations, tissue target engagement, first-
in-human dose, pH-dependent FcRn or target binding, immunogenicity, and disease
influence on antibody disposition.” [5, p. 171]

A critical advance in the development of PBPK modelling for sMDs was the develop-
ment of in silico methods to a priori predict tissue-to-plasma partition coefficients.
The absence of comparable methods for mAbs for the prediction of mAb tissue
distribution has limited their application in the pharmaceutical industry [4]. Shah
and Betts [6] observed a linear relationship between the plasma and various tissue
concentrations of non-binding mAbs, which is generally constant irrespective of
the absolute mAb concentration and animal species. The relationship was mathe-
matically characterised using the antibody biodistribution coefficient. Those tissue-
specific and species-independent ABCs can be used in PBPK models to provide a
consensus on mAb disposition and thus have the potential to significantly increase the
acceptance and therefore the application of mAb PBPK models. So far, however, this
promising concept was not used in PBPK models to predict mAb PK across diverse
species and strains.

We developed and validated a consensus PBPK model taking into account recent
insights into mAb distribution (ABC values, interstitial IgG pharmacokinetics [21]) to
predict common target-independent tissue PK across several pre-clinical species and
humans based on plasma data only. In contrast to overparameterised more detailed
mAb PBPK models, the novel consensus PBPK model is adapted to the complexity of
the experimental data and based on a refinement of an existing second-generation
mAb PBPK model—the simplified PBPK model [7].

This chapter is organised as follows: In the first section, we highlight the differences
between the two models—the simplified and the consensus PBPK model. In sec-
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tion 3.2, we describe the equations and the parameterisation of the novel consensus
PBPK model in detail. The results are presented in section 3.3: In sections 3.3.1+
3.3.2, we show that the developed model can be readily used in non-cross-reactive
species and humans (with mAbs being dosed to saturate the targeted system) to
predict tissue PK, requiring only plasma data to fit a single unknown parameter,
the unspecific plasma CL. Lastly (in section 3.3.3), for humans, we determined a
median unspecific CL suitable to a-priori predict mAb PK in healthy volunteers, and
importantly to estimate the extent of target-mediated CL processes.

3.1 From the simplified to the consensus PBPK model

Fronton et al. [7] developed a simplified PBPK model that is (in contrast to various
detailed mAb PBPK models) adapted to the complexity of the experimental data and
still enables to consider physiological and mechanistic processes of mAb disposition.
In comparison to the minimal PBPK model [73], it allows to also predict tissue-
specific mAb concentrations. The application of the simplified PBPK model, however,
is limited: mAb tissue PK data are necessary to estimate tissue partition coefficients
Ktis, and the PBPK model is illustrated for mice only. Fronton et al. [7] have derived
a link between tissue partition coefficients and ABCs for mAb PK in mice. So far,
however, ABCs have not been used in PBPK models to predict mAb PK across diverse
species and strains.

The novel consensus PBPK model is obtained using the simplified PBPK model [7] by
validating the concept of ABCs for prediction of mAb tissue PK for rats as well as
for humans. In contrast to [7], we parameterised the consensus PBPK model with
parameters related to the interstitial space, e.g., interstitial volumes Vint, tissue parti-
tion coefficients related to the interstitial space Kint, and interstitial concentrations
Cint, since they are pharmacologically more relevant than tissue concentrations Ctis.
Furthermore, the model parameters used in the simplified PBPK model for prediction
of mAb plasma and tissue PK in mice, were updated. In the consensus PBPK model,
we compute tissue volumes, including interstitial and cellular space, from fractional
organ weights reported in Brown et al. [57]. Cardiac output and regional blood
flows are also taken from Brown et al. [57], where measurements in anaesthesised
animals were excluded. In the simplified PBPK model [7], the lymph flows used
were derived from the cardiac output stated in Baxter et al. [65]. Comparison to
physiological values reviewed in Brown et al. [57] revealed that Baxter et al. used a
value typical for anaesthesised mice. In the consensus PBPK model, we used a cardiac
output typical for non-anaesthesised mice [57], which is roughly twice as large as
the value used in [7, 65]. This also increased the peripheral lymph flow rates by the
same factor. As a consequence, we updated the vascular reflection coefficients of the
simplified PBPK model (for details, see section 3.2). Furthermore, the consensus PBPK
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model is parameterised using measured residual plasma fractions respla and intersti-
tial volume fractions fint from a single recent source, where the same experimental
setting was used to determine both parameter values [21]. Previous modelling
approaches were mostly referring to fint and resblo [76], which is a compilation of
experimental measurements of different original sources. In addition, the consensus
PBPK model includes the recent findings based on the measurements from Eigen-
mann et al. [21] that interstitial antibody concentrations are highly tissue-specific
and depend on their underlying vasculature. Consequently, in the consensus PBPK
model, tissues were modelled based on different capillary structure (i.e., continuous,
discontinuous or tight), which allows more realistic model-based predictions of the
PK in the interstitial space. Based on the new parameterisation using information
from Eigenmann et al. [21], ABCs and tissue concentrations were corrected for
residual plasma/blood (for details, see section 3.2.2).

The developed consensus PBPK model is readily parameterised by physiological
species-specific and mAb-related parameters. The latter include reflection coefficients
and ABC values. Importantly, in comparison to the simplified PBPK model, only an
unspecific clearance (in addition to mAb-specific target-related processes) needs to
be estimated, which requires only plasma data. The unspecific part of mAb PK is of
key relevance when target-mediated processes are saturated (which is often the case
for mAbs at steady state dosing).

3.2 Development of the consensus PBPK model
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Fig. 3.1.: Structure of the consensus PBPK model for mAb PK. Total plasma comprises total
arterial and venous plasma, including the vascular space associated with the
organs. Organs are interconnected via extravasation of mAbs from plasma and
the lymph flow (solid arrows). Organ compartments represent the interstitial
space of the corresponding organs. The mAb can potentially be cleared from the
plasma as well as any organ compartment (dashed arrows).
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The model comprises anatomical compartments of total plasma and the interstitial
spaces of lung, fat, bone, gut, heart, kidney, liver, muscle, skin and spleen. The
tissue topology and model structure is shown in Figure 3.1. As in the simplified PBPK
model [7], the plasma compartment denotes the arterial and venous as well as the
vascular space associated with each organ. In contrast to [7], the consensus PBPK
model is parameterised in terms of interstitial volumes Vint (in [mL] or [L]) and
interstitial concentrations Cint (for comparison of Cint to experimental tissue data
Cexp, see section 3.2.2).

3.2.1 Equations of the consensus PBPK model

The rates of change of the concentrations in plasma Cpla and in the interstitial space
Cint (both in [nM]) of the different organs were described by the following system
of differential equations:

Vint
d
dtCint = Lorg ·

(
(1− σvas)Cpla −

Cint
Kint

)
(3.1)

−CLint · Cint + TMDDint

Vpla
d
dtCpla =

∑
org

Lorg ·
(Cint
Kint

− (1− σvas) · Cpla
)

(3.2)

−CLpla · Cpla + kin(t) + TMDDpla

with infusion rate kin(t) [nmol/min]. The first equation applies to each organ.

As in the simplified PBPK model [7], for each organ, an extravasation rate-limited
distribution model was assumed. This includes interstitial uptake by convection
through large pores or discontinuous epithelia and transcytosis, and backflow into
the plasma via the lymph flow or via transcytosis, see Figure 1 (B). The extravasation
rate-limited distribution model is parameterised in terms of an organ lymph flow Lorg

(in [mL/min] or [L/min]) and an organ-specific vascular reflection coefficient σvas,
which accounts for the fact that only a fraction (1- σvas) of the plasma concentration
is accessible for extravasation (one-pore model). The apparent vascular reflection
coefficient σvas is a mixed parameter, depending on drug properties, i.e., antibody
size, as well as species properties such as pore size and number of pores in the
vascular wall of the organ. The apparent vascular reflection coefficient is classified
based on the tissue properties, such as leakiness and tightness of the vascular wall
(for details see section 3.2.3). The outflowing concentration is parameterised by
an organ-specific interstitial partition coefficient Kint, which was derived from the
antibody biodistribution coefficient ABC (for details see next section). Unspecific
plasma clearance CLpla and intrinsic tissue clearance CLint subsume several pro-
cesses, such as Fcγ receptor-mediated clearance and unspecific endocytosis (see also
[7]). In the absence of specific knowledge, the different elimination processes may
be described by a single unspecific plasma clearance term.
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As monoclonal antibodies typically bind with high affinity to specific antigens, much
research focussed on target-mediated clearance [8–13]. In the present chapter, we
focus on the target-independent part of mAb PK that is of key relevance when target-
mediated processes are saturated (which is often the case for mAbs). If relevant,
however, TMDD can be integrated into the consensus PBPK model: In this case, we
considered the TMDD term to be in the plasma compartment only:

TMDDpla = −Vmax · Cpla
Km + Cpla

(3.3)

with receptor system capacity Vmax in [nmol/min] and Michaelis-Menten constant
Km in [nM].

3.2.2 Correction for residual blood and antibody biodistribution
coefficients

The amount of mAb in residual blood of tissue samples can have a marked impact
on reported tissue concentrations [7]. In Shah and Betts [6], a variety of different
studies were used to estimate ABC values so that these are expected to be contam-
inated by residual blood [6, p.203]. In the following, we denote by ABCexp the
residual blood-contaminated tissue-to-plasma partition coefficients, by ABCtis the
unperturbed tissue-to-plasma partition coefficients, and by ABCint the unperturbed
interstitial-to-plasma partition coefficients.

Similarly to the simplified PBPK model, the consensus PBPK model is parameterised
in such a way that predictions are independent of residual blood, instead correction
for residual blood was a post-simulation step. Based on the derivations by Fronton et
al., we corrected the ABC values and predicted residual-blood contaminated tissue
concentrationsCexp in the consensus PBPK model. Based on the new parameterisation
using measured residual plasma fractions respla and interstitial volume fractions fint

from Eigenmann et al. [21], fint was utilised to derive ABCint from ABCtis, and
Kint from ABCint. In addition, we used the values for respla to update ABCtis and
Cexp.

We defined ABCexp by:

ABCexp = Cexp
Cpla

,

as determined by Shah and Betts [6]. We corrected ABCexp for residual blood to
determine ABCtis (for detailed derivation see [7, Eq. (23)]):

ABCtis = Ctis
Cpla

= ABCexp − (1− hct) · resblo
1− resblo

, (3.4)
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where hct refers to haematocrit. resblo denotes the ratio of residual blood volume
Vres,blo to tissue volume Vexp including residual blood, i.e.,

resblo = Vres,blo
Vexp

(3.5)

with Vexp = Vtis + Vres,blo. Finally, to leverage experimental data in mice, we linked
resblo to the ratio of residual plasma volume Vres,pla to Vexp using hct:

respla = (1− hct) · resblo. (3.6)

In [6], tissue-specific ABCexp values were estimated from mice data and shown to
be species-independent. In line with these findings, we determined ABCtis values
based on respla measured in mice [21] and Eq. (3.4). Corrected ABCtis, derived
based on mice data and physiology, are again assumed to be constant across species,
analogous to [6]. See Tables 3.2, 3.3, 3.4 and 3.5 for all parameter values.

Correction for residual blood is a post-simulation step. The residual blood-conta-
minated tissue concentration Cexp is given by

Cexp = Vtis · Ctis + Vres,pla · Cpla
Vexp

. (3.7)

For detailed derivation see [7, Eq. (21)]. Based on the simulations of Cpla and Ctis

(calculated based on predicted Cint and interstitial volume fractions fint see section
below) by the consensus PBPK model, we can therefore directly predict Cexp from
the above equation. For rats and humans, we assumed respla to be identical to the
measured values in mice due to lack of more refined data.

Determining Kint and ABCint from ABCtis

Interstitial volume fractions fint = Vint/Vtis as experimentally determined in mice
(from measured residual plasma fractions and extracellular tissue volume fractions
[21]) were used to derive ABCint from ABCtis via the following relationship:

ABCint = Cint
Cpla

= Vtis
Vint
·ABCtis. (3.8)

For tissues with discontinuous capillaries, ISF might be assumed to be in fast equilib-
rium with plasma (for details, see [21]). Consequently, experimentally determined
residual plasma fractions respla need to be interpreted with care, since they might
include ISF contributions due to plasma tracer leaking into interstitial space [21].
We therefore set ABCint = 1 for liver and spleen (both having discontinuous cap-
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illaries), assuming that plasma and ISF mAb concentrations are comparable. This
then allowed us to estimate the interstitial volume fractions fint for liver and spleen,
given ABCtis, and ABCint = 1. fint for liver and spleen were estimated based on
mouse, rat and human data (where tissue data of liver and spleen were available,
i.e., for rodents: [77], [78], [79], [80], [65] as well as for human female cancer
patients: [81]). For estimation of fint only liver and spleen tissue data were used.

For tissues with tight capillaries, e.g., brain and kidney, extracellular tissue volume
fractions cannot be determined as tracers might not pass (brain) or are excreted
(kidney) [21]. For kidney, in a first attempt, only a negligible amount of mAb was
assumed to distribute into the interstitial space. However, following this assumption,
resulting predicted Cexp for kidney could not describe the experimental kidney data.
Thus, we assumed that some mAb can distribute into interstitial kidney space. Unlike
for liver and spleen, we do not have any information on ABCint for the kidney.
Therefore, fint for kidney was taken from [76, Table B-I]. Since brain is not part of
the consensus PBPK model, no action needed to be taken.

As has been observed in [6], for a given tissue the ABCexp value is approximately
constant across different pre-clinical species and human. This observation greatly fa-
cilitates extrapolation between species. To conclude, tissue partition coefficients Kint

can be determined from the readily available antibody biodistribution coefficients
ABCexp [6] that were corrected for residual blood to determine the unperturbed
ABCtis: To derive Kint from ABCint, we used Eq. (3.1) to determine the steady state
relationship

(1− σvas)Cpla = Cint
Kint

, (3.9)

resulting in

Kint = ABCint
1− σvas

. (3.10)

See Tables 3.2, 3.3, 3.4 and 3.5 for resulting parameter values.

3.2.3 Model parameterisation

A description of the parameters of the consensus PBPK model is given in Table 3.1.
Anatomical and physiological parameters for male immunocompetent mice (25 g
body weight (BW), 9 weeks of age) are summarised in Table 3.2. Physiological and
anatomical values for male immunocompetent rats (250 g, 10 weeks of age) are
summarised in Table 3.3. Physiological and anatomical values for humans were
mostly taken from [58]. The parameter values for a 20-50 years old male with 73 kg
reference BW and a 20-50 years old female with 60 kg reference BW are summarised
in Table 3.4 and Table 3.5.
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Tab. 3.1.: Interpretation, units and references of the parameters of the consensus PBPK
model.

Parameter Unit References Description
Vtis mL [57] for rodents and [58] for

human
tissue volume (excluding vas-
cular space)

Lorg mL/min [64, 66] organ-specific lymph flow
σvas - adapted from [7] based on pa-

rameterisation [57]
organ-specific vascular reflec-
tion coefficient

ABCint - determined from ABCtis via
Eq. (3.8); ABCtis derived
from ABCexp [6] that were
corrected for residual blood
(see Eq. (3.4)); for liver and
spleen ABCint set to 1

antibody biodistribution coef-
ficient

Kint - computed from ABCint and
σvas

organ-specific partition coeffi-
cient

CLpla mL/min estimated linear plasma clearance
Vmax nmol/min estimated receptor system capacity
Km nM estimated Michaelis-Menten constant

For rodents, tissue volumes, residual plasma volumes, blood volume and blood flow
were scaled linearly with reported BW of the study. For humans, tissue volumes,
residual plasma volumes, blood volume and blood flow were scaled with lean
body weight because observed inter-individual variability (IIV) in organ weight was
best described by lean body weight (for details, see [60]). In addition, when no
demographic information (i.e., gender and/or BW) was available, we assumed a
reference BW of 25 g for mice, 250 g for rats as well as 73 kg for 20-50 years old
male humans and 60 kg for 20-50 years old female humans.

The reflection coefficients σvas are based on published values by Fronton et al. [7],
in which three groups of organs with different reflection coefficients were identified.
In the consensus PBPK model, we used a cardiac output typical for non-anaesthesised
mice, which is roughly twice as large as the value used in [7] based on [65]. This
also increased the peripheral lymph flow rates by the same factor. As a consequence,
we updated the reflection coefficients such that the fraction not reflected (1-σvas)
was halved, resulting in the same extravasation rate Lorg · (1− σvas). The updated
reflection coefficients are: σvas = 0.95 for gut, liver and spleen, σvas = 0.975 for
heart, kidney, lung and skin, and σvas = 0.99 for bone, adipose tissue and muscle.
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Tab. 3.2.: Mouse: Reference parameters

Vtis
a Vint

b Vres,pla
c Qpla

d Lorg
f σvas ABCint

h Kint
i

Units mL mL mL mL/min mL/min - - -
Lung 0.183 0.056 0.025 10.374 0.415 0.975 0.150 5.985
Adipose 1.911 0.180 0.012 0.726 0.029 0.990 0.446 44.602
Bone 2.064 0.286 0.115 1.141 0.046 0.990 0.170 16.998
Gut 1.055g 0.189 0.023 1.463 0.029 0.950 0.174 3.472
Heart 0.125 0.021 0.0107 0.685 0.027 0.975 0.184 7.349
Kidney 0.418 0.093 0.045 0.944 0.038 0.975 0.240 9.605
Liver 1.373 0.0866 0.129 1.681 0.034 0.950 1 20
Muscle 9.600 1.252 0.086 1.649 0.066 0.990 0.24 24.001
Skin 4.133 1.816 0.071 0.602 0.024 0.975 0.329 13.151
Spleen 0.0875 0.0081 0.0057 0.104 0.002 0.950 1 20
Plasma 1.080e - - 10.374 - - - -
a fractional organ weights from [57], scaled to Vtis with tissue density (density assumed

identical to human density data see Table 3.4) and mouse body weight (25 g)
b computed from interstitial fractions fint from [21] except for kidney (taken from [76])

and liver and spleen (estimated: fint = 0.0634 (liv); fint = 0.0923 (spl))
c computed from residual plasma fractions respla from [21]
d Qpla = Qblo · (1 − hct) with hct = 0.40 [82]; cardiac output from [57, Page 440] &

regional blood flows from [57] (Table 24) except for adi, bon, gut and spl (taken from
[83])

e Vpla = (1−hct) ·Vblo with Vblo from [84], total plasma volume including vascular space
of organs

f assumed to be 2 % and 4 % of plasma flow Qpla for visceral and non-visceral organs,
respectively [64, 66]

g gut = sum of stomach, small and large intestine
h ABCint = Cint/Cpla derived from the unperturbed antibody biodistribution coefficients

ABCtis via Eq. (3.4) and interstitial volume fractions fint
i organ-specific partition coefficients Kint determined from ABCint values based on

Eq. (3.10)
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Tab. 3.3.: Rat: Reference parameters

Vtis
a Vint

b Vres,pla
c Qpla

d Lorg
f σvas

h ABCint
i Kint

j

Units mL mL mL mL/min mL/min - - -
Lung 1.250 0.3845 0.1712 47.359 1.894 0.975 0.150 5.985
Adipose 28.930 2.7177 0.1855 3.315 0.133 0.990 0.446 44.602
Bone 14.039 1.9469 0.7847 5.778 0.231 0.990 0.170 16.998
Gut 6.750f 1.2103 0.1485 6.204 0.124 0.950 0.174 3.472
Heart 0.825 0.1375 0.0709 2.321 0.093 0.975 0.184 7.349
Kidney 1.825 0.4078 0.1971 6.678 0.267 0.975 0.240 9.605
Liver 9.150 0.5775 0.8601 8.240 0.165 0.950 1 20
Muscle 101.075 13.1792 0.9097 13.166 0.527 0.990 0.24 24.001
Skin 47.575 20.9020 0.8088 2.747 0.110 0.975 0.329 13.151
Spleen 0.500 0.0461 0.0325 0.947 0.019 0.950 1 20
Plasma 9.120d - - 47.359 - - - -
a fractional organ weights from [57], scaled to Vtis with tissue density (density assumed

identical to human density data see Table 3.4) and rat body weight (250 g)
b assumed to be identical to mouse values (see Table 3.2 due to lack of data.)
c assumed to be identical to mouse values (see Table 3.2 due to lack of data.)
d Qpla = Qblo · (1−hct)with hct = 0.43 [82]; cardiac output from [57, Page 440] & regional

blood flows from [57] (Table 25) except for gut and spleen from [59]
e Vpla = (1− hct) · Vblo with Vblo from [84], total plasma volume including vascular space

of organs
f assumed to be 2 % and 4 % of plasma flow, Qpla, for visceral and non-visceral organs,

respectively [64, 66]
g gut = sum of stomach, small and large intestine
h assumed to be identical to mouse values (see Table 3.2)
i identical to mouse values due to [6]
j assumed to be identical to mouse values
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Tab. 3.4.: Human, male, 20-50 years: Reference parameters

Vtis
a Vint

b Vres,pla
c Qpla

d Lorg
f σvas

i ABCint
j Kint

k

Units L L L L/min L/min - - -
Lung 0.500 0.1538 0.0685 3.679 0.147 0.975 0.150 5.985
Adipose 15.830 1.4870 0.1015 0.184 0.007 0.990 0.446 44.602
Bone 8.077g 1.1202 0.4515 0.184 0.007 0.990 0.170 16.998
Gut 1.020f 0.1829 0.0224 0.515 0.010 0.950 0.174 3.472
Heart 0.330 0.0550 0.0284 0.147 0.006 0.975 0.184 7.349
Kidney 0.310 0.0693 0.0335 0.699 0.028 0.975 0.240 9.605
Liver 1.800 0.1136 0.1692 0.938 0.019 0.950 1 20
Muscle 29.000 3.7813 0.2610 0.626 0.025 0.990 0.24 24.001
Skin 3.300 1.4498 0.0561 0.184 0.007 0.975 0.329 13.151
Spleen 0.150 0.0138 0.0097 0.110 0.002 0.950 1 20
Plasma 3.000d - - 3.680 - - - -
a Tissue volumes were calculated from organ weights [58, Table 2.8] and tissue

densities assuming a density of 1 kg/L for all organs except adipose [85, p.44] and
bone [58, Table 2.20]

b assumed to be identical to mouse values (see Table 3.2 due to lack of data.)
c assumed to be identical to mouse values (see Table 3.2 due to lack of data.)
d Qpla = Qblo · (1− hct) with hct from erythrocyte volume [58, Table 2.12] and total

blood weight; cardiac output was taken from [58, Table 2.39] and blood flow Qblo
was derived from blood flow rates as % of cardiac output [58, Table 2.40]

e Vpla = (1− hct) · Vblo with Vblo from blood organ weight [58] assuming a density
of 1 kg/L

f assumed to be 2 % and 4 % of plasma flow, Qpla, for visceral and non-visceral
organs, respectively [64, 66]

g gut = sum of small and large intestine
h bone including total bone and marrow
i assumed to be identical to mouse values (see Table 3.2)
j identical to mouse values due to [6]
k assumed to be identical to mouse values

Tab. 3.5.: Human, female, 20-50 years: Reference parameters (footnotes identical to Ta-
ble 3.4)

Vtis
a Vint

b Vres,pla
c Qpla

d Lorg
f σvas

i ABCint
j Kint

k

Units L L L L/min L/min - - -
Lung 0.420 0.1292 0.0575 3.631 0.145 0.975 0.150 5.985
Adipose 20.742 1.9485 0.1330 0.309 0.012 0.990 0.446 44.602
Bone 6.000g 0.78321 0.3354 0.182 0.007 0.990 0.170 16.998
Gut 0.960f 0.1721 0.0211 0.581 0.012 0.950 0.174 3.472
Heart 0.250 0.0417 0.0215 0.182 0.007 0.975 0.184 7.349
Kidney 0.275 0.0615 0.0297 0.617 0.025 0.975 0.240 9.605
Liver 1.400 0.0884 0.1316 0.980 0.012 0.950 1 20
Muscle 17.500 2.2818 0.1575 0.436 0.017 0.990 0.24 24.001
Skin 2.300 1.0105 0.0391 0.181 0.007 0.975 0.329 13.151
Spleen 0.130 0.012 0.0085 0.109 0.002 0.950 1 20
Plasma 2.400d - - 3.631 - - - -
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3.2.4 Variability and uncertainty in PBPK parameters

Considerable inter-individual variability (IIV) has been reported for mAb PK [86].
To account for IIV, we considered variability and uncertainty in physiological and
anatomical parameters:

For humans, reference values are reported for human blood volume as a function of
age and gender in [87]. Haematocrit values for humans are based on erythrocyte
volume from [58] with ‘typically red blood cells about 43 % (42-52 %) of total
blood volume in adult males and about 38 % (37-48 %) in adult females.’ Thus, the
following variations were taken into account: variation in blood volume (±20%) and
variation in haematocrit (±10 %). Coefficient of variation (CV) for cardiac output of
23.1 % for male adults and 23.7 % for female adults were derived from mean and
standard deviation stated in [87, Table 5]. To account for variations in estimated
plasma clearance, we considered an IIV in linear clearance across mAbs between
human patients with median CV of 30 % [36]. We included variation in Vmax based
on [36] reporting an IIV with a median CV of ±34 % across the studies.

For laboratory animals, the authors in [84] report a range of means for circulating
blood volume. Median and percentiles of haematocrit for mouse and rat are given in
[82]. The following variations were taken into account: variation in blood volume
(± 20%) and variation in haematocrit (± 10%). In [57, Table 24] mean and standard
deviation of cardiac output in non-anaesthesised mice with CV of approximately
20 % are reported. Taking into account that pre-clinical species are expected to have
a lower variation in plasma clearance, we assumed the plasma clearance to vary
within ±20 % for animals. To account for uncertainty and variability in organ lymph
flows we assumed the lymph flow to vary within ±30 % for rodents and humans.

Monte Carlo simulations were performed for 1000 virtual individuals per dose group.
Due to lack of detailed information, we assumed a uniform distribution for blood
volume, haematocrit and lymph flow in the above specified range. We sampled
from a lognormal distribution: (i) with a CV of 20 % for rodents and humans to
account for uncertainty in cardiac output, (ii) with a CV of 30 % to account for
uncertainty in Vmax and (iii) with a CV of 20 % for rodents and 30 % for humans
to account for uncertainty in linear plasma clearance. To account for uncertainty
in ABC values we sampled from a lognormal distribution with reported mean and
standard deviation as in [6]. Furthermore we assumed the fraction accessible for
extravasation f=(1 -σvas) to be log-normally distributed with 10 % CV for rodents
and humans due to variations, e.g., in endothelial pore size, abundance of pores
and structure of glycocalyx. To visualise the impact of parameter variability and
uncertainty, we determined the 5th and 95th percentiles of mAb concentrations in
plasma and tissues (see Figures 3.2, 3.3, 3.4, 3.5, 3.6 and 3.8).

30 Chapter 3 Consensus PBPK model for mAbs



3.3 Common target-independent PK of mAbs across
species

The consensus PBPK model is fully specified by readily available physiological and
drug-specific parameters for various species; only an unspecific clearance (in addi-
tion to mAb-specific target-related processes) needs to be estimated. Importantly,
estimation of the unspecific clearance requires only plasma data.

3.3.1 Estimating unspecific CL and predicting tissue concentrations
in non-cross-reactive animal species

The consensus PBPK model was used to study experimental plasma and tissue PK
data in non-cross-reactive species, which means that either the mAb does not bind
to the target in these species or the target is not expressed in these species. For
experimental data, see section A.1.1. If not explicitly stated in the investigated
publications that experimental mAb tissue PK data have already been corrected for
residual blood, we assumed that the experimental tissue data include residual blood
and used Eq. (3.7) for comparison of model output and data. For mice and rats, the
consensus PBPK model in Eqs. (3.1)-(3.2) (without any TMDD term) was fitted to
the rodent plasma PK data. For each mAb, only a linear plasma clearance per BW
CLplaBW was estimated as the investigated mAbs do not show any cross-reactivity
to a target:

CLplai = BWi
BWref

· CLplaBW. (3.11)

Importantly, only venous plasma data was used to estimate the linear plasma clear-
ance. Thus, for tissue data, the model simulations are predictions rather than a fit
(except for liver and spleen, as stated in section 3.2.2). Estimated CLplaBW values
are listed in Table 3.6.

For all tested mAbs in mice, as shown, e.g., in Figure 3.2, the plasma concentration-
time profiles agreed well with the experimental data. In addition, experimental
tissue data of different mouse strains, i.e., FcRn wild-type (WT) mice, nude and
severely compromised immunodeficient (SCID) mice were accurately predicted (see
Chapter 4 for details).

For all tested mAbs in rats, as shown, e.g, in Figure 3.3+Figure 3.4, the fitted plasma
concentration-time profiles and predicted tissue concentration-time profiles agreed
very well with the experimental data.

Fitted mAb plasma concentration-time profiles in mice and rats, not shown here, are
presented in Appendix section A.1.3.
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Tab. 3.6.: RODENTS: Linear plasma clearance per body weight of intact mAbs; estimated
CLplaBW and objective function values (Obj) based on the consensus PBPK model
(Eqs. (3.1)-(3.2) without any TMDD term), see text for details.

Antibody Subclass Ref CLplaBW Obj
[L/min/kg] -

mouse
Canakinumab IgG1 [88] 4.20e-6 2.05e-1
RSHZ19 IgG1 [89] 3.44e-6 3.13e-1
GNbAC1 mAb IgG4 [90] 4.23e-6 4.35e-1
anti-MUC1 mAb a IgG1 [91] 4.09e-6 2.45e-1
rat
Infliximab IgG1 [92] 5.43e-6 9.23e-1
Bevacizumab IgG1 [93] 6.16e-6 7.40e-2
RSHZ19 IgG1 [94] 5.10e-6 1.49e0
Rituximab IgG1 [95] 4.24e-6 3.61e0
CNTO5825 mAb IgG1 [96] 5.56e-6 4.04e0
mouse IgG1 b IgG1 [97] 7.05e-6 4.45e-1
rat IgG1 c IgG1 [97] 9.19e-6 2.47e-1
anti-IL-13 mAb IgG1 [77] 4.17e-6 4.19e-2
rMAb425 d IgG1 [78] 5.88e-6 8.98e-2
a huC242
b mouse digoxin-specific IgG1
c directed against mouse IgG2b and polyclonal human IgG1
d reshaped by combining CDRs of mMAb425 with human IgG1

To visualise the impact of residual blood on experimental tissue data, we predicted
tissue concentrations with and without residual blood contamination (see Figure 3.3
and Figure 3.4). For the tissues skin, muscle and fat, we observed only little pertur-
bations. For heart, kidney, liver, lung and spleen, however, contributions of residual
blood were more pronounced. The consensus PBPK model captures the overall trend
of the concentration-time profiles (including residual blood contribution) very well
except for liver and spleen. The model predicts larger concentrations including
residual blood for liver and spleen compared to experimental data. However, in
human cancer patients (see previous section, Figure 3.6), the concentration-time
profiles are well predicted for liver. Overprediction for liver and spleen in rat might
be due to additional processes not accounted for in the model or due to errors in
handling/reporting experimental data. In addition, there is a difficulty in analysing
experimental data from diverse laboratories/experimental studies with a given resid-
ual plasma fraction from a different experimental study. Measured residual plasma
fractions are highly influenced by harvesting and handling of tissues. In particular,
for tissues with discontinuous capillaries as liver and spleen, measured residual
plasma fractions might include tissue extracellular space and need to be interpreted
with care.
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Fig. 3.2.: Predictions of mAb plasma concentration-time profiles for mice. Simulations
are based on individually fitted plasma clearance and are compared to mean
experimental data (filled diamonds) of canakinumab [88] and RSHZ19 [89] in
mice. Solid lines represent the reference predictions and dashed lines the 5th and
95th percentiles.

Chapter 3 Consensus PBPK model for mAbs 33



m
Ab

co
nc

en
tr

at
io

n
[n

M
]

plasma

0 10 20 30 40
10

1

10
2

heart

10
−1

10
0

10
1

10
2

lung

liver

10
−1

10
0

10
1

10
2

spleen

kidney

10
−1

10
0

10
1

10
2

muscle

skin

0 10 20 30 40
10

−1

10
0

10
1

10
2

fat

0 10 20 30 40

time [days]

Fig. 3.3.: Impact of residual blood contamination on anti-IL-13 mAb tissue predictions in
rats. Simulations of concentrations with residual blood are based on individually
fitted plasma clearance and are compared to mean experimental data (filled
diamonds) of anti-IL-13 mAb in rat [77]. Solid lines represent the reference
predictions and dashed coloured lines the 5th and 95th percentiles. Grey lines
represent the concentration without residual blood.
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Fig. 3.4.: Impact of residual blood contamination on rMAb 425 tissue predictions in rats.
Simulations of concentrations with residual blood are based on individually
fitted plasma clearance and are compared to mean experimental data (filled
diamonds) of rMAb 425 in rat [78]. Solid lines represent the reference predictions
and dashed coloured lines the 5th and 95th percentiles. Grey lines represent the
concentration without residual blood.
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3.3.2 Estimating unspecific CL and predicting tissue concentrations
in humans

The consensus PBPK model in Eqs. (3.1)-(3.2) with parallel linear and non-linear
clearance was used to study plasma (and tissue) PK of different mAbs in human
healthy volunteers and patients (for experimental data, see section A.1.1). If not
explicitly stated in the investigated publications that experimental mAb tissue PK data
have already been corrected for residual blood, we assumed that the experimental
tissue data include residual blood and used Eq. (3.7) for comparison of model
output and data. For humans, in all but one case (bevacizumab), the consensus
PBPK model in Eqs. (3.1)-(3.2) without a TMDD term could describe the data
(across the whole dose range) well. In these cases, only a linear clearance per body
weight (see Eq. (3.11)) was estimated based on the experimental data. Estimated
CLplaBW values are listed in Table 3.7. For bevacizumab, the consensus PBPK model
in Eqs. (3.1)-(3.2) with TMDDpla could be used to estimate linear CLpla, Vmax and
Km. However, we used a different approach, where we only estimated Vmax and Km,
while using some median linear clearance (for details see section 3.3.3). Importantly,
for estimation of clearance-related parameters, i.e., linear CLpla, Vmax and Km, only
plasma data were used. Thus, for tissue data, the model simulations are predictions
rather than a fit (except for liver and spleen, as stated in section 3.2.2).

Following mg/kg dose regimen, human male and female pharmacokinetics were
practically identical. In all but one case (bevacizumab), also in the presence of target,
linear PK for mAbs was observed and the consensus PBPK model accurately captured
plasma PK profiles of diverse mAb PK data. Illustrative plasma concentration-time
profiles are shown in Figures 3.5 and in Appendix section A.1.4. Model predictions
in Figures 3.5 are based on estimated individual linear plasma clearance, except
for bevacizumab, where derived median linear plasma clearance was used and only
Vmax = 5.20e-5 nmol/min/kg BW and Km = 9.23 nM were estimated.

Due to ethical reasons, tissue PK data in humans are extremely scarce. Nevertheless,
kinetics and tissue distribution data of a radiolabeled chimeric intact mAb (MOv18)
were obtained from tissue biopsies in ovarian carcinoma patients [81] (for details
on mAb and target, see Table 3.7). The consensus PBPK model successfully predicted
human tissue PK in liver and skin, whereas for fat and muscle we noticed an
under-prediction for the first time points (see Figure 3.6). The under-prediction in
human patients may be related to inter-tissue variability (e.g., due to the difference
between mAb tissue concentrations taken from biopsies and taken from whole tissue
homogenates, which is often the case for rodent tissue data) or inter-individual
variability.
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Tab. 3.7.: HUMAN: Linear total plasma clearance per body weight of intact mAbs; estimated
CLplaBW and objective function values (Obj) based on the consensus PBPK model
(Eqs. (3.1)-(3.2) without any TMDD term), see text for details.

Antibody Subclass Target Ref CLplaBW Obj
[L/min/kg] -

patients
Adalimumab IgG1 TNFα [98] 2.46e-6 6.37e0
Infliximab IgG1 TNFα [99] 2.70e-6 5.75e1
Gevokizumab IgG2 IL-1β [100] 1.64e-06 3.15e0
R1507 mAb IgG1 IGF-1R [101] 5.40e-6 2.00e1
Urtoxazumab IgG1 E. coli SLT-2 [102] 1.40e-6 8.82e-1
Siltuximab IgG1 IL-6 [103] 2.37e-6 4.24e0
Sirukumab IgG1 IL-6 [104] 2.66e-6 8.20e0
Tefibazumab IgG1 ClfA [105] 2.22e-6 1.83e1
Pertuzumab IgG1 HER2 [106] 4.32e-6 2.72e0
CAT354 mAb IgG4 IL-3 [107] 1.78e-6 1.078e1
anti-IL-12 mAb IgG1 IL-12 p40 subunit [108] 1.37e-6 7.10e0
mAb MOv18 IgG1 FBP a [81] 6.89e-6 1.32e-1
Mepolizumab IgG1 IL-5 [109] 2.00e-06 2.53e0
AGS-1C4D4 IgG1 PSCA [110] 1.91e-6 8.88e-1
healthy volunteers
RSHZ19 IgG1 RSV [89] 1.90e-6 2.39e0
TB402 mAb IgG4 F VIII [111] 1.88e-6 2.20e0
MEDI528 IgG1 IL-9 [112] 1.39e-6 1.16e0
CNTO5825 mAb IgG1 IL-13 [113] 1.80e-6 1.68e1
anti-anthrax mAb IgG1 B. anthracis PA [114] 1.35e-6 1.58e1
GNbAC1 mAb IgG4 MSRV-Env [115] 1.76e-6 1.02e0
PAmAb IgG1 B. anthracis PA [116] 2.09e-06 2.66e0
a folate-binding protein
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Fig. 3.5.: Predictions of mAb plasma concentration-time profiles for humans based on in-
dividually fitted plasma clearance. Simulations are compared to experimental
data (filled diamonds, error bars) of different mAbs (see Table 3.7). Solid lines
represent the reference predictions and dashed lines the 5th and 95th percentiles.
The different colours refer to different mAb doses.
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3.3.3 A priori prediction of clinical data using a predefined linear
unspecific mAb CL

Estimated linear plasma clearances (from Table 3.7) were stratified for healthy man
and human patients suffering from different diseases, and median and CV % were
calculated (see Figure 3.7, top). For healthy volunteers, plasma clearance and its
variation (median CLpla = 1.08e-4 L/h/kg; CV = 15.75 %) is comparable to median
clearance of IgGendo (1.21e-4 L/h/kg [1.11e-4, 1.42e-4]) [36, 117]. Variation of
plasma clearance was estimated to be higher between human patients (median
CLpla = 1.38e-4 L/h/kg, CV = 58.13 %) and within the reported range for mAbs
[118].

To assess the predictive capability of the consensus PBPK model with median plasma
clearance (as in Figure 3.7, top), we plotted observed vs. predicted plasma concen-
trations (blue) for 21 different mAbs in human (see Figure 3.7, bottom, blue). For
reference, we also plotted observed vs. individually fitted plasma concentrations
(by fitting plasma clearance individually; see Figure 3.7, bottom, red). As can be
inferred from Figure 3.7, bottom, the derived median plasma clearance for healthy
volunteers and human patients can very well serve as a starting point for linear
total clearance to obtain good predictions for PK of mAbs in excess of target and to
generate expectations of target-related processes (see Figure 3.8).

For bevacizumab (see Figure 3.8), dose levels of 1-10 mg/kg are accurately predicted
using the derived median linear plasma clearance for patients, while for the lower
dose levels of 0.3 and 0.1 mg/kg, an increased clearance is observed. The difference
in prediction and observation can be used to study the impact of target-related
processes. Our observation is in agreement with [119], who observed linear PK of
bevacizumab across the dose range 1 to 20 mg/kg and faster clearance at doses of
0.1 and 0.3 mg/kg (for more details, see Discussion).

3.4 Discussion

The consensus PBPK model was successfully used to study the PK of different mAbs
in various strains of mice and rats as well as human patients and healthy volunteers.
The model is readily parameterised by physiological and anatomical species-specific
as well as mAb-related parameters. The latter include reflection coefficients and
ABC values. Only an unspecific clearance (in addition to mAb-specific target-related
processes) needs to be estimated. Importantly, estimation of the unspecific clearance
requires only plasma data.
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Fig. 3.7.: A) Median and range of human fitted linear plasma clearance stratified for patients
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on the consensus PBPK model with individually fitted and median plasma clearance.

Chapter 3 Consensus PBPK model for mAbs 41



pl
as

m
a

co
nc

en
tr

at
io

n
[n

M
]

adalimumab

0 5 10 15 20 25
10

0

10
1

10
2

10
3

mAbGNbAC1

0 10 20 30 40 50 60
10

0

10
1

10
2

10
3

tefibazumab

0 10 20 30 40 50
10

1

10
2

10
3

bevacizumab

0 20 40 60 80

10
0

10
1

10
2

10
3

time [days]

Fig. 3.8.: A priori predictions of mAb plasma concentration-time profiles for based on median
plasma clearance for healthy volunteers and patients. Simulations are com-
pared to experimental data (filled diamonds, error bars) of different mAbs (see
Table 3.7). Solid lines represent the reference predictions and dashed lines the
5th and 95th percentiles. For fitted curves rather than a priori predictions, see
Figure 3.5. The different colours refer to different mAb doses.

42 Chapter 3 Consensus PBPK model for mAbs



A main advantage in comparison to existing modelling approaches, such as the
minimal PBPK model [73, 74] or empirical PK models, is the ability to predict tissue
concentrations using known tissue-specific parameters that have been validated
against a large data set of diverse species and mAbs. When additionally using the
derived median plasma clearance per BW, the model can be used to a priori predict
the target-unrelated part of mAb PK. This is of relevance in non-cross-reactive species,
but also in humans, e.g., when clinical data and in silico predictions without a target
are compared to estimate the impact of target-related processes. Given pre-clinical or
clinical data, the consensus PBPK model can also be used to estimate the magnitude of
unspecific and target-related clearance processes. For the common situation of mAbs
being dosed to saturate the targeted system, only a single parameter (unspecific
clearance) needs to be estimated from clinical data. For lower doses, also TMDD
processes may be relevant and can be estimated in a convenient way.

It is known that disease status including co-medications or anti-drug antibodies
(ADAs) may affect the PK of mAbs. These factors might be reasons for the out-
liers in human patient prediction (see Figure 3.7 (A), outliers from top to down
are mAbMOV18, R1507, pertuzumab). Elevated inflammatory status, a syndrome
often associated with cancer, results in an increased protein turnover rate in pa-
tients with cancer compared to healthy individuals and impacts the catabolism of
immunoglobulins [25]. This may explain the estimated larger mAb clearance (in
comparison to median plasma clearance) for cancer patients receiving mAbMOV18,
R1507 and pertuzumab. In addition, the increased clearance for mAb R1507 may
also be due to the development of anti-drug antibodies, which were detected in
the serum from patients in the dose groups 1 mg/kg and 9 mg/kg [101]. Besides
disease and anti-drug antibodies, the target type and the analytical method used to
determine PK of mAbs, greatly impacts mAb clearance and PK. For bevacizumab,
we could only estimate a linear CL for high doses of 1-10 mg/kg. At lower doses of
0.1-0.3 mg/kg, however, linear clearance was not sufficient to describe the data. This
observation is in agreement with [119], which observed linear PK of bevacizumab
across the larger dose range 1-20 mg/kg and faster clearance for lower doses of
0.1-0.3 mg/kg doses. Our observed non-linearity in bevacizumab CL for lower dose
levels from data in [120] may also be related to the analytical method used to
determine mAb PK. In [120], free and partially bound mAb was detected based on
an ELISA assay. For dose level 0.1 mg/kg, the mAb concentration fell below limit of
detection and high target concentration in the analytical assay may have interfered
with the mAb concentration. This problem was also reported in [37], as for mAbs
binding to soluble targets, high circulating antigen levels may interfere with the
measurement of therapeutic mAbs by ELISA, in particular if free or partially bound
mAb forms are measured. Furthermore, the authors in [121] observed elevated free
bevacizumab levels in vitreal samples after prolonged frozen storage, which may be
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due to dissociation of mAb-target complex. Unfortunately, in [120], the stability of
bevacizumab after frozen storage was not reported.

We assumed an apparent clearance from the plasma compartment due to lack of
detailed knowledge on the extent of mAb tissue metabolism in rat and human.
In case of subcutaneous (s.c.) administration, the bioavailability would need to
be accounted for. As stated in [122], ‘s.c. bioavailability for currently marketed
products is in the range of 24% to 95% in human.’ It is also reported that the
injection site for s.c. administration can be seen as a local compartment, where
crystallisation processes can occur. Additional factors to catabolism are believed to
influence s.c. absorption, in particular (i) skin morphology, (ii) presence of an Fc
receptor at injection site, (iii) target interactions, (iv) formulation and (v) mode
of administration [122]. As soon as a more detailed quantitative understanding
becomes available, such factors can easily be integrated in the presented consensus
PBPK model.

For mAbs binding to soluble antigens, we assumed that mAb PK is not altered upon
binding to the soluble ligand, which is often the case for mAbs that are directed
against soluble ligands present at low endogenous concentrations [37]. Mostly,
soluble ligands, such as TNFα or VEGF, are present at small endogenous concen-
trations, and mAbs binding to those ligands often exhibit linear dose-proportional
PK, where PK remains unaltered at elevated target levels (e.g., adalimumab). The
small free soluble ligand ‘normally’ exhibits a faster clearance compared to the free
mAb, however, upon binding to the antibody, the ligand adopts the distribution and
clearance properties of the antibody leading to an increase in measurable target
concentrations. ‘Normal’ disposition processes of the ligand, such as diffusion, renal
filtration or receptor-mediated endocytosis, are prevented when binding to the mAb,
which leads to the formation of immune complexes. The antibody-ligand complexes
are primarily cleared through Fcγ receptor-mediated endocytosis by cells throughout
the body, a pathway, which is often non-specific and linear.

In summary, we believe that the presented PBPK model can serve as a consensus
approach and convenient starting point to study mAb disposition in human in detail,
including first-in-man studies and target-specific investigation, e.g., to assess the
impact of physiological factors, such as FcRn concentration and endogenous IgG on
unspecific mAb clearance (see Chapter 4) and tumour tissue on mAb PK in xenograft
mice and its extrapolation to human (see Chapter 5).
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4Impact of endogenous IgG on
unspecific mAb clearance

When studying mAb PK, protection from elimination by binding to FcRn is known
to be a major process influencing unspecific, i.e., target-independent mAb clear-
ance as well as the kinetics of endogenous IgG [14]. Following endocytosis, both,
endogenous IgG and therapeutic mAb compete for binding to the limited capacity
FcRn protection system. The neonatal Fc receptor is normally not saturated at
therapeutic mAb concentrations and the unspecific mAb clearance is generally low
and constant across therapeutic dose ranges [36]. The concentration of endogenous
IgG under immunodeficient conditions, however, is reduced, and this effect on the
FcRn protection mechanism and on unspecific mAb clearance is unknown, yet of
great pre-clinical and clinical importance.

Experimental data from immunodeficient xenograft mice are most widely used to
study mAb PK and examine therapeutic response to mAbs. An important charac-
teristic of these mouse models is their impaired immune system resulting in low
endogenous IgG concentrations. Hence, it is of great relevance to elucidate whether
the low endogenous IgG concentrations in these animal models should be consid-
ered in the interpretation of mAb PK data from immunodeficient mouse models.
Moreover, immunosuppressed cancer patients [15–17] and diseased patients (e.g.,
myotonic dystrophy [123]) have low concentration of endogenous IgG, while pa-
tients with liver cirrhosis have elevated concentrations of immunoglobulins, mainly
IgG [124].

The objective of this chapter was to analyse the influence of altered endogenous IgG
concentrations—as present in immunodeficient mice—competing with therapeutic
IgG (i.e., mAb and intravenous immunoglobulin (IVIG)) for FcRn binding and
salvage, on unspecific mAb clearance.

This chapter is organised as follows: First, we present different modelling approaches
to explicitly include the competition of endogenous and therapeutic IgG (i.e. mAb
and IVIG) for binding to FcRn in the consensus PBPK model. The known influence
of IVIG therapy leading to increased total IgG concentration in vivo can be used to
study the impact of altered IgG on unspecific mAb clearance. Therefore, the analysis
of mAb PK data of FcRn WT mice following IVIG therapy based on the consensus
PBPK model in section 4.3 is used to validate our model assumptions. Furthermore,
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to study the impact of antibody binding affinity towards FcRn on unspecific mAb
clearance, we examine whether different model scenarios can predict the influence
of IVIG therapy on mAb PK in section 4.4. Finally, the impact of altered IgG due
to lower endogenous IgG in immunodeficient mice on unspecific mAb clearance is
studied in section 4.5. It is also investigated under which conditions the limitations of
the different modelling approaches become apparent. In section 4.6, we summarise
the obtained results and give a general answer to the question ‘When to expect linear
unspecific clearance in immunodeficient mice?’.

4.1 Modelling of FcRn-IgG interaction in PBPK models

Published mAb PBPK modes are quite heterogeneous, e.g., regarding the importance
to explicitly account for endogenous IgG and with respect to the FcRn salvage
mechanism (whether to explicitly account for the IgG-FcRn interaction and whether
to use an equilibrium model or detailed binding kinetics, whether to account for
pH-dependent binding). For a brief overview of the differences between mAb PBPK
models, see Chapter 2. Still today, there is very limited quantitative knowledge
about the processes involved in fluid-phase endocytosis and endosomal sorting [44].
Furthermore, quantitative information about the FcRn concentration in the different
tissues is still lacking. As a consequence, parameter values related to the endosomal
compartment in existing detailed mAb PBPK models are always fitted to experimental
mAb tissue PK data and detailed PBPK models suffer from over-parameterisation.
In contrast to over-parameterised PBPK models, Fronton et al. [7] developed a
simplified mAb PBPK model that is adapted to the complexity of the experimental
data and does allow to also predict tissue-specific mAb concentrations in opposition
to the minimal PBPK model developed by Cao et al. [73]. We believe that through
the development of those second-generation PBPK models [7, 73], the applicability
to study mAb PK was significantly advanced.

The simplified PBPK model implicitly accounts for endogenous IgG and competition
of endogenous and therapeutic IgG for binding to FcRn. Under the assumption and
physiological condition that endogenous IgG concentrations are constant in time and
markedly higher than therapeutic mAb concentrations following clinically relevant
doses, unspecific elimination is only a function of endogenous IgG concentrations
and hence, unspecific mAb clearance is linear. This can generally be expected to be
the case in immunocompetent mouse models with the notable exception of IVIG
therapy. It might, however, not hold for immunodeficient mouse models.

The consensus PBPK model that is obtained from the simplified mAb PBPK model
[7] (for more details, see Chapter 3) allows to predict tissue mAb concentrations
on plasma data and ABCs only, and can serve as a starting point, e.g., to assess the
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impact of physiological factors, such as FcRn concentration and endogenous IgG on
unspecific mAb clearance.

4.2 Consensus PBPK model to study the impact of
altered endogenous IgG on unspecific mAb CL

To study the impact of altered endogenous IgG concentrations IgGendo on the unspe-
cific plasma clearance, we explicitly included the competition of endogenous and
therapeutic IgG IgGtherapeutic (i.e., mAb and IVIG) for binding to FcRn in the consen-
sus PBPK model. The experimental data of mice species are presented in Appendix
section A.2.1. To avoid impact of target-mediated clearance processes, we focussed
on mAbs without affinity to a target antigen in these mice. Required physiological
and drug-related parameter values are presented in detail in Table 3.2.

To model the binding of IgG to FcRn in the endosomes of vascular endothelial cells,
we considered the IgG plasma concentration as a surrogate for the corresponding
endosomal concentration. This assumption is supported by the large number of
empirical mAb PK compartment models that parameterise the linear clearance in
terms of the central (plasma) concentration (for relaxation of this assumption, see
Appendix section A.2.3). IgG not bound to FcRn in endosomes is degraded within
the endo-lysosomes and thus, changes in fraction unbound fuIgG of IgG can explain
changes in unspecific plasma clearance.

We parameterised the unspecific plasma clearance in terms of a ‘maximal’ unbound
unspecific clearance CLplau and fuIgG as follows:

CLpla = CLplau · fuIgG. (4.1)

To account for the competition, we defined the unbound fraction

fuIgG = IgGu
IgG (4.2)

as a function of the total IgG concentration

IgGtot = IgGendo + IgGtherapeutic. (4.3)
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The differential equations of the consensus PBPK model without TMDD term (sec-
tion 3.2.1), describing the rates of change of the concentrations in plasma Cpla and
in the interstitial space Cint (both in [nM]) of the different organs

Vint
d
dtCint = Lorg ·

(
(1− σvas)Cpla −

Cint
Kint

)
(4.4)

Vpla
d
dtCpla =

∑
org

Lorg ·
(Cint
Kint

− (1− σvas) · Cpla
)

−CLpla · Cpla + kin(t) (4.5)

applied to all therapeutic IgG species (e.g., mAb and IVIG); with infusion rate kin(t)
[nmol/min]. The first equation applies to each organ.

For endogenous IgG, the inflow rate kin is a zero-order rate describing the endoge-
nous IgG synthesis rate ksyn in mice. The endogenous IgG synthesis rate ksyn was
parameterised in terms of baseline endogenous plasma concentration IgGendo,baseline
as follows:

ksyn = (CLplau · fuIgG,baseline) · IgGendo,baseline, (4.6)

where fuIgG,baseline is the unbound fraction of IgGendo,baseline in the absence of
any therapeutic IgG. For WT mice, we used a baseline plasma concentration of
IgGendo,baseline=1.47e4 nM, which corresponds to 2.2e3µg/mL (scaling factor:
1e6/MW) reported in [125]. For nude mice, we used a baseline plasma concentra-
tion of IgGendo,baseline=3.3e2 nM, based on Bloemmen et al. [126], who reported a
serum endogenous IgG1 concentration in nude mice (6 weeks of age) of 5e-2 mg/mL
(scaling factor: 1e9/MW). For SCID mice, we used an IgGendo concentration in
plasma of 1e-1µg/mL [127] corresponding to a baseline endogenous plasma IgG
concentration IgGendo,baseline=6.6e-1 nM (scaling factor: 1e6/MW).

In the following three subsections, we present different models to determine the
unbound fraction fuIgG of IgG. These models differ in complexity and their un-
derlying assumptions regarding the equilibrium binding affinity KD = (koff/ kon)
towards FcRn. For relaxation of the assumption of equilibrium binding, see Appendix
section A.2.4.

4.2.1 Equilibrium binding model to determine unbound fraction of
IgG

The equilibrium binding model is briefly revisited here; for a detailed derivation
see, e.g., [7, Appendix]. The model is derived under the assumption that all IgG
species, i.e., mAb, IVIG and IgGendo have the same binding affinity towards FcRn
(for relaxation of this assumption, see section 4.2.2).
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The unbound fraction of IgG was given by

fuIgG = KD
KD + FcRnu

, (4.7)

where the unbound FcRn concentration FcRnu was defined as a function of total
FcRn FcRntot, total IgG IgGtot and the equilibrium binding constant KD

FcRnu = 1
2
(
∆ +

√
∆2 + 4KD · FcRntot

)
(4.8)

with ∆ = FcRntot − IgGtot −KD.

4.2.2 Equilibrium binding model with different KD values to
determine unbound fraction of IgG

It is well known that human and mouse FcRn have different binding affinities for IgGs
from many different species [45]. We extended the equilibrium binding model to
account for differences in binding affinity to FcRn. We illustrate the model derivation
for murine IgG (i.e., murine mAb and endogenous IgG) and human IgG (i.e., IVIG)
in mice. The unbound murine IgG (mIgGu) and unbound human IgG (hIgGu) bind
to free murine FcRn, i.e., FcRnu with different binding constants (mKD and hKD)
to form the corresponding IgG-FcRn complexes (‘bound IgG to FcRn’) mIgGb and
hIgGb:

mIgGu + FcRnu
mKD−⇀↽− mIgGb

hIgGu + FcRnu
hKD−⇀↽− hIgGb.

Our aim was to determine the unbound fractions

fumIgG = mIgGu
mIgG (4.9)

fuhIgG = hIgGu
hIgG (4.10)

as a function of the total murine and human IgG concentrations

mIgG = mIgGu + mIgGb

hIgG = hIgGu + hIgGb.

Total IgG concentration is given by IgGtot = mIgG + hIgG and total FcRn by
FcRntot = FcRnu + FcRnb. Note that FcRnb is identical to the IgGb, thus comprises
mIgGb and hIgGb.
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Assuming quasi-steady state conditions for the binding processes, exploiting the
above relationships and solving for the IgG-FcRn complexes mIgGb and hIgGb
yielded

mIgGb = FcRnu
mKD + FcRnu

·mIgG (4.11)

hIgGb = FcRnu
hKD + FcRnu

· hIgG. (4.12)

Exploiting FcRntot = FcRnu + FcRnb yielded

FcRntot = FcRnu + FcRnu
mKD + FcRnu

·mIgG + FcRnu
hKD + FcRnu

· hIgG. (4.13)

Solving for FcRnu requires to solve a cubic equation (with three real-valued solutions,
two negative ones and one positive one). The unbound FcRn concentration, defined
as the positive solution of the cubic equation, is given by

FcRnu = 2 · 3
√
ρ · cos(φ/3)− B/3 (4.14)

with ρ =
√
−p3/27 and φ = arccos(−q/2 · ρ) and p =

(
3 · C− B2)

/
3 and

q = 2 · B3/27− (B · C)/3−D and B = mKD + mIgG + hIgG + hKD − FcRntot and
C = mKD · hIgG + hKD ·mIgG + mKD · hKD − FcRntot · hKD − FcRntot ·mKD and
D = −FcRntot · hKD ·mKD.

The resulting unbound fractions of murine and human IgG are given by

fumIgG = mKD
mKD + FcRnu

(4.15)

fuhIgG = hKD
hKD + FcRnu

. (4.16)

4.2.3 Cutoff model to determine unbound fraction of IgG

The cutoff model was originally proposed by Xiao in 2012 [128] and theoretically
derived as an approximation of the detailed equilibrium binding model in [7]. For
mAbs with high-affinity binding to FcRn, fuIgG is approximated by

fuIgG =

0; IgGtot ≤ FcRntot

1− FcRntot
IgGtot

; IgGtot > FcRntot.
(4.17)

In the cutoff model, fuIgG exhibits two regimes: (i) a constant zero phase for the
total IgG concentration IgGtot below FcRn and (ii) a phase of hyperbolic increase
for IgGtot above FcRn.
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Figure 4.1 shows fuIgG as a function of the total IgG concentration based on the
cutoff model and the equilibrium binding model (exemplary for the parameter
values FcRn = 1e5 nM and KD = 4.8 nM). Since CLpla = CLplau · fuIgG, a change in
fraction unbound is one way of explaining a change in unspecific mAb clearance. As
both binding models result in almost identical unbound fractions of IgG on the entire
range of IgG concentrations, the cutoff model seems to be a good approximation.
Only in the zoomed plot, there is a difference between the cutoff and the equilibrium
binding model. For total IgG being smaller than FcRn, fuIgG and thus CLpla is set to
zero in the cutoff model, whereas CLpla is approximating zero in the equilibrium
binding model.

In the following analyses, both, the cutoff model and the equilibrium binding model
are used to study the impact of altered IgG on unspecific mAb clearance. It will be
investigated under which conditions the limitations of the cutoff model for total IgG
being smaller than FcRn become apparent and the cutoff model results in no good
approximation anymore. When IgG species of different origin are available, e.g.,
human and mouse IgG binding to murine FcRn, the equilibrium binding model with
different KD values (section 4.2.2) will be compared with the equilibrium binding
model with identical KD values (section 4.2.1).
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Fig. 4.1.: IgG fraction unbound fuIgG as a function of total IgG concentration (i.e., endogenous
and therapeutic IgG) normalised by FcRn. fuIgG is predicted by the equilibrium
binding model (KD model, Eq. (4.7)) and by the Cutoff model (Eq. (4.17))
exemplary for the parameters values FcRn=1e5 nM and KD=4.8 nM.

4.3 Prediction of mAb PK data for WT mice following
IVIG therapy

Inhibition of FcRn-therapeutic mAb interaction by administration of very high doses
of IVIG is known to lead to an increase in unspecific mAb clearance in vivo [129, 130].
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Tab. 4.1.: FcRn WT mice pre-treated with IVIG: Estimated total FcRn concentration and
unbound plasma clearance per body weight (CLplauBW) of murine mAbs; esti-
mated parameters, 95% confidence intervals (CI) and objective function values
(Obj) based on the consensus PBPK model with different models to determine
fuIgG, see text for details.

model FcRn[nM] CLplauBW [L/min/kg] Obj
estimate [95% CI] estimate [95% CI] -

model with 1 KD
a

hKD=4.8 nM,
mKD=4.8 nM 1.34e4 3.29e-5 5.69e-1

[1.31e4, 1.36e4] [2.91e-5, 3.67e-5]
cutoff model 1.33e4 3.26e-5 5.69e-1

[1.31e4, 1.35e4] [2.91e-5, 3.66e-5]
a PBPK model with equilibrium binding; assuming same binding affinity of

KD=4.8 nM for murine and human IgG to mouse FcRn

The known influence of IVIG therapy leading to increased total IgG concentrations
in vivo was used to study the impact of altered IgG on unspecific mAb clearance.
Thus, the analysis of mAb PK data of FcRn WT mice following IVIG therapy based
on the consensus PBPK model was used to validate our model assumptions.

To analyse the impact of increased total IgG concentration on unspecific mAb clear-
ance, we used the plasma and tissue data of mAb 7E3 following IVIG therapy (mAb
7E3 following IV bolus administration of 8mg/kg to FcRn WT mice pre-treated with
different doses of IVIG) [79].

We jointly fitted the consensus PBPK model comprising Eqs. (4.4)+(4.5) for each of
the three species: therapeutic mAb, IVIG and endogenous IgG. Both, the equilibrium
binding model (section 4.2.1) with KD = 4.8 nM [131] for therapeutic and endoge-
nous IgG and the cutoff model (section 4.2.3) were used to perform the following
analyses: For each model, we estimated CLplauBW [L/min/kg] and total FcRn con-
centration FcRn. For estimation, only plasma data were used. Thus, for tissue data,
the model simulations are a prediction rather than a fit. For parameter estimates see
Table 4.1 and for further details on the estimation method, see Appendix A.2.2.

To visualise the impact of parameter variability and uncertainty, we determined
the 5th and 95th percentiles of mAb concentrations in plasma and tissues (for
detailed information, see section 3.2.4). In addition to the variations assumed for
parameters reported in section 3.2.4, in this chapter, we considered variations in
FcRn concentration and variations in endogenous IgG concentration. Recently, Fan
et al. [132] measured hFcRn tissue expression in transgenic mice with precision and
bias of the analytical procedure within 20%. Diverse endogenous IgG concentrations
can be found for xenograft mouse models. Endogenous IgG concentration for FcRn
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WT mice is reported in [125] with coefficient of variation of 4.5% and variability
in serum endogenous IgG concentration in normal human subjects is reported to
be within 21.5% CV [133]. As a consequence, the following variations were taken
into account: FcRn concentration (±20%, uniform distribution), endogenous IgG
concentration (sampled from a log-normal distribution with CV of 5% for WT mice
and 20% for nude and SCID mice).

Based on the estimated parameters, the simulated concentration-time profiles in
plasma and tissues agree very well with the experimental data of mAb 7E3 in FcRn
WT mice following IVIG therapy, see Figures 4.2 and 4.3. Comparable results (in
terms of estimates and objective function values, see Table 4.1) are obtained using
the cutoff model and the KD model (KD=4.8 nM). For FcRn WT mice pretreated
with IVIG, the cutoff model results in a good approximation of the detailed binding
model.
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Fig. 4.2.: Predictions of mAb 7E3 concentration-time profiles (with residual blood contam-
ination) for FcRn WT mice following IVIG therapy (no IVIG (top) and 2 g/kg
IVIG (down)) based on the PBPK model with equilibrium binding (KD = 4.8 nM)
compared to mean experimental data (diamonds) [79]. Experimental tissue data
was not used for model fitting and are therefore predictions based on plasma data.
Solid lines represent the reference predictions and dashed lines the 5th and 95th
percentiles. For plasma, the inset shows the model fit to the experimental data up
to 60 days (data only available for plasma and mice without IVIG).
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Fig. 4.3.: Predictions of mAb7E3 concentration-time profiles (with residual blood contami-
nation) for FcRn WT mice following IVIG therapy (0.4 g/kg IVIG) based on the
PBPK model with equilibrium binding (KD = 4.8 nM) compared to mean experimen-
tal data (diamonds) [79]. Experimental tissue data was not used for model fitting
and are therefore predictions based on plasma data. Solid lines represent the
reference predictions and dashed lines the 5th and 95th percentiles.
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As is shown in Figure 4.4, the simulated mAb plasma clearance changes over time
as a result of the changing total IgG concentration. Total IgG concentration is
drastically increased due to IVIG therapy resulting in a transient increase of IgG
fraction unbound fuIgG and thus a non-linearity of the unspecific plasma clearance.
Once the total IgG concentration is dominated by endogenous IgG, the unspecific
plasma clearance becomes linear again (as seen in Figure 4.4 for 0.4 g/kg IVIG
(dashed line) and 2 g/kg IVIG (solid line) at approx. 15 days). Figure 4.5 shows
the dependence of mAb half-life on changing total IgG concentration based on
mAb 7E3 data with 2 g/kg pre-administered IVIG in WT mice. The initial sharp
decrease in half-life is due to large therapeutic IgG concentrations (resulting from
IVIG therapy).

In summary, the consensus PBPK model with explicitly included competition of
endogenous and therapeutic IgG for binding to FcRn based on the cutoff model as
well as on the equilibrium binding model can be used to study the impact of altered
IgG on unspecific mAb clearance.
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Fig. 4.4.: Predicted unspecific mAb plasma clearance over time based on simulation of mAb
7E3 plasma PK data with pre-administered IVIG shown in Figures 4.2 and 4.3: no
IVIG (dashed-dotted line), 0.4 g/kg IVIG (dashed line) and 2 g/kg IVIG (solid line).

4.4 Impact of mAb binding affinity to FcRn on unspecific
mAb CL

In the previous section, the equilibrium binding model with 1 KD was used to
study the impact of increased total IgG concentration on unspecific mAb clearance
assuming that all IgG species (mAb, IVIG and IgGendo) have the same binding
affinity (KD =4.8 nM) towards FcRn. There are, however, different values reported
for the equilibrium binding constant KD. Zhou et al. [131] report a value of
mKD = 750 nM for the interaction of murine IgG1 to mouse FcRn, whereas Popov
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Fig. 4.5.: Predicted mAb half-life as a function of total plasma IgG concentration based on
simulation of mAb 7E3 plasma PK data with pre-administered IVIG (2 g/kg).

et al. [134] report a value of mKD = 4.8 nM. In addition, differences in binding
affinities between murine IgG and human IgG to mouse FcRn are reported in the
literature [131, 135, 136]. Zhou et al. [131] report an almost tenfold difference in
binding affinity with higher affinity of human IgG than murine IgG to mouse FcRn
(hKD = 82 nM vs. mKD = 750 nM, respectively). Ober et al. [135, Table 1] report
a twofold difference in relative binding between human and murine IgG to mouse
FcRn.

To study the impact of antibody binding affinity towards FcRn on unspecific mAb
clearance, we examined whether different model scenarios can predict the influence
of IVIG therapy on mAb PK. To describe mAb 7E3 venous plasma and tissue data in
FcRn WT mice pre-administered with IVIG, we separately fitted the equilibrium bind-
ing model with KD=4.8 nM or KD=750 nM to the WT mice data. The parameters
FcRn and CLplauBW were estimated. In addition, to study the impact of different
KD values of murine mAb and human IVIG to murine FcRn in FcRn WT mice, we
used the PBPK model with an equilibrium binding model incorporating two different
KD values (see section 4.2.2).

Figure 4.6 compares mAb plasma concentration-time profiles in WT mice, pre-
treated with different doses of IVIG, for the different model scenarios: (i) identical
values of KD (either KD=4.8 nM or KD=750 nM); and (ii) a twofold difference
in KD values of murine IgG and human IgG to murine FcRn (hKD = 375 nM vs.
mKD = 750 nM). Despite the large difference in equilibrium binding affinity, the
predictions are almost indistinguishable up to ten days: visually (Figure 4.6), in
terms of objective function values (see Table 4.2) and by comparing observed vs.
predicted values (see Figure 4.7). There are, however, differences for lower doses
and longer observation times. Due to lack of data for longer observation times, we
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Tab. 4.2.: FcRn WT mice pre-treated with IVIG: Estimated total FcRn concentration and
CLplauBW of murine mAbs; estimated parameters, 95% confidence intervals (CI)
and objective function values (Obj) based on the PBPK model with equilibrium
binding and different KDvalues, see text for details.

model FcRn[nM] CLplauBW [L/min/kg] Obj
estimate estimate -
[95% CI] [95% CI]

model with 1 KD
hKD=4.8 nM,
mKD=4.8 nM 1.34e4 3.29e-5 5.69e-1

[1.31e4. 1.36e4] [2.91e-5, 3.67e-5]
hKD=750 nM,
mKD=750 nM 2.17e4 3.95e-5 1.04e0

[1.96e4, 2.44e4] [3.23e-5, 4.94e-5]
model with 2 KD
hKD=82 nM,
mKD=750 nM 1.62e4 1.86e-5 1.78e0

[1.49e4, 1.78e4] [1.65e-5, 2.10e-5]
hKD=375 nM,
mKD=750 nM 1.97e4 2.96e-5 7.22e-1

[1.82e4, 2.15e4] [2.58e-5, 3.45e-5]

are not able to discriminate between the different scenarios. Additional experimental
data would be necessary.

Repeating the predictions with an approx. tenfold binding ratio (hKD = 82 nM
vs. mKD = 750 nM, respectively) cannot describe the data quantitatively as ac-
curately as the twofold difference (Figure 4.8 vs. Figure 4.6). The model with an
approx. tenfold binding ratio, however, qualitatively predicts the influence of human
IgG (i.e., IVIG) on murine mAb clearance and murine endogenous IgG concentra-
tions very well. Following a higher binding affinity of IVIG to mouse FcRn, IVIG is
more protected from elimination than murine mAb resulting in a lower IVIG clear-
ance. After a significant decrease in endogenous IgG concentration, it takes time for
endogenous IgG to return to baseline plasma concentration. This can be explained
with the almost tenfold lower binding affinity of murine IgG to mouse FcRn resulting
in a less protection by FcRn and a higher degradation within endo-lysosomes (see
Figures 4.9 for kinetics of endogenous IgG and IVIG predicted by the model with
twofold difference in KD).

Under the present data situation, following the principle of parsimony, we rec-
ommend to use the equilibrium binding model with identical KD values (see sec-
tion 4.2.1) instead of the equilibrium binding model with different KD values to
study the impact of increased total IgG concentration on mAb clearance.
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Fig. 4.6.: Comparison of the model fit to experimental IVIG data [79] based on the PBPK
model with different models to determine fuIgG. Model fits are based on (i) identical
values of KD =750 nM (solid lines); (ii) identical values of KD =4.8 nM (dotted
lines) and (iii) hKD = 375 nM vs. mKD = 750 nM (dashed lines). The different
colours represent mAb 7E3 data with pre-administered IVIG (from top to down):
no IVIG (blue), 0.4 g/kg IVIG (red) and 2 g/kg IVIG (cyan).
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Fig. 4.7.: Fitted vs. observed mAb plasma concentration based on the PBPK model with dif-
ferent models to determine fuIgG. Model fits are based on (i) identical values of
KD =750 nM (circles); (ii) identical values of KD =4.8 nM (asterisks) and (iii)
hKD = 375 nM vs. mKD = 750 nM (crosses). The different colours represent
mAb 7E3 data with pre-administered IVIG: no IVIG (blue), 0.4 g/kg IVIG (red)
and 2 g/kg IVIG (cyan).
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Fig. 4.8.: mAb plasma concentration-time profiles predicted by the PBPK model with equilib-
rium binding with approx. tenfold difference in KD values (solid lines) compared
to experimental data in WT mice after i.v. bolus administration of 8 mg/kg 7E3
following different doses of IVIG [79] (from top to down): no IVIG (blue), 0.4 g/kg
IVIG (red), 1 g/kg IVIG (black) and 2 g/kg IVIG (cyan).
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Fig. 4.9.: Simulated IVIG plasma and endogenous IgG plasma concentration-time profiles.
Simulations are based on the PBPK model with equilibrium binding with twofold
difference in KD values and refer to WT mice after i.v. bolus administration of
8 mg/kg 7E3 following different doses of IVIG: no IVIG (blue), 0.4 g/kg IVIG
(red), 1 g/kg IVIG (black) and 2 g/kg IVIG (cyan).
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4.5 Prediction of mAb PK data for immunodeficient
mice with low endogenous IgG

As shown in section 4.3, the consensus PBPK model with explicitly included com-
petition of endogenous and therapeutic IgG for binding to FcRn can describe the
impact of altered IgG concentrations due to IVIG therapy on mAb clearance. Thus it
can be used to analyse the impact of altered IgG due to lower endogenous IgG in
immunodeficient mice. In nude and SCID mice, the production of endogenous IgG
is impaired. In nude mice, the impairment is due to non-functional T lymphocytes,
while in SCID mice, impairment is due to non-functional T and B lymphocytes. To
describe the mAb PK data of nude and SCID mice, we used the consensus PBPK model
to estimate FcRn and CLplauBW (separately for nude and SCID mice). In both
cases, we used the equilibrium FcRn binding model (section 4.3) with KD = 4.8 nM
for therapeutic and endogenous IgG as well as the cutoff model (section 4.5). The
equilibrium FcRn binding model with different KD values (section 4.4) is not used,
since only IgG species of murine origin binding to murine FcRn are present in the
experimental data of immunodeficient mice. In the following subsections, the results
based on the equilibrium FcRn binding model and the cutoff model are presented.

4.5.1 Insight into parameter estimation and identifiability when using
the equilibrium binding model

When using the equilibrium binding model with 1 KD (section 4.3), parameter
estimation of FcRn and CLplauBW for nude and SCID mice, in contrast to IVIG data
in FcRn WT mice, suffered from identifiability issues. For nude mice, no constraints
of the parameter value for FcRn and only a lower constraint of the parameter
CLplauBW could be obtained by log-likelihood profiling. For SCID mice, only lower
constraints of the parameter values for FcRn and CLplauBW could be obtained
by log-likelihood profiling. For details on log-likelihood profiling, see Appendix
section A.2.2.

To resolve the identifiability problem, we considered the following two scenarios:
i) fixing the FcRn concentration to the FcRn concentration in WT mice (as given

in Table 4.1 for the model with KD = 4.8 nM), resulting in total FcRn concen-
trations in nude and SCID mice that are much larger than their corresponding
endogenous IgG;

ii) assuming a total FcRn concentration in nude and SCID mice much lower
than the corresponding endogenous IgG concentration (e.g., two orders of
magnitude below the corresponding IgGendo concentration).
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As a consequence, the remaining unknown parameter CLplauBW could be identified.
For estimation, only plasma data were used. Thus, for tissue data, the model
simulations are a prediction rather than a fit. See Table 4.3 for estimated parameter
values.

Tab. 4.3.: Immunocompromised mice: Total FcRn concentration and estimated CLplauBW
of murine mAbs; estimated CLplauBW, 95% confidence intervals (CI) and
objective function values (Obj) based on the PBPK model with equilibrium
binding (KD=4.8 nM), see text for details.

FcRn[nM] CLplauBW [L/min/kg] a Obj
fixed estimate [95% CI]

nude mice 1.34e4 1.77e-2 [1.01e-2, 2.55e-2] 1.49e-1
3.30e0 6.56e-6 [3.73e-6, 9.46e-6] 1.49e-1

SCID mice 1.34e4 2.48e-2 [2.14e-2, 2.82e-2] 2.98e0
6.60e-3 9.14e-6 [7.86e-6, 10.47e-6] 3.17e0

a estimation with dose factor (see Appendix section A.2.2 for de-
tails)

In both scenarios, the resulting total plasma clearance CLpla = CLplau · fuIgG,
however, was practically identical and the model predictions based on parame-
ter estimates for the two scenarios (Table 4.3) were indistinguishable. For nude
mice, Figure 4.10 shows the experimental data in comparison to the simulated
concentration-time profiles in plasma and tissues, respectively. The model captures
the overall trend of the concentration-time profiles in the different tissues very well,
with a few exceptions (kidney, gut, spleen). For example, the model predicts larger
concentrations in gut compared to the experimental data in Figure 4.10. For SCID
mice, the results are shown in Figure 4.11. In WT mice (Figure 4.2 and Figure 4.3)
and SCID mice, the concentration-time profiles in kidney, gut and spleen are well
predicted. At present, we do not know whether the difference in nude mice is due
to additional processes not accounted for in the model or, e.g., due to errors in
handling/reporting the experimental data. This highlights the importance of model
predictions (generating expectations) when analysing experimental data.

It is worth noticing that the identifiability problems are a result of the available
experimental data. It would be possible to discriminate between the two scenarios
by performing in immunodeficient mice the same ‘IVIG experiment’ as in FcRn WT
mice, i.e., administration of mAb dose of 8 mg/kg and different IVIG doses: no IVIG,
1 g/kg and 2 g/kg. In Figure 4.12, the predictions for a mAb dose of 8 mg/kg and
IVIG doses of 0, 1, 2 g/kg are shown for the two above mentioned scenarios in nude
mice. In scenario (i) i.e. high FcRn, the three mAb concentration-time profiles would
be clearly distinguishable, while in scenario (ii), the three mAb concentration-time
profiles would be superimposed. The same applies to SCID mice.
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Fig. 4.10.: Predictions of concentration-time profiles for nude mice with residual blood (i.v.
bolus administration of 0.0038 mg MOPC21 (dose factor 0.54) based on the PBPK
model with equilibrium binding (KD = 4.8 nM) compared to experimental data of
six mice (diamonds, error bars). Predictions are indistinguishable for parameter
estimates based on the two scenarios in Table 4.3. Experimental tissue data was
not used for model fitting and are therefore predictions based on plasma data.
Solid lines represent the reference predictions and dashed lines the 5th and 95th
percentiles.
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Fig. 4.11.: Predictions of concentration-time profiles for SCID mice with residual blood (i.v.
bolus administration of mAb 8C2 following two doses: 1 mg/kg (dose factor 0.48,
blue) and 25 mg/kg (dose factor 1, red) based on the PBPK model with equilibrium
binding (KD = 4.8 nM) compared to experimental data of three mice (diamonds).
Predictions are indistinguishable for parameter estimates based on the two
scenarios in Table 4.3. Experimental tissue data was not used for model fitting
and are therefore predictions based on plasma data. Solid lines represent the
reference predictions and dashed lines the 5th and 95th percentiles.
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Fig. 4.12.: Predictions of mAb plasma PK based on the PBPK model with equilibrium bind-
ing (KD=4.8 nM) for mAb dose of 8 mg/kg and different IVIG doses: no IVIG
(blue), 1 g/kg (black), 2 g/kg (cyan) in nude mice. Simulations based on FcRn
concentrations identical to WT mice (left) and based on much lower FcRn con-
centrations than in WT mice (and lower than the corresponding endogenous IgG
concentrations, right). For estimates see Table 4.3.

4.5.2 Biased parameter estimation using the cutoff model

As both, the equilibrium binding model and the cutoff model result in almost
identical unbound fractions fuIgG of IgG on the entire range of IgG concentrations
(see Figure 4.1), the cutoff model seems to be a good approximation of the detailed
binding model. When studying mAb PK data in WT mice following IVIG therapy,
parameter estimates using the cutoff model were comparable to parameter estimates
using the equilibrium binding model (Table 4.1). We identified, however, important
limitations of the cutoff model for total IgG concentrations being smaller than FcRn
concentrations, which are of relevance for the modelling community.

The cutoff model predicts a zero unbound fraction for total IgG being smaller than
total FcRn. As a consequence, the cutoff model does not allow to represent the
scenario in immunodeficient mice, where FcRn concentrations are comparable to
WT mice (scenario (i) in section 4.5.1), while at the same time FcRn is much larger
than endogenous IgG. Using the cutoff model for estimation of total FcRn concen-
tration and CLplauBW, we only estimated FcRn concentrations in immunodeficient
mice that are lower than in WT mice. In summary, using the cutoff model, the
estimation of total FcRn is biased to small values (compared to endogenous IgG) in
immunodeficient mice.
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4.5.3 Apparent linear CL in immunodeficient mice

Using the equilibrium binding model, different scenarios on FcRn and CLplau can
be estimated for immunodeficient mice and the resulting total plasma clearance
CLpla = CLplau · fuIgG, was practically identical (see Table 4.3). To resolve the iden-
tifiability problems, the consensus PBPK model with constant linear plasma clearance
(Eqs. (4.4)+(4.5), where CLtot = CLpla) was used to estimate the constant plasma
clearance per body weight based on nude and SCID mice data (separately). For
completion, the consensus PBPK model with linear total plasma clearance was used
to estimate CLplaBW based on mAb 7E3 PK data in FcRn WT mice without IVIG
therapy. Table 4.4 lists the estimated CLplaBW of FcRn WT, nude and SCID mice.

For nude and SCID mice, the model predictions resulting from total constant plasma
clearance were indistinguishable (visually and in terms of objective function values
Table 4.3 vs. Table 4.4) from model predictions based on the two scenarios of the
equilibrium binding model. Thus, under given doses, there is an apparent linear
clearance in immunodeficient mice. We note that the total plasma clearance per
body weight in the two immunodeficient mouse strains is larger than in WT mice.

Tab. 4.4.: Mice: Estimated linear total CLplaBW of murine mAbs in different mice strains;
estimated CLplaBW, 95% confidence intervals (CI) and objective function values
(Obj) based on the consensus PBPK model with constant CLpla, see text for
details.

CLplaBW [L/min/kg] Obj
estimate [95% CI] -

WT mice a 3.13e-6 [2.73e-6, 3.51e-6] 3.22e-1
nude mice 6.56e-6 [3.69e-6, 9.37e-6] 1.49e-1 b

SCID mice 9.14e-6 [7.85e-6, 10.5e-6] 3.17e0 b

a without IVIG therapy
b estimation with dose factor (see Appendix sec-

tion A.2.2 for details)
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4.6 Summary: Unspecific mAb CL as a function of
endogenous IgG

In the previous sections, we analysed the impact of mAb PK based on increased total
IgG in immunocompetent FcRn-WT mice pre-treated with IVIG as well as reduced
endogenous IgG in immunodeficient mice. Due to the impaired immune system,
typical therapeutic IgG doses may result in therapeutic IgG concentrations larger
than endogenous IgG concentrations. In FcRn WT mice, such a situation resulting
from IVIG doses leads to non-linear plasma clearance (see section 4.3). In SCID
mice, however, we observed a linear clearance, despite the fact that therapeutic
IgG concentrations (i.e., mAb concentrations) were larger than endogenous IgG
concentrations. In the present section, the obtained results are summarised and
a general answer to the question ‘When to expect linear unspecific clearance in
immunodeficient mice?’ is provided.

Analysing more closely the dependence of fuIgG on total IgG, we found that the
unbound fraction fuIgG is approximately constant in the following two scenarios:

i) if total IgG is below total FcRn, i.e.,

mAb + IgGendo = IgGtot � FcRn.

Note that only the total IgG concentration is relevant and that it is not impor-
tant, whether the mAb concentration is below or above the endogenous IgG
concentration.

ii) as long as total IgG is much above total FcRn, i.e.,

mAb + IgGendo = IgGtot � FcRn,

such that the unbound fraction fuIgG is practically 1. Note that total IgG
concentration may change over time. Whether or not the clearance stays linear
depends on the endogenous IgG concentrations. If already endogenous IgG
concentration alone results in an unbound fraction of approx. 1, then the
clearance will be linear for all times, independent of the mAb concentration.
If IgGendo alone results in some unbound fraction smaller than 1, then the
clearance will only be linear as long as mAb concentrations and therefore total
IgG concentrations are still large enough to result in an unbound fraction of 1.

Note that in FcRn WT mice (without IVIG therapy), due to larger endogenous IgG
concentrations, there is a third scenario resulting in a linear clearance:

iii) mAb� IgGendo, independent of their relation to FcRn. In this scenario, the
total IgG concentration stays constant, since it is practically identical to the
endogenous IgG. As a result, the unbound fraction fuIgG is constant and total
plasma clearance is linear.
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Note that in all three above scenarios with linear clearance, we do not need to take
into account the competition of endogenous and therapeutic IgG for binding to FcRn,
and thus, we do not need to explicitly model endogenous IgG. To illustrate this, we
used the consensus PBPK model with constant CLpla to model the data from nude
and SCID mice (see section 4.5.2). Note that due to a constant fraction unbound
fuIgG, linear total plasma clearance for nude and SCID mice can be calculated as
the product of fraction unbound and corresponding unbound plasma clearance. For
nude and SCID mice, the model predictions resulting from total constant CLpla were
indistinguishable (visually and in terms of objective function values Table 4.3 vs.
Table 4.4) from model predictions based on the PBPK model with explicitly modelled
competition of endogenous and therapeutic IgG for binding to FcRn.

The dependence of fuIgG on total IgG for the above scenarios is illustrated in Fig-
ure 4.13 showing the IgG fraction unbound fuIgG as a function of total IgG concentra-
tion normalised by FcRn. The sharp increase of fuIgG (Figure 4.13, ‘right branch’ of
the curve) resulting in non-linearity of CLpla occurs when total IgG is approximately
equal to total FcRn and results from large total IgG due to IVIG treatment. Without
IVIG therapy, total IgG is dominated by endogenous IgG concentration in WT mice
(i.e., 1.47e4 nM) resulting in constant CLpla (approx. constant fuIgG). This situation
corresponds to the above scenario (iii) where mAb� IgGendo. From the experimen-
tal data of immunodeficient mice, we inferred that endogenous IgG is slightly lower
than FcRn (assuming comparable FcRn concentration for WT and immunodeficient
mice), so that we are on the ‘lower’ left branch of the curve. For nude mice, the
given mAb dose results in mAb concentrations lower than endogenous IgG and thus
the maximal value of total IgG is dominated by endogenous IgG in nude mice (i.e.,
3.3e2 nM) leading to constant CLpla. For SCID mice, mAb dose 25 mg/kg results
in mAb concentrations larger than endogenous IgG and thus mAb concentrations
dominate total IgG. However, despite mAb concentrations larger than endogenous
IgG, the CLpla stays constant (approx. constant fuIgG on the ‘lower left branch’ of the
curve). This situation corresponds to the above scenario (i) where IgGtot � FcRn.

In summary, via the above stated scenarios (illustrated based on the available
experimental data in Figure 4.13), we can give a general answer to the question
‘When to expect linear unspecific clearance in immunodeficient mice?’.
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Fig. 4.13.: IgG fraction unbound fuIgG as a function of total IgG concentration (i.e., endogenous
and therapeutic IgG) assuming comparable FcRn concentrations for FcRn WT mice,
nude mice and SCID mice. fuIgG is predicted by the equilibrium binding model
for FcRn=1.34e4 nM and KD=4.8 nM. The coloured arrows below the abscissa
represent the constant total IgG value (e.g., 1.47e4 nM for WT mice and 3.3e2 nM
for nude mice) or range of changing total IgG concentration for FcRn WT mice
and SCID mice based on the experimental data assuming comparable FcRn
concentrations.

4.7 Discussion

As is well known, target-independent (unspecific) therapeutic antibody clearance
processes are important as they dominate the elimination process for high mAb doses
that saturate the target. Immunocompromised mouse models are most widely used
to study the efficacy of mAbs. We elucidated the impact of a compromised immune
system with lower endogenous IgG concentrations competing for FcRn binding
on unspecific mAb clearance. We showed that unspecific clearance often appears
to be linear and exemplified situations when to expect the unspecific clearance
to be non-linear. Unspecific clearance is linear, whenever mAb concentrations
are lower than endogenous IgG: this holds true for many situations in healthy
volunteers [137] and patients (see explanation in [7]). Unspecific clearance is
also linear whenever total IgG is lower than total FcRn: a situation, which might
be relevant in immunocompromised mice and special patient populations, e.g.,
immunocompromised cancer patients. On the other hand, unspecific clearance is
non-linear whenever therapeutic IgG is larger than endogenous IgG as well as larger
than total FcRn: a situation typically relevant in IVIG therapy.
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Plasma and tissue data of mAb 7E3 following IVIG therapy in WT mice were used to
study the impact of increased total IgG (i.e., therapeutic and endogenous IgG) on
unspecific mAb clearance. The data can be described very well using the consensus
PBPK model with equilibrium binding and equal binding affinities (hKD=4.8 nM,
mKD=4.8 nM) of murine and human IgG to mouse FcRn. There are, however,
different values reported in the literature for the equilibrium binding constant mKD

describing the binding affinity of murine IgG to mouse FcRn [131, 134, 138]. Suzuki
et al. [139] report the KD values of eight approved therapeutic mAbs to human
FcRn ranging between 508 and 1257 nM. Gurbaxani et al. [136] examined studies
that use a diverse set of methods in different model organisms. KD values derived
from surface plasmon resonance experiments using immobilised FcRn yield a higher
avidity for IgG than the experiment, where IgG is immobilised on the chip surface
[135]. Additionally the binding affinity KD can be influenced by the antibody net
charge and differences in mAb structure, e.g., in complementary determining regions
[136, 140]. Abdiche et al. [138] confirmed that the inconsistent set of affinity
constants for FcRn-IgG interaction in the literature can be attributed to experimental
artefacts, in particular immobilisation artefacts. They observed, however, that FcRn-
IgG interactions are independent of the IgG’s variable region and they did not find a
trend between an IgG’s isoelectric point and its affinity to FcRn. A large difference
in equilibrium binding affinity KD, however, results in minimal difference in PK if
we compare our resulting objective function values between the equilibrium binding
model (hKD=750 nM, mKD=750 nM) [131] and (hKD=4.8 nM, mKD=4.8 nM)
[134] (see Table 4.2 and Figure 4.6). This is in line with Garg/Balthasar [66].

To study the impact of different KD values of murine mAb and human IVIG to murine
FcRn, we used the consensus PBPK model with equilibrium binding incorporating
two different KD values. Literature, however, is not unique on the magnitude of
difference in binding affinity of different IgG species to FcRn. Zhou et al. [131]
measure an almost tenfold higher binding affinity of human IgG1 to mouse FcRn
than murine IgG1, whereas analyses by Ober et al. [135] yield only a twofold binding
ratio. Abdiche et al. [138] confirmed an almost tenfold difference in equilibrium
dissociation constant between the mFcRn-hIgG1 interaction and the mFcRn-mIgG1
interaction at pH 5.8 and 37◦C. The mAb 7E3 data in FcRn WT mice pre-treated
with IVIG, however, can be described very well using the model with a twofold
difference in KD (see Figure 4.6). The model with almost tenfold higher binding
affinity does not describe the data quantitatively well (see Figure 4.8). Additional
experimental data would be necessary to analyse the magnitude of difference in
binding affinity of different IgG species to FcRn.

So far, we assume equilibrium binding with KD = (koff/ kon) to model FcRn-IgG
interaction (for relaxation of this assumption, see Appendix section A.2.4). The
authors in [69] analysed whether mAb-FcRn binding reaches equilibrium prior to
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endosomal sorting due to, e.g., rapid rates of endosomal transit and a non-instanta-
neous process of endosomal acidification. They propose a non-equlilibrium binding
model as a more logical explanation for the lack of a clear relationship between
binding affinity at pH 6 and the observed half-life of IgG antibodies. While Gurbaxani
et al. [136] comments that the dissociation rate constant may be more important,
Chen and Balthasar [69] conclude that the association rate is more relevant. It
remains questionable, however, whether parameters such as IgG uptake rate into
the endosome may be identifiable considering the lack of endosomal data.

In our analysis based on the equilibrium binding model, we compared two possible
scenarios regarding the FcRn concentrations in immunodeficient mice: FcRn con-
centrations in immunodeficient mice are (i) lower than in FcRn WT mice; or (ii)
comparable or larger than FcRn concentrations in WT mice. Possible explanations
for lower FcRn concentrations in nude and SCID mice are that among other cells,
FcRn is expressed in several types of professional antigen-presenting cells [141]. As
B lymphocytes are also involved in presenting antigens, non-functional or absent B
cells in immunodeficient mice might result in low expression of FcRn. In addition,
the authors in [142] show low or undetectable FcRn concentrations in a majority
of tumour cells combined with hypoalbuminemia in tumour-bearing mice. This
underlines the observation that cancer patients are frequently hypoalbuminemic.
The latter observation could have various reasons, e.g., TNF-alpha decreased albumin
production or a high consumption of albumin in tumours with low FcRn concen-
trations [142]. Lower FcRn concentrations in immunodeficient mice compared to
WT mice, resulted in fraction unbound fuIgG=1 for immunodeficient mice due to
saturation of FcRn. This is in agreement with higher total plasma clearance in the
two immunodeficient mouse strains than in WT mice (see Table 4.4). To easily
distinguish between the two scenarios (FcRn concentrations in immunodeficient
mice (i) lower than in FcRn WT mice; or (ii) comparable or larger than FcRn con-
centrations in WT mice), we proposed a minimal PK study based on mAb plasma
concentrations following IVIG therapy (see section 4.5.1), where it is not necessary
to measure FcRn concentration in different tissues and sacrifice the animal species.
Very recent findings by Latvala et al. [43] experimentally assessed qualitatively the
FcRn distribution across a variety of tissues and species. The authors support our
second scenario with comparable FcRn concentrations between immunodeficient
and WT mice by investigating that lack of IgG in SCID mice had no negative effect
on FcRn expression compared with WT mice.

The experimental data of nude mice were from a study using the residualising
radioisotope Indium-111. While the marker has some influence on measured tissue
concentrations, plasma concentrations are unaffected with similar blood clearance
for indium- and iodine- labeled mAbs as observed in [143]. As we only estimate
parameters affecting plasma concentrations, plasma clearance is not biased by the
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labelling method. The mAb tissue distribution studies used in [6] to estimate and
validate the antibody biodistribution coefficients employed different residualising
as well as non-residualising markers. Regarding differences between labels, Shah
and Betts [6] did not observe any visible trend, where residualising isotopes showed
significant (within 2-fold) digression from ABC predicated tissue vs. plasma con-
centration profiles. This suggests that either the effect of residualising isotopes was
not significant enough to be captured as a systematic deviation from the typical
tissue vs. plasma concentration profiles, or the effect of residualising isotopes may
be more prominent on molecules with shorter half-life than on intact mAbs with
relatively longer half-lives [6]. Since in the consensus PBPK model, the organ-specific
interstitial partition coefficient Kint are defined in terms of ABC values, the same
applies to Kint.

FcRn in endosome may be accessible from vascular and interstitial space, as it
is modelled, e.g., in [66]. Our predictions for mAb PK data in FcRn WT mice,
nude and SCID mice based on plasma as a surrogate for endosomal concentration
are indistinguishable from predictions based on the interstitial concentration as
a surrogate for endosomal concentration in two groups of tissues (see Appendix
section A.2.3). Following the principle of parsimony, we recommend to use plasma
as the surrogate concentration. This is in line with [67], where uptake is modelled
from the vascular space.

In summary, we provided a clearer understanding of the physiological processes
to be explicitly considered in mAb PBPK models. The gained knowledge on the
unspecific mAb clearance can also be included as a prior in the analysis of mAb
data exhibiting target-mediated drug disposition, thus allowing for a more precise
estimation of the target-related parameters.

72 Chapter 4 Impact of endogenous IgG on unspecific mAb clearance



5Cell-level-based tumour PBPK
model for mAbs

“Antibody drugs are widely used in cancer therapy, but conditions to maximize tumor
penetration and efficacy have yet to be fully elucidated.” [31, p. 1] Although being
from 2011, insufficient antibody penetration in solid tumour tissues is still discussed
in the context of limiting the success of anti-cancer therapies [1, 144–146].

There are various factors that make effective antibody tumour penetration difficult.
As an example, mAbs have to overcome the increased interstitial fluid pressure
gradients within solid tumours [18]. Moreover, heterogeneous antibody distribution
within tumour tissue [18, 31, 147] is often attributed to a phenomenon called
‘binding site barrier’ (BSB) where “bindable mAb will be retarded in its transport
throughout tumour interstitial space due to its successful binding to antigen on the
tumour cell surface near entry points” [147, p. 1191]. The term ‘binding site barrier’
was coined by Weinstein and Fujimori [147, 148] in a study where they modelled
the microdistribution of mAbs within solid tumours and compared the distribution
within tumours for mAbs with different affinities. They observed that the average
antibody tumour concentration does not increase linearly with affinity. Later, the
BSB was confirmed in vivo in tumour-bearing xenograft mice by, e.g., Rudnick et al.
in 2011 [31] and Glatt et al. in 2016 [149]. Thurber et al. [1] defined the BSB as a
moving front rather than a physical barrier that depends on multiple factors such as
antibody dose, target density and antibody internalisation rate constant.

One of the most straightforward approaches to overcome the ‘binding site barrier’
and to saturate tumours is to increase the antibody dose [1]. Many mAbs targeting
solid tumours are administered in short intervals to human patients at relatively high
doses (2-15 mg/kg, often weekly) [19, 150, 151] resulting in tumour saturation.
Insufficient heterogeneous distribution of antibodies within solid tumour tissue,
however, is still a current topic of debate, in particular for ADCs due to the dose-
limiting toxicity of their toxic payload [19, 152]. Currently (late 2017), there
are four FDA approved ADCs, yet, major challenges in achieving consistently high
clinical success rates exist [20]. It is claimed in current literature [19, 20] that ADC
distribution is a major factor contributing to the overall ADC efficacy and that a
better understanding of the relationship of ADC penetration and therapeutic efficacy
is needed to improve the clinical response rates of ADCs [20].
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The objective of the present chapter was to develop a mechanistic modelling frame-
work to comprehensively investigate antibody distribution within solid tumour tissue
and its impact on therapeutic efficacy in antibody cancer therapy. Note that the
parameter values of the developed model were taken from literature (i.e., not fitted
to data). Since tumours are highly heterogeneous and cancer is a multifactorial
disease, the parameter values of the model have to be adapted to the particular
clinical setting. Nevertheless, the physiologically- and cell-level-based modelling
approach allows to study in detail intra-tumoural antibody distribution and two
important measures of efficacy, i.e., antibody receptor saturation within tumour
tissue and residual receptor activity (arising in the case of competition of mAb
and endogenous ligand for receptor binding). Based on the observed phenomena
it is possible to reflect on therapeutic utility and dosing regimens in mAb cancer
treatment.

The present analysis focussed on the following two scenarios in targeted cancer
therapy:

i) ADC targeting receptor without known endogenous ligand;
ii) mAb targeting receptor with endogenous ligand

that allowed us to study the two above mentioned measures of efficacy.

In scenario i), we specifically chose the ADC trastuzumab emtansine T-DM1, since
it is currently the only approved ADC targeting solid tumours. T-DM1 binds to
HER2 that is a member of the surface receptor EGFR family (HER1-HER4) [153].
No activating ligand for HER2 has been identified [153–155]. In scenario ii), we
selected mAbs competing antagonistically for binding with the epidermal growth
factor to the epidermal growth factor receptor, since EGFR is a prominent target in
cancer therapy. In addition, the EGF-EGFR system is also one of the best studied
systems in systems biology. For an overview of the major mechanisms of action in
mAb cancer therapy and ADCs, see Chapter 2.

This chapter is organised as follows: First, we present the developed mechanistic
modelling framework that includes the consensus PBPK model, a detailed tumour
distribution model (section 5.1.1) and the cell-level TMDD model (section 5.1.2).
The focus in sections 5.2+5.3 is to study ADC T-DM1 tumour distribution and its
impact on receptor saturation in mice and humans. In sections 5.4+5.5, the focus is
to analyse the impact of ligand-mAb competition for receptor binding on therapeutic
efficacy of anti-EGFR mAbs in human patients. In section 5.5, specifically the impact
of changes in tumour microenvironment on therapeutic efficacy of anti-EGFR mAbs
will be examined. In the sequel, we will use natural and endogenous ligand as well
as the terms monoclonal antibody and antibody as synonyms.
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Part (section 5.1.2) of the present Chapter has been published as W. Huisinga,
S. Fuhrmann, L. Fronton, B.-F. Krippendorff, “Target-Driven Pharmacokinetics of
Biotherapeutics”, in: ADME Transl. Pharmacokinet. Ther. Proteins. Appl. Drug Discov.
Dev., Eds.: H. Zhou and F.-P. Theil, Wiley, 2015, pp. 197-209.

5.1 Development of the cell-level-based tumour PBPK
model

To study mAb distribution within solid tumours, we extended the consensus PBPK
model (see Chapter 3) by a detailed tumour model. A graphical representation of
the whole-body tumour PBPK model is shown in Figure 5.1. For each organ, except
tumour, we assumed an extravasation rate-limited distribution model. For all organs,
except tumour, the outflowing concentration is parameterised by an organ-specific
interstitial partition coefficient Kint that was derived from ABCs. For the present
analysis, we assumed a total clearance from plasma equal to the median unspecific
plasma clearance from human patients (see Chapter 3). To simulate variations in
unspecific linear mAb CL, we used the derived 25th percentile and 75th percentile
of clearance values from human patients. For further details and parameterisation
of the consensus PBPK model, see Chapter 3.
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Fig. 5.1.: Structure of the consensus tumour PBPK model for mAb PK. Organs except tumour
are interconnected via antibody extravasation from plasma and the lymph flow.
Due to limited convection of mAbs into tumour tissue [1, 29, 34], only the
diffusive distribution was taken into account. The mAb can potentially be cleared
unspecifically from the plasma as well as any organ compartment (dashed arrows).
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The rates of change of the concentrations of unbound mAb in plasma Cpla and in
the interstitial space Cint of the different organs except tumour were described by
the following system of differential equations:

Vint
d
dtCint = Lorg ·

(
(1− σvas)Cpla −

Cint
Kint

)
(5.1)

Vpla
d
dtCpla =

∑
org

Lorg ·
(Cint
Kint

− (1− σvas) · Cpla
)

−CLpla · Cpla + kin(t) + PS · (C1 − Cpla) (5.2)

with infusion rate kin(t) [nmol/min], concentrations in [nM], and initial conditions
Cpla(0) = dose/Vpla, Cint(0) = 0 for organs. The equations (5.1) and (5.2) are
identical to the equations of the consensus PBPK model (see Chapter 3) except for
the last term of equation (5.2). The exchange between plasma and the first tumour
layer (with concentration C1) was modelled in terms of the permeability surface
area product PS (see section 5.1.1).

The PBPK tumour CMT was represented using a detailed tumour distribution model
with krogh cylinder geometry (described in the following section).

5.1.1 Tumour distribution model

There are many different types of tumour distribution models and geometries (e.g.,
spherical, cylindrical geometry or a combination of both). For comparison between
the cylindrical and the spherical geometry, see Appendix section A.3.2. The most
common model for capturing heterogeneous distribution of drugs within solid
tumour is the cylindrical vascular-tissue model, so-called krogh cylinder geometry. It
has been validated for mAbs by multiple groups [19, 152, 156]. The krogh radius is
the half-intercapillary distance and can be interpreted as the tumour vascular density:
the larger the krogh radius, the lower the vascular density, i.e., each capillary supplies
a larger area of tumour tissue [157]. As mAbs are extravasation rate-limited, changes
along the blood vessel of the capillaries are typically neglected and a 1-D model with
only radial flux from the capillary with radius rcap towards the tumour periphery was
used [19, 156]. This model is an idealised model to represent vascularised regions
of a solid tumour and was described in detail by Thurber et al. [156]. We assumed
that the krogh cylinder is divided into n well-stirred layers (subcompartments) that
represent the tumour tissue around the blood capillary. The number of layers was
chosen depending on rkrogh, so that at least one cell layer per subcompartment exists.
A graphical illustration of the solid tumour represented by krogh cylinder geometry
is shown in Figure 5.2.
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identical

cylinder length = total length of tumour vessels

A)

B)

D)

C)

Fig. 5.2.: Illustration of a solid tumour represented by krogh cylinder geometry.
A) Schematic illustration of an idealised solid tumour and its vasculature dis-
tribution. B) The tumour compartment was represented using krogh cylinder
geometry of tumour blood vessels surrounded by tumour tissue. The length of
the krogh cylinder represents the total length of tumour vessels. C) As mAbs
are extravasation rate-limited, changes along the blood vessel of the cylinder are
neglected. To describe intra-tumoural mAb distribution, a 1-D model with only
radial flux from the blood vessel towards the tumour periphery was used. D) The
radius rcap is surrounded by tumour tissue with radius rkrogh. The tumour tissue
was assumed to be divided into 4 layers with equal width.

The krogh cylinder represents total tumour volume Vtum comprising vascular space
and total tumour tissue volume Vtis:

Vtum = Vres,tum + Vtis. (5.3)

We calculated the total tumour tissue volume Vtis based on total tumour volume
Vtum and measured tumour volume fraction ftis = 1− fres,tum (from [35]).

We assumed the total tumour volume Vtum to be constant. An extension to tumour
growth is possible: Tumour growth can be implemented into the cell-level tumour
PBPK model by increasing the cylinder length that represents the total tumour
capillary system. Based on the volume equation of a cylinder V (r) = π · r2 · L, we
determined the length L as:

Vtis = V (rkrogh)− V (rcap)

= π · L · (r2
krogh − r2

cap)

⇒ L = Vtis
π · (r2

krogh − r2
cap)

. (5.4)
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Tumour tissue volume Vtis was defined as the sum of interstitial tumour Vint and
intra-cellular tumour volume Vcel and divided into ‘k’ layers of equal width w=(rkrogh-
rcap)/k. We calculated the tumour tissue volume of each layer Vk as:

V1 = V (r1)− V (rcap)

Vk = V (rk)− V (rk−1) (5.5)

for k ∈ {2, . . . , n} and with rk = rcap + k · w.

Each layer consists of interstitial tumour space with interstitial volume,

Vk,int = fint · Vk

and intra-cellular tumour space with cellular volume,

Vk,cel = fcel · Vk.

To study intra-tumoural mAb distribution, we assumed that mAb in plasma distributes
to and from the first tumour tissue layer. Due to limited convection of mAbs into
tumour tissue [1, 29, 34], only the diffusive distribution was taken into account.
The exchange between plasma and tumour was modelled based on the permeability
surface area product [dm3/min] :

PS = P · SAcap (5.6)

with capillary surface area [dm2]:

SAcap = 2π · rcap · L. (5.7)

The vascular permeability P [dm/min] can be interpreted as a measure of leakiness
of tumour capillaries.

In each tumour layer, mAb can bind to its receptor or distribute to any adjacent layer.
The surface area SAk between the different tumour layers was calculated as:

SAk = 2π · rk · L

with k ∈ {1, . . . ,n− 1}. Diffusion of free interstitial mAb between tumour layers k
∈ {2, . . . ,n} was modelled via diffusion exchange [dm3/min] that was calculated as:

Dk−1,k = D
w · SAk−1 (5.8)
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where Dk−1,k [dm3/min] denotes the diffusion exchange between the layers k-1 and
k, and D represents the effective intra-tumoural diffusion coefficient [dm2/min]. For
the mathematical derivation of Eq. (5.8), see Appendix section A.3.1.

We assumed that all cells within a layer behave as a reference cell. This assumption
can easily be relaxed; this, however, would require much more detailed information
and is beyond the scope of the current analysis. Our assumption implied an equal
distribution of receptor within the tumour. The number of cells within tumour layers
was calculated via:

Nk,cel = Vk,cel
Vsinglecell

(5.9)

with the average volume of a single human tumour cell Vsinglecell (see Table 1).

A schematic illustration of the tumour distribution model is shown in Figure 5.3 (A).
More details on the tumour physiology and relevant processes of mAb transport
within solid tumours can be found in Chapter 2. For parameter values, see Table 5.1.
The tumour distribution model integrates a single cell-level TMDD model within
each tumour layer to account for antibody-receptor-ligand interactions as well as
receptor dynamics. The model equations of the consensus PBPK model including a
cell-level-based tumour distribution model are presented in the following section.

5.1.2 Cell-level TMDD model

We use the cell-level TMDD model developed by Krippendorff et al. [13] for antibod-
ies antagonistically inhibiting EGFR.

The cellular level is depicted in Figure 5.3 (B). In the interstitial space of the tumour
layers, the natural ligand and the mAb competitively bind to the membrane-bound
target (free receptor) with associate rate constants konL and konC. The ligand is
synthesised per tumour cell with rate constant ksynL. The membrane-bound ligand-
receptor complex dissociates with rate constant koffL or is internalised and subse-
quently degraded with rate constant kdegRL. The membrane-bound drug-receptor
complex dissociates with rate constant koffC or is internalised and subsequently
degraded with rate constant kdegRC. The free membrane-bound receptor is synthe-
sised with rate ksynR and internalised with rate constant kdegR. The internalised free
receptor is recycled to the membrane with rate constant krecyRi or degraded with rate
constant kdegRi. The number of membrane-bound ligand-receptor and drug-receptor
complexes is denoted by RL and RC, and the number of free membrane-bound re-
ceptor and free internalised receptor by R and Ri, respectively. Extra-cellular ligand
and mAb concentrations were assumed to have units in [nM]. The receptor species
were given in [# molecules]. Thus, an additional scaling factor SFunit = 109/Navog
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Fig. 5.3.: Schematic illustration of the tumour distribution model integrating a single cell-level
TMDD model. A) The tumour compartment was divided into k=4 layers that
consist of interstitial and cellular space. mAb in plasma was allowed to distribute
to and from the first tumour tissue layer with the permeability surface area product
PS. In each tumour layer, mAb was allowed to bind to its receptor or distribute
to any adjacent layer. Diffusion of free mAb in interstitial space between tumour
layers was modelled via diffusion exchange Dk−1,k. B) The single cell-level TMDD
model of receptor activation and inhibition [13] was integrated within each layer.

from [# molecules] to [nmol] was needed, where Navog = 6.02 · 1023 [1/mol] de-
notes the Avogadro constant. For a more detailed description of the cell-level TMDD
model, see [13]. The cell-level TMDD model was parameterised using rate constants
experimentally determined in vitro. For more details on the parameterisation, see
Table 5.2.

The rates of change of the concentrations of unbound mAb within tumour interstitial
space of the different tumour layers C1, . . . , Cn [nM] were described by the following
system of differential equations:

V1,int
d
dtC1 = PS · (Cpla − C1)−D1,2 · (C1 − C2)

+N1,cel · SFunit · (koffC · RC1 − konC · R1 · C1)

Vk,int
d
dtCk = Dk−1,k · (Ck−1 − Ck)−Dk,k+1 · (Ck − Ck+1)

+Nk,cel · SFunit · (koffC · RCk − konC · Rk · Ck)

Vn,int
d
dtCn = Dn−1,n · (Cn−1 − Cn)

+N4,cel · SFunit · (koffC · RC4 − konC · R4 · C4) (5.10)

for k ∈ {2, . . . , n− 1}, with initial conditions Ck(0) = 0, and the diffusion exchange
Dk−1,k [dm3/min] from Eq. (5.8).
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Denoting the concentrations of the natural ligand within the tumour interstitial
space of the layers by L in [nM], the rates of changes of Rk,Rik,RCk and L at the
cellular level were given by:

d
dtRk = ksynR − konCRk · Ck + koffCRCk − kdegR · Rk

+krecyRi · Rik − konLLk · Rk + koffLRLk
d
dtRik = kdegR · Rk − krecyRi · Rik − kdegRi · Rik
d
dtRCk = konC · Ck · Rk − koffCRCk − kdegRC · RCk

d
dtRLk = konLLk · Rk − koffL · RLk − kdegRL · RLk

d
dtL = 0 (5.11)

for k ∈ {1, . . . , n}. The natural ligand concentration in the extracellular space of
the tumour tissue was assumed to be constant. This is an often used simplification
(e.g., in [13]) when including the competition between mAb and natural ligand
for receptor binding. Prior to any drug treatment, the system was assumed to be
in pre-treatment steady state, resulting in some number of free receptor R=Rss,
internalised receptor Ri=Riss and membrane-bound ligand-receptor RL=RLss as
well as pre-treatment ligand concentration Lss (see Table 5.2). For comparison
between different tumour ligand concentrations and their impact on efficacy in terms
of receptor saturation and residual receptor activity, see Appendix section A.3.3.

Different measures of therapeutic mAb efficacy can be determined using the cell-level
TMDD model:

• Receptor saturation by the mAb, described as the ratio of receptor-mAb com-
plex RC to membrane-bound receptors Rm:

RC
Rm (5.12)

is often taken as a measure of the inhibitory potential of a drug.
• In case of mAbs competing for receptor binding with natural ligands, not only

receptor saturation but also residual receptor activity can be an important
measure for mAb therapeutic efficacy. Residual receptor activity is defined
relative to the pre-treatment level RLss of activated receptors [13]:

RL
RLss

. (5.13)

There are different approaches of including the competition between mAb and
natural ligand for receptor binding to determine residual receptor activity. Besides
a constant ligand concentration within tumour, tumour ligand concentration can
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dynamically change over time (in the following termed as ‘Ligand dynamics’) due
to e.g., the interaction of the mAb with the receptor.

Modelling ‘Ligand dynamics’ within tumour: In each layer of the tumour, we
assumed the ligand to be produced with rate ksynL, and binding to free receptor and
subsequent internalisation and degradation of the receptor-ligand complex RL with
rate constant kdegRL.

Furthermore, we assumed a ligand concentration Lpla within plasma to mimic ligand
synthesis and degradation within other organs than tumour. The rate of change
of ligand concentration within plasma Lpla [nM] was described by the following
differential equation:

Vpla
d
dtLpla = ksynLpla · Vpla − kdegLpla · Lpla · Vpla

−PS · (Lpla− L1) (5.14)

with ksynLpla [nM/min], kdegLpla [1/min] and initial conditions Lpla(0) = Lplass.
Similar to the mAb, the soluble natural ligand in plasma was assumed to distribute
to and from the first tumour layer (with the permeability surface area product PS
[dm3/min] via Eq. (5.6)).

In any tumour layer, we assumed the ligand to bind to its receptor or to distribute to
any adjacent tumour layer. The rates of change of the concentrations of the natural
ligand L1, . . . ,Ln [nM] within the tumour interstitial space of the different layers
were described by the following system of differential equations:

V1,int
d
dtL1 = PS · (Lpla − L1)−D1,2 · (L1 − L2)

+N1,cel · SFunit · (koffL · RL1 − konL · R1 · L1 + ksynL)

Vk,int
d
dtLk = Dk−1,k · (Lk−1 − Lk)−Dk,k+1 · (Lk − Lk+1) (5.15)

+Nk,cel · SFunit · (koffL · RLk − konL · Rk · Lk + ksynL)

Vn,int
d
dtLn = Dn−1,n · (Ln−1 − Ln)

+Nn,cel · SFunit · (koffL · RLn − konL · Rn · Ln + ksynL)

for k ∈ {2, n − 1} and with initial conditions Lk(0) = Lss. The exchange between
plasma and the first tumour layer was determined by the permeability surface
area product PS [dm3/min] via Eq. (5.6). The diffusion exchange [dm3/min] was
calculated via Eq. (5.8). Note that the vascular permeability P and the effective
intra-tumoural diffusion coefficient D differ between mAb and natural ligand due to
their differences in MW (see Table 5.1).
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In the following sections, the developed modelling framework will be used to study
in detail intra-tumoural antibody distribution and two important measures of efficacy,
i.e., antibody receptor saturation within tumour tissue and residual receptor activity
(arising in the case of competition of mAb and endogenous ligand for receptor
binding).
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Tab. 5.1.: Krogh cylinder simulation parameters

Parameter Value Unit References Description
rcap 8.0e-5 dm [19] capillary radius
rkrogh 7.5e-4 dm [19] krogh cylinder radius
CLpla 2.3e-6 L/min/kg BW Chapter 3 median unspecific mAb

plasma clearance for hu-
man patients a

Vtum,m 2.0e-4 dm3=L [158] typical tumour volume
xenograft mice

Vtum,h 1.0e-3 dm3=L [159] clinically detectable vol-
ume in solid human tu-
mours

Vsinglecell 2.0e-12 b L [160] average human tumour
cell volume

ftis 0.94 - [35] tissue volume fraction of
total tumour volume

fres,tum 0.06 - [35] vascular volume frac-
tion of total tumour vol-
ume

fint 0.34 - [35] interstitial volume frac-
tion of tissue tumour
volume

fcel 0.66 - [35] cellular volume fraction
of tissue tumour volume

mAb c

P 1.7e-6 dm/min [161, Table S3], [19] vascular permeability to
tumour tissue

D 7.6e-8 dm2/min [161, Table S1] d intra-tumoural effective
diffusion coefficient

ligand
P 2.7e-5 dm/min [161, Figure 1C] e vascular permeability to

tumour tissue
D 7.8e-7 dm2/min [161, Figure 1A] f intra-tumoural effective

diffusion coefficient
a assumed to be identical for mice
b in agreement with reported mammalian cell volume of 1e-13 to 1e-11 L [162]; assumed

to be identical for mice
c values hold for mAbs of IgG isotype with MW of approx. 150 kDa
d value in agreement with measured values in [163] and reported value in [19]
e digitised based on [161, Figure 1C] using MW of 6 kDa and a molecular radius of
r = 0.912 ·MW0.333 [161]

f digitised based on [161, Figure 1A] using MW of 6 kDa and a molecular radius of
r = 0.912 ·MW0.333 [161]
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Tab. 5.2.: Parameter values for the cell-level TMDD model (EGF-EGFR system) a b

Parameter Value Unit References Description
ksynR 1.3e2 molecules/min [13], orig. [164] EGFR synthesis
konL 7.2e-2 1/(nM·min) [13], orig. [164] EGF-EGFR binding
koffL 3.4e-1 1/min [13], orig. [164] EGF-EGFR unbinding
kdegR 3.0e-2 1/min [13], orig. [164] EGFR internalisation
kdegRL 3.0e-2 1/min [13], orig. [164] EGF-EGFR complex in-

ternalisation
krecyRi 2.3e-1 1/min [13] EGFR recycling
kdegRi 5.50e-4 1/min [13] EGFR degradation
ksynL 1.28e2 molecules/min calculated c EGF synthesis per tu-

mour cell
ksynLpla 4.10e-3 nM/min calculated d tumour-independent

EGF synthesis e

kdegLpla 1.0e-2 1/min [165] tumour-independent
EGF degradation e

Lplass 4.08e-1 nM [166] f EGF pretreatment con-
centration in plasma e

Lss 8.16e-1 nM [167, 168] EGF pretreatment con-
centration in solid tu-
mour

Panitumumab
KD 5.0e-2 nM [13] binding affinity g

konC konL 1/(nM·min) [13] mAb-receptor binding
kdegRC 8.3e-5 1/min [13, 169] mAb-receptor complex

internalisation
Zalutumumab
KD 7.0e0 nM [13] binding affinity g

konC konL 1/(nM·min) [13] mAb-receptor binding
kdegRC 8.3e-5 1/min [13, 169] mAb-receptor complex

internalisation
Trastuzumab
KD 5.0e-1 nM [19] binding affinity g

konC 4.3e-2 1/(nM·min) [19] mAb-receptor binding
kdegRC 2.0e-3 1/min [19] mAb-receptor complex

internalisation
a values of receptor dynamics (ksynR, kdegR, krecyRi, kdegRi) assumed to be identical to

HER2, since HER2 is a member of the surface receptor EGFR family (HER1-HER4)
[153]

b rate constants of ligand-receptor interaction (EGF-EGFR) assumed to be similar
across species, e.g., mouse and human

c calculated via ksynL = RL, ss · kdegRL; set to zero in the cell-level model including
constant EGF concentration within tumour tissue ( d

dtL = 0)
d calculated via ksynLpla = Lpla, ss · kdegLpla
e Lpla only used for the cell-level model including ‘Ligand Dynamics’
f calculated from reported mean concentration of EGF in 20 healthy women [166]

(with EGF MW 6 kDa and based on 7 ligands that can activate EGFR in mammals
[170])

g corresponding values for koffC calculated via KD = koffC/konC while association
rate constant konC was unchanged due to the common assumption that koffC is
diffusion-limited [1, 13]
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5.2 Tumour volume influences receptor saturation via
impact of TMDD clearance on plasma PK

Heterogeneous distribution of ADCs within tumour tissue (in particular due to dose-
limiting toxicity) is still a current topic of debate. It was experimentally observed
in xenograft mice e.g. by Cilliers et al. [19]. ADCs require the release of the toxic
payload within the target cell for their activation [33]. Thus, receptor saturation
within tumour tissue is an important measure for therapeutic efficacy of ADCs. The
objective of the present section was to study the distribution and receptor saturation
within solid tumour tissue of the ADC T-DM1 in mice and human patients.

To do so, the cell-level tumour PBPK model was applied. We made the simplifying
assumption that independent of the payload, each ADC species has the same (PK)
properties as the naked mAb. We are aware that the PK can be much more complex,
with differences between ADC species dependent of their DAR [52, 171].

No activating ligand for HER2 has so far been identified [153–155]. Thus, when
studying tumour distribution of T-DM1 binding to HER2, no ligand was included
within the single cell-level TMDD model. We assumed the tumour CMT to consist
of 4 layers. Receptor saturation within each of the 4 tumour layers was calculated
via Eq. (5.12) with Rm = RC + R. T-DM1 plasma concentrations and total (i.e.,
unbound+bound) T-DM1 tumour concentrations were simulated over time for mice
(25 g BW) and humans (male, BW 73 kg), respectively. Simulations were conducted
following a single clinical dose of T-DM1 (i.e., 3.6 mg/kg BW [19, 172]). We
assumed (pre-)clinically relevant tumour volumes for mice, i.e., Vtum=0.2 mL and
human patients, i.e., Vtum=1 mL.

Figure 5.4 shows the plasma and tumour PK as well as the receptor saturation profiles
for mouse with typical xenograft tumour volume at start of mAb administration
(i.e., Vtum=0.2 mL) and human with clinically detectable tumour volume (i.e.,
Vtum=1 mL). Despite same dose per kg BW, a marked difference in plasma and
tumour PK for mouse and human was observed: faster declining tumour PK as well
as faster declining plasma PK profile in mouse compared to human. In mouse, our
model predicted a heterogeneous receptor saturation up to 50%, which is in line
with previous reports [19]. In contrast, in human after approx. 5 days receptor
saturation was close to 100% throughout all layers. A detailed analysis revealed that
the main reason for the observed differences is the difference in tumour volume per
body weight between mouse and human (Vtum=8 mL/kg vs. Vtum=0.014 mL/kg).

The differences in receptor saturation (Figure 5.4, bottom) depending on the tumour
volume can be explained as follows: The larger the tumour volume per body weight,
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the larger the number of cells (with identical number of target receptors per cell)
within tumour. Thus, target-mediated mAb CL is dominating over linear unspecific
CL. This is the situation in mice with Vtum=8 mL/kg. As a result, the large target-
mediated mAb CL in tumour leads to a faster declining plasma PK in xenograft mice
compared to humans with clinically detectable tumour volume (i.e., Vtum=0.014
mL/kg) (see Figure 5.4).
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Fig. 5.4.: Predicted impact of different tumour volume per body weight on mAb plasma
PK (top left), tumour PK (top right) and receptor saturation for mouse (bottom
left) and human (bottom right) based on the cell-level tumour PBPK model without
natural ligand following T-DM1 dose of 3.6 mg/kg BW.

To verify our hypothesis that tumour volume per body weight is the main reason
for differences in receptor saturation between xenograft mice and humans, we
conjectured that identical tumour volume per body weight for both species would
result in comparable PK and receptor saturation profiles.

Figure 5.5 shows the plasma and tumour PK as well as the receptor saturation profiles
for mouse and human with identical tumour volume per body weight in both species.
The tumour volume in mouse (25 g BW, Vtum=0.2 mL, Vtum=8.0 mL/kg) would
correspond to a large human tumour volume of 584 mL (73 kg BW, Vtum=8.0 mL/kg).
Thus, based on identical tumour volumes per body weight in both species, the model
predicted comparable plasma and tumour PK as well as similar receptor saturation
profiles for mouse and human within tumour tissue. Vice versa, the clinically relevant
tumour volume in human (i.e., 73 kg BW, Vtum=0.014 mL/kg) would correspond to
a mouse tumour volume of 3.5e-4 mL (25 g, Vtum=0.014 mL/kg). In this case, the
model also predicts comparable receptor saturation-time profiles for both species.
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The fact that ultimately plasma PK determines receptor saturation (via impact of
tumour volume on TMDD CL) is also supported in Figure 5.5.

In addition, the observed transient stagnation during initial increase in the human
receptor saturation-time profile at approx. 2 days in particular in layers 1 and 2
(Figure 5.4, bottom right) highlights the impact of the internalised free receptor:
The free receptor is initially not fully saturated due to the pool of internalised free
receptor. This may be an explanation for the observed initial time-dependence in
linear CL by Kågedal and Gibiansky [51]
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Fig. 5.5.: Predicted impact of identical tumour volume per body weight on mAb plasma
PK (top left), tumour PK (top right) and receptor saturation for mouse (bottom
left) and human (bottom right) based on the cell-level tumour PBPK model without
natural ligand following T-DM1 dose of 3.6 mg/kg BW.

5.3 Impact of IIV of unspecific mAb CL and implications
for dosing strategies of ADC therapy in human
patients

In human patients, the model predicted receptor saturation close to 100% after
approx. 5 days following single T-DM1 dose (at clinically detectable tumour volume,
i.e., 1 mL). If the target-mediated clearance is saturated in human, the unspecific
clearance dominates and we expect a large impact of its IIV on plasma PK and
subsequently on receptor saturation. This is of relevance in cancer therapy, since
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unspecific mAb clearance can be increased, e.g., due to increased turnover of proteins
(as frequently observed in cachectic cancer patients) [25]. This affects the catabolism
of both endogenous IgG and therapeutic IgG (i.e., therapeutic mAb).

The objective of the present section was to study the impact of IIV of unspecific
clearance on PK and efficacy (in terms of receptor saturation) of ADC T-DM1 therapy
in human patients. As in the previous section, the cell-level tumour PBPK model
without natural ligand was applied. Simulations were conducted following the
clinically approved dosing regimen of T-DM1 (i.e., 3.6 mg/kg BW q3w) [172].

Figure 5.6 shows the impact of IIV in unspecific clearance on plasma and tumour
PK as well as on receptor saturation for human patients following multiple dosing
of T-DM1. Based on IIV in unspecific clearance, the model predicted differences in
plasma and tumour PK and differences in the duration of receptor saturation: If un-
specific clearance is increased (i.e., 75th percentile of clearance vs. 25th percentile of
clearance), a pronounced difference in duration of receptor saturation was observed
for the first treatment cycle (before second dose). If receptor saturation is required
for efficacy, this finding is relevant for patients with increased unspecific clearance
resulting in suboptimal efficacy within the first treatment cycle. A strong relationship
between trough plasma concentrations and receptor saturation was observed, in
particular between cycle 1 minimum plasma concentration (at 21 days) and receptor
saturation (see Figure 5.6 grey area). Based on this observation, we conjectured that
by dose intensification (i.e, reducing the length of the dosing interval of cycle 1) the
strong decrease in receptor saturation within the first treatment cycle (Figure 5.6,
bottom left) can be prevented.

Figure 5.7 shows the difference between the (i) standard clinically approved dosing
regimen of T-DM1 (i.e., 3.6 mg/kg BW q3w) and (ii) the dose intensification strategy
within the initial treatment cycle (e.g., second dose administered after 14 days
instead of 21 days) on plasma PK as well as on receptor saturation in human patients
(with 75th percentile of CL). Based on scenario (ii), receptor saturation > 98% was
observed throughout ADC therapy (Figure 5.7, bottom right). Thus, based on our
developed modelling approach, an initial dose intensification was mechanistically
supported to guarantee ADC receptor saturation from the start of treatment.
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Fig. 5.6.: Predicted impact of IIV in unspecific plasma clearance on T-DM1 PK and receptor
saturation for human patients (Vtum=0.014 mL/kg) based on the cell-level tumour
PBPK model without natural ligand. Predicted plasma PK (top left) and total
tumour PK (top right) following T-DM1 clinically approved dosing regimen of
3.6 mg/kg BW q3w are based on different unspecific CLpla. Predicted receptor
saturation is based on 25th percentile of CLpla (bottom right) and 75th percentile
of CLpla (bottom left).
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Fig. 5.7.: Predicted impact of initial dose intensification on T-DM1 receptor saturation for
human patients (Vtum=0.014 mL/kg) based on the cell-level tumour PBPK model
without natural ligand. Predicted plasma PK (top) is based on 75th percentile of
CLpla following (i) T-DM1 clinically approved dosing regimen of 3.6 mg/kg
BW q3w vs. (ii) dose intensification strategy within the initial treatment
cycle. Predicted receptor saturation is shown based on scenario (i) (bottom left)
and scenario (ii) (bottom right).
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5.4 Impact of ligand-mAb competition for receptor
binding on therapeutic efficacy of anti-EGFR mAbs
in human patients

EGFR is a prominent target in cancer therapy. Anti-EGFR mAbs used as anti-cancer
agents can exert their therapeutic effect via prevention of binding of EGF to EGFR.
Thus, not only receptor saturation but also reduction in receptor activity can be
an important measure to assess their therapeutic efficacy. In this case the ratio of
affinity of mAb and ligand towards receptor is important.

The objective of this chapter was to study the impact of ligand-mAb competition
for receptor binding on therapeutic efficacy and the impact of mAb properties, i.e.,
mAb-receptor affinity. The present analysis focussed on the following two anti-EGFR
mAbs with marked differences in their affinity towards the receptor EGFR (see
Table 5.2):

• panitumumab (KD=5e-2 nM): more affine than EGF (KD= 4.72e0 nM),
• zalutumumab (KD=7e0 nM): less affine than EGF.

The cell-level tumour PBPK model (including natural ligand at constant concentration
within tumour Lss = 0.816 nM) was used to study EGFR saturation and residual
EGFR activity within solid tumour tissue of the two mAbs. We assumed the tumour
CMT to consist of 4 layers. Anti-EGFR mAb plasma concentrations and total (i.e.,
unbound+bound) tumour concentrations were simulated over time for human
patients (male, BW 73 kg, Vtum=0.014 mL/kg). EGFR saturation within tumour
tissue was calculated via Eq. (5.12) with Rm = RC + R + RL. Residual EGFR
activity over time was computed via Eq. (5.13). Initially, simulations were conducted
following a single clinical dose of panitumumab (i.e., 6 mg/kg BW [150]), which
has been approved in contrast to zalutumumab.

In Figure 5.8, the plasma and tumour PK profiles as well as the residual receptor
activity- and receptor saturation-time profiles are shown for panitumumab and
zalutumumab following single dosing (SD) of 6 mg/kg BW. Despite the marked
differences in affinities between the mAbs, only minimal changes in EGFR saturation
from 100% were observed (Figure 5.8, middle left). This can be explained by the
fact that mAb receptor complex RC is by far the most abundant membrane-bound
receptor species (see Figure 5.8, bottom). Furthermore, we observed a much larger
%-residual EGFR activity for zalutumumab compared to panitumumab in terms of
minimum and duration of residual EGFR activity (Figure 5.8, middle right). This
can be explained by their differences in affinity towards the free receptor EGFR. The
lower the mAb affinity to free EGFR, the larger the number of free EGFR where
ligand EGF can bind to for inducing downstream-signalling pathways.
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Fig. 5.8.: Predicted impact of constant natural ligand concentration within tumour
(Lss = 0.816 nM) competing for receptor binding with panitumumab or zalutu-
mumab following SD 6 mg/kg BW. Simulations of plasma and tumour PK (top),
receptor saturation (middle left), residual receptor activity (middle right) and
dynamics of the receptor species RC,R,RL (bottom) are based on the cell-level
tumour PBPK model. All four layers are superimposed.
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The following simulations were based on clinically relevant dosing regimens, i.e., (i)
clinically approved panitumumab dose 6mg/kg BW q2w [150] versus (ii) 16mg/kg
BW qw for zalutumumab. The latter dosing scheme was based on a Phase I trial
where patients received weekly doses of zalutumumab without experiencing dose
limiting toxicity [173]. Figure 5.9 shows the plasma and tumour PK profiles as well as
the residual receptor activity- and receptor saturation-time profiles for panitumumab
and zalutumumab. Similar to the single dosing regimen, a larger %-residual EGFR
activity for zalutumumab was observed compared to panitumumab (Figure 5.9,
bottom right). Interestingly, both efficacy measures (receptor saturation by the mAb
and residual receptor activity) largely differ. The figures clearly show that receptor
saturation is almost identical between the two mAbs (Figure 5.9, bottom left) while
all other 3 plots of Figure 5.9 show differences. This highlights the importance
of using (mechanistic) modelling approaches to translate the binding of the drug
into its inhibitory effect and to account for interactions between mAb, ligand and
receptor over time.
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Fig. 5.9.: Predicted impact of constant natural ligand concentration within tumour (Lss of
0.816 nM) competing for receptor binding with panitumumab following 6mg/kg
BW q2w and zalutumumab following 16mg/kg BW qw. Simulations of plasma
and tumour PK (top), receptor saturation (bottom left) and residual receptor
activity (bottom right) are based on the cell-level tumour PBPK model. All four
layers are superimposed.
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5.5 Impact of tumour microenvironment on therapeutic
efficacy of anti-EGFR mAbs

So far, we assumed a constant ligand EGF concentration within tumour tissue to
study the impact of ligand-drug competition for receptor binding on therapeutic
efficacy of anti-EGFR mAbs in human patients. Tumour EGF concentration, however,
is excepted to dynamically change over time, e.g., due to mAb-receptor interaction
and/or EGF permeation between tumour and other organs/plasma. These factors
may be largely influenced by the tumour microenvironment, e.g., permeability of
tumour vessels and intra-tumoural diffusivity.

In the present section, the objective was to study the impact of tumour microen-
vironment on therapeutic efficacy of anti-EGFR mAbs by examining how changes
in

A) tumour ligand EGF concentration,
B) tumour vascular permeability (affecting the exchange between capillary and

tumour tissue) and
C) intra-tumoural diffusivity

influence both, mAb and ligand EGF intra-tumoural distribution.

The cell-level tumour PBPK model with natural ligand was applied. We assumed
the tumour CMT to consist of 4 layers. Simulations were conducted following
a single clinical dose of panitumumab (i.e., 6 mg/kg BW [150]). Panitumumab
plasma concentrations and free (i.e., unbound) panitumumab tumour concentrations
as well as EGF plasma and free EGF tumour concentrations were simulated over
time for human patients (male, BW 73 kg, Vtum=0.014 mL/kg). EGFR saturation
by panitumumab, and residual EGFR activity were calculated as in the previous
section.

Scenario (A): Impact of tumour ligand concentration

Simulations were conducted based on constant tumour ligand concentration vs.
dynamically changing tumour ligand concentration over time. Figure 5.10 shows
the concentration-time profiles of EGF in plasma and free EGF in tumour tissue as
well as %-residual EGFR activity and %-EGFR saturation. Based on dynamically
changing tumour ligand EGF concentration, an initial accumulation of EGF within
tumour tissue was observed (Figure 5.10, top right) that depends on the ratio of
affinity of mAb and EGF towards EGFR as well as on the permeation of EGF into
plasma. At the same time, a similar minimum residual EGFR activity for both
scenarios was observed, however, the duration of residual EGFR activity differed
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between the scenarios (Figure 5.10, bottom right). Note that the change in EGF
plasma concentration (Figure 5.10, top left) is only minimal in comparison to the
changes in free EGF tumour concentration. This can be understood by the much
larger plasma volume than tumour volume. The plasma compartment acts as a ‘sink’
for ligand leaving the tumour tissue. The simulations show that despite changes
in tumour ligand concentration, there is no change in receptor saturation and only
minor changes in residual receptor activity.
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Fig. 5.10.: Predicted impact of tumour microenvironment: scenario (A) impact of tumour
ligand concentration for panitumumab following SD 6 mg/kg BW. Simulations
of ligand plasma and tumour concentration (top), receptor saturation by the
mAb (bottom left) and residual receptor activity (bottom right) are based on the
cell-level tumour PBPK model with ligand at constant vs. dynamically changing
tumour ligand concentration. All layers are superimposed.

Scenario (B): Impact of tumour vascular permeability

To examine the impact of tumour vascular permeability, the cell-level tumour PBPK
model with dynamically changing tumour ligand EGF concentration was applied. In
Figure 5.11, the predicted impact of changes in EGF and mAb vascular permeability
to tumour tissue were illustrated based on two scenarios: In scenario ‘reference P’,
permeability P of mAb and ligand was based on literature values (see Table 5.1).
In scenario ‘reduced P’, permeability P of both, mAb and ligand was one order of
magnitude reduced. Differences in tumour vasculature were assumed to affect vessel
permeability of the mAb and the ligand in the same way. Note that the reference
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vessel permeability of EGF is larger than the vessel permeability of the mAb due to
lower MW of EGF.

For ‘reduced P’ the free tumour mAb concentration and plasma EGF concentration is
reduced, while the free tumour EGF concentration is increased (see Figure 5.11).
Furthermore, the %-residual EGFR activity was much larger compared to scenario
‘reference P’. The increased %-residual EGFR activity can be explained, on the one
hand, by the larger free tumour EGF concentration and on the other hand, by the
lower free tumour mAb concentration.

Changes in vascular permeability highly influence residual receptor activity (Fig-
ure 5.11, bottom right), however, the impact on receptor saturation is minimal
(Figure 5.11, bottom left). This can be explained by the fact that RC is dominating
over the receptor species RL and R.
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Fig. 5.11.: Predicted impact of tumour microenvironment: scenario (B) impact of tumour
vascular permeability following panitumumab SD 6 mg/kg BW. Simulations
of mAb plasma and tumour PK (top), ligand plasma and tumour concentration
(middle), receptor saturation by the mAb (bottom left) and residual receptor
activity (bottom right) are based on the cell-level tumour PBPK model with
ligand dynamics. In scenario ‘reference P’, permeability P of mAb and ligand
is based on literature values (see Table 5.1). In scenario ‘reduced P’, P of both,
mAb and ligand is one order of magnitude reduced. All layers are superimposed.

Scenario (C): Impact of intra-tumoural diffusivity

Parameter values for effective intra-tumoural diffusivity of mAb and ligand were
determined experimentally primarily in mouse xenograft models [161] and assumed
to be identical for human (Table 5.1). Diffusivity, however, may differ between
xenograft tumours and the clinical setting, where tumours can be highly heteroge-
neous with inter-patient, intra-patient as well as intra-tumoural variability [20].
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To examine the impact of intra-tumoural diffusivity on therapeutic efficacy of anti-
EGFR mAbs, the cell-level tumour PBPK model was used and ‘dynamically changing
tumour EGF concentration’ within tumour tissue was assumed. In Figure 5.12,
the predicted impact of changes in EGF and panitumumab effective intra-tumoural
diffusivity was illustrated based on two scenarios: In scenario ‘reference D’, diffusivity
D of mAb and ligand is based on literature values (see Table 5.1). In scenario ‘reduced
D’, intra-tumoural diffusivity D of both, mAb and ligand is three orders of magnitude
reduced mimicking a stiff tumour interstitial fluid space [29]. Note that vessel
permeability of mAb and ligand was set to the reference values (see Table 5.1).

Following differences between scenario ‘reduced D’ and ‘reference D’ were observed
(Figure 5.12): All layers show a decreased plasma ligand concentration (Figure 5.12,
middle left). Within layers 2 to 4 (layers more distant from the capillary), an
increased free tumour ligand concentration (Figure 5.12, middle right) was observed.
Furthermore, a decreased free tumour mAb concentration (Figure 5.12, top right)
and an increased %-residual receptor activity (Figure 5.12, bottom right) compared
to scenario ‘reference D’ can be seen. In contrast, within layer 1 (near the capillary),
a decreased free tumour ligand concentration (Figure 5.12, middle right) and
increased free mAb tumour concentration (Figure 5.12, top right) was observed and
thus decreased %-residual receptor activity (Figure 5.12, bottom right) compared
to scenario ‘reference D’. The lower the effective intra-tumoural diffusivity of both,
mAb and ligand, the more heterogeneous their tumour distribution and the lower
the therapeutic efficacy in terms of %-EGFR receptor activity in particular for the
tumour layers 2 to 4.

Due to the reduced intra-tumoural diffusivity, the free mAb concentration is highest
in layer 1 being closest to the vessel and gradually declines with lowest concentration
in layer 4 farthest from the vessel. Nevertheless, the mAb concentration within each
tumour layer is still large enough to displace the ligand from receptor binding (see
100% receptor saturation). Ligand in layer 1 can still ‘escape’ via permeation into
plasma. This is the main difference between layer 1 and layers 2 to 4 leading to
reduced ligand concentration within layer 1 while ligand concentration within layers
2 to 4 is increased compared to scenario ‘reference D’. In scenario ‘reference D’, the
mentioned difference between layer 1 and layers 2 to 4 becomes negligible due to
larger intra-tumoural diffusivity of both, mAb and ligand.
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Fig. 5.12.: Predicted impact of tumour microenvironment: scenario (C) impact of intra-
tumoural diffusivity following panitumumab SD 6 mg/kg BW. Simulations of
mAb plasma and tumour PK (top), ligand plasma and tumour concentration
(middle), receptor saturation by the mAb (bottom left) and residual receptor
activity (bottom right) are based on the cell-level tumour PBPK model with
ligand dynamics. In scenario ‘reference D’, diffusivity D of mAb and ligand is
based on literature values (see Table 5.1). In scenario ‘reduced D’, D of both,
mAb and ligand is three orders of magnitude reduced.
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5.6 Discussion

In this chapter, we developed a physiologically- and cell-level-based modelling
approach that integrates a tumour distribution model and a cell-level TMDD model.
It allows to study in detail mAb and natural ligand distribution within tumour
tissue and its implications for therapeutic efficacy in cancer therapy. The model
enables to study the impact of variations in parameter values such as tumour ligand
concentration, vascular permeability and intra-tumoural diffusivity that may arise
from changes in tumour microenvironment as well as the impact of tumour volume
on intra-tumoural distribution of mAb and ligand. Furthermore, the modelling
framework allows to study the interactions between mAb, ligand and receptor over
time and to study the plausibility of different mechanisms of actions. The latter is
important, since mAbs often exert their therapeutic effect via multiple mechanisms
[1] and various efficacy measures can be related to the observed clinical effect.

In comparison to prior work, our modelling approach has several advantages: In
2016, Cilliers and Thurber et al. [19] coupled a PBPK model with a detailed tumour
distribution model represented by krogh cylinder geometry. The authors used their
model to analyse experimental results on the ADC T-DM1 tumour distribution in
HER2-positive mouse xenografts. Antibody-receptor interaction within tumour
tissue was modelled using a TMDD model, which, in contrast, does not include
the internalisation of free receptor nor ligand-mAb-receptor interactions. Cilliers
and Thurber et al. used partial differential equations (PDEs) to describe changes of
free mAb and ADC concentration over time and space. We showed that a tumour
krogh cylinder model with 4 layers leads to a layer thickness corresponding to
the width of a single tumour cell. This questions a further division of the krogh
cylinder model and the use of PDEs. Furthermore, our modelling framework allows
to address additional questions, e.g., the extrapolation of mice to humans, the impact
of internalised receptor, and the impact of the competition between mAb and ligand
for receptor binding. In addition, due to the integrated single cell-level model, we
believe that it is much easier to interpret and to implement. Depending on the
tumour physiology and growth pattern, the geometry to represent antibody and
ligand tumour distribution can be adapted (for a comparison between cylindrical
and spherical geometry, see Appendix section A.3.2).

In the first part of this chapter, the impact of tumour volume on ADC T-DM1 intra-
tumoural distribution and therapeutic efficacy in terms of receptor saturation was
assessed. Experimentally observed heterogeneous and sub-saturating T-DM1 tumour
distribution in xenograft mice following single dose [19] was supported by our
developed modelling approach. In contrast, extrapolation to human patients (with
clinically relevant tumour volume) yielded homogeneous T-DM1 tumour distribu-
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tion and approx. 100% receptor saturation within tumour tissue. The predicted
differences in receptor saturation between mouse and human can be explained
by their differences in tumour volume per body weight, which affects TMDD CL
and ultimately plasma PK and exposure. Plasma PK above a certain threshold is
an important surrogate for therapeutic efficacy that can be used in the clinic to
develop dosing strategies to guarantee receptor saturation: Our observed strong
relationship between T-DM1 trough plasma concentrations and its receptor satura-
tion, in particular for treatment cycle 1, supports studies by Chen et al. [174], where
cycle 1 minimum plasma concentration was reported as an indicator for improved
overall survival in T-DM1 therapy. To verify the clinical relevance of our predicted
decrease in receptor saturation, our in silico study suggests a clinical trial, where the
standard clinical dosing of T-DM1 (3.6 mg/kg BW q3w) could be compared with
our proposed dose intensification strategy within the initial treatment cycle (see
section 5.3). However, this also requires close monitoring in patients for adverse
events, since ADCs have a relatively narrow therapeutic window [2].

ADCs represent a heterogeneous mixture of various species with different DAR
and a small amount of naked antibody [52]. We made the simplifying assumption
that independent of the payload, each ADC species has the same (PK) properties
as the naked mAb. We are aware that the PK can be much more complex, with
differences between ADC species dependent of their DAR [52, 171]. As an example,
deconjugation is an important component of the elimination of ADCs, which leads
to a decrease in average DAR over time and subsequently largely impacts their PK
[52]. We only made this simplifying assumption to illustrate the concepts of ADC
PK, tumour distribution and efficacy. A possible extension is to incorporate the
deconjugation process and to model the different DAR species, although it would
multiply the number of equations used in the developed modelling framework.

Heterogeneous antibody distribution within solid tumour tissue is intensively dis-
cussed as a factor limiting the therapeutic efficacy of ADCs [19]. Our analysis
suggests that ADC tumour distribution may be homogeneous in humans, in contrast
to the heterogeneous tumour distribution in xenograft mice (single dosing). The
predicted differences are plausible due to the difference in tumour volume per body
weight. After multiple dosing with shortened dosing interval (qw for mice compared
to q3w in humans), the heterogeneous distribution will disappear for mice. Thus,
not dose per body weight but rather exposure (e.g., AUC or Cmin) should be used
for extrapolation.

In the light of our predicted homogeneous ADC tumour distribution in humans, the
question remains whether heterogeneous tumour distribution is really a limiting
factor to achieve consistently high clinical success rates in ADC tumour therapy.
Particularly as heterogeneous antibody distribution within tumour tissue is not
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always associated with lower therapeutic efficacy. Whether tumour heterogeneity
of ADCs is associated with lower efficacy depends, among others, on the toxicity of
the payload [19]. A highly toxic payload leads to cell death at subsaturating ADC
concentrations. In this case, heterogeneous ADC tumour distribution results in an
overkill of tumour cells near the blood vessels and to off-tumour cell-toxicity, while
leaving cells in the tumour centre unharmed [1]. Conversely, ADCs with a low toxic
payload require a saturating number of ADCs per tumour cell for tumour cell death.
In this case, a saturation of receptors on tumour cells near the blood vessels has
a larger efficacy than a sub-saturated homogeneous ADC distribution throughout
whole tumour tissue [19].

Many monoclonal antibodies targeting solid tumours are administered in short
dosing intervals at relatively high doses making it possible to approach tumour
saturation. Therefore, the question arises whether and/or why antibodies targeting
tumour antigens expressed on tumour cells are rarely curative by themselves [33,
175, 176]. In the initial phase of first-line therapy in cancer treatment, in particular
in the neo-adjuvant setting (i.e., prior to surgery), mAbs are often administered in
combination with standard chemotherapy to reduce tumour size [33, 175]. The
question remains whether tumour penetration is really a limiting factor. HER2
targeted approaches have revolutionised the treatment and outcomes of breast
cancer therapy. Resistance to treatment, however, remains a clinical challenge, e.g.,
due to mutations in the signalling pathways [176, 177] and may be a possible reason
why mAbs are rarely administered as monotherapy in the initial phase of first-line
therapy in cancer treatment. Furthermore, cancer is a multifactorial disease and
the optimal treatment strategy depends on a large number of factors such as age,
tolerance to treatment, treatment setting, performance status and co-morbidities.
The influence of these factors likely has a major impact on clinical decision-making
[178].

In section 5.5, we investigated the changes in ligand and mAb vascular permeability
as well as effective diffusivity. We observed that the lower the vascular permeabil-
ity to tumour tissue of both, mAb and ligand, the lower the therapeutic efficacy
(i.e., larger EGFR residual activity). In this context, the question arises about the
consequences for anti-angiogenic treatments that are intended to modify tumour
microenvironment to ultimately increase drug delivery to tumour. Bevacizumab is
administered to ‘normalise’ tumour vasculature, which may result in e.g., reduction
of vascular permeability in vivo [1]. In this case, a reduced vascular permeability,
however, may not directly result in lower therapeutic efficacy due to competing
bevacizumab effects such as reduced interstitial fluid pressure, increased blood flow
and increased oxygenation [1]. In addition, our observed larger in silico EGFR
residual activity for zalutumumab in comparison to panitumumab may not automat-
ically result in less therapeutic efficacy: The antibody therapeutic effect can also
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be mediated due to indirect cytotoxic effects via recruitment of immune cells due
to mAb binding to Fcγ receptors or recruitment of complement factors. In these
cases, the fraction of bound mAb that is presented to the extracellular space is an
important measure for therapeutic efficacy.
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6Conclusion and Outlook

We already summarised the major findings and critically discussed the assumptions
of the developed modelling approach and the obtained results at the end of the
three main chapters within this thesis. Thus, in the following, we highlight the
major impact of our work and only briefly summarise the limitations and possible
extensions of this work.

Mechanistic understanding of factors that govern the PK of mAbs is critical for
drug development and the optimisation of effective therapies. PBPK models offer
a physiological and mechanistic framework, which is of advantage in the context
of animal to human extrapolation. PBPK models for sMDs are used throughout all
stages of drug development [3]. However, in comparison to sMDs, for mAbs, the
potential of PBPK modelling has so far not yet been fully exploited [3]. Current
approaches for mAb PBPK modelling lack a consensus on the representation of
physiology and its parameterisation [4]. In addition, existing mAb PBPK models are
typically much more detailed requiring many assumptions or loose completely the
level of individual organs. Similarly to sMD PBPK models, the advent of methods
to predict tissue-to-plasma partition coefficients, also termed ABCs [6], has the
potential to significantly increase the application of mAb PBPK models in therapeutic
mAb discovery and development.

In this thesis, we developed a consensus mAb PBPK model that is of simple and
comparable complexity as for sMD PBPK models. The consensus PBPK approach
takes into account recent insights into mAb distribution (ABC values, interstitial IgG
pharmacokinetics [21]) to predict common target-independent PK across several pre-
clinical species and humans with only unknown parameters related to CL processes.
A main advantage in comparison to existing modelling approaches, such as the
minimal PBPK model [73, 74] or classical CMT models, is the ability to predict tissue
concentrations (based on plasma data only). In addition, the parameters of the
consensus PBPK model have a physiological interpretation, and equally important,
variability can be incorporated mechanistically.

Therapeutic mAbs are associated with substantial mAb-to-mAb PK variability, e.g.,
related to drug parameters such as charge, size, glycosylation and binding affinity
towards FcRn [118]. There still remain several directions of research to be investi-
gated to explain mAb atypical PK that is not related to the target. As an example,
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variation in charge of the antibody may impact tissue distribution and hence, it may
impact the antibody biodistribution coefficients. To our knowledge, so far there is no
quantitative information on the dependency of ABCs on isoelectric point and thus,
we did not include variability between mAbs related to charge. Moreover, the con-
sensus PBPK model does not take into account additional factors for mAb disposition
related to the systems part, e.g., co-medication, immunogenicity or disease status.
Data of more patients is necessary to stratify the derived median CL according to
patient’s disease and to incorporate disease status into the consensus PBPK model.
As soon as a more detailed quantitative understanding and data becomes available,
such factors can easily be integrated in the presented consensus PBPK model.

So far, the consensus PBPK model was successfully used to extrapolate mAb PK from
rodents to human adults. This leads to the question whether the model is also
applicable to extrapolate from human adults to paediatric patients. Physiological
parameters, i.e., organ volumes as well as blood and lymph flows in children can
be used for extrapolation of mAb PK from human adults to children. However,
we also have to account for other physiological differences between children and
adults, e.g., related to the blood brain barrier and saturable PK pathways have to be
considered. For each PK process, i.e., absorption, distribution and elimination, there
are considerable knowledge gaps regarding children-specific properties that influence
mAb PK [179]. The impact of growth and maturation on PK parameters has not yet
been well characterised for mAbs [179]. In this context, the abilities of currently
available PBPK modelling approaches to predict mAb PK in paediatric populations
have to be investigated. First research in this direction has been done during an
internship (I2 module as part of the PharMetrX PhD program) at F. Hoffmann-La
Roche Ltd., where current available empirical modelling methods to predict PK and
to determine exposure in children were explored as well (see Appendix section A.4.2
‘Model-based predictions of mAb clearance in paediatric populations’).

We demonstrate that the consensus PBPK model provides valuable mechanistic
understanding, e.g., to assess the impact of physiological factors, such as FcRn
concentration and endogenous IgG on unspecific mAb CL. The gained knowledge
is of both, pre-clinical and clinical relevance. Studying the impact of lowered
endogenous IgG concentrations—as present in immunodeficient mice—on unspecific
therapeutic antibody CL revealed that under therapeutic mAb doses as typically used
in humans (in contrast to high dose IVIG therapy), the unspecific CL is effectively
linear. This can be expected to also hold for immunosuppressed cancer patients.
Knowledge on the unspecific CL can also be included as a prior in the analysis of
mAb PK data exhibiting TMDD, thus allowing for a more precise estimation of the
target-related parameters. In accordance with these findings, variability related
to FcRn is implicitly included in the consensus PBPK model. Variability in binding
affinity towards FcRn was shown to have minimal impact on the model fit. There
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continues to be a need to understand the quantitative relationship between in vitro
FcRn binding affinity and in vivo PK, where the current available literature suggests
mixed results towards a correlation [118]. In vitro KD often overestimates the mAb
affinity; most likely due to a simplified assay system, which does not represent the
complex situation in vivo [11]. A quantitative relationship between in vitro KD
and in vivo half-life has not been well-established [69, 144]. This suggests that
other factors than binding to FcRn may play an important role, e.g., endosomal
sorting and release into systemic circulation. However, factors determining whether
IgG is recycled or transcytosed, are not yet fully understood [44]. If such data is
available, the consensus PBPK model can also be used to answer questions related to
the development of engineered mAbs with shorter half-life.

Antibody-drug conjugates are among the most promising classes of mAb-based can-
cer therapeutics [2]. In current literature [19, 20], the tumour distribution of ADCs
is claimed to be a major factor contributing to overall ADC efficacy. In addition, for
mAbs competing for receptor binding with natural ligands (e.g. growth factors),
the dynamics of receptor and natural ligand play a crucial role in determining mAb
efficacy. We extended the consensus PBPK model by a detailed tumour distribution
model incorporating a single cell-level TMDD model. Our developed modelling
approach offers a mechanistic framework to comprehensively investigate mAb and
ligand distribution within tumour tissue and its implications on therapeutic efficacy.
In comparison to whole-body TMDD models, the cell-level model integrates not only
processes such as drug binding and internalisation of drug-receptor complex but also
internalisation and recycling of the free receptor that is important to understand
mAb PK as well. In addition, the modelling framework allows (i) to study the inter-
actions between mAb, ligand and receptor over time and (ii) to study the impact of
variations in parameter values, e.g., ligand concentration, tumour size or variations
in tumour microenvironment on mAb and ligand intra-tumoural distribution. Based
on the observed phenomena it is possible to reflect on therapeutic utility and dosing
regimens in mAb cancer treatment. The incorporation of tumour growth and the
influence of drugs (e.g. toxic payload) on tumour size would represent a highly
relevant and interesting extension to our developed modelling framework.

In conclusion, this thesis contributes significantly to a future and routine use of
PBPK modelling for large molecules as an integral part of their development. The
developed modelling approach serves as a convenient starting point to study mAb
disposition in human in detail, including first-in-man studies and target-specific
investigation, e.g., to assess the impact of physiological factors, such as FcRn con-
centration or tumour microenvironment on antibody PK and thus, greatly enhances
our mechanistic understanding.
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AAppendix

A.1 Consensus PBPK model for mAbs

A.1.1 Experimental data

PK data of 29 different mAbs from 32 publications in mice, rats and humans (7
healthy volunteers and 14 patients) were obtained from literature. For details see
Tables 3.6+3.7. The analysed mAbs are of IgG isotype, bind to diverse targets and
are of different origin (human, humanised, chimeric). While for mice and rats, the
investigated mAbs do not display any cross-reactivity to a target, in human patients
the mAbs bind with high affinity to their target.

All experimental data were extracted from the respective publications using the
software WebPlotDigitizer, version 3.8, Ankit Rohatgi. If not explicitly stated in
the respective publications that experimental data have already been corrected for
residual blood, we assumed that the experimental tissue data include residual blood
and used Eq. (3.7) for comparison of model output and data.

A.1.2 Parameter estimation

We used MATLAB R2013a for modelling and simulation (ode15s solver). Parameter
estimation was performed using the ‘fminsearchbnd’ based on the Nelder-Mead
simplex algorithm described in Lagarias et al. [180] and a sum of squared residuals
criterion (referred as objective function value =

∑n (Cpred − Cexp)2) following log-
transformation of experimental data Cexp and predictions Cpred.
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A.1.3 Estimating unspecific CL and predicting mAb PK in
non-cross-reactive animal species

In section 3.3.1, the consensus PBPK model was used to study experimental plasma
and tissue PK data in non-cross-reactive species. For mice and rats, the consen-
sus PBPK model in Eqs. (3.1)-(3.2) (without any TMDD term) was fitted to the
rodent plasma PK data. For each mAb, only a linear plasma clearance per BW was
estimated as the investigated mAbs do not show any cross-reactivity to a target.
Estimated CLplaBW values are listed in Table 3.6. For all tested mAbs, as shown in
Figures A.1+A.2 and in section 3.3.1, the plasma concentration-time profiles agreed
well with the experimental data.
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Fig. A.1.: Predictions of mAb plasma concentration-time profiles for mice. Simulations
are based on individually fitted plasma clearance and are compared to mean
experimental data (filled diamonds) of anti-MUC1 mAb [91] and GNbAC1 mAb
[90] in mice. Solid lines represent the reference predictions and dashed lines the
5th and 95th percentiles. The different colours refer to different mAb doses.
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Fig. A.2.: Predictions of mAb plasma concentration-time profiles for rats. Simulations are
based on individually fitted plasma clearance and are compared to experimental
data (filled diamonds, error bars) of different mAbs (see Table 3.6) in rats. Solid
lines represent the reference predictions and dashed lines the 5th and 95th
percentiles. The different colours refer to different mAb doses.
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A.1.4 Estimating unspecific CL and predicting mAb PK in humans

In section 3.3.2, the consensus PBPK model in Eqs. (3.1)-(3.2) with parallel linear
and non-linear clearance was used to study plasma (and tissue) PK of different mAbs
in human healthy volunteers and patients (for experimental data, see section A.1.1).
In all but one case (bevacizumab), also in the presence of target, linear PK for mAbs
was observed and the consensus PBPK model accurately captured plasma PK profiles
of diverse mAb PK data. In these cases, only a linear clearance per body weight
(see Eq. (3.11)) was estimated based on the experimental data. Estimated CLplaBW
values are listed in Table 3.7. Illustrative plasma concentration-time profiles are
shown in section 3.3.2 and Figures A.3+A.4+A.5.
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Fig. A.3.: Predictions of mAb plasma concentration-time profiles for human healthy volun-
teers based on individually fitted plasma clearance. Simulations are compared to
experimental data (filled diamonds, error bars) of different mAbs (see Table 3.7).
Solid lines represent the reference predictions and dashed lines the 5th and 95th
percentiles. The different colours refer to different mAb doses.
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HUMAN PATIENTS (Part I)
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Fig. A.4.: Predictions of mAb plasma concentration-time profiles for human patients based on
individually fitted plasma clearance. Simulations are compared to experimental
data (filled diamonds, error bars) of different mAbs (see Table 3.7). Solid lines
represent the reference predictions and dashed lines the 5th and 95th percentiles.
The different colours refer to different mAb doses.
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HUMAN PATIENTS (Part II)
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Fig. A.5.: Predictions of mAb plasma concentration-time profiles for human patients based on
individually fitted plasma clearance. Simulations are compared to experimental
data (filled diamonds, error bars) of different mAbs (see Table 3.7). Solid lines
represent the reference predictions and dashed lines the 5th and 95th percentiles.
The different colours refer to different mAb doses.
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A.2 Impact of endogenous IgG on unspecific mAb
clearance

A.2.1 Mice experimental data for model development and
evaluation

For model development, experimental data of a murine monoclonal IgG1 antibody,
mAb 7E3, were extracted from [79]. 7E3 is an anti-platelet mAb with high affinity for
the human glycoprotein IIb/IIIa. The mAb does not bind to the murine glycoprotein
IIb/IIIa [79, Chapter 3, Figure 3]. The experimental data include measurements
of 125I-labeled 7E3 after a single i.v. bolus dose of 8 mg/kg BW in FcRn wild-type
mice (C57BL/6J strain, 25 g BW) in the venous plasma and in lung, heart, kidney,
muscle, skin, gut, spleen and liver. Different IVIG doses (0.4, 1 or 2 g/kg BW) were
pre-administered intravenously to FcRn wild-type mice (n=3).

To study the influence of endogenous IgG on mAb PK in immunodeficient mice,
experimental data of a murine monoclonal IgG1 antibody, mAb 8C2, were extracted
from [80, Figure 8a, Figure 8b]. 8C2 is an anti-topotecan mAb without specific
affinity for mouse or human antigen. The data include measurements of 8C2 after
a single i.v. bolus dose of 1 mg/kg and 25 mg/kg BW in SCID mice (n=3) bearing
LS174T xenografts in the venous plasma and in lung, heart, kidney, muscle, skin,
gut, spleen and liver. Information on body weight was taken from growth data of
SCID mice (C.B-17/ IcrHsd-PrkdcSCID, 4-5 weeks of age, 19 g BW) [181]. When
tumour size reached 200 – 300 mm3, 8C2 was injected intravenously in mice at the
given dose with a defined tracer amount of 125I-labeled 8C2.

To study mAb PK in nude (nu/nu) mice (n=6), experimental data of a non-specific
murine IgG1 antibody, MOPC21, in plasma, bone, heart, kidney, liver, lung, muscle,
skin, spleen, and GI tract were extracted from [65, Figure 1]. The data include
measurements of 111-In-labeled MOPC21 after intravenous administration of 3.8
µg in female nude mice (22.15 ± 1.6 g BW) bearing T380 human colon carcinoma
xenografts. T380 cells produce and secrete CEA. The tumour was grown until it
reached the size of 472 ± 110 mg [65].

In [65, 80] the two mAbs were used as a control with no affinity to any tumour
antigen. Consequently the tumour acts only as a distributional space and has no
influence on clearance. Initial tumour volumes were reported to be 1 − 2% of
mouse body weight and approximately doubled during the experiment. Due to the
negligible impact on overall volume of distribution, and lack of data for tumour
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lymph flow, vascular reflection coefficient and antibody biodistribution coefficient,
we decided not to include a tumour compartment into the PBPK model.

All experimental data were extracted from the respective publications using the
software WebPlotDigitizer, version 3.8, Ankit Rohatgi. If not explicitly stated in
the respective publications that experimental data have already been corrected for
residual blood, we assumed that the experimental tissue data include residual blood
and used Eq. (3.7) for comparison of model output and data.

A.2.2 Parameter estimation

We used MATLAB R2013a for modelling and simulation (ode15s solver). Parameter
estimation was performed using the ‘fminsearchbnd’ based on the Nelder-Mead
simplex algorithm described in Lagarias et al. [180] and a sum of squared residuals
criterion (in the following referred as objective function value =

∑n (Cpred − Cexp)2)
following log-transformation of experimental data Cexp and predictions Cpred. 95%
CIs were obtained using parameter log-likelihood profiling as described in [182].
Estimation was based on plasma data only.

For nude mice, and SCID mice following dose 1 mg/kg BW, a noticeable difference
and strong discrepancy between measured and simulated plasma concentration with
the first hours was observed. Since the model already accounts for the distribution
processes within the first hours (extravasation) as can be seen, e.g., in SCID mice
following 25 mg/kg BW dose (Figure 4.11, plasma, red curve, dose factor =1), we
believe that the discrepancy in nude mice and in SCID mice following dose 1 mg/kg
has other reasons. For experimentally used antibodies (e.g., mAb 8C2) and ther-
apeutic mAbs the production and purification processes may differ. Furthermore,
even for therapeutic standardised mAbs, differences in PK following intravenous
administration can occur [183]. Such variability accounts for, e.g., differences be-
tween actual and nominal doses following intravenous administration. Thus, in our
studies, we estimated a dose factor for nude mice, and SCID mice dose 1 mg/kg BW
that can be interpreted as resulting from crystallisation or agglomeration processes
following intravenous administration. To do so, we estimated the initial mAb plasma
concentration Cpla(0) (separately for nude mice and SCID mice) jointly with the
unbound plasma clearance per body weight based on the KD model with identical
KD=4.8 nM at fixed total FcRn concentration. The dose factor was calculated by
dividing the estimated initial mAb plasma concentration by the initial mAb plasma
concentration without dose factor ( dose/Vpla [nmol/L]).
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Tab. A.1.: Immunodeficient mice: Total FcRn concentration and estimated CLplauBW
and initial plasma concentration Cpla(0) of murine mAbs; PBPK model with
equilibrium binding (KD=4.8 nM) for murine and human IgG to mouse FcRn
(estimation based on plasma data only)

FcRn[nM] CLplauBW [L/min/kg] Cpla(0) [nmol/L] Obj
fixed estimate estimate -

nude mice 3.30e0 6.57e-6 14.37 1.49e-1
SCID mice 6.60e-3 9.14e-6 75.76 3.17e0

A.2.3 FcRn-dependent CL kinetically linked to interstitial fluid of
organs

To explicitly model the binding of IgG to FcRn in the endosomes of vascular en-
dothelial cells, we considered the IgG plasma concentration as a surrogate for the
corresponding endosomal concentration (see Chapter 4). This is in line with the
model by Ferl et al. [67], where uptake is modelled from the vascular space. FcRn in
endosome, however, may be also accessible from vascular and interstitial space, as it
is modelled, e.g., in [66]. In this section, we analyse, whether our assumption of IgG
plasma concentration as a surrogate for the endosomal concentration is reasonable
and does not provide contrary results to predictions based on interstitial organ
concentrations as a surrogate for the endosomal concentration.

In order to account for FcRn-dependent clearance kinetically linked to the interstitial
fluid of organs, we make use of the organ extraction ratio Eorg. The extraction ratio
is estimated for two groups of organs (separately for mAb PK data in FcRn wild-type
mice, nude and SCID mice), dependent on the tightness (corresponding to organs
adipose tissue, bone, muscle and skin) and leakiness (corresponding to organs
liver, heart, lung, kidney, spleen and gut) of the vessel wall. Intrinsic clearance
from interstitial fluid of organs CLintint is determined by the organ extraction ratio.
CLpla is calculated via total clearance CLtot and the plasma clearance corresponding
to the different intrinsic clearances from the organs as

CLpla = CLtot −
∑

tight6=pla
Eorg · Lorg · (1− σvas)

+
∑

leaky 6=pla
Eorg · Lorg · (1− σvas).

(A.1)

Note that in this case, total clearance is the sum of plasma clearance and the plasma
clearance corresponding to the different intrinsic clearances from the organs. CLtot

was estimated (separately for mAb PK data in FcRn wild-type mice, nude and SCID
mice) based on the consensus PBPK model with constant CLpla (where
CLtot = CLpla) and with extraction ratios Eorg set to zero (see Table 4.4).

118 Chapter A Appendix



Fraction unbound of IgG fuIgG is determined by Equation 4.7 of the equilibrium
binding model and calculated dependent on total IgG concentration (i.e. therapeutic
IgG and endogenous IgG) and FcRn concentration, both in interstitial fluid of the or-
gans. Endogenous IgG synthesis rate ksyn is determined by clearance processes from
plasma & interstitial fluid of organs and baseline endogenous plasma concentration
IgGendo,baseline of WT mice, nude and SCID mice:

ksyn = (CLpla +
∑

CLintint ·ABCint) · IgGendo,baseline. (A.2)

The baseline concentration of endogenous IgG in interstitial fluid is computed from
IgGendo,baseline via ABCint:

IgGendo,baseline,int = IgGendo,baseline ·ABCint. (A.3)

FcRn concentration in interstitial fluid was estimated for the two groups of tissues
(separately for mAb PK data in FcRn wild-type mice, nude and SCID mice). Hence,
intrinsic clearance from interstitial fluid of organs CLintint is calculated based on
total IgG:

CLintint = CLintu · fuIgG (A.4)

with maximal unbound clearance for two groups of tissues CLintu calculated via
CLintint/fuIgG.

Our predictions of mAb PK data in FcRn wild-type mice, nude and SCID mice based
on the equilibrium binding model with 1KD and plasma as a surrogate for the
endosomal concentration (Figure 4.2, Figure 4.3, Figure 4.10 and Figure 4.11) are
indistinguishable from predictions based on the equilibrium binding model with 1KD

and interstitial organ concentrations as a surrogate for the endosomal concentration.
Following the principle of parsimony, we recommend to use plasma as the surrogate
concentration.

A.2.4 Accounting for non-equilibrium binding on unspecific CL

To study the impact of altered endogenous IgG on unspecific mAb clearance, we
assumed equilibrium binding with KD = (koff/ kon) to explicitly model the binding
of IgG to FcRn (see Chapter 4). When using the equilibrium binding model with
1KD of 4.8 nM, however, we estimated a different CLplau at comparable total FcRn
levels for wild-type mice and immunodeficient mice. Unbound plasma clearance was
lower for wild-type mice following IVIG treatment compared to immunodeficient
mice at the same total FcRn level of 1.34e4 nM (see Table 4.2 vs. Table 4.3). This
may be explainable by a very slow and incomplete (non-equilibrium) binding of
IgG to FcRn leading to a high amount of IgG in lysosome or unregulated sorting
resulting in FcRn within endo-lysosomes.
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We propose a non-equilibrium binding model (see Eq. (A.5)) to analyse whether
our hypothesis of an incomplete binding of IgG to FcRn will explain the different
values of unbound plasma clearance at same total FcRn between wild-type mice and
immunodeficient mice. To account for non-equilibrium binding, we parameterised
the unspecific plasma clearance as:

CLpla = CLplau · fuIgG + CLbase (A.5)

with baseline clearance CLbase= fubase · CLplau. We jointly estimated CLplau, total
FcRn and a baseline clearance CLbase to predict mAb PK data in FcRn wild-type mice
following IVIG treatment, nude mice and SCID mice.

Following non-equilibrium binding, we obtained estimates for total FcRn (1.42e4 nM)
and unbound plasma clearance per body weight (2.95e-4 L/min/kg BW) that
are identical for wild-type mice and immunodeficient mice with a plausible base-
line value of the fraction unbound fubase of approx. 12% (CLbase per BW= 3.5e-6
L/min/kg BW) due to incomplete binding of IgG to FcRn.
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A.3 Cell-level tumour PBPK model for mAbs

A.3.1 Derivation of the ordinary differential equations of the
cylindrical tumour distribution model

I hereby acknowledge Dr. Niklas Hartung (Institute of Mathematics, University of
Potsdam) for assisting me with the mathematical derivation.

In Cilliers and Thurber et al. [19, Suppl.], the common diffusion model in radial
coordinates for the free (i.e., unbound) mAb and ADC concentrations C(t,r) within
tumour tissue was given by the following partial differential equation:

∂

∂t
C(t,r) = D · 1

r
· ∂
∂r

(
r · ∂

∂r
Ct,r

)
, (A.6)

where D denotes the effective diffusion coefficient.

We discretised the partial derivatives by centred differences:

∂

∂r

(
r · ∂

∂r
C(t,r)

)
≈

(r + ∆r) ∂∂rC(t,r+∆r)− (r −∆r) ∂∂rC(t,r−∆r)
(r + ∆r)− (r −∆r)︸ ︷︷ ︸

=2∆r

and
∂

∂r
C(t,r+∆r) ≈

C(t,r+2∆r)− C(t,r)
(r + 2∆r)− r︸ ︷︷ ︸

=2∆r

.

This resulted in the following approximation of Eq. (A.6):

∂

∂t
C(t,r) =

D
r ·
(

(r + ∆r)
(
C(t,r+2∆r)−C(t,r)

2∆r

)
− (r −∆r)

(
C(t,r)−C(t,r−2∆r)

2∆r

))
2∆r .

Setting w = 2∆r, this yields:

∂

∂t
C(t,r) = D

r · w ·
r + ∆r

w ·
(
C(t,r+w)− C(t,r)

)
+

D
r · w ·

r −∆r
w ·

(
C(t,r−w)− C(t,r)

)
. (A.7)
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Fig. A.6.: Schematic illustration of the cylinder disk.

Defining the volume of some layer at radius r and width w = 2∆r by

∆V (r) = V (r + ∆r)− V (r −∆r)

= πL ·
(
(r + ∆r)2 − (r −∆r)2

)
= πL ·

(r + ∆r)− (r −∆r)︸ ︷︷ ︸
=2∆r=w

 ·
(r + ∆r)− (r −∆r)︸ ︷︷ ︸

=2r


= 2π · L · w · r

and observing that
SA(r ±∆r) = 2π · L · (r ±∆r),

we obtain after multiplication of Eq. (A.7):

∆V (r) · ∂
∂t
C(t,r) = D

w ·
2π · L · r · w(r + ∆r)

r · w ·
(
C(t,r+w)− C(t,r)

)
+D

w ·
2π · L · r · w(r −∆r)

r · w ·
(
C(t,r)− C(t,r−w)

)
= D

w · SA(r + ∆r) ·
(
C(t,r+w)− C(t,r)

)
+

D
w · SA(r −∆r) ·

(
C(t,r)− C(t,r−w)

)
.

Discretising the radial axis as

rk := rcap + k ·∆w, k ∈ {1, . . . , n},

and using the following abbreviations:

Ck(t) := C(t, rk −∆r)

Vk := ∆V (rk −∆r) = V (rk)− V (rk − w)

SAk := SA
(
(rk −∆r) + ∆r

)
= SA(rk),
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we finally obtained,

Vk
d
dtCk(t) = D

w · SAk ·
(
Ck+1(t)− Ck(t)

)
−D

w · SAk−1 ·
(
Ck(t)− Ck−1(t)

)
, (A.8)

for k ∈ {2, . . . , n− 1}.
For k = n, the first term is absent, while for k=1, the second term is absent and an
additional term modelling the exchange with the capillary is present, resulting in
the following system of ordinary differential equations:

V1
d
dtC1(t) = D

w · SA1 ·
(
C2(t)− C1(t)

)
+ PS ·

(
Cpla(t)− C1(t)

)
,

Vk
d
dtCk(t) = D

w · SAk ·
(
Ck+1(t)− Ck(t)

)
+ D

w · SAk−1 ·
(
Ck−1(t)− Ck(t)

)
,

Vn
d
dtCn(t) = −D

w · SAn−1 ·
(
Cn(t)− Cn−1(t)

)
, (A.9)

with k ∈ {2, . . . , n− 1}.

A.3.2 Cylindrical vs. spherical tumour distribution model

There are many different types of tumour distribution models and geometries (e.g.,
spherical, cylindrical geometry or a combination of both). The PBPK tumour CMT of
our developed modelling framework in Chapter 5 was represented using a detailed
tumour distribution model with krogh cylinder geometry. Depending on the tumour
physiology and growth pattern, the geometry to represent antibody and ligand
tumour distribution can be adapted. In this section, we present a detailed tumour
distribution model based on spherical geometry. Furthermore, we will compare the
simulations of the consensus PBPK model (i) coupled to the krogh cylinder tumour
model (see section 5.1.1) and (ii) coupled with the herein explained spherical
tumour distribution model.

‘The main difficulty in the experimental study of tumour cords is that they cannot
be grown in vitro. This explains why much more attention, also by mathematicians,
has been devoted to what are called multicellular tumour spheroids (...).’ [184, p.
183].

As reported in [185], spherical tumour models were developed to represent tumour
spheroids in vitro. Such multicellular spheroids are spherical aggregates consisting
of many thousand tumour cells. To study the mAb ‘binding site barrier’ hypothesis
within tumour, a spherical model was used by Fujimori and Weinstein [147] to
simulate a small pre-vascular tumour nodule with a radius of 150 µm. In their
model, the tumour was represented as a sphere with surrounding capillaries and
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radial flux of mAb from capillaries towards the centre of the tumour. Note that at a
radius of 150 µm, the tumour has not yet developed necrotic regions [147, 186].

Spherical models are also used to represent nodular lymphomas that grow in a
nodular (also termed follicular) pattern without developing a necrotic centre [187,
188]. When growing in a nodular pattern, the malignant cells are clustered into
nodules with central vessels in each nodule branching to periphery.

In summary, spherical models often represent either
i) a small primary tumour or micrometastasis (with diameter < 300 µm) [186];

ii) the histology of nodular lymphomas, where the tumour consists of N nodules
(each nodule has a diameter of < 300 µm;) or

iii) multicellular tumour spheroids in vitro [147].
The nodule radius and thus the number of nodules determines the vascularisation
degree of the tumour.

For modelling a ‘nodular tumour model’, we assumed that the tumour tissue volume
Vtis consists of a number N of nodules (see Figure A.7 (A)). The tissue volume of each
nodule Vnodule was calculated using the volume equation of a sphere (V(r)=4

3 ·π ·r
3):

Vnodule = V (r) = 4
3 · π · r

3

with radius r=150 µm [147, 186]. The number N of nodules within whole tumour
tissue was calculated via

Vtis
Vnodule

. (A.10)

To study mAb intra-tumoural distribution, each nodule was divided into n well-
stirred layers with equal width and diffusion of the mAb towards the centre of the
tumour nodule. The outermost layer of each nodule (i.e., layer 1) is in contact with
tumour blood vessels. Equal width between layers within a nodule was defined as
w= r

4 . The tumour tissue volumes of the layers ‘k’ within each nodule were denoted
by V1, . . . , Vn and were calculated as:

Vk = V (rk)− V (rk−1)

with k ∈ {1, . . . , n}.

Within each nodule, each layer consists of interstitial tumour space with interstitial
volume of the layers,

Vk,int = fint · Vk

and intra-cellular tumour space with cellular volume of the layers,

Vk,cel = fcel · Vk.
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Fig. A.7.: Illustration of a nodular tumour distribution model. A) Schematic illustration
of a tumour consisting of a number of nodules. To study mAb intra-tumoural
distribution, each nodule is divided into 4 tumour layers. mAb diffuses towards
the centre of the spherical nodule. B) Schematic illustration of the tumour
distribution model integrating a single cell-level TMDD model. The tumour
compartment is divided into 4 layers that consist of interstitial and cellular
space. Monoclonal antibody in plasma is allowed to distribute to and from the
first tumour tissue layer with the permeability surface area product PS. In each
tumour layer, mAb can bind to its receptor or distribute to any adjacent layer.

To integrate antibody-receptor interaction with each layer at the cellular level, the
number of cells within tumour layers of each nodule was calculated as

Nk,cel = Vk,cel/Vsinglecell.

To study mAb intra-tumoural distribution, monoclonal antibody in plasma was
allowed to distribute to and from the first tumour tissue layer. The exchange between
plasma and the first tumour layer was modelled via the permeability surface area
product PS = P · SAcap [dm3/min].

In each tumour layer, we assumed mAb to bind to its receptor or distribute to each
adjacent layer. Diffusion of free mAb in interstitial space between tumour layers was
modelled via diffusion exchange rates [dm3/min] that were calculated as:

Dk,k+1 = D
w · SAk

for k ∈ {1, . . . , n− 1}. Dk,k+1 denotes the diffusion exchange rate between layers k
and k+1. D represents the effective intra-tumoural diffusion coefficient. The surface
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area between the different tumour layers within each nodule was calculated based
on the equation of a sphere:

SAk = 4π · r2
k (A.11)

with (k ∈ {1, . . . , n− 1}). SAk [dm2] denotes the surface area between layers k and
k+1.

Finally, to account for mAb distribution throughout whole tumour tissue, the number
of cells of each nodule Ncel,nodule, the volumes of the layers of each nodule Vnodule

and the surface area of each nodule SAnodule were multiplied with the whole number
of nodules N within tumour tissue. For parameter values, see Table 5.1 and for
model structure, see Figure A.7 (B).

We compared the simulations of the consensus PBPK model (i) coupled to the krogh
cylinder tumour model (see section 5.1.1) and (ii) coupled with the herein explained
nodular tumour model following T-DM1 single dose of 3.6 mg/kg BW in mice. Fig-
ure A.9 shows the simulated plasma and total tumour PK profiles as well as receptor
saturation-time profiles in mice for both geometries. Despite same dose per kg BW
and same tumour volume per BW, we observed a marked difference in plasma and
tumour PK for both geometries: faster declining plasma and tumour PK profiles for
spherical geometry compared to krogh cylinder geometry. For cylindrical geometry,
we simulated a heterogeneous and sub-saturating T-DM1 tumour distribution in
mice, whereas for spherical geometry, we simulated a homogenous T-DM1 tumour
distribution with 100% receptor saturation after approx. 1 day in mice.

The pronounced differences in PK and receptor saturation-time profiles despite same
tumour volume per BW and same number of cells within tumour can be explained
by the different volumes and surface areas depending on the tumour geometry. For
the cylindrical geometry, the mAb diffuses from the centre (capillary) towards the
tumour periphery with volumes and surface areas that increase from centre towards
periphery. For the spherical geometry, however, the mAb diffuses from the capillary
towards the centre of the tumour with decreasing volumes. For visualisation, see
Figure A.8.

Thus, the ‘binding site barrier’ is more pronounced using a tumour represented
by cylindrical geometry, especially at high tumour volume per body weight, i.e., 8
mL/kg BW (see Figure A.9). This observation is in line with results by Weinstein and
Fujimori [148].
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Fig. A.8.: Schematic illustration of the volume changes for cylindrical and spherical geometry.
For the cylindrical geometry, the mAb diffuses from the centre (capillary) towards
the tumour periphery with increasing volumes. For the nodular geometry, how-
ever, the mAb diffuses from the capillary towards the centre of the tumour with
decreasing volumes.

re
ce

pt
or

sa
tu

ra
tio

n
[%

]
m

Ab
co

nc
en

tra
tio

n
[n

M
] plasma

 

 

0 10 20 30 40
10

0

10
2

spherical geometry

cylindrical geometry

tumour

 

 

0 10 20 30 40
10

0

10
2

spherical geometry

cylindrical geometry

0 10 20 30 40
0

50

100

mouse, cylindrical geometry

 

 

layer 1
layer 2
layer 3
layer 4

0 10 20 30 40
0

50

100

mouse, spherical geometry

 

 

layer 1
layer 2
layer 3
layer 4

time [days]

Fig. A.9.: Predicted impact of geometry of the tumour distribution model, i.e., tumour
represented using krogh cylinder or spherical geometry on PK and receptor saturation
for mouse (Vtum=8 mL/kg BW). Simulations are based on the cell-level tumour
PBPK model without natural ligand following T-DM1 single dose of 3.6 mg/kg
BW. The figures below display the receptor saturation (RC/(RC+R))-time profiles.
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A.3.3 Impact of tumour ligand concentration on therapeutic
efficacy

In section 5.4, we studied the impact of ligand-drug competition for receptor binding
on therapeutic efficacy of anti-EGFR mAbs with different KD values (zalutumumab
and panitumumab). A constant ligand EGF concentration within tumour tissue
(Lss =8.16e-1 nM, based on EGF MW of 6 kDa) was assumed. We observed from
Figure 5.8 that %-residual EGFR activity and %-EGFR saturation were not inversely
correlated and %-residual EGFR activity highly differed dependent on mAb KD.
Krippendorff et al. [13], however, predicted similar %-residual EGFR activity despite
manifold change in KD assuming a lower constant tumour EGF concentration
(Lss=2.36e-3 nM, based on EGF MW of 133 kDa).

In this section, we present a rationale for the different values of tumour EGF concen-
trations that were assumed and analyse the impact of tumour EGF concentration on
therapeutic efficacy of anti-EGFR mAbs.

Stated differences in EGF concentrations can, e.g., be explained by the different
values of EGF MW that are reported within literature. Differences in EGF MW
account for the various molecular existing forms. EGF is reported to be synthesised
as a precursor form with MW of around 130-160 kDa. The precursor form is
trafficked to the cell membrane and processed to the secreted mature soluble protein
with MW of approx. 6 kDa [47, 189, 190]. Different organs can contain different
amounts of mature protein [47]: As an example, in salivary gland, precursor EGF
appears to be processed intracellularly to mature EGF, whereas kidney contains
mostly unprocessed EGF with low levels of mature EGF [189]. Both forms, however,
are reported to be biologically active and bind to EGFR with same affinity [47,
189].

Figure A.10 shows the simulations of %-EGFR saturation and %-residual EGFR
activity for zalutumumab and panitumumab in human patients based on the cell-
level tumour PBPK model with low (2.36e-3 nM [13]) tumour EGF concentration.
We observed following differences in comparison with our results from section 5.4
(Figure 5.8) based on larger constant ligand EGF concentration within tumour tissue
(Lss =8.16e-1 nM):
In Figure 5.8, %-residual EGFR activity highly differed between panitumumab and
zalutumumab, whereas in Figure A.10, we observed quite similar %-residual EGFR
activity for panitumumab and zalutumumab. Furthermore, in Figure A.10, %-EGFR
saturation and %-residual EGFR activity are in an inverse relationship in contrast to
Figure 5.8.
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The differences in predictions of mAb efficacy in terms of receptor saturation and
residual receptor activity when assuming those different values of tumour ligand
concentration (Figure 5.8 vs. Figure A.10) highlights the value of our developed
modelling framework allowing to study different scenarios.
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Fig. A.10.: Predicted impact of low ligand concentration within tumour (Lss = 2.36e-3 nM)
competing with panitumumab or zalutumumab for receptor binding following
SD 6 mg/kg BW in human patients. Simulations are based on the cell-level
tumour PBPK model with constant tumour ligand concentration. For zalutu-
mumab, all four layers are superimposed.
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A.4 Model-based predictions of mAb clearance in
paediatric populations

This work was conducted during an internship (I2 module) at F. Hoffmann-La Roche
Ltd. (Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche
Innovation Center Basel) as part of the graduate research training program PharMetrX:
Pharmacometrics & Computational Disease Modelling from September - December
2016.

The FDA act 2012 requires sponsors to submit a paediatric drug development plan to
the regulatory agency at the end of Phase II studies [191]. ‘The stronger enforcement
to obtain paediatric information by the regulatory agencies in recent years resulted
in an increased number of trials in children.’ [191, p. 364] Defining an adequate
first dose in children is one of the main challenges in conducting clinical studies
in children in spite of practical and ethical considerations [191]. For sMDs at least
for children above two years of age, there are two well-established approaches to
predict children PK from adult PK data [60, 192–194]:

• allometric scaling and
• physiologically-based extrapolation.

For children younger than two years, it is known that maturation processes have
marked effects on PK parameters [194].

For mAbs, a few methods to predict PK and to determine exposure in children have
been suggested in the literature. Mainly these methods include allometric approaches
and PBPK models. Unlike for sMDs, a systematic and quantitative comparison of
both approaches for mAbs is not available so far [179]. The present study aims
to examine the published models that are used to characterise mAb PK in children
and to compare the model-based predictions across age. In this context, the impact
of growth and maturation on PK parameters has not been well-characterised for
mAbs [179, 195]. For each PK process, i.e., absorption, distribution and elimination,
there are considerable knowledge gaps regarding children-specific properties that
influence PK [179]. Model-based comparison of mAb PK across age in paediatric
populations is exemplified by using the example of CL, which is an important PK
parameter to determine exposure together with the area under the curve. Our
analysis will focus on the unspecific part of mAb PK that is of key relevance when
target-mediated processes are saturated (which is often the case for mAbs at steady
state dosing).

The present chapter is organised as follows: First, we explore the published empirical
models involving paediatric populations to characterise mAb PK and/or compare
exposure for various dosing regimens in children. Using these models, we quan-
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titatively compare the model-based predictions of clearance (mean and spread)
across age. Furthermore, we briefly summarise the abilities of currently available
PBPK modelling approaches to predict mAb PK in paediatric populations and include
predictions of clearance across age based on PBPK-extrapolation.

A.4.1 Empirical modelling methods to predict PK in paediatric
populations - Data & Models

This analysis is based on mAb PK models involving paediatric populations (including
individuals below 12 years of age) available in literature. A model from an internal
report of F. Hoffmann-La Roche Ltd. was also investigated.1

All models aimed to characterise or evaluate the PK of mAbs in paediatric patients
using non-linear mixed-effects modelling approach (NLME). NLME models facilitate
the quantification of the typical model parameters in the population, their variability
among individuals and the residual variability. The NLME approach can be applied
to a wide variety of data including pharmacokinetic and pharmacodynamic data and
enables for explanation of variability in a population using patient characteristics,
also termed covariates. For mAbs, BW is often incorporated as a covariate on
clearance in population PK (POP-PK) analyses. Serum albumin concentration (Alb)
and ADAs have also been identified to have a large impact on the clearance of
mAbs [36]. The pharmacokinetic characteristics of mAbs are reviewed in detail in
Chapter 2.

As commonly reported for mAbs, the concentration-time profiles were described by
one- or two-CMT models with solely linear elimination and/or non-linear elimination.
Within the investigated models, BW and serum albumin concentration were the most
frequent covariates on linear clearance. Furthermore, ADA status, body surface area
(BSA), body mass index (BMI), sex, race, disease and co-medication were identified
as significant covariates on linear clearance. Only in a single study [196], where
the PK of palivizumab was analysed, an explicit age-based ‘maturation’ model was
reported for linear clearance. In Table A.2, we provide an overview on the current
(late 2016) published mAb POP-PK models where clinical data of paediatric patients
was used for model development.

1The covariate model for the linear clearance (body surface area) is used here in comparison with
similar models from public domain. This relationship is part of a POP-PK model developed at F.
Hoffmann-La Roche Ltd. to characterise the PK of mAb X in a paediatric population of roughly 200
patients between 2-17 years (3 patients < 3 years). Detailed values on the clearance parameters
and information on mAb X, the patient population, and the developed PK model are not disclosed.
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We make use of the following definitions according to the classification of paediatric
age categories by the FDA [197]:

• Neonates: Birth to 1 month,
• Infants: 1 month to 2 years,
• Children: 2 to 12 years, and
• Adolescents: 12 to < 16 years.

Tab. A.2.: Overview on the current (late 2016) published mAb POP-PK models involving
clinical data on paediatric populations, see text for details

Antibody Study Age range of study population
(number of individuals)

Covariates on unspecific CL

Palivizumab [196] ≤ 2 years (1684) & > 18 years
(116)

BW, age, race, disease, ADAs

Bevacizumab [198] 0.5 - 21 years (152) BW, Alb, sex, disease
Canakinumab [199] 2 - < 20 years (201) BW, Alb
Adalimumab [200] 6 - 17 years (189) BW, ADAs
Omalizumab [201] 5 - > 18 years (2155) BW, BMI
Infliximab [202] 6 - 76 years (692) BW, Alb, ADAs, co-medication
mAb X internal 2 - 17 years (188) BSA

The different investigated models are based on data of different study populations.
For sMDs, extrapolation from adults to children older than two years is possible using
size-based scaling [60, 194]. For infants, maturation processes play an important
role and need to be taken into account [194]. The question arises whether and to
what extent this also holds true for mAbs. As can be inferred from Figure A.11, for
mAbs, there is no study, which covers the whole age range, in particular including
individuals below and above two years of age. Furthermore, data is generally sparse
for infants with only two studies including data for infants and only four studies
including data for subjects ≤ 3 years of age. In addition, the number of included
individuals ≤ 3 years of age is generally very low: nine subjects for bevacizumab,
24 subjects for canakinumab and only three subjects for mAb X. The study [196],
where the PK of palivizumab was analysed, was the only study including very rich
data for infants, i.e., the paediatric dataset was comprised of 1684 patients ≤ two
years of age and preterm infants were included as well.

The presented NLME models used to characterise mAb PK in children mainly include
purely body weight-based scaling methods where adult pharmacokinetic parameter
values are scaled to children based on size models (allometric scaling). Applying
simple allometry, the typical value of linear clearance is often described as a function
of individual body weight normalised by the reference body weight of 70 kg with a
fixed allometric exponent of 0.75 [196, 198]:

CL = CLpop ·
(BW

70

)0.75
(A.12)
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Fig. A.11.: Age ranges of the study populations used for development of the investigated mAb
POP-PK models. The numbers of individuals N is given for children below two
and three years of age that were included in the respective POP-PK analyses.

where CLpop is the typical clearance at a BW of 70 kg. The allometric scaling
approach for linear clearance differed between the POP-PK models presented in
Table A.2 with respect to the reference BW and the allometric exponent. In study
[200], CL was normalised to the median BW of the study population and in study
[199] to a BW of 33 kg. The allometric exponent was estimated and ranged from
0.48 to 0.8 in [199, 200, 202]. Allometric scaling approaches do not explicitly take
into account maturation processes.

Only a single study [196] included an explicit age-based ‘maturation function’
to describe mAb CL in young patients < 2 years. The authors [196] aimed to
characterise the population PK of palivizumab in adults and children. Palivizumab
is approved starting at 35 weeks of gestational age to < 2 years. The so-called
‘maturation function’ is described by a covariate model that considers age in addition
to body weight effects:

MF = 1− β · e(− ln(2)
τCL
·PAGE−GA

4.35 )
, (A.13)

where PAGE is the sum of gestational and postnatal age (PNA) in months, GA the
gestational age of 40 weeks (full-term neonate), β is the fractional change in CL
for a typical full-term (40-week PAGE) infant, τCL is the maturation half-life of
62.3 months, and 4.35 is the scaling factor for weeks/month. The age descriptor
PAGE is also termed postmenstrual age in literature. Figure A.12 shows explicitly
the impact of age on clearance using the maturation function in Eq. (A.13). The
maturation function was developed based on a population PK analysis involving
adult and paediatric (below two years of age) PK data. Thus, for children between 2
and 18 years, the trend of CL vs. age is solely an a priori prediction.
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Fig. A.12.: Explicit age impact on unspecific mAb clearance. ‘Maturation’ of clearance is
described by an empirical covariate model that considers age in addition to body
weight effects [196]. Relative impact on CL is computed via CL=(100 % · MF)
with maturation function MF from Eq. (A.13).

In three out of seven mentioned POP-PK studies, serum albumin concentration was
identified as a covariate on linear CL. For example in [198], in addition to BW, serum
albumin concentration was included to describe bevacizumab linear CL:

CL = CLpop ·
(BW

70

)0.75
·
(Alb

39

)−0.3
(A.14)

with individual serum albumin concentration normalised to the median value of
the model building population (39 g/L ) and an estimated exponent of −0.3. Used
reference albumin concentration and estimated allometric exponent for albumin
differed between the models in Table A.2.

The study population used for model development can have an impact on the
estimation of CL, as nicely illustrated by study [202]. The objective of study [202]
was to compare data on the PK properties of infliximab in paediatric and adult
patients with moderately to severely active Crohn’s disease. Fasanmade et al. [202]
developed the PK models (i) based on children data only (termed in the following
the ‘children infliximab model’); (ii) based on adults data only; and (iii) based
on children and adults data (termed in the following the ‘final infliximab model’).
The authors used the combined population for establishing important covariates on
infliximab PK since the paediatric study lacked data to allow for a full determination
of influential covariates. Covariates on infliximab CL such as ADA status and co-
medication could not be determined using the paediatric study population only
because almost all of the paediatric patients in the study were treated concurrently
with both, infliximab and immunomodulators. Moreover, the ADA status was not
detected as a significant covariate in paediatric patients as only three patients
(2.8%) were positive for ADAs. Thus, the underlying study population influences the
identification of covariates on CL. As an example, reference values and estimated
exponents for the covariates BW and Alb differ between the three models in [202].
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In addition to body weight, albumin or explicit age effect, other covariates on linear
CL were identified by the authors of the different studies (see Table A.2). As an
example, Han et al. [198] described the PK of bevacizumab by a linear two-CMT PK
model with covariates such as body weight, albumin, gender and disease effect for
clearance. Owing to limited information on, e.g., specific covariates such as disease,
in our analysis, only body weight, serum albumin concentration, gender and age
effects on CL were retained. Considering the diversity of study populations of the
different publications (e.g., patients with different diseases within one study), the
covariates such as ADA status, race, disease effect and co-medication were set to the
respective reference values of a healthy caucasian individual.

For example, in our analysis bevacizumab linear clearance was described as a
function of body weight and serum albumin concentration as well as gender effects:

CL = CLpop ·
(BW

70

)0.75
·
(Alb

39

)−0.3
· 1.11m (A.15)

where m=0 for female and m=1 for male. 9.90 mL/h is the typical clearance (CLpop)
at a BW of 70 kg.

Robbie et al. [196] added covariates such as race, disease effect and ADA titer to
describe the linear CL of palivizumab, however, in our analysis only body weight
and explicit age effects on CL were retained (see above):

CL = CLpop ·
(BW

70

)0.75
·
(

1− β · e(− ln(2)
τCL

)·PNA
)
· eηCL (A.16)

where 197 mL/day is the typical clearance (CLpop) at a BW of 70 kg, and PNA in
months. Due to limited studies in pre-term infants, in our analysis, only postnatal
age (PNA= PAGE-GA) was included as age descriptor on CL.
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Quantitative comparison of unspecific CL - How to compare the different
models?

The objective of our study was to quantitatively compare the model-based predictions
of unspecific clearance (mean and spread) across postnatal age using the investigated
population PK models (Table A.2). As described in the previous section, clearance
was based on different covariates, e.g., BW or Alb. Following question arose: How
to compare the different CL-models when they are based on different covariates?
Linking the reported covariates to PNA provides a potential answer to the question
(see Figure A.13).
As an example, given CL as a function of BW in study [198]:

CL(BW) = CLpop ·
(BW

70

)0.75
, (A.17)

we need the relationship between BW and PNA in order to compute CL as a function
of PNA:

CL(PNA) = CLpop ·
(BW(PNA)

70

)0.75
. (A.18)

Fig. A.13.: Linking the covariate body weight on clearance to PNA using the relationship
between BW and PNA.

To do so, we make use of the reported relationship of body weight vs. PNA and body
height (BH) vs. PNA from the WHO recommended growth charts [203]. Information
of both size measures is necessary to compute other covariates such as BSA or BMI
as functions of PNA. Body surface area was linked to body weight and body height
via the formula by Dubois & Dubois [204]:

BSA = 0.007184 · BH0.725 · BW0.425.

The advantage of using the WHO recommended growth charts, is that they provide
continuous information for children from birth up to 19 years by combining the
information of the 2006 WHO growth charts for children aged < 24 months and the
CDC growth charts for children of 2-19 years. Note that the WHO recommended
growth charts only consider healthy subjects not receiving pharmacotherapy and
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lack data for premature neonates. Due to limited studies in pre-term infants, we
included only postnatal age as age descriptor on CL.

Figure A.14 shows the BW vs. PNA relationship from WHO/CDC growth charts and
Figure A.15 shows the BW-dependency of CL across PNA based on Eq. (A.18) with
CLpop set to 100%.
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Fig. A.14.: Median body weight vs. postnatal age relationship from WHO/CDC growth charts
for male and female healthy subjects up to 18 years.
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Fig. A.15.: Body weight impact on clearance. Predicted weight-dependency of clearance
across age is based on the reported body weight vs. postnatal age relationship
from WHO/CDC growth charts (Figure A.14). Relative impact on CL is computed
based on Eq. (A.17) with with CLpop set to 100%.

In addition, similarly to BW, we also linked the covariate serum albumin concen-
tration to PNA in order to compute CL as a function of albumin dependent on
PNA. Quantitative changes in serum albumin concentration [g/L] across age (see
Figure A.16) were computed using the function published by [205]:

Alb(PNA) = 1.1287 · log(PNA) + 33.74 (A.19)

with PNA in days.

‘Maturation’ of CL that considers postnatal age in addition to BW effects can be
directly used to predict CL as a function of PNA (see Figure A.12).
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Fig. A.16.: Ontogeny of albumin concentration. The relationship of albumin concentration
across postnatal age from healthy subjects [205] is used to predict the impact of
albumin concentration on clearance.

The investigated models were developed based on different study populations in
paediatric patients with different diseases, e.g., study [196] characterised the PK of
palivizumab in patients with serious respiratory tract disease, the patient population
in [198] suffered from primary central nervous system tumours or sarcomas, the PK
of paediatric patients with Crohn’s disease was analysed in [200].

As already mentioned in the previous section, disease status of the study population
used for model development impacts covariates on CL such as body weight or
serum albumin concentration. Both, the BW vs. PNA relationship (from WHO
recommended growth charts) and the Alb vs. PNA relationship [205] are based on
healthy subjects. The authors [205] present the ontogeny of albumin concentration
for healthy subjects with approx. 37g/L for infants and 43 g/L for adults (see
Figure A.16). In study [198] where children suffered from primary central nervous
system tumours or sarcomas, albumin concentration was normalised to the median
value of the model building population (0.5-21 years of age), i.e. 39 g/L with range
(24-52 g/L). In this case, an albumin dependent quantification of disease status
would be necessary and albumin effect dependent on age may be negligible.

The WHO recommended growth charts only consider healthy subjects not receiving
pharmacotherapy and lack data for premature neonates. Due to limited studies
in pre-term infants, we included only postnatal age as age descriptor on CL. For
children below two years of age, the immaturity of renal and metabolic systems
largely affects the PK of small molecule drugs. Postmenstrual age (GA+PNA), was
shown to correlate better with biological processes such as glomerular filtration
rate and better explains the time course of sMD clearance for children until two
years of age [194, 206]. The question arises to what extent this also holds true for
mAbs, since they do not follow renal excretion neither classical hepatic enzymatic
metabolism.
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Considerable inter-individual variability has been reported for monoclonal anti-
body pharmacokinetics [86]. Thus, the objective of our analysis was also to consider
IIV when comparing the model-based predictions of unspecific clearance across post-
natal age using the investigated population PK models (Table A.2). Again, following
question arose: How to compare variation in clearance with CL models based on
different covariates and, what factors cause IIV in clearance? IIV in clearance may
be related to many different aspects, e.g., differences in disease status, sex, ethnicity,
age, body size, genetic polymorphisms, concomitant medication, comorbidity and
immune status [86]. For sake of simplicity, we assume that IIV in clearance is based
on following two levels:

i) Variation of body weight across age: using the reported percentiles of body
weight across age from WHO recommended growth charts.

ii) Estimated IIV on the population parameter clearance: using the reported
between-patient random effect in the investigated population PK models (Ta-
ble A.2):

CLi = CLpop · eηCL (A.20)

with CLi being the value of the PK parameter for the ith patient and ηCL is the
between-patient random variable corresponding to the PK parameter. In the in-
vestigated population PK models, η is assumed to be an independent, identically
and normally distributed statistical error with a mean equal to zero and a standard
deviation ω. The magnitude of the IIV in each pharmacokinetic parameter was
expressed as % CV of the typical population value and reported in the mentioned
population PK models. Standard deviation ω was calculated using the following
formula [207]:

CV%
100 =

√
(eω2−1). (A.21)

The ontogeny of albumin was explicitly implemented (without variability).
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Fig. A.17.: Body weight vs. postnatal age relationship from WHO/CDC growth charts including
between subject variability.
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For the results of simulation-based comparison of mAb clearance using the examined
POP-PK models, see section A.4.3.

A.4.2 PBPK modelling approaches to predict PK in paediatric
populations

More and more companies are submitting PBPK modelling reports to health authori-
ties and it is well possible that health authorities ask for PBPK modelling approaches
to support paediatric drug development in neonates and infants [191]. There are
several PBPK software systems commercially available and PBPK models are success-
fully used to predict differences in PK between adults and children for several sMDs
[208].

Unlike for sMDs, there is no consensus on how to model monoclonal antibodies dis-
position for adults in a PBPK context (for details see Chapter 3). Current approaches
hugely vary in their representation of physiology and its parameterisation, which
poses a challenge for their application, e.g., within the pharmaceutical industry [3,
63]. Consequently, the potential of PBPK modelling for mAbs has not yet been fully
exploited [4].

For sMDs and children above two years, allometric scaling and PBPK-based extrap-
olation to children performed very similarly [60]. Unlike for sMDs, a systematic
and quantitative comparison of both approaches for mAbs (allometric scaling and
PBPK-based extrapolation to children) is not available so far [179]. We cannot
even expect similar predictions by published mAb PBPK models, since there is no
consensus on how to model mAb disposition in a PBPK context.

Furthermore, for infants, maturation processes also have to be taken into account
when predicting sMD PK of children [194]. The impact of maturation, e.g. on the
elimination pathways, however, has not been well-characterised for mAbs [179, 195].
An allometric body weight-based model with ‘maturation’ of CL with age was used
to describe the PK of palivizumab in adults and children [196]. The ‘maturation’,
however, is a purely empirical description and no underlying mechanism is given.

Since mAbs do not follow renal excretion neither classical hepatic enzymatic me-
tabolism, the established enzyme maturity paradigm that explains differences from
neonates to adolescents may not apply to mAbs. Elimination of mAbs is instead
considered to comprise different routes of administration namely target-mediated
clearance and unspecific clearance pathway. The latter pathway is highly influenced
by FcRn. Following endocytosis, both, endogenous IgG and therapeutic mAb compete
for binding to FcRn that directs them from the intracellular space back to the systemic
circulation and, thus, protects them from degradation. Knowledge about ontogeny
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in endogenous IgG concentration and ontogenetic development of the FcRn salvage
pathway (involving endocytosis rate, endosomal sorting, lysosomal degradation,
FcRn concentration) may provide explanations for the maturation especially of the
unspecific clearance pathway of mAbs.

Children undergo a dramatic transition at birth from a protected environment to
the environment of the outside world. Most of IgG that is present at birth is of
maternal origin, which declines after birth resulting in reduced albumin and IgG
concentrations for children below one year of age [209]. In contrast to IgG ontogeny,
there is no information on the ontogenetic development of FcRn expression, binding
affinity to FcRn or FcRn uptake into endosomes. To our knowledge, there are not
even any published measurements of FcRn abundance in the different tissues in
human. We expect maturation processes of FcRn expression to exist, since there is
a limited ability to produce an immune response in newborns. Macrophages and
monocytes that are detected in umbilical cord at birth show less chemotaxis [209].
A different cytokine production in neonates and infants compared to adults might
impact the ontogeny in FcRn expression since FcRn has a structural similarity to MHC
class I molecules [40]. As an example, the cytokine interferon alpha is important for
MHC class I expression [210]. The authors in [211], however, showed that interferon
gamma has no effect on FcRn expression in human retinal pigment epithelial cells and
no enhanced cell surface FcRn expression after stimulation of human keratinocytes
with pro-inflammatory cytokines was observed in [212]. In addition, the median
serum albumin concentration (used as a covariate in mAb POP-PK analyses) appeared
to be lower in paediatric patients than in adult patients [202]. Both, IgG and albumin
are protected from degradation via the FcRn salvage pathway. High baseline serum
albumin concentration may indicate increased functional efficiency of FcRn, leading
to reduced mAb elimination.

Mechanistic knowledge and adequate estimates on physiological ontogeny can be
incorporated in physiologically-based methods to predict mAb PK in paediatric
populations. Published PBPK models for mAbs, however, are quite heterogeneous,
e.g., regarding the importance to explicitly account for endogenous IgG and with
respect to the FcRn salvage mechanism. Furthermore, still today, there is very
limited quantitative knowledge about the processes involved in the FcRn protection
mechanism, e.g., fluid-phase endocytosis, endosomal sorting and FcRn expression.

Summary of features of commercial PBPK software packages

In the present section, the current (late 2016) features of commercially available
PBPK software to obtain a paediatric prediction with focus on mAb unspecific
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clearance are briefly examined: GASTROPLUS® 9.0 PBPK module for biologics,
PK-Sim® Version 7.0, Simcyp Simulator® Version 15 Release 1.

The concentrations of the neonatal Fc receptor and of endogenous IgG are important
factors that determine the unspecific clearance of mAbs. Physiological knowledge
on maturation and growth processes, e.g., ontogeny in endogenous IgG concen-
tration and ontogenetic development of the FcRn salvage pathway may provide
adequate estimates of the unspecific mAb clearance. All PBPK models consider
explicitly/implicitly the competition between endogenous IgG and therapeutic mAb
for binding to FcRn (see Table A.3 for an overview).

Tab. A.3.: Implemented features in commercial PBPK software to predict mAb unspecific
clearance in paediatric populations

Implemented IgG
ontogeny

Implemented
FcRn ontogeny

PK-Sim® Version 7.0 yes no
Simcyp ® Version 15 Release 1 yes no
GASTROPLUS® 9.0 no no

Ontogeny of FcRn expression and of endogenous IgG concentration is not included
in the currently available version of GASTROPLUS® 9.0 PBPK module for biologics
and thus, the ability to obtain PK predictions for mAbs in paediatric populations
is limited (Viera Lukacova, personal communication, GastroPlus PBPK Modeling &
Simulation Workshop, October 18, 2016).

A paediatric PBPK model for biologics is implemented in PK-Sim® Version 7.0. In this
model, the physiological parameters of the adult biologics model were allometrically
scaled to children using body weight and body height (for details, see [213]) and
the scaled paediatric model was validated using literature clinical data. Processes
involved in the FcRn protection mechanism were allometrically scaled from adults to
children and again externally qualified with literature data for biologics exhibiting
FcRn-mediated linear kinetics. However, in the paediatrics biologics PBPK model,
FcRn ontogeny is not implemented [214].

The paediatric module of the Simcyp Simulator® (Version 15 Release 1) incorporates
a PBPK model for biologics. The Simcyp® paediatric population database is based on
a North European paediatric population of healthy individuals excluding pre-term
neonates. Physiological variability is implemented in the paediatric simulator at
different ages. Similar to the other software packages and in line with absence of
knowledge, FcRn ontogeny is not implemented in the paediatric module of Simcyp
Simulator®. Instead, FcRn abundance is fixed to a value of 40 µM over age with 10%
CV. This value was estimated by [67] for FcRn abundance in mice. The ontogeny
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of endogenous IgG concentration (see Figure A.18) is based on an in-house meta-
analysis (Felix Stader, personal communication, October 17, 2016).

Still today, there is very limited quantitative insight about the processes involved in
the FcRn protection mechanism, e.g., fluid-phase endocytosis, endosomal sorting
and FcRn expression. Thus, currently available PBPK models within each of the
mentioned software packages lack mechanistic knowledge to explain the processes of
unspecific mAb elimination and its ontogenetic development. As a case example for
PBPK-based extrapolation, Simcyp® was used to predict the unspecific mAb clearance
across age. Predicted median CL by Simcyp® is then compared to clearance over
age based on empirical compartmental models (from section A.4.1). For results, see
section A.4.3.

Using Simcyp Simulator®, two distribution models are available for mAbs: (i) a
minimal PBPK model for mAbs (mPBPK) [215] and (ii) a full PBPK model for mAbs.
In the following, further details of the mPBPK model for mAbs are discussed as
it is used to predict median unspecific clearance across age. Despite the same
naming, the minimal PBPK model in Simcyp® is different from the minimal PBPK
model proposed in [73]. The Simcyp®’s mPBPK model contains only a single tissue
compartment, plasma and lymph node. All of the tissue compartments are lumped
into a single CMT, which is subdivided into vascular, endothelial and interstitial space.
Competition of endogenous IgG and mAb for FcRn binding in endothelial space is
included based on the model for FcRn recycling in [66]. Most of the parameters are
obtained from literature, except the catabolic CL of free endogenous IgG (see below),
the vascular reflection coefficient of endogenous IgG and the recycling rate constant,
which are manually fitted [215]. The unspecific CL in the Simcyp®’s mPBPK model
has two main contributions:

i) a catabolic CL contribution (catabolic CL applies to unbound mAb), which
represents the CL of mAb from endothelial space. It is set to 0.0175 L/h based
on the intrinsic CL of endogenous IgG from endothelial space and assumed to
be the same for all mAbs [215]. It reflects the total value including all tissues.
The impact of the catabolic CL on the total unspecific CL is highly influenced by
the binding affinity to FcRn, and the concentrations of FcRn and endogenous
IgG.

ii) an additional systemic CL contribution, which represents a lumped CL to
describe additional CL pathways of mAbs in venous plasma such as immuno-
genicity and Fc gamma receptor-mediated elimination. The additional sys-
temic clearance in the Simcyp Simulator® is incorporated as a constant and
compound-specific value. The impact of growth and maturation on additional
systemic CL is unknown, since the value was estimated based on clinical data
in adults and describes several CL pathways of mAbs. This fact also high-
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Fig. A.18.: Ontogeny of endogenous IgG concentration based on Simcyp® Paediatric population.
Most of IgG present at birth is of maternal origin. Decline of maternal IgG levels
after birth and impaired production of paediatric IgG at birth lead to low IgG
levels for children < 1 year of age [216]. IgG levels stabilise by the age of
approx. 5 years.

lights the difficulty when extrapolating the CL to paediatric populations. In
order to generate predictions in paediatric populations, the additional systemic
clearance has to be scaled by the user applying simple allometry (Felix Stader,
personal communication, October 17, 2016).
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A.4.3 Simulation-based comparison of mAb CL

Comparison of age-dependency of mAb unspecific clearance based on
available POP-PK models

Unspecific linear mAb clearance was computed using the covariate effects on CL
based on the available POP-PK models. The function of CL across age was predicted
through linking body weight and albumin concentration to postnatal age (see
section A.4.1). For adalimumab and omalizumab, only the apparent clearance
(CL/F) was reported within the respective POP-PK models [200, 201].

The value of absolute unspecific CL varies between the mAbs at a specific age.
Furthermore, the slope of the ‘CL vs. age relationship’ differs between the various
mAbs (see Figure A.19 (top)). Note that the small discontinuity in CL at two years
of age arise through the change from WHO to CDC growth charts at two years.
The absolute CL of palivizumab, which was predicted using an explicit maturation
function is very low in comparison to bevacizumab, where also subjects below two
years of age were included in model development.

Absolute mAb CL was normalised to the CL of an 18 year-old subject of the re-
spective mAb to better compare the trend lines between the different compounds.
Pronounced differences in the overall trend of normalised CL across age are visible
between different mAbs, e.g., at two years of age, CL varies up to a factor two (see
Figure A.19 (bottom)). Due to differences in the slope of the ‘CL vs. age relationship’
between the mAbs, it may be challenging to predict the CL at younger ages solely
based on the CL of an 18 year-old subject.

Potential reasons for the differences in CL between the mAbs, can be, e.g., (i)
differences in modelling (purely body weight-based or including explicit age effect
on CL); (ii) disease effects or (iii) different study populations. Considering the
diversity of study populations of the different publications (e.g., patients with
different diseases within one study), predicted clearance can be greatly influenced
by disease status. Parameters such as lymph flow rate and lymph volumes are altered
in several disease conditions as rheumatoid arthritis and cancer [86]. Furthermore,
the abundance of Fc gamma receptors and the immune status highly differ at disease
conditions. Covariates affecting infliximab PK have been reported to be different
between rheumatoid arthritis and ulcerative colitis [202]. As already mentioned in
section A.4.1, estimated clearance and covariates on CL can be greatly influenced by
the study population used for model development.
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Fig. A.19.: Predicted median absolute clearance (top) and predicted normalised median ab-
solute clearance (bottom) for different mAbs based on available POP-PK models.
Absolute CL was normalised to CL of an 18 year-old subject.
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Comparison of CL including inter-individual variability

IIV in clearance was considered when comparing the model-based predictions of
unspecific linear mAb clearance across postnatal age using the investigated popula-
tion PK models (Table A.2). The comparison of absolute clearance including IIV at
the postnatal age of two years for four mAbs is shown in Figure A.20 (top). Data is
usually sparse in infants and children ≤ 3 years of age. As an example, only four out
of seven investigated population PK models (Table A.2) included data for children
≤ 3 years of age (see Figure A.20 (top)). In addition, the number of included indi-
viduals ≤ 3 years of age is generally very low. For example, the paediatric dataset
in [198] was comprised of 7 patients ≤ 2 years, whereas the paediatric dataset in
[196] was comprised of 1684 patients ≤ 2 years of age. Thus, the CL predictions of
bevacizumab, mAb X and canakinumab in infants are mostly based on extrapolation
except for palivizumab [196].

A marked difference between the predictions of palivizumab and the other three
mAbs can be observed in Figure A.20 (top). The lower median CL of palivizumab
may be related to the explicit age effect that was added to the CL model in addition
to body weight effects in study [196]. The POP-PK model for palivizumab [196] was
the only one including such an explicit age-based function to empirically describe
mAb CL in infants. This function was termed ‘maturation function’, however no
underlying physiological mechanism was given. It could be related to any other
effect with age as surrogate such as disease. In addition, Robbie et al. [196] could
probably stratify between an explicit age effect and body weight effects on CL due to
the large number of individuals ≤ 2 years of age. Thus, it remains to be elucidated
within further research whether the ‘maturation’ function is related to a bias in
assessment due to usually sparse data in infants (except palivizumab) or due to
effects of e.g. disease and study population.

The comparison of absolute mAb clearance including IIV at the postnatal age of six
years is shown in Figure A.20 (bottom). The present selection of mAbs was chosen
because data of individuals at six years of age were included in the population PK
analyses of the presented mAbs. Since only CL/F was reported for adalimumab and
omalizumab, the absolute CL is not compared with the herein presented mAbs.

Infliximab CL was computed based on different models [202]: (i) the model based
on children data only (‘Infliximab children’) and (ii) the model also including adults
data (‘Infliximab children and adults’). The model for adults and children provides a
larger median value than the CL based on the children model alone, and IIV was
estimated lower based on children data (see Figure A.20 (bottom)). This nicely
demonstrates that the study population can have a marked impact on the estimation
of the clearance parameters.
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In summary, differences in CL do not become negligible at six years of age compared
to infants, and IIV between the different mAbs is dependent on the underlying study
population (i.e., the random effect in the POP-PK models).

Fig. A.20.: Predicted absolute clearance for different mAbs based on available POP-PK models
including IIV on CL for two years of age (top) and six years of age (bottom). IIV is
based on variability of BW across age and on the between-patient random effect
in POP-PK models. Variability on albumin ontogeny is not implemented.

Commercial PBPK software to predict mAb PK in paediatric populations

As a case example for physiologically based models, Simcyp® was used to predict
the unspecific mAb clearance across age. Predicted median CL by Simcyp® was
then compared to median clearance over age based on the investigated POP-PK
models that mainly include purely body weight based scaling methods to predict CL
in children.

In general, the adalimumab CL predicted by Simcyp® shows a stronger increase in
CL for the first six years of life than compared to the other mAbs, which were mostly
predicted using allometric scaling (see Figure A.21). Even for palivizumab, where a
‘maturation’ function was included to predict CL in infants, we see a great difference
in trend line to the Simcyp® CL. Since, the Simcyp® CL prediction was based on
an i.v. administration, it cannot be directly compared to the absolute adalimumab
CL/F based on the respective POP-PK model [200]. Despite s.c. administration,
however, the slope of adalimumab CL/F is more similar to the CL predictions of the
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other mAbs than compared to the Simcyp® CL. The different trend line of Simcyp®

CL across age (especially for younger children below six years) can be explained
by lower endogenous IgG concentrations until six years of age at a constant FcRn
expression level across age implemented into Simcyp® Simulator. This results in a
larger binding capacity of mAb to FcRn and thus in reduced mAb CL.
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Fig. A.21.: Predicted normalised median clearance for different mAbs based on available POP-
PK models including Simcyp®-predicted adalimumab linear clearance. CL values
were normalised to CL of an 18 year-old subject.
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A.4.4 Discussion

A quantitative overview of PK characteristics with focus on linear unspecific CL
across age of mAbs in paediatric populations has been given. Current POP-PK models
use mostly a combination of weight dependency and currently only one publication
reported an explicit age-based ‘maturation’ function to describe the PK of mAbs in
infants. Differences in the overall trend line of linear CL across age based on POP-PK
analyses are visible between the investigated mAbs. This highlights the difficulty to
solely extrapolate CL from the value in adults or adolescents.

So far, only a small number of subjects below three years of age were included in the
model development of the investigated POP-PK models. Only two studies included
subjects below two years of age. Furthermore, if individuals were included below
three years, POP-PK analyses rely on usually very sparse data in young children
(except for palivizumab). The absolute CL of palivizumab, which was predicted
using an explicit ‘maturation’ function is lower in comparison to the CL of the other
investigated mAbs using mainly BW-based methods to predict linear CL. It remains to
be elucidated, whether the ‘maturation’ effect on CL is related to a bias in assessment
due to sparse data or due to effects such as disease and study population. The quality
of reporting information regarding model-building strategies and information of the
results of the PK analyses needs to be improved. For example, detailed information
on demographics and on the quality of individual estimated clearance values may
provide valuable information.

Furthermore, the influence and clinical implication of maturation processes on mAb
CL is still unclear. The concentrations of the neonatal Fc receptor and of endogenous
IgG are important factors that determine the unspecific clearance of mAbs. Still
today, there is very limited quantitative insight about the processes involved in
the FcRn protection mechanism and its ontogeny. Thus currently available PBPK
software lack mechanistic knowledge to explain the processes of unspecific mAb
elimination and its ontogenetic development. Detailed physiological knowledge
about the processes involved in the FcRn protection mechanism and its maturation
is needed to investigate relevant physiological differences across age and to increase
confidence using PBPK models.
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