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Abstract. Landscape evolution models (LEMs) allow the study of earth surface responses to changing climatic
and tectonic forcings. While much effort has been devoted to the development of LEMs that simulate a wide
range of processes, the numerical accuracy of these models has received less attention. Most LEMs use first-order
accurate numerical methods that suffer from substantial numerical diffusion. Numerical diffusion particularly
affects the solution of the advection equation and thus the simulation of retreating landforms such as cliffs and
river knickpoints. This has potential consequences for the integrated response of the simulated landscape. Here
we test a higher-order flux-limiting finite volume method that is total variation diminishing (TVD-FVM) to solve
the partial differential equations of river incision and tectonic displacement. We show that using the TVD-FVM to
simulate river incision significantly influences the evolution of simulated landscapes and the spatial and temporal
variability of catchment-wide erosion rates. Furthermore, a two-dimensional TVD-FVM accurately simulates
the evolution of landscapes affected by lateral tectonic displacement, a process whose simulation was hitherto
largely limited to LEMs with flexible spatial discretization. We implement the scheme in TTLEM (TopoToolbox
Landscape Evolution Model), a spatially explicit, raster-based LEM for the study of fluvially eroding landscapes
in TopoToolbox 2.

1 Introduction

Landscape evolution models (LEMs) simulate how the earth
surface evolves in response to different driving forces, in-
cluding tectonics, climatic variability and human activity.
LEMs are integrative because they amalgamate empirical
data and conceptual models into a set of mathematical
equations that can be used to reconstruct or predict terres-
trial landscape evolution and corresponding sediment fluxes
(Glotzbach, 2015; Howard, 1994). Studies that address how
climate variability and land use changes will affect land-
scapes in the long term increasingly rely on LEMs (Gasparini
and Whipple, 2014).

Landscape evolution is not always smooth and gradual.
Instead, sudden tectonic displacements along tectonic faults
can create distinct landforms with sharp geometries (Whit-
taker et al., 2007). These topographic discontinuities do not

necessarily smooth out over time but may persist over long
timescales in transient landscapes (Mudd, 2016; Vanacker et
al., 2015). For example, faults may spawn knickpoints along
river profiles. These knickpoints will propagate upstream as
rapids or water falls (Hoke et al., 2007), thereby maintaining
their geometry through time (Campforts and Govers, 2015).
After an uplift pulse, the river will only regain a steady
state when knickpoints finally arrive in the uppermost river
reaches. Transiency is not limited to individual rivers but
also affects entire orogens such as the Southern Alps of New
Zealand where the landscape may never reach a condition
of steady state due to the permanent asymmetry in vertical
uplift, climatically driven denudation and horizontal tectonic
advection (Herman and Braun, 2006).

Transient “shocks” and topographic discontinuities are in-
herently difficult to model accurately. Most of the widely
applied LEMs use first-order accurate explicit or implicit fi-
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nite difference methods to solve the partial differential equa-
tions (PDEs) that are used to simulate river incision (Val-
ters, 2016). These schemes suffer from numerical diffusion
(Campforts and Govers, 2015; Royden and Perron, 2013).
Numerical diffusion will inevitably lead to the gradual dis-
appearance of knickpoints and will result in ever-smoother
shapes. It has already been shown that numerical smearing
decreases the accuracy of modeled longitudinal river profiles
(Campforts and Govers, 2015). Here, we hypothesize that it
is also relevant for the simulation of hillslope processes: hill-
slopes respond to river incision and inaccuracies in river in-
cision modeling will thus propagate to the hillslope domain.
Whether and to what extent this occurs is still unexplored.

Tectonic displacement is similar to river knickpoint prop-
agation; in both cases, sharp landscape forms are laterally
moving. Numerical diffusion may therefore significantly al-
ter landscape features when tectonic shortening or extension
is simulated using first-order accurate methods. In principle,
flexible gridding overcomes this problem through dynami-
cally adapting the density of nodes on the modeling domain
to the local rate of topographic change. However, models us-
ing flexible gridding have other constraints. They are more
difficult to implement and impose the structure of the numer-
ical grid on the natural drainage network since rivers must
follow the grid structure. Furthermore, the output of flexible
grid models is not directly compatible with most software
that is available for topographic analysis.

Here we present TTLEM (TopoToolbox Landscape Evo-
lution Model), a spatially explicit raster-based LEM, which
is based on the object-oriented function library TopoTool-
box 2 (Schwanghart and Scherler, 2014). Contrary to pre-
viously published LEMs, we solve the stream power river
incision model using a flux-limiting finite volume method
(FVM), which is total variation diminishing (TVD), in order
to avoid numerical diffusion. Our numerical scheme expands
on previous work (Campforts and Govers, 2015) by extend-
ing the mathematical formulation of the TVD method from
one-dimensional to entire river networks. Moreover, we de-
velop a two-dimensional TVD-FVM scheme to simulate hor-
izontal tectonic displacement on regular grids, which enables
simulation of three-dimensional variations in tectonic defor-
mation. The objective of this paper is to evaluate TTLEM and
assess the performance of the numerical methods for a vari-
ety of real and simulated topographic and tectonic situations.

2 LEM components and geomorphic transport laws

2.1 Tectonic deformation

In its simplest form, tectonic processes are represented by
their kinematics and the assumed vertical surface deforma-
tion field U (x,y, t) [L T−1]. However, many tectonic config-
urations imply that displacements have both a vertical (uplift
or subsidence) and a lateral (extension or shortening) com-
ponent (Willett, 1999; Willett et al., 2001). The change in

elevation of the earth surface over time due to lateral tectonic
displacement, excluding vertical rock uplift (∂z/∂t)td, is then(
∂z

∂t

)
td
= u

∂z

∂x
+ v

∂z

∂y
, (1)

where u and v [L T−1] are the tectonic displacement veloci-
ties in the cardinal directions (horizontal u and vertical v).

2.2 River incision

Detachment-limited fluvial erosion (∂z/∂t)fluv is calculated
with the stream power law (SPL) (Howard and Kerby, 1983):(
∂z

∂t

)
fluv
=−KAm

(
∂z

∂x0

)n
. (2)

The equation is solved on a dendritic stream network domain
0, where x0 refers to the distance from the outlet. A [L2]
is catchment area and proxy for the local discharge, and K
[L1–2m T−1] is an erodibility parameter that depends on local
climate, hydraulic roughness, lithology and sediment load.
m and n are the area and slope exponents: their values re-
flect hydrological conditions, channel width and the domi-
nant erosion mechanism. K , m and n are interdependent and
it is usually impractical to constrain any of their values alone
(Croissant and Braun, 2014; Lague, 2014). Thus, many stud-
ies provide estimates for the m/n ratio. For m/n ratios be-
tween 0.35 and 0.8, K values span several orders of magni-
tude between 10−10 and 10−3 m(1–2m) yr−1 (Kirby and Whip-
ple, 2001; Seidl and Dietrich, 1992; Stock and Montgomery,
1999).

2.3 Hillslope processes

River incision drives the development of erosional land-
scapes by setting the base level for hillslope processes. Steep-
ening of hillslope toes leads to increased sediment fluxes
from hillslopes to the river system. Hillslope denudation
(∂z/∂t)hill is equal to the divergence of the flux of soil–
regolith material (qs, [L3 L−1 T−1]):(
∂z

∂t

)
hill
=−∇qs . (3)

Different geomorphological laws describe hillslope response
to lowering base levels. The model of linear diffusion as-
sumes that the soil–regolith flux is proportional to hillslope
gradient ∇z (Culling, 1963):

qs =−D∇z, (4)

where D is the diffusivity [L2 T−1] that parameterizes hill-
slope erodibility and determines rate of soil–regolith creep.
Main controls on variations of D include substrate, lithol-
ogy, soil depth, climate and biological activity. Values of D
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range between 10−3 and 10−1 m2 yr−1 for slopes under nat-
ural land use (Campforts et al., 2016a; DiBiase and Whip-
ple, 2011; Jungers et al., 2009; Roering et al., 1999; West
et al., 2013). Linear hillslope diffusion produces convex up-
ward slopes. Field evidence, however, suggests that the lin-
ear diffusion model is only rarely appropriate (Dietrich et al.,
2013). Instead, hillslopes often tend to have convex to planar
profiles because rapid, ballistic particle transport and shal-
low landsliding dominate when slopes approach or exceed a
critical angle (DiBiase et al., 2010; Larsen and Montgomery,
2012). To account for this rapid increase of flux rates with in-
creasing slopes, Andrews and Bucknam (1987) and Roering
et al. (1999) proposed a nonlinear formulation of diffusive
hillslope transport, assuming that flux rates increase to infin-
ity if slope values approach a critical slope Sc:

qs =−
D∇z

1−
(
|∇z|
Sc

)2 . (5)

2.4 Final model

In summary, TTLEM solves the following PDE, whereby an
explicit distinction is made between the fluvial and hillslope
domain. The fluvial domain is determined by cells having a
contributing drainage area exceeding a critical drainage area
(Ac):

∂z

∂t
=

(
∂z

∂t

)
td
+


U +

(
∂z

∂t

)
fluv

for A≥ Ac

ρr

ρs
U +

(
∂z

∂t

)
hill

for A<Ac

. (6)

The detachment-limited incision model assumes that rivers
incise directly into bedrock and instantaneously excavate all
material entering rivers from adjacent hillslopes. Material
fluxes on slopes mobilize either soil or regolith that have dif-
ferent bulk density than the bedrock. This is accounted for
by multiplying the rock uplift rate with the density ratio be-
tween ρr and ρs [M L−3] representing the bulk densities of
the bedrock and the regolith material, respectively (Perron,
2011).

3 Implementation and numerical schemes of TTLEM

We solve Eq. (6) using a set of numerical schemes that we
implement in the software TTLEM (see also Fig. A1 in the
Appendix). TTLEM is written in the MATLAB program-
ming language and in C-code where this significantly im-
proves performance (e.g., for the nonlinear hillslope diffu-
sion algorithm of Perron, 2011). Integrating TTLEM into
TopoToolbox (Schwanghart and Kuhn, 2010; Schwanghart
and Scherler, 2014) provides access to efficient algorithms of
digital elevation model (DEM) analysis, as well as numerous
routines for visualizing and analyzing modeling outputs. In
the following sections, we discuss the numerical schemes of

TTLEM to solve the PDEs described in the previous section.
The section numbers correspond to the processes indicated
in the model flowchart in the Appendix (Fig. A1).

3.1 Drainage network development

TopoToolbox provides a function library for deriving the
drainage network and terrain attributes (Schwanghart and
Scherler, 2014). The calculation of flow-related terrain at-
tributes, i.e., data derived from flow directions, relies on a
set of highly efficient algorithms that exploit the directed and
acyclic graph structure of the river flow network (Phillips
et al., 2015). Nodes of the network are grid cells and edges
represent the directed flow connections between the cells in
downstream direction. Topological sorting of this network re-
turns an ordered list of cells in which upstream cells appear
before their downstream neighbors. Based on this list, we
calculate terrain attributes such as upslope area with a lin-
ear scaling, thus enabling efficient calculation (O(n)) at each
time step even for large grids (Braun and Willett, 2013).

DEMs of real landscapes frequently contain data artifacts
that generate topographic sinks. Topographic sinks can also
occur during simulations when diffusion on hillslopes creates
“colluvial wedges” that dam sections of the river network. By
adopting algorithms of flow network derivation from Topo-
Toolbox, TTLEM makes use of an efficient and accurate
technique for drainage enforcement to derive non-divergent
(D8) flow networks (Schwanghart et al., 2013; Soille et al.,
2003). Based on the thus-derived flow network, TTLEM uses
downstream minima imposition (Soille et al., 2003) that en-
sures that downstream pixels in the network have lower or
equal elevations than their upstream neighbors.

3.2 Tectonic displacement

We implement a two-dimensional version of a flux-limiting
total volume method to reduce numerical diffusion when
simulating tectonic displacements on a regular grid. Equa-
tion (1) can be written as a scalar conservation law:

zt + f (z)u+ f (z)v = 0, (7)

where f (z)u = uz and f (z)v = vz are the flux functions of
the conserved variable z. We refer to the Supplement of
Campforts and Govers (2015) for a derivation of the differ-
ential form of Eq. (7), which can be converted to a numerical
semiconservative flux scheme:

zk+1
i,j =z

k
i,j +

1t

1x

[
f
i− 1

2 ,j
− f

i+ 1
2 ,j

]
+
1t

1y

[
f
i,j− 1

2
− f

i,j+ 1
2

]
, (8)

where zki,j is the elevation of the cell at row i and column j
at time k×1t . f represents the numerical approximation of
the physical fluxes from Eq. (7). The incoming and outgoing
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fluxes are approximated with a flux-limiting upwind method,
which is TVD. A TVD scheme prevents the total variation of
the solution to increase in time and hence prevents spurious
oscillations that are associated with higher-order numerical
methods (Toro, 2009). The flux limiter entails the method
having a hybrid order of accuracy, being second-order ac-
curate in most cases but shifting to first-order accuracy near
discontinuities. Hence, the TVD-FVM method achieves two
desirable properties: a higher order of accuracy than first-
order schemes and high numerical stability (Harten, 1983).
TTLEM uses a staggered Cartesian grid for numerical dis-
cretization. The DEM grid centers represent the center of the
computational cells, whereas the velocity fields (u and v) are
located at the cell faces.

The numerical TVD fluxes are calculated following
Toro (2009). In the following, we illustrate how to derive the
flux over one out of the four cell boundaries:

f TVD
i+ 1

2 ,j
= f LO

i+ 1
2 ,j
+φ

i+ 1
2 ,j

[
f HI
i− 1

2 ,j
− f LO

i+ 1
2 ,j

]
, (9)

where f HI and f LO represent the high- and low-order fluxes,
respectively:

f LO
i+ 1

2 , j
= α0vi+ 1

2 ,j
zki,j +α1vi+ 1

2 ,j
zki+1,j

f HI
i+ 1

2 , j
= β0vi+ 1

2 ,j
zki,j +β1vi+ 1

2 ,j
zki+1,j . (10)

The low-order fluxes are solved with a first-order explicit up-
wind Godunov (1959) scheme:

α0 =
1
2

(1+ sign(v)) and α1 =
1
2

(1− sign(v)) . (11)

The high-order fluxes are solved with a Lax–Wendroff
scheme (Lax and Wendroff, 1960):

β0 =
1
2

(
1+ v

1t

1x

)
and β1 =

1
2

(
1− v

1t

1x

)
. (12)

From Eqs. (10), (11) and (12) it follows that

f LO
i+ 1

2
=v

i+ 1
2 ,j
zki+1

f HI
i+ 1

2
=

1
2
v
i+ 1

2 ,j

(
zki + z

k
i+1

)

−

(
v
i+ 1

2 ,j

)2
1t

21x

(
zki+1− z

k
i

)
. (13)

φ
i+ 1

2 ,j
represents the flux limiter, which is solved with the

van Leer (1997) scheme:

φ
i+ 1

2 ,j
=

r
i+ 1

2 ,j
+ abs

(
r
i+ 1

2 ,j

)
1+ abs

(
r
i+ 1

2 ,j

) , (14)

where r is a smoothness index calculated as

r
i+ 1

2 ,j
=
zki+2,j − z

k
i+1,j

zki+1,j − z
k
i,j

. (15)

The overall performance of the TVD-FVM is evaluated by
comparing it with the first-order accurate upwind Godunov
scheme (Godunov, 1959), which is not flux limiting Eq. (11).
In the remaining part of the text, we refer to this scheme as
the first-order Godunov method (GM).

3.3 River incision

3.3.1 Numerical solution

TTLEM features a one-dimensional version of the flux-
limiting TVD-FVM to solve for river incision (Eq. 2), which
is written as a scalar conservation law:

zt + f (z)x = 0, (16)

where f (z) represents the flux function of the conserved vari-
able z, representing the river elevation. The method resem-
bles the one described in the previous section but differs
in that fluxes are calculated in one direction on a directed
acyclic graph (Phillips et al., 2015). We refer to the Supple-
ment provided by Campforts and Govers (2015) for a full
derivation of this scheme.

In addition, we implement a first-order implicit FDM for
the solution of the SPL detailed in Braun and Willett (2013).
The method provides stable solutions regardless of the time
step length, a property desired when simulating landscape
evolution over long timescales and large spatial domains. Ex-
plicit schemes of river incision (both FDM and TVD-FDM),
in turn, require time steps that satisfy the Courant–Friedrich–
Lewy condition (CFL):

umax1t

1x
≤ 1, (17)

where umax is the maximum velocity dictated by few river
cells with high-drainage areas. Compared to these velocities,
hillslope processes modeled by the linear diffusion equa-
tion are usually slow. Applying longer time steps for hills-
lope processes is a computational advantage that an implicit
scheme increases even more (Pelletier, 2008). TTLEM thus
uses two time steps: an outer time step (1touter) during which
hillslope processes and the planform river network are cal-
culated, and an inner time step (1tinner) nested within the
outer time step that is used to solve for river incision. Thus,
while 1touter should satisfy the CFL criterion for the explicit
linear or nonlinear diffusion equation, the 1tinner is flexible
and adheres to the CFL criterion of the explicit river inci-
sion method (Fig. A1). The adoption of implicit methods al-
lows the relaxation of both time step constraints. However,
TTLEM allows limits to be set to 1touter and 1tinner, and it
enables us to investigate the impact of the length of the time
step on model outcomes (see Sect. 4.1.3).

3.3.2 Analytical solution

Ideally, numerical methods are benchmarked against analyti-
cal solutions. Albeit analytical solutions are available for spe-

Earth Surf. Dynam., 5, 47–66, 2017 www.earth-surf-dynam.net/5/47/2017/



B. Campforts et al.: The TTLEM 1.0 model 51

cific initial and boundary conditions only, they are accurate
and grid-resolution independent, contrary to numerical so-
lutions where model parameter values might depend on the
grid resolution (Pelletier, 2010). We implemented an analyt-
ical solution for the SPL as an independent benchmark to
compare the performance of the different numerical schemes
of river incision under conditions where an analytical solu-
tion is available.

First, we created an artificial DEM with topography in
steady state between uplift and erosion (see Table 1). From
this DEM, we extracted the drainage network and corre-
sponding river elevations by selecting all cells exceeding
106 m2. Very short river profiles (< 10 km) are excluded from
the analysis. Subsequently, we simulate landscape evolution
using the numerical models documented in the previous sec-
tions assuming spatially invariant uplift rates. After each sim-
ulation, we obtain river elevations from the resulting DEMs
and compare them with river elevations that we derived ana-
lytically using the pre-uplift, steady-state river profiles as in-
put. Analytical solutions for the stream power law are based
on the slope patch method of Royden and Perron (2013) that
non-dimensionalizes the stream power law using a dimen-
sionless height (λ) and transformed horizontal distance met-
ric χ :

λ=
zx

h0
(18)

χ =
A
m/n

0
h0

x∫
0

dx

A
m/n
x

, (19)

where zx represents the dimensionless elevation along the
river profile, h0 is a reference length scale (set to 1 m) andA0
is a reference value for the drainage area (set to 1× 106 m2).
To integrate over abrupt changes in the drainage area along
the rivers, Eq. (19) is solved using the rectangle rule (Mudd
et al., 2014). Steady-state river profiles appear as straight
lines in this nondimensional coordinate system. The analyt-
ical slope patch solution then calculates the evolution of a
dimensionless river profile in response to uplift. The method
is detailed in the Appendix of Royden and Perron (2013) and
is based on tracing individual patches that are initiated at the
outlet of the drainage network and propagate upstream with
a velocity dictated by upstream area and the parameters of
the SPL (Eq. 2).

We applied the slope patch solution to the steady-state pre-
uplift river profiles using the simulated uplift rates as input.
We also assessed the accuracy of the numerical methods with
the root mean squared error (RMSE):

RMSE=

√∑n
i=1
(
zi,analytical− zi,numerical

)2
nriv

, (20)

where zi,analytical and zi,numerical refer to the analytically and
numerically calculated elevation of a river cell, respectively,
and nriv is the total number of river cells.

3.4 Hillslope processes

We implemented linear hillslope diffusion using the implicit
Crank–Nicolson scheme (Pelletier, 2008). The scheme is un-
conditionally stable at large time steps. A numerical solu-
tion of the nonlinear hillslope equation, however, is more
demanding. The maximum time step length of an explicit
FDM sharply decreases as slopes approach the threshold gra-
dient. To overcome this restriction, Perron (2011) developed
Q-imp, an implicit solver that allows the increase of time
step lengths by several orders of magnitude. Conversely, the
per-operation computational cost of this algorithm is higher
in comparison to the explicit solution, and the overall per-
formance of this method is better than alternative solutions
(Perron, 2011). Q-imp efficiently calculates hillslope diffu-
sion even for high-resolution simulations. However, rapid in-
cision during one time step may generate slopes along rivers
that are greater than the threshold slope, a situation that Q-
imp cannot solve. An approach is thus needed that adjusts
hillslopes to the threshold slope prior to calculating Q-imp.

We assume that hillslopes instantaneously adjust to over-
steepening by mobilizing the amount of material required to
reduce the slope gradient to the threshold value Sc (Burbank
et al., 1996). We refrain from simulating individual land-
slides although we acknowledge that single high-magnitude
low-frequency events may be relevant at the timescales of our
simulations (Korup, 2006). Instead, our approach implicitly
accounts for the combined effects of a large number and va-
riety of landslides that effectively adjust slopes to a threshold
slope. This threshold slope can be thought of as “an average
effective angle of internal friction, which controls hillslope
stability” (Burbank et al., 1996). We implement this hills-
lope adjustment using a modified version of the excess to-
pography algorithm (Blöthe et al., 2015). In this algorithm,
elevations z at time step t + 1 are calculated so that the ab-
solute local gradient at each grid cell becomes less than or
equal to Sc. This is achieved by decreasing elevations at lo-
cation i to the minimum elevation of all other locations j ,
to which we add an offset calculated as the product of the
Euclidean distance ‖i,j‖ and Sc:

zt+1
i =min

{
zti ,min

[
ztj + Sc · ‖i,j‖

]}
. (21)

The equation above entails that zt+1
i at one location depends

on all other grid cells and that the algorithm has a time com-
plexity of O(N2), which would render it unsuitable for fre-
quent updating during LEM simulations. To avoid an exces-
sively high computational load, we implement the algorithm
using morphological erosion with a grayscale structuring el-
ement (see MATLAB function ordfilt2), which is a minimum
sliding window with additive offsets calculated from the win-
dow size and Sc. This significantly reduces run times since
we calculate elevations at one location from the sliding win-
dow. However, this approach may retain gradients greater
than Sc at steep- and long-slope sections. We solve this by
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52 B. Campforts et al.: The TTLEM 1.0 model

Table 1. Model parameters used for the TTLEM simulations.

Parameter Units Fig. 1 Fig. 2 Figs. 4–5 Figs. 6–8 Figs. 9–10 Fig. 2A

Initialization

Initial surface Flat, 1-D Random Synthetically
produced DEM
shown in Fig. 2

Synthetically
produced DEM
shown in Fig. 2

Synthetically
produced DEM
shown in Fig. 2

Big Tujunga
SRTM

Uplift pattern No uplift Uniform Uniform Uniform Lateral
displacement

–

Uplift rate m yr−1 0 1× 10−3 0–3× 10−3 0–3× 10−3 0 0
Spatial step
(1x)

m 100 100 Varying 100 and 500 Varying 30

Computational parameters

Time span yr 1× 106 150× 106 1× 106 5× 106 1× 106 5× 105

Outer time step
(1touter)

yr ca. 6× 103 5× 104 5× 104 5× 104 Resolution
dependent

1250

Drainage area
threshold

m2 – 5× 104 5× 104 5× 104 – 5× 104

Drainage
network

– Variable Fixed Fixed – Variable

Boundary conditions

BC_Type – Dirichlet Dirichlet Dirichlet Neumann Neumann

River incision

K L1–2m T−1 5× 10−6 7× 10−6 7× 10−6 – 4× 10−6

m 0.42 0.42 0.42 – 0.45
n 1 1 1 – 1

Hillslope response

D m2 yr−1 – 0.01 0.036 – 0.015
ρr ρ
−1
s – – 1.3 1.3 – 1.3

Sc m m−1 – 0.8 1 – 1.2

Tectonic shortening

u m yr−1 – – 0.01 (constant) –
v m yr−2 – – – 0.01 (constant) –

Numerics

River incision Implicit_FDM
TVD_FVM

Implicit_FDM Implicit_FDM
TVD_FVM

– Implicit_FDM

CFL 0.9 0.9 0.9 0.5 and 0.9 0.9
Hillslope
diffusion

– Implicit linear
with threshold-
slope (Sc)

Implicit linear
with threshold-
slope (Sc)

– Different
schemes (see
Fig. A2)

Tectonic
shortening

– – – Upwind_TVD
Godunov
method

–
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calling the algorithm repeatedly until all slope values are less
than or equal to Sc.

4 Impact of numerical methods

We investigate how numerical schemes implemented in
TTLEM affect simulated landscape evolution. As we focus
on evaluating the schemes’ performance, all simulations have
synthetically generated landscapes as initial surfaces. Hence,
our simulations are uncalibrated and results remain untested
against an actual landscape: however, the chosen parameter
values are within the range of previous studies (e.g., Gas-
parini and Whipple, 2014; Whipple and Tucker, 1999). We
distinguish between the effects on simulated river incision
on the one hand and on simulated tectonic displacement on
the other. To investigate the accuracy and implications of
river incision methods, we compare the explicit TVD-FVM
with the first-order implicit FDM and further differentiate be-
tween the implicit FDM where no limitation is set on the time
step and the implicit FDM where the CFL criterion limits the
time step length. To investigate the accuracy and implications
of river incision methods we compare an explicit first-order
GM with the two-dimensional TVD-FVM.

4.1 River incision

4.1.1 One-dimensional river incision

The impact of numerical diffusion on propagating river pro-
file knickpoints is most obvious in situations where an an-
alytical solution is available. The first simulation illustrates
such a situation, with an artificial river profile characterized
by a major knickzone between 8 and 12 km from the river
head (Fig. 1). We assume that the drainage area is increasing
in proportion to the square of the distance and uplift equals
zero. For this simplified configuration, an analytical solution
for the SPL relies on the method of characteristics (Luke,
1972). Notwithstanding the relatively high spatial resolution
of 100 m, the first-order implicit FDM suffers from consid-
erable numerical diffusion when river incision is calculated
over a time span of 1 My (Fig. 1). The TVD-FVM system-
atically achieves a much higher accuracy over a wide range
of spatial resolutions and parameter values (Campforts and
Govers, 2015).

4.1.2 Drainage network

We assess the numerical accuracy of the entire drainage net-
work with spatially and temporally constant values for all
model parameter values (Table 1), assuming a fixed drainage
network (see Sect. 3.3.2). We first create a steady-state ar-
tificial landscape (Fig. 2) on a 50 km× 100 km grid with
a spatial resolution of 100 m that we initialize with uni-
formly distributed random elevation values between 0 and
50 m (Movie S1 in the Supplement). Our simulation uses

Figure 1. Solution of the linear one-dimensional stream power law
for a synthetic knickzone over a time span of 1 My. The analytical
solution is obtained with the method of characteristics. The spatial
resolution is 100 m. Table 1 lists other model parameter values.

Figure 2. A synthetic steady-state landscape produced as the testing
environment to verify and compare the different numerical schemes
implemented in TTLEM. Model runtime was 150 My, while uplift
rate was assumed to be spatially uniform over the area (block uplift)
and fixed to 1 km My−1. Other model parameter values are listed in
Table 1. Dynamic landscape evolution is presented in Movie S1.
The gray lines indicate the drainage network for which the solution
has been calculated analytically as a benchmark solution. The blue
line indicates the river profile for which model results at different
resolutions are plotted in Fig. 4.

Dirichlet boundary conditions and inserts a spatially and tem-
porally uniform vertical uplift of 1 km My−1 over a period of
150 My. 1touter is set to 5× 104 years.

Following steady state, we impose four consecutive si-
nusoidal uplift pulses of equal magnitude on this artificial
landscape over 1 My. Each uplift pulse has a wavelength of
0.25 My and an amplitude of 3×10−3 m yr−1 (Fig. 3). We re-
peat the simulations with three different numerical schemes
(implicit FDM without time step limitation, implicit FDM
with time step limitation (CFL condition applied) and TVD-
FVM), each at 22 different spatial resolutions (6.25, 12.5, 25,
50, 100, 150, ..., 950 m). Hillslopes are simulated using lin-
ear hillslope diffusion in combination with threshold slopes,
a configuration typically used to simulate landscape evolu-
tion at geological timescales (e.g., Goren et al., 2014). The
threshold slope is set to 0.8 m m−1 and hillslope diffusivity is
0.01 m2 yr−1. We record the CPU time required to run a 1 My
simulation to assess computational performance. In order to
facilitate the high-resolution run (at 6.25 m where the spatial
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Figure 3. Uplift imposed on the steady-state landscape shown in
Fig. 2 to investigate the impact of different numerical schemes.

domain covers 7950×15 950 cells), all model runs were exe-
cuted on one computational node of the Flemish Super Clus-
ter (VSC) using a single core (Broadwell, E5-2680v4) and
128 Gb RAM. We evaluate the numerical performance of the
schemes and the impact of spatial resolution against an ana-
lytical solution (slope patch method) for the entire drainage
network represented by all cells exceeding 1 km2 (Fig. 2).

Figure 4 compares results obtained from the numerical
methods and the analytical solution. The initial river profiles
slightly differ depending on spatial resolution due to inter-
polation of the steady-state artificial landscape with a spatial
resolution of 100 m. The results show that TVD-FVM and
implicit numerical solutions converge at increasing spatial
resolutions. Where the time step of the implicit scheme is un-
bounded by the CFL criterion, however, the solution deviates
from those adhering to the CFL criterion. This illustrates that
there is trade-off between numerical accuracy and numerical
stability for an implicit scheme at long time steps. In addi-
tion, an implicit scheme at high spatial resolution and large
time steps fails to converge to an analytical solution because
uplift is modeled as a discrete stepwise function rather than
a continuous function (e.g., the sinusoidal uplift history used
here) that inserts artificial shocks in the solution.

The TVD-FVM is consistently more accurate than the im-
plicit methods at all spatial resolutions, although the im-
plicit FDM (CFL < 1) approaches the high accuracy of the
TVD-FVM at very high resolutions (6.25 m) (Fig. 5a). At
lower spatial resolutions (> 10 m) the numerical accuracy of
the TVD-FVM is significantly higher compared to the ac-
curacy obtained with the implicit methods at the cost of a
slightly increased additional computation time. To achieve
the same numerical accuracy as the TVD-FVM at 500 m
spatial resolution (RMSE= 18.17, model runtime= 2.89 s),
the implicit method (CFL < 1) would need to be evaluated
at 150 m, which would take 12 times longer (model run-
time= 36 s) (Fig. 5b).

4.1.3 River incision and catchment-wide erosion rates

We hypothesize that the diffusive nature of commonly ap-
plied first-order FDMs is not restricted to the simulation of
river longitudinal profiles but has systematic consequences
for other measures derived from LEM simulations. Such
measures include catchment-wide erosion rates that consti-

Figure 4. Comparison between different modeled resolutions for
the river profile indicated in blue in Fig. 2. The green line is the
analytical “true” solution, obtained with the slope patch method of
Royden and Perron (2013). The full red line represents the first-
order accurate implicit solution when the CFL < 1, and the dotted
blue line represents the first-order accurate implicit solution when
the time step is left free. The implicit solutions where CFL < 1 are
simulated with a time step equal to the time step used for the TVD-
FVM.

Figure 5. (a) Performance of the different numerical schemes
where the RMSE is calculated between the analytical and numer-
ical methods. (b) CPU time required to perform the model runs at
the indicated resolutions.

tute the basis for model–field data comparison and model
parametrization (Gasparini and Whipple, 2014; Moon et
al., 2015). In order to investigate the sensitivity of LEM-
derived catchment-wide erosion rates to different numerical
schemes of the river incision model, we use the steady-state
artificial landscape described in the previous experiments
(Sect. 4.1.2). The simulation runs over 5 My with four con-
secutive uplift pulses of equal amplitude and a wavelength of
1.25 My with Dirichlet boundary conditions and a planform
fixed drainage network. We use two spatial resolutions (100
and 500 m) and three different numerical methods (implicit
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Figure 6. Temporal variation in simulated catchment-wide erosion rates using different numerical methods to simulate river incision. The
black lines represent simulations where a flux-limiting TVD-FVM is used, the blue lines represent the first-order accurate implicit FDM
without constraints on the time steps, and the red lines represent the first-order accurate FDM with an inner time step calculated with the
CFL criterion. (a) Simulations performed at a spatial resolution of 100 m. (b) Simulations performed at a spatial resolution of 500 m. Here, a
median filter with a window of three time steps is applied to the simulated erosion rates to eliminate spikes that might occur at low resolutions.

FDM without time step limitation, implicit FDM with time
step limitation (CFL condition applied) and TVD-FVM) to
simulate river incision. The maximum length of1tinner is set
to 3×103 yr for all schemes to ensure that the implicit method
converges at higher resolutions too (see Sect. 4.1.2). Hills-
lope response is simulated using a linear diffusion scheme in
combination with a threshold slope (Sc, see Fig. A2).

We compare differences in simulated erosion rates by ran-
domly selecting > 200 catchments with drainage areas rang-
ing between 1 and 50 km2 (Fig. 7). We calculate the erosion
rates for each time step by subtracting the elevation grid in
the previous time step from the updated, current elevation
grid. The sum of elevation differences within each catchment
refers to the catchment-wide erosion rate integrated over the
time step length. For each catchment, we then derive the
difference between erosion rates calculated by the different
numerical schemes and summarize them using the RMSE

statistics (OTVD−FDM):

OTVD−FDM =

√∑n
i=1
(
εi,TVD− εi,FDM

)2
nb1t

, (22)

where εi,TVD and εi,FDM refer to the catchment-wide erosion
rates simulated with the TVD-FVM and FDM, respectively,
to simulate river incision, and nb1t is the total number of
discrete time steps of the simulated erosion record.

We rank the catchments in increasing order of OTVD−FDM
for each simulation to investigate variations in catchment-
wide erosion rates. Figure 6 shows the results for the catch-
ments at the 10, 50 (median) and 90 % percentiles. Ranks are
derived separately for the model runs at 100 and 500 m since
different catchments are randomly generated for both simula-
tion runs. The percentiles shown in Fig. 6 therefore represent
different catchments.
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Figure 7. Spatial variation of differences between simulated erosion rates calculated with a flux-limiting TVD-FVM for simulating river
incision and a first-order accurate implicit FDM. Here, we compare methods that are both run with an inner time step constrained with the
CFL criterion (see text). OTVD−FDM is thus calculated between the black and red lines from Fig. 6. The left column represents simulations
run at a spatial resolution of 100 m, the right column at 500 m. (a, b) Location of the randomly selected catchments with an area > 1 and
< 50 km2. Colors refer to the OTVD−FDM between the two simulations. (c, d) Differences between the schemes increase with increasing
distance from the river outlets and are inversely correlated with the catchment area.

For most catchments, we detect differences in catchment-
wide erosion rates between the three numerical methods at
a spatial resolution of 100 m. Generally, the amplitude of
the response to a tectonic uplift pulse increases when us-
ing TVD-FVM: the use of a first-order implicit FDM with-
out time step restriction results in a much smoother response
in comparison to the TVD-FVM. The variations in response
amplitude are significant: the majority of the catchments
record amplitude reductions by more than 50 % when mod-
eled with the implicit FDM without time step restriction.
Time step restriction (and thereby sacrificing the main ad-
vantage of the implicit FDM) significantly reduces numer-
ical diffusion so that most catchments display an erosional
response comparable to that simulated by the TVD-FVM.
However, this is only true for simulations with a 100 m spa-
tial resolution. The advantage of a time-step-restricted im-
plicit FDM over a nonrestricted implicit FDM disappears al-
most completely for a coarser grid resolution of 500 m.

Figure 7 shows that erosion rates diverge between the dif-
ferent methods with increasing distance to the outlet of the
main river, while they are similar for larger catchments. A
smaller effect of the numerical scheme on large catchment

areas may partly arise from stronger averaging of local vari-
ations in catchment erosion rates. In addition, catchments at
a large distance from the outlet – and thus likely with smaller
catchment areas – will experience upstream migrating knick-
points only after several model time steps. If catchments are
far from the fault zone, knickpoints will then be significantly
smoothed by a first-order accurate implicit FDM, which will
ultimately affect the response of the catchment. Again, spa-
tial resolution matters: a larger grid size not only results in
larger differences on average but also in larger differences
between small and large catchments (Fig. 7).

The differences in catchment response relate to the differ-
ences in simulated erosion rates within the catchments. Fig-
ure 8 illustrates the spatial difference in erosion rates calcu-
lated with the two numerical methods during the final step of
the model run (after 5 My). This figure shows that spatial dif-
ferences are significant and form a systematic banded pattern
related to the upslope migration of the erosion waves of the
individual uplift pulses.
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Figure 8. Spatial pattern of erosion rates during one model time
step when simulating landscape evolution with the flux-limiting
TVD-FVM vs. the first-order accurate implicit FDM. (a) Simula-
tion at a resolution of 100 m where the time step of the implicit
method is not constrained. (b) Simulation at a resolution of 100 m
where the time step of the implicit method is constrained with the
CFL criterion. (c) Simulation at a resolution of 500 m where the
time step of the implicit method is not constrained. (d) Simulation
at a resolution of 500 m where the time step of the implicit method
is constrained with the CFL criterion.

4.2 Tectonic displacement

We test the performance of the two-dimensional version of
the flux-limiting TVD-FVM to simulate tectonic displace-
ment. A synthetic DEM forms the initial surface for a sim-
ulation of a constant lateral tectonic displacement with nei-
ther fluvial incision nor hillslope diffusion. Theoretically, this
should result in a laterally displaced landscape that, apart
from this displacement, remains unchanged in comparison
to the initial state. We compare the flux-limiting TVD-FVM
with a first-order accurate upwind GM simulating a tectonic
displacement in two directions (u= v = 10 mm yr−1) over
a time span of 1 My. Figure 9 illustrates that the explicit
GM strongly smooths the resulting DEM whereas the two-
dimensional TVD-FVM scheme produces a DEM that is very
similar to the initial DEM, with reduced amounts of numeri-
cal diffusion.

In order to quantify the amount of numerical diffusion (DN
[L2 yr−1]) introduced by the GM and the TVD-FVM method,
we test a range of different model configurations and calcu-
late the numerical diffusivity, DN, corresponding to the ob-
served smoothing.DN is the diffusivity required to transform
the initial DEM (DEMini) to the final DEMs produced at the
end of the simulations (DEMfint). The optimum amount of
diffusion is determined by minimizing the misfit function H
with a sequential quadratic programming method (Nocedal
and Wright, 1999). H is given by

H =

√√√√√√
nbpx∑
px=1

(DEMini−DEMfint)2

nbpx
, (23)

where nbpx is the number of pixels in the DEM.
We find that numerical diffusivity of the GM exceeds com-

monly used values of hillslope diffusivities as soon as spa-
tial resolution exceeds 90 m (Fig. 10a). The two-dimensional
TVD-FVM decreases numerical diffusion by a factor of 5–60
compared to the GM (Fig. 10b). The accuracy increases for
both schemes with increasing resolution and increasing CFL
numbers. However, the gain in accuracy with increasing spa-
tial resolution is higher for the TVD-FVM than for the GM.
Our analysis shows that the explicit FDM performs best with
a CFL criterion close to one where additional required itera-
tions within a given time interval are at a minimum (Gulliver,
2007).

5 Discussion

Our analysis of numerical solvers focuses on three interre-
lated issues: numerical accuracy, spatial resolution and com-
putational efficiency. Adopting highly simplifying assump-
tions allow us to benchmark the solvers against analytical
solutions. Our focus is on testing an implicit, first-order ac-
curate FDM against TVD-FVM. The implicit FDM has sev-
eral desirable properties. It is unconditionally stable and tol-
erates time step lengths exceeding those prescribed by the
CFL criterion. LEMs are often run over time spans of mil-
lions of years and the CFL criterion is dictated by a few grid
cells with high upslope areas. Adopting an implicit scheme is
therefore potentially interesting since it allows the decrease
of the computation time while enabling simulations at high
spatial resolutions. Our results, however, show that this ma-
jor advantage vanishes if the aim of a LEM simulation is to
capture transiency correctly. For CFL > 1 the implicit FDM
introduces significant numerical smearing, and for CFL� 1,
the approach tends to insert an artificial shock wave of uplift
because gradual uplift is approximated by a step function if
time steps are (very) large.

For time step lengths approaching those prescribed by the
CFL criterion, we show that computational gains by implicit
FDM are marginal compared to TVD-FVM. The TVD-FVM
code can be vectorized, i.e., it exploits single-instruction
multiple-data parallelism to save CPU time. The implicit
FDM requires a lower number of numerical operations but all
stream network nodes need to be treated sequentially. Simu-
lations at higher spatial resolutions increase the numerical
accuracy and may balance the low accuracy of the implicit,
first-order accurate FDM. Our results indicate that there is
indeed a strong gain in numerical accuracy for all methods
(Figs. 4 and 5) with increasing spatial resolution. However,
to achieve the same numerical accuracy as the TVD-FVM,
the implicit method with a CFL < 1 constraint requires the
use of spatial resolution that is about 3 times higher, result-
ing in a computation time that is ∼ 12 times higher (Fig. 5).
In summary, while a first-order implicit scheme is stable and
accurate for long-term steady-state solutions (Braun and Wil-
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Figure 9. Impact of numerical schemes when simulating horizontal shortening on a fixed grid. The simulations are performed at a spatial
resolution of 50 m and a CFL of 0.5. (a) Extract from synthetically produced DEM from Fig. 2. (b) Horizontal shortening in two directions
simulated with a two-dimensional explicit first-order GM. The green lines represent transects of the theoretically unchanged topography after
lateral displacement. The red lines represent transects of the topography produced with the GM. (c) Horizontal shortening in two directions
simulated with a two-dimensional explicit flux-limiting TVD-FVM (represented by black lines).

lett, 2013), it has severe shortcomings when simulating tran-
sient landscape evolution caused by knickpoint propagation
in detachment-limited erosional basins. These shortcomings
can, to a large extent, be avoided by using a TVD-FVM.

We also show that the impact of the numerical scheme
used to simulate river incision is not limited to river pro-
file development alone. Hillslopes adjust to local base level
changes dictated by river incision. Hillslope denudation rates
must therefore – at least partly – reflect the geometry and dy-
namics of a knickpoint and will respond differently to a dif-
fuse signal that is the result of relatively slow, continuous up-
lift on the one hand and sharp discontinuity caused by a rapid
base-level drop of major fault activity on the other hand. Our

simulations show that, depending on the spatial and temporal
resolution, catchment-wide erosion rates are more respon-
sive to uplift when fluvial incision is calculated by TVD-
FVM rather than by the first-order accurate implicit FDM.
This is because first-order (explicit and implicit) FDMs fail
to properly reproduce transient incision waves (Campforts
and Govers, 2015) due to knickpoint smoothing. This also
affects hillslope denudation since the drop in hillslope base
level due to the passage of a knickpoint is smeared out in
time when smoothing occurs. The response of catchment-
wide erosion rates to uplift will therefore also be smoothed,
resulting in significantly lower peak erosion rates. This ef-
fect will be most significant in upstream catchments that are
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Figure 10. (a) Amount of numerical diffusion (DN) introduced in the system when simulating lateral tectonic displacement in two directions
as a function of raster resolution. The gray zone indicates the range of naturally observed diffusion rates. (b) The ratio between the amount
of numerical diffusion for the first-order GM vs. the flux-limiting TVD-FVM.

far away from the base level since smoothing increases with
time and knickpoint migration distance.

One might question the significance and necessity of nu-
merical schemes that avoid diffusion of retreating knick-
points. Given the many assumptions and uncertainties that
underlie many LEMs, numerical accuracy may seem like a
problem of lesser importance. We argue that the simulations
presented in this paper show that this is not the case and that
it is indeed critical to simulate knickpoint retreat as accu-
rately as possible. However, our analysis does not cover all
situations wherein the accurate simulation of knickzones is
important. Simulation of sharp knickpoints is also required
in geomorphological and lithological settings where knick-
point retreat is caused by rock toppling, possibly triggered
during extreme flood events (Baynes et al., 2015; Lamb et
al., 2014; Mackey et al., 2014). Similarly, glacial incision of-
ten creates hanging valleys that are reshaped by migrating
fluvial knickpoints after glacial retreat (Valla et al., 2010). In
all of these cases simulation tools with a minimum of nu-
merical diffusion are required to correctly quantify natural
knickpoint diffusion and to study the underlying processes.

First-order numerical methods also inadequately simulate
lateral tectonic displacement on a regular grid. The amount
of numerical diffusion that is introduced by these methods
will, in many cases, exceed natural diffusion rates, thus mak-
ing accurate simulation of hillslope development impossi-
ble. A two-dimensional variant of the TVD-FVM reduces
the amount of numerical diffusion to values well below nat-
ural diffusivity values, an effect that is especially apparent
at high spatial resolutions. The two-dimensional TVD-FVM
thus allows the accurate modeling of this process, which sig-
nificantly impacts the evolution of topography and river net-
works (Willett, 1999), using a fixed grid. This was hitherto
only possible with flexible spatial discretization schemes.

Although most LEMs use first-order accurate discretiza-
tion schemes (Valters, 2016), the problem of numerical dif-
fusion has been discussed in the broader geophysical com-
munity (Durran, 2010; Gerya, 2010). An alternative fam-
ily of shock-capturing Eulerian methods are MPDATA ad-
vection schemes (Jaruga et al., 2015). These schemes are
based on a two-step approach in which the solution is first
approximated with a first-order upwind numerical scheme
and then corrected by adding an anti-diffusion term (Pel-
letier, 2008). However, contrary to the TVD-FVM, the stan-
dard MPDATA scheme (Smolarkiewicz, 1983) is not mono-
tonicity preserving (i.e., it is not TVD). Instead, MPDATA
introduces dispersive oscillations in the solution if combined
with a source term (such as uplift) in the equation (Durran,
2010). Adding limiters to the solution of the anti-diffusive
step (Smolarkiewicz and Grabowski, 1990) renders the MP-
DATA scheme oscillation free (Jaruga et al., 2015). However,
by adding this additional correction, the method approaches
the numerical nature of the TVD-FVM, which does not re-
quire further adjustments in any case.

Some of the weaknesses of the tested numerical solu-
tions can be reduced by using LEMs that rely on irregular
grid geometries. Irregular grids, for example, allow the sim-
ulation of tectonic shortening using a Lagrangian approach
where grid nodes are advected with the tectonically imposed
velocity field (e.g., Herman and Braun, 2006). In TTLEM
the TVD-FVM solvers are implemented using a fixed grid,
which has several advantages. First, input data such as topog-
raphy, climate, lithology or tectonic displacement fields are
typically available as raster datasets and thus require only
minor modifications, whereas irregular grids require sub-
stantial preprocessing. Second, TTLEM output can instantly
be analyzed and visualized using the TopoToolbox library
(Schwanghart and Kuhn, 2010; Schwanghart and Scherler,
2014) or any other geographic information system. Thus,
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while irregular grid geometries and flexible grids may have
some advantages over rectangular grids, TTLEM’s imple-
mentation of numerically accurate algorithms strongly re-
duces the shortcomings of rectangular grids while facilitating
straightforward processing of model input and output.

6 Conclusion

Despite the growing interest in the development and use
of LEMs, accuracy assessment of the numerical methods
has received little attention. First-order accurate FDMs are
the most commonly applied numerical methods. However,
they introduce numerical diffusion and artificially smooth
discontinuities that are inherent in transient landscapes. To
overcome this problem, we developed the TVD-FVM. The
TVD-FVM solves river incision more accurately than the
first-order accurate FDMs with significant influences on the
geometry of modeled river profiles and implications for
catchment-wide erosion rates. Errors due to numerical dif-
fusion depend on the spatial and temporal resolution as well
as on the position of the catchment in the landscape. In ad-
dition, we introduce a two-dimensional version of the TVD-
FVM that allows the simulation of lateral tectonic displace-
ment with low numerical diffusion on a fixed computational
domain. Our new numerical techniques are implemented in
the open-access raster-based Landscape Evolution Model
(TTLEM) contained within TopoToolbox. Together with nu-
merical implementations of common hillslope process mod-

els, TTLEM provides the community with a novel simulation
tool for the accurate reconstruction, exploration and predic-
tion of landscape evolution. In its current form, TTLEM is
limited to uplifting, fluvially eroding landscapes. Further de-
velopment will integrate other processes (e.g., glacial ero-
sion) as well as the explicit routing of sediment through the
landscape.

7 Code and data availability

TTLEM 1.0 is part of TopoToolbox version 2.2. The source
code and future updates are available in the GIT reposi-
tory https://github.com/wschwanghart/topotoolbox. TTLEM
is platform independent and requires MATLAB 2014b or
higher and the Image Processing Toolbox. Documentation
and user manuals for the most current release version of
TopoToolbox and TTLEM can be found in the GIT repos-
itory in the help folders of the software. The user man-
ual of TTLEM includes three tutorials that can be accessed
from the command window in MATLAB. Example land-
scape evolution movies of different model configurations are
presented online in Campforts et al. (2016b, c). The source
code for the solution of the one-dimensional stream power
law (SPLM) can be downloaded from the GIT repository
https://github.com/BCampforts/SPLM. SPLM contains the
solution for the one-dimensional river incision codes includ-
ing four examples.
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Appendix A

A1 Model structure

The model architecture of TTLEM is illustrated in Fig. A1.

A2 Hillslope processes

We illustrate the impact of different hillslope process mod-
els on simulated landscape evolution using a 30 m resolution
DEM of the Big Tujunga region in California as an example
(Fig. A2). TTLEM allows the simulation of hillslope pro-
cesses assuming (non)-linear slope-dependent diffusion with
the consideration of a threshold hillslope. Figure A2 illus-
trates how different hillslope process algorithms affect the
evolution of hillslopes in the Big Tujunga region, Califor-
nia (Fig. A2a). We assume no tectonic displacement and use
standard parameter values for river incision and hillslope dif-

fusion (Table 1) and a threshold slope (Sc) of 1.2 (m m−1)
when applicable (Fig. A2b). We illustrate model results af-
ter 500 ky in Fig. 2c–d using the current topography as the
starting condition. Linear diffusion (Eq. 4) is not capable
of keeping up with river incision, which results in strongly
oversteepened hillslopes near the river channels (Fig. A2).
While higher values for the diffusion coefficientD will elim-
inate this problem (e.g., Braun and Sambridge, 1997), re-
sulting hillslopes are incompatible with experimental find-
ings (Roering et al., 1999) and will restrict hillslopes to con-
vex upward shapes. The use of nonlinear diffusion in com-
bination with a threshold slope results in hillslopes similar
to those simulated with linear diffusion in combination with
a threshold slope. However, for a similar value of D, hill-
tops become more smoothed assuming nonlinear diffusion
because sediment fluxes due to diffusive processes now reach
higher values when hillslopes approach the threshold slope.
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Figure A1. Schematic representation of the TTLEM model flow. The numbered methods correspond with the paragraphs from Sect. 3 in the
main text.

Earth Surf. Dynam., 5, 47–66, 2017 www.earth-surf-dynam.net/5/47/2017/



B. Campforts et al.: The TTLEM 1.0 model 63

Figure A2. Hillslope response to river incision. (a) Standard SRTM DEM (30 m) included in TopoToolbox representing the Big Tujunga
region. The dotted gray line indicates the location of the transect shown in panel (g). (b) Resulting topography after 500 000 years using four
different descriptions for hillslope evolution. (c) Linear diffusion over all slope values (lin in panel g). (d) Threshold landscape where no
slopes exceed the threshold slope (sc in panel g). (e) Linear diffusion combined with immediate adjustment to a threshold slope (lin and sc
in panel g). (f) Nonlinear diffusion combined with immediate adjustment to a threshold slope (non-lin in panel g). (g) Elevation profiles of
the different model runs compared with the initial profile. Model parameter values are listed in Table 1.
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