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Chapter 1

Introduction

Astroparticle physics is considered a young field of science. It all started when astrophysicists
turned their endeavours from traditional astrophysical issues to new phenomena, such as
cosmic rays which was brought to the community in the early twentieth century by F. Hess
(1912). Modern gamma-ray telescopes, both ground telescopes and satellites, provide the
main stream of data for astrophysicists in quest of detecting the sources of gamma rays such
as active galactic nuclei (AGN).

Blazars are one of the candidates for the high energy gamma rays. They are a sub-class
of active galactic nuclei, i.e. galaxies with an accreting supermassive black hole in which the
central core, emits a long jet of relativistic plasma perpendicular to the plane of the accretion
disk of the black hole. Many blazars have been detected with gamma-ray telescopes such as
HESS, VERITAS, MAGIC and Fermi satellite as sources of gamma-rays with the energy
E ≥ 100 GeV (de Naurois (2015)). Of interest are BL Lac objects with an intrinsic emission
spectrum harder than E−2 that extends to at least a few TeV, so that the cascade emission
falls into the energy band accessible with the Fermi-LAT. This leads to a broad pair spectrum
(101 < γ < 108, where γ is the gamma factor of the pairs).

These created pairs are the subject of many investigations, as they can be affected by
several physical processes: (i) inverse-Compton scattering (ICS), (ii) deflection by the
intergalactic magnetic field (IGMF), or (iii) collective plasma effects. The ICS would result
in gamma-ray emission with characteristic energy in the GeV band but as indicated by
Fermi-LAT data, the GeV gamma-ray emission is suppressed, meaning that the ICS is not the
fastest of the three processes. The effect of deflection by the IGMF has been well investigated
by researchers such as Neronov and Semikoz (2009); Neronov and Vovk (2010); Taylor
et al. (2011) which has led to its constraints. However, these constraints on the IGMF are
valid only under the assumptions that the multi-TeV gamma-ray emission persists on long
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timescales and that the pairs lose their energy only due to ICS. This latter assumption is
crucial and remains debatable.

The importance of collective plasma effects has been pointed out by several authors such
as Broderick et al. (2012); Miniati and Elyiv (2013); Schlickeiser et al. (2012b). In fact, the
pairs can induce electrostatic and electromagnetic instabilities (Breizman, 1990; Breizman
and Riutov, 1974; Bret, 2006; Bret et al., 2004, 2005, 2010; Godfrey et al., 1975; Lominadze
and Mikhailovskii, 1979). In this case, wave-particle interactions can reduce the energy of
the pairs by 30-50 % as discussed by Bret et al. (2010); Schlickeiser (2010); Schlickeiser
et al. (2002). Therefore, the collective plasma effects can also substantially suppress the
GeV-band gamma-ray emission affecting as well the IGMF constraints.

Using Particle in cell (PIC) simulations, we have revisited the issue of plasma instabilities
induced by electron-positron beams in the fully ionized intergalactic medium. This problem
is related to pair beams produced by TeV radiation of blazars. The realistic beams cannot
be simulated, because the density ratio is too small. To proceed with the problem, we
find different parameters, for which the pair beam can be simulated with the available
computational resources and which, at the same time, preserve the underlying physics of
the realistic pair-beams. The main objective of our study is to clarify the feedback of the
beam-driven instabilities on the pairs. The parameters of the simulated beam-plasma system
provide an adequate physical picture that can be extrapolated to realistic blazar-induced pairs.
The issue of finding the proper parameters which can be simulated is considered in sections
3.4 and 5.1 for the case of a mono-energetic pair-beam distribution, whereas the realistic
pair-beam distribution is highly non- monoenergetic. The analytical models for the latter
case are presented in section 3.5 and the relevant simulations are discussed in section 5.2.
Then we pursued with our studies accounting for a realistic energy distribution to clarify its
impact on the nonlinear beam evolution.

In the following chapters, an introduction of the relevant literature is presented in chapter
2. In chapter 3, an introduction of analytical works of others is discussed and followed by
our new analytical model of the beam, both for the case of monoenergetic and a realistic
wide beam. In chapter 4, the simulation method of PIC is introduced. Later on, we discuss
the technical issues and code modifications we did for a realistic simulation based on our
needs of the mode. Then it is followed by the analytical models being investigated via PIC
simulations in 2-dimensional simulation box in chapter 5. Ultimately the summary and
conclusions are presented in chapter 6.



Chapter 2

Background

In following sections a brief introduction to blazars, intergalactic medium and pair beam
production is presented.

2.1 Blazars

Blazars are powerful sources of electromagnetic radiation in the distant universe, ranging
up to the highest energies i.e TeV band. They are a class of radio loud active galactic nuclei
with an emitting jet along the line of sight to the observer.

About 3% of all galaxies have a core, or nucleus emitting a very bright jet in central
region which can be characterised as AGN (see figure 2.1a). An important feature of their
intense emission is the fact that its electromagnetic spectrum ranges from the radio up to the
highest energy gamma rays.

A wide range of pictures for AGN exits. One could refer to the observed spectral range,
its emission line properties and its luminosity. We can also categorize them as radio loud or
radio quiet:

• The Radio loud AGNs show large-scale vertical and highly relativistic jets from the
center of the galaxy, which can travel up to Megaparsec scales. Where Vjet > 0.7c and
Γ > 1 ( see, Schlickeiser (2002)).

• The Radio quite AGNs have no visible jet structure and for reasons which are justified
below, we will not consider them in this work.

In 1995 the “unified AGN picture” was proposed by Urry and Padovani (1995), based
on the orientation of the active galaxy with respect to the observer on Earth. This implies
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(a) (b)

Fig. 2.1 Sketches of the unified AGN model. Figure (a) taken from Urry and Padovani (1995),
Figure (b) taken from Beckmann and Shrader (2013).

that most AGNs are not classified as blazars to observer on Earth. The sketch in figure 2.1b
represents different observational properties.

AGN consists of a host galaxy with a central supermassive black hole with masses of the
order of 108−1010M⊙ which converts the potential energy of matter in an accretion process
to radiation and particle outflow. The system is surrounded by an accretion disk of ionized
gas. Further out, the system is surrounded by an extended molecular torus, containing fast
moving gas clouds. This results in broad line emission, also the so-called narrow line regions
consisting of slower gas clouds. There are still many open issues on the topic (Beckmann
and Shrader (2013)). Until 1991 with Compton Gamma Ray Observatory (CGRO), five
gamma ray emitting AGNs were observed. (Bassani and Dean (1983)). Four of them are
with energies up to KeV while only the quasar 3C 273 was detected at ≥ 35MeV .

Within one year of EGRET (Energetic Gamma ray Experiment Telescopepointing) in
operation, more than 14 γ-ray emitting AGN in range of 100 MeV and 5 GeV were found.
Summing up to 66 high-confidence and 27 low-confidence detections of blazars by the
end of the CGRO mission (see figure 2.2). Meanwhile the ground-based Atmospheric
Cherenkov Technique (ACT) (de Naurois and Mazin, 2015) detected Very High Energies
(V HE;∼ 100GeV ) of the Crab nebula (Weekes et al. (1989)) and Mrk 421 (Punch et al.
(1992)). Collaboration (2015a) presented their studies regarding the high-confidence clean
sample of the Third Large Area Telescope Catalog of Active Galactic Nuclei (3LAC). They
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Fig. 2.2 Growth of sources at high-energy (HE), ≳ 100 MeV, γ rays. The number of sources
reported in the different catalogs and lists, as noted in the figure, are from the 1st EGRET
Catalog Fichtel et al. (1994); 2nd EGRET Catalog Thompson et al. (1995); 3rd EGRET
catalog Hartman et al. (1999) ; LAT Bright AGN Sample (LBAS) Abdo et al. (2009),
First LAT AGN Catalog (1LAC) Abdo (2010), 2LAC Collaboration (2011), and the 3LAC
Collaboration (2015b). Figure taken from Dermer and Giebels (2016)

used the first four years of the Fermi-LAT data listing 1444 γ-ray AGNs. The list consists of
30% FSRQ, 40% BL Lacertae objects, 30% blazars of unknown type (weak-lined BL Lac or
strong-lined FSRQ). It also consists of 24 non-blazar AGNs which are mainly radio galaxies,
radio-loud narrow line Seyfert galaxies and candidate Seyfert AGNs.

About 10% of the AGNs are radio-loud with observable collimated radio jets up to
megaparsec scales from the galactic center, along the rotation axis of the black hole. The
jet is brightest for the observer on earth within an opening angle of θ jet ≃ 1

Γ
, where Γ is the

Lorentz factor of the jet outflow. The smaller angle cases are namely flat spectrum radio
quasars (FSRQ) and BL Lacertae objects (BL Lacs for short). FSRQs emit broad emission
lines typical of quasars while BL Lacertae objects are characterized by extremely weak or
even absent emission lines in their optical spectra. FSRQs are typically more powerful than
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BL Lacs and their radiative output tend to be more dominated by the high-energy emission.
BL Lacs are on average with larger energies of the emitted γ-ray photons and they are in fact
the majority of the blazars detected at VHE.

A “double humped” shape is seen in entire electromagnetic spectrum of the smooth SED
of blazars. Beamed synchrotron radiation of relativistic e± pairs is well understood as the low
energy part of the spectrum with a peak between IR and the UV-soft X-ray band. However,
the underlined physics of the second hump with a peak at γ-ray band is still a big debate.

In leptonic models, inverse-Compton (IC) radiation from the same leptons producing
the low-energy component is treated as the source of the emission (Maraschi et al. (1992)).
However, Böttcher et al. (2013) explained the emission in hadronic scenarios by synchrotron
emission due to losing energy from high-energy hadrons (protons) (for large enough magnetic
field(Aharonian, 2000) or photo-meson reactions (Mannheim, 1993)).

Summarising, blazars 1 are quite small but interesting fraction of the entire population of
active galactic nuclei (AGN). Blazars are a subclass of AGNs (FSRQ and BL lack objects)
with a jet from the radio frequencies up to the TeV range gamma rays. The modern γ ray
telescopes H.E.S.S., Magic and Veritas and the LAT instrument on board the of the Fermi
satellite have detected about 30 cosmological blazars with strong TeV emission (H.E.S.S.
Collaboration, 2014; Hinton and Hofmann, 2009). Until now, five FSRQs, S3 0218+35
at z ≈ 0.95, PKS 1441+25 at z ≈ 0.93, 3C 279 at z ≈ 0.54 , 4C+21.35 at z ≈ 0.43, PKS
1510-089 at z≈ 0.36 have been detected at VHE and a total of 62 blazars 2 .

As we will see in the later chapters, the TeV emission from more distant blazars cannot
reach Earth because of gamma-gamma attenuation with the EBL restricting the TeV flux of
sources more distant than z≈ 0.16.

2.2 Cosmic voids and intergalactic medium

The intergalactic medium (IGM) is a dilute medium among the cosmic voids of galaxies
accommodating the bulk mass of the Universe. Today’s perception is that the IGM is
occupied by approximately half of the dark matter while the intergalactic baryon fraction is
probably much higher. At redshifts z≤ 20 or so, without the existence of galaxies, the term
“intergalactic” is not valid but limited to the epoch after the beginning of reionization up to
z ∼ 147. Thereafter, the free electron ratio became too low to sustain the coupling of the
cosmic gas temperature to the CMB temperature.

1The name blazar is derived from “BL Lacertae” and “quasar”.
2http://tevcat.uchicago.edu

http://tevcat.uchicago.edu
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Fig. 2.3 Cosmological N-body simulation “Millennium” revealing the large scale structure of
the universe. Figure taken from Springel et al. (2005)

After the Big Bang, there was an era of recombination of cosmic gas upto reshifts of
z∼ 1100. Then there was the era of formation of the first stars from primordial gas possibly
in the rarest peak in the cosmological density field at a redshift of z∼ 70 (Naoz et al. (2006)).
Gradually, more and more stars formed in the Universe known as POPIII star formation at
z∼ 20−30 (Trenti and Stiavelli (2009)).

The cosmic gas cooled adiabatically to ∼ 2 K with the expansion of the Universe at
z = 10 (Kulkarni et al. (2015)). It is from these cold conditions that the IGM emerged largely
as a result of gravity on the primordial matter fluctuations. By the time of formation of
first galaxies in the Universe , IGM was exposed to metal enrichment and their radiative
backgrounds. Initially, the ∼ 10 eV and soft X-ray backgrounds heated the gas such that the
21 cm line of atomic hydrogen is detectable (Furlanetto et al. (2006); Madau et al. (1997)).
Then, approximately all intergalactic hydrogen was photoionized by the 13.6 eV photons,
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leading to a cosmological ionization which increased the temperature of IGM to orders of
104K.

There has been successful studies of the IGM at intermediate redshifts 2 < z < 5, explain-
ing the statistics of Lyα absorption of intergalactic hydrogen (Vogt et al. (1994)), leading to
resolved studies of the Lyα forest absorption (Hu et al. (1995); Kim et al. (1997); Kirkman
and Tytler (1997)).

There has been rather much debates on the observations of IGM amongst astrophysicists.
Studies such as the cosmological hydrodynamic or N-body simulations explore the spatial
structure of the universe via gravitational effects. These computer simulations provide
an illustration of the non-homogeneous universe, where most of the matter is gathered in
filaments. Springel et al. (2005) presented the well-known “Millennium” N-body simulations
(see figure 2.3). Later, the more advanced simulations “Illustris” project led to accurate
values for the cosmic star formation rate and for galactic luminosities (Vogelsberger et al.
(2014)).

Most of the parameters of the IGM are not known precisely. Here, some of the relevant
parameters to this work are presented. The average baryon density in the IGM of cosmic
voids is ≃ 10−7cm−3 (Madau (2000)). But the uncertainty for the IGM temperature is higher,
varying between 104−105K, depending on the redshifts (Chang et al. (2012); Rudie et al.
(2012)).

Generally, the dilute plasma in IGM is considered as a background radiation source in
cosmic voids. In the next sections, a brief introduction of the cosmic microwave background
(CMB) and extragalactic background light (EBL) is presented as the two other sources of
radiation fields in the IGM.

2.3 Cosmic microwave background

The cosmic microwave background (CMB) resembles a relic of the evolution of the early
Universe and a proof of the Big Bang. It is a bath of baryons and photons with an isotropic
radiation of microwave photons that permeates the entire Universe. Shortly after the Big
Bang, the Universe cooled down to a point where Thomson scattering stopped and neutral
hydrogen atoms were formed. The photons decoupled from baryons with an infinite mean
free path leading to a transparent Universe for the first time ever known as CMB.

The temperature of the Universe using the Saha-equation for the equilibrium ionization
fraction of hydrogen (Xe = 0.1) and the known parameters of baryon-to-photon ratio (η ≃
6.05×10−10 (Kolb and Turner, 1990)), approximately at z = 1100 of the end of recombination

3CMB temperature www.cosmos.esa.int

 www.cosmos.esa.int
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Fig. 2.4 All-sky image of the cosmic microwave background measured by the Planck satel-
lite.3Figure taken from Planck Collaboration (2016)

epoch, would be TR ≈ 3000K via

1−Xe

X2
e

= 4
√

2ζ (3)Π−1
η

T 3/2

me
exp(

13.6eV
T

). (2.1)

Today, due to red-shift expansion of space-time, its average temperature is measured
T0 ≃ 2.726K (Fixsen (2009)).

1+ zR =
a(t0)
a(tR)

=
TR

T0
≈ 1100 (2.2)

Using Planck satellite ( see figure 2.4) and SMICA semi–blind spectral– matching algorithm
(Planck Collaboration, 2016), a uniform infrared black-body radiation of the CMB is observed
from the early times of the recombination epoch.

Considering the fact that CMB is a black body through integrating Planck formula for
describing the energy density :

ε(ν)dν =
8πh
c3

ν3

e
hν

KT −1
dν , (2.3)

where h is the Planck constant, c is speed of light and ν is frequency. Integrating over all
frequencies, one can derive:

εrad = αT 4 (2.4)
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where α is the radiation constant. Thus, the energy density of CMB photons is proportional
to T 4. Also the average photon energy of CMB is small, Eavg ≈ 3KBT ≈ 7×10−4 eV while
the energy of a baryon is Eb = 939 MeV.

Also, we note that an interesting feature of CMB map is being uniform while there is
a partial anisotropy in the temperature ≃ 10−5 which was precisely detected by Cosmic
Background Explorer (COBE) satellite (Mather et al. (1990)).

2.4 Extragalactic background light

Extragalactic background light (EBL) is another notable radiation field in cosmic voids,
ranking second after the CMB. EBL has a full electromagnetic spectrum, from radio to
gamma-rays, as the integrated intensity of light throughout the history of the universe.
However, it is sometimes defined as the extragalactic intensity spectrum from UV to infrared
(Dwek and Krennrich (2013)).

Fig. 2.5 Intensity of the extragalactic background as a function of wavelength in SI units).
Figure taken from Cooray (2016)

The current EBL intensity measurements are illustrated in figure 2.5, where the spectral
intensity is plotted as a function of the wavelength of background in SI units. The figure is
estimated using a statistical average of existing results from the literature (Cooray (2016)).
We note two peaks, one at 1µm from stars and 100µm from the thermal emission from dust
(Primack et al. (2008)).
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Direct absolute intensity measurements (such as Zodiacal light due to high signal noise
at optical and infrared in the solar system and Milky Way) is difficult comparing to Galactic
emission at radio, infra-red, X-ray or gamma rays. However, an instance of such EBL indirect
measurements is deriving the number density of infra-red photons leading to electron-positron
pair-production by interactions with TeV photons, using absorbed TeV spectra of TeV sources
such as blazars and AGNs at cosmological distances. These limits the travelling distance of
gamma rays. The soft X-ray/extreme UV extragalactic background at wavelengths of 10 to
100 nm is still unexplored and difficult because of the absorption of the extragalactic photons
by the intervening neutral intergalactic medium and the interstellar medium of our galaxy.

2.5 Blazar-induced pair beams

Many blazars have been detected as sources of gamma-rays with the energy E ≥ 100 GeV
(de Naurois (2015)) with modern gamma-ray telescopes such as HESS, VERITAS, MAGIC
and Fermi LAT instrument. Some of these blazars have photon emission boosted to TeV
when observed in the line of sight of jet axis, such as Intermediate-Frequency-Peaked (IBL
blazars) and High-Frequency-Peaked BL Lacertae objects (HBL blazars).

As mentioned in section 2.4, the universe is transparent for electromagnetic radiation only
up to ∼ 100 GeV. Above this energy, the photons undergo electron-positron pair production
via γTeV + γEBL −→ e−+ e+ with the condition that the center of momentum energy of
these very-high energy gamma rays and EBL photon exceeds the threshold energy, i.e.√

2EγEEBL(1− cosθ) > 2mec2. Consequently, these γ rays get annihilated as they pass
through the EBL. The produced pairs are ultra-relativistic with the typical Lorentz factor
105 < Γ < 107 in direction of the initial TeV photon (Miniati and Elyiv (2013); Schlickeiser
et al. (2012a)). The mean free path for these high energy gamma rays in the TeV range is
approximately:

lγγ ∼ 80(1+ z)−ξ (Eγ/10TeV )−1Mpc (2.5)

where ξ = 4.5 and ξ = 0 for z ≤ 1 and z ≥ 1 respectively. (Kneiske, T. M. et al. (2004);
Neronov and Semikoz (2009)).

The created pairs beams are subject of many investigations, as they can be affected
by several physical processes: (i) inverse-Compton scattering (ICS), (ii) deflection by the
intergalactic magnetic field (IGMF), or (iii) collective plasma effects.

For the ICS scenario, let us assume 1 TeV gamma rays (corresponding to Γ≃Eγ/2mec2≃
106). Also assuming, ECMB ≃ 10−3eV (in absence of IGMF and due to ICS with the CMB)
then the cascaded photons will have typical energies of approximately EIC ≃ 2γ2ECMB = 2
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GeV. Primary gamma rays with Eγ = 40 TeV produce cascade emission above 100 GeV,
where the sensitivity of Fermi-LAT deteriorates. The ICC produces multiple GeV gamma
rays from the initial TeV gamma ray accordingly. (for a more detailed description, the
interested reader can refer to the works by Aharonian et al. (1994); Elyiv et al. (2009); Plaga
(1995) and Neronov and Vovk (2010)). Thus, the TeV source would be accompanied by a
GeV halo which is not detected (Abdo (2010); Neronov and Semikoz (2009)). In short, the
ICS would result in a gamma-ray emission with the characteristic energy in the GeV band,
but as indicated by Fermi-LAT data, the GeV gamma-ray emission is suppressed meaning
that the ICS is not the fastest of the three processes (see figure 2.6).

Fig. 2.6 Cascade emission from a TeV blazar (thick solid black curves) with Fermi upper
limits (gray curves) and HESS data (gray data points). Thin dashed curve shows the primary
(unabsorbed) source spectra. Dotted curve shows the spectra of electromagnetic cascade
initiated by pair production on EBL. Vertical line with arrow shows the energies below which
the cascade emission should be suppressed. Figure taken from Neronov and Vovk (2010).

The effect of deflection by the IGMF has been also well investigated (Neronov and
Semikoz (2009); Neronov and Vovk (2010); Taylor et al. (2011)). The estimated magnitude
for these homogeneous fields on the Mpc scale typically ranges from 10−17−10−15 G. In
this scenario, the electron-positron pairs are deflected away so that the up-scattered beam of
gamma rays are not observed by the observer on Earth (Dermer et al. (2011); Neronov and
Semikoz (2009); Neronov and Vovk (2010); Taylor et al. (2011)). However, these constraints
on the IGMF are valid only under the assumptions that the multi-TeV gamma-ray emission
persists on long timescales and that the pairs lose their energy only due to ICS. This latter
assumption is crucial and remains debatable.

The importance of collective plasma effects, i.e. the stability of the beam interact-
ing with an unmagnetized IGM, has been pointed out by several authors (Broderick et al.
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(2012); Miniati and Elyiv (2013); Schlickeiser et al. (2012b)). In fact, the pairs can induce
electrostatic (two-stream, oblique) and electromagnetic (filamentation, Weibel) instabilities
(Breizman (1990); Breizman and Riutov (1974); Bret (2006); Bret et al. (2004, 2005, 2010);
Godfrey et al. (1975); Lominadze and Mikhailovskii (1979)). In this case, wave-particle
interactions can reduce the energy of the pairs by 30-50 % (Bret et al. (2010); Schlickeiser
et al. (2002)). Therefore, the collective plasma effects can also substantially suppress the
GeV-band gamma-ray emission affecting as well the IGMF constraints.

This is the main focus of the thesis, where the analytical model and particle-in-cell (PIC)
simulations are considered for the relevant plasma instabilities along with presentation of
the relevant reviews. In the next section of this chapter, an overview of two-stream, oblique,
filamentation and Weibel instabilities is presented.

2.6 Relevant plasma instabilities

Our universe is the biggest laboratory for plasma systems such as stars, galaxies and inter-
galactic medium. There are so many kinds of plasma instabilities in the literature which does
not fit the scale of this thesis. However, a brief introduction of instabilities relevant to this
thesis is presented here, including two electrostatic instabilities (two-stream and oblique) and
two electromagnetic instabilities (filamentation and Weibel).

Streaming instabilities depend on important parameters such as direction of the beam
propagation, the species of the particles such as electrons or protons, the beam/plasma density
ratio, the presence of a current, presence or absence of background magnetic fields and the
temperature (where here, the beam is called cold such that the thermal temperate is low in
comparison with it is bulk velocity, else it is called hot).

In figure 2.7, a sketch of these instabilities is illustrated. Let’s consider the simple case of
the counter streaming electron beam propagating against another electron beam, where both
beams are cold without any background magnetic field. The instabilities have different names
such that for k ∥ vb and δB = 0 they are known as the two-stream instability or so-called
"Buneman instability" (Buneman, 1959), or of k ⊥ vb for the filamentation instability. The
modes at intermediate angles k ·vb, i.e between 0 and π

2 , are called oblique modes consisting
of density, electric and magnetic perturbations, and they can be in some cases be faster than
the two-stream and filamentation modes (Bret et al. (2010)).

Generally for the Weibel instability, the distribution function with anisotropies can
drive instabilities. Here, the electron temperatures are assumed such that Tz = Tx = T⊥
and Ty = T∥ > T⊥ and a magnetic fluctuations of B = Bzcos(kx)z. The magnetic field
perturbations focus electrons into current bundles such that they amplify the magnetic field
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Fig. 2.7 The filamentation, two-stream, oblique and Weibel modes. Figure taken from Cottrill
et al. (2008)

perturbations. In other words, if T∥ > T⊥ , electrons moving in y direction, will have a higher
mean velocity leading to stronger currents, resulting in the instability.

In the non-linear regime, the magnetic field becomes high enough such that the anisotropy
becomes too weak and the Weibel instability saturates. (i.e the parallel temperature has been
reduced in order to increase the perpendicular temperature and also to develop a magnetic
field.)



Chapter 3

Analytical model

In this chapter, first we start with an overview of the literature related to this work, followed
by our analytical model (covered in sections 3.4 and 3.5). This is the main framework which
this thesis is relied on in later chapters.

Amongst the astrophysical plasma systems, IGM has a typical density of a few particles
per cubic metre and it is much less dense compared to other plasma systems such as stellar
plasma. Important properties of the plasma are based on the characteristic time and length
scale, which are defined by:

• The Electron plasma frequency

ωpe =

(
n0e2

ε0me

) 1
2

(3.1)

• The Debye length λD =
vth

ωpe
(3.2)

• The Skin length λe =
c

ωpe
(3.3)

where n0 is particle density and vth is thermal velocity of the plasma system.
The type of plasmas we are dealing with in this work, due to their very low densities such

as in IGM, is called collisionless. Generally, in collisionless systems, the time scale of the
phenomena under study is short compared to the collision time scale ( and also the length
scales are shorter than the mean free path for the coulomb collisions). However, the same
plasma with the same parameters could be considered as collisional depending on the scales
of time and distance of the concerned phenomena. Then, in systems such stellar plasma, it
is a collision dominated system. In the later case, the particles quickly form an isotropic
Maxwellian velocity distribution f (v) and the plasma distribution function can be regarded as
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a continuous fluid or a delta function, so that the magnetohydrodynamics (MHD) or two-fluid
models are considered for the analytical description of such systems. However, for the former
case of a collisionless plasma, the precise form of the velocity distribution function based
on a statistical model is vital for the analytical description which is referred to as kinetic
treatment. This kinetic treatment is the main framework of the analytical descriptions of the
plasma in this thesis and also in the computer simulations followed by.

The relevant equation to deal with such problems is the Vlasov equation, completed by
Maxwell equations. This thesis relies exclusively on the kinetic framework, which is detailed
in the following section.

3.1 Kinetic representation

For the kinetic description of a plasma, we need to use the Vlasov equation coupled with
the Maxwell equations. Assuming the particle distribution to be in an equilibrium and
introducing a small perturbation around this distribution, one can linearise the equations with
respect to the small quantities and find solutions leading to dispersion relations that govern
the spectrum of allowed waves in the plasma.

There are many cases where the exact form of the velocity distribution function is
significant for the dispersion relation. Such cases are referred to as kinetic instabilities. For
one particle trajectory one should follow six-dimensional space-momentum, however for
the whole system of plasma this would be impossible. Instead, the Kinetic theory uses a
distribution function of particle species i at time t with the number density:

ni(r, t) =
∫

fi(r,p, t)d3 p. (3.4)

For the plasma feedback to the electromagnetic fields, we need the total charge and
current densities for all species i from Gauss’s law and Ampere’s law:

ρ(r, t) = ∑
i

qi

∫
fi(r,p, t)d3 p, (3.5)

j(r, t) = ∑
i

qi

∫
v fi(r,p, t)d3 p. (3.6)

Inserting equations 3.5 and 3.6 to Maxwell’s equations:

∇ ·E = 4πρ, (3.7)
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∇ ·B = 0, (3.8)

∇×E =−1
c

∂B
∂ t

, (3.9)

∇×B =
1
c

(
4πj+

∂E
∂ t

)
. (3.10)

And the feedback of electromagnetic fields on the particles is described by the Lorentz
force:

dp
dt

= q
(

E+
1
c

v×B
)
, (3.11)

where v = (p/Γm) with the relativistic Lorentz factor of Γ = (1− v2

c2 )
− 1

2 . Assuming the
distribution function is locally conserved according to the Liouville’s theorem, its continuity
equation with source and sink term being zero, reads as:

∂ f
∂ t

+ ṙ · ∂ f
∂r

+ ṗ · ∂ f
∂p

= 0, (3.12)

replacing the Lorentz force from equation 3.12 and velocity term results in the Velasov
equation:

∂ f
∂ t

+v
∂ f
∂r

+q
(

E+
1
c

v×B
)

∂ f
∂p

= 0 (3.13)

which could also be derived from Boltzmann’s equation with the collision term set to zero in
the form of collisionless Boltzmann equation.

In short, one can derive the fields from Maxwell’s equations originating from the charge
and current densities. Albeit, using Vlasov equation for the fields the distribution function is
derived. However, using the Vlasov-Maxwell system, it is not easy to derive the analytical
solutions, which brings us to the alternative approach of making approximations to decouple
the equations from each other through simplified linearisation.

We start with a linear representation of the Vlasov-Maxwell equations by assuming the
exact equilibrium solutions for the distribution function, the electric field, and the magnetic
field and then inserting small derivations from these solutions such that:

f (r,p, t) = f0(r,p, t)+δ f (r,p, t), (3.14)

E(r, t) = E0(r, t)+δE(r, t), (3.15)

B(r, t) = B0(r, t)+δB(r, t). (3.16)

Inserting the first order approximation of equations 3.14 to 3.16 in the Vlasov-Maxwell
equations and keeping in mind that the current and charge densities only depend on the



18 Analytical model

perturbation terms, we obtain:

∂δ f
∂ t

+v
∂δ f
∂r

+q
(

E0 +
1
c

v×B0

)
∂δ f
∂p

=−q
(

δE0 +
1
c

v×δB0

)
∂ f0

∂p
, (3.17)

∇ ·δE = 4πδρ, (3.18)

∇ ·δB = 0, (3.19)

∇×δE =−1
c

∂δB
∂ t

, (3.20)

∇×δB =
1
c

(
4πδ j+

∂δE
∂ t

)
. (3.21)

Using the method of characteristics by Koskinen (2011), the equation 3.17 can be
solved by integrating over unperturbed orbits, introducing new variables for the position and
momentum with the boundary condition of r′(t ′ = t) = r and p′(t ′ = t) = p such that

dr′

dt ′
= v′ and

dp′

dt ′
= q
(

E0(r′, t ′)+
1
c

v′×B0(r′, t ′)
)
, (3.22)

and the total derivative of distribution as:

dδ f (r′,p′, t ′)
δ t ′

=
∂δ f (r′,p′, t ′)

δ t ′
+

dr′

dt ′
· ∂δ f (r′,p′, t ′)

∂r′
+

dp′

dt ′
· ∂δ f (r′,p′, t ′)

∂p′

=−q
(

δE(r′, t ′)+
1
c

v′×δB(r′, t ′)
)
· ∂ f0(r′,p′)

∂p′
, (3.23)

δ f (r,p, t) =−q
∫ t

−∞

(
δE(r′, t ′)+

1
c

v′×δB(r′, t ′)
)
· ∂ f0(r′,p′)

∂p′
dt ′

+δ f
(

r′(−∞),p′(−∞), t′(−∞)
)
. (3.24)

Reintroducing the index species i into 3.25

δ j(r, t) = ∑
i

qi

∫
vδ fi(r,p, t)d3 p = σ̂ ·δE. (3.25)

where equation 3.25 defines the conductivity tensor σ(x, t) of the plasma, corresponding to
the plasma feedback on electro-magnetic perturbation.

To present the Maxwell operator for an infinite, homogeneous and stationary system, one
can apply perturbation quantities as spatial dependence such that the solutions are assumed
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to be Fourier-Laplace integrals

Ẽ(r, t) =
∫

∞

0
dt
∫

∞

−∞

d3kE(k, t)ei(ωt−k.r), (3.26)

B̃(r, t) =
∫

∞

0
dt
∫

∞

−∞

d3kB(k, t)ei(ωt−k.r), (3.27)

f̃ (r,p, t) =
∫

∞

0
dt
∫

∞

−∞

d3k f (k,p, t)ei(ωt−k.r). (3.28)

Inserting the above equations to Maxwell’s equations and the current density and combining
them, we can easily derive a single wave equation for electric field

(−ω
2 + k2c2−4πiωσ̂) · Ẽ− c2(k · Ẽ)k = ick×B(k, t = 0)− iωE(k, t = 0), (3.29)

which can be rewritten with the index notation as

Λn jE j(k,ω) = An(k,ω), (3.30)

where the tensors Λn j and Ψn j define Maxwell operator and dielectric tensor respectively
such that:

Λn j :=
k2c2

ω2

(knk j

k2 −δn j

)
+Ψn j, (3.31)

Ψn j := δn j +
4πi
ω

σn j, (3.32)

which contains the conductivity tensor σn j and the Kronecker delta δn j =

{
1, if n = j

0, otherwise
and A

is given by:

An(k,ω) =
i
ω

En(k, t = 0)− ic
ω2 εnrskrBs(k, t = 0), (3.33)

where εnrs is the defined Levi-Civita symbol.
A solution for the electric field perturbations is derived from the inversion of Maxwell

operator, if the operator is known and invertible. This leads to the dispersion relation of the
late time reaction of the plasma to small perturbations:

det(Λ̂(k,ω)) = 0. (3.34)

Equation 3.34 provides the so-called dispersion relation which yields the dependence of
the wave frequency on the wave vector, ω = ω(k), distinguishing the wave modes of plasma
configuration.
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Now we will consider an unmagnetized plasma to linearise the wave solution of Vlasov
equation, assuming:

f = f0(v)+ f1(υ)ei(k·x−ωt),

E = E1ei(k·x−ωt) and B = B1ei(k·x−ωt).
(3.35)

Here, f0 represents the equilibrium electron distribution, whereas f1 denotes a small pertur-
bation in the form of the plane wave. Equation 3.13 can be rewritten as

− iω f1 +v · ik f1 +
q
m
(E1 +v×B1) ·

∂ f0

δv
= 0. (3.36)

Assuming f0 is isotropic, ∂ f0
∂v is in the direction of v such that the term v×B1.

∂ f0
∂v = 0, thus

f1 can be derived in the form of:

f1 =
q
mE1 · ∂ f0

∂v
i(ω−v ·k)

. (3.37)

Now by inserting f1 in Ampere’s Law, the current density can be written as:

j = q
∫

v f1d3
υ =

q2

im

∫ v∂ f0
∂v

ω−v ·k
d3

υ ·E1 = σ ·E1, (3.38)

Where as discussed before, σ is the conductivity tensor. Each element of the dielectric tensor
contains the integral in the form:

1+
∫ F(v)

ω−k ·v
d3v. (3.39)

However the problem with this integral is obvious due to the zero value in the denominator.
Integrating through the pole at v = ω

k was magnificently done by Landau (1946).
Considering an infinitely small electrostatic potential energy such that the modulation

velocity would be negligible, in the wave frame ( i.e moving with the phase velocity of wave),
the potential would be at rest and the collisionless particles are moving at constant speed
with this frame (figure 3.1). Let us investigate the particle motion in a time period τ such
that it is smaller than the lifetime of the potential. Particles moving with the wave frame
speed would experience a potential modulation, but averaged over time τ their kinetic energy
is constant. Such particles are referred as non-resonant particles. Howbeit the so called
resonant particles are at rest relative to the wave frame, such that they would experience the
wave potential as a DC field, where averaged over time τ their kinetic energy would increase
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Fig. 3.1 A Sketch of the resonant and non-resonant particles. Figure taken from Bret (2012)

(in the acceleration phase) or decrease (in the deceleration phase). These particles will
participate in the energy exchange with the wave, either in form of damping or amplification
of the wave potential energy.

3.2 Linear Landau damping

An important feature of collisionless plasmas was discovered by Landau (1946) known as
Landau damping, derived from Vlasov’s equation, describing the absorption of Langmuir
waves or of other waves by the plasma. As mentioned in last section, equation 3.39 at
ω = k ·v has a complex solution that can be written as ω = ωr + iγ .

Landau presented the damping effect purely mathematically based on the Cauchy prob-
lem. The contour must pass below the singularity. If γ ≪ ωr, the Landau contour can be
approximated by a line along the v-axis with semicircular path around this pole without the
exact point of v = ω

k . The details can be found in Montgomery and Tidman (1964), therefore
the integral can be derived:∫ dv

ω−k ·v
g(v) = P

∫ dv
ω−k ·v

g(v)+ iπg(v)|v=ωr/k (3.40)

where P denotes the principal part of the integral, g(v) is an arbitrary function and k > 0.
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Furthermore, for a sufficiently small damping,|γ| ≪ |ωr| , one can derive an estimate for
the imaginary part from equation 3.34 in the form of

γ = kπ
∑ j

ω2
j

n j

∂ f0
∂v |v=ωr/k

∑ j
ω2

j
n j

P
∫ dv

v−ωr/k
∂ f0
∂v

, (3.41)

(where k > 0), From equation 3.41, it is well seen that the sign of γ is determined by the
slope of the distribution function at the velocity v = ωr/k.

The same complicated method can derive a solution for the electric field. Schlickeiser
et al. (2002) presented this at late times ( t → ∞) where the complex term of the Laplace
transformation vanishes exponentially leading to:

E(k, t) = ∑
m

Rme−iωr,m(k)teγm(k)t , (3.42)

where m refers to wave modes and Rm is the residue of the pole at ωr,m. It is easy to notice
that the electric field is constituted of sinusoidal waves at late time either damping (γ < 0) or
amplifying with time (γ > 0).

It is useful to consider the interaction of a plasma wave with the particles of velocity close
to the phase speed of the wave from the energetic point of view. Since the particle velocity is
close to the wave velocity, most of the exchange happens with the trapped particles by the
wave. In case of a decreasing velocity function in the distribution function, the majority of
trapped particles are accelerated rather than decelerated. Thus the wave is damped by losing
energy to plasma.

The dispersion relation is widely used to investigate plasma instabilities and the respective
growth rates. It is useful to mention the hierarchy of the modes for cold plasma regime in the
(α,γb) phase space, presented by Bret et al. (2010). With nb and ne as the number densities
for the beam and plasma respectively, the competing modes for dilute astrophysical plasmas
α = nb/ne≪ 1 for the Two-stream, Oblique and filamentation instabilities read as:

γT S

ωp
=

√
3

24/3
α1/3

γb
, (3.43)

γObl

ωp
=

√
3

24/3 (
α

γb
)1/3, (3.44)

γFI

ωp
=

vb

c

√
α

γb
. (3.45)



3.3 Overview of relevant plasma studies 23

In sections 3.4 and 3.5, the electrostatic instability driven by blazar-induced pair beams will
be presented for two cases of monoenergetic pair distributions ∆Γ≪ ⟨Γ⟩ and the realistic
non-monoenergetic pair distributions ∆Γ≫ ⟨Γ⟩ based on our publications Rafighi et al.
(2017) and Vafin et al. (2018). But first an overview of the related plasma studies is presented
in section 3.3.

3.3 Overview of relevant plasma studies

In this thesis, we want to investigate the relevant plasma instabilties to blazar-induced pair
beams interacting with the IGM, using PIC simulations. We cannot simulate the realistic
pair-beam parameters because of the small density. For this reason, we need to find some
set of parameters, where these parameters satisfy some conditions which garantee that our
simulations reasonably reproduce the behaviour of the realistic blazar-induced pair beams.
The conditions will be presented in sections 5.1.2 and 5.2.1 where energy density, intitial
instability development and non-linear evolution is thoroughly explained.

We consider a pair beam created only by the initial TeV gamma-ray emission neglecting
inverse-Compton scatterin (ICS). The typical parameters of the created beams depend on
the distance from a blazar, and they are ⟨Γ⟩ = 105, Γ = 103− 108, nb = 10−25− 10−19

cm−3, ∆θ ≈ 1/⟨Γ⟩ ≈ 10−5 (∆θ is the angular spread), whereas typical parameters of the
IGM are T = 104−107 K, n = 10−7 cm−3 (Broderick et al., 2012; Miniati and Elyiv, 2013;
Schlickeiser et al., 2012b; Sironi and Giannios, 2014). Thus, the energy density ratio is
ε = nb⟨Γ⟩mec2/(nkBT ) ≈ 10−10− 10−1 (kB is the Boltzmann constant, me is the electron
mass) indicating that the pair beam cannot heat the IGM plasma considerably. This point
was realized by Kempf et al. (2016) who conducted simulations for ε = 0.1. The parameters
of the simulations by Sironi and Giannios (2014) are α = nb/n ≈ 10−2, Γ ≈ 102, and
kBT/(mec2)≈ 10−8, resulting in ε ≈ 108, a parameter regime that is not relevant for realistic
pair beams. Moreover, such a high energy density ratio causes anisotropic plasma heating
that can eventually drive the Weibel instability, as it is discussed later. We note that Kempf
and Sironi have studied a beam distribution with ∆Γ≪ ⟨Γ⟩. We also investigate this case in
section 3.4, whereas a realistic distribution with ∆Γ≫ ⟨Γ⟩ will be studied in section 3.5.

3.3.1 Reactive vs Kinetic regime

The pair beam can induce two unstable modes: electrostatic and electromagnetic. The growth
rate of these instabilities sensitively depends on the momentum spread of the beam. If the
momentum spread is small enough, then the instabilities evolve in the so-called reactive
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regime. In this case, the beam can be mathematically treated as a delta function (Schlickeiser
et al. (2012b)) in the form of nbδ (p∥−Γbmeβbc), where the distribution function for the
cold beam in a cold background at rest is:

f (p⊥, p∥) =
δ (p⊥)
2π p⊥

∑
j
∑

i
N jδ (p∥−Γbmiβiui). (3.46)

and the growth rates of the electrostatic and electromagnetic instabilities are maximal per-
pendicular to the direction of the beam propagation (Godfrey et al., 1975).

As the momentum spread increases, the electromagnetic instability becomes stabilized
(Bret et al., 2005), while the maximum growth rate of the electrostatic mode shifts to the
direction parallel to the beam propagation (Breizman, 1990). This is the so-called kinetic
regime. Miniati and Elyiv (2013) have argued that the momentum spread of the realistic pair
beam drastically reduces the growth rate of the electrostatic instability. Later, Schlickeiser
et al. (2013) disputed this statement. Sironi and Giannios (2014) have demonstrated that the
maximum growth rate occurs in the direction almost parallel to the beam (contrary to the
reactive regime, when the maximum growth rate occurs in quasi-perpendicular direction to
the beam). But Schlickeiser et al. (2013) have assumed the parallel direction of the wave
vector from the very beginning. In this case, the electrostatic growth rate, indeed, only
weakly depends on the beam temperature (Bret et al., 2005). Thus, we can conclude that the
electrostatic instability for a blazar-induced beam evolves in the kinetic regime at all angles
with the maximum growth rate parallel to the beam propagation. It can be shown (section
3.4) that for the beam parameters used by Kempf et al. (2016) and Sironi and Giannios (2014)
the electrostatic instability has evolved in the reactive regime.

The following sections 3.4 and 3.5 are based on our publications Rafighi et al. (2017) and
Vafin et al. (2018). The analytical part is mainly based on the endeavours of my collaborator,
Dr. Vafin.

3.4 Monoenergetic pair beams

In this section, we develop a simple analytical model of plasma instabilities driven by a
monoenergetic beam, based on our publication (Rafighi et al., 2017). We note that Kempf
et al. (2016) and Sironi and Giannios (2014) have studied a beam distribution with ∆Γ≪⟨Γ⟩.
We also investigate this case in this section, whereas a realistic distribution with ∆Γ≫ ⟨Γ⟩
will be studied in in section 3.5.



3.4 Monoenergetic pair beams 25

3.4.1 The electrostatic instability

In section 3.3.1 we noted that the electrostatic instability of a cold beam evolves in the
kinetic regime and has its maximum growth rate in the direction almost parallel to the beam
propagation. At the same time, Schlickeiser et al. (2013) demonstrated that the growth rate
of the parallel electrostatic instability depends very weakly on the momentum spread of the
beam. Therefore, we can use the well-known growth rate of the two-stream instability for a
cold plasma,

γTS =
31/2

24/3 ωpα
1/3

Γ
−1. (3.47)

In consequence, we need to investigate only the electromagnetic Weibel instability, using the
waterbag distribution.

Waterbag Distribution

It should be noted that the most unstable wave vector of the Weibel mode can be in the
transverse direction to the beam (see Califano et al. (1998)) as well as in the oblique direction
(see Bret et al. (2010)). Moreover, the work by Bret et al. (2010) shows that for dilute beams
the maximum growth rates of Weibel mode in the transverse and oblique directions can differ
by a factor 2. Therefore, to make a rough estimation, we will study the Weibel instability
only for wave vectors perpendicular to the beam.

In order to solve the dispersion relation, one can use the monokinetic or so-called "cold"
distribution function which was introduced in previous section 3.3.1 with the general form

f j(p) = δ (px)δ (py)δ (pz−Pj), (3.48)

where Pj =meγ jv j for the beam and plasma electrons, giving a zero-order analytical estimates
useful in reactive regime. Nonetheless, the waterbag distributions is the mathematical
convenient tool to study kinetic beam-plasma instabilities (figure 3.2).

To derive analytical results with temperature effects, the beam-plasma system is modelled
by a waterbag distribution in a relativistic setting. The waterbag distribution is considered
analytically friendly to “play” with parallel and transverse thermal spreads, however not
useful in the high temperature regime and are unable to produce any Landau damping (see
Bret et al. (2005); Yoon and Davidson (1987)).
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Fig. 3.2 Schematic representations of the cold and waterbag distribution functions taken from
Bret et al. (2010)

To sum up, the waterbag distributions of the beam and the plasma that we will use in this
section are respectively:

fb(p) =
nb

4p2
⊥,b(p+∥,b− p−∥,b)

[
θ
(

pz + p⊥,b
)
−θ

(
pz− p⊥,b

)]
×
[
θ
(

py + p⊥,b
)
−θ

(
py− p⊥,b

)][
θ

(
px− p−∥,b

)
−θ

(
px− p+∥,b

)]
, (3.49)

fp(p) =
n

8p2
⊥,p p∥,p

[
θ
(

pz + p⊥,p
)
−θ

(
pz− p⊥,p

)]
×
[
θ
(

py + p⊥,p
)
−θ

(
py− p⊥,p

)][
θ
(

px + p∥,p
)
−θ

(
px− p∥,p

)]
, (3.50)

where p±∥,b = p0± p∥,b; p0 is the beam drift momentum; p∥,b and p⊥,b, respectively, the
parallel and perpendicular momentum spreads of the beam; p∥,p and p⊥,p, respectively, the
parallel and perpendicular momentum spreads of the background plasma; and θ(x) is the
Heaviside step function [θ(x) = 1 for θ > 0 and 0 otherwise]. The beam and background
plasma are assumed to be homogeneous with number densities, accordingly, nb and n. It is
useful to consider two cases separately: (i) p⊥,b = p∥,p = p⊥,p = 0 and (ii) p∥,b = 0.
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3.4.2 Weibel mode

Assuming the waterbag distribution function as 3.49 and 3.50 we now derive the dispersion
relations and growth rate for the Weibel instability for different cases of p⊥(transverse to the
beam) and p∥ (parallel to the beam) for the beam and plasma.

Case p⊥,b = p∥,p = p⊥,p = 0

We derive the dispersion equation for this case in Appendix A.1. It reads

[
1−

ω2
p

ω
−

ω2
b

ω2U1

]{
1−
(

kc
ω

)2

−
ω2

p

ω2−

−
ω2

b
ω2

[(
kc
ω

)2
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(
1−
(

kc
ω

)2
)

U2

]}
−

−
(

ω2
b

ω2
kc
ω

U3

)2

= 0. (3.51)

Taking the limiting case p∥,b≪ p0, equation (3.51) provides the classical textbook result
(Breizman (1990)):

[
1−

ω2
p

ω
−

ω2
b

Γω2

]{
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−
ω2

p

ω2 −
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−
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Γω2

(
kVo

ω

)2
}
−
(

ω2
b

Γω2
kc
ω

)2

= 0, (3.52)

where V0 = p0/(meΓ). Equation (3.52) predicts the instability with the growth rate (Godfrey
et al., 1975):

γ = ωpβ0

(
α

Γ

)1/2 kc(
ω2

p +(kc)2
)1/2 . (3.53)

Now, we will show that the solution (3.53) is only slightly different for a large parallel
momentum spread p∥,b≫ p0. Assuming p+∥,b≫ mc and p−∥,b≪ mc, we obtain

U1 ≈U3 ≈
mec
p+∥,b

ln
p+∥,b
mec

, (3.54)
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U2 ≈
mec
p+∥,b

. (3.55)

Neglecting unity in each bracket in equation (3.51) results in the solution

γ = ωp

[
α

mec
p+∥,b

ln
p+∥,b
mec

]1/2
kc(

ω2
p +(kc)2

)1/2 . (3.56)

It is easily seen from equation (3.56) that even for p+∥,b = 102 p0, the difference between
the solutions (3.55) and (3.56) is only a factor of 0.4. Thus, we can neglect the parallel
momentum dispersion of the beam and use p∥,b = 0.

Case p∥,b = 0

The dispersion equation for p∥,b = 0 is derived in Appendix A.2 and has the following form

[
1−

ω2
p,p

ω2 −
ω2

p,e

ω2− (kv⊥,p)2 −
ω2

b,⊥
ω2− (ku)2

]
×
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(kc)2 +ω2
p +ω2

b,∥
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(kv∥,p)2ω2
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−

−
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2ω2
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ω2(ω2− (ku)2)

]
−

[
kV0ω2

b,⊥
ω(ω2− (ku)2)

]2

= 0, (3.57)

where ω2
b,⊥=ω2

b/Γ, ω2
b,∥=ω2

b/Γ3. In principle, one can analyze equation (3.57) analytically,
but it is more useful and easier to treat two limiting cases of the cold background plasma and
the cold beam.

Cold background plasma v∥,p = v⊥,p = 0

Neglecting unity in each bracket in equation (3.57), we obtain that for p⊥,b ≥ p0(α/Γ)1/2 the
solution is purely real (no instability can arise), whereas for p⊥,b < p0(α/Γ)1/2 the Weibel
mode is unstable for k < (ωp/c)[(α/Γ)(p0/p⊥,b)2−1]1/2 with the growth rate

γ =

(
ω

2
pβ

2
0

α

Γ

(kc)2

(kc)2 +ω2
p
− (ku)2

)1/2

. (3.58)
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Let us now assume that the beam obeys a relativistic Maxwellian distribution:

f (p) =
µ

4π(mec)3Γ2K2(µ/Γ)
e
−µ

[(
1+ p2

(mec)2

)1/2
−β0

px
mec

]
, (3.59)

where µ = ΓµR = Γmec2/(kBTb), β0 =V0/c. Here, Tb is the temperature of the beam in its
rest frame. Then we can evaluate ∆p⊥ (see Appendix A.3) and write the condition for the
Weibel mode stability as

α ≤ αW =
2−π/2

ΓµR
=
(

2− π

2

) kBTb

Γmec2 . (3.60)

In the simulations by Sironi and Giannios (2014), magnetic-field fluctuations grew
at early times due to the Weibel instability driven by the beam, because α = 10−2 and
αW < 5×10−4 led to condition (3.60) not being fulfilled. But in the simulations by Kempf
et al. (2016), the Weibel mode was suppressed, because α = 2×10−6 < αW = 10−5. For a
realistic blazar-induced beam, the Weibel instability is also suppressed, since kBTb ≈ mec2

and α ≪ 1/ < Γ >.

Cold beam p⊥,b = 0

Again neglecting unity in equation (3.57), we can approximate it as

Eω
4 +Fω

2 +G = 0. (3.61)

where

E = (kc)2 +ω
2
p, (3.62)

F =
(
kV0ωb,⊥

)2
+

1
3
(kv∥,pωp,e)

2− (kv⊥,p)2((kc)2 +ω
2
p), (3.63)

G =−(kV0)
2 (kv⊥,p)2

ω
2
b,⊥. (3.64)

The growth rate reads

γ =

[
F +(F2−4EG)1/2

2E

]1/2

≈
[

F + |F |
2E

− G
|F |

]1/2

. (3.65)
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If F > 0, equation (3.65) describes the classical Weibel instability (Bret et al., 2005) with
growth rate

γ ≈
(

F
E

)1/2

≈

(
(kv∥,pωp,e)

2/3− (kv⊥,p)2((kc)2 +ω2
p)

(kc)2 +ω2
p

)1/2

. (3.66)

Due to v⊥,p ̸= 0, the instability is stabilized at large wave vectors, but at small k the
plasma is unstable for (v∥,p/v⊥,p)2 > 3. These conditions were fulfilled in the simulations
by Sironi and Giannios (2014), where there was a growth of the magnetic-field fluctuations
at later time around ωp,et ≈ 104. In the opposite case, F < 0 and assuming that v⊥,p is large
enough, equation (3.65) reduces to equation (3.53).

3.5 The electrostatic instability for realistic pair beams

In section 3.4, based on our first publication (Rafighi et al., 2017), we presented the analytical
model needed to investigate a range of parameters for which the beam evolution should
correctly reflect the physics. The earlier results, as well as those of Sironi and Giannios
(2014) and Kempf et al. (2016), are based on a monoenergetic beam. In this section, we
develop a simple analytical model of plasma instabilities of a realistic pair-beam distribution
which is non-monoenergetic. This analytical model is based on our second publication
(Vafin et al. (2018)). To investigate the growth rate of the electrostatic instability, the energy
distribution of realistic blazar-induced pairs is needed and it is presented in Appendix B.1.

3.5.1 Linear growth rate

Since the growth rate of the electrostatic instability is mainly regulated by the momentum
distribution of the beam particles, we introduce the normalized momentum distribution
function, fb(p) = fb(p,x)/nb. The background plasma is assumed to be cold. Then the
dispersion equation for the electrostatic mode from Breizman (1990) reads

Λ(k,ω) = 1−
ω2

p

ω2 −∑
b

4πnbe2
b

k2

∫
d3 p

k∂ fb(p)
∂p

kv−ω
= 0, (3.67)

where nb is the density, and eb is the charge, of the beam particles, ωp = (4πnpe2/me)
1/2 is

the plasma frequency of the IGM of density np, and k = (k⊥,0,kz) denotes the wave vector.
In our case, the beam is composed of electrons and positrons (eb = e). The ratio nb/np≪ 1
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is small. Taylor expansion of dispersion relation for small ωi and using Cauchy’s theorem
for the derivatives in complex space leads to the growth rate as

ωi =−
ℑΛ(ω = ωr)

∂ℜΛ(ω=ωr)
∂ωr

, (3.68)

where

ℜΛ(ω = ωr)≈ 1−
ω2

p

ω2
r
, (3.69)

and

ℑΛ(ω = ωr)≈−∑
b

4π2nbe2
b

k2 ×
∫

k
∂ fb(p)

∂p
δ (kv−ωr)d3 p. (3.70)

Eqs. (3.68)-(3.69) yield ωr = ωp and

ωi = ωp ∑
b

2π2nbe2
b

k2

∫
k

∂ fb(p)
∂p

δ (kv−ωr)d3 p. (3.71)

For an ultra-relativistic beam, equation (3.71) from Breizman (1990), yields

ωi = π
nb

n
ωp

(
ωp

kc

)3 ∫ θ2

θ1

dθ
′×
−2g(θ ′) sinθ ′+(cosθ ′− kccosθ/ωp)(dg/dθ ′)

[(cosθ ′− cosθ1)(cosθ2− cosθ ′)]1/2 , (3.72)

where
g(θ ′) = mec

∫
∞

0
p fb(p,θ ′)d p, (3.73)

θ is the angle between the beam propagation and the wave vector, cosθ1,2 = ωp[cosθ ±
sinθ

√
(kc/ωp)2−1]/(kc), and the integration angle θ ′ is counted from the beam direction.

3.5.2 Electrostatic instability for a beam without perpendicular mo-
mentum spread

In this section, we consider the linear electrostatic growth rate for a realistic blazar-induced
pair beam, but with no transverse angular spread. It was found that the momentum distribution
of produced pairs is strongly collimated along the direction of the initial gamma-rays, and
the transverse momentum is around mec/2, leading to an opening angle of the beam of
about 10−5− 10−4 (Miniati and Elyiv, 2013). Given the small transverse component of
the momentum it may seem to be reasonable to model the distribution function of a beam
propagating along the z-axis as

fb(p) = fb,z(pz)δ (px)δ (py), (3.74)
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where fb,z(pz) is related to the distribution can be found in the Appendix as fb,z(pz) = fb(γ ≈
pz/(mec))/(mec) (equation B.13). Inserting equation (3.74) into equation (3.71), we obtain

ωi = ωp ∑
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2π2nbe2
b
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−∞
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kz pz

meγ
−ωp

)]
d pz, (3.75)

where γ =
√

(pz/mec)2 +1. equation (3.75) can be rewritten as
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where pz0 = mec/
√

(kzc/ωp)2−1 and γ0 =
√
(pz,0/mec)2 +1. For the limiting case of the

parallel waves, the growth rate reads

ωi,|| = π
nb

np
ωpγ

3
0

(
ωp

kc

)2
(mec)2 ∂ fb,z(pz,0)

∂ pz,0
. (3.77)

However, the growth rate (3.76) is larger by many orders of magnitude in quasiperpendicular
direction k⊥≫ kz

ωi,⊥ ≈ π
nb

np
ωpγ

5
0

(
ωp

kc

)2
(mec)2 ∂ fb,z(pz,0)

∂ pz,0
= γ

2
0 ωi,||. (3.78)

The growth rate for parallel wave vectors (3.77) is shown in figure 3.3 for two different
pair spectra, the approximation was derived from Schlickeiser et al. (2012a) (equation B.14)
and our results (equation (B.13)). As can be noted from the figure, the maximum growth
rates for parallel wave vectors differ by only a factor of 2.

The growth rate for arbitrary wave vectors is presented in figure 3.4a and figure 3.4b,
respectively, for pairs beams with distributions (B.14) and (B.13). It is evident that for a more
realistic pair distribution (B.13) the peak of the growth rate is narrower and has a much larger
value than for pair distribution (B.14). Since the perpendicular growth rate is proportional
to γ2

0 , the high-energy part of the distribution function (see figure B.2) gives the dominant
contribution to the growth rate.
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Fig. 3.3 Growth rate of the electrostatic instability for parallel wave vectors for beam with no
angular spread and distribution function that was determined by Vafin et al. (2018) (equa-
tion B.13, red line) and Schlickeiser et al. (2012a) (equation B.14, black line), respectively.

3.5.3 Electrostatic instability for a beam with a finite perpendicular
momentum spread

Now, we will consider a finite opening angle of the beam. To do this, we use the distribution
function of the form

fb(p,θ) = fb,p(p) fb,θ (θ , p), (3.79)

where the transverse distribution can be well approximated by (see the work by Miniati and
Elyiv (2013)):

fb,θ (θ , p)≈ 1
π ∆θ 2 exp

(
− θ 2

∆θ 2

)
(3.80)

and the angular spread for pairs with momentum p can be estimated as ∆θ ≈ mec/p (see the
work by Broderick et al. (2012)). The distribution fb,p(p) is derived by transformation from
the z-integral over equations. (B.4) and (B.9),

fb,p(p) = fb

(
γ ≈ p

mec

)
dγ

p2d p
=

fb

(
γ ≈ p

mec

)
mecp2 . (3.81)

The growth rate of electrostatic waves is evaluated by numerically solving equation (3.71).
Figure 3.5a a illustrates the growth rate for a beam with the distribution function given
by equation (B.14) (Schlickeiser’s approximation), whereas figure 3.5b is based on the
distribution function found by us and approximated by equation (B.13). The distribution of
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(a) (b)

Fig. 3.4 (a) Normalized growth rate, ωi/(πωp(nb/np)), for a beam with no angular spread
and the distribution function from equation (B.14) (Schlickeiser et al. (2012a), Mc = 2×106,
τ0 = 103, α = 1.8). (b) Same as in (a), but for a beam with no angular spread and a
distribution function derived by us (equation B.13).

(a) (b)

Fig. 3.5 (a) Normalized growth rate, ωi/(πωp(nb/np)), for a beam with a finite angular
spread and the distribution function of equation (B.14). (b) Same as for (a), but for the
distribution function of equation (B.13) determined by us.
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the growth rate in the wave-vector space is very similar for the two pair distributions, and we
can conclude that low-energy pairs that are not included in Schlickeiser’s approximation do
not really matter.

We find that (i) the growth rate for the beam with a finite angular spread is much smaller
compared to the beam with no angular spread and (ii) the maximum growth rate becomes
very narrow and lies in the quasiparallel direction (θ ≈ 16◦.7) to the beam. To be also noted
is that the growth rate at oblique wave vectors with θ ≈ 40◦ is only by a factor 3-5 smaller
than the peak value.

The maximum growth rate is

ω
max
i ≈ 3.2×10−6nb,20n−0.5

e,7 s−1 , (3.82)

where we adopted nb = nb,2010−20 cm−3 and ne = ne,710−7 cm−3. This growth rate must be
compared to the IC loss time, τIC ≈ 1020γ−1 s. Thus, even pairs with Lorentz factor γ ≈ 109

will drive the instability for thousands of exponential growth cycles before they loose energy
to IC scattering. The important questions are at what level the mode saturates and at which
rate the beam energy is depleted while the wave mode is at saturation. While we address the
former with PIC simulations, the latter requires an analytical estimate.





Chapter 4

Particle-in-Cell Plasma Simulations

The analytical treatments of plasma kinetics rely on the linearisation of the system of Vlasov-
Maxwell equations which makes the study of highly nonlinear phenomena almost infeasible.
Despite all the approximations used in such treatment, it is still complicated to find a solution.
An alternative approach is using computer simulations on supercomputers which still have
their own limitations. In this chapter a short overview of the simulation model is presented,
followed by an introduction to the simulation code used in this work. The modification we
have done to the code in presented in section 4.3.3 and the technical issues that we have
investigated through many run tests are discussed in section 4.3.4.

4.1 Plasma Simulations Models

Depending on the scale of the plasma system under study, one should choose the appropriate
simulation method. For macroscopic systems and collisional plasmas, a hydrodynamic and
magnetohydrodynamical (MHD) model are the most preferred approaches. These methods
approximate the plasma system as one or more fluids, where the fluid elements have bulk
attributes such as density, temperature, pressure, etc., provided the fluid elements represent a
large enough volume for the approximation. The temporal evolution of the system consisting
of plasma and electromagnetic fields (see, Davidson (2001)) are described by Maxwell’s
equations of electrodynamics. However, this method is usually based on assumptions (for in-
stance, the Maxwellian distribution of particles), which make the simulation computationally
cheaper but not so accurate.

In contrast to MHD models, hybrid simulations focus on more details regarding the dis-
tribution function from physical processes. In such method, the evolution of the distribution
function of one particle species is of interest. For instance, this method treats electrons with
a fluid representation and and uses a particle representation for ions such that one can focus
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on ion physics. In comparison with MHD, this method replaces the Navier-Stokes equations
with the equation of motion for individual particles (which includes the Lorentz force). This
also provides more accuracy comparing to MHD and yet still cheaper than a full PIC code.

In the so called Particle-in-Cell (PIC) simulations ( see, Dawson (1983)), with micro-
physical scales or a collisionless plasma, a fully kinetic model is needed to study the
evolution of the distribution function of all particle species involved. The fundamental
plasma parameters like the Debye-length and the plasma frequency are the most common
time and length scales of such simulations.

PIC simulations have the advantage of being self-consistent and having a high precision
in the representation of real plasma processes. Despite the huge progress in modern com-
putational powers and memory available on high-performance computing clusters (HPC)
using advanced parallelisation techniques, this method is still expensive and considered not
feasible for the use of realistic parameters with severe limits on the size of problem.

The PIC method can quickly become unstable and noisy; imposing lots of artificial effects
on the simulations that one should take with great care and try to suppress these imperfections.
However, PIC codes are considered the best simulation tool in a wide range of problems to
study the plasma instabilities and general wave-particle interactions; such as laser-plasma
interactions, interactions of the solar wind with Earth’s magnetosphere. In this thesis, plasma
effects on relativistic pair beams from TeV blazars are investigated with a PIC code.

This chapter describes particle-in-cell codes in general, and the PIC code EPOCH used
in this study. Also the artificial complications due to simulations restrictions and proposed
measures to suppress the imposed limitations are covered.

4.2 The Principles of Particle-in-Cell Simulations

Particle-in-Cell simulations are considered the most common tool for a collisionless plasma
kinetics. Since the 1970s the algorithm of such codes, have been under contentious develop-
ment. The early versions of these codes were limited to one-dimensional purely electrostatic
codes and the core of PIC algorithms are described in textbooks such as Birdsall and Langdon
(2004) and Hockney and Eastwood (1988). Modern PIC codes with the use of modern com-
putational sources can move to higher dimensions of the code (1d, 2d, 3d), at the same time
they have capabilities such as using higher order shape functions, using filters to preserve the
solution of Poisson’s equation, including collisions, ionisation and QED effects, etc.
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4.2.1 Core collisionless algorithm

The core of a PIC code consists of the particle pusher and the field solver which is presented
in next sections. As illustrated in figure 4.1, The overall scheme starts from macroparticles
filling computational cells in discrete space “cells” and time “timestep” where the EM field
is interpolated from cells to particles’ positions, calculate the force on the particles, update
the velocity and distribution of the particles’ current to the cell vertices in a self-consistent
manner.

update_eb_fields_half

En BBn XXn PPn

En+1/2

Bn+1/2

XXn+1/2

PPn+1

XXn+1

Jn

Jn+1

En+1/2 Bn+1/2

BBn+1

EEn+1

Code execution flow

t=t(n) t=t(n+1)

push_particles update_eb_fields_full

Fig. 4.1 Block diagram of the core routines in a PIC code.1

In PIC simulations, for the sampling of the phase space distribution function of particle
species f (x,p, t), the so-called macro particles are used. These macro particles are the
probability distribution for an ensemble of Lagrangian markers, which trace the distribution
function at certain points in the phase space via Vlasov equation (see Villasenor and Buneman
(1992)):

d f
dt

=
∂ f
∂ t

+ v · ∂ f
∂x

+
[
E(x, t)+

v
c
×B(x, t)

]
· ∂ f

∂p
= 0. (4.1)

1www.cfsapmw.warwick.ac.uk:1731/index.php/EPOCH

www.cfsapmw.warwick.ac.uk:1731/index.php/EPOCH
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From Vlasov equation one can clearly see that if every macro particle is a solution,
the total distribution function f (x,p, t) is then replaced by a sum over all macro particles

∑i fi(x,p, t). Inserting the distribution function of the macro particles into the Vlasov equation
(4.1) and taking the first moments with respect to x and p provides macro particle’s equations
of motion(see Birdsall and Langdon (2004) and Hockney and Eastwood (1988)):

ẋ = v =
p
m

and ṗ = q
[
E(x, t)+

v
c
×B(x, t)

]
, (4.2)

where m is the mass of the particle and q is its charge.
Furthermore, the Vlasov equation (4.1) is coupled with Maxwell’s equations to form the

Vlasov-Maxwell system:

∇×B = µ0ε0
∂E
∂ t

+µ0J, (4.3)

∇×E =−∂B
∂ t

, (4.4)

∇ ·E =
ρ

ε0
, (4.5)

∇ ·B = 0. (4.6)

Finally, we add the sources of the electric and magnetic field to this system by defining

ρ = ∑
i

qi

∫
fi(x,p, t)dp, (4.7)

J = ∑
i

qi

∫ p
m

fi(x,p, t)dp. (4.8)

At each time step, the equations governing these system of equations are solved and it is
repeated for the next time step and so on until the time-scale at which we are interested for
our physical system to continue.

Shape-functions

In order to represent these macro particles an interpolation scheme is required such that the
per-particle current densities and the charge densities can be accumulated on the simulation
grid. The macro particles can be represented by a weight factor wi and a shape function S,
where wi provides the number of real particles inside one macro particle and S describes the
shape of the macro particles in phase space:

fi(x,p, t) = wiS(x−xi(t))δ (v− vi(t)). (4.9)
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The so called “nearest grid point” (NGP), is the easiest method, treating all particles
as delta-functions in space which is the fastest method but at the same time, the noisiest
one. The smoother version “cloud in cell” (CIC) can be achieved by integrating over the
delta-function, providing a higher order rectangular particle shape. This can go furtherer to
higher orders such as ”triangular shaped cloud” (TSC) and 3rd-order ”BSPLINE” (see figure
4.2).

Fig. 4.2 Shape functions.2

Implementing a higher order shape function leads to smoother density functions and
consequently, a better energy conservation and lower computational noise, because each
particle contributes to more and more number of cells. Nevertheless, this also means making
the simulation computationally more expensive due to increasing number of cells ( one cell in
CIC to four cells in 3rd-order BSPLINE) at every update interval. Another source of artificial
noise in a PIC simulation is the number of macro particles which can be suppressed by
adding more particles in one simulation cell, which smooths out the current, charge densities
and the EM fields in Maxwell’s equations.

Spatial Grid

In order to store information on the particles and the electromagnetic fields, a computational
grid is needed. On a 3D PIC code, it is a three-dimensional lattice of individual cells.
The most common method is the so called finite-difference time-domain (FDTD) method
proposed by Yee (1966). Figure 4.3 illustrates the grid used in this method. We note that

2www.cfsapmw.warwick.ac.uk:1731/index.php/EPOCH

www.cfsapmw.warwick.ac.uk:1731/index.php/EPOCH
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the cubic cells are used with a constant cell spacing such that the position of cell i, j, k
can be written as x(i, j,k) = ∆x(ix̂+ jŷ+ kẑ) where ∆x = ∆y = ∆z. Furthermore, the field
components of E are interpolated at points shifted by half a cell, parallel to the direction of
the component, while the components of B are at the center of the cell, perpendicular to the
direction of each component.

Fig. 4.3 Standard Cartesian Yee cell in 3D, for the finite-difference time-domain (FDTD)
method.3

Field Solver

This grid staggering of electric and magnetic fields means that centred, second order accurate
derivatives are easily derived, i.e the curl of one field right at the position of the other one.
For example Bz at (i+1/2, j+1/2,k) can be updated via,(

∂Ez

∂ z

)
i+1/2, j+1/2,k

=
Eyi+1, j+1/2,k−Eyi, j+1/2,k

∆x
−

Exi+1/2, j+1,k−Exi+1/2, j,k

∆y
, (4.10)

Using Maxwel’s equations, the FDTD scheme used to advance the fields looks:

3https://meep.readthedocs.io/en/latest/Yee_Lattice/

https://meep.readthedocs.io/en/latest/Yee_Lattice/
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• E⃗n+ 1
2 = E⃗n + ∆t

2

(
c2∇× B⃗n− j⃗n

)
• B⃗n+ 1

2 = B⃗n− ∆t
2

(
∇× E⃗n+ 1

2

)
• Call particle pusher which calculates jn+1 currents

• B⃗n+1 = B⃗n+ 1
2 − ∆t

2

(
∇× E⃗n+ 1

2

)
• E⃗n+1 = E⃗n+ 1

2 + ∆t
2

(
c2∇× B⃗n+1− j⃗n+1

)
Note that all spatial derivatives are of second order , while higher order spatial derivatives
schemes are used in more modern PIC codes. The time-step ∆t is the CFL limited time-step
with restrictions to be discussed shortly.

Temporal Grid

Fig. 4.4 Schematic illustration of the leapfrog intergration method.4

The phase space coordinates of the particles are staggered on a temporal grid. The
positions of the macro particles x are placed at integer time steps, whereas their velocities v
are placed halfway between the integer time steps. This is the so-called leapfrog method (see
Birdsall and Langdon (2004)), as illustrated in figure 4.4.

However, the curl operators can differ the dispersion relation of electromagnetic waves
ω(k) from the normal parabolic shape at high k-values. This introduces the so called
artificial effect of “grid Cherenkov radiation ” in simulations with highly relativistic beams,
propagating close to the speed of light. To avoid this unphysical behaviour, the time-step is
restricted such that particles with the fastest speed in the simulation do not cross more than a
single grid spacing per step. This leads to an important time-step criteria,

4https://www.physics.drexel.edu/students/courses/Comp_Phys/Integrators/leapfrog/

https://www.physics.drexel.edu/students/courses/Comp_Phys/Integrators/leapfrog/
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c∆t
(∆x2 +∆y2 +∆z2)1/2 ≤ 1, (4.11)

where ∆x,∆y,∆z are the grid spacings in each direction (see how equation 4.20 is derived).

Particle pusher

The particle pusher solves the relativistic equation of motion via the Lorentz force. Therefore,
the equations of motion (4.2) are replaced by the finite difference equations

xt+1−xt

∆t
= vt+1/2 and m

vt+1/2− vt−1/2

∆t
= q

(
Et(xt , t)+ vt×Bt(xt , t)

)
, (4.12)

where ∆t is the temporal grid spacing.
The lorentz force on Equation 4.12 is split into separate parts using the common method

in PIC simulation known as the Boris rotation algorithm (Boris, 1970). These parts are
responsible for the acceleration of the particle and their rotation due to the E and B field,
respectively. Also the moving charges, carrying a current should be accounted for. These
currents are derived from the particles via the general form of Villasenor and Buneman
(1992) current deposition scheme, known as Esirkepov mechansim (Esirkepov, 2001). The
Esirkepov algorithm determines not the current itself but its first derivative. This scheme has
the property that the electric field is updated from the currents calculated in this way, rather
than from moments of the distribution, always satisfies ∇ ·E = ρ

ε0

4.3 Particle-in-Cell Simulations with EPOCH

For our PIC simulation purposes in this work, we use EPOCH 2D written in standard
Fortran90 and Message Passing Interface (MPI1.2) to make the code to work in parallel.
It is a multi-dimensional, fully electromagnetic, relativistic particle-in-cell code developed
by the Collaborative Computational Plasma Physics (CCPP) consortium and funded by the
Engineering and Physical Sciences Research Council (EPSRC). EPOCH is a refined version
of the basic explicit PIC algorithm with higher-order weights and interpolation schemes. It
is based on the older PSC code written by Hartmut Ruhl and retains almost the same core
algorithm for the field updates and particle push routines. The code is publicly available at
their website 5 and there is an interesting paper about the code by Arber et al. (2015).

5Epoch code accessible via the url www.ccpp.ac.uk/home/index.shtml.

www.ccpp.ac.uk/home/index.shtml
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4.3.1 Features of EPOCH

• The EPOCH code uses SI units, although some quantities are given in other units for
convenience (for example charges are specified in multiples of the electron charge).

• MPI parallelised, explicit, second-order, relativistic PIC code.

• Dynamic load balancing option for making optimal use of all processors when run in
parallel.

• MPI-IO based output, allowing restart on an arbitrary number of processors.

• Data analysis and visualisation options include ITT IDL, LLNL VisIt, Mathworks
MatLab and Matplotlib in Python.

• Control of setup and runs of EPOCH through a customisable input deck.

4.3.2 EPOCH Characteristics

Despite the huge advancement in modern computer clusters and high-performance computing
(HPC) clusters, we are not able to reproduce thoroughly in a simulation. The great challenge
is to find a good compromise between the veracity of the model and the computational
resources needed to simulate it. Some of the compromises are mentioned below.

Dimensionality

EPOCH code is available with different dimensions from 1D to 3D. One should note the
physical problem that needs to be investigated through PIC simulations. In this work EPOCH
2D has been used, where the code operates in 2.5 dimensions. This 2D code allows keeping
three components for the fields and the particle velocities, but the particles do not have a
gradient in the 3rd dimension. Figure 4.5 illustrates the 2.5-dimensional grid used for this
work. The 2D version of EPOCH used in this work, reduces the computational expense
for the simulation in comparison with the 3D version. Indeed, great care must be taken into
account, not to miss important physics. In the current study we are mainly interested in the
linear growth of the instabilities, where the non-linear effects can be neglected. Instead of
3D simulations, most of the computational expense is spent in 2D runs with large number
of computational particles per cell, that we founds necessary for keeping charge-density
fluctuations weak. It is well known that granularity in the charge distribution leads to
electric-field noise that causes artificial heating. Suppressing this numerical side effects are

6EPOCH, 2D Yee grid retrieved from cfsapmw.warwick.ac.uk:1731/ index.php/EPOCH.

cfsapmw.warwick.ac.uk:1731/index.php/EPOCH
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Fig. 4.5 Standard Cartesian Yee cell in 2D, for the finite-difference time-domain (FDTD)
method about which electric and magnetic field vector components are distributed.6

explained later in section 4.3.4. In fact, the effects of interest in this work do not require a
fully three-dimensional setup to occur.

Particle shape functions

As mentioned in section 4.2.1, macro particles represent many real particles with different
shape functions to represent particles. EPOCH can use the following shape functions:

• By default, the code uses a first order b-spline (triangle) shape function to represent
particles giving third order particle weighting.

• Top-hat shape function (0th order b-spline yielding a second order weighting)

• 3rd order b-spline shape function (5th order weighting)
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Weight function

The contribution of particles moving through each grid point is its weight function or in other
words the fraction of macro-particle in cell. The particle weight is calculated as integral of
the shape functions in the form Weight = S(X j− ri), where the cell j is represented with X j

and particle position with ri.

Field Order

This is where EPOCH can set the order of the finite difference scheme used for solving
Maxwell’s equations. The options are 2, 4 or 6 order field solver. If not specified, the default
is to use a second order scheme.

Boundary Condition

The boundaries block sets the boundary conditions of each boundary of the domain. This
could have the following forms:

• periodic - A simple periodic boundary condition. Fields and/or particles reaching one
edge of the domain are wrapped round to the opposite boundary.

• reflect -Particles are reflected at the boundary. In case of reflecting fields condition, all
field components are clamped to zero.

• conduct -Fields would experience conducting boundary conditions. Having applied
this condition to particles they would be reflected.

• open - Fields would propagate through the boundary and particles are transmitted
through the boundary and removed from the system.

• simple laser - one or more electromagnetic wave sources can be attached. EM waves
impinging on a simple laser boundary are transmitted with as little reflection as
possible. Particles are fully transmitted. The field boundary condition works by
allowing outflowing characteristics to propagate through the boundary while using
the attached lasers to specify the inflowing characteristics. The particles are simply
removed from the simulation when they reach the boundary.

• simple outflow - A simplified version of the simple laser but more computationally
efficient. It has the same properties of transmitting incident waves and particles, but
cannot have EM wave sources attached to it.
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Smoothing function

In order to reduce noise and self-heating in a simulation, the smoothing function can be
enabled. This applies to the current generated during the particle push. The method is based
on the smoothing function used is the same as that outlined in Buneman (1993), but it is a
simplified version in the form of a three points filter, called a binomial filter is taken from
Vay et al. (2011). This is the most common filter used in PIC simulation codes in which the
filtered quantity φ

f
j can be computed via:

φ
f
j = αφ j +(1−α)

φ j−1 +φ j+1

2
, (4.13)

where the binomial factor is set to α = 0.5

dt-Multiplier

As mentioned in section 4.2.1, the time-step has the criteria to be small, to make sure the
simulation remains stable. EPOCH multiples this time-step with factor of dt multiplier. This
factor is set to 0.95 by default but can be changed by the user to other numbers smaller than 1.
This factor is multiplied to time-step before its applied to the code, i.e. a multiplying factor
applied to the CFL condition on the time-step.
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Table 4.1 Sobol algorithm with the flipping method.

repeat
generate X1,X2,X3,X4, uniform on (0, 1]
u←−T lnX1X2X3
η ←−T lnX1X2X3X4

until η2−u2 > 1.
generate X5,X6,X7, uniform on [0, 1]
ux← u (2X5−1)
uy← 2u

√
X5(1−X5)cos(2πX6)

uz← 2u
√

X5(1−X5)sin(2πX6)
if (−βvx > X7), ux←−ux

ux← Γ(ux +β
√

1+u2)
return ux,uy,uz

4.3.3 Our modifcation to EPOCH

In the analytical model, a particle distribution function was used for the kinetic description
of plasma, which was discussed in section 3.4.1. For the PIC simulations also the particle
distribution is needed.

EPOCH generates a non-relativistic thermal distribution using the method of Box and
Muller (1958) in the form of Maxwellian distribution function by setting the density and
temperature for each species which is then used by the autoloader to actually position
the particles. However, in our simulations we have highly relativistic beams. Thus, we
implemented the algorithm of Zenitani (2015) to set up the relativistic Maxwellian distribution
for the beam. The algorithm is presented in a pseudo code in Table 4.1. The Sobol part of
the method loads the stationary Maxwellian and the flipping method (equation −βvx > X7)
takes care of the spatial part of the Lorentz transformation.

The Sobol method is slower than the inverse transform method, because it uses 6 random
variables. But since the algorithm is only used for the initialization of the simulation, it
is not a considered as a problem. However, the Sobol method is extremely inefficient in
the nonrelativistic limit of T ≪ 1 KeV. Therefore, we keep using the original Box-Muller
method for the distribution function of the IGM background plasma which are immobile.

4.3.4 Technical Investigations

Before presenting the simulations in next chapter, a couple of tests which we have performed,
are discussed here.
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Cherenkov radiations

As discussed in section 4.2.1, the curl operators in FDTD scheme, can affect the dispersion
relation of electromagnetic waves. This leads to artificial effect of "grid Cherenkkov radia-
tion" presented by Godfrey (1974). This effect is due to the scheme imposing a change in the
dispersion relation ω(k) . The phase speed of an EM wave in vacuum is less than speed of
light at high k-values, where beams propagating close to the speed of light can interact with
these features. Unfortunately, no tested scheme has been able to prevent the instability.

Methods have been developed to suppress this effect. One method is to apply the digital
filtering known as Friedmann-filter to waves in high wave number regions. This method has
been used in relativistic plasma simulations such as the works by Greenwood et al. (2004);
Vay et al. (2011), but the filters may induce numerical damping of physical waves. Another
method is the family of spectral methods, where the Maxwell equations are solved in Fourier
space. In these methods, the cutoff filter is directly applied in the large wave number region.
However, they are in terms of computational cost, under further investigation such as the
effort by Vay et al. (2013).

However by careful choice of the CFL number, one could suppress the growth of the
numerical Cherenkov instability (see Vay et al. (2011)). Our simulations using EPOCH
utilizes explicit FDTD field solvers and the density decomposition method for the current
deposit (Esirkepov, 2001), for which a dispersion relation of the numerical Cherenkov
instability can be derived.7

The fields and the current density are defined on a staggered grid system via :

B⃗n+1 = B⃗n +∆t
(

∇× E⃗n+ 1
2

)
E⃗n+ 1

2 = E⃗n− 1
2 +∆t

(
c2

∇× B⃗n− j⃗n

ε0

) (4.14)

2nd order scheme In the absence of particles ( j⃗ = 0), the 1D second order scheme reduces
to

(By)
n+1
j = (By)

n
j +

∆t
∆x

(
(Ez)

n+ 1
2

j+1 − (Ez)
n+ 1

2
j

)
(Ez)

n+ 1
2

j = (Ez)
n− 1

2
j +

c2∆t
∆x

(
(By)

n
j − (By)

n
j−1

) (4.15)

Assuming a travelling wave solution of the form A = A0exp(iωn∆t− ik j∆x) with the time
index n and grid index j, and substituting this in equation 4.15 yields the dispersion relation

7EPOCH collaboration
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for the 1D second order scheme:

sin2
(

ω∆t
2

)
=

(
c∆t
∆x

)2

sin2
(

k∆x
2

)
(4.16)

4th order scheme In the absence of particles ( j⃗ = 0), the 1D fourth order scheme reduces
to
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) (4.17)

Again assuming a travelling wave solution of the form A = A0exp(iωn∆t − ik j∆x) and
substituting it in equation 4.17 yields the dispersion relation for the 1D fourth order scheme:
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)2[27
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2

)]2
(4.18)

6th order scheme In the absence of particles ( j⃗ = 0), the 1D sixth order scheme reduces
to
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(4.19)

Again assuming a travelling wave solution of the form A = A0exp(iωn∆t − ik j∆x) and
substituting it in equation 4.19 yields the dispersion relation for the 1D sixth order scheme:
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ω∆t
2

)
=
(

149
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c∆t
∆x

)2[
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2384 sin
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2

)
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(
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)
+ 9

2384 sin
(

5k∆x
2

)]2
(4.20)

In figures 4.6a to 4.6c, the solutions to equations 4.16, 4.18 and 4.20 are plotted with a
range of different values for the courant number c∆t

∆x . The second order scheme for values
less than 1 is dispersionless. In case of the fourth order, the scheme becomes unstable when
the courant number exceeds 6/7. This analytical method suggests that a CFL condition of 0.8
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(a)

(b)

(c)

Fig. 4.6 Analytic dispersion curves for (a) 2nd order schemes. (b) 4th order schemes (c) 6th
order schemes.



4.3 Particle-in-Cell Simulations with EPOCH 53

should be fine with all the schemes which we did confirm with our test simulations. Now let
us consider the simulations with different schemes and CFL numbers.

Fig. 4.7 2D Fourier spectra of the electric field energy in a simulation with a relativistic beam
with CFL 0.8, current smoothing and field solver 6. The artificial cherenkov radiation pattern
is damped without any filtering and thermal noise peaks at low k numbers

Using our EPOCH simulations, the 2D Fourier spectrum of the electric field energy in a
simulation is presented in figure 4.7, for a relativistic beam with CFL 0.8, current smoothing
and field solver 6. The artificial Cherenkov radiation pattern is damped at large k and thermal
noise peaks at low k numbers. The illustrations show that the non-physical phenomenon of
Cherenkov radiation is damped without any filtering comparing to simulations with higher
CFL number such as 0.95 or simulations without smoothing or the case where the field solver
is 2 or 4. Since EPOCH does not support any sort of filtering for such phenomena and after
comparison of our test simulations, we will use similar parameters with low CFL numbers,
but field solver 6 and enabling the current filter.

Self-heating and stability

An important consideration in PIC simulations is the so called self-heating. This non-physical
effect is caused by not resolving the proper plasma length. To avoid this artificial effect, we
have done several tests with EPOCH to see how our code works before the final simulations
are performed. These tests were similar to the tests by Arber et al. (2015) (also see Fiuza
et al. (2011) for the OSIRIS PIC code).



54 Particle-in-Cell Plasma Simulations

Table 4.2 Test parameters, λD is the Debye length and ppcs is number of particles per cell per species

Runs ∆x/λD Shape function Tp ppcs Γb
Series A 1,2,0.5 Tophat-Triangle-Bspline 2 keV 25 1,5,300
Series B 1,2,0.5 Tophat-Triangle-Bspline 2 keV 50 1,5,300
Series C 1,2,0.5 Tophat-Triangle-Bspline 2 keV 100 1,5,300
Series D 1,2,0.5 Tophat-Triangle-Bspline 2 keV 200 1,5,300

For theses tests, the number of grid points in the simulation is fixed for all runs, while
varied length of the domains are tested to change the ratio between Debye length, λD and
cell width ∆x . The number of particles per cell is also varied.

We performed various tests similar to the testes presented by Arber et al. (2015) for energy
conversation of EPOCH code. We also performed tests for various shape functions which
tophat is the worth amongst them. The triangle one has similar results in comparison with
spline. In the case with current smoothing enabled, it shows less self heating in comparison
with the case of top hat and triangle but not much difference for spline. Runs with triangle
shape function and the smoothing enabled, provides enough self heating suppression, while
the spline is still better but more expensive.

We have performed several test-runs to verify how much self heating we have under
various parameters. All the simulations were done with 128×128 grid cells while varying
the number of particles per cell and the size of the cells with ∆1x = λse/8, also runs with
∆2x = ∆1x/2, and runs with ∆3x = 2∆1x. Furthermore, the density was constant for all the
tests with the periodic boundary condition. Our final simulations were on a 1024× 1024
grid in a box with a length of Lx ≃ 128λse with the grid size of λse/8 and simulations with
2048×512 grid in a box with a length of Lx,y ≃ 512λse×128λse with the grid size of λse/4.
In all these runs, we have chosen the time-step with 0.85 for the CFL condition. The list of
different runs is presented in Table 4.2 which confirms the results presented by Arber et al.
(2015) in order to avoid self-heating in our simulations.

Numerical noise can introduce a degree of inaccuracy in PIC simulation. Very few
particles per cell can introduce significant numerical noise in EM fields. We performed
several tests similar to Table 4.2 but with 1024× 1024 and 2048× 512 grids in a box.
Typically PIC simulations are performed with 10 particles per cell. Simulations with number
of particles per cell higher than 25 smooths the current and charge density leading to reduced
high frequency field oscillations due to the source term in Maxwell’s equations. Our tests
show much lower noise with number particles per cell higher than 100. For the final
simulations we took 400 particles per cell per species (i.e. 1600 ppc).
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Table 4.3 Test parameters, λD is the Debye length and ppcs is number of particles per cell per species

Runs ∆x/λD ppcs Γb
Series A 1,2,0.5 25 5
Series B 1,2,0.5 50 5
Series C 1,2,0.5 100 5
Series D 1,2,0.5 200 5
Series E 1,2,0.5 400 5

Side-band instability

Another artificial effect in PIC simulations is the so-called numerical "Side-band instability".
This instability shows up in PIC simulations, where the beam is relativistic and where the
simulation box allows for oblique waves. For a detailed description, one can refer to the
works of Dieckmann et al. (2006), Kruer and Dawson (1970), Godfrey and Vay (2014).

Generally, such artificial effects occur if electrostatic wave have high enough amplitude,
such that it can trap enough number of electrons due to the interpolation scheme between the
particles and the grid (Kruer et al., 1969). The trapped particles are considered as the source
of this artificial instability, with the maximum growth rates at two wavenumbers around the
wavenumber of the large scale electrostatic wave (k0). The term "sideband" refers to plasma
waves whose frequency and wavenumber are slightly shifted from the main wave, whereas
in 1D, the beam mode ωb = vbk would have sidebands of ω = vbk+ωs and ω = vbk−ωs.
whereas, If one computational particle (CP) moves at a constant speed vb in a grid cell of ∆x

then the frequency is ωs = 2πvb/∆x. The energy of the initial large scale wave is transferred
to the "sideband" waves. Our test runs with the parameters provided in Table 4.3 using the
triangle shape function, confirm that the effects of this instability can be reduced by selecting
a finer grid and more CPs per cell but they can not be suppressed completely.

To sum up, having performed wide range of test runs, we confirmed that the non-physical
instabilities and numerical problems have been taken care of in our PIC simulations. Our
test runs confirmed that failing to resolve the space would lead to self-heating and aliasing,
which could be suppressed by choosing the grid cell size close to Debye length (∆x≈ 0.7λD

in our final simulations).
We confirmed that artificial effects of PIC simulations on relativistic beams known as "

Cherenkov radiation" and "side-band instability" are reduced by finer grid, more particles
per cell and choosing higher order field solvers and shape functions. All the above tests we
preformed, have been the foundation of our choosing the parameters for our final simulations
presented in Chapter 5.





Chapter 5

Simulations

As discussed in the introduction and the analytical part of this thesis, realistic parameters of
the pair beams can not be simulated by modern computers. Instead, we use a simple analytical
model to find a range of the beam parameters that (i) provides a physical picture similar to that
of realistic pair beams and (ii) at the same time can be handled by available computational
resources. In this chapter, the performed corresponding two-dimensional (2D) particle-in-cell
(PIC) simulations are presented. In section 5.1, the simulations related to monoenergetic
beams are presented based on our first publication (Rafighi et al., 2017). Section 5.2 concerns
the non-monoenergetic beam simulations based on our second publication (Vafin et al., 2018).

5.1 Monoenergitc beam simulations

There is a great challenge of performing plasma simulations despite our modern compu-
tational resources. One can not simulate realistic blazar-induced beams. The alternative
approach is using parameters that permit numerical modelling with similar physical proper-
ties in the simulations. Two important criteria of the realistic pair beams have been noticed
before: (i) the beam/IGM energy density ratio is much smaller than unity (Kempf et al.,
2016), and (ii) the electrostatic mode evolves in the kinetic regime (Miniati and Elyiv, 2013).
However, our simple analytical model evinced that the Weibel mode is actually stable for
realistic parameters. This adds a third criterion for the pair beams.

Preceding computational efforts (Kempf et al., 2016; Sironi and Giannios, 2014) consid-
ered only some of these requirements on the beam-plasma system. In this work, we have
taken into account all the three criteria (run 1). Then, we have compared this case with three
other simulations (runs 2-4), for which some criteria were violated.

In this section, we start by presenting the conditions for the the kinetic regime presented
in subsection 5.1.1 based on our analytical representation discussed earlier in Section 3.4,
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followed by the set up of the simulation presented in subsection 5.1.2. Then we proceed with
the simulations in subsection 5.1.3. Finally the results are presented in subsection 5.1.4.

5.1.1 Condition for the kinetic regime

The work by Breizman (1990) shows that the parallel electrostatic instability evolves in the
kinetic regime, if ∣∣∣v∥,b

c

∣∣∣≫ α
1/3

Γ
−1, (5.1)

which can be re-written as
α ≪ αkin =

(
Γ

∣∣∣v∥,b
c

∣∣∣)3
. (5.2)

An analytical expression for αkin is derived in Appendix A.1 and its functional behaviour
is illustrated in figure 5.1.

For the simulation parameters used by Kempf et al. (2016), µR = 5× 103 (Tb = 106

K), Γ = 10, and α = 2.5× 10−6, we obtain αkin ≈ 2.8× 10−9 and equation (5.2) is not
fulfilled. For the work of Sironi and Giannios (2014), Γ = 300, α = 10−2, µ > 3, it results in
αkin ≈ 7.1×10−9, and equation (5.2) is not satisfied again. Hence, both Kempf et al. (2016)
and Sironi and Giannios (2014) did not simulate the electrostatic instability in the appropriate
kinematic regime of pair cascades from AGN.

5.1.2 Choice of parameters for PIC simulations

So far, we specified three criteria for a physically relevant setup for the beam-plasma system.

1. The energy density ratio must satisfy ε = αΓmec2/(kBTp)≪ 1 yielding

α ≪ αε(Γ) =
kBTp

Γmec2 ≈
10−6−10−3

Γ
. (5.3)

The behaviour of αε(Γ) is shown in figures 5.2, 5.3, and 5.4 as a red line.

2. The electrostatic instability should develop in the kinetic regime at all angles which
is determined by equation (5.2), for which we indicate αkin by the green line in the
figures.

3. The Weibel mode must be stable which requires satisfying equation (3.60). Equation
(3.60) is automatically fulfilled due to αkin≪ αW for Γ > 1 and µR > 1. Figure 5.1
compares the functions αkin(Γ) and αε(Γ). To satisfy equations (5.2) and (5.3) for
given values of Γ and µ , the value of α must be below both curves αkin(Γ) and αε(Γ).
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Fig. 5.1 Function αkin(Γ): dashed dotted black line µR = 2.5; dashed black line µR = 10;
dotted black line µR = 100. Function αε(Γ): green line kBTp/(mec2) = 4×10−3; red line
kBTp/(mec2) = 10−4; blue line kBTp/(mec2) = 10−5; brown line kBTp/(mec2) = 10−6. The
black point illustrates the parameters chosen for simulation run 1 that satisfies all criteria.

We defined a simulation setup, henceforth referred to as run 1, that would satisfy all criteria.
The main parameter values are Γ = 5 and α = 2×10−4, and it is indicated in figure 5.1 by a
black dot. In addition, we have specified three other setups (runs 2-4) that are listed in Table
5.1. The goal of these tests is to determine the impact of a violation of one of the criteria
on the beam-plasma evolution. For run 2, the energy density ratio ε = 2.5 is higher than
unity, and one might expect a strong heating of the background plasma and subsequently
the development of other instabilities. Run 3 considers the evolution of the electrostatic
instability in the reactive regime (α > αkin), and beam energy losses are expected to be
larger. Finally, all the conditions are violated for run 4. The values of (α;Γ) for runs 2-4 are
demonstrated by the black dots in figures 5.2-5.4, respectively.
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Fig. 5.2 Dependence of all three constraints on the beam Lorentz factor. The green line
represents αkin, the red line αε , and the blue line αW . µR = 2.5, kBTp/(mec2) = 4×10−4.
The black dot indicates parameter values of run 2.
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Fig. 5.3 Same as figure 5.2, but for µR = 10, kBTp/(mec2) = 4×10−3. The black dot indicates
parameter values of run 3.



5.1 Monoenergitc beam simulations 61

Γ

50 100 150 200 250 300

α

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

Fig. 5.4 Same as figure 5.2, but for µR = 10, kBTp/(mec2) = 10−3. The black dot indicates
parameter values of run 4.

5.1.3 The simulation setup

The simulation resolves the x–y plane with periodic boundary conditions, where 2D simula-
tions can address the problem neglecting the out of plane effects, since the instability without
external magnetic field only depends on the perpendicular and parallel wave vectors. Further-
more, the periodic boundary condition represents the steady homogeneous beam travelling
through the IGM plasma over long distances. The simulation volume is filled with a beam of
electrons and positrons and the background plasma of protons and electrons with real mass
ratio. We performed a series of tests to verify the stability of the simulation against numerical
artefacts. Of particular interest is avoiding artificial plasma heating arising from electric-field
noise caused by the charge-density granularity in a particle simulation. We found that using
400 particles per cell and species is required to keep the plasma temperature as desired and
the electric-field noise at a level significantly below the intensity of the electrostatic mode.
The desired density ratio of beam particles to background plasma, α = nb/n, is established
with numerical weights.

As discussed in section 4.3.4, we performed tests runs for our final simulations. For
spatial scales, we resolve the electron skin length λe =

c
ωpe

in our simulation, where in
case of the electrostatic instability, kvb ≈ ωpe and vb ≈ c. The simulation box contains
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Table 5.1 Simulation parameters

Run α Tb Tp Γb
1 2.E-04 200 keV 2 keV 5
2 2.E-04 200 keV 200 eV 5
3 1.E-04 50 keV 2 keV 10
4 1.E-02 50 keV 500 eV 300

1024× 1024 cells, each one eighth of the skin length in size, λe = 8∆x. The timestep is
chosen to satisfy the Courant-Friedrichs-Lewy (CFL) condition and to resolve the plasma
frequency, ωpe = (n0e2/ε0me)

1/2. Indeed, IGM proton particles are calculated through the
simulations, their effects could be ignored due to their high mass ratio mp/me = 1836. This
high mass ratio requires to pursue the simulation on much larger time scales (ωpro ≈ 42ωpe)
to get a feedback from their interactions.

Table 5.1 lists the parameters of 4 different simulations: temperature of the IGM plasma,
Tp, and of the beam in its rest frame, Tb, density ratio, α = nb/n, Lorentz factor, Γb. The IGM
particles are initially at rest, while the beam is moving in x-direction with Lorentz factor Γb.
For the IGM, EPOCH code generates a non-relativistic thermal distribution using the method
of Box and Muller (1958). However, we implemented the algorithm of Zenitani (2015) to
set up the relativistic Maxwellian distribution for the beam. For the graphical presentation
we use the following normalization: distance and time are normalized to c

ωp,e
and ω−1

p,e , and
electric and magnetic fields are given in units of ωp,ecme/e and ωp,eme/e, respectively.

In order to reduce the well-known PIC-code phenomena of self heating and statistical
noise, all simulations are performed with a high number of CPs (400 particles per species), a
6th-order field particle pusher and a triangular-shaped cloud (TSC) shape function, with the
peak of the triangle located at the position of the pseudoparticle.

To sum up, we introduced three criteria for our simulations:

1. The beam/plasma energy density ratio must be less than unity;

2. The Weibel mode has to be stable;

3. The electrostatic instability should develop in the kinetic regime.

Simulation run 1 satisfies all criteria above. Then, we have compared this case with three
other simulations (runs 2-4), for which some criteria were violated. In run 2, we considered
the beam/plasma energy-density ratio higher than unity. In run 3, the electrostatic instability
we considered the reactive regime instead of the kinetic regime. In run 4, all three conditions
are violated.
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5.1.4 Discussion of simulation results

Run 1

As mentioned above, for run 1, all relevant criteria for the beam are fulfilled. First of all,
the beam/plasma energy density ratio ε = 0.5 for run 1 is smaller than unity. Moreover, the
beam is stable with respect to the Weibel instability, while the electrostatic mode grows as
expected in the kinetic regime, that is, at the parallel wave vector k|| ≈ ωp/c to the beam.

Figures 5.5a to 5.5c presents the 2D plot of the electric field Ex for three different plasma
times of ωpet = 488,4222,16238 in units of ωp,ecme/e, where the forming of structures are
clearly visible. For comparison, figure 5.5d is the contour of the transverse magnetic field
Bz at ωpet = 16238 in units of ωp,eme/e for run1. Furthermore, figure 5.6a presents the
Fourier spectrum of the electric field, and it is evident that an electrostatic mode with E ∥ k
dominates with peak intensity for wave vectors roughly aligned with the beam direction. The
linear growth rate of the electric field is about γ ≃ 4×10−4ωpe. The theoretically calculated
maximum growth rate for parallel wave vectors is 5×10−4ωpe which approximately agrees
with that derived numerically.

Figures 5.7a and 5.7b demonstrate that after 16,237ω−1
pe , corresponding to about eight

growth times, the instability has saturated with negligible energy loss and heating of the
beam. The latter is of interest because a widening of the lateral beam distribution would
impose a temporal smearing of the ICS signal that would reduce the expected flux seen with
Fermi-LAT. Our run 1 suggests that this effect is not efficient for realistic pair beams induced
by gamma rays from AGN.

Figure 5.6b illustrates the time evolution of the electric and magnetic field energy density.
The electric field energy increases and saturates after ∼ 7 growth times, while the magnetic
field grows slightly at late stages which is possibly due to numerical artificial effects. It is
clear that the beam transferred only a tiny fraction (∼ 10−4 %) of its initial kinetic energy
into the electromagnetic fields. Accordingly, the change of the beam distribution is also very
small (see figures 5.7a-5.7b). This development of the beam-plasma interaction is caused by
the initial momentum spread of the beam. It was also found by Sironi and Giannios (2014)
that the beam momentum distribution does not relax to the plateau form when ∆p⊥,b/mec∼ 1.
The physical reason is that the electrostatic growth rate simply becomes much smaller than
in the reactive regime. At the same time, the damping rates of the modulation instability and
non-linear Landau damping depend on the resonant wave energy, and therefore they will
stabilize the instability at smaller electric field energies.
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(a) (b)

(c) (d)

Fig. 5.5 Panels(a)-(c) 2D plot of the electric field Ex for three different plasma times of
ωpet = 488,4222,16238 in units of ωp,ecme/e, (d): 2D plot of the transverse magnetic field
Bz at ωpet = 16238 in units of ωp,eme/e for run 1.
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(a)

(b)

Fig. 5.6 Figure (a):Two-dimensional Fourier spectrum of E ∥ k at ωpet = 4222 in units of
ωp,ecme/e, Figure (b): Time evolution of the energy densities of electric and magnetic field,
respectively, in SI units for run 1.
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Fig. 5.7 Beam momentum distribution for run 1 at two points in time: (a) for px, (b) for py.
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Run 2

In contrast to run 1, run 2 considers the beam/plasma energy-density ratio, ε = 5, greater than
1. The only parameter changed compared to run 1 is the plasma temperature that became
smaller by an order of magnitude. Due to the fact that the beam parameters remained the
same, the Weibel mode is still stable. The electrostatic instability also evolves in kinetic
regime with a growth rate of around ≃ 5×10−4ωpe, and the time evolution of the Fourier
spectrum (shown in figure 5.8a at ωpet = 5036) is consistent with the value.

Figure 5.8b shows that the electric field energy density saturates at nearly the same level
as in run 1. We note that due to a smaller plasma temperature the initial electric noise level
in run 2 is smaller by about an order of magnitude compared to run 1. Although the peak
intensity of the electrostatic modes is now observed at a 10◦ angle to the beam direction,
the distribution function again did not evolve appreciably, in particular not to a plateau
distribution, and the beam experienced only a tiny energy loss or widening.

Run 3

With run 3, we explore the reactive regime of the electrostatic mode in contrast to runs 1 and
2, where the instability was kinetic. To do this, we have reduced the temperature of the beam
and increased its gamma factor. Figures 5.9a to 5.9d presents the 2D plots of the electric
field Ex and magnetic field Bz for three different plasma times of ωpet = 564,4025,10714 in
units of ωp,ecme/e and ωp,eme/e respectively. Now, the electrostatic instability grows in an
oblique direction (at about 30◦) to the beam as is evident from the Fourier spectrum shown in
figure 5.10a. The growth rate for oblique propagation and the parameters of run 3 (assuming
a cold beam (Breizman, 1990)) is

γTS =
31/2

24/3 ωpe

(
α

Γ

)1/3
(

k2
||

k2γ2 +
k2
⊥

k2

)1/3

≃ 9×10−3
ωpe, (5.4)

where the last equality applies for the parameters of run 3. The numerically determined
growth rate is smaller than that by a factor 2-3. This difference may be explained by the fact
that run 3 operates not very far from the condition α = αkin (Γ) (see figure 5.3).

The instability growth rate of run 3 is larger by an order of magnitude compared to runs 1
and 2. Therefore, we can expect a more substantial modification of the beam. Although the
electric-field energy density remains small as shown in figure 5.10b, we observe in figure 5.11
a significant transverse widening of the beam that is not seen in runs 1 and 2. Figure 5.12
indicates that the width of the perpendicular momentum distribution of the beam increased
by a factor of 3.
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(a)

(b)

Fig. 5.8 Figure (a):Two-dimensional Fourier spectrum of E ∥ k at ωpet = 5036 in units of
ωp,ecme/e, Figure (b): Time evolution of the energy densities of electric and magnetic field,
respectively, in SI units for run 2.
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(a) (b)

(c) (d)

Fig. 5.9 Panels(a)-(c) 2D plot of the electric field Ex for three different plasma times of
ωpet = 564,4025,10714 in units of ωp,ecme/e, (d): 2D plot of the transverse magnetic field
Bz at ωpet = 10714 in units of ωp,eme/e for Run3.
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(a)

(b)

Fig. 5.10 Figure (a):Two-dimensional Fourier spectrum of E ∥ k at ωpet = 2448 in units of
ωp,ecme/e, Figure (b): time evolution of the energy densities of electric and magnetic field,
respectively, in SI units for run 3.
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Fig. 5.11 Beam momentum distribution in py for run 3 at two points in time.

Fig. 5.12 Time evolution of the momentum spread of the beam, prms, for run 3.
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(a) (b)

(c) (d)

Fig. 5.13 Panels(a)-(c) 2D plot of the electric field Ex for three different plasma times of
ωpet = 256,985,2187 in units of ωp,ecme/e, (d): 2D plot of the transverse magnetic field Bz
at ωpet = 2187 in units of ωp,eme/e for Run 4.

Run 4

Finally, run 4 considers a situation in which all three constraints on the beam parameters are
violated. Unlike runs 1 and 2, the fastest electrostatic mode develops for wave vectors that
are quasi-perpendicular to the beam, as is easily seen in figure 5.14a. Figures 5.13a to 5.13d
presents the 2D plots of the electric field Ex and magnetic field Bz for three different plasma
times of ωpet = 256,985,2187 in units of ωp,ecme/e and ωp,eme/e, respectively.

The numerical growth rate perfectly agrees with the analytical estimation for a cold beam,
and is about 2.2×10−2ωpe , which is larger than in runs 1, 2, and 3. Furthermore, figure
5.14b demonstrates that the electric-field energy density assumes a considerably higher value
than in three other runs on account of a higher growth rate. At the same time, the Weibel
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(a)

(b)

Fig. 5.14 Figure (a):Two-dimensional Fourier spectrum of E ∥ k at ωpet = 401 in units of
ωp,ecme/e, Figure (b): Time evolution of the energy densities of electric and magnetic field,
respectively, in SI units for run 4.
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Fig. 5.15 Momentum distribution for run 4 at two points in time: (a) for px of IGM, (b) for
py of Beam.

Fig. 5.16 Time evolution of the momentum spread of the beam, prms, for run 4.
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mode is destabilized resulting in a strong growth of magnetic field to a field strength even
larger (see the red line in figure 5.14b) than that of the electric field. Actually, the orange line
in figure 5.14b indicates that the dominant energy transfer is that to IGM electrons (∼ 0.5%),
while the magnetic field receives only ∼ 10−5%.

This affects the momentum distribution of both the beam and IGM, as we show in figures
5.15a-5.15b. In figure 5.16 we also see a remarkable increase in the momentum spread of the
beam and the IGM. This run 4 is similar to the simulations by Sironi and Giannios (2014)
who observed a similar beam-plasma evolution.

5.1.5 Summary

The largest difficulty is the impossibility to simulate realistic blazar-induced beams, even
with modern computational resources. Therefore, parameters must be found that permit
numerical modelling with similar physical properties. Two important criteria of the realistic
pair beams have been noticed before: (i) the beam/IGM energy density ratio is much smaller
than unity (Kempf et al., 2016), and (ii) the electrostatic mode evolves in the kinetic regime
(Miniati and Elyiv, 2013). However, the simple estimation presented in the introduction
shows that the Weibel mode can potentially compete with the kinetic electrostatic instability.
To clarify this point, we have used a simple analytical model and demonstrated that the
Weibel mode is actually stable for realistic parameters. This adds a third criterion for the pair
beams.

Previous PIC studies of the blazar-induced pair beams (Kempf et al., 2016; Sironi and
Giannios, 2014) considered only some of these requirements on the beam-plasma system. In
contrast, we have performed a simulation (run 1), for which all of them are taken into account.
Then, we have compared this case with three other simulations (runs 2-4), for which some
criteria were violated. The results of run 1 indicate that the pair beam does not experience
any significant modification. The electrostatic growth rate turns out to be relatively small,
and non-linear effects stabilize the beam very efficiently. However, once the electrostatic
instability becomes reactive (runs 3-4), as is the case for the studies of Kempf et al. (2016)
and Sironi and Giannios (2014), the beam momentum distribution widens drastically in the
transverse direction. A significant widening of the beam could in principle account for the
observed low flux of cascade gamma rays in the GeV band on account of temporal smearing,
but that requires a widening by a factor≫ 10. In any case beam widening is only observed if
the instability develops in the reactive regime, and that is not relevant for realistic pair beams
arising from interactions of AGN gamma rays with extragalactic background light. Also, if
the beam/IGM energy density ratio is high, then the beam effectively heats the IGM (run 4),
as was seen in the simulations by Sironi and Giannios (2014).
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To summarize, we have improved modelling of plasma instabilities for blazar-induced
pair beams by including three relevant criteria for the beam. Our results suggest that such
instabilities play a negligible role and cannot suppress the flux of cascade gamma rays in the
GeV band within our simulation time, but the beam can relaxate on much larger time scales.
More details are presented in our discussion of the relaxation time and the conclusions in
sections 5.2.3 and 5.2.3.

5.2 The electrostatic instability for realistic pair beams

In this section, the simulations results for the case of non-monoenergetic pair beams will be
presented. The motivation was to clarify contradicting statements by Schlickeiser et al. (2013)
and Miniati and Elyiv (2013). As elaborated in appendix B.1, of interest are BL Lac objects
with an intrinsic emission spectrum harder than E−2 that extends to at least a few TeV, so
that the cascade emission falls into the energy band accessible with the Fermi-LAT. This led
to a broad pair spectrum (101 < γ < 108). Gamma-rays with Eγ = 10 TeV have a mean-free
path of roughly 80 Mpc, i.e., they pair-produce in voids and provide well-detectable cascade
emission around 10 GeV. Then, pair beams produced at Dγ ≃ 50 Mpc represent the best test
case for the role of electrostatic instabilities in voids. Based on our analytical representation
discussed earlier in section 3.5, the conditions for choosing the parameters for case of wide
beam are presented in subsection 5.2.1, followed by the set up of the simulation presented
in subsection 5.2.2. Then, we proceed with the simulations in subsection 5.2.3. Finally, the
results are presented in subsection 5.2.4.

5.2.1 Choice of parameters

As discussed earlier in section 5.1.2 and in our first paper (Rafighi et al., 2017), a realistic
blazar-induced pair beam propagating through IGM cannot be simulated numerically due
to its very small number density. Nevertheless, a range of beam and plasma parameters can
be found such that the problem is numerically accessible with a PIC code, and the physical
picture can be extrapolated to the realistic situation. In fact, several conditions must be
satisfied (Kempf et al., 2016; Rafighi et al., 2017):

1. The beam/plasma energy-density ratio must be less than unity;

2. The Weibel mode has to be stable;

3. The electrostatic instability should develop in the kinetic regime.
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Earlier simulation studies by Kempf et al. (2016); Rafighi et al. (2017); Sironi and Giannios
(2014) considered only a monoenergetic Maxwellian beam which is not a good represen-
tation of the real situation, because the true pair distribution is highly non-monoenergetic.
Maxwellian beams are easy to generate in a simulation (Zenitani, 2015), and an efficient
method of inserting a non-Maxwellian beam would be the superposition of two or more
Maxwellian beams. As the production of pairs with high center-of-momentum energy is
Klein-Nishina-suppressed, and p⊥ is Lorentz-invariant, the Maxwellian beams to be su-
perposed should have the same rest-frame temperature (kTb ≈ 200 keV), but will differ in
their gamma-factors. Here we present simulations for a composite beam with a normalized
distribution function

f (pz, p⊥) =
w1µR

4π(mec)3Γ1K2(µR)
e
−µRΓ1

[(
1+

p2
z+p2
⊥

(mec)2

)1/2

−β1
pz

mec

]
+

w2µR

4π(mec)3Γ2K2(µR)
e
−µRΓ2

[(
1+

p2
z+p2
⊥

(mec)2

)1/2

−β2
pz

mec

]
. (5.6)

We choose the beam Lorentz factors Γ1 = 5 for beam 1 and Γ2 = 20 for beam 2. Furthermore,
we use µR = mec2/(kBTb) and β1,2 = (1− 1/Γ2

1,2)
1/2. The relative weight factors of the

beams are w1 = 0.9 (beam 1) and w2 = 0.1 (beam 2). The beam momentum distribution
integrated over the transverse momentum is shown in figure 5.17 and designed to resemble
the high-energy part of the expected pair distribution displayed in figure B.2. Our discussion
of the linear growth rate in section 3.5.3 indicated that it is this high-energy part that matters.
We shift it to low Lorentz factors to render the PIC simulations numerically stable. The
simulation time is long enough to follow the electrostatic instability, while keeping it in the
kinetic regime. The linear growth rate of the electrostatic instability is displayed in figure
5.18. The growth rate has its peak value in the quasi-parallel direction, 20−25◦ to the beam
which approximately reproduces the growth rate for the realistic pair beam (figure 3.5b).

We chose the beam/plasma density ratio equal to α = 2× 10−4 and the background
plasma temperature 2 keV. Then the beam/plasma energy density ratio is about ε = 0.66
which is smaller than 1. Moreover, the Weibel mode is stable, since the condition ⟨p⊥⟩>〈

p∥
〉
(α/⟨Γ⟩)1/2 is fulfilled for the beam (Rafighi et al., 2017).
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Fig. 5.17 Composite beam distribution function used for PIC simulations. Red: beam 1
(Tb = 200 keV, Γ1 = 5, w1 = 0.9). Green: beam 2 (Tb = 200 keV, Γ2 = 20, w2 = 0.1). Black:
the total distribution.

Fig. 5.18 Normalized growth rate, ωi/(πωp(nb/np)), for the composite distribution function
used in PIC simulations and displayed in figure 5.17.
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Table 5.2 Simulation parameters for composite beams with Γ1 = 5 and Γ2 = 20.

Parameter run 1 run 2
Density ratio α 2×10−4 2×10−4

Plasma temperature Tp 2 keV 2 keV
Beam temperature Tb 200 keV 200 keV
Weight for beam 1 w1 1 0.9
Weight for beam 2 w2 0 0.1
Energy density ratio ε 0.5 0.66

5.2.2 Simulation setup

As mentioned earlier in section 5.2.1, we used two beams with relative factors of w1 = 0.9
(beam 1) and w2 = 0.1 (beam 2). For comparison between one- and two-beam systems,
we also ran a simulation with w1 = 1 and w2 = 0. In this case, ε = 0.5, the electrostatic
instability develops likewise in the kinetic regime, and the Weibel mode is stable (Rafighi
et al., 2017). The parameters of our simulations are summarized in Table 5.2, where for run 1
and run 2 the density ratio, plasma and beam temperatures, are the same but the weight of
beam 1 and 2 and also the energy density ratios are varied.

Our PIC simulations were performed with EPOCH 2D (Arber et al., 2015). Additionally,
we have introduced the algorithm of Zenitani (2015) to generate the relativistic Maxwellian
distribution for the beams. The simulation plane was chosen to be the z-y plane with periodic
boundary conditions. The pair beam propagates along the z-axis through the electron-proton
plasma. The beam and plasma particles have the real mass ratio and fill the whole simulation
box. The density ratio, α = 2×10−4, is set with numerical weights. The simulation box is
presented by 2048×512 cells, each one-fourth of the skin length in size, λe =

c
ωpe

= 4∆z.
Tests demonstrated a sufficient suppression of self-heating and statistical noise for our
simulation setup that involves 400 computational particles per species and cell, a 6th-order
field particle pusher, and a triangular-shaped cloud (TSC) shape function. The electrostatic
instability grows in a very narrow band of wavenumbers. Therefore, to obtain proper results,
the grid frequency should be high enough in order to resolve at least several points within the
instability region (Shalaby et al., 2017). Figure 5.19 demonstrates the electric power spectrum
for different skin lengths. It is well seen that sufficient resolution for grid frequencies of the
narrow resonance at which the electrostatic instability operates is achieved for λs = 3∆x.
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Fig. 5.19 Electric field power spectrum from test runs to check the resolution of grid frequen-
cies for different skin lengths, all other parameters are fixed.

5.2.3 Simulations

Figure 5.20 compares the energy-density evolution of the electric and magnetic fields for runs
1 and 2. The linear growth rate of the electric field in the simulations agrees quite well with
the theoretical calculations, providing ωi = 10−3ωp for run 1 and ωi = 9×10−4ωp for run 2,
at least during the initial phase. Already after 5000ω−1

p wave growth proceeds at a reduced
pace. The numerical experiments also reproduce the slightly faster growth in run 1 compared
to run 2. Although the second, high-energy beam provides additional high-energy particles,
their effect on the growth rate is negligible. Thus, the growth rate is mainly determined by
beam 1, and the slightly higher density ratio, α , in run 1 leads to a marginally larger growth
rate of the electrostatic instability.

Figures 5.21a and 5.21b illustrate the Fourier spectrum of the parallel electric field for
runs 1 and 2, respectively, at the same time, ωpt ≈ 10152. The dimensionless Fourier
amplitude is defined as

Ẽ(km,n) =
e

mecωp

1
NzNy

Nz−1

∑
i=0

Ny−1

∑
j=0

ek · E(zi,y j) exp
(

2π ı
[

mi
Nz

+
n j
Ny

])
, (5.7)

where m and n are the index numbers of the wave-vector components in the z and y directions,
respectively, and ek is the unit wave vector. With this definition, the electrostatic field energy
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Fig. 5.20 Time evolution of the energy densities of electric and magnetic field, respectively,
in SI units for run 1 (dashed lines) and run 2 (solid lines).

density, UES, is

UES =
ne mec2

2

Nz−1

∑
m=0

Ny−1

∑
n=0
|Ẽ(km,n)|2. (5.8)

The peak growth of the electric field is observed as expected in the quasi-parallel direction to
the beam (in agreement with the linear growth rate, figure 5.18), and the wave intensity in
run 1 is also a bit higher than in run 2. In total, the wave energy density represents only a
fraction ≲ 10−2 of the beam energy, and the beam does not suffer a significant loss of energy.

Nonlinear instability saturation

We now demonstrate that the electrostatic instability in our simulations does not saturate on
account of nonlinear Landau (NL) damping with rate (Breizman et al., 1972)

ωNL =
3(2π)1/2

64

∫
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nemeui

(kk′)2

(kk′)2
k2− k′2

|k−k′|
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[
−1

2

(
3u2

e
2ωpui

k2− k′2

|k−k′|

)2
]
, (5.9)

where ue,i = (TIGM/me,i)
1/2 denotes the thermal velocity of IGM electrons and ions, and

Wk(k) is the spectral energy density of the electric field. With the discrete Fourier amplitudes
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(a)

(b)

Fig. 5.21 (a) Two-dimensional Fourier spectrum of E ∥ k (in units (ωp,ecme/e)2) at ωpt ≈
10152 for run 1. (b) The same as (a), but for run 2.
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calculated according to equation. 5.7 the nonlinear damping rate is

ωNL =
3(2π)1/2

128
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exp
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|k−k′|
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]
. (5.10)

The range of wave vectors in which NL damping is efficient, is determined by the Gaussian
“cut-off" in the integrand of equation 5.9. Therefore, we are interested in wave vectors for
which the argument of the e-function is below unity,

|k2− k′2|
|k−k′|

< ξ
ωp

c
, (5.11)

where ξ = (2
√

2/3)(me/mi)
1/2(mec2/TIGM)1/2. In our simulations, kTIGM = 2 keV and

hence ξ ≈ 0.22. As the growth rate is sharply peaked near kz ≃ ±ωp/c, and we also
have Pk(−k) = Pk(k) for the real-valued electric field, we find from equation 5.11 that
the NL scattering is essentially always efficient for kz

′ ≃ −kz and conditionally efficient
for kz

′ ≃ kz, if ky ≈ −k′y. Figures 5.21a and 5.21b indicate a high wave intensity in a
stretch 0.2 ≲ kyc/ωp ≲ 0.5, which is well resolved with the ∆kyc/ωp ≃ 0.05 afforded by
the simulation grid. The grid resolution in beam direction is chosen sufficiently high to
resolve the resonance, ∆kzc/ωp≃ 0.0123. Around ωpt ≈ 10,000, we observe a high intensity
extending over at least five grid points (in k), and the peak value is less than 50% of the total
intensity at these five grid points. We conclude that the grid resolves the intensity at the
resonance sufficiently well to permit NL damping in the simulation.

Using the simulation data, we obtain at the wave vector of peak growth ωNL ≈ 10−5ωp,
which is much smaller than the maximum linear growth rate ωi ≈ 10−3ωp, and we conclude
that NL damping is not responsible for the saturation of the electrostatic instability in our
simulations.

Another crucial stabilization mechanism of the electrostatic mode is the modulation
instability presented by Galeev et al. (1977); Papadopoulos (1975), which is same as the
oscillating two-stream instability. Under such instability, high-frequency resonant waves
produces cavities of electron density but enhanced electrostatic wave energy density. This
leads to reduced wave-particle interaction, transferring wave energy from resonant phase
speeds to non-resonant superluminal phase speeds and making the linear instabilities less
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efficient. Under the condition

UES

neTe
> max

[
∆k
k
(kλD)

2,
me

mp

]
(5.12)

the growth rate of the modulation instability can be found as (Papadopoulos, 1975)

ωM = ωp

(
me

mp

UES

neTe

)1/2

. (5.13)

Here, ∆k is the characteristic width of the electric field spectrum. For runs 1 and 2 (see figure
5.18), the saturation energy of the electric field is UES≈ 10−19 J/m3. The IGM plasma density
in the simulations is ne = 0.25 m−3 which yields UES/(neTe)≈ 5 ·10−3. Since the electric
field energy is localized near the wave number k ≈ ωp/c, (kλD)

2 ≈ 4 ·10−3, and condition
(5.12) is fulfilled for both simulation runs. The damping rate is ωM ≈ 1.6 ·10−3ωp > ωi, and
so it is the modulation instability that stabilizes the electrostatic mode in our simulations.

Having established that the electrostatic instability has a short growth time compared
to other timescales of interactions of the pair beam, we now have to estimate the saturation
level and energy transfer rate. In our PIC simulations, the modulation instability saturates
the waves at an energy density that corresponds to 1% of the energy density of the beam.
Saturation does not imply a vanishing energy transfer, and in fact the beam interacts with
the wavefield as long as it not cooled by inverse-Compton scattering or deflected out of
resonance by the ambient magnetic field. Following the beam’s propagation through the
saturated wave field for the mean-free path for Compton scattering, λIC, is impossible with
PIC simulations, and so we resort to analytical estimates.

Saturation is defined as the statistical balance between the driving, cascading, and
damping of waves. Writing the driving rate in the Fourier power as 2ωi |Pk|2, one would
use Parseval’s theorem to calculate the energy transfer rate per volume V , accounting for
equipartition between the kinetic energy and electrostatic energy in the electrostatic mode.

dUbeam

dt
=−2

dUES
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=−2ε0

V

∫
dk |Pk|2 ωi . (5.14)

The inverse loss time scale for beam energy then is

τ
−1
loss =

∣∣∣∣d lnUbeam

dt

∣∣∣∣≃ 2ε0

V Ubeam

∫
dk |Pk|2 ωi . (5.15)



5.2 The electrostatic instability for realistic pair beams 85

Written for the 2D discrete Fourier power available from our simulation, equation (5.14)
assumes the form

dUbeam

dt
=−2ne mec2
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∑
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∑
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|Ẽ(km,n)|2 ωi(m,n) , (5.16)

and the inverse loss time is

τ
−1
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2ne mec2
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Nz−1

∑
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∑
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|Ẽ(km,n)|2 ωi(m,n) . (5.17)

The symmetry in Pk permits performing the sum over only one quadrant of k space and then
applying a factor of 4 plus another small factor that accounts for extending the wave spectrum
from the 2D simulation behaviour to the 3D real-world geometry. The energy transfer rate is
hence estimated by folding the wave power spectrum close to the saturation level with the
linear growth rate. This is a conservative estimate, because already at moderately nonlinear
amplitudes the growth rate is observed to fall below 70% of its initial value.

At time t ≈ 104/ωp, our numerical results provide dUbeam/dt ≈ 6 ·10−21 J/(m3·s) and
τloss ≈ 5 · 105/ωp. The wave intensity remains near the peak value for a time period of
≲ 5 · 103/ωp, which is much shorter than the estimated loss time. The estimated energy
loss is below the percent level, and indeed only a tiny beam energy loss can be observed in
the simulations. Numerically, we would have obtained the same result if we had replaced
ωi(m,n) in equation (5.14) with half of its peak value,

dUbeam

dt
≃−2UES ωi,max . (5.18)

We shall use this formula when estimating the loss rate of realistic beams.

Nonlinear instability saturation for realistic Blazar-induced Pair Beams

We shall now discuss the saturation process and level for realistic beam parameters. We
begin with the modulation instability as the damping process that we found to dominate in
our simulation. Let us introduce additional scaling: γ = 106γ6, TIGM = 104 T4 K. Then, the
peak linear growth rate of the electrostatic mode can be written as

ωi,max ≃
(
1.88 ·10−7)

ωp
nb20

ne7
= 5.64 ·10−9

ωp , (5.19)

where, in the last expression, we inserted nb20 = 0.03 as for the pair distribution shown in
figure B.2. Note that the estimate (5.19) is by a factor 10 higher than that in Miniati and
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Elyiv (2013), who additionally considered IC-cooled pair beams. We shall now estimate the
wave intensity for which the modulation instability is strong enough to halt further wave
growth. equations (5.12)-(5.13) read

δ =
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nb γb mec2 > max
[

4 ·10−5 ∆k
k

ne7 T 2
4

nb20 γ6
, 0.1

ne7T4
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]
, (5.20)

ωM/ωp = 5.2 ·10−3

√
δ nb20 γ6

ne7 T4
. (5.21)

Setting ωM = ωi,max would require δ ≈ 10−11, for which condition (5.20) is not fulfilled,
and the result of Papadopoulos (1975) does not apply. Instead, since ωM ≪ kvT,i, where
vT,i =

√
TIGM/mi, we should use the growth rate and threshold condition of the modulation

instability, equations (10)-(11) derived by Baikov (1977). We write them, respectively, in the
form
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, (5.22)
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Here, ΓL is the damping rate due to particle collisions and linear Landau damping, whereas
∆ is the mismatch between the Langmuir frequency and the frequency of the unstable
oscillations. In the cold-beam limit, it is easy to find (Baikov, 1977):

∆≈−
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, (5.24)

where θ is the angle between the wave vector and the beam. For the realistic beam, the
strongest mode develops at the angle θ ≈ 0.33 rad (see figure 3.5b), yielding, for typical
parameters,

∆≈−8.8 ·10−8
ωp

(
nb20

ne7γ6

)1/3

. (5.25)

Since the collision frequency νei ≈ 10−13ωp, we have ΓL≪ ∆, and the threshold condition
for the modulation instability (5.23) finally becomes

δmin ≃ 6 ·10−6 T4 γ
−4/3
6

(
ne7

nb20

)2/3

≃ 10−5 , (5.26)
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where again the last expression applies for the parameters of the pair distribution shown in
figure B.2, nb20 = 0.03 and γ6 = 4. Now we solve equation 5.22 for ωM = ωi,max and find

δM ≃ δmin

[
1+4.7γ

2/3
6

(
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ne7

)4/3
]
≃ 10−5 . (5.27)

To be noted from this expression is that while formally δM is larger than the threshold value,
it is numerically very similar for the parameters of realistic pair beams.

Turning to NL damping, it can easily be seen that the Gaussian in equation (5.9)
essentially always returns to unity, since the cutoff scale ξ ≈ 14 (see equation. (5.11)). Most
electrostatic energy grows near the resonance wave number ωp/c (see figure 3.5b), and so
we can analytically estimate the second and third factors of the integrand in equation (5.9)
and find them approximately equal to k−k′. Writing ∆k = k−k′ ≈ 0.1ωp/c, we obtain

ωNL ≈ 10−3
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∆k c
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4

≈ 10−4
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ne7 T 1/2
4

. (5.28)

The estimate for ∆k is very rough, but our result only weakly depends on this parameter, as
will be seen below. For the pair distribution shown in figure B.2, nb20 = 0.03, γ6 = 4, setting
ωNL = ωi,max leads to

δNL ≈ 5 ·10−4. (5.29)

This corresponds to a higher wave intensity as that found for the modulation instability (see
equation 5.27), and we conclude that the modulation instability provides a stronger limitation
on the beam intensity than does NL damping. Note that Schlickeiser et al. (2012b) and
Miniati and Elyiv (2013) used equation (5.12) as the threshold condition for the modulation
instability, which we show not to be applicable for the realistic parameters.

Using our result for δM, where we adopted nb = nb,2010−20 cm−3 and ne = ne,710−7 cm−3,
we can estimate the relaxation time of the blazar-induced pair beam using equation (5.18),

τ
−1
loss ≃ 2δM ωi,max

≃ (6 ·10−11 s−1)T4 γ
−4/3
6

(
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ne7

)1/3

. (5.30)
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This loss rate is to be compared with that for inverse-Compton scattering at redshift z,

τ
−1
IC ≃ (1.3 ·10−14 s−1)γ6 (1+ z)4 . (5.31)

For the ratio of timescales, we find with the realistic parameters nb20 = 0.03 and γ6 = 4, and
introducing the redshift scaling for the IGM density,

τloss

τIC
≃ 2.2 ·10−4 γ

7/3
6
T4

(
ne7

nb20

)1/3

(1+ z)5

≃ 0.02(1+ z)5 , (5.32)

indicating that for redshift z ≲ 1.2 plasma instabilities drain the energy of the pair beam faster
than comptonization of the microwave background would. This estimate is very weakly
dependent on the density of the pair beam and that of the IGM, and so the distance from
the AGN is of moderate importance, as is the TeV-band luminosity. It does strongly vary
with the choice of pair Lorentz factors. With our nominal γ6 = 4, the pairs would upscatter
the microwave background to about 10 GeV in gamma-ray energy, i.e. into the energy
range where the Fermi-LAT has the optimal sensitivity for the cascade signal. A number of
comments are in order:

1. In our simulations, the peak growth rate was somewhat reduced during the nonlinear
phase, which would imply a longer loss time if TeV-scale pair beams behaved in the
same way.

2. Any other cascading or loss mechanism beyond the modulation and the nonlinear
Landau damping considered here would also increase the loss time, because it would
reduce the saturation amplitude, δM.

3. Substantial uncertainty derives from the exact form of the pair spectrum, and Miniati
and Elyiv (2013) find a peak growth rate around 10% of our result only by allowing
for efficient cooling, which would translate to a 10 times longer loss time. Typically,
the exact primary gamma-ray spectrum is not known, in particular, neither the spectral
index nor the cutoff energy, and so it is not possible to completely predict the pair
spectrum.

4. We calculate the bulk energy loss of the pair beam without consideration of its energy
dependence. It is possible that the energy loss primarily affects the pairs that are also
instrumental in driving the electrostatic mode, while leaving unaffected those pairs
that are most efficient in producing the gamma-ray cascade signal in the GeV band.
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All of the above suggests that the result (5.32) should be seen as a lower limit with significant
uncertainty. Thus, we conclude that the blazar-induced pair beam at moderate redshift
z≈ 0.2 will lose its energy with similar efficiency to inverse-Compton scattering and to the
interaction with plasma waves.

5.2.4 Summary

To study the non-linear beam evolution, we used PIC simulations. In contrast to earlier
studies Kempf et al. (2016); Rafighi et al. (2017); Sironi and Giannios (2014), we now
considered a non-monoenergetic beam via a superposed relativistic Maxwellians of two
beams, albeit at small beam Lorentz factor following Rafighi et al. (2017). We find that the
beam energy losses about 1% of its initial energy and the saturation level of the electrostatic
waves is determined by the modulation instability. However the beam relaxation timescale
≈ 5.6 · 105/ωp based on analytical analysis is much longer than the time covered by our
simulation (≈ 1.5 · 104/ωp). A more detailed presentation of the summary and results is
presented in Chapter 6.





Chapter 6

Summary and conclusions

In virtue of all the advancements in science and technology, human mind is facing more
and more complicated issues to solve. Astrophysics is no exception to that, providing
astrophysicists tools to overcome the new challenges.

New Cherenkov telescopes such as HESS, VERITAS and Fermi satellite, have discovered
many blazars as sources of very high-energy gamma rays (E ≥ 100 GeV) (de Naurois (2015)).
Interacting with the extragalactic background light (EBL), these very energetic photons create
electron-positron pairs that in turn produce an inverse-Compton cascade in the GeV band.
Observations with Fermi-LAT indicate (Neronov and Vovk (2010)) that the GeV gamma-ray
flux from some blazars is lower than that predicted from the full electromagnetic cascade
(Neronov and Semikoz (2009)). The works of Neronov and Vovk (2010); Taylor et al.
(2011) suggests a possible explanation is deflection in intergalactic magnetic field of strength
B≥ 3×10−16 Gauss.

Furthermore, an alternative theory involves beam dissipation by plasma instabilities
(Breizman, 1990; Breizman and Riutov, 1974; Bret, 2006; Bret et al., 2004, 2005, 2010;
Godfrey et al., 1975; Lominadze and Mikhailovskii, 1979). Several analytical studies
have covered the electrostatic instability of blazar-induced pair beams. Broderick et al.
(2012) and Schlickeiser et al. (2012b) considered a monoenergetic beam with no momentum
spread, for which the electrostatic mode reaches its maximum growth rate at a wave vector
quasiperpendicular to the beam direction. Miniati and Elyiv (2013) analysed the electrostatic
mode for a steady-state pair distribution given by the balance between the pair production
and inverse-Compton losses. They found the maximum growth rate in a direction almost
parallel to the beam, in contrast to the case of a cold beam (Schlickeiser et al., 2012b).

In this work, we established parameter regimes for PIC simulations that permit extrap-
olation to the very low density and monoenergetic pair beams relevant to the scenarios by
Schlickeiser et al. (2012b) and Miniati and Elyiv (2013). We also investigated the impact of
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non-monoenergetic beam distribution functions. We have presented results of both our linear
analysis in Chapter 3 and our PIC simulations in Chapter 5. In our simulations we also verify
the results of Sironi and Giannios (2014) and Kempf et al. (2016) where they considered
only some of the requirements on the beam-plasma system.

In sections 3.4 and 5.1, based on our first publication related to this thesis (Rafighi et al.,
2017), we used a simple analytical model and demonstrated that the Weibel mode is actually
stable for realistic parameters which adds a third criterion for the pair beams in addition to
the ones noticed by earlier PIC simulations. In contrast to the simulations by Sironi and
Giannios (2014) and Kempf et al. (2016), we performed a simulation (run 1) (see 5.1.4), for
which all of them are taken into account. Then, we have compared this case with three other
simulations, for which some criteria were violated. The results of run 1 indicate that the pair
beam does not experience any significant modification within the simulation time, but the
beam can relaxate on much larger time scales. The electrostatic growth rate turns out to be
relatively small, and non-linear effects stabilize the beam very efficiently.

In sections 3.5 and 5.2, based on our second publication related to this thesis (Vafin
et al., 2018), we also revisited the growth rate of the electrostatic instability under conditions
relevant for a realistic blazar-induced pair beams propagating through the IGM. Our goal
was to clarify somewhat contradicting statements by Schlickeiser et al. (2013) and Miniati
and Elyiv (2013) and to establish the energy loss rate of pair beams for driving the waves.

We calculated the energy distribution function of blazar-induced pairs without modifica-
tion by IC scattering, since we intended to study the effect of the electrostatic instability. We
assumed a power-law spectrum ∝ E−1.8 for the blazar emission and used the models of Finke
et al. (2010) and Fabian and Barcons (1992) to describe the EBL spectrum. We found a broad
pair spectrum (101 < γ < 108) similar to that in Miniati and Elyiv (2013). This spectrum
contains a pronounced low-energy part arising from interaction with the X-ray background
radiation that is missing in the treatment of Schlickeiser et al. (2012a,b, 2013). Then, we used
the newly evaluated pair distribution to study the growth rate of the electrostatic instability
and did not find any significant effect of low-energy pairs with γ < 104, lending support to
the results of Schlickeiser et al. (2012b, 2013).

We investigated the growth rate of the instability for arbitrary wave vectors with and
without angular spread. If the beam has no angular spread, then the growth rate reaches its
maximum at wave vectors perpendicular to the beam. However, for a realistic finite angular
spread, the growth rate is the largest at wave vectors quasiparallel to the beam direction, and
the maximum growth rate is reduced. Both findings are in agreement with Miniati and Elyiv
(2013). We note that the growth rate at oblique wave vectors is only by a factor of 2-4 smaller
than the maximum growth rate, which can be crucial for the non-linear evolution of the beam.
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We also found that the maximum growth rate for a finite angular spread is by more than a
factor of 10 larger than the peak growth rate of the strictly parallel electrostatic mode studied
by Schlickeiser et al. (2013).

Miniati and Elyiv (2013) took into account the IC cooling of all beam electrons and
positrons, not only those with γ > 107. From their results, it follows that the IC scattering
reduces the maximum growth rate by about an order of magnitude. As we investigate
the viability of the instability providing the dominant energy loss, we need to consider an
uncooled beam, and hence the larger linear growth rate. The strong dependence of the growth
rate on the shape of the pair spectrum suggests that there may also be substantial variation in
the growth rate arising from the shape of the primary gamma-ray spectrum produced by the
blazar, in particular, the spectral index and the cutoff energy.

To study the nonlinear beam evolution, we used PIC simulations. In contrast to earlier
studies (Kempf et al., 2016; Rafighi et al., 2017; Sironi and Giannios, 2014), we now
considered a non-monoenergetic beam. We find that the beam energy losses remain at a very
low level (about 1% of its initial energy). Furthermore, the saturation level of the electrostatic
waves is determined by the modulation instability. However the beam relaxation timescale
≈ 5.6 · 105/ωp based on analytical analysis is much longer than the time covered by our
simulation (≈ 1.5 ·104/ωp).

Our analytical analysis then permits extrapolation to realistic pair beams. We determine
the linear growth rate of the electrostatic instability and find that also in this case the
modulation instability is a faster saturation process than is nonlinear Landau damping.
Miniati and Elyiv (2013) arrived at the opposite conclusion, but used a less accurate threshold
condition of the modulation instability. Balance of growth and damping determines that
saturation level, from which we analytically estimate that the energy-loss time scale for beam
instabilities is slightly smaller than that for comptonization of the microwave background,
so that the electrostatic beam stability could at least reduce the intensity of the gamma-ray
cascade emission in the GeV band. The uncertainties in the estimate are large though, and
there is a significant dependence on redshift.

If the effective loss length is indeed slightly reduced by beam instabilities, the flux of the
cascade signal is correspondingly smaller. Any magnetic deflection of the beam would then
have to be accomplished over this smaller pathlength and would hence require a stronger
magnetic field. An interesting possibility is that the intergalactic magnetic field increases the
transverse momentum spread and hence reduces the growth rate of the electrostatic instability.
A strictly homogeneous magnetic field would also diverge the electron beam and the positron
beam, which might trigger other plasma instabilities.
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Ultimately, the magnetic field deflection is still the main candidate to explain the lack of
GeV-band cascade signal from blazars. However, the non-linear relaxation of the realistic
blazar-induced beams is subject for future investigations, as it is not fully understood yet.
Indeed it is an open and exciting subject of research for the junior and senior researchers in
this field.
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Appendix A

Appendix for monoenergetic beams

A.1 Derivation of the dispersion equation for p⊥,b = p∥,p =

p⊥,p = 0 and k∥ = 0

In the case p⊥,b = p∥,p = p⊥,p = 0, the beam and plasma distributions, respectively, reads

fb(p) =
nb

(p+∥,b− p−∥,b)
δ (pz)δ (py)

[
θ

(
px− p−∥,b

)
−θ

(
px− p+∥,b

)]
, (A.1)

fp(p) = nδ (px)δ (py)δ (pz), (A.2)

where δ (x) is the Dirac delta function. The dielectric tensor is given by Breizman (1990)
and Schlickeiser (2004):

εi, j = δi, j + ∑
a=p,b

4πe2

ω2

∫
d3 p

(
vi

∂ fa(p)
∂ p j

−
viv jkl

kv−ω

∂ fa(p)
∂ pl

)
. (A.3)

Evaluating the dielectric tensor (A.3) for the distribution functions (A.1)-(A.2) and for the
wave vector k = (0,0,k) yields

εzy = εyz = εyx = εxy = 0, (A.4)

εzz = εyy = 1−
ω2

p

ω
−

ω2
b

ω2U1, (A.5)

εxx = 1−
ω2

p

ω2 −
ω2

b
ω2

[(
kc
ω

)2

U1 +

(
1−
(

kc
ω

)2
)

U2

]
, (A.6)
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εxz = εzx =−
ω2

b
ω2

kc
ω

U3, (A.7)

where

U1 =
mec

p+∥,b− p−∥,b
ln

∣∣∣∣∣ p
+
∥,b +[(p+∥,b)

2 +m2
ec2]1/2

p−∥,b +[(p−∥,b)
2 +m2

ec2]1/2

∣∣∣∣∣ , (A.8)

U2 =
mec

p+∥,b− p−∥,b

(
p+∥,b

[(p+∥,b)
2 +m2

ec2]1/2 −
p−∥,b

[(p−∥,b)
2 +m2

ec2]1/2

)
, (A.9)

U3 =
mec

2(p+∥,b− p−∥,b)
ln

∣∣∣∣∣(p+∥,b)
2 +m2

ec2

(p−∥,b)
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ec2

∣∣∣∣∣ . (A.10)

Here, we have introduced ω2
b = 8πnbe2/me. The dispersion equation reads:

det(Λi, j) = det

(
εi, j +

kik jc2

ω2 −
(

kc
ω

)2

δi, j

)
= Λyy(ΛzzΛxx−Λ

2
zx) = 0. (A.11)

Thus, the dispersion equation for electromagnetic fluctuations is[
1−

ω2
p

ω
−

ω2
b

ω2U1

]{
1−
(

kc
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p
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−
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kc
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= 0. (A.12)

A.2 Derivation of the dispersion equation for p∥,b = 0 and
k∥ = 0

For p∥,b = 0, the distribution function of the beam reads

fb(p) =
nb

4p2
⊥,b

[
θ
(

pz + p⊥,b
)
−θ

(
pz− p⊥,b

)]
×

×
[
θ
(

py + p⊥,b
)
−θ

(
py− p⊥,b

)]
δ (px− p0). (A.13)

We will assume p⊥,b≪ p0. We will still model background protons with the distribution
(A.2), whereas the distribution function of the background electrons is given by Eq. (3.50).
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Moreover, we will assume that the background electrons are non-relativistic, p∥,p = mev∥,p
and p⊥,p = mev⊥,p. Now, it is easy to find that again εzy = εyz = εyx = εxy = 0, but

εzz = 1−
ω2

p,p

ω2 −
ω2

p,e

ω2− (kv⊥,p)2 −
ω2

b/Γ

ω2− (ku)2 , (A.14)
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, (A.16)

εxz = εzx =−
kV0ω2

b/Γ

ω(ω2− (ku)2)
, (A.17)

where ωp,e =(4πne2/me)
1/2, ωp,p =(4πne2/mp)

1/2 (mp is the proton mass), u=V0 p⊥,b/p0.
Finally, the Weibel instability is described by the equation

[
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= 0. (A.18)

A.3 Approximation for αkin at large values of µR

For µR≫ 1, we can use the series expansion

c(p2 +m2
ec2)1/2−V0 px ≈

mc2

Γ
+

(px− p0)
2

2meΓ3 +
p2

z + p2
y

2meΓ
. (A.19)

Then Eq. (3.59) can be approximated as (Meierovich and Sukhorukov, 1975; Watson et al.,
1960)

fb(p) =
nb

π3/2 p2
⊥,b p∥,b

e
− p2

z+p2
y

p2
⊥,b
− (px−p0)

2

p2
∥,b , (A.20)
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or

fb(v) =
nb

π3/2v2
⊥,bv∥,b

e
− v2

z+v2
y

v2
⊥,b
− (vx−v0)

2

v2
∥,b , (A.21)

where p2
⊥,b = 2mekBTb, p2

∥,b = 2Γ2mekBTb, v2
⊥,b = 2kBTb/(meΓ2), v2

∥,b = 2kBTb/(meΓ4). It
is easy to find that

p⊥,b = (2−π/2)1/2 mc

µ
1/2
R

(A.22)

v∥,b =
(
⟨(vx−⟨vx⟩)2⟩

)1/2
≈
(

kBTb

meΓ4

)1/2

(A.23)

and
αkin =

1

Γ3µ
3/2
R

. (A.24)



Appendix B

Realistic pair beams

B.1 Realistic pair spectrum

To investigate the growth rate of the electrostatic instability, it is necessary to evaluate the
energy distribution of realistic blazar-induced pairs. Let us consider a fiducial source of
high-energy photons with spectrum F(Eγ ,z) = dNγ/dEγ . Of interest are BL Lac objects
with an intrinsic emission spectrum harder than E−2 that extends to at least a few TeV;
otherwise, the cascade emission would be subdominant and would not fall into the energy
band accessible with the Fermi-LAT. Only a few of the AGNs known in the GeV band qualify
(Abdo et al., 2010). For our fiducial BL Lac, we assume a simple power-law spectrum
observable at Earth,

F(Eγ ,z = 0) =
(

10−9 ph.
cm2 sGeV

) (
Eγ

GeV

)−1.8

Θ((Eγ − Eγ,min)(Eγ,max − Eγ)), (B.1)

where Eγ,min = 0.5 GeV and Eγ,max = 50 TeV. The low-energy limit is irrelevant for our
work, and a high-energy limit is chosen to explore a case with high pair-beam density and
hence strong driving of plasma instabilities. The differential flux at 1 TeV corresponds to
15% of that of the Crab nebula and is typical of BL Lacs in the flaring state (Hinton and
Hofmann, 2009). The AGN is placed at redshift z = 0.15, corresponding to a luminosity
distance DL ≃ 720 Mpc.

Gamma-ray emission from jets of AGNs has a finite opening angle, and at the site of pair
production, at the distance Dγ from the AGN, the gamma-ray flux is

F(Eγ ,Dγ) =
D2

L
D2

γ

F(Eγ ,z = 0) , (B.2)
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where the energy is measured at z = 0. As the density of the pair-beam scales with that
of the primary gamma rays, it is important to establish at what distance the bulk of pair
production happens. Primary gamma rays with Eγ = 40 TeV produce cascade emission above
100 GeV, where the sensitivity of Fermi-LAT deteriorates. They also get absorbed within a
few Mpc from the AGN, i.e., close to, or in, a cosmological filament where a magnetic field
stronger than the fG-level likely exists. Gamma-rays with Eγ = 10 TeV have a mean-free
path of roughly 80 Mpc, i.e., they pair-produce in voids, and provide well-detectable cascade
emission around 10 GeV. Then, pair beams produced at Dγ ≃ 50 Mpc represent the best test
case for the role of electrostatic instabilities in voids, because one considers the highest beam
densities at the location of main energy transfer under the constraint of cascade visibility. For
our fiducial AGN, the total number of gamma rays then is

Nγ =
∫

dEγ F(Eγ ,Dγ = 50Mpc)≃ 1.5 ·10−17 . (B.3)

Note that at Dγ ≃ 50 Mpc, absorption has already diminished the gamma-ray flux above
10 TeV.

The spectrum of the EBL is denoted as f (ε,z) = dnγ/dε . We define a small redshift
interval, δ z, for which zb(i) (i = 0,1,2...) represents the boundaries and zc(i) the center of
the interval. In this redshift interval, the evolution of F(Eγ ,z) can be linearised as done by
Fang (2010)

F(Eγ ,zb(i + 1)) = F(Eγ ,zb(i))e−δτ(Eγ ,zc(i)) ≈ F(Eγ ,zb(i))[1 − δτ(Eγ ,zc(i))], (B.4)

where the optical depth for the small step δ z in redshift is

δτ(Eγ ,z) = cδ z
dt
dz

∫ 2

0
dx

x
2

∫
∞

eth
dε f (ε,z)(1+ z)3

σγγ(β ). (B.5)

Here,
dt
dz

=
1

H0(1+ z)

[
(1+ z)2(1+Ωmz)− z(z+2)ΩΛ

]−1/2
, (B.6)

with Hubble constant H0 = 70 km s−1 Mpc−1, Ωm = 0.3, ΩΛ = 0.7, c is the speed of light,
while

σγγ(β ) =
3σT

16
(1−β

2)

[
2β (β 2−2)+(3−β

4) ln
(

1+β

1−β

)]
(B.7)

describes the cross-section for pair production, where the Thompson cross-section σT =

6.65× 10−25 cm2, β = (1− 4m2
ec4/s)1/2, s = 2Eγεx(1+ z), x = 1− cosθ , and me is the

electron mass.
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The distribution function of newly produced electrons and positrons can be expressed as
(Fang, 2010)

δ fb(γ,zb(i+1)) =
dnb

dγ
= cδ z

dt
dz

(1+ zc(i))2

4

∫
∞

0
dEγF(Eγ ,zb(i))E2

γ

∫
∞

1
dγ
∗×∫

γ+

γ−

dγCM√(
γ∗2−1

)(
γ2
CM−1

) 1
γ5
CM

δ

(
γ
∗− γmax

γCM

)∫
∞

εmin

dε

ε2 f (ε,zc(i))σγγ(β ), (B.8)

where γ±= γγ∗±
√(

γ∗2−1
)
(γ2−1), β =

√
1− γ2

CM/γ2
max, γmax =Eγ(1+zc(i))/(2mec2),

and εmin = Eγ(1+zc(i))/(4γ2
CM). Here, γCM is the gamma-factor of the center-of-mass frame

of the interacting photons and γ∗ is the gamma-factor of pairs in that frame. Integrating Eq.
(B.8) over γCM and introducing the new variable x = γmax/γ∗, Eq. (B.8) becomes

δ fb(γ,zb(i+1)) = cδ z
dt
dz

(1+ zc(i))2

4
×∫

∞

0
dEγ F(Eγ ,zb(i))E2

γ

∫
γmax

0
dx

Θ((x− γ−)(γ+− x))

x5
√

((γmax/x)2−1)(x2−1)

∫
∞

εmin

dε

ε2 f (ε,zc(i))σγγ(β ),

(B.9)

where Θ is the Heaviside step function, β =
√

1− x2/γ2
max, εmin = Eγ(1+ zc(i))/(4x2), and

γ± = γγmax/x±
√
(γ2−1)((γmax/x)2−1). Thus, for given F(Eγ ,zb(i)) and f (ε,zc(i)), Eq.

(B.9) yields the increment of the pair distribution function.
The energy spectrum of low-energy EBL photons is modeled by a combination of stellar

radiation and cosmic X-ray background. For the stellar radiation, we used results by Finke
et al. (2010) for the redshift 0.2, also available online,1 whereas the X-ray background
radiation is described by empirical fits found by Fabian and Barcons (1992). Note that
Schlickeiser et al. (2013) used an EBL spectrum of Wien-type,

f (ε) =
N0

Γ(3)kBTW

(
ε

kBTW

)2

exp
(
− ε

kBTW

)
, (B.10)

where Γ denotes the Gamma function, kBTW = 0.1 eV, and N0 = 1 cm−3. Fig. B.1 compares
model spectra of the EBL. It is obvious that the Wien-type distribution Eq. (B.10) is not a
good description of the realistic EBL spectrum given by stellar radiation and CXB. Thus,
in the present work, we will use an analytical approximation (see Appendix B.2) for the

1http://www.phy.ohiou.edu/∼finke/EBL/index.html
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spectral models by Finke et al. (2010); (shown as a red curve in Fig. B.1) along with the
approximations by Fabian and Barcons (1992).

ǫ, eV

10-2 100 102 104 106

ǫ
2
f(
ǫ
),

 e
V

/c
m

3

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

Finke et al. (2010)

Fabian & Barcons (1992)

Schlickeiser et al. (2013)

Fig. B.1 EBL energy-density spectrum for different models. Blue: the Wien-type distribution
used by Schlickeiser et al. (2013); (see also Eq. B.10). Red: stellar radiation model by Finke
et al. (2010) at redshift 0.2. Black: our analytical approximation for the red line (Appendix
B.2). Magenta: empirical model of the X-ray background (Fabian and Barcons, 1992).

Electron-positron pairs produced by gamma-ray absorption will eventually loose their
energy by Comptonization of the microwave background, unless plasma instabilities drain
their energy more rapidly. In any case, the mean-free path for Comptonization,

λIC ≃ (75 kpc)
(

107

γ

)
(B.11)

provides the upper limit for the pathlength along which the pair beam can build up. A 10
TeV gamma ray produces electrons and positron with mean energy 5 TeV, or γ = 107, and
reradiates gamma-rays with energies around 10 GeV that should be easily observable with
the Fermi-LAT. We use the pathlength λ = λIC(γ = 107) to calculate the pair spectrum.

Fig. B.2 shows the pair spectrum at distance 50 Mpc from a blazar resulting from
interactions of high-energy gamma rays with a spectrum following Eq. (B.1) and low-energy
EBL photons (Fabian and Barcons, 1992; Finke et al., 2010). The total number density of
pairs is about 3×10−22 cm−3. The red and the blue curve illustrate results of our calculation
(Eq. B.10), while the black one shows the approximation found by Schlickeiser et al. (2012a),
that is close to our results only beyond the peak at γ > 106. The rising flank of the black
curve at γ ≈ 104.7 is much steeper and it does not show a second peak at lower energies. It is
clear that the peak of the pair distribution at γ ≈ 5×102 results from the cosmic background
radiation, which was not included in the model by Schlickeiser et al. (2013). In Appendix
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B.3, we give an analytical approximation for the red curve in Fig. B.2 used in this work to
evaluate the linear growth rate of the electrostatic instability.

Fig. B.2 Normalized pair spectrum at the distance 50 Mpc from the source. Red: numerical
solution of Eq. (B.9) using the Finke model model and the CXB fit. Blue: our approxima-
tion for the red curve (Eq. (B.13)). Black: pair spectrum for the EBL approximation by
Schlickeiser et al. (2013).

B.2 Approximation for the stellar radiation spectrum at
redshift 0.2

We approximate the energy spectrum of stellar radiation at redshift z = 0.2 by

f (ε) =
4

∑
i=1

Ni

Γ(1+qi)kBTi

(
ε

kBTi

)qi

exp
(
− ε

kBTi

)
, (B.12)

where ε is in eV, f (ε) in eV−1 cm−3. Other parameters are listed in Table B.1.
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Table B.1 Fitting parameters for the approximation Eq. (B.12)

i qi kBTi, eV Ni, cm−3

1 0.5 3.3×10−3 0.78
2 0 0.53 0.01
3 0 0.04 0.035
4 0 2 0.0007

B.3 Approximation for the pair distribution function

The pair distribution function can be approximated as

fb(γ)

nb
= N1

(
γ

γ1

)−b1

exp
(
−
√

γ1

γ

)
Θ[(γ−6×103)(108− γ)]

+N2

(
γ

γ2

)b2

exp

(
−
(

γ

γ2

)0.7
)
+N3

(
γ

γ3

)b3

exp
(
− γ

γ3

)
, (B.13)

where the fitting parameters are summarized in Table B.2.
The approximation used by Schlickeiser et al. (2012a) is

fb(γ)

nb
≈ γ1/2−α

γ
3/2−α
c Γ(α−3/2)

exp(−γc/γ)

1+(γ/γb)3/2 , (B.14)

where γc = Mc/ lnτ0, γb = Mcτ
2/3
0 /27/3, τ0 = 103, Mc = 2×106, α = 1.8.

Table B.2 Fitting parameters for the approximation Eq. (B.13)

i bi γi Ni

1 1.6 106.2 3×10−7

2 1.8 102.2 1.1×10−7

3 1.8 103.2 1.8×10−8
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