
Mathematisch-Naturwissenschaftliche Fakultät

Mutsunori Banbara | Takehide Soh
Naoyuki Tamura | Katsumi Inoue | Torsten Schaub

Answer set programming as a modeling
language for course timetabling

Suggested citation referring to the original publication:
Theory and Practice of Logic Programming 13 (2013) 4-5, pp.783–798
DOI https://doi.org/10.1017/S1471068413000495
ISSN (print) 1471-0684
ISSN (online) 1475-3081

Postprint archived at the Institutional Repository of the Potsdam University in:
Postprints der Universität Potsdam
Mathematisch-Naturwissenschaftliche Reihe ; 594
ISSN 1866-8372
https://nbn-resolving.org/urn:nbn:de:kobv:517-opus4-415469
DOI https://doi.org/10.25932/publishup-41546

TLP 13 (4–5): Online Supplement, July 2013. C© 2013 [MUTSUNORI BANBARA,
TAKEHIDE SOH, NAOYUKI TAMURA, KATSUMI INOUE and TORSTEN SCHAUB]

URL: http://dx.doi.org/10.1017/S1471068413000495

783

Answer set programming as a modeling
language for course timetabling

MUTSUNORI BANBARA, TAKEHIDE SOH and NAOYUKI TAMURA

Kobe University, 1-1 Rokko-dai, Nada-ku, Kobe, Hyogo 657-8501, Japan

(e-mail: {banbara@,soh@lion.,tamura@}kobe-u.ac.jp)

KATSUMI INOUE

National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

(e-mail: inoue@nii.ac.jp)

TORSTEN SCHAUB

University of Potsdam, August-Bebel-Strasse 89, D-14482 Potsdam, Germany

(e-mail: torsten@cs.uni-potsdam.de)

submitted 10 April 2013; revised 23 June 2013; accepted 5 July 2013

Abstract

The course timetabling problem can be generally defined as the task of assigning a number

of lectures to a limited set of timeslots and rooms, subject to a given set of hard and

soft constraints. The modeling language for course timetabling is required to be expressive

enough to specify a wide variety of soft constraints and objective functions. Furthermore,

the resulting encoding is required to be extensible for capturing new constraints and for

switching them between hard and soft, and to be flexible enough to deal with different

formulations. In this paper, we propose to make effective use of ASP as a modeling language

for course timetabling. We show that our ASP-based approach can naturally satisfy the above

requirements, through an ASP encoding of the curriculum-based course timetabling problem

proposed in the third track of the second international timetabling competition (ITC-2007).

Our encoding is compact and human-readable, since each constraint is individually expressed

by either one or two rules. Each hard constraint is expressed by using integrity constraints and

aggregates of ASP. Each soft constraint S is expressed by rules in which the head is the form

of penalty(S,V,C), and a violation V and its penalty cost C are detected and calculated

respectively in the body. We carried out experiments on four different benchmark sets with

five different formulations. We succeeded either in improving the bounds or producing the

same bounds for many combinations of problem instances and formulations, compared with

the previous best known bounds.

KEYWORDS: answer set programming, educational timetabling, course timetabling

1 Introduction

Recent advances in Answer Set Programming (ASP) (Gelfond and Lifschitz 1988;

Niemelä 1999; Baral 2003; Gebser et al. 2012) suggests a successful direction to

extend logic programming to be more expressive and more efficient. ASP provides

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068413000495
Downloaded from https://www.cambridge.org/core. Missing LinkVersandbuchhandlung, on 30 Aug 2018 at 09:32:33, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068413000495
https://www.cambridge.org/core

784 M. Banbara et al.

a rich language and can be well suited for modeling combinatorial problems in

computer science and artificial intelligence. Recent remarkable improvements in

the efficiency of ASP solvers encourage researchers to solve many problems by

ASP.

The general timetabling problem is known to be complex and difficult. Starting

with (Gotlieb 1962), a great deal of research has been done on timetabling in several

areas such as metaheuristics, integer programming, (constraint) logic programming,

propositional satisfiability (SAT), and constraint programming (Schaerf 1999; Burke

and Petrovic 2002; Lewis 2007). In recent years, timetabling has become an area

of increasing interest in an international community involving both researchers and

practitioners, such as the international series of PATAT conferences. The typical

topics of this area include educational timetabling, transport timetabling, employee

timetabling, sports timetabling, and so on. In this paper we consider an educational

timetabling problem.

The educational timetabling problem can be generally defined as the task of

assigning a number of events, such as lectures and examinations, to a limited set of

timeslots (and perhaps rooms), subject to a given set of hard and soft constraints. The

hard constraints must be strictly satisfied. The soft constraints are not necessarily

satisfied but the sum of violations should be desirably minimized. Usually the

educational timetabling problems can be classified into three categories: school

timetabling, examination timetabling, and course timetabling. The course timetabling

problems can be further classified into two sub-categories: curriculum-based course

timetabling and post-enrolment course timetabling.

The modeling language and problem modeling play a very important role in

the real-world timetable generation (McCollum 2007). The latter is particularly

challenging because different institutions have their own needs and policies, and

problem formulation (a specific set of soft constraints) may change from institution

to institution and from time to time. There have been therefore several proposals

for problem modeling of the educational timetabling problems (Faber et al. 1998;

Carter 2001; Burke and Petrovic 2002; Daskalaki and Birbas 2005; Qualizza and

Serafini 2005; Schimmelpfeng and Helber 2007; Burke et al. 2010a; Burke et al.

2010b; Achá and Nieuwenhuis 2012; Burke et al. 2012; Lach and Lübbecke 2012).

However, these works were mostly done in the area of integer programming, and

there is very little literature on ASP.

In this paper, we propose to make effective use of ASP as a modeling language for

course timetabling. The modeling language for course timetabling is required to be

expressive enough to specify a wide variety of soft constraints and objective functions

that reflect the real-world scenarios. Furthermore, the resulting encoding is required

to be extensible for capturing new constraints and for switching them between

hard and soft, and to be flexible enough to deal with different formulations. We

show that our ASP-based approach can naturally satisfy the above requirements.

Consequently, it enables a timetable keeper to rapidly specify problems and to

experiment with different formulations at a purely declarative level. ASP solvers are

then used for finding and enumerating solutions without the need of developing

dedicated algorithms.

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068413000495
Downloaded from https://www.cambridge.org/core. Missing LinkVersandbuchhandlung, on 30 Aug 2018 at 09:32:33, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068413000495
https://www.cambridge.org/core

ASP as a modeling language for course timetabling 785

We present an ASP encoding of the curriculum-based course timetabling (CB-

CTT) problem proposed in the third track of the second international timetabling

competition (ITC-2007)(Gaspero et al. 2007; McCollum et al. 2010). Our encoding

is compact and human-readable, since each constraint is individually expressed by

either one or two rules. Each hard constraint is expressed by integrity constraints and

aggregates of ASP. For the soft constraints, we use the predicate penalty(S,V,C)

which is intended to express that a soft constraint S is violated by V and its penalty

cost is C . Each soft constraint S is expressed by rules in which the head is the form

of penalty(S,V,C), and a violation V and its penalty cost C are detected and

calculated respectively in the body.

To evaluate the efficiency of our proposed encoding, we carried out experiments

on four different benchmark sets (36 instances in total) with 5 different formulations.

For the tested 180 combinations, we succeeded either in improving the bounds or

producing the same bounds for 70 combinations (39% in the total), compared with

the previous best known bounds. More precisely, our encoding was able to improve

the bounds for 34 combinations and to prove that 13 of them are optimal. It was

also able to produce the same bounds for 36 combinations and to prove that 3 of

them are newly optimal.

2 Curriculum-based course timetabling

2.1 Problem definition

The basic entities of the CB-CTT problem are courses, rooms, days, and periods per

day. A timeslot is a pair composed of a day and a period. A curriculum is a group of

courses that shares common students. The CB-CTT problem is defined as the task

of assigning all lectures of each course into a weekly timetable, subject to a given

set of constraints: hard constraints (H1–H4, see below) and soft constraints (S1–S9).

The former must be strictly satisfied. The latter are not necessarily satisfied but the

sum of violations should be desirably minimized. From the viewpoint of violations,

the soft constraints can be divided into two types: the soft constraints with constant

cost (S3 and S7–S9) and the soft ones with calculated cost (S1–S2 and S4–S6). The

difference is that for those with constant cost only one penalty point is imposed on

each violation, whereas many penalty points calculated dynamically in accordance

with each violation are imposed for those with calculated cost. A feasible solution

of the problem is an assignment in which all lectures are assigned to a timeslot and

a room, so that the hard constraints are satisfied. The objective of the problem is to

find a feasible solution of minimal penalty costs. The following definitions are based

on (Bonutti et al. 2012).

• H1. Lectures: All lectures of each course must be scheduled, and they must be

assigned to distinct timeslots.

• H2. Conflicts: Lectures of courses in the same curriculum or taught by the

same teacher must be all scheduled in different timeslots.

• H3. RoomOccupancy: Two lectures can not take place in the same room in the

same timeslot.

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068413000495
Downloaded from https://www.cambridge.org/core. Missing LinkVersandbuchhandlung, on 30 Aug 2018 at 09:32:33, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068413000495
https://www.cambridge.org/core

786 M. Banbara et al.

• H4. Availability: If the teacher of the course is not available to teach that

course at a given timeslot, then no lecture of the course can be scheduled at

that timeslot.

• S1. RoomCapacity: For each lecture, the number of students that attend the

course must be less than or equal the number of seats of all the rooms that

host its lectures. The penalty points, reflecting the number of students above

the capacity, are imposed on each violation.

• S2. MinWorkingDays: The lectures of each course must be spread into a given

minimum number of days. The penalty points, reflecting the number of days

below the minimum, are imposed on each violation.

• S3. IsolatedLectures: Lectures belonging to a curriculum should be adjacent to

each other in consecutive timeslots. For a given curriculum we account for a

violation every time there is one lecture not adjacent to any other lecture within

the same day. Each isolated lecture in a curriculum counts as 1 violation.

• S4. Windows: Lectures belonging to a curriculum should not have time

windows (periods without teaching) between them. For a given curriculum we

account for a violation every time there is one window between two lectures

within the same day. The penalty points, reflecting the length in periods of

time window, are imposed on each violation.

• S5. RoomStability: All lectures of a course should be given in the same room.

The penalty points, reflecting the number of distinct rooms but the first, are

imposed on each violation.

• S6. StudentMinMaxLoad: For each curriculum the number of daily lectures

should be within a given range. The penalty points, reflecting the number of

lectures below the minimum or above the maximum, are imposed on each

violation.

• S7. TravelDistance: Students should have the time to move from one building

to another one between two lectures. For a given curriculum we account for

a violation every time there is an instantaneous move: two lectures in rooms

located in different building in two adjacent periods within the same day. Each

instantaneous move in a curriculum counts as 1 violation.

• S8. RoomSuitability: Some rooms may be not suitable for a given course

because of the absence of necessary equipment. Each lecture of a course in an

unsuitable room counts as 1 violation.

• S9. DoubleLectures: Some courses require that lectures in the same day are

grouped together (double lectures). For a course that requires grouped lectures,

every time there is more than one lecture in one day, a lecture non-grouped

to another is not allowed. Two lectures are grouped if they are adjacent and

in the same room. Each non-grouped lecture counts as 1 violation.

The formulation is defined as a specific set of soft constraints in company with

the weights associated with each of them. The CB-CTT problem is formulated as

a combinatorial optimization problem whose objective function is to minimize the

weighted sum of penalty points. Until now five formulations have been proposed:

UD1–UD5. UD1 is a basic formulation (Gaspero and Schaerf 2003). UD2 is a

formulation used in ITC-2007 (Gaspero et al. 2007). To capture more different

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068413000495
Downloaded from https://www.cambridge.org/core. Missing LinkVersandbuchhandlung, on 30 Aug 2018 at 09:32:33, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068413000495
https://www.cambridge.org/core

ASP as a modeling language for course timetabling 787

Table 1. Problem formulations

Constraint UD1 UD2 UD3 UD4 UD5

H1. Lectures H H H H H

H2. Conflicts H H H H H

H3. RoomOccupancy H H H H H

H4. Availability H H H H H

S1. RoomCapacity 1 1 1 1 1

S2. MinWorkingDays 5 5 - 1 5

S3. IsolatedLectures 1 2 - - 1

S4. Windows - - 4 1 2

S5. RoomStability - 1 - - -

S6. StudentMinMaxLoad - - 2 1 2

S7. TravelDistance - - - - 2

S8. RoomSuitability - - 3 H -

S9. DoubleLectures - - - 1 -

scenarios, UD3, UD4, and UD5 are proposed recently (Bonutti et al. 2012). These

new formulations focus on student load (UD3), double lectures (UD4), and travel

cost (UD5), respectively. Table 1 shows the weights associated with each soft

constraint for all formulations. The symbol ‘H’ indicates that the constraint is a

hard constraint. The symbol ‘-’ indicates that the constraint is not included in the

formulation.

2.2 Problem instance example

Figure 1 shows a tiny instance toy.ectt written in the ‘.ectt’ format, a standard

input format of the CB-CTT problem (Bonutti et al. 2012). Converting a ‘.ectt’

instance to ASP facts is straightforward. Figure 2 shows an ASP representation of

toy.ectt.

• The first nine facts express the scalar values of each entity. This instance named

Toy consists of 4 courses, 3 rooms, 2 curricula, 8 unavailability constraints,

and 3 room constraints. The weekly timetable consists of 5 days and 4 periods

per day, where they start from 0.

• The fact course(C,T,N,MWD,M,DL) expresses that a course C taught

by a teacher T has N lectures, which must be spread into MWD days. The

number of students that attend the course C is M. The course C requires

double lectures if DL = 1. The fact room(R,CAP,BLD) expresses that a

room R located in a building BLD has a seating capacity of CAP . The fact

curricula(CUR, C) expresses that a curriculum CUR includes a course C .

• The fact unavailability constraint(C,D,P), which is used to specify H4,

expresses that a course C is not available at a period P on a day D. The fact

room constraint(C,R), which is used to specify S8, expresses that a room R

is not suitable for a course C .

As an output example, Figure 3 shows an optimal solution with zero cost of

the tiny instance toy.ectt with the UD2 formulation. In this solution, all three

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068413000495
Downloaded from https://www.cambridge.org/core. Missing LinkVersandbuchhandlung, on 30 Aug 2018 at 09:32:33, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068413000495
https://www.cambridge.org/core

788 M. Banbara et al.

Name: Toy
Courses: 4
Rooms: 3
Days: 5
Periods_per_day: 4
Curricula: 2
Min_Max_Daily_Lectures: 2 3
UnavailabilityConstraints: 8
RoomConstraints: 3

COURSES:
SceCosC Ocra 3 3 30 1
ArcTec Indaco 3 2 42 0
TecCos Rosa 5 4 40 1
Geotec Scarlatti 5 4 18 1

ROOMS:
rA 32 1
rB 50 0
rC 40 0

CURRICULA:
Cur1 3 SceCosC ArcTec TecCos
Cur2 2 TecCos Geotec

UNAVAILABILITY_CONSTRAINTS:
TecCos 2 0
TecCos 2 1
TecCos 3 2
TecCos 3 3
ArcTec 4 0
ArcTec 4 1
ArcTec 4 2
ArcTec 4 3

ROOM_CONSTRAINTS:
SceCosC rA
Geotec rB
TecCos rC

END.

Fig. 1. toy.ectt: Input example.

lectures of the course SceCosC are assigned to the room rB at the third period (2)

on Wednesday (2), the first period (0) on Thursday (3), and the third period (2) on

Friday (4).

3 Encoding of hard constraints

We present two different encodings called Direct encoding and Linked encoding. In

our encodings, the hard constraints can be compactly expressed by using integrity

constraints and aggregates of ASP. We use the syntax supported by the grounder

gringo and the solver clasp (Gebser et al. 2007; Gebser et al. 2009).

Figure 4 shows common auxiliary rules shared by our two encodings. Given a

problem instance, for each course C, teacher T, room R, and curriculum Cu, the first

four rules generate c(C), t(T), r(R), and cu(Cu) respectively. In the last two rules,

d(0..D-1) and ppd(0..P-1) express that the days are integers in the range 0 to

D-1, and the periods per day are integers in the range 0 to P-1.

Direct encoding. The most direct modeling would be using a quaternary predicate

assigned/4. The predicate assigned(C,R,D,P) is intended to express that a

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068413000495
Downloaded from https://www.cambridge.org/core. Missing LinkVersandbuchhandlung, on 30 Aug 2018 at 09:32:33, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068413000495
https://www.cambridge.org/core

ASP as a modeling language for course timetabling 789

name("Toy").
courses(4).
rooms(3).
days(5).
periods_per_day(4).
curricula(2).
min_max_daily_lectures(2,3).
unavailabilityconstraints(8).
roomconstraints(3).

course("SceCosC","Ocra",3,3,30,1).
course("ArcTec","Indaco",3,2,42,0).
course("TecCos","Rosa",5,4,40,1).
course("Geotec","Scarlatti",5,4,18,1).

room(rA,32,1). room(rB,50,0). room(rC,40,0).

curricula("Cur1","SceCosC"). curricula("Cur1","ArcTec").
curricula("Cur1","TecCos"). curricula("Cur2","TecCos").
curricula("Cur2","Geotec").

unavailability_constraint("TecCos",2,0).
unavailability_constraint("TecCos",2,1).
unavailability_constraint("TecCos",3,2).
unavailability_constraint("TecCos",3,3).
unavailability_constraint("ArcTec",4,0).
unavailability_constraint("ArcTec",4,1).
unavailability_constraint("ArcTec",4,2).
unavailability_constraint("ArcTec",4,3).

room_constraint("SceCosC",rA). room_constraint("Geotec",rB).
room_constraint("TecCos",rC).

Fig. 2. ASP input example for toy.ectt.

assigned("SceCosC",rB,3,0). assigned("SceCosC",rB,2,2).
assigned("SceCosC",rB,4,2). assigned("ArcTec",rB,3,1).
assigned("ArcTec",rB,0,2). assigned("ArcTec",rB,1,2).
assigned("TecCos",rB,0,1). assigned("TecCos",rB,0,3).
assigned("TecCos",rB,1,3). assigned("TecCos",rB,2,3).
assigned("TecCos",rB,4,3). assigned("Geotec",rA,4,1).
assigned("Geotec",rA,0,2). assigned("Geotec",rA,1,2).
assigned("Geotec",rA,2,2). assigned("Geotec",rA,4,2).

Fig. 3. ASP output example for toy.ectt in UD2.

lecture of a course C is assigned to a room R at a period P on a day D. Figure 5

shows an ASP encoding of the hard constraints (H1–H4). It uses special constructs

called cardinality expressions of the form �{a1, . . . , ak}u where each ai is an atom

and � and u are non-negative integers denoting the lower bound and the upper

bound of the cardinality expression. For H1, the first rule, for every course C

having N lectures, generates a solution candidate at first and then constrains that

there are exactly N lectures such that assigned(C,R,D,P) holds. The second rule

constrains that, for every course C, day D, and period P, there is at most one

room R such that assigned(C,R,D,P) holds. For H2, the third rule constrains

that, for every teacher T, day D, and period P, there is at most one course C

taught by T such that assigned(C,R,D,P) holds. The fourth rule constrains that,

for every curriculum Cu, day D, and period P, there is at most one course C

that belongs to Cu such that assigned(C,R,D,P) holds. For H3, the fifth rule

constrains that, for every room R, day D, and period P, there is at most one course

C such that assigned(C,R,D,P) holds. For H4, the sixth rule constrains that, for

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068413000495
Downloaded from https://www.cambridge.org/core. Missing LinkVersandbuchhandlung, on 30 Aug 2018 at 09:32:33, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068413000495
https://www.cambridge.org/core

790 M. Banbara et al.

c(C) :- course(C,_,_,_,_,_). t(T) :- course(_,T,_,_,_,_).
r(R) :- room(R,_,_). cu(Cu) :- curricula(Cu,_).
d(0..D-1) :- days(D). ppd(0..P-1) :- periods_per_day(P).

Fig. 4. Auxiliary rules.

% H1. Lectures
N { assigned(C,R,D,P) : r(R) : d(D) : ppd(P) } N :- course(C,_,N,_,_,_).
:- not { assigned(C,R,D,P) : r(R) } 1, c(C), d(D), ppd(P).

% H2. Conflicts
:- not { assigned(C,R,D,P) : r(R) : course(C,T,_,_,_,_) } 1, t(T), d(D), ppd(P).
:- not { assigned(C,R,D,P) : r(R) : curricula(Cu,C) } 1, cu(Cu), d(D), ppd(P).

% H3. RoomOccupancy
:- not { assigned(C,R,D,P) : c(C) } 1, r(R), d(D), ppd(P).

% H4. Availability
:- assigned(C,R,D,P), r(R), unavailability_constraint(C,D,P).

Fig. 5. Direct encoding.

every room R, a course C is not assigned to a room R at a period P on a day D, if

unavailability_constraint(C,D,P) holds.

Linked encoding. It is obvious that we do not always have to take account of the

room information to specify the hard constraints except H3. Figure 6 shows

another ASP encoding. The difference from the direct encoding is that we

use a ternary predicate assigned/3 in addition to assigned/4. The predicate

assigned(C,D,P) is intended to express that a lecture of a course C is assigned

to a period P on a day D. The hard constraints except H3 are expressed by

the first three and sixth rules that are slightly modified to adjust the predicate

assigned/3 by just deleting r(R) from the corresponding rules of the direct

encoding. For H3, the fourth rule first generates a solution candidate and

then constrains that there is exactly one room R such that assigned(C,R,D,P)

holds if assigned(C,D,P) holds. That is, the predicate assigned/3 is linked to

assigned/4 in this rule. The fifth rule is the same as one of the direct encoding.

In the linked encoding, the constraints can be expressed more concisely by using

different predicates for each, than the direct encoding. In addition, the following

rule ‘:- not { assigned(C,D,P) : c(C) } N, d(D), ppd(P), rooms(N).’

% H1. Lectures
N { assigned(C,D,P) : d(D) : ppd(P) } N :- course(C,_,N,_,_,_).

% H2. Conflicts
:- not { assigned(C,D,P) : course(C,T,_,_,_,_) } 1, t(T), d(D), ppd(P).
:- not { assigned(C,D,P) : curricula(Cu,C) } 1, cu(Cu), d(D), ppd(P).

% H3. RoomOccupancy
1 { assigned(C,R,D,P) : r(R) } 1 :- assigned(C,D,P).
:- not { assigned(C,R,D,P) : c(C) } 1, r(R), d(D), ppd(P).

% H4. Availability
:- assigned(C,D,P), unavailability_constraint(C,D,P).

Fig. 6. Linked encoding.

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068413000495
Downloaded from https://www.cambridge.org/core. Missing LinkVersandbuchhandlung, on 30 Aug 2018 at 09:32:33, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068413000495
https://www.cambridge.org/core

ASP as a modeling language for course timetabling 791

constrains that, for a given number of rooms N, and for every day D and period P,

there are at most N lectures such that assigned(C,D,P) holds. This rule expresses

an implied constraint and can be omitted. However, we use it as an additional

rule, since it gives a performance improvement for some problem instances.

To evaluate the efficiency of our proposed encodings above, we carry out

experiments on four different benchmark sets: ITC-2007 (Gaspero et al. 2007)

consisting of 21 instances denoted by comp*, DDS-2008 (Bonutti et al. 2012) of 7

instances by DDS*, Erlangen of 4 instances by erlangen*, and Test (Gaspero and

Schaerf 2003) of 4 instances by test*. These instances are based on real data from

several European universities. Among them the instances of Erlangen are very

large. For example, the instance erlangen2012_2.ectt consists of 850 courses, 132

rooms, 850 curricula, 7,780 unavailability constraints, and 45,603 room constraints.

More detailed features are shown in Bonutti et al. (2012). All the instances are

available from a web portal (http://tabu.diegm.uniud.it/ctt/) maintained by

the organizers of ITC-2007.

We solve the instances as decision problems by taking only the hard constraints

into account. We use the grounder gringo 3.0.4 and the solver clasp 2.1.1 (Gebser

et al. 2007; Gebser et al. 2009) on Mac OS X with 1.8 GHz Intel Core i7 and 4 GB

memory.

For each encoding, we were able to find a feasible solution in 180 seconds for

every instance. Table 2 shows CPU time in seconds and the number of choices,

conflicts, and restarts obtained by using the option --stats of clasp. We observe in

Table 2 that the linked encoding is faster and can be more scalable to the number

of courses than the direct encoding. The linked encoding is 3 times faster, 12, 9,

and 95 times smaller on the number of choices, conflicts, and restarts respectively

than the direct encoding on the average. For the tested 36 instances, the linked

encoding solved 22 instances with 0 restarts, compared with 6 instances of the direct

encoding. Moreover, it solved very large instances erlangen* with either 0 or 2

conflicts, compared with more than 4,000 conflicts of the direct encoding. From

these observations, we decide to adopt the linked encoding as a basis for expressing

the soft constraints.

4 Encoding of soft constraints

We present an ASP encoding of the soft constraints based on the linked encoding.

We use the ternary predicate penalty(Si,V,C) that is intended to express that a

constraint Si is violated by V and its penalty cost is C . Each constraint Si is expressed

by either one or two rules in which the head is the form of penalty(Si,V,C), and

a violation V and its penalty cost C are detected and calculated respectively in

the body. That is, for each violation V of Si, the predicate penalty(Si,V,C) is

generated. We refer to an instance of penalty/3 as a penalty atom.

Figure 7 shows an ASP encoding of the soft constraints (S1–S9). The con-

stants denoted by penalty_of_* indicate the weights associated with each soft

constraint defined in Table 1. Due to the page limitation, we give a detailed

explanation of S1–S3 that constitute the basic formulation UD1. For S1, the

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068413000495
Downloaded from https://www.cambridge.org/core. Missing LinkVersandbuchhandlung, on 30 Aug 2018 at 09:32:33, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068413000495
https://www.cambridge.org/core

792 M. Banbara et al.

Table 2. Benchmark results of different ASP encodings (Hard Constraints Only)

Direct encoding Linked encoding

Instance CPU #Choices #Conflicts #Restarts CPU #Choices #Conflicts #Restarts

comp01 2.070 93644 74068 11 0.200 1902 892 0
comp02 3.400 155236 50303 21 1.510 23443 16115 2
comp03 3.500 163311 65586 19 0.300 3500 79 0
comp04 2.480 125015 48818 10 0.350 4478 11 0
comp05 0.480 11949 2715 2 0.350 1420 12 0
comp06 1.910 91625 16541 6 2.110 27304 16255 2
comp07 7.320 137697 48158 4 3.610 43477 32106 3
comp08 3.680 180398 65095 14 0.370 4701 116 0
comp09 4.500 178973 66930 32 0.340 4104 17 0
comp10 0.900 33042 6623 0 2.280 23770 16604 2
comp11 1.840 65586 50515 14 0.220 1247 74 0
comp12 0.530 14264 1763 0 0.880 6408 3602 0
comp13 7.140 166161 65699 20 1.980 24907 16918 2
comp14 1.370 47933 18426 1 1.330 24608 16150 1
comp15 3.500 163311 65586 19 0.320 3500 79 0
comp16 5.080 230339 53636 6 2.110 26798 16718 2
comp17 1.840 79955 17091 11 2.120 23043 16692 1
comp18 0.140 7070 728 0 0.180 1619 219 0
comp19 4.810 215313 84309 32 0.290 3586 129 0
comp20 4.920 94172 32718 2 2.270 27068 17188 4
comp21 2.390 52274 24951 1 1.850 25410 17438 2
DDS1 132.830 25681926 1073907 2574 3.880 37030 17145 6
DDS2 0.770 18384 2659 0 0.660 2468 0 0
DDS3 0.370 20791 6081 1 0.330 3784 448 0
DDS4 34.180 2665514 69925 61 15.400 2516522 32848 2
DDS5 21.300 839860 76747 126 1.960 11465 14 0
DDS6 0.600 26894 4921 0 2.000 24237 16109 2
DDS7 3.320 73722 48379 3 0.350 3166 22 0
erlangen2011 2 114.330 3151932 32460 1 30.960 140993 2 0
erlangen2012 1 24.850 1230689 4227 0 25.020 87210 0 0
erlangen2012 2 57.830 2776461 18465 1 28.890 116116 0 0
erlangen2013 1 41.280 3321458 18412 1 26.780 107708 2 0
test1 1.640 50949 33311 2 0.100 1637 0 0
test2 2.370 121361 66109 22 0.180 2148 118 0
test3 3.560 192608 112756 32 0.160 1931 12 0
test4 0.800 53703 21070 18 1.330 19719 16008 1

Average 13.995 1181487 68047 85.194 4.527 93956 7504 0.889

first rule, for every course C that N students attend and room R that has a

seating capacity of Cap, generates a penalty atom with the cost of the production

of N-Cap and penalty_of_room_capacity, if N > Cap and assigned(C,R,D,P)

holds. For S2, we use the second rule as an auxiliary rule. It generates an atom

working_day(C,D) for every course C, day D, and period P if assigned(C,D,P)

holds. The atom working_day(C,D) expresses that a course C is given on a day

D. The third rule, for every course C whose lectures must be spread into MWD

days, generates a penalty atom with the cost of the production of MWD-N and

penalty_of_min_working_days, if the number of days (N) in which a course C

spread is less than MWD. For S3, we use the fourth rule as an auxiliary rule. It

generates an atom scheduled_curricula(Cu,D,P) for every curriculum Cu, course

C that belongs to Cu, day D, and period P if assigned(C,D,P) holds. The atom

scheduled_curricula(Cu,D,P) expresses that a curriculum Cu is scheduled at a

period P on a day D. The fifth rule, for every curriculum Cu, day D, and period P,

generates a penalty atom with the constant cost penalty_of_isolated_lectures,

if a curriculum Cu is scheduled at a period P on a day D, but not at P-1 and P+1

within the same day D.

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068413000495
Downloaded from https://www.cambridge.org/core. Missing LinkVersandbuchhandlung, on 30 Aug 2018 at 09:32:33, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068413000495
https://www.cambridge.org/core

ASP as a modeling language for course timetabling 793

% S1. RoomCapacity
penalty("RoomCapacity",assigned(C,R,D,P),(N-Cap)*penalty_of_room_capacity) :-

assigned(C,R,D,P), course(C,_,_,_,N,_), room(R,Cap,_), N > Cap.

% S2. MinWorkingDays
working_day(C,D) :- assigned(C,D,P).
penalty("MinWorkingDays",course(C,MWD,N),(MWD-N)*penalty_of_min_working_days) :-

course(C,_,_,MWD,_,_), N = [working_day(C,_)], N < MWD.

% S3. IsolatedLectures
scheduled_curricula(Cu,D,P) :- assigned(C,D,P), curricula(Cu,C).
penalty("IsolatedLectures",isolated_lectures(Cu,D,P),penalty_of_isolated_lectures) :-

scheduled_curricula(Cu,D,P), not scheduled_curricula(Cu,D,P-1),
not scheduled_curricula(Cu,D,P+1).

% S4. Windows
penalty("Windows",windows(Cu,C1,C2,D,P1,P2),(P2-P1-1)*penalty_of_windows) :-

curricula(Cu,C1), curricula(Cu,C2), assigned(C1,D,P1), assigned(C2,D,P2),
P1 + 1 < P2, not scheduled_curricula(Cu,D,P) : P = P1+1..P2-1.

% S5. RoomStability
using_room(C,R) :- assigned(C,R,D,P).
penalty("RoomStability",using_room(C,N),(N-1)*penalty_of_room_stability) :-

c(C), N = [using_room(C,_)], N > 1.

% S6. StudentMinMaxLoad
penalty("StudentMinMaxLoad",student_min_max_load(Cu,D,N,many),(N-Max)*penalty_of_student_min_max_load) :-

cu(Cu), d(D), N = { assigned(C,D,P) : curricula(Cu,C) : ppd(P) },
min_max_daily_lectures(Min,Max), N > Max.

penalty("StudentMinMaxLoad",student_min_max_load(Cu,D,N,few),(Min-N)*penalty_of_student_min_max_load) :-
cu(Cu), d(D), N = { assigned(C,D,P) : curricula(Cu,C) : ppd(P) },
min_max_daily_lectures(Min,Max), 0 < N, N < Min.

% S7. TravelDistance
penalty("TravelDistance",instantaneous_move(Cu,C1,C2,D,P,P+1),penalty_of_travel_distance) :-

curricula(Cu,C1), curricula(Cu,C2), assigned(C1,R1,D,P), assigned(C2,R2,D,P+1),
room(R1,_,BLG1), room(R2,_,BLG2), BLG1 != BLG2.

% S8. RoomSuitability
penalty("RoomSuitability",assigned(C,R,D,P),penalty_of_room_suitability) :-

assigned(C,R,D,P), room_constraint(C,R).

% S9. DoubleLectures
penalty("DoubleLectures",non_grouped_lecture(C,R,D,P),penalty_of_double_lectures) :-

course(C,_,_,_,_,1), d(D), 2 [assigned(C,D,_)],
assigned(C,R,D,P), not assigned(C,R,D,P-1), not assigned(C,R,D,P+1).

Fig. 7. Encoding of soft constraints.

#minimize [penalty(_,_,P) = P].

Fig. 8. Encoding of objective function.

5 Full encoding

The objective of the CB-CTT problem is to find a feasible solution of minimal

penalty costs. The objective function of the problem is expressed by only one rule

in Figure 8.

Full linked encoding consists of the rules of the auxiliaries (Fig. 4), the hard

constraints (Fig. 6), the soft constraints (Fig. 7), and the objective function (Fig. 8).

Now we go back to the requirements for the modeling language and problem

encoding of course timetabling mentioned in Section 1, and see how they are

satisfied in our approach. First, ASP is expressive enough to specify a wide variety

of soft constraints and objective functions, since it can naturally express not only the

classical constraints S1–S3 but also the relatively new constraints S4–S9. ASP also

supports multi-criteria optimization. Second, our encoding is extensible enough for

capturing new constraints, since the constraints can be compactly expressed by ASP,

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068413000495
Downloaded from https://www.cambridge.org/core. Missing LinkVersandbuchhandlung, on 30 Aug 2018 at 09:32:33, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068413000495
https://www.cambridge.org/core

794 M. Banbara et al.

and all we have to do for new constraints is adding rules. It is also extensible enough

for switching constraints between hard and soft. For example, S8 is defined as a hard

constraint in UD4 as can be seen in Table 1. For the direction from soft to hard,

in this case, we only have to delete the head from the twelfth rule in Figure 7 like

‘:- assigned(C,R,D,P), room_constraint(C,R).’. Another method is known to

just assign a big number to the penalty cost. It is also easy to switch constraints

in the opposite direction. For example, to define H4 as a soft constraint, we only

have to add a penalty atom to the head of sixth rule in Figure 6. Finally, our

encoding is flexible enough to deal with different formulations, since the constraints

are expressed individually by separable rules, and we can easily select necessary rules

depending on each formulation.

Perhaps the most relevant works are problem encodings in the area of integer

programming (Burke et al. 2010a; Burke et al. 2010b; Burke et al. 2012; Lach and

Lübbecke 2012). These encodings use the binary variables xC,D,P and/or xC,R,D,P

that correspond to the predicate assigned(C,D,P) and/or assigned(C,R,D,P)

respectively. SAT/MaxSAT encodings (Achá and Nieuwenhuis 2012) also use

the same binary variables, but requires expensive SAT encodings of cardinality

constraints. The main advantage of our approach is not only a compact and

declarative representation but also human-readability with the help of the direct

symbolic processing, gained by using ASP as a modeling language.

6 Comparison

To evaluate the efficiency of our proposed full encoding, we carry out experiments

on the same benchmark sets as in Section 3. The differences from Section 3 are

that we solve 36 instances as optimization problems with five different formulations

UD1–UD5. We set a timeout of 3 hours for each except 24 hours for erlangen*. All

times were measured on Mac OS X with 2.66 GHz Intel Xeon and 24 GB memory.

Table 3 shows the best upper bounds obtained by our encoding, compared with

the best known bounds available on the web (http://tabu.diegm.uniud.it/ctt/,

last accessed on 22 June 2013). The symbols ‘>’ and ‘=’ indicate that our encoding

produced the improved and the same bounds respectively, compared to the previous

best known bounds. If followed by a superscript ‘∗’, these symbols indicate that our

encoding proved the optimality of the obtained bounds. The symbol ‘n.a’ indicates

that the result is not available on the web.

For the tested 180 combinations, we succeeded either in improving the bounds

or producing the same bounds for 70 combinations (39% in the total), compared

with the previous best known bounds. More precisely, our encoding was able to

improve the bounds for 34 combinations and to prove that 13 of them are optimal.

That is, we found and proved new optimal solutions for 13 combinations. It was

also able to produce the same bounds for 36 combinations and to prove that 3 of

them are newly optimal. Furthermore, it was able to produce upper bounds for very

large instances erlangen* with every formulation, and 16 of them were unsolvable

before.

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068413000495
Downloaded from https://www.cambridge.org/core. Missing LinkVersandbuchhandlung, on 30 Aug 2018 at 09:32:33, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068413000495
https://www.cambridge.org/core

ASP as a modeling language for course timetabling 795

Table 3. Comparison results on the best known bounds

UD1 UD2 UD3 UD4 UD5

Instance

Best
ASP

Best
ASP

Best
ASP

Best
ASP

Best
ASPknown known known known known

comp01 4 = 4 5 = 5 8 10 6 9 11 45
comp02 12 40 24 125 22 > 12 32 107 168 714
comp03 38 111 66 196 29 147 362 474 173 523
comp04 18 = 18 35 36 2 =∗ 2 15 >∗ 13 80 215
comp05 219 522 290 947 324 1232 260 584 658 2753
comp06 14 27 27 155 10 >∗ 8 24 39 130 747
comp07 3 = 3 6 79 0 = 0 12 >∗ 3 77 910
comp08 20 > 19 37 39 4 >∗ 2 17 > 15 77 212
comp09 54 139 96 264 10 >∗ 8 41 122 164 428
comp10 2 = 2 4 = 4 2 >∗ 0 12 >∗ 3 92 633
comp11 0 = 0 0 = 0 0 = 0 0 = 0 0 = 0
comp12 239 606 300 1114 92 1281 111 479 595 2180
comp13 32 61 59 112 26 63 45 109 157 488
comp14 27 = 27 51 52 0 = 0 18 = 18 109 541
comp15 38 111 66 196 28 118 34 129 216 656
comp16 11 = 11 18 28 6 >∗ 4 16 >∗ 7 127 914
comp17 30 75 56 171 14 >∗ 12 29 58 181 818
comp18 34 98 62 184 0 = 0 27 93 144 509
comp19 32 41 57 91 28 93 35 123 147 619
comp20 2 = 2 4 80 6 >∗ 0 18 168 196 2045
comp21 43 119 74 232 20 > 6 42 121 178 651
DDS1 39 >∗ 38 48 87 3272 5727 2593 > 2278 2445 5214
DDS2 0 = 0 0 = 0 120 391 76 199 68 303
DDS3 0 = 0 0 = 0 22 = 22 11 12 22 = 22
DDS4 16 17 17 26 153 4057 124 6793 269 19988
DDS5 0 = 0 0 = 0 54 390 163 454 98 616
DDS6 0 = 0 0 = 0 0 = 0 5 >∗ 0 116 1148
DDS7 0 = 0 0 = 0 34 432 25 382 61 631
erlangen2011 2 n.a > 3061 1171 7017 n.a > 8122 n.a > 3152 n.a > 8010
erlangen2012 1 n.a > 2782 943 5716 n.a > 7544 n.a > 2694 n.a > 7585
erlangen2012 2 n.a > 3332 1310 10638 n.a > 9731 n.a > 4624 n.a > 9081
erlangen2013 1 n.a > 2608 1092 5476 n.a > 7289 n.a > 3553 n.a > 7253
test1 212 316 224 383 200 286 208 370 232 491
test2 8 = 8 16 31 0 = 0 4 =∗ 4 20 185
test3 35 38 67 172 18 =∗ 18 21 28 97 194
test4 27 72 73 232 12 20 33 92 166 453

7 Conclusion

In this paper, we showed that ASP is an ideal modeling language for course

timetabling, as demonstrated by our proposed encoding of the curriculum-based

course timetabling problem. In our experiments, we succeeded either in improving the

bounds or producing the same bounds for many combinations of problem instances

and formulations, compared with the previous best known bounds. All source code

is available from http://kaminari.istc.kobe-u.ac.jp/resource/ctt/cttasp-

0.8.tgz.

The course timetabling problem is known to be difficult, since it contains both

hard constraints and several types of soft constraints. ASP is useful to handle

those mixed types of constraints. That is why we can gain good performance in this

problem. Future works include using the weak constraints of ASP-Core-2 that gringo-

4 supports for expressing soft constraints of the problem. Our ASP-based approach

can be applied to a wide range of combinatorial optimization problems such as

the other timetabling problems and the resource-constrained project scheduling

problem(Schutt et al. 2011).

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068413000495
Downloaded from https://www.cambridge.org/core. Missing LinkVersandbuchhandlung, on 30 Aug 2018 at 09:32:33, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068413000495
https://www.cambridge.org/core

796 M. Banbara et al.

Finally, we discuss some more details of our experimental results on ASP solvers.

We used the default search strategy of clasp for finding optimal solutions. However,

we met the difficulty of decreasing the upper bounds sufficiently. Particularly in UD2

and UD5, a large number of bounds obtained by our encoding are far from the

current best known bounds. This shows a limitation of our approach at present. To

overcome this issue, there might be at least two approaches. One is finding the best

configuration of clasp, since it offers several options which control search strategy. In

further experiments, for some instances with UD2, we used the option --opt-value

of clasp that initializes the objective function. We were then able to reproduce

and re-prove the previously known optimal bounds of comp16 and comp20 in 6,630

and 409 seconds respectively. This result shows a possibility of further performance

improvement, since these bounds were not obtained by the default setting. Another

is building a solver portfolio including unsatisfiability-based ASP solvers. It would

be promising because a portfolio-based solver claspfolio (Gebser et al. 2011) and an

unsatisfiability-based solver unclasp (Andres et al. 2012) have been recently shown

to be effective for ASP solving.

Acknowledgements

This work was partially funded by JSPS KAKENHI Grant Number 24300007 and

DFG grant SCHA 550/9-1.

References

Achá, R. A. and Nieuwenhuis, R. 2012. Curriculum-based course timetabling with SAT and

MaxSAT. Annals of Operations Research (February 2012), 1–21.

Andres, B., Kaufmann, B., Matheis, O. and Schaub, T. 2012. Unsatisfiability-based

optimization in clasp. In Technical Communications of the 28th International Conference

on Logic Programming (ICLP’12), A. Dovier and V. S. Costa, Eds. Leibniz International

Proceedings in Informatics (LIPIcs), vol. 17, Schloss Dagstuhl - Leibniz-Zentrum fuer

Informatik, 211–221.

Baral, C. 2003. Knowledge Representation, Reasoning and Declarative Problem Solving.

Cambridge University Press.

Bonutti, A., Cesco, F. D., Gaspero, L. D. and Schaerf, A. 2012. Benchmarking curriculum-

based course timetabling: formulations, data formats, instances, validation, visualization,

and results. Annals of Operations Research 194, 1, 59–70.

Burke, E. K., Marecek, J., Parkes, A. J. and Rudová, H. 2010a. Decomposition,

reformulation, and diving in university course timetabling. Computers & Operations

Research 37, 3, 582–597.

Burke, E. K., Marecek, J., Parkes, A. J. and Rudová, H. 2010b. A supernodal

formulation of vertex colouring with applications in course timetabling. Annals of Operations

Research 179, 1, 105–130.

Burke, E. K., Marecek, J., Parkes, A. J. and Rudová, H. 2012. A branch-and-cut procedure

for the udine course timetabling problem. Annals of Operations Research 194, 1, 71–87.

Burke, E. K. and Petrovic, S. 2002. Recent research directions in automated timetabling.

European Journal of Operational Research 140, 2, 266–280.

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068413000495
Downloaded from https://www.cambridge.org/core. Missing LinkVersandbuchhandlung, on 30 Aug 2018 at 09:32:33, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068413000495
https://www.cambridge.org/core

ASP as a modeling language for course timetabling 797

Carter, M. W. 2001. A comprehensive course timetabling and student scheduling system

at the university of waterloo. In Proceedings of the 3th International Conference on the

Practice and Theory of Automated Timetabling (PATAT 2000), E. K. Burke and W. Erben,

Eds. Lecture Notes in Computer Science, vol. 2079, Springer, 64–84.

Daskalaki, S. and Birbas, T. 2005. Efficient solutions for a university timetabling problem

through integer programming. European Journal of Operational Research 160, 1, 106–120.

Faber, W., Leone, N. and Pfeifer, G. 1998. Representing school timetabling in a disjunctive

logic programming language. In Proceedings of the 13th Workshop on Logic Programming

(WLP’98), U. Egly and H. Tompits, Eds. 43–52.

Gaspero, L. D., McCollum, B. and Schaerf, A. 2007. The second international timetabling

competition (ITC-2007): Curriculum-based course timetabling (track 3). Technical

report, Queen’s University, Belfast, United Kingdom. URL: http://www.cs.qub.ac.uk/

itc2007/curriculmcourse/report/curriculumtechreport.pdf.

Gaspero, L. D. and Schaerf, A. 2003. Multi-neighbourhood local search with application

to course timetabling. In Proceedings of the 4th International Conference on the Practice

and Theory of Automated Timetabling (PATAT 2002), E. K. Burke and P. D. Causmaecker,

Eds. Lecture Notes in Computer Science, vol. 2740, Springer, Berlin Heidelberg, 262–275.

Gebser, M., Kaminski, R., Kaufmann, B. and Schaub, T. 2012. Answer Set Solving in

Practice, Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan &

Claypool Publishers.

Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T., Schneider, M. T. and Ziller, S.

2011. A portfolio solver for answer set programming: Preliminary report. In Proceedings

of the 11th International Conference on Logic Programming and Nonmonotonic Reasoning

(LPNMR 2011), J. P. Delgrande and W. Faber, Eds. Lecture Notes in Computer Science,

vol. 6645, Springer, 352–357.

Gebser, M., Kaufmann, B., Neumann, A. and Schaub, T. 2007. Conflict-driven answer set

solving. In Proceedings of the 20th International Joint Conference on Artificial Intelligence

(IJCAI 2007), MIT Press, 386–392.

Gebser, M., Kaufmann, B. and Schaub, T. 2009. The conflict-driven answer set solver clasp:

Progress report. In Proceedings of the 10th International Conference on Logic Programming

and Nonmonotonic Reasoning (LPNMR 2009), E. Erdem, F. Lin and T. Schaub, Eds. Lecture

Notes in Computer Science, vol. 5753. Springer, 509–514.

Gelfond, M. and Lifschitz, V. 1988. The stable model semantics for logic programming.

In Proceedings of the Fifth International Conference and Symposium on Logic Programming,

MIT Press, 1070–1080.

Gotlieb, C. C. 1962. The construction of class-teacher time-tables. In Proceedings of IFIP

Congress 62, C. M. Popplewell, Ed. North-Holland, 73–77.

Lach, G. and Lübbecke, M. E. 2012. Curriculum based course timetabling: New solutions

to udine benchmark instances. Annals of Operations Research 194, 1, 255–272.

Lewis, R. 2007. A survey of metaheuristic-based techniques for university timetabling

problems. OR Spectrum 30, 1, 167–190.

McCollum, B. 2007. A perspective on bridging the gap between theory and practice in

university timetabling. In Proceedings of the 6th International Conference on the Practice

and Theory of Automated Timetabling (PATAT 2006), Revised Selected Papers, E. K. Burke

and H. Rudová, Eds. Lecture Notes in Computer Science, vol. 3867, Springer, 3–23.

McCollum, B., Schaerf, A., Paechter, B., McMullan, P., Lewis, R., Parkes, A. J., Gaspero,

L. D., Qu, R. and Burke, E. K. 2010. Setting the research agenda in automated timetabling:

The second international timetabling competition. INFORMS Journal on Computing 22, 1,

120–130.

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068413000495
Downloaded from https://www.cambridge.org/core. Missing LinkVersandbuchhandlung, on 30 Aug 2018 at 09:32:33, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068413000495
https://www.cambridge.org/core

798 M. Banbara et al.

Niemelä, I. 1999. Logic programs with stable model semantics as a constraint programming

paradigm. Annals of Mathematics and Artificial Intelligence 25, 3–4, 241–273.

Qualizza, A. and Serafini, P. 2005. A column generation scheme for faculty timetabling.

In Proceedings of the 5th international conference on the practice and theory of automated

timetabling (PATAT 2004), E. K. Burke and M. A. Trick, Eds. Lecture Notes in Computer

Science, vol. 3616, Springer, 161–173.

Schaerf, A. 1999. A survey of automated timetabling. Artificial Intelligence Review 13, 2,

87–127.

Schimmelpfeng, K. and Helber, S. 2007. Application of a real-world university-course

timetabling model solved by integer programming. OR Spectrum 29, 4, 783–803.

Schutt, A., Feydy, T., Stuckey, P. J. and Wallace, M. G. 2011. Explaining the cumulative

propagator. Constraints 16, 3, 250–282.

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068413000495
Downloaded from https://www.cambridge.org/core. Missing LinkVersandbuchhandlung, on 30 Aug 2018 at 09:32:33, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068413000495
https://www.cambridge.org/core

	Title
	Abstract
	1 Introduction
	2 Curriculum-based course timetabling
	2.1 Problem definition
	2.2 Problem instance example

	3 Encoding of hard constraints
	4 Encoding of soft constraints
	5 Full encoding
	6 Comparison
	7 Conclusion
	References

