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Abstract

In the here presented work we discuss a series of results that are all in one way or
another connected to the phenomenon of trapping in black hole spacetimes.
First we present a comprehensive review of the Kerr-Newman-Taub-NUT-de-Sitter
family of black hole spacetimes and their most important properties. From there we
go into a detailed analysis of the bahaviour of null geodesics in the exterior region
of a sub-extremal Kerr spacetime. We show that most well known fundamental
properties of null geodesics can be represented in one plot. In particular, one can
see immediately that the ergoregion and trapping are separated in phase space.
We then consider the sets of future/past trapped null geodesics in the exterior
region of a sub-extremal Kerr-Newman-Taub-NUT spacetime. We show that from
the point of view of any timelike observer outside of such a black hole, trapping can
be understood as two smooth sets of spacelike directions on the celestial sphere of
the observer. Therefore the topological structure of the trapped set on the celestial
sphere of any observer is identical to that in Schwarzschild. We discuss how this
is relevant to the black hole stability problem.

In a further development of these observations we introduce the notion of what
it means for the shadow of two observers to be degenerate. We show that, away
from the axis of symmetry, no continuous degeneration exists between the shadows
of observers at any point in the exterior region of any Kerr-Newman black hole
spacetime of unit mass. Therefore, except possibly for discrete changes, an observer
can, by measuring the black holes shadow, determine the angular momentum and
the charge of the black hole under observation, as well as the observer’s radial
position and angle of elevation above the equatorial plane. Furthermore, his/her
relative velocity compared to a standard observer can also be measured. On the
other hand, the black hole shadow does not allow for a full parameter resolution in
the case of a Kerr-Newman-Taub-NUT black hole, as a continuous degeneration
relating specific angular momentum, electric charge, NUT charge and elevation
angle exists in this case.
We then use the celestial sphere to show that trapping is a generic feature of any
black hole spacetime.

In the last chapter we then prove a generalization of the mode stability result
of Whiting (1989) for the Teukolsky equation for the case of real frequencies. The
main result of the last chapter states that a separated solution of the Teukolsky
equation governing massless test fields on the Kerr spacetime, which is purely
outgoing at infinity, and purely ingoing at the horizon, must vanish. This has the
consequence, that for real frequencies, there are linearly independent fundamental
solutions of the radial Teukolsky equation Rhor, Rout, which are purely ingoing

iii



at the horizon, and purely outgoing at infinity, respectively. This fact yields a
representation formula for solutions of the inhomogenous Teukolsky equation, and
was recently used by Shlapentokh-Rothman (2015) for the scalar wave equation.
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1. Introduction and overview

General relativity completely changed our understanding of gravity and our ideas
of space and time. After its initial observational confirmation, by the measurement
of the light deflection around the sun during a solar eclipse (Dyson et al., 1920),
progress in observational confirmation of general relativity was scarce and until
the 1960’s it disappeared from most physics departments. After 1960 the number
of publications related to general relativity surged and in Hulse and Taylor (1975)
the first evidence for gravitational waves was established with the observation of
the binary pulsar.
In 2015 with GW150914 the (LIGO Scientific Collaboration and Virgo Collabora-
tion, 2016) recorded the first direct detection of gravitational waves from a binary
black hole merger. This lead to the award of 2017’s nobel prize to Kip Thorn,
Rainer Weiss and Barry Barish. Adding in the recent observation of a binary neu-
tron star collision with optical counter-part (LIGO Scientific Collaboration and
Virgo Collaboration, 2017) and the expected picture from the Event Horizon Tele-
scope probing the strong field regime. We are living in truly exciting times for the
field of general relativity.

These developments provide motivation to also explore the theoretical and math-
ematical aspects of general relativity in depth, besides the fact that especially on
the mathematical side there exist many problems that are interesting on their on
accord. The results presented in this thesis fit in nicely with the current develop-
ments on the observational side. The discussion of black hole shadows in chapter
3 has a direct relation to the Event Horizon Telescope, while the mode stability
result is loosely related to the ring down in the binary black hole mergers. The
following introduction will provide the mathematical landscape in which the novel
results that are presented in this thesis live.

The local existence of solutions to the Cauchy problem for the Einstein field
equations was proven by Choquet-Bruhat (1952) . An essential step in this proof
was to use the harmonic coordinate condition which reduces the Einstein field
equations to a quasilinear system of wave equations. Choquet-Bruhat and Ge-
roch (1969) proved that the maximal globally hyperbolic vacuum extension of a
given Cauchy data set is unique. These results are among the cornerstones of the
mathematical treatment of general relativity.
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1. Introduction and overview

With this notion of dynamical evolution at hand it is possible to study the
question of dynamical stability of solutions to the Einstein equations. A stationary
solution is dynamically stable if the evolution of Cauchy data close to that solution
settles down asymptotically to the given solution. Christodoulou and Klainerman
(1993) proved the full non-linear stability for Minkowski space in their monumental
work. The corresponding stability problem for the Kerr family of solutions is one
of the most important open problems in general relativity.

Black holes play a central role in astrophysics and it is only if the Kerr family
of solutions is stable that we can expect that some of the objects observed in the
universe can be modeled by these solutions. For us to observe objects in the sky
they either need to be very bright (super nova, gamma ray bursts) or long lived
for us to come up with clever ways to observe them. For an object to be long lived
its mathematical model needs to be stable against perturbations.

In order to approach the stability problem for the Kerr spacetime it is important
to understand some simpler model problems. Dafermos et al. (2014) proved decay
for the scalar wave for the full subextremal range |a| < M . The proof relies
heavily on the Fourier transform of the scalar field and hence on the properties
of the mode solutions. This provides the motivation for the discussion in section
2.2 and chapter 4. In two brilliant papers Ma (2017a,b) proved decay for the spin
1 Teukolsky equation originating from Maxwell fields and the spin 2 Teukolsky
equation originating from linearized gravity for slowly rotating black holes.

The Kerr family of solutions admits only two Killing vector fields. The presence
of a Killing tensor (Carter, 1968a) allows the geodesic equations to be separated.
Correspondingly the associated symmetry operators make it possible to apply a
separation of variables to the field equations for scalar fields (spin-0), Maxwell
fields (spin-1), and linearized gravity (spin-2).

There are two phenomena that pose obstacles for the decay of spin fields. The
first is trapping which is associated with the occurrence of trapped null geodesics.
This is already present in Schwarzschild spacetimes. The second phenomenon is
superradiance which is due to the presence of an ergoregion. This is the wave
analog to the Penrose process in which energy can be extracted from a rotating
black hole. Superradiance was demonstrated for the first time by Starobinskii
(1973) using a mode analysis.

Another interesting phenomenon, obtained by a mode analysis, is the so called
quasi normal ringing of the black hole. This will be discussed in section 4.1. Quasi-
normal modes (QNM) are solutions with complex frequencies which are classically
associated with wave equations containing a damping term. In the context of scalar
fields on a black hole background these modes are associated with the phenomenon
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of trapping for null geodesics. This builds the connection between trapping and
mode stability.

It turns out that the question of black hole stability and black hole shadows are
closely related, as the boundary of the shadow is given by the future/past trapped
null geodesics. This provides the motivation for the considerations in section 3.1.

Having a thorough understanding of geodesic motion and in particular the be-
havior of null geodesics in Kerr spacetimes is helpful to understand many of the
harder problems related to these spacetimes. Which is the motivation for our
discussion in section 2.2 The Mathematica Notebook (2016) that has been devel-
oped for the lecture notes is intended to help the reader gain an intuition on the
influence of various parameters on the geodesic motion.

Overview of this Thesis

To make this thesis largely self contained we collect in chapter 2 the fundamental
concepts of general relativity, which are relevant to our discussion. This includes
the notion of causality, the definition of geodesics, and the Einstein field equations.
In section 2.1 a number of important exact solutions to the Einstein field equations
will be analyzed. In the context of the Schwarzschild solution the basic concepts
of black holes will be discussed.
Then we discuss the details of null geodesic motion in the context of Kerr space-
times in the sections 2.2 - 2.5. This includes the notions of trapping, principal null
directions and T-orthogonal geodesics.

In chapter 3 we introduce the notion of a black hole’s shadow. We first show
that in the black hole spacetimes of interest the future and past trapped set form
smooth curves. Then in section 3.2 we define the notion of what it means for the
shadow of two observers to be degenerate. We then analyze in section 3.3 which
degeneracies exist. Finally in section 3.4 we show that the celestial sphere can
be used more broadly by showing that trapping is a generic feature that exists in
every black hole spacetime.

Finally in chapter 4 we first discuss how quasinormal modes relate to trapped
null geodesics. Then in the sections 4.2-4.6 we prove mode stability for real fre-
quencies for fields of arbitrary spin in subextremal Kerr spacetimes. In section
4.7 we provide some background on the charged scalar field in Reissner Nord-
ström. Further we prove some partial results on conserved energies and explain
the obstructions to obtain results that are known for the uncharges scalar field.
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2. General relativity and Black holes
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2.1.2. The Kerr-Newman-Taub-NUT-de-Sitter black hole space-
time . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.3. Open Problems in Mathematical Relativity related to
Black Holes . . . . . . . . . . . . . . . . . . . . . . . 23
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2.5.3. T-Orthogonal Null Geodesics . . . . . . . . . . . . . . 39

2.6. Applications for the Virtual Potential Plot . . . . . . . 41

This chapter contains a brief introduction into the fundamental concepts and
equations of general relativity. Furthermore it should help to clarify the context
of the discussion in chapter 3 and 4. This chapter will therefore focus especially
on those fundamental properties which are relevant for the later part.

These general considerations can be found in many text books, see for example
Carroll (2004). Hence it it to be understood that the material within this section
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2. General relativity and Black holes

is all well known. The central postulate of general relativity is a 4-dimensional
Lorentzian manifold equipped with a metric (M,g). The manifoldM is said to be
time oriented if it admits a continuous, nowhere vanishing timelike vector field X.
The signature of g can be chosen to be either (+,−,−,−) or (−,+,+,+). The latter
is chosen for this work. Let γ be a parametrized curve in the manifold. Let γ̇ be
the derivative of the curve with respect to the parametrization. Then γ is either
time-, space-, or lightlike/null depending on whether the value of the quantity

ε = g(γ̇, γ̇)|p (2.1)

is negative, positive, or zero. This property is important for the definition of
causality in the context of general relativity. An event at one point on the manifold
can influence events at another point on the manifold if there exists a causal, curve
between the two points. A causal curve is a curve that is everywhere timelike or
null. If the manifold is time oriented, the vector field X allows to further classify
the causal curves into past and future directed subsets depending on the sign of
g(X, γ̇). A spacetime is then defined as a Lorentzian manifold together with a
choice of time orientation. We can then make the following definition.

Definition 2.0.1 (Chronological future/past). Let S be a set of points inM. The
chronological future of S in M is the set of points which can be connected to S by
a future/past directed piecewise smooth timelike curve starting in S We denote the
chronological future with I+(S) and the chronological past with I−(S)

Note that I±(S) are always open in M.

Definition 2.0.2 (Causal future/past). Let S be a set of points inM. The causal
future of S in M is the set of points which can be connected to S by a future/past
directed piecewise smooth causal curve starting in S We denote the causal future
with J+(S) and the causal past with J−(S)

Note that every point on the boundary of J+(S)\S is the endpoint of a null
geodesic that is either past inextendible or originates at the boundary ∂S of the
set S under consideration. If S is a closed compact set, we can define a future
domain of dependence D+(S).

Definition 2.0.3 (Future/past domain of dependence). The set of all points for
which any past/future directed inextendible causal curve has to intersect S is called
the future/past domain of dependence denoted by D+(S) /D−(S)

Suppose we have a well posed initial value problem defined on our manifoldM.
By specifying the initial data on S the solution is uniquely determined in D+(S).
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The boundary ∂D+(S)\S = H+(S) of the future domain of dependence is called
the future Cauchy horizon. The causal past J−(S), the past domain of dependence
D−(S), and the past Cauchy horizon H−(S) are defined analogous to their future
counterparts. The causal properties of manifolds is the subject of causality theory,
for a detailed discussion see for example (Beem, 2017, p.54 f). Within the present
work we will only be concerned with spacetimes satifying the strongest causality
property. These are called globally hyperbolic spacetimes. A spacetime is said
to be globally hyperbolic if there exists an achronal hypersurface Σ in M, such
that D+(Σ) ∪D−(Σ) =M. Then we call Σ a Cauchy surface. A hypersurface is
achronal if there exist no two points in Σ that are timelike separated.

In general relativity the force of gravity as imposed by Newtons gravity is re-
placed by the effect of the curvature of the manifold on the movement of unac-
celerated particles therein. The parametrized curve γ(τ) that describes the path
of such an unaccelerated hence freely falling particle is called geodesic. The con-
dition for the trajectory to be freely falling is that the tangent vector is parallel
transported along the curve.

∇γ̇ γ̇ = 0 (2.2)

is called the geodesic equation. To express this equation in coordinate form we
first need to introduce the Christoffel symbol

Γβµν =
1

2
gαβ (∂νgαµ + ∂µgαν − ∂αgµν) (2.3)

In coordinate form the covariant derivative of a vector field V µ is then given by

∇µV
ν = ∂µV

ν + ΓναµV
α (2.4)

and thus the geodesic equation in coordinate form is given by

d2xµ

dτ 2
+ Γµρσ

dxρ

dτ

dxσ

dτ
= 0 (2.5)

where xµ(τ) is the parametrization of γ(τ) with respect to the coordinate sys-
tem. The parameter of the curve was chosen to be the proper time λ = τ of the
geodesic for timelike and the proper length for spacelike geodesics and any affine
parametrization for null geodesics. For geodesics parametrized in this way ε, de-
fined in (2.1), is constant and equal to 1,−1, or 0 respectively. Spacelike geodesics
are not considered to describe the trajectories of any physical particle. In terms
of the Christoffel symbols the Riemann curvature tensor is then given by

Rµ
αβγ = ∂βΓµαγ − ∂γΓµαβ + ΓµσγΓ

σ
βα − ΓµσγΓ

σ
αβ (2.6)
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2. General relativity and Black holes

The Ricci tensor is then given by Rµν = Rσ
µσν and the Ricci scalar is given by

R = Rα
α. Let us now consider a one parameter family of non-intersecting geodesics

γs(t). They describe a two dimensional surface xµ(s, t). This gives us two natural
vector fields T µ = ∂xµ/∂t and Sµ = ∂xµ/∂s. We can then define the “relative
acceleration” between neighboring geodesics as

Aµ =
d2

dt2
Sµ = (∇T (∇TS))µ = T ρ∇ρ(T

σ∇σS
µ) = Rµ

νρσT
νT ρSσ. (2.7)

This is known as the geodesic deviation equation. This can be interpreted as a
manifestation of gravitational tidal forces.

A spacetime is considered to be physical if the metric satisfies the Einstein field
equations

Rµν −
1

2
gµνR + Λgµν = 8πTµν . (2.8)

Where Λ is the cosmological constant and Tµν is the stress-energy tensor for the
matter and radiation in the spacetime. Note that the equation here is in natural
units with G = c = 1. We see that the curvature which effects the trajectories
of particles through (2.7), couples to the energy distribution within the manifold.
The stress-energy tensor Tµν is a symmetric 2-tensor on M and describes the
energy associated with a certain form of matter on M. To prove properties of
solutions to the equations (2.8) one can either impose a generic condition on the
stress energy tensor Tµν or one can make a particular choice of matter fields on
M. The most commonly used energy conditions are the null energy condition
(Tµνk

µkν ≥ 0, for every future pointing null vector kµ), the weak energy condition
(Tµνk

µkν ≥ 0, for every future pointing timelike vector kµ), the dominant energy
condition, which asserts that the weak energy condition holds and that for any
future pointing causal vector yα, the vector −T βαyα is a future pointing causal

vector. Finally the strong energy condition requires that (Tµν − 1
2
Tgµν)k

µkν ≥ 0
for every future pointing timelike vector kµ.

Now if we are interested in a particular matter model, then Tµν can be calculated
as a function of the fields and the metric from the action S by variation with respect
to the metric.

Tµν =
1√−g

δS

δgµν
(2.9)

If we look for example at a massless scalar field φ(x) on M satisfying 2gφ the
stress-energy tensor is given by

8



Tµν(φ(x)) = ∇µφ(x)∇νφ(x)− 1

2
gµν∇αφ(x)∇αφ(x). (2.10)

One remarkable feature of general relativity is that, in contrast with Newtonian
gravity, already the vacuum equations have non-trivial solutions. The vacuum
field equations are obtained by setting Tµν to zero and are given by

Rµν = 0 (2.11)

in the case of a vanishing cosmological constant.

Overview of this section

First we will introduce the notion of Killing fields and Killing tensors in section
2.0.1. We demonstrate how one obtains conserved quantities for geodesics and
conserved fluxes for fields. In section 2.1 we introduce a number of explicit solutions
to Einstein’s field equations. We start off with Minkowski space. In this context
we introduce the conformal diagram of an asymptotically flat manifold. In section
2.1.1 we use the conformal diagram of the manifold to introduce a formal definition
of a black hole. Further we will mention the photon sphere and trapping for the
first time.
Then in section 2.1 we introduce the Kerr Newman Taub NUT de Sitter family
of black hole spacetimes. The equations for null geodesics in these spacetimes is
presented in 2.1.4.

We then continue our studies by investigating the null geodesics in Kerr space-
times in detail. After discussing features of Kerr in section 2.3 we discuss the radial
equation for null geodesics in section 2.4.1 and briefly discuss the θ equation in
section 2.4.2. In the following section 2.5 we first discuss the radially in-/out-going
null geodesics in 2.5.1 then move on the the trapped set in 2.5.2 before we conclude
with the T orthogonal null geodesics in 2.5.3.

In section 2.6 we discuss how the insights from the previous sections can be used
to understand the scalar wave equation in Kerr.

2.0.1. Killing Fields and Killing Tensors

Conservation laws simplify a lot of calculations in all fields of physics. In general
relativity however, space and time do not exist as independent object anymore
and the classical notion of conservation of energy and momentum breaks down.

9



2. General relativity and Black holes

If our space-time contains additional structure, so called Killing fields and Killing
tensors, we can find quantities which are conserved. In this section the properties
of such Killing fields and Killing tensors will be discussed. A vector field Kν is
called a Killing vector field if it satisfies the equation

∇(µKν) = 0. (2.12)

The parentheses in the indices denote symmetrization. Every Killing field origi-
nates from a symmetry of the metric. It is in fact the local infinitesimal mani-
festation of a global symmetry. So if our spacetime contains one Killing field for
example, then there exists a coordinate system in which the metric coefficients are
independent of one coordinate (Carroll, 2004, pp.136). If we have multiple Killing
fields there does not necessarily exist a coordinate system, in which they can all
be simultaneously expressed as coordinate vector fields.

If an asymptotically flat spacetime features a Killing field which is timelike at
infinity, then we call this metric stationary. We can then choose a coordinate
system (t,x1,x2,x3) in which the metric components are independent of t (Carroll,
2004, pp.203). If this timelike Killing field is orthogonal to a family of spacelike
hypersurfaces then we call this metric static.

The above notation can be generalized to symmetric l-tensors Kν1···νl in a straight
forward way. The tensor Kν1···νl is called a Killing tensor (Eisenhart, 2016, van
Holten and Rietdijk, 1993) if it satisfies

∇(µKν1···νl) = 0. (2.13)

For geodesics a Killing tensor provides us with a conserved quantity if it is con-
tracted with l copies of the four-momentum. The metric itself is a Killing tensor
and the associated conserved quantity for geodesics was introduced in (2.1). Killing
tensors are not directly related with symmetries of the space-time. However, they
do relate to so called “hidden” symmetries Andersson and Blue (2009), which give
rise to conserved currents.

Conserved quantities and energy flows

For geodesics we can now construct a conserved quantity by contracting the Killing
field Kµ with the tangent vector of a geodesic. It is easy to show that

γ̇µ∇µ(Kν γ̇
ν) = 0 (2.14)

and hence this contracted quantity is conserved along the worldline of a particle
moving on a geodesic. Similarly we can obtain conserved quantities from Killing
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tensors by contracting with l copies of the tangent vector of a geodesic.
Conserved quantities play an important role in solving certain equations on our
manifold. The reason for this is that these conserved quantities, if enough of them
are available, can enable us to decouple the geodesic equation.

We will now investigate the conservation laws that can be derived for scalar
fields. Let us assume that we have a spacetime (M,g) and a scalar function φ
that satisfies an evolution equation such that the stress-energy tensor Tµν(φ) is
divergence free

∇µTµν = 0. (2.15)

Then we define the flux associated to any given vector field V ν as

P V
µ = V νTµν . (2.16)

Its divergence is then simply

KV = π(V )µνT
µν = ∇µP V

µ . (2.17)

Where π(X) is the deformation tensor

π(X)µν =
1

2
∇(µXν) = LieX(g)µν (2.18)

and LieX(g)µν is the Lie derivative of the metric along the vector field X. We see
immediately that KV = 0 if V ν satisfies the Killing equation (2.12).

We now have to take a look at the divergence theorem for our Lorentzian man-
ifold (M,g). Suppose Σ0 and Σ1 are two homologous spacelike, three dimen-
sional hypersurfaces with common boundaries, bounding a spacetime region B.
Let nν0 and nν1 be the future directed, timelike, unit, normal vectors to these
hyper-surfaces. Suppose Jµ is an one-form defined on our manifold (M,g). The
divergence theorem is then given by (Dafermos and Rodnianski, 2008, pp.103)

∫
Σ0

Jµn
µ
0 +

∫
B
∇µJµ =

∫
Σ1

Jµn
µ
1 , (2.19)

where the surface integrals are with respect to the induced oriented volume form
on the hypersurface and the bulk integral is with respect to the volume form

√−gdx0 · · · dxn. (2.20)
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2. General relativity and Black holes

If we now take our one-form to be the vector field current P V
µ we get

∫
Σ0

P V
µ n

µ
0 +

∫
B
∇µP V

µ︸ ︷︷ ︸
=KV

=

∫
Σ1

P V
µ n

µ
1 . (2.21)

We see immediately from (2.18) that the vector field current is conserved if the
vector field V ν satisfies the Killing equation. If V ν is a timelike vector field and
Tµν satisfies the dominant energy condition then P V

µ n
µ ≥ 0 for all nµ timelike and

thus in particular
∫

Σ
P V
µ n

µ ≥ 0 for any spacelike hypersurface Σ .

2.1. Exact Solutions to the Einstein Field Equations

The number of parametrized families of explicit solutions to the Einstein field
equations is relatively small. The non-linearity of the equations makes the search
for explicit solutions difficult. For the vacuum equations the important explicitly
known solutions include Minkowski space, the Schwarzschild solution and the Kerr
solution. In this section we will explore these solutions as well as a number of
explicitly known non-vacuum solutions.

We will start with the easiest examples to introduce fundamental concepts
needed for the further discussion. Minkowski space serves as reference space-
time because it describes a flat manifold as is considered in classical field theories.
Further the Minkowski metric serves as reference space time for asymptotic flat-
ness. An asymptotically flat manifold is one for which the metric aproaches that
of Minkowski space in an appropriate sense as |x| → ∞. The discussion here will
follow Carroll (2004). In polar coordinates the Minkowski metric reads

ds2 = −dt2 + dr2 + r2dΩ2 (2.22)

where dΩ2 = dθ2 + sin2(θ)dφ2 describes the metric on a unit two sphere. The
parameter range for φ and θ is as on the unit two sphere, while for r it is given
by [0,∞), and for t by (−∞,∞). In principle manifolds describing solutions to
the Einstein field equations are non-compact. To get a better intuition, it helps
to be able to draw a space time on a single piece of paper. For this purpose we
introduce the so called Penrose- or conformal diagrams that help to capture the
global structures of manifolds. A conformal transformation is a change of scale
and can be written as

12



2.1. Exact Solutions to the Einstein Field Equations

g̃µν = ω2(x)gµν or equivalently

d̃s
2

= ω2(x)ds2

where ω(x) is a nonvanishing function. One important property of such confor-
mal transformations is that null curves are left invariant. Hence the structure of
causality is preserved.

We apply the following series of coordinate transformations to the Minkowski
metric (this can be found in many text books, e.g. Carroll (2004))

u = t− r −∞ <u <∞
v = t+ r −∞ <v <∞
describing a set of null coordinates u ≤ v,

U = arctan(u) −π
2
<U <

π

2

V = arctan(v) −π
2
<V <

π

2
describing another set of null coordinates U ≤ V,

T = V + U

R = V − U 0 ≤R < π

describing a time-like and a radial coordinate |T |+R < π.

The metric is then given by

ds2 = ω−2(T,R)(−dT 2 + dR2 + sin2(R)dΩ2). (2.23)

The function ω is given by cos(T ) + cos(R) and the metric is thus conformaly
related to the unphysical metric

d̃s
2

= −dT 2 + dR2 + sin2(R)dΩ2. (2.24)

The entire Minkowski space can be represented by a subset of R × S3. With
S3 being a spacelike three sphere. The closure of the subset corresponding to
Minkowski space is a compact manifold with boundaries given by

i+ = future time like infinity (T = π,R = 0),

13



2. General relativity and Black holes

i0 = spatial infinity (T = 0, R = π),

i− = past time like infinity (T = −π,R = 0),

I+ = future null infinity (T = π −R, 0 < R < π),

I− = past null infinity (T = −π +R, 0 < R < π).

Together these make up the conformal infinity. We can now draw a representation
of the quotient of Minkowski space over the two sphere in a simple, finite, two
dimensional diagram as shown in Figure 2.1. Every point in this diagram corre-
sponds to a two sphere with the radius given by the corresponding value of r at
this point.

Figure 2.1.: The conformal diagram of Minkowski space. Light cones are at ±45◦

throughout the diagram. The green lines correspond to hypersurfaces
of constant t the red lines to hypersurfaces of constant r.

In Minkowski space all time-like geodesics will start at i− and end at i+. All
null geodesics start somewhere on the null hypersurface I− and end on the null
hypersurface I+. All radial null geodesics are at an angle of ±45◦ in the diagram.

14



2.1. Exact Solutions to the Einstein Field Equations

2.1.1. The Schwarzschild Solution and the Black Hole Concept

The Schwarzschild solution was found in Schwarzschild (1916) just one year after
Einstein proposed his field equations. It took however almost 50 years until its
properties were well understood.

We will now use the Schwarzschild space time to introduce the basic concepts
relevant to understand black holes, such as horizons, singularities and trapping of
null geodesics. In spherical coordinates (t, r, θ, φ) the metric is given by

ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2dΩ2. (2.25)

This describes a one parameter family of solutions parametrized by M . It is
straightforward to see that we recover Minkowski space when we set M = 0 in this
coordinate system. The parameter M is usually interpreted as the mass of the
black hole. The Schwarzschild metric is static and asymptotically flat. However,
one sees immediately that the metric coefficients blow up at r = 2M and at r = 0.
The first one is not a true singularity of the spacetime, but rather a failure of the
coordinate system to cover the whole manifold. This is analogous to the blow up
of the usual spherical coordinates for θ = 0, π. At r = 0 on the other hand we have
a true singularity of our spacetime. We see this by constructing scalar quantities
from our metric such as

RµνρσRµνρσ =
48M2

r6
. (2.26)

Because of the fact that scalar quantities are coordinate invariant, this blow up is
an actual feature of the manifold. The manifold is geodesically incomplete in the
sernse that there are geodesics which can reach the singularity at r = 0 in a finite
amount of their proper time for timelike geodesics or a finite amount of their affine
parameter for null geodesics.

Even though the surface at r = 2M is not a singularity of this manifold, it
turns out to have some interesting properties. It is the location of the event
horizon. Here we only want to collect a number of facts while we will provide
a proper definition of the event horizon later in the text. The coordinate vector
field ∂r becomes timelike inside that surface, whereas the coordinate vector field
∂t becomes spacelike. On the surface itself the smooth extension of the vector field
(∂t)

µ becomes null. So the horizon itself is a null hypersurface with (∂t)
µ tangent

and normal to it. The horizon is a one way membrane in our manifold. Causal
future directed curves can only pass it from the region with r > 2M to the region
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2. General relativity and Black holes

with r < 2M in the case of the future event horizon and from the region with
r < 2M to the region with r > 2M in the case of the past event horizon.

We now want to understand the maximal extension of the Schwarzschild space-
time.

Definition 2.1.1 (Maximal extension). The manifold (M, g) is called inextendible
as a Lorentian manifold of a certain regularity if the following holds:
Suppose there exists another Lorentzian manifold (M̃, g) of the desired regularity
together with an isometric embedding

i : (M, g) ↪→ (M̃, g) (2.27)

then i(M̃) =M.

The Kruskal coordinates (T,R, θ, φ) (1960) which are given by

T =
( r

2M
− 1
)1/2

er/4M sinh

(
t

4M

)
R =

( r

2M
− 1
)1/2

er/4M cosh

(
t

4M

)

and the usual spherical coordinates, are good coordinates throughout the maximal
extension of the manifold. The Schwarzschild metric in Kruskal coordinates takes
the form

ds2 =
32M3

r
e−r/2GM(−dT 2 + dR2) + r2dΩ2 (2.28)

where r is defined implicitly by

T 2 −R2 =
(

1− r

2M

)
er/2M (2.29)

The radial null-curves are given by T = ±R + constant. The horizon in these
coordinates is given by T = ±R. It was recently shown by Sbierski (2015) that
Schwarzschild cannot be extended across r = 0 as a C0 Lorentzian manifold.

To understand the black hole region and the horizon we resort again to the
Penrose diagram. We can apply a similar compactification procedure as we did
for Minkowski space and the Penrose diagram we obtain is then given by Figure
2.2.
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2.1. Exact Solutions to the Einstein Field Equations

Figure 2.2.: Conformal diagram for the maximal extension of the Schwarzschild
space-time. The green lines correspond to hypersurfaces of constant t
the red lines to hypersurfaces of constant r.

In Figure 2.2 we can recognize four distinct regions of our manifold. The square
regions correspond to two isometric copies of the exterior universe. Region upper
triangle is the black hole region from where no causal curve can reach I+. the
lower triangle is the white hole region from where causal future directed curves
can only exit but not enter. The boundaries of the lower triangle is called the past
horizon H−. The boundary of the upper triangle is called the future horizon H+.
The black hole region is formally defined retroactively.

Definition 2.1.2 (Black hole). We define the black hole region by M \ J−(I+).

Hence the black hole consists of all the points in the manifold which do not lie
within the causal past of I+. Therefore to know the location of the event horizon
one needs to know the entire future development of the manifold.

Region I is given by J+(I−) ∩ J−(I+) and is called the “exterior region”. Its
closure is usually referred to as the “domain of outer communication”. In the
exterior region the original Schwarzschild coordinates (2.25) are valid. As soon
as objects falling into the black hole pass the horizon they can no longer causally
influence processes in the domain of outer communication.

We will now have a quick look at the geodesic equations in these spacetimes as
presented in Schwarzschild (1916).

17



2. General relativity and Black holes

E = V (r) +
1

2

(
dr

dλ

)2

, (2.30)

with V (r) = −1

2
ε+ ε

M

r
+
L2

2r2
− ML2

r3
,

and E =
1

2
E2.

Here ε is given by (2.1). The quantities E and L are the conserved quantities orig-
inating from the Killing fields (∂t)

µ and (∂φ)µ. These Killing fields follow straight
from the fact that the coefficients of the Schwarzschild metric are independent of
these coordinates. The conserved quantities are given by

E = −(∂t)µγ̇
µ =

(
1− 2M

r

)
dt

dλ
L = (∂φ)µγ̇

µ = r2dφ

dλ
(2.31)

and can be interpreted as the energy and the angular momentum of a particle
moving on a geodesic. Every geodesic lies within a plane therefore we can always
choose the z-axis to be perpendicular to the plane of motion. Therefore the z-
angular momentum of the geodesic is the total angular momentum of the geodesic
with respect to the black hole. Note that the expression for V (r) is exact. The
last term is thus the correction from general relativity with respect to Newtonian
gravity and can be used to calculate the perihelion shift of Mercury.

One important feature of black hole spacetimes is the existence of orbiting null
geodesics. In the Schwarzschild solution we find circular orbits for null geodesics
at a r = 3M . The sphere at r = 3M is often referred to as the photon sphere.
An interesting quantity can be obtained by evaluating (2.30) at this radius. We
get that the conserved quantities of every trapped null geodesic have to be in the
ratio given by

L2

E2
= 27M2. (2.32)

From this ratio a local observer at a point p can determine which null geodesics
will approach the photon sphere asymptotically. For a Schwarzschild black hole of
fixed mass M the only variable left in the virtual potential for null geodesics is the
angular momentum L. The ratio above tells us nothing else but that the initial
“energy” has to be equal with the maximal “energy” of the virtual potential. Only
null geodesics that satisfy this condition are able to approach the photosphere
asymptotically. We will explore the phenomenon of trapping in more detail in
section 2.1.5, section 2.5.2 and section 3.1.
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2.1. Exact Solutions to the Einstein Field Equations

2.1.2. The Kerr-Newman-Taub-NUT-de-Sitter black hole
spacetime

After exploiting the fundamental concepts of black hole spacetimes we now take a
look at a larger family of black hole spacetimes.

In the following introduction of the spacetimes we follow closely the work of Gren-
zebach et al. (2014). However we will short cut their discussion in many places
and just focus on the pieces relevant for our further considerations. The Kerr-
Newman-NUT-(anti-)de Sitter space-times are stationary, axially symmetric solu-
tions of the Einstein-Maxwell equations with a cosmological constant. Plebañski
(1975) introduced this class of spacetimes. A larger class was found by Plebanski
and Demianski (1976). For the case without a cosmological constant, these metrics
can be traced back to Carter (1968b).
In Boyer-Lindquist coordinates (t, r, θ, φ) the metric is given by (Griffiths and
Podolskỳ, 2009)

ds2 =Σ

(
1

∆r

dr2 +
1

∆θ

dθ2

)
+

1

Σ

(
(Σ + aχ)2∆θ sin2(θ)−∆rχ

2
)

dφ2

1

Σ

(
∆rχ− a(Σ + aχ)∆θ sin2(θ)

)
dtdφ− 1

Σ

(
∆r − a2∆θ sin2(θ)

)
dt2.

(2.33)

where
Σ = r2 + (l + a cos θ)2, (2.34)

χ = a sin2(θ)− 2l(cos(θ) + C), (2.35)

∆ = r2 − 2Mr + a2 − l2 +Q2, (2.36)

∆r = ∆− Λ

(
(a2 − l2)l2 +

(
1

3
a2 + 2l2

)
r2 +

1

3
r4

)
, (2.37)

∆θ = 1 + Λ

(
4

3
al cos(θ) +

1

3
a2 cos2(θ)

)
. (2.38)

The coordinates t ranges over (−∞,∞), while θ and φ are standard coordinates
on the two-sphere, for r we are only interested in the range between the horizon
at rH and infinity, or if it exists the cosmological horizon at rC . The metric de-
pends on five parameters, namely the mass M , the spin a, the electromagnetic
charge Q2 = Q2

e +Q2
m, the NUT parameter l and the cosmological constant Λ. In

addition, there is a parameter C that was introduced in Manko and Ruiz (2005)
to modify the singularity that is produced by l on the z axis (see below). We will
assume for physical reasons that M > 0 and w.l.o.g. a ≥ 0 in the present work,
while l and Λ can in principle take any value in R. Note that the metric does not
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2. General relativity and Black holes

depend on the coordinates t and φ and therefore features at least two independent
Killing vector fields independent of the choice of the parameters.

We will frequently make use of the following orthonormal tetrad at a point p:

e0 =
(Σ + aχ)∂t + a∂φ√

Σ∆r

∣∣∣∣
p

, e1 =

√
∆θ

Σ
∂θ

∣∣∣∣∣
p

, (2.39)

e2 =
−(∂φ + χ∂t)√

Σ∆θ sin(θ)

∣∣∣∣
p

, e3 = −
√

∆r

Σ
∂r

∣∣∣∣∣
p

.

This frame is a natural choice as the principal null directions can be written in the
simple form e0 ± e1. These generate congruences of radially outgoing and ingoing
null geodesics.

The Plebański class contains the Schwarzschild (a = Q = l = Λ = 0), Kerr (Q =
l = Λ = 0), Reissner- Nordström (a = l = Λ = 0), Schwarzschild- (anti-)de Sitter
(a = Q = l = 0), Kerr-Newman (l = Λ = 0), and Taub-NUT (a = Q = Λ = 0)
metrics as special cases.
The metric (2.33) becomes singular if, ∆r = 0 , ∆θ = 0, sin(θ) = 0 or Σ = 0
. Some of these singularities are just coordinate singularities, but some of them
are true (curvature) singularities. We briefly discuss the first three cases in the
following paragraphs.

1. ∆r = 0. Each zero of ∆r on the real line corresponds to a coordinate sin-
gularity indicating a horizon (excluding the case where l = a = 0). As ∆r

is a fourth order polynomial there can either be 4,2 or 0 horizons. We call
the horizon at the largest r coordinate the first horizon, the next the second,
and so on.
If Λ ≤ 0 the second derivative of ∆r is strictly positive thus only two or no
horizons can exist. In this case the first horizon is the black hole’s event
horizon. We are only interested in the exterior region in the black hole case
where two horizons exist. In the case where Λ = 0 the explicit solutions for
the locations of the two horizons are given by

r± = M ±
√
M2 − a2 + l2 −Q2 (2.40)

and thus there is a subextremal black hole as long as M2− a2 + l2 +Q2 > 0.
If Λ > 0, the vectorfield ∂r is timelike for large values of r. Therefore, the
first horizon, if it exists, is called a cosmological horizon. We have a black
hole if there are four horizons. The exterior region is then the region between
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2.1. Exact Solutions to the Einstein Field Equations

the first and the second horizon which is the black hole’s event horizon. Note
that Descart’s rule (Cohn, 1982, p.172) gives us immediately that for four
horizons to exist the inequality

1/2 > l2Λ (2.41)

needs to be satisfied.
In every case ∆r > 0 is satisfied in the exterior region.

2. ∆θ = 0. If it exists it indicates a horizon where the vector field ∂θ changes
from space like to timelike. We are only interested in black holes without
such horizons. Note first that ∆θ = 0 is only possible if Λ 6= 0. Solving it as
a quadratic equation for a cos(θ) we get that

[a cos(θ)]± = −2l ±
√

4l2 − 3/Λ. (2.42)

For the cosmologically relevant case of positive Λ the restriction to the black
hole case with four horizons guarantees that the square root is complex and
the additional restriction in Grenzebach et al. (2014) is thus redundant. For
negative Λ the square root is always real and thus the simple criterion in
Grenzebach et al. (2014) is insufficient to guarantee that ∆θ has no zeros.
As we will not discuss the (anti-) de Sitter spacetimes in detail we will omit
investigating whether this has any deeper implications.

3. sin(θ) = 0. The metric has a singularity on the axis, as is always the case
when using spherical polar coordinates. If l 6= 0, however, this is not just
a coordinate singularity but a true singularity. The parameter C induces
pathologies on both pieces of the rotation axis, unless C = ±1. In the
present work we will simply ignore these pathologies and take C = ±1 and
only consider the regular part of the rotation axis in these cases (the case
C = −1 corresponds to the original definition of the NUT metric Newman
et al. (1963), Manko and Ruiz (2005)). For a detailed discussion of the
rotation axis in the case l 6= 0 and a 6= 0 see Miller (1973).

For our discussion here we will assume that we stay away from such pathologies
in the spacetime.

The cases without black holes we will only briefly discuss in the context of the
Kerr metric. There the condition for the existence of a black hole is that |a| < M
which are usually referred to as subextremal Kerr spacetimes. The case |a| = M
still features an event horizon but now has zero surface gravity. This is referred
to as the extremal Kerr spacetime. For |a| > M the spacetime features a naked
singularity visible from infinity. This is sometimes referred to as super-extremal
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2. General relativity and Black holes

Figure 2.3.: Conformal diagram of the equatorial plane of a sub-extremal Kerr
solution. The here represented region can be glued to copies of itself
in an infinite sequence. The green lines correspond to hypersurfaces
of constant t the red lines to hypersurfaces of constant r.
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Kerr spacetime. The Penrose diagram of the maximal analytical extension of a
subextremal Kerr spacetime was given in Boyer and Lindquist (1967).

In Figure 2.3 we see an infinite number of identical copies of the exterior re-
gions.

2.1.3. Open Problems in Mathematical Relativity related to
Black Holes

Before going into the details of some of these black hole spacetimes we would like
to present here a number of open mathematical problems related to black hole
spacetimes. These open problems set the stage for our discussions in the rest of
this thesis.

The weak cosmic censorship conjecture states that naked singularities can-
not form in gravitational collapse from generic non singular initial data (Carroll,
2004, pp.243). Hence that any singularity has to be hidden from an observer at
infinity by an event horizon. Thus if a Kerr black hole is formed through gravita-
tional collapse, its parameters have to lie in the subextremal range. All discussions
from this point on will be limited to black hole spacetimes that satisfy this con-
jecture. Thorne (1974) showed from numerical calculations that an astrophysical
black hole with an accretion disc tends towards a limiting value of a = 0.988. It
can therefore not become extremal under their assumptions.
If one goes away from vacuum, there exists a counter example for the Einstein-
scalar-field system in spherical symmetry given in Christodoulou (1994).

The strong cosmic censorship conjecture states that general relativity should
be deterministic. In more technical terms this means that for generic initial data
the Cauchy development should be locally inextendable across its boundary. Dafer-
mos and Luk (2017) recently made significant progress towards a resolution of this
conjecture.

The black hole uniqueness conjecture states that the Kerr family of solu-
tions are the only existing solutions of the Einstein vacuum equations that are
stationary asymptotically flat black hole spacetimes. This is sometimes referred
to as the no-hair conjecture which has not yet been proven rigorously.
For the Schwarzschild solution there exists a uniqueness proof known as Birkhoff’s
theorem. It states that the Schwarzschild solution is the unique spherically sym-
metric solution to the Einstein vacuum equations. For the Kerr solution there are
proven uniqueness statements under various additional assumptions. In Hawking
and Ellis (1973), Hawking showed that there exists a second Killing vector field
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on the event horizon of a stationary black hole spacetime. This allows to prove
uniqueness under the assumption of analyticity. A similar strategy is employed
by Chruściel and Costa (2008) again to prove a uniqueness theorem under the
assumption of analyticity. In Alexakis et al. (2010) uniqueness of Kerr is proven
close to the Kerr family of space times. One of the central obstacles to prove a
global uniqueness result with this method is the possible existence of trapped null
geodesics that are orthogonal to the stationary Killing vector field.

The black hole stability conjecture has already been mentioned in the in-
troduction. This states that a small perturbation of Kerr should radiate away and
the spacetime should asymptotically settle down to Kerr. There have been a lot
of developments on this problem recently. The most important being the proof
of non-linear stability of slowly rotating Kerr-de-Sitter black holes by Hintz and
Vasy (2016).

Last but not least there is the final state conjecture. It states that at late
time all solutions to the Einstein vacuum equations with reasonable initial data
should become a number of Kerr black holes moving away from each other.

2.1.4. Null Geodesic Equation

We now focus our attention on null geodesics in these spacetimes. For all members
of the Kerr-Newman-Taub-Nut-(anti-)De Sitter family of spacetimes there exist
four linearly independent constants of motions for the geodesic equation. The
norm of the tangent vector usually interpreted as the test bodie’s mass

m = gµν γ̇
µγ̇ν (2.43)

which we will assume to be equal to zero from here on. The two quantities arising
from the Killing vector fields ∂t, ∂φ

E = −(∂t)µγ̇
µ, Lz = (∂φ)µγ̇

µ (2.44)

which are usually interpreted as the test bodie’s energy and angular momentum
with respect to the axis of symmetry. The fourth constant of motion is called
Carter’s constant, K, and it originates from the existence of a Killing tensor,
given by:

σµν = Σ((e1)µ(e1)ν + (e2)µ(e2)ν)− (l + a cos θ)2gµν , K := σµν γ̇
µγ̇ν . (2.45)

This tensor can be obtained from the general expression of the conformal Killing-
Yano tensor for the Plebański-Demiański family of solutions, as presented in Ku-
bizňák and Krtouš (2007). Carter’s constant corresponds somewhat loosely to the
total angular momentum of the test body.
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2.1. Exact Solutions to the Einstein Field Equations

We have mentioned before that the two Killing vector fields generate one-parameter
families of isometries. It is natural to ask if the Killing tensor present in the
Kerr-Newman-Taub-NUT-de-Sitter spacetimes can also be related to some sort of
symmetry. This question can be answered using Hamiltonian formalism. For a
Hamiltonian flow parametrized by λ with Hamiltonian H the derivative of any
function f(x, p) is given by the Poisson bracket:

df

dλ
= {H, f} ≡ ∂H

∂pµ

∂f

∂xµ
− ∂H

∂xµ
∂f

∂pµ
. (2.46)

Each smooth function on phase space can be taken as a Hamiltonian and therefore
gives rise to a local flow. The geodesic flow is generated by the function m. E
and Lz generate translations in t and φ. For rotating black holes the function K
generates a flow that depends on fiber coordinates pµ and can not be projected to
a symmetry of the manifold itself.

It follows from equation (2.45) that in Schwarzschild K is the square of the total
angular momentum of the particle and the flow does project to a symmetry of the
manifold in this case. Carter’s constant is non-negative for all time like or null
geodesics, which can be seen immediately from equation (2.45) and the fact that
gµν γ̇

µγ̇ν ≤ 0 for any future directed causal geodesic. In the case of a 6= 0 it is even
strictly positive for any time like geodesic.
The constants of motion can be used to write the geodesic equation as a set of
four first order ODEs, cf. (Chandrasekhar, 1998, p. 242 ):

ṫ =
χ(Lz − Eχ)

Σ∆θ sin2(θ)
+

(Σ + aχ)((Σ + aχ)E − aLz)
Σ∆r

, (2.47a)

φ̇ =
Lz − Eχ

Σ∆θ sin2(θ)
+
a((Σ + aχ)E − aLz)

Σ∆r

, (2.47b)

Σ2ṙ2 = R(r, E, Lz, K) = ((Σ + aχ)E − aLz)2 −∆rK, (2.47c)

Σ2θ̇2 = Θ(θ, E, Lz, K) = ∆θK −
(χE − Lz)2

sin2 θ
, (2.47d)

where the dot denotes differentiation with respect to the affine parameter λ. Note
that the radial and the θ equation for null geodesics are homogenous in E and
thus for E 6= 0

R(r, E, Lz, K) = E2R(r, 1, LE, KE) (2.48)

Θ(θ, E, Lz, K) = E2Θ(r, 1, LE, KE). (2.49)

where LE = Lz/E and KE = K/E2. This is due to the fact that an affine
reparametrization λ 7→ αλ, γ̇ 7→ α−1γ̇ changes the values of E, Lz and K while
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leaving the trajectories and the aforementioned quotients unchanged.
It turns out that for some questions there are combinations of these conserved
quantities that are more convenient to work with, so we give them their own
names:

Q = K − (aE − Lz)2, (2.50)

L2 = L2
z +Q. (2.51)

One can think of L2 as the total angular momentum of the particle, in the sense
that it is this quantity that is replaced with the spheroidal eigenvalue in the po-
tential of the wave-equation, as we will show in Section 2.6. One can then think of
Q as the component of the angular momentum in a direction perpendicular to the
rotation axis of the black hole.1 It is important though that these interpretations
should not be taken to strictly, because geodesics in Kerr spacetimes do not feature
a conserved total angular momentum vector.

Remark 2.1.1. In contrast to K, Q is not positive anymore but from the equation
of motion (2.47d) we get the condition that Θ ≥ 0 for any geodesic to exist at a
point and thus a lower bound on Q

2.1.5. Trapping

One of the most important features of geodesic motion in black hole spacetimes is
the possibility of trapping. A geodesic is called trapped if its motion is bounded
in a spatially compact region away from the horizon. In Kerr-Newman-Taub-NUT
this corresponds to the geodesics motion being bounded in the r direction. In
Grenzebach et al. (2014) it was shown that one can obtain a parametrization of
the conserved quantities for trapped null geodesics in terms of their radial location:

KE =
16r2∆(r)

(∆′(r))2

∣∣∣∣
r=rtrapp

, (2.52a)

aLE = (Σ + aχ)− 4r∆(r)

∆′(r)

∣∣∣∣
r=rtrapp

, (2.52b)

where ∆′(r) = 2r − 2M is the derivative of ∆(r) with respect to r. Further the
following inequality for the area of trapping, i.e. those points in the exterior region
where trapped null geodesics exist, was derived in Grenzebach et al. (2014):

(4r∆(r)− Σ∆′(r))2 ≤ 16a2r2∆(r) sin2(θ). (2.53)

1The three quantities K, Q and L2 are often labeled differently by different authors.
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2.2. Null geodesics in Kerr

Further it was shown that all trapped null geodesics at fix radius r in the exterior
region are unstable and therefore no trapped null geodesics oscillating in r can
exist in this region. Thus, the above set is complete, in the sense that it includes
all trapped null geodesics that exist in the exterior region.

2.2. Null geodesics in Kerr

Remark 2.2.1. The material in this section was created in joint work with Marius
Oancea and Blazej Ruba. See the lecture notes Paganini et al. (2016).

We are now going to use the Kerr spacetime as an example for a more detailed
discussion of the properties of geodesic motion in black hole spacetimes. The
restriction to Kerr is in part motivated by the fact that in recent years the Kerr
spacetimes have been subject of intense investigations regarding their stability and
uniqueness. Having a thorough understanding of geodesic motion and in particular
the behavior of null geodesics in Kerr spacetimes is helpful to understand many of
the more difficult problems related to these spacetimes. In this section we study
the properties of null geodesics in the exterior region in the sub-extremal case,
where a ∈ [0,M). The geodesic structure of Kerr spacetimes has been subject
of a lot of research. So the facts presented in this section are by no means new,
however our focus is on proving that all these properties can be read off from
one simple plot, thereby giving a unified and accessible presentation of the most
important properties of geodesics in the Kerr spacetime, with regard to the open
problems mentioned above. This presentation should make it easier for people to
understand the general behaviour of null geodesics in Kerr.
The Mathematica notebook that has been developed for the lecture notes Paganini
et al. (2016) is intended to help the reader gain an intuition on the influence of
various parameters on the geodesic motion, despite the complexity of the under-
lying equations. The Notebook (2016) can be downloaded under the permanent
link in the bibliography. In Section 2.6 we explain where these plots give useful
insights.

An extensive discussion of geodesics in Kerr spacetimes and many further ref-
erences can for example be found in (Chandrasekhar, 1998, p.318) and O’Neill
(2014). See Teo (2003) for a nice treatment of the trapped set in Kerr including
many explicit plots of trapped null geodesics at different radii. Here we focus
more on global properties of the null geodesics and less on the details of motion.
Analyzing the turning points for a dynamical system is a powerful tool to extract
information about its global behaviours. For example, in any 1 + 1 dimensional
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2. General relativity and Black holes

system stable bounded orbits only exist if there exist two disjoint turning points
in the spatial direction between which the system can oscillate. For geodesics
in Kerr this has been studied in detail by Wilkins (1972). The techniques used
here are very close to that paper. A different representation of the forbidden re-
gions in phase space can be found in (O’Neill, 2014, p.214) and also in Slezakova
(2006). The presentation chosen in this section is adapted to help understand the
phase space decomposition used in the proof for the decay of the scalar wave in
subextremal Kerr in Dafermos et al. (2014).

2.3. Features of subextremal Kerr spacetimes

The Kerr family of spacetimes describes axially symmetric, stationary and asymp-
totically flat black hole solutions to the vacuum Einstein field equations. In
Boyer-Lindquist (BL) coordinates (t, r, φ, θ) the metric is given by (2.33) with
Q = l = Λ = 0. We will use e0 as given in (2.39) as the local time direction.
Furthermore we define the local rotation frequency of the black hole to be:

ω(r) =
a

r2 + a2
, (2.54)

which has the rotation frequency of the horizon as a limit for r ↘ r+:

ωH = ω(r+). (2.55)

The name choice for ω(r) is motivated by noting that a particle at rest in the local
inertial frame given by the tetrad (2.39) will move in the φ direction in Boyer-
Lindquist coordinates with dφ

dt
= ω(r) with respect to an observer at rest in this

frame at infinity.

We now take a closer look at the Killing field (∂t)
µ. It is timelike in the asymp-

totically flat region and it becomes spacelike in the interior of the ergoregion,
which is defined by the inequality g(∂t, ∂t) ≥ 0 or in terms of BL-coordinates by
−∆+a2 sin2 θ ≤ 0. The case of equality determines the boundary of the ergoregion
which is often referred to as the ergosphere. Solving for the case of equality we
get the radius of the ergosphere to be:

rergo(θ) = M +
√
M2 − a2 cos2(θ). (2.56)

At the equator the ergosphere lies at r = 2M while it corresponds to the horizon
r = r+ on the rotation axis. As a consequence of the fact that (∂t)

µ becomes
spacelike outside of the event horizon, the “energy” E = −(∂t)µγ̇

µ of a geodesic
can be negative inside the ergosphere. This leads us to the Penrose process.

28



2.3. Features of subextremal Kerr spacetimes

We start initially with a an object at infinity that carries the energy E(0) =
−(∂t)µγ̇

(0)µ it follows a trajectory, into the ergosphere where it decays into two
objects. We have local momentum conservation as in special relativity given by

γ̇(0)µ = γ̇(1)µ + γ̇(2)µ. (2.57)

By contracting with the Killing field we get E(0) = E(1) +E(2). If we arrange the

Figure 2.4.: The Penrose process (top view). A particle falls towards the black
hole. Inside the ergoregion it breaks into two pieces. One of the falls
into the black hole, the other escapes to infinity.

decay of our object in a way, such that E(2) < 0 and object 1 escapes to infinity
then we get that E(1) > E(0). We are thus able to extract energy from a rotating
black hole. Christodoulou (1970) showed that the maximum amount of energy
that can be extracted in this way is given by

M −Mirr = M − 1√
2

(
M2 +

√
M4 − a2M2

)1/2

(2.58)

Where Mirr is the irreducible mass of the black hole. This is the mass of the
Schwarzschild black hole that is left over after all the rotational energy of the Kerr
black hole is extracted through the Penrose process. It is given by Christodoulou
(1970)

Mirr =
A

16π
(2.59)

where A = 4π(r2
+ + a2) is the horizon area of the black hole. The horizon area

theorem by Hawking (1971) states that the horizon area of a black hole can not
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2. General relativity and Black holes

shrink through a classical process. Therefore the above defined mass can only
grow. The superradiance effect which will be briefly discussed in section 4.3.2 can
be interpreted as a wave analog to the Penrose process.

2.4. Geodesic Equations

We now focus our attention on null geodesics. For Lz 6= 0 the four equations are
homogeneous in Lz. Analogous to (2.48) for the radial and the angular equations
we have:

R(r, E, Lz, Q) = L2
zR(r, EL, 1, QL), (2.60)

Θ(θ, E, Lz, Q) = L2
zΘ(r, EL, 1,QL). (2.61)

where QL = Q/L2
z and EL = E/Lz.

Remark 2.4.1. To avoid introducing new functions whenever we change between
different sets of conserved quantities we use

R(r, E, Lz, Q) = R(r, E, Lz, K(Q,Lz, E)).

From the homogeneity of the equations of motion (2.47) we get that the only
conserved quantities which affect the dynamics are conserved quotients like EL,
QL or Q

E2 in the case of Lz = 0. The case Lz = 0 can be seen as the limit of
QL and EL tending to infinity. In this section we will omit a separate discussion
of this case as it is essentially equivalent to the Schwarzschild case and it is not
needed for the understanding of the phase space decomposition in Dafermos et al.
(2014). It is sufficient to consider future directed geodesics as the past directed
case follows from the symmetry of the metric when replacing (t, φ) with (−t,−φ).
In Schwarzschild the condition ṫ > 0 guarantees that the geodesic is future directed.
For Kerr a suitable condition is to require that g(γ̇, e0) ≤ 0 is satisfied. From that
we obtain the condition for causal geodesic in the exterior region to be future
directed to be:

E ≥ ω(r)Lz. (2.62)

In terms of the conserved quotients this condition takes the form:

sgn(Lz) =


+1 if E > ω(r)

−1 if E < ω(r)

undet. if E = ω(r)

(2.63)

which eventually allows us to represent the pseudo potential, which will be intro-
duced in the next subsection, for the co-rotating and the counter-rotating geodesics
in the same plot.
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2.4. Geodesic Equations

2.4.1. The Radial Equation

In this section we characterize the radial motion by locating the turning points of
a geodesic in r direction. Turning points are characterized by the fact that the
component of the tangent vector γ̇ in the radial direction satisfies ṙ = 0. From
equation (2.47c) we see immediately that the radial turning points are given by
the zeros of the radial function R. In the following we will investigate the existence
and location of these zeros. In this section we will be working with the conserved
quantity Q as it is well suited to describe the phenomena we are interested here,
namely the trapping and the null geodesics with negative energy.

Lemma 2.4.1. R(r, E, Lz, Q) is strictly positive in the exterior region for Q < 0.

Proof. The radial function can be written as:

R(r, E, Lz, Q) = E2r4 + (a2E2 −Q− L2
z)r

2 + 2MKr − a2Q, (2.64)

which is clearly positive for large r. For the proof we make use of the Descarte’s
rule, which states that if the terms of a polynomial with real coefficients are ordered
by descending powers, then the number of positive roots is either equal to the
number of sign differences between consecutive nonzero coefficients, or is less than
it by an even number. Powers with zero coefficient are omitted from the series. For
a proof of Descarte’s rule see for example (Cohn, 1982, p.172). Applied to (2.64)
with Q < 0 we get that for two zeros of R to exist in r ∈ (0,∞) the conserved
quantities of the geodesic have to satisfy the inequality:

a2E2 −Q− L2
z < 0. (2.65)

Otherwise there are no zeros at all and the proposition is true. Assume the con-
trary. Then for geodesics with certain parameters to exist at a given point, addi-
tionally to R ≥ 0 we also need to have that Θ ≥ 0. Applying this condition to
equation (2.47d) and combining it with inequality (2.65) we obtain the following
estimate:

− cos4 θa2E2 ≥ −Q > 0. (2.66)

This is clearly a contradiction.

Lemma 2.4.1 tells us that geodesics with Q < 0 either come from past null infinity
I− and cross the future event horizonH+ or come out of the past event horizonH−
and go to future null infinity I+. We will discuss the property of these geodesics
in section 2.5.1. For the rest of this section we will restrict to the case of Q ≥ 0.
Note that even though some of the discussions and proofs might be simpler when
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2. General relativity and Black holes

working with KL we are going to work with QL for all discussions that feed into the
plot in section 2.6. This seems to us to be the natural choice adapted to describe
trapping and the ergoregion in phase space.
To find the essential properties of the radial motion, we use pseudo potentials.
The pseudo potential V (r,QL) is defined as the value of EL such that the radius
r is a turning point. In other words it is a solution to the equation:

R(r, V (r,QL), 1, QL) = Σ2ṙ2 = 0. (2.67)

This equation is quadratic in V (r,QL) and for non-negative QL there exist two
real solutions at every radius, denoted by V±. They are given by:

V±(r,QL) =
2Mar ±

√
r∆((1 +QL)r3 + a2QL(r + 2M))

r[r(r2 + a2) + 2Ma2]
. (2.68)

Remark 2.4.2. The pseudo potentials should not be mistaken for potentials known
from classical mechanics, where the equation of motion is given by 1

2
ẋ2+V (x) = E.

However the potentials of classical mechanics can always be considered as pseudo
potentials in the above sense.

The radial function can be rewritten as:

R(r, E , 1, QL) = L2
zr[r(r

2 + a2) + 2Ma2] (EL − V+(r,QL)) (EL − V−(r,QL)) .
(2.69)

This form of R reveals the significance of the pseudo potentials: The only turning
points that can exist for fixed QL > 0 are those where either EL = V+(r,QL) or
EL = V−(r,QL). Analyzing the properties of the V± allows us to extract all the
information we are interested in.
First we note that for r large enough we have that V+ > 0 and V− < 0 for all
QL ≥ 0. However in the limit we have that:

lim
r→∞

V± = 0. (2.70)

At the horizon the limit of the pseudo potential and its derivative are given by:

lim
r→r+

V±(r) = ωH (2.71)

lim
r→r+

dV±
dr

(r) = ±∞. (2.72)

Lemma 2.4.2. For a fixed value of QL the pseudo potentials V±(r,QL) have exactly
one extremum as a function of r in the interval (r+,∞).
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2.4. Geodesic Equations

Proof. It is clear from the above properties that V+ (V−) has at least one maximum
(minimum) in the DOC. From the fact that the two pseudo potentials have the
same limiting value at ∞ and at r+ together with (2.69) we get that in both
limits we have that R(r, EL, 1, QL) ≥ 0. Therefore R(r, EL, 1, QL) has to have an
even number of zeros in the interval (r+,∞). Given the fact that R(r, EL, 1, QL)
is a fourth order polynomial it can have at most 4 zeros. From the asymptotic
behaviour of the potentials V± we get that they need to have an odd number of
extrema. Therefore if for some value of QL one of the potentials has more than one
extremum there exists EL such that R(r, EL, 1, QL) has three zeros in r ∈ (r+,∞).
Applying Descarte’s rule to (2.47c) we infer that R(r, EL, 1, QL) can have at most
three zeros in r ∈ [0,∞). But R(0, EL, 1, QL) ≤ 0 and R(r+, EL, 1, QL) ≥ 0.
Hence there is at least one zero of R(r, EL, 1, QL) in the interval [0, r+], so it is
impossible for R(r, EL, 1, QL) to have three zeros in (r+,∞). From that it follows
that V± can both only have one extremum in that interval.

Stationary points occur at the extrema of the pseudo potentials. So Lemma 2.4.2
tells us that for every fixed value of QL ≥ 0 there exist exactly two trapped
geodesics with radii r = r±trap and energies ELtrap± = V±(r±trap). They will be
studied in depth in section 2.5.2. Bounded geodesics with non-constant r would
only be possible between two extrema of one of the pseudo potentials. These are
excluded by the Lemma.
From (2.47c) we have that for any geodesics to exist we have to haveR(r, EL, 1, QL) ≥
0. This condition is satisfied except if V−(r,QL) < EL < V+(r,QL). This set is
therefore a forbidden region in the (r, EL) plane. Furthermore it follows that
R(r, EL, 1, QL) ≤ 0 for EL = ω(r) with equality only in the limits r → r+ and
r →∞. Therefore we have that:

V−(r) ≤ ω(r) ≤ V+(r). (2.73)

Again, the equality can occur only at the horizon and in the limit r → ∞. This
fact combined with (2.63) shows that for future pointing null geodesics

sgn(Lz) =

{
+1 if EL ≥ V+(r),

−1 if EL ≤ V−(r).
(2.74)

Therefore the pseudopotential V+ determines the behaviour of co-rotating null
geodesics and V− that of counter-rotating ones. Furthermore it is worth noting
that EL ≥ V+(r) implies E > 0. Finally we observe that for every fixed radius
r ≥ r+ we get from inspection of (2.68) that:

∂V−
∂QL

≤ 0 ≤ ∂V+

∂QL

(2.75)
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2. General relativity and Black holes

holds. The equality in the relation occurs again only in the limits r → r+ and
r → ∞. This means that for every radius r > r+ the range of forbidden values
of EL is strictly expanding as QL increases. This fact will be quite useful for the
considerations in section 2.5.2.

2.4.2. The θ Equation

In Schwarzschild spacetimes, due to spherical symmetry the motion of any geodesic
is contained in a plane. This means that for every geodesic there exists a spher-
ical coordinate system in which it is constrained to the equatorial plane θ = π

2
.

This is no longer true in Kerr spacetimes, but most geodesics are still constrained
in θ direction. The allowed range of θ is obtained by solving the inequality
Θ(θ, E, Lz, Q) ≥ 0. After multiplication with sin2(θ), Θ(θ, E, Lz, Q) can be ex-
pressed as a quadratic polynomial in the variable cos2(θ). Hence Θ(θ, E, Lz, Q) = 0
has two solutions given by:

cos2 θturn =
a2E2 − L2

z −Q±
√

(a2E2 − L2
z −Q)2 + 4a2E2Q

2a2E2
. (2.76)

For Q > 0 only the solution with the plus sign is relevant and the motion will
always be contained in a band θmin < θeq < θmax symmetric about the equator
θeq = π

2
. As |Lz| increases, this band shrinks. In fact only in the case Lz = 0 is it

possible for a geodesic to reach the poles θ = 0, θ = π. Otherwise Θ(θ, E, Lz, Q)
blows up to −∞ there. If Q < 0 both solutions are positive and the inclination
of the geodesic with respect to the equator is also constrained away from the
equator, so either θeq < θmin < θmax or θeq > θmax > θmin . These trajectories will
be contained in a disjoint band which intersects neither the equator nor the pole.
This band can degenerate to a point, i.e. there exist null geodesics which stay at
θ = const. The relevance of these trajectories and how they are connected to the
Schwarzschild case will be discussed in the next section. All possibilities for the
potentials that constrain the motion in θ direction are summarized in the Figure
2.5.

2.5. Special Geodesics

We will now apply the discussions of the last section to describe a number of
special geodesics in Kerr geometries. All of these are in some way related to either
the black hole stability problem or the black hole uniqueness problem.
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2.5. Special Geodesics

Figure 2.5.: This figure shows shapes of function Θ
L2
z

for four choices of values of
conserved quotients.

2.5.1. Radially In-/Out-going Null Geodesics

In this section we find geodesics which generalize the radially ingoing and outgoing
congruences in Schwarzschild spacetimes. In section 2.4.1 we saw that the geodesics
with Q < 0 extend from the horizon to infinity. In section 2.4.2 we saw that Q < 0
is again a special case, as these null geodesics can never intersect the equator and in
the extreme case are even constrained to a fixed value of θ. At first this behaviour
seems odd, but a similar situation can be observed in Schwarzschild. If we look
at geodesics which move in a plane with inclination θ0 about the equatorial plane
we see that there exists a set of null geodesics with similar properties as the ones
with Q < 0 in Kerr. It is clear that the radially ingoing geodesic which moves
orthogonally to the axis around which the plane of motion was rotated, moves
at fixed θ value, namely that at which the plane is inclined with respect to the
equatorial plane, hence θ = π/2 ± θ0. Furthermore some null geodesics reach
the horizon before intersecting the equatorial plane. They don’t necessarily move
at fixed θ but their motion in the θ direction is still constrained away form the
equatorial plane and away from the poles of the coordinate system.
Now we want to investigate the null geodesics which move at fixed θ in Kerr.
Demanding that θ = const. is equivalent to requiring Θ = d

dθ
Θ = 0. From these

conditions we obtain:

Lz = ±aE sin2 θ, (2.77a)

Q = −a2E2 cos4 θ, (2.77b)

K = 0. (2.77c)
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By choosing the plus sign for Lz in the above equation, it follows from the re-
maining equations of motion that:

φ̇

ṫ
=
dφ

dt
= ω(r), (2.78a)

ṙ

ṫ
=
dr

dt
= ± ∆

r2 + a2
. (2.78b)

This congruence is generated by the principal null directions e0±e1. When choosing
the minus sign for Lz in (2.77) the remaining equations of motions can not be
simplified in a similar manner. In the case a = 0 these are the radially in-/outgoing
null geodesics. An interesting observation is that along these geodesics the inner
product of the (∂t)

µ vector field is monotone. A simple calculation shows that:

γ̇µ∇µ((∂t)
ν(∂t)ν) = ṙ

2M(r2 − a2 cos2 θ)

Σ2
+ θ̇

2Ma2r sin 2θ

Σ2
. (2.79)

For the principal null congruence we have θ̇ = 0, the coefficient of ṙ is positive and
there is no turning point in r. This property might be interesting in the context
of the black hole uniqueness problem. If one could show a similar monotonic-
ity statement for a congruence of null geodesics in general stationary black hole
spacetimes, one could conclude that the ergosphere in such spacetimes has only
one connected component enclosing the horizon. This is a necessary condition if
one wants to show that no trapped T-orthogonal null geodesics can exist in that
case.

2.5.2. The Trapped Set in Kerr

In this section we will extend on the discussion of section 2.1.5. However we
will limit our discussion to Kerr and use a different characterization in terms of
conserved quantities. As mentioned in section 2.1.5 a geodesic in these spacetimes
is trapped if its motion is bounded in r direction. This is only possible if r = const.
or if the motion is between two turning points of the radial motion. For null
geodesics in Kerr we ruled out the second option in Lemma 2.4.2. We will now
discuss orbits of constant radius.2 These null geodesics are stationary points of the
radial motion, hence null geodesics with ṙ = r̈ = 0. This condition is equivalent

2Null geodesics of constant radius are often referred to as ”spherical null geodesics” but it is
important to note that r = const. does not imply that the whole sphere is accessible for such
geodesics.
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to R(r) = d
dr
R(r) = 0. The solutions to these equations can be parametrized

explicitly by, see Teo (2003):

ELtrap(r) = −a(r −M)

A(r)
= ω(r)

(
1− 2r∆

A(r)

)
(2.80)

QLtrap(r) = − B(r)

A2(r)
(2.81)

A(r) = r3 − 3Mr2 + a2r + a2M = (r − r3)P2(r) (2.82)

B(r) = r3(r3 − 6Mr2 + 9M2r − 4a2M) = (r − r1)(r − r2)P4(r) (2.83)

where P2 and P4 are polynomials in r, quadratic and quartic respectively, which are
strictly positive in the DOC. The following three radii are particularly important:

r1 = 2M

(
1 + cos

(
2

3
arccos

(
− a

M

)))
(2.84)

r2 = 2M

(
1 + cos

(
2

3
arccos

( a
M

)))
(2.85)

r3 = M + 2

√
M2 − a2

3
cos

(
1

3
arccos

(
M(M2 − a2)

(M2 − a2

3
)
3
2

))
(2.86)

satisfying the inequalities:

M < r+ < r1 < r3 < r2 < 4M (2.87)

for a ∈ (0,M). Orbits of constant radius are allowed only inside the interval
[r1, r2], because outside of it Q would have to be negative. This possibility has
already been excluded in Lemma 2.4.1. The boundaries of the interval at r = r1

and r = r2 correspond to circular geodesics constrained to the equatorial plane
with Q = 0. The trapped null geodesics at r = r3 have Lz = 0 which is the reason
why the functions ELtrap and QLtrap blow up there. From the second representation
in (2.80) we see that ELtrap(r)− ω(r) is positive in [r1, r3) and negative in (r3, r2].
Combined with (2.74) this implies that the stationary points in [r1, r3) correspond
to extrema of V+ and the stationary points in (r3, r2] correspond to extrema of
V−. In Lemma 2.4.2 we showed that V+ and V− both have exactly one extremum.
Since extrema of the pseudo potentials always correspond to orbits of constant
radius, we get that the extrema of V+(r,QL) and V−(r,QL) have to be within the
intervals [r1, r3) and (r3, r2] respectively for any value of QL. In Figure 2.6 we plot
the behaviour of these intervals as a function of a/M .
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Figure 2.6.: Plot of the relation between the radius of the equatorial trapped null
geodesics at r1 and r2, the trapped null geodesic with Lz = 0 at r3

and the horizon at r+ for all values of a.

We now know that the maps given by:

[0,∞) 3 QL 7→ r+
trap ∈ [r1, r3)

[0,∞) 3 QL 7→ r−trap ∈ (r3, r2]

which take QL into radii of trapped geodesics corresponding to the unique max-
imum of V+(r,QL) and minimum of V−(r,QL) respectively are one-to-one and
therefore monotone. By using (2.81) the sign of their derivatives can be easily
evaluated in some ε-neighbourhood of r = r3 where the term of highest order in

1
r−r3 dominates:

∂r−trap
∂QL

< 0 <
∂r+

trap

∂QL

. (2.88)

By the equation (2.75) and the fact that radii of trapping always correspond to
global extrema of the pseudo potentials we get that:

∂

∂QL

ELtrap(r
−
trap(QL)) < 0 <

∂

∂QL

ELtrap(r
+
trap(QL)). (2.89)

Using the chain rule and combining these two facts we obtain:

∂ELtrap
∂r

> 0. (2.90)
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These inequalities provide an important piece of the picture of the influence of QL

on the trapped geodesics. We have QL = 0 for the outermost circular geodesics
and as we increase it, the radii of trapping converge towards r = r3 while EL blows
up to ±∞, with the sign depending on the direction from which we approach r3.
We can also describe the function ELtrap(r): it starts with some finite positive
value at r = r1 and increases monotonically to +∞ as r approaches r3. There it
jumps to −∞ and increases again to a finite negative value at r = r2.
It is interesting to ask what region in physical space is accessible for trapped
geodesics. By plugging (2.81) and (2.80) into the equation Θ = 0 we get that for
a geodesic with r = const.:

cos2 θturn =
2
√
Mr2∆(2r3 − 3Mr2 + a2M)− r(r3 − 3M2r + 2a2M)

a2(r −M)2
(2.91)

holds. This gives two turning points in θ direction which are symmetric about the
equatorial plane. The whole region of trapping in the (r, θ) plane is bounded by
curves defined implicitly by (2.91) and r1 ≤ r ≤ r2. Figure (2.7) presents this set
for a particular value of a.

Remark 2.5.1. Two warnings:

1. One has to be careful when interpreting Figure 2.7 (and the plots in the
Mathematica notebook). Despite the fact that the region in physical space
occupies finite range of r values, every individual trapped null geodesic is
still constrained to a fixed radius. See figure 2.8 for a schematic depiction
and see Teo (2003) for an insight on what those trajectories look like in detail.

2. When taking a→M in the Mathematica notebook the ergosphere appears to
develop a kink on the rotation axis. This is an artifact of the coordinate sys-
tem, as the ergosphere coincides with the horizon there and is thus orthogonal
to itself.

2.5.3. T-Orthogonal Null Geodesics

In the ergoregion there exist null geodesics with negative values of E. In physical
space they are constrained to the region defined by equation (2.56). From Lemma
2.4.1 we know that geodesics with Q < 0 reach either I+ or come from I− and
can therefore not have negative values of E. This allows us to use the pseudo
potentials to give a more precise characterization of the ergoregion in phase space.
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2. General relativity and Black holes

Figure 2.7.: The region accessible for trapped null geodesics for a = 0.902. The
shaded region represents the black hole, r ≤ r+. The only qualitative
change in this picture occurs at a = 1√

2
because at this value the region

of trapping starts intersecting with the ergoregion.

(a) r = r1 (b) r1 < r <
r3

(c) r = r3 (d) r3 < r < r2 (e) r = r2

Figure 2.8.: A series of spheres at different radii r showing schematically the two
dimensional bands in which a single trapped null geodesic lives. A
trapped null geodesic can not reach every point in one of these bands.
However for every point in this band there exists a trapped null
geodesic that goes through it. The width of the band for the in-
termediate radii is given by the maximal angle of inclination ı. The
trapped null geodesics for (a) and (b) are prograded, the ones for (d)
and (e) are retrograded. For (c) the trapped/orbitting null geodesics
cross the equatorial plane at an angle of 90◦.
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2.6. Applications for the Virtual Potential Plot

It is located in the region where V−(QL) > 0, between EL = 0 and V−(QL).
An immediate consequence of that is, that all future pointing null geodesics with
negative EL begin at the past event horizon and end at the future event horizon.
Furthermore they must have Lz < 0. Those null geodesics with EL = 0 can reach
the boundary of the ergoregion. In this case equation (2.47d) for Kerr gives us,
that:

QL =
cos2(θmax)

sin2(θmax)
. (2.92)

When calculating the turning points from equation (2.47c) for Kerr we get that:

sin2(θmax)R

(
r, 0, 1,

cos2(θmax)

sin2(θmax)

)
= −r2 + 2Mr − a2cos2(θmax) = 0. (2.93)

The only solution to this equation in the exterior region is:

rturn(θmax) = M +
√
M2 − a2cos2(θmax) (2.94)

which is exactly the location of the ergosphere (2.56). So V−(QL) > 0 can be
considered as the boundary of the ergoregion in phase space. From this considera-
tions we see immediately that T-orthogonal null geodesics are clearly non-trapped
in Kerr. In fact there do not even exist any trapped null geodesics orthogonal
to:

Kν = (∂t)
ν + εmin(∂φ)ν (2.95)

where εmin = min[|V+(0, r1)|, |V−(0, r2)|].

2.6. Applications for the Virtual Potential Plot

Everything we have derived about the behaviour of null geodesics in Kerr space-
times can be represented in a couple of simple plots. See Figure 2.9, in the Mathe-
matica Notebook (2016) provided with this paper the parameters a/M and QL can
be varied. This allows one to develop an intuitive understanding of the influence
of these parameters.

Furthermore by the eikonal approximation it is clear, that a massless wave equation
should relate to the null geodesic equation in the limit of high frequencies. In
Dafermos et al. (2014) it is shown that when separating the wave equation Σ2ψ =
0 the ODE for the radial function in Schrödinger form can be written as:

d2u

dr∗ 2
+

(
R(r, E = ω, Lz = m,L2 = λlm)

(r2 + a2)2
− F (r)

)
u = 0 (2.96)
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2. General relativity and Black holes

Figure 2.9.: Plot of the pseudo potentials V± as function of a compactified ra-
dial coordinate in the exterior region for a = 0.764 and QL = 0.18.
Its qualitative features are preserved when a and QL are changed.
The location of trapping in phase space is indicated by the function
ELtrap(r). The extrema of the pseudo potentials are the intersection
of V+ and V− with this function. Therefore they slide on this curve
as QL increases. The area filled in gray corresponds to geodesics with
E < 0. It is clear from this plot that the regions occupied by geodesics
of negative energy and trapped geodesics respectively are disjoint in
phase space.

with F (r) = ∆
r2+a2

(a2∆ + 2Mr(r2 − a2)) ≥ 0 and hence we have the following
relations:

ω ∼ E, m ∼ Lz, λlm ∼ L2. (2.97)

When trying to understand the different treatments of different parameter ranges
in Dafermos et al. (2014) it is helpful to play with the parameters of the pseudo
potential in the Mathematica Notebook (2016) provided with this thesis. The
construction of the different mode currents becomes much more intuitive when
thinking about where in Figure 2.9 the corresponding parameters are located. Note
that in the high frequency limit the pseudo potentials correspond to the location
of ω2−V (r, ω,m,Λ) = 0 and hence the location where the leading contribution to
the bulk terms of the Qy and Qh currents change their sign.
Another interesting observation is that combining the results in section 2.5.2 and
section 2.5.3 we can see that to separate trapping from the ergoregion in physical
space it is sufficient if we restrict the null geodesics to be either co- or counter-
rotating. In the co-rotating case there simply does not exist an ergoregion and
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the statement is clear. In the counter-rotating case trapping is constrained to
r ∈ (r3, r2] and r3 > 2M ≥ rergo for all Kerr spacetimes with a < M . In this
direction particularly interesting might be the potential functions Ψ± in Hasse
and Perlick (2006) which have interesting properties in physical space.
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The trapped directions on the light cone are closely related to the notion of black
hole shadows. The shadow of the black hole is defined as the innermost trajectory
on which light from a background source passing a black hole can reach the ob-
server. The past trapped set of null geodesics through a point thus corresponds
to the boundary of the black hole shadow. The first discussion of the shadow in
Schwarzschild spacetimes can be found in Synge (1966), and, for extremal Kerr at
infinity, it was later calculated in Bardeen (1973). Analyzing the shadows of black
holes is of direct physical interest as there is hope for the Event Horizon Telescope
to be able to resolve the black hole in the center of the Milky Way (Sgr A*) well
enough so that one can compare it to the predictions from theoretical calculations,
see for example Doeleman et al. (2008) or more recently Fish et al. (2016). This
perspective has led to a number of advancements in the theoretical treatment of
black hole shadows in recent years Cunha et al. (2016), Grenzebach (2015), Gren-
zebach et al. (2014, 2015), Hioki and Maeda (2009), Li and Bambi (2014), Bardeen
(1973), Schee and Stuchlik (2009), Takahashi and Takahashi (2010).
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3. Black Hole Shadows

Overview of this section

In section 3.1.1 we introduce the framework for the discussion of the black hole
shadows, in particular the notion of the celestial sphere. In section 3.2.1 we discuss
the shadow for observers at points of symmetry. We use this context to introduce
the formal definition of degeneracies and how they arise. In section 3.1.2 we recall
the explicit form of the shadow in the spacetimes we consider. We then proceed
to show that this parametrization actually defines a smooth curve for the past
and the future trapped set. In section 3.3 we introduce the recipe of the search
for continuous degeneracies. Finally, in section 3.3.3 we present the proof for the
main result of this chapter.
Appendix A.2 is devoted to deriving several results on Möbius transformations
needed in the main text and a list of somewhat long, explicit expressions have
been shifted to Appendix A.3. In section 3.4 we discuss the use of the celestial
sphere as a tool to approach a broader spectrum of problems.

3.1. Smoothness of the future and past trapped sets
in Kerr-Newman-Taub-NUT spacetimes

Remark 3.1.1. The material in this section was created in joint work with Marius
Oancea see Paganini and Oancea (2017).

The novel insights in this section are contained in the proof of Theorem 3.1.1
which is the first rigorous proof of the observations in Grenzebach et al. (2014).
The significance of Theorem 3.1.1 is that we prove that for any subextremal Kerr-
Newman-Taub-NUT spacetime, including Schwarzschild, the past and the future
trapped sets at any regular point in the exterior region are smooth closed curves
on the celestial sphere of any observer. We would like to stress that Theorem 3.1.1
therefore describes a property of trapping which does not change when going from
Schwarzschild to Kerr-Newman-Taub-NUT.

Beyond its relevance for the discussion of black hole shadows the result is also
of interest with respect to decay estimates for fields in the exterior region of Kerr
black holes. Trapping is one of the biggest obstacle to prove such decay results.
The area of trapping 1 changes substantially when going from Schwarzschild, where
it is restricted to one fix radius, to Kerr where the area of trapping covers a finite
range of radii. This makes it a lot harder to prove decay in Kerr than it is for

1In other publications the area of trapping is referred to as ”photon region”.
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3.1. Smoothness of the future and past trapped sets in Kerr-Newman-Taub-NUT spacetimes

Schwarzschild. This difficulty was only recently overcome in Dafermos et al. (2014)
for all subextremal Kerr space times. To study the decay of fields in Kerr, it is
thus important to understand which properties of trapping survive when going
from Schwarzschild to Kerr. In this section we will provide yet another argument
that the ergoregion and trapping are best to be understood in phase space.

3.1.1. Trapping as a Set of Directions

In this section we will introduce a formal framework for our discussion. This allows
us to give a more technical discussion of the trapped sets in Kerr-Newman-Taub-
NUT spacetimes.

Framework

First we have to introduce the basic framework and notations. LetM be a smooth
manifold with Lorenzian metric g. At any point p in M it is possible to find an
orthonormal basis (e0, e1, e2, e3) for the tangent space, with e0 being the timelike
direction. It is sufficient to treat only future directed null geodesics as the past
directed ones are identical up to a sign flip in the parametrization and we are only
interested in global properties of the null geodesics. The tangent vector to any
future pointing null geodesic can be written as:

γ̇(k|p)|p = α(e0 + k1e1 + k2e2 + k3e3) (3.1)

where α = −g(γ̇, e0) and k = (k1, k2, k3) satisfies |k|2 = 1, hence k ∈ S2. The
geodesic is independent of the scaling of the tangent vector as this corresponds to
an affine reparametrization for the null geodesic. We will therefore set α = 1 in
the following discussion.

Remark 3.1.2. We will refer to the S2(e0) as the celestial sphere of a timelike
observer at p, whose tangent vector is given by e0, along the lines of e.g. (Penrose
and Rindler, 1987, p.8).

Given we fixed a starting point p and a tangent vector (3.1) by choosing k and
α, there exists a unique solution to the geodesic equation with this initial data.
Thus, we make the following definition:

Definition 3.1.1. Let γ(k|p) denote a null geodesic through p whose tangent vector
at p is given by equation (3.1).
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3. Black Hole Shadows

(a) (b)

Figure 3.1.: Conformal diagrams giving a schematic representation of elements of
the sets in Definition 3.1.2.

Suppose now that M is the exterior region of a black hole spacetime with a com-
plete future and past null infinity I± and a boundary given by the future and past
event horizon H+∪H−. We can then define the following sets on S2 at every point
p.

Definition 3.1.2. The future infalling set: ΩH+(p) := {k ∈ S2|γ(k|p) ∩H+ 6= ∅}.
The future escaping set: ΩI+(p) := {k ∈ S2|γ(k|p) ∩ I+ 6= ∅} .
The future trapped set: T+(p) := {k ∈ S2|γ(k|p) ∩ (H+ ∪ I+) = ∅}.
The past infalling set: ΩH−(p) := {k ∈ S2|γ(k|p) ∩H− 6= ∅}.
The past escaping set: ΩI−(p) := {k ∈ S2|γ(k|p) ∩ I− 6= ∅}.
The past trapped set: T−(p) := {k ∈ S2|γ(k|p) ∩ (H− ∪ I−) = ∅}

We further define the trapped set to be:

Definition 3.1.3. The trapped set: T(p) := T+(p) ∩ T−(p).

The region of trapping in the manifold M is then given by:

Definition 3.1.4. Region of trapping: A := {p ∈M|T(p) 6= ∅}.

Definition 3.1.5. We refer to the set ΩH−(p) ∪ T−(p) as the shadow of the black
hole.
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Note that light from a background source, i.e. not in between the black hole
and the observer and sufficiently far away, can only reach the observer in the set
ΩI−(p) and hence the shadow will be black. For any practical purposes one can
only extract information about the boundary of the shadow from an observation.
In the following we are going to show that for the Kerr-Newman-Taub-NUT black
hole the boundary of the shadow is given by the set T−(p) and that this set consists
of those directions that asymptote to the trapped null geodesics in the past.

The trapped sets

We will now discuss the properties of the sets T±(p) in Kerr-Newman-Taub-NUT.
Note that the equations of motion for r (2.47c) and θ (2.47d) have two solutions
that differ only by a sign for a fixed combination of E,Lz, K. This leads to the
important observation, already made in Grenzebach et al. (2014), that the shadow
for the standard observer ,i.e. we work with the tetrad given in (2.39), is symmetric
on the celestial sphere with respect to the k1 = 0 plane (i.e. the great circle in the
celestial sphere defined by the meridians ψ = π/2 and ψ = −π/2 in the coordinate
system we will define below for the celestial sphere). Therefore if (k1, k2, k3) ∈
T−(p) then we always have that (−k1, k2, k3) ∈ T−(p). Further note that from the
radial equation (2.47c) we get immediately that if k = (k1, k2, k3) ∈ T+(p) then
k = (k1, k2,−k3) ∈ T−(p).

We start by analyzing the sets for points of symmetry. First we have a detailed
look at the situation in Schwarzschild. An explicit formula for the shadow of a
Schwarzschild black hole was first given in Synge (1966). We present the argument
here for completeness. In Schwarzschild the orthonormal tetrad (2.39) reduces
to:

e0 =
1√

1− 2M/r
∂t, e1 =

1

r
∂θ, (3.2)

e2 =
1

r sin θ
∂φ, e3 =

√
1− 2M/r∂r.

To determine the structure of T±(p) in Schwarzschild it is sufficient to consider
p in the equatorial plane and k = (0, sin Ψ, cos Ψ) with Ψ ∈ [0, π]. The entire sets
T±(p) are then obtained by rotating around the e1 direction. Note that from the
tetrad it is obvious that E(k) = E(r) is independent of Ψ. On the other hand Lz(k)
is zero for Ψ = {0, π} and maximal for Ψ = π/2. Away from that maximum, Lz
is a monotone function of Ψ. Note that the geodesic that corresponds to Ψ = π/2
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(a) (b) (c)

Figure 3.2.: The trapped set on the celestial sphere of a standard observer at dif-
ferent radial location in a Schwarzschild DOC. Observer (a) is located
outside the photon sphere at r = 3.9M , observer (b) is located on the
photon sphere at r = 3M and finally observer(c) is located between
the horizon and the photonsphere at r = 2.5M . One can see that the
future trapped set moves from the ingoing hemisphere in (a) to the
outgoing hemisphere in (c) as one varies the location of the observer.
The future and past trapped set coincide on the ṙ = 0 line when the
observer is located on the photon sphere at r = 3M in (b)

has k1 = 0 and thus a radial turning point. Thus the E/Lz value of this geodesic
corresponds to the minimum value any geodesic can have at this point in the
manifold. For r 6= 3M this is smaller then the value of trapping and thus there
exist two k with the property that E/Lz(k) = 1/

√
27M2. One of them has k1 > 0

and therefore ṙ > 0 and one has ṙ < 0. For r > 3M the first corresponds to T−(p)
and the second corresponds to T+(p). For 2M < r < 3M the roles are reversed.
For r = 3M we have T+(p) = T−(p) = (0, k2, k3). In Figure 3.2 we depict these
three cases for some fixed radii. To conclude we see that T+(p) and T−(p) are
circles on the celestial sphere independent of the value of r(p).

Definition 3.1.6. A Point of symmetry is a point for which there exists a one
parameter family of isometries with closed orbits, which all leave the point itself
invariant.

Lemma 3.1.1. The sets T+(p) and T−(p) are circles 2 on the celestial sphere of
any timelike observer at any regular point of symmetry in the exterior region of
any subextremal Kerr-Newman-Taub-NUT spacetime.

Proof. To determine the structure of T±(p) we observe that when we pick a fu-
ture/past trapped direction and apply the diffeomorphism, the spacial directions
of TM |p are rotated around the vector pointing along the axis left invariant by

2With circle we mean here the intersection between a sphere and a plane.
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the diffeomorphism. Therefore the future/past trapped direction traces proper
circles on the celestial sphere. Therefore the future and past trapped set at such
a point p always correspond to a collection of circles independent of the details of
the manifold or the location of p therein. We are now going to show that in the
spacetimes under consideration here T±(p) consist of exactly one circle.
For spherically symmetric spactimes this is a well known fact. For Schwarzschild
we presented the detailed argument above. For the other spherically symmetric
black hole spacetimes the argument works essentially the same.
For an observer located at a regular point on the rotation axis of Kerr-Newman-
Taub-NUT black holes we can apply the following argument. Note that for l 6= 0
and a 6= 0 we have to choose C = ±1 for the procedure to apply to the regular
part of the rotation axis in these cases. For all other values of C both parts of
the rotation axis are singular. Hence the discussion here does not apply to those
cases.
From equation (2.47d) it is clear that null geodesics that can reach the rotation
axis have to have Lz = 0. For the case Lz = 0 it is clear that there exists only one
value of Ktrapp

E (Lz = 0) and rtrapp(Lz = 0). To treat an observer on the rotation
axis we need to introduce a new coordinate system which covers the axis. We
will use Cartesian coordinates (t, x, y, z), which are related to the Boyer-Lindquist
coordinates (t, r, θ, φ) by the following relations:

t = t

x = r sin(θ) cos(φ)

y = r sin(θ) sin(φ)

z = r cos(θ)

(3.3)

Then the following set is an orthonormal tetrad on the rotation axis (x = y = 0):

ẽ0 = −
√

z2 + (a+ l)2

z2 − 2mz + a2 +Q2 − l2∂t
∣∣∣∣∣
p

, ẽ1 =
z√

z2 + (a+ l)2
∂x

∣∣∣∣∣
p

, (3.4)

ẽ2 =
z√

z2 + (a+ l)2
∂y

∣∣∣∣∣
p

, ẽ3 =

√
z2 − 2mz + a2 +Q2 − l2

z2 + (a+ l)2
∂z

∣∣∣∣∣
p

.

As ẽ3 points along the rotation axis and is thus left invariant under a rotation of
the manifold, we know that along the trapped set k2

x+k2
y = const. will be satisfied.

Calculating Carter’s constant from the tangent vector on the rotation axis we see
that it is given by:

K = σµν γ̇
µγ̇ν = (1− k2

z)((a+ l)2 + z2) (3.5)
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In the above expression, σµν is the Killing tensor expressed in Cartesian coordi-
nates, on the rotation axis (x = y = 0).We see immediately that on the celestial
sphere there exists at most two values of kz such that:

KE(kz)|p =
K(kz)

E2(ẽ0)

∣∣∣∣
p

= Ktrapp
E (Lz = 0) (3.6)

These correspond to the future and the past trapped set. If the two solutions
coincide we are at z = rtrapp(Lz = 0) and the directions are both future and
past trapped. It remains to show that there will always be at least one value of
kz, such that the condition for future/past trapping is satisfied. We know that
kz = −1 always hits the horizon, while kz = 1 always escapes to infinity and the
infalling and outgoing sets are open due to the continuous dependence on initial
data for solutions to the geodesic equation. Therefore, the trapped sets have to
be non-empty.

3.1.2. Parametrization of the Shadow for generic observers

The parametrization of the shadow at any point in the exterior region of a Kerr-
Newman-Taub-NUT spacetime has been explicitly obtained in Grenzebach et al.
(2014). In Grenzebach et al. (2014) the parametrization of the shadow curve
was in fact obtained for the more general case of the Kerr-Newman-Taub-NUT-
(anti-)de Sitter spacetime family. It was further extended in Grenzebach et al.
(2015) to the full Plebański-Demiański class. In the following we will prove that
this parametrization actually describes a smooth curve everywhere in the exterior
region of a Kerr-Newman-Taub-NUT spacetime. From here on for the rest of
the paper we will always assume that a 6= 0 as a = 0 has been treated in the
previous section. Fixing the orthonormal tetrad (2.39) to which we will refer as
“standard observer”, the celestial sphere can be coordinated by standard spherical
coordinates ρ ∈ [0, π] and ψ ∈ [0, 2π) so that (3.1) can be written as:

γ̇(ρ, ψ)|p = α(−e0 + e1 sin ρ cosψ + e2 sin ρ sinψ + e3 cos ρ). (3.7)

The principal null direction towards the black hole is given by ρ = π. Following
Grenzebach et al. (2014) one finds the following parametrization of the celestial
sphere in terms of constants of motion:

sin(ψ) =
L̃E + a cos2(θ) + 2l cos(θ)√

KE sin(θ)

∣∣∣∣∣
θ(p)

(3.8a)

sin(ρ) =

√
∆KE

r2 + l2 − aL̃E

∣∣∣∣
r(p)

(3.8b)
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where
L̃E = LE − a+ 2lC (3.9)

By plugging the relations (2.52) in the above equations we obtain a parametrization
of the future and past trapped set in terms of the radius to which a particular
future trapped direction is approaching. We use x to parametrize the trapped
sets with x = rtrapp. The parameter x corresponds to the asymptotic value of r
along the past null geodesic with initial tangent vector along the direction defined
by {ρ(x), ψ(x)}. We will show in the following proof that the parameter x is
restricted to the interval [rmin(θ), rmax(θ)]. Here rmin(θ) and rmax(θ) are given as
the intersection of a cone of constant θ with the boundary of the area of trapping.
See Grenzebach et al. (2014), the parametrization of the trapped sets is then given
by:

f(x) := sin(ψ) =
∆′(x){x2 + (l + a cos[θ(p)])2} − 4x∆(x)

4ax
√

∆(x) sin(θ(p))
(3.10a)

h(x) := sin(ρ) =
4x
√

∆(r(p))∆(x)

∆′(x)(r(p)2 − x2) + 4x∆(x)
(3.10b)

Note that the shadow curve is independent of the Manko-Ruiz parameter C. We
are now ready to prove our main Theorem.

Theorem 3.1.1. The sets T+(p) and T−(p) are simple, closed, smooth curves on
the celestial sphere of any timelike observer at any regular point in the exterior
region of any subextremal Kerr-Newman-Taub-NUT spacetime.

Proof. We start by analyzing the right-hand side of (3.10a):

df(x)

dx
=
{x2 + (l + a cos[θ])2}((M − x)3 −M(M2 − a2 −Q2 + l2))

2ax2∆3/2 sin(θ)
(3.11)

which is strictly negative for x ∈ (r+,∞). Further the limit of the right hand
side of (3.10a) is ∞ for x → r+ and −∞ for x → ∞. Therefore, the function
f is strictly monotone in the interval x ∈ (r+,∞) and, hence invertible. Then,
x(ψ) = f−1(sin(ψ)) is a smooth function of ψ with extrema at the extremal points
of sin(ψ). As was observed in Grenzebach et al. (2014) the minimum x = rmin(θ(p))
at ψ = π/2 and the maximum of x = rmax(θ(p)) at ψ = 3π/2 correspond exactly
to the intersections of a cone with constant θ with the boundary of the region of
trapping. This can be seen by setting the left hand side of (3.10a) equal to ±1,
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and comparing to (2.53). So we have that x(ψ) ∈ [rmin(θ(p)), rmax(θ(p))] for all
values of θ(p). Now we take a look at the right hand side of equation (3.10b):

dh(x)

dx
=

2(r2 − x2)∆(r)((x−M)3 +M(M2 − a2 −Q2 + l2))√
∆(x)∆(r)((r2 − x2)∆′(x)

2
+ 2x∆(x))2

. (3.12)

This is positive when x < r(p) and negative when x > r(p). The denominator
never vanishes for x ∈ (r+,∞) because:

(4x∆(x) + (r(p)2 − x2)∆′(x))|{r(p)=r+,x=r+} = 0 (3.13)

and

d

dx
(4x∆(x) + (r(p)2 − x2)∆′(x)) = 2(3x2 − 6Mx+ 2(a2 − l2 +Q2) + r(p)2) > 0,

(3.14)

d

dr(p)
(4x∆(x) + (r(p)2 − x2)∆′(x)) = 2r(p)∆′(x) > 0, (3.15)

where we used r(p) > r+ > M >
√
a2 − l2 +Q2 in (3.14).

If we set x = r(p) in (3.10b) then the right-hand side is equal to 1. Furthermore
in any of the limits r(p)→ r+, r(p)→∞, x→ r+, and as x→∞ it goes to zero.

Case 1. If p /∈ A hence if r(p) /∈ [xmin(θ(p)), xmax(θ(p))] then the two functions

ρ1(ψ) = arcsin(h(x(ψ))) : [0, 2π)→ [ρ1min , ρ1max ] ⊂
(

0,
π

2

)
(3.16)

ρ2(ψ) = π − arcsin(h(x(ψ))) : [0, 2π)→ [ρ2min , ρ2max ] ⊂
(π

2
, π
)

(3.17)

are both smooth with ρ1(0) = ρ1(2π) and ρ2(0) = ρ2(2π). If p is between the
region of trapping and the asymptotically flat end, the function ρ2(ψ) corresponds
to T+(p) and ρ1(ψ) corresponds to T−(p). Because (π/2, π] corresponds to the
geodesic with ṙ < 0. If p is between the region of trapping and the horizon then
the role of ρ1(ψ) and ρ2(ψ) are switched.

Case 2. If p ∈ A we need to do some extra work. For simplicity we only consider
the interval ψ ∈ [π/2, 3π/2] as the rest follows by symmetry of sin(ψ) in [0, π]
across π/2 and in [π, 2π] across 3π/2. We define:

ψ0(r(p)) = π − arcsin

(
∆′(r(p)){r(p)2 + (l + a cos[θ(p)])2} − 4r(p)∆(r(p))

4r(p)
√

∆(r(p))a sin(θ(p))

)
.

(3.18)
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3.1. Smoothness of the future and past trapped sets in Kerr-Newman-Taub-NUT spacetimes

The two functions

ρ3(ψ) =

{
arcsin(h(x(ψ))) if ψ ∈ [π/2, ψ0(r(p))]

π − arcsin(h(x(ψ))) if ψ ∈ (ψ0(r(p)), 3π/2]
(3.19)

ρ4(ψ) =

{
π − arcsin(h(x(ψ))) if ψ ∈ [π/2, ψ0(r(p))]

arcsin(h(x(ψ))) if ψ ∈ (ψ0(r(p)), 3π/2]
(3.20)

are then smooth on [π/2, 3π/2]. For a proof see Appendix A.1 and note that at
ψ0, h(x(ψ)) satisfies the conditions required in the appendix. Since p ∈ A we
have that xmin(θ(p)) < r(p) < xmax(θ(p)). Therefore the geodesic on the celestial
sphere parametrized by xmax(θ(p)) has to have ṙ > 0 and thus has to be in [0, π/2).
On the other hand the geodesic on the celestial sphere parametrized by xmin(θ(p))
has to have ṙ < 0 and thus has to be in (π/2, π]. In fact by the monotonicity of
the right hand side of (3.10a) and the fact that x(ψ0) = r(p) we know that for
ψ ∈ [π/2, ψ0) we have x(ψ) < r(p) and for ψ ∈ (ψ0, 3π/2] we have x(ψ) > r(p).
Thus we can conclude that for p ∈ A, ρ4 corresponds to T+(p) and ρ3 corresponds
to T−(p) and thus both sets are smooth.

Case 3. In the special case when r(p) = xmax(θ(p)) or r(p) = xmin(θ(p)) the
functions ρ1 and ρ2, which describe T±(p), do reach ρ = π/2 at ψ = 3π/2 (for
r(p) = xmax(θ(p))) or ψ = π/2 (for r(p) = xmin(θ(p))) respectively. However since
in these cases we have that

d2

dψ2
(h(x(ψ))) = 0 (3.21)

the two sets meet at this point tangentially and do not cross over into the other
hemisphere.

Together with Lemma 3.1.1 this concludes the proof.

Remark 3.1.3. In Grenzebach et al. (2014) it was observed that ρmax of T+(p)
always corresponds to the trapped geodesic with xmin(θ(p)) and ρmin of T+(p) al-
ways corresponds to the trapped geodesic with xmax(θ(p)) . When p is outside the
region of trapping h(x)|xmax is a local maximum of h(x(ψ)) (as a function of ψ)
and h(x)|xmin is a local minimum of h(x(ψ)). When p is between the region of
trapping and the horizon h(x)|xmax is a local minimum of h(x(ψ)) and h(x)|xmin is
a local maximum of h(x(ψ)). Since outside T+(p) is always described by ρ2(ψ) and
inside by ρ1(ψ), ρmin then always corresponds to xmin and ρmax always corresponds
to xmax. This also holds for p ∈ A. For T−(p) the correspondence is switched.

Remark 3.1.4. We have only proved Theorem 3.1.1 for one standard observer at
any particular point. However since any other observer at this point is related to
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3. Black Hole Shadows

the standard observer by a Lorentz transformation and the Lorentz transformations
act as conformal transformations on the celestial sphere (Penrose and Rindler,
1987, p.14), the Theorem indeed holds for any observer. In Grenzebach (2015) the
quantitative effect on the shape of the shadow of boosts in different directions are
discussed.

Remark 3.1.5. The parametrization for the trapped set on the celestial sphere of
any standard observer in Grenzebach et al. (2014, 2015) was derived for a much
more general class of spacetimes. Therefore Theorem 3.1.1 might actually hold for
these cases as well. However this is beyond the scope of this thesis.

From Theorem 3.1.1 we immediately get the following Corollary:

Corollary 3.1.1. For any observer at any regular point p in the exterior region of
a subextremal Kerr-Newman-Taub-NUT spacetime away from the axis of symmetry
we have that for any k ∈ T+(p) and any ε > 0

• Bε(k) ∩ ΩH+(p) 6= ∅
• Bε(k) ∩ ΩI+(p) 6= ∅.

So if we interpret the celestial sphere as initial data space for null geodesics starting
at p, the Corollary is a coordinate independent formulation of the fact that trap-
ping in the exterior region of subextremal Kerr-Newman-Taub-NUT black holes is
unstable.
See Figure 3.3 as an example on how the trapped sets change under a variation of
the radial location of the observer in a Kerr spacetime.
In the Mathematica Notebook (2016) provided with this thesis the parameters
a/M and Q as well as the location of the observer {r(p), θ(p)} can be varied to
generate the Figures 3.2 and Figures 3.3 .
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3.1. Smoothness of the future and past trapped sets in Kerr-Newman-Taub-NUT spacetimes

(a) (b) (c)

(d) (e)

Figure 3.3.: The trapped set on the celestial sphere of a standard observer at dif-
ferent radial locations in the equatorial plane of the exterior region of
a Kerr black hole with a = 0.9. Observer (a) is located outside the
region of trapping at r = 5M . Observer (b) is located on the outer
boundary of the region of trapping at r = r2 = 3.535M . Observer
(c) is located inside the region of trapping at r = r3 = 2.56M . Ob-
server (d) is located on the inner boundary of the area of trapping at
r = r1 = 1.73M Finally observer (e) is located between the horizon
and the area of trapping at r = 1.59M . Again one can observe how the
two trapped sets move in opposite directions on the celestial sphere
as the observer approaches the black hole. In (a) the future trapped
set is on the ingoing hemisphere and the past trapped set is on the
outgoing hemispere. In (b) they meet in one point tangentially but
are still entirely in one hemisphere except for that one point. In (c)
the trapped sets intersect in two points and both have parts in both
hemispheres. In (d) they only meet at one point tangentially again
(now on the ”other” side of the celestial sphere) and finally in (e) the
future trapped set is entirely in the outgoing hemisphere and the past
trapped set is entirely in the ingoing hemisphere.
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3. Black Hole Shadows

3.2. Shadows and their degeneracies

Remark 3.2.1. The material in section 3.2 and 3.3 was created in joint work with
Marius Oancea and Marc Mars et al. (2017)

In Hioki and Maeda (2009), Li and Bambi (2014) possible ways to extract the
black hole parameters from the observation of the shadow have been explored.
However, a strict treatment of the question ”How much information about the
black hole is there in the shape of the shadow?” has, to our knowledge, not been
carried out. The only work we are aware of, that takes into account the fact
that an observer cannot a priori know what his detailed motion with respect to
the manifold is, can be found in Grenzebach (2015). However, the focus in that
work is more on the explicit deformation due to different velocities rather than a
systematic study on how the freedom of picking any observer at a point influences
the possibility of extracting information about the black hole from the shape of
the shadow.
The most important conceptual idea introduced in this section is the notion of
what it means for the shadows at two points to be degenerate. In the case of
degeneracy there exist two distinct observers for which the shadow is absolutely
identical. Consequently, an observer cannot distinguish - from shape and size of
the shadow alone - between the two situations.
We will put the concept of degeneracy to work in this section by proving the
existence of two continuous degeneracies, one parameter curves in the parameter
space of observers in the exterior region of Kerr-Newman-Taub-NUT spacetimes.
Beyond that, we show that there are no further continuous degeneracies.

The discussion will again be limited to Kerr-Newman-Taub-NUT black holes.
This has two reasons, first for observations within our galaxy the cosmological
constant should be negligible, second including the cosmological constant increases
the complexity of the arguments without providing additional insight.

3.2.1. Degeneration for observers located on an axis of
symmetry

The following discussions applies for observers located on an axis of symmetry, i.e.
an observer located at any regular point p in the exterior region of a black hole
spacetime, for which there exists a one parameter family of isometries with closed
orbits that leave p invariant. This includes in particular any point in the exterior
region of a spherically symmetric black hole spacetime, as well as observers located
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3.3. Which degeneracies exist?

on the rotation axis of e.g. Kerr. The discussion for points of symmetry, is here
treated in a separate section to introduce several important concepts needed for
our main theorem. Points of symmetry are special with respect to degeneracies
as it was shown in section 3.1 that the shadow for observers at regular points of
symmetry in the exterior of Kerr-Newman-Taub-NUT black holes is circular.
It is well-known (see e.g. (Penrose and Rindler, 1987, p.14)) that a change of
observer (i.e. an orthochronus Lorentz transformation of the tetrad) corresponds
to a conformal transformation on the celestial sphere, and vice versa. Restricting
oneself to orientation preserving transformations, they are isomorphic to Möbius
transformations. A fundamental property of conformal transformations on S2 is
that they map circles into circles. As a consequence if p1 and p2 are points in
(possibly different) spacetimes in the family under consideration, and both lie on
an axis of symmetry then, upon identification of the two celestial spheres by a
respective choice of time oriented orthonormal basis, there exists a Lorentz trans-
formation3 (LT) of the observer such that T−(p1) = LT[T−(p2)]. This concept is
central to our argument.

Definition 3.2.1. The shadows at two points p1, p2 are called degenerate if, upon
identification of the two celestial spheres by the orthonormal basis, there exists an
element of the conformal group on S2 that transforms T−(p1) into T−(p2).

Remark 3.2.2. The shadow at two points p1, p2 being degenerate implies that for
every observer at p1 there exists an observer at p2 for which the shadow on S2 is
identical. Because this notion compares structures on S2, the two points need not
be in the same manifold for their shadows to be degenerate. Just from the shadow
alone an observer can not distinguish between these two configurations.

Combining the discussion above with the shape of the shadow at points off the
axis when a 6= 0 described in the next subsection, we conclude that the only reliable
information that an observer known to live in the exterior of a Kerr-Newman-Taub-
NUT black hole can extract from observing a circular shadow is that he/she is on
an axis of the symmetry of the black hole.

3.3. Which degeneracies exist?

The fact that a reflection about the k3 = 0 plane maps T+(p) to T−(p) implies that
the properties of the past and the future trapped sets are equivalent. In particular
this implies that if there exists a conformal map Ψ from T−(p1) to T−(p2) then

3By this we always mean an ortochronus Lorentz transformation.
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3. Black Hole Shadows

there exists another conformal map, related to Ψ by conjugation with a reflection
about the k3 = 0 plane, that maps T+(p1) to T+(p2).

An observer can only see the past, hence T−(p), so we will concentrate on this
curve in the search of degeneracies. However the fact that the properties T−(p)
and T+(p) are equivalent tells us that our results will hold true for both. Here
we would like to remind the reader that T−(p) is symmetric with respect to a
reflection about the k1 = 0 plane.

The question one would like to answer is, which observers can be fully distin-
guished based on the shape of the shadow they observe. A quick inspection of
the equations (3.10) shows that the shadow is invariant up to a reparametrization
x→ x/M as long as the following quantities are constant:

θ,
r

M
,
a

M
,
Q

M
,
l

M
. (3.22)

With this degeneracy we see that the shape of the shadow can only be affected
by the change of dimensionless parameters. There is a discrete degeneracy for two
observers with:

M1 = M2 l1 = −l2 r1 = r2 a1 = a2 Q1 = Q2 θ1 = π − θ2 (3.23)

In the case l = 0 this corresponds to a reflection of the observers position with
respect to the equatorial plane, while when l 6= 0 the spacetime itself changes. In
either case, two observers related by this transformation are fully indistinguishable
from the observation of the shadow.
The comparison for the shadows of two arbitrary observers is a difficult problem
and it is unclear to the authors how to determine all possible degeneracies. We
will therefore restrict ourselves to continuous degeneracies. Hence a family of ob-
servers who form a C1 curve in the space of parameters for which the shadows are
indistiguishable.
In the following we will introduce a method to systematically search for continuous
degeneracies and to prove when such degeneracies do not exist. We will heavily
rely on the fact that we have an explicit parametrization c(x; r, θ,M, a,Q, l) for
the curve defining the boundary of the shadow at a point p with coordinates r, θ
in the exterior region of a Kerr-Newman-Taub-NUT spacetime with parameters
(M , a, Q, l) (and curve parameter x).
To studying continuous degenerations we impose that the first variation of the
curve is zero. From here on we will look at the shadow as a curve in the com-
plex plane which is obtained from the parametrization (3.10) by stereographic
projection of the celestial sphere (Penrose and Rindler, 1987, p.10):

c(x) =
X(x) + iY (x)

1− Z(x)
, (3.24a)
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3.3. Which degeneracies exist?

X(x) = sin(ρ) sin(ψ) = h(x) · f(x), (3.24b)

Y (x) = sin(ρ) cos(ψ) = ±h(x) ·
√

1− f 2(x), (3.24c)

Z(x) = cos(ρ) = −sgn
(
∂h

∂x

)√
1− h2(x). (3.24d)

The freedom of sign choice in (3.24c) comes from that fact that upon stereographic
projection the symmetry with respect to the k1 = 0 plane on the celestial sphere
becomes a reflection symmetry with respect to the real axis for the curve in the
complex plane. The sign in Z makes the curve C1 and is the right choice to de-
scribe T−. If we were to describe T+ instead, the global minus sign in front would
have to be dropped. Outside the area of trapping sgn

(
∂h
∂x

)
has a fixed sign. Inside

the area of trapping it changes sign when x = r, where h = 1 and thus Z = 0.
From the definition of degeneracies for black hole shadows it follows that any de-
generacy is characterized by a change in parameters together with a Möbius trans-
formation on the shadow (as the Möbius transformation on the complex plane
are equivalent to the orientation preserving conformal transformations on the Rie-
mann sphere). Therefore when searching for continuous degeneracies we have to
take the Möbius transformation into consideration. The limitation of our result to
continuous degeneracies arises from the fact that we analyze small perturbations,
hence we linearize the problem.
The first order of the action of any member of the conformal group on S2 on a
curve is given by:

Ψε(c) = c(x) + ε~ξ|c(x) +O(ε2), (3.25)

where ε is a small parameter and where ξ is a conformal Killing vector field on S2.
The first variation of the curve with respect to a parameter p is given by:

c(x; p+ dp) = c(x, p) + ~Vpdp+O(dp2), (3.26)

where dp is an infinitesimal change of the parameter and Vp is given by ∂pc(x, p).
The most generic variation vector for a curve is then:

~V =
∑

p∈P={r,θ,M,a,Q,l}

~Vpdp+
∑

ξ∈Lie(Mb)

~ξ|c(x)εξ. (3.27)

We can now formulate a necessary and sufficient condition for the curve to be in-
variant under a continuous deformation. This is the case if there exists a nontrivial
combination of dp and εξ such that V is tangential to the curve. Letting n be the
normal to the curve c(x, p), the condition is that:

~V · ~n ≡ 0 (3.28)
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3. Black Hole Shadows

has a nontrivial solution in terms of dp and εξ. Here we did not yet restrict the
vector field ξ, however as we will discuss next, there are a priori restrictions on the
most general conformal Killing vector capable of compensating the deformations
induced by the change in parameters.

3.3.1. Vector Fields from Möbius Transformations

By the definition of degeneracies for every observer at point p1 there exists an
observer at point p2 who observes the exact same shadow. For our purpose we
can reformulate this statement the following way: If the shadows at two points are
degenerate, then there exists a Möbius transformation that maps the stereographic
projection of the shadow of a standard observer at point p1 to the stereographic
projection of the shadow of the shadow of the standard observer at point p2.
As we have observed in section 3.1.2 the stereographic projection of the shadow
of any standard observer is reflection symmetric with respect to the real line. A
rather involved argument (which may be of independent interest) is needed to show
that only those conformal transformation that preserve the reflection symmetry
can be used to “counter” the deformation from the change in parameters (as those
correspond to a change between standard observers). The detailed proof is given
in Appendix A.2.
On finds that the most general such conformal Killing vector is an arbitrary linear
combination of the three linearly independent vector fields given by:

~ξ1 = ∂x, ~ξ2 = x∂y + y∂x, ~ξ3 = (x2 − y2)∂x + 2xy∂y, (3.29)

in terms of Cartesian coordinates {x, y} on the complex plane, i.e. z = x+ iy.

3.3.2. Conditions for Continuous Degeneracies

We now start with the explicit calculations. Most of them are by no means difficult,
but they are lengthy and have thus been performed mostly in Mathematica. Here
we will describe the essential steps involved. From here on we will restrict to
a domain of x such that sgn

(
∂h
∂x

)
does not change. This does not restrict our

argument, as our aim is to prove that a certain quantity is zero independent of x.
So it is equivalent to consider the problem in an open and dense interval. With:

~Vp =

(
d(Re(c(x,p)))

dp
d(Im(c(x,p)))

dp

)
, (3.30)
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and with the normal vector to a curve parametrized by x in two dimensions given
by:

~n = ±
(

d(Im(c(x)))
dx

−d(Re(c(x)))
dx

)
, (3.31)

we can calculate the various terms that show up in (3.28). Note here that the sign
choice in the definition of the normal vector corresponds to the choice between
the inward and the outward pointing normal to the curve. Because we want to
find curves with V · n = 0 it doesn’t matter which orientation or normalization
we choose for n as long as we choose it consistently, hence we pick the plus sign.
From equation (3.24a) we directly get:

Re(c(x)) =
X(f(x), h(x))

1− Z(h(x))
, (3.32)

Im(c(x)) =
Y (f(x), h(x))

1− Z(h(x))
. (3.33)

Plugging everything in, we obtain the following result in terms of f(x) and h(x):

~Vp · ~n =
h(x)

(
∂f(x,p)
∂x

∂h(x,p)
∂p
− ∂f(x,p)

∂p
∂h(x,p)
∂x

)
√

1− f 2(x)
√

1− h2(x)(1−
√

1− h2(x))2
, (3.34)

~ξ1 · ~n =

√
1− h2(x)f(x)h(x)∂f(x)

∂x
+ (1− f 2(x))∂h(x)

∂x√
1− f 2(x)

√
1− h2(x)(1−

√
1− h2(x))2

, (3.35)

~ξ2 · ~n =
h2(x)∂f(x)

∂x√
1− f 2(x)(1−

√
1− h2(x))2

, (3.36)

~ξ3 · ~n =
h2(x)(1−

√
1− h2(x))

(
f(x)h(x)∂f(x)

∂x
+ ∂h(x)

∂x
− f 2(x)∂h(x)

∂x

)
√

1− f 2(x)
√

1− h2(x)(1−
√

1− h2(x))4
(3.37)

− f(x)h4(x)∂f(x)
∂x√

1− f 2(x)
√

1− h2(x)(1−
√

1− h2(x))4
.

At this point it is important to note that f(x, θ,M, a,Q, l), h(x, r,M, a,Q, l) and
all their partial derivatives are rational functions in x after multiplication with√

∆(x). For a list of all partial derivatives of f(x, θ,M, a,Q, l) and h(x, r,M, a,Q, l)
see Appendix A.3. Hence any product of f , h and their derivatives which contain
an even number of factors is a rational function in x, while any such product with
an odd number of factors is a rational function in x after multiplication with ∆r(x).

(i.e. h(x)f(x)∂f(x,p)
∂x

∂h(x,p)
∂p

and h3(x)
(
∂f(x,p)
∂x

)2√
∆(x) are both rational functions

in x).
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Further we notice that away from the real axis we have f 2(x) < 1 and outside the
area of trapping we always have h2(x) < 1.

Definition 3.3.1. A degeneration is called intrinsic when there is no need to act
with a Möbius transformation to counter the deformation in the shadow due to the
change in parameters.

The condition for an intrinsic degeneracy of the shadow is then the existence of
a non-trivial value of dp such that the following linear combination vanishes:∑

p∈P

(
∂f(x, p)

∂x

∂h(x, p)

∂p
− ∂f(x, p)

∂p

∂h(x, p)

∂x

)
dp ≡ 0, (3.38)

where P is the set of parameters within which we are searching for degeneracies of
the shadow. If we now write down the general linear combination that we required
to be zero in condition (3.28):

β~ξ1 · ~n+ α~ξ2 · ~n+ γ~ξ3 · ~n+
∑
p∈P

~Vp · ~ndp ≡ 0, (3.39)

we get one set of terms which are products of f , h and their derivatives with
an odd number of total powers and another set of terms with an odd number of
total powers but an additional factor of

√
1− h2(x). Now if

√
1− h2(x) is not a

rational function (showing this will be part of our program), then for the above
condition to be true, both sets of terms have to be equal to zero on their own, as
adding a rational and an irrational function can never be equal to zero unless both
functions themselves are equal to zero on their own. This gives us a system of two
equations that we can solve for β and γ:

β =

∑
p∈P h(x)

(
∂f(x,p)
∂x

∂h(x,p)
∂p
− ∂f(x,p)

∂p
∂h(x,p)
∂x

)
dp

2
(

(1− h2)f(x)h(x)∂f(x)
∂x
− (1− f 2(x))∂h(x)

∂x

) (3.40)

+ α
h2(x)∂f(x)

∂x

2
(
f(x)h(x)∂f(x)

∂x
− (1− f 2(x))∂h(x)

∂x

) ,
γ =

∑
p∈P h(x)

(
∂f(x,p)
∂x

∂h(x,p)
∂p
− ∂f(x,p)

∂p
∂h(x,p)
∂x

)
dp

2
(

(1− h2)f(x)h(x)∂f(x)
∂x
− (1− f 2(x))∂h(x)

∂x

) (3.41)

− α h2(x)∂f(x)
∂x

2
(
f(x)h(x)∂f(x)

∂x
− (1− f 2(x))∂h(x)

∂x

) .
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Now we know that β and γ both are constants. With the above result this is
only possible if both terms are independent of x individually. Addding them and
noticing that α = 0 is always a possibility, we conclude that the condition for the
existence of a degeneracy of the shadow within a certain set of parameters P is
the existence of a non-trivial dp satisfying:

∂

∂x

 ∑
p∈P h(x)

(
∂f(x,p)
∂x

∂h(x,p)
∂p
− ∂f(x,p)

∂p
∂h(x,p)
∂x

)
dp

2
(

(1− h2)f(x)h(x)∂f(x)
∂x
− (1− f 2(x))∂h(x)

∂x

)
 ≡ 0 (3.42)

has a non-trivial solution in terms of the dp. If only the trivial solution exists
than there exists no continuous degeneracy within the parameter set P . We can
ellaborate further on the role of α as follows: either

∂

∂x

 h2(x)∂f(x)
∂x

2
(
f(x)h(x)∂f(x)

∂x
− (1− f 2(x))∂h(x)

∂x

)
 ≡ 0, (3.43)

and α can take any value but with the the only effect of modiying both β and
γ, or (3.43) does not hold, and we must take α = 0. In no case the validity of
(3.43) affects the existence of a degeneracy. In fact, one can show that the above
condition can never be satisfied but since this is of no relevance to our argument,
we will omit the proof here and just assume α to be zero. For the actual proof
this leaves us with the following strategy:

1. Check whether or not intrinsic degeneracies exist using condition (3.38).

2. Check whether eventual intrinsic degeneracies can be used to eliminate pa-
rameters from the set within which one has to search for degeneracies.

3. Check that
√

1− h2(x) is an irrational function for all possible combinations
of the remaining parameters in P .

4. Check that the denominator of the first term in (3.40) is not equivalent to
zero for all possible combinations of parameters.

5. Check whether there exist any non-trivial solutions to (3.42) for all possible
combinations of the remaining parameters.

Note that wherever in these steps we have to show that something is either equiv-
alent to zero or not equivalent to zero the expressions we have to check are poly-
nomials. Hence the condition is that the coefficients for every order of x have to
be equal to zero simultaneously, which leaves us with a system of equations that
has to be satisfied. These system of equations in the steps above are of different
complexities, however for most steps too involved to be solved by hand. Note that
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3. Black Hole Shadows

the derivation until here is independent of the detailed form of f(x) and h(x) and
hence in principle valid for any black hole spacetime where the parametrization
(3.10) exists, hence given the results in Grenzebach et al. (2015) the following
analysis can in principle be carried out for the entire Plebański-Demiański class of
black hole spacetimes.

3.3.3. Continuous Degeneracies

We now apply the above recipe to the Kerr-Newman-Taub-NUT family, which
we are interested in the present work, hence our set of parameters is given by
P = {M,a,Q, l, r, θ} for this section. We will here re-derive the degeneracy already
mentioned in (3.22) to illustrate the way the method works. We start with the
first point in the list, the search for intrinsic degeneracies.

Lemma 3.3.1. There are two intrinsic degeneracies given by:

a

M
= C1,

r

M
= C2,

Q

M
= C3,

l

M
= C4, θ = C5. (3.44)

and

a sin θ = C1, l + a cos θ = C2, Q+ 2a cos θ(l + a cos θ) = C3,

r = C4, M = C5.

Proof. The derivatives in Appendix A.3 are written such that every term in (3.38):(
∂f

∂x

∂h

∂a
−∂f
∂a

∂h

∂x

)
da+

(
∂f

∂x

∂h

∂M
− ∂f

∂M

∂h

∂x

)
dM +

(
∂f

∂x

∂h

∂r

)
dr

+

(
∂f

∂x

∂h

∂Q
− ∂f

∂Q

∂h

∂x

)
dQ+

(
∂f

∂x

∂h

∂l
− ∂f

∂l

∂h

∂x

)
dl −

(
∂f

∂θ

∂h

∂x

)
dθ ≡ 0

(3.45)

has the same denominator. The numerator in the above equation is a polynomial
in x of order 11. Hence this condition gives us a system of 11 equation. Solving
this system leaves us with two degrees of freedom. One of the solution is given by
dl = ldM/M . Insewrting this yields the following set of ODEs:

da

a
=
dM

M
,

dr

r
=
dM

M
,

dQ

Q
=
dM

M
,

dl

l
=
dM

M
, dθ = 0, (3.46)

which can be integrated to give:

a

M
= C1,

r

M
= C2,

Q

M
= C3,

l

M
= C4, θ = C5. (3.47)
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where C1, C2, C3, C4 and C5 are integration constants. We now explain a method
that will be used several times below. A degeneration involving four integration
constants means that (locally) the parameter space is threaded by a congruence of
curves, with any two points along the same curve having identical shadows. Con-
sider now another degeneracy, independent of the previous one. This means that
the vector field tangent to the new congruence of curves is linearly independent of
the previous one. Consider a point p in parameter space where the two vectors are
linearly independent. At that point, and in fact in an open neighbourhood thereof,
the two congruences of curves are nowhere tangent to each other. It follows that
the shadow at any point in this open set is now invariant under a two parame-
ter family of transformations, i.e. a two-dimensional surface in parameter space.
Consider a hypersurface passing through p and transverse to the first congruence.
The intersection of this hypersurface with the invariant two-dimensional surface
is necessarily a non-trivial degeneration curve, which obviously does not belong
to the first congruence. This means that we can look for linearly independent de-
generations by restricting the problem to a hypersurface transverse to the original
one. This greatly simplifies the computations. Geometrically, the procedure is
analogous to performing a gauge fixing. In summary, the idea is to use the exist-
ing degenerations to reduce the order of the problem. Point (2) in the strategy
outlined above refers precisely to this “gauge fixing” procedure.

Applying this strategy, the second degeneracy condition can be found without
loss of generality by setting dM = 0 (the foliation by hypersurfaces is given by
M = const, which indeed is transverse to the congruence of curves defined by
(3.47)). Solving the set of equations obtained from (3.45) with dM = 0 yields:

dθ =
sin θ

a
dl, da = − cos θdl, dQ = 2(l + a cos θ)dl, dr = 0, dM = 0,

(3.48)

and can be integrated to yield:

a sin θ = C1, l + a cos θ = C2, Q+ 2a cos θ(l + a cos θ) = C3, r = C4, M = C5,
(3.49)

where C1, C2, C3, C5 and C5 are again integration constants.

The first degeneracy can be “gauge fixed” immediately and globally by fixing
M = const and restricting the whole problem to this lower dimensional parameter
space. We want to exploit in a similar way the second degeneracy and reduce the
problem further. The vector field along the second degeneration can be read off
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3. Black Hole Shadows

directly from (3.48) and it always has a non-zero component along the l direction.
Thus, a suitable family of transverse hypersurfaces is l = const.

Now we want to prove that if we set M = const and l = const then there is no
further degeneracy in P = {a, r,Q, θ}. We start with point (3) of the recipe in the
previous section.

Lemma 3.3.2. The function
√

1− h2(x) is irrational.

Proof. We need to prove that

[∆′(x)(r2 − x2) + 4x∆(x)]2 − 16x2∆(r)∆(x) = P (x)2 (3.50)

admits no solution where P (x) is a polynomial on x. The leading term in the
right-hand side is 4x6, which combined with the fact that a global sign in P (x) is
irrelevant, shows that P (x) must be of the form P (x) = 2x3 +K2x

2 +K1x+K0.
The zero, first and fifth order coefficients in (3.50) are immediately solved to give:

K2 = −6M, K1 = −2ε(r2 + 2β), K0 = 2εMr2,

where ε = ±1 and β := a2 − l2 + q2. The choice ε = −1 makes P (x) ≡ ∆′(x)(r2 −
x2)+4x∆(x) and equation (3.50) becomes 16x2∆(r)∆(x) = 0, which is impossible
for r in the exterior region. For the choice ε = 1 the coefficients in x4 and x3 in
(3.50) impose, respectively:

2Mr + β = 0,

−2(2Mr + β)−∆(r) + β = 0.

Since in the exterior region r > r+ > 0, the first requires β < 0 and the second
∆(r) = β < 0, which is impossible.

We conclude that
√

1− h2(x) is an irrational function.

Next we check that the denominator in (3.42) is non-trivial for all allowed pa-
rameter combinations.

Lemma 3.3.3.(
(1− h2)f(x)h(x)

∂f(x)

∂x
− (1− f 2(x))

∂h(x)

∂x

)
6≡ 0 (3.51)
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Proof. Plugging in the parametrization (3.10) we get:√
∆(r){−x(∆′(x))2 − 2∆(x)(∆′(x)− x∆′′(x))}g1(x)

16a2x
√

∆(x) sin2 θ(4x∆(x) + (r2 − x2)∆′(x))3
6≡ 0, (3.52)

where g1(x) is given by the following polynomial of order six:

g1(x) =16x
[
x2 + (l + a cos θ)2

]
∆(r)

(
2
[
x2 + (l + a cos θ)2

]
∆′(x)− 8x∆(x)

)
−(

4x∆(x) + (r2 − x2)∆′(x)
) (

32a2x(r2 − x2) sin2 θ

+(r2 + (l + a cos θ)2)
(
−32x∆(x) + 8(x2 + (l + a cos θ)2)∆′(x)

))
.

(3.53)

The first factor in the numerator of (3.52) is clearly non-zero for an observer in
the exterior region. The second factor is a poynomial in x with leading term −4x3,
hence non-indetically zero. The zeroth order coefficient for g1(x) is:

− 32M2r2(l + a cos θ)2(r2 + (l + a cos θ)2), (3.54)

thus the only way this can be zero for an observer in the exterior region is if
l = −a cos θ. Plugging that in for the other coefficient we get that the first or-
der coefficient is given by −64MQ2r4 and the fifth order coefficient is given by
−192M(−Q2 + 2Mr). Those can never be equal to zero at the same time which
finishes the proof for this lemma.

When we plug the parametrization into the numerator inside the parenthsis in
(3.42) we get this is equal to:

{−x(∆′(x))2 − 2∆(x)(∆′(x)− x∆′′(x))}g2(x)

2a2
√

∆(x) sin θ(4x∆(x) + (r2 − x2)∆′(x))3
, (3.55)

where g2(x) is given by the following polynomial of order five:

g2(x) =2a
[
x2 + (l + a cos θ)2

]
(4x∆(x) + (r2 − x2)∆′(x))·

(2QdQ+ 2ada+ (2r − 2M)dr)−{
16x(x2 − r2)(da+ a cot θdθ)∆(x) + 16aQx

[
r2 + (l + a cos θ)2

]
dQ+

16a2x
[
r2 + (l + a cos θ)2

]
da+ (2x− 2M)·[

8ar
[
x2 + (l + a cos θ)2

]
dr + 4(r2 − x2)(x2 + l2 − a2 cos2 θ)da

+
4a(r2 − x2)(2al + cos θ(x2 + l2 + a2 + a2 sin2 θ))

sin θ
dθ

]}
∆(r).

(3.56)

69



3. Black Hole Shadows

We can now plug (3.52) and (3.55) into condition (3.42) to obtain:

∂

∂x

(
8x sin θg2(x)√

∆(r)g1(x)

)
≡ 0. (3.57)

At this point we introduce the notion of a restricted degeneracy.

Definition 3.3.2. A restricted degeneracy is one where a combination of param-
eters has to be zero instead of just being constant.

Since a degeneracy is defined by a curve in parameter space, two things may
happen. Either the curve is tangent to the submanifold of parameter space defined
by the restrited degeneracy, or it is transverse to it. Im the latter case, the curve
leaves immediately the submanifold, and hence the degeneration curve must exist
away from the submanifold. It follows that the only degeneracies that one could be
missing by the general analysis are those satisfying not only that the parameters
are zero, but also that their variation is zero, so that the curve is tangent to the
restricted submanifold.

An example of a restricted degeneracy is sin θ = 0, under which condition (3.57)
is obviously satisfied. By the argument above, the corresponding degeneration
curves must satsify dθ = 0. The other parameters can vary arbitrarily in this case.
Thus, with a slight abuse, we recover the degeneracy on the rotation axis. Of
course, the argument in this case is not fully sound since it ignores the fact that
the coordinate system and the shadow parametrization breaks down on the axis.
This argument just serves the purpose to illustrate the concept of a restricted
degeneracy. The situation on the rotation axis was treated properly in section
3.2.1. In the following we will always assume that sin θ 6= 0.

Lemma 3.3.4.

∂

∂x

(
8x sin θg2(x)√

∆(r)g1(x)

)
≡ 0 =⇒ g2(x) ≡ 0. (3.58)

Proof. First note that (3.57) can only be true if either g1(x) = Bxg2(x) for some
non-zero constant B, or if g2(x) ≡ 0. We will now exclude the first possibility.
Note that the zeroth order coefficient of xg2(x) is zero and with the zeroth order
coefficient for g1(x) given in (3.54). Thus, the only chance for the two to be
proportional is if:

l = −a cos θ. (3.59)

We fixed l this requires for dθ = cot θa−1da to hold. However plugging these two
condition into g2(x) we get that now its zeroth order coefficient also vanishes. Thus
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not only the zeroth, but also the first term in g1(x) must be zero. Plugging (3.59)
into g1(x) it follows that its first order coefficient is given by −64MQ2r4, which
vanishes only if Q = 0. Setting Q = 0 and dQ = 0 everywhere, the first order
coefficient in g2(x) zero, while the second order coefficient of g1(x) is 96M2r4. This
is manifestly non.zero and we reach a contradiction. Thus, the only possibility is
g2(x) = 0 and the Lemma is proved.

From this lemma, the remaining task is to show that there exists no non-trivial
solution for g2(x) ≡ 0 which is equivalent to condition (3.38). We emphasize, in
particular, that the previous lemma already implies that all degenerations of the
shadow must be intrinsic.

The next Theorem, which is the main result of this paper, proves that there are
no more degeneracies than those already found.

Theorem 3.3.1. The only continuous degenerations of the black hole shadow for
observers located at coordinate position r, θ in the exterior region of Kerr-Newman-
Taub-NUT black holes with parameters M , a, Q and l are given for observers such
that their parameters have the same value for all the following functions:

a

M
= C1,

r

M
= C2,

Q

M
= C3,

l

M
= C4, θ = C5. (3.60)

or

a sin θ = C1, l + a cos θ = C2, Q+ 2a cos θ(l + a cos θ) = C3, r = C4 M = C5.
(3.61)

Proof. The two degeneracies have already been derived in Lemma 3.3.1. Given
Lemma 3.3.4 we know that the condition for degeneracies to exist is given by
(3.57). The only thing remaining to show is that g2(x) ≡ 0 has no non-trivial
solutions. The highest order coefficient is given by:

aQdQ+ a(r −M)dr + (a2 −∆(r))da− a cos θ∆(r)

sin θ
dθ = 0. (3.62)

We solve this for dr and substitute back into g2. This leads to a a third order
polynomial in x, i.e. g2 =

∑3
i=0wix

i, and each coefficient wi must vanish. The
combination Mw3 + w2 is very simple:

Mw3 + w2 = −16∆(r)M(r2 + (l + a cos θ)2)

sin θ
(a cos θdθ + sin θda) = 0.
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3. Black Hole Shadows

The first factor is nowhere zero in the exterior region, so we can solve for da:

da = −a cos θ

sin θ
dθ, (3.63)

and substitute back into g2(x), which factorizes as:

g2(x) =
16a∆(r)(r − x)

r −M g3(x),

where g3(x) is a quadratic polynomial in x. Obviously, g2 is identically zero only
if g3 ≡ 0. The highest order term of g3 is:

−rQdQ+
a

sin θ
(l(M − r) + aM cos θ) dθ = 0. (3.64)

At this point we need to split the treatment in two cases depending on whether
Q ≡ 0 or not.

For the case with Q 6≡ 0, we solve (3.64) for dQ and substitute back into g3 to
obtain:

g3(x) =
aM(r −M)(r2 + (l + a cos θ)2)

r sin θ
(l + a cos θ) dθ.

Thus g3(x) ≡ 0 can can only happen if l + a cos θ = 0. Taking its differential and
inserting da from (3.63) yields −a(sin θ)−1dθ = 0, hence dθ = da = dr = dQ = 0
and we have no continuous degeneration.

The remaining case is when Q = 0 and dQ = 0. We want to impose g3(x) ≡ 0,
so that in particular it must be that g3(x = M) = 0. Evaluating:

g3(x = M) =
Ma2 cos θdθ (r2 + (l + a cos θ)2)

sin θ
,

which implies cos θdθ = 0, and hence dθ = 0 (if dθ 6= 0 it must be θ = π/2 so that
dθ = 0 anyway). Consequently dθ = da = dr = dQ = 0, which finishes the proof.

3.4. The Celestial Sphere as a Tool

The following section contains partial results towards resolving the question of
whether there can exist trapped null geodesics orthogonal to the Killing vector
field T in general smooth stationary black hole space times with positive surface
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gravity. The results in this section do not allow a conclusive answer however they
might turn out to be useful tools on the way towards an actual proof.

In the following we will make heavy use of the continuous dependence on initial
data for the geodesic equation. We will use the following theorem 4

Theorem 3.4.1. Let M be a C1 spacetime. Let p and q be two points on the
same geodesic γ, with the tangent vector at p pointing towards q. Let p and q be
separated by a finite affine parameter. Let U(q) be an open neighbourhood of q in
M then there exists an open neighbourhood TU(p, γ̇|p) of (p, γ̇|p) in TM such that
any geodesic in this neighbourhood intersects U(q).

Proof. Let Un, n ∈ [0, N ] be a finite sequence of normal neighbourhoods that cover
γ between p and q with p ∈ U0 and q ∈ UN . Let Ψn be the coordinate chart that
belongs to the normal neighbourhood Un.
Now we pick a sequence of points pn such that pn ∈ Un ∩ Un−1.
For pN the theorem is true by the continuous dependence on initial data for ODEs
in Rn, for a proof see (Hartman, 2002, p.95).
For pN−1 we have to do a little extra work. We have to show that there exists a
neighbourhood TU(pN−1, γ̇|pN−1

) such that for any γ̃(λ) that is a solution to the
geodesic equation with initial data in TU(pN−1, γ̇|pN−1

) there exists a parameter λ0

such that (γ̃(λ0),˙̃γ(λ0)) ∈ TU(pN , γ̇|pN ). This is true by applying the continuous
dependence on initial data for ODEs in UN−1 and observing that for points in
UN ∩UN−1 the determinant of the Jacobian of the map ΨN ◦ (ΨN−1)−1 from Rn to
Rn is bounded from above and below.
Now if it is true for pN−1 it is clear that it is true for any pn and by that also for
p itself.

For our further argument we will only need the following corollary of Theorem
3.4.1.

Corollary 3.4.1. Let M be a C1 spacetime. Let p and q be two points on the
same null geodesic with the tangent vector γ̇(k|p) at p pointing towards q. Let p
and q be separated by a finite affine parameter. Let e0 be a unit timelike vector
and S2(e0) the associated celestial sphere. Let U(q) be an open neighbourhood of q
in M then there exists an open neighbourhood Bε(k) of k on S2(e0) such that any
null geodesic γ(k̃|p) with k̃ ∈ Bε(k) intersects U(q).

Where γ(k̃|p) is given by definition 3.1.1.

4Despite the fact that this is a rather basic statement, we were unable to find a source for this
Theorem in the form we intend to use here. Nevertheless it is to be expected that this result
is in fact well known.
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3.4.1. Existence of Trapping in General Black Hole Spacetimes

In the following we will show that the existence of trapping is a generic feature
of black hole spacetimes. Recall that H± = J−(I+) ∩ J+(I−)\J∓(I±). In Kerr,
Schwarzschild and Minkowski I± are smooth. The various stability proofs for
Minkowski space (Christodoulou and Klainerman, 1993, Hintz and Vasy, 2017,
Bieri, 2009) come to different conclusions on the regularity of I+ in these more
generic settings depending on the choice of initial data. For the arguments in this
section it would of course be easiest to assume that I± are smooth, however for
the simple argument presented here it is sufficient to assume that they are in C1.

Lemma 3.4.1. Let M be a C1 spacetime. Let M be compactifiable with complete
I±. Let p be any point in J−(I+) ∩ J+(I−). If the sets ΩH±(p) are non empty
then they are open in S2(e0)

Proof. Let k be in ΩH+(p). Let q0 be the point where γ(k|p) intersects the event
horizon H+. Since q0 is a regular point in M, γ(k|p) can be extended across
q0 and hence the affine parameter between p and q0 has to be finite. Let q be
a point on γ(k|p) in the future of q0 and U(q) an open neighbourhood of q in

M with U(q) ∩ J−(I+) ∩ J+(I−) = ∅ then Corollary 3.4.1 guarantees that the
Lemma is true, because any null geodesic that intersects U(q) has to intersect the
horizon.

The proof for ΩH− is identical.

Lemma 3.4.2. Let M be a C1 spacetime. Let M be compactifiable with complete
I± in C1. Let p be any point in J−(I+) ∩ J+(I−). Then ΩI±(p) are open sets in
S2.

Proof. Let k be in ΩI+(p). Let M̃ be the closure of the compactification of M . Let
q0 be the point where γ(k|p) intersects I+. The spacetime and therefore also the
null geodesic γ(k|p) can be extended across the conformal boundary of M̃ . Note
that for the following it is not relevant that this extension is not unique but it has
to be in C1. Now q0 is a regular point in this extension and the affine parameter
between p and q0 is finite in the compactification. Let q be a point on γ(k|p) in
the future of q0 and U(q) an open neighbourhood of q in the extension of M̃ with
U(q) ∩ J−(I+) ∩ J+(I−) = ∅ then Corollary 3.4.1 guarantees that the Lemma is
true, because any null geodesic that intersects U(q) has to intersect I+.
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The proof for ΩI− is identical. Note that the regularity assumptions on I± in
this Lemma can quite likely be relaxed and replaced by a sufficiently fast fall off in
the requirements of asymptotic flatness. The argument would go along the lines
that in Minkowski space null geodesics can only have outward turning points. For
Schwarzschild and Kerr this is true far enough from the black hole. This is expected
to be true far enough out for any asymptotically flat spacetime. Therefore once
the outgoing null geodesic enters this region it can only move further away. This
will be true for the ones close by as well. Thereby establishing the openness of the
sets without going all the way out to I± and therefore independently of the fact
whether the manifold can be extended across I± in any regularity.
These Lemmas allow us to prove the main theorem in this section.

Theorem 3.4.2. LetM be a C1 spacetime. LetM be compactifiable with complete
I± in C1. Let p be any point in J−(I+) ∩ J+(I−). If ΩH±(p) is non-empty then

• T±(p) is non-empty

• let w(λ) be any continuous path on S2(p) with λ ∈ [0, 1] such that w(0) ∈
ΩH±(p) and w(1) ∈ ΩI±(p), we have that w(λ) ∩T±(p) 6= ∅.

Proof. By completeness of I± and the fact that p ∈ J−(I+)∩J+(I−) we have that
ΩI±(p) are non-empty. By definition we have ΩH±(p) ∩ ΩI±(p) = ∅. By Lemma
3.4.1 and Lemma 3.4.2 the sets are open and the theorem follows directly.

Arrival Time Function on S2(p)

In this subsection we will introduce a function on the celestial sphere that might
be useful for further studies. We will assume I+ and H+ to be smooth and of
topology S2 × R. Let v be the coordinate on the R part of H+. Let u be the
coordinate on the R part of I+. As before let p be a point in the exterior region.
For the following we assume ΩH+(p) and ΩI+(p) to be non-empty. We denote by
v[γ(k|p) ∩ H+] the coordinate value where a null geodesics intersects the horizon
and by u[γ(k|p) ∩ I+] the coordinate value where a null geodesics intersects I+.
For any point we can shift the coordinates in such a way that these values are
always positive as there exists an earliest possible arrival time. Now we can define
the arrival time function on S2(p)

f(k) =


1

v[γ(k|p)∩H+]
if k ∈ ΩH+(p)

0 if k ∈ T+(p)
−1

u[γ(k|p)∩I+]
if k ∈ ΩI+(p).

(3.65)

We now propose the following conjecture
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Conjecture 3.4.1. For p ∈ J−(I+) ∩ J+(I−) ⊂ M where M is a smooth com-
pactifiable spacetime the function f(k) is continuous on S2(p).

We will now present the sketch of an argument why one should expect this to
be true.

Inside ΩH+(p) and inside ΩI+(p) this is clear by Corollary 3.4.1. Hence the
Lemma reduces to the following claims:

1. Let w(λ) be any continuous path on S2(p) with λ ∈ [0, 1] such that for
λ ∈ [0, 1), w(λ) ∈ ΩH+(p) and for λ = 1, w(1) ∈ ∂ΩH+(p) then we have that
limλ→1 f(w(λ)) = 0.

2. Let w(λ) be any continuous path on S2(p) with λ ∈ [0, 1] such that for
λ ∈ [0, 1), w(λ) ∈ ΩI+(p) and for λ = 1, w(1) ∈ ∂ΩI+(p) then we have that
limλ→1 f(w(λ)) = 0.

A proof for these could be reached by contradiction. For case 1. assume that
there exists such a continuous path w(λ) such that there exists a vmax such that
for any k ∈ {w(λ) ∩ ΩH+(p)}, we have that v[γ(k|p) ∩ H+] ≤ vmax. One has
to show that this implies that there exists τmax such that for any k ∈ {w(λ) ∩
ΩH+(p)} we have that τH+(k) := {τ |γ(k|p)[τ ] ∈ H+} satisfies τH+(k) ≤ τmax.
Further one has to show that this implies that by the considerations of Lemma
3.4.1 there exists εmin(τmax) > 0 such that for any k ∈ {w(λ) ∩ ΩH+(p)} we have
that Bεmin(τmax)(k) ⊂ ΩH+(p). Therefore in particular also w(1) ∈ ΩH+(p) in
contradiction to the assumption that w(1) ∈ ∂ΩH+(p) and the fact that ΩH+(p) is
open.
For case 2. assume that there exists such a continuous path w(λ) such that there
exists a umax such that for any k ∈ {w(λ) ∩ ΩI+(p)}, we have that u[γ(k|p) ∩
I+] ≤ umax. In the following the parameter τ is to be considered the affine
parameter of the null geodesic in the compactified manifold. One has to show
that this implies that there exists τmax such that for any k ∈ {w(λ) ∩ ΩI+(p)}
we have that τI+(k) := {τ |γ(k|p)[τ ] ∈ I+} satisfies τI+(k) ≤ τmax. Therefore by
the considerations of Lemma 3.4.2 there exists εmin(τmax) > 0 such that for any
k ∈ {w(λ)∩ΩI+(p)} we have that Bεmin(τmax)(k) ⊂ ΩI+(p). Therefore in particular
also w(1) ∈ ΩI+(p) in contradiction to the assumption that w(1) ∈ ∂ΩI+(p) and
the fact that ΩI+(p) is open.

3.4.2. The Celestial Sphere and T-Orthogonal Trapping

In the following we will show that under the assumption that trapping is unstable
we can show that no trapped null geodesics with negative energy can exist. It
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3.4. The Celestial Sphere as a Tool

is conceivable that this result can be strengthened to show that instability of
trapping actually implies that all trapped null geodesics have to have positive
energy. However at present times we failed with all attempts to do so.

Lemma 3.4.3. Let M be a smooth stationary Lorentzian manifold with Killing
vector field T with one asymptotically flat end. Further assume future and past
trapping to be unstable in the sense that for any observer at any point p in the
exterior region we have that for any k ∈ T+(p) for any ε > 0

• Bε(k) ∩ ΩH+(p) 6= ∅
• Bε(k) ∩ ΩI+(p) 6= ∅.

then any trapped null geodesic γ in the exterior region satisfies g(T, γ̇) ≥ 0.

Proof. Note that for every k ∈ ΩI+(p) we have −γ̇µ(k|p)Tµ > 0. Due to the insta-
bility condition we can choose a convergent sequence qi ∈ ΩI+(p) with limi→∞ qi =
k for any k ∈ T+(p) . We then have that

E(k) = −γ̇µ(k|p)Tµ = lim
i→∞
−γ̇µ(qi|p)Tµ ≥ 0 (3.66)

The statement then follows from the fact that the trapped set is given by T(p) :=
T+(p) ∩ T−(p).

Conclusion

As this chapter is the only one containing results of direct physical interest we add
here a discussion of the presented results.

Despite the fact that trapping in a Kerr-Newman-Taub-NUT spacetime is much
more complicated than in Schwarzschild, we showed in this chapter that the topo-
logical structure of the future and past trapped set at any point in the exterior
region in Kerr-Newman-Taub-NUT is in fact simple and identical to the situation
in Schwarzschild. Even though the qualitative features of T±(p) do not change
under a change of parameters, the quantitative features do.
We then showed that there exist only two continuous degeneracies for the shadow
of any observer in the exterior region of a Kerr-Newman-Taub-NUT spacetime.
In particular when one focuses on the physically relevant case of Kerr-Newman
(hence l = 0) the only continuous degeneracy is given by scaling of all parameters
with the mass. If one assumes that, apart from the discrete spacetime isometries,
no discrete degeneracies exist, then the result presented in this paper suggests that
in principle an observer in the exterior region of a Kerr-Newman spacetime could
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3. Black Hole Shadows

extract the relative angular momentum a/M of the black hole, as well as the rela-
tive charge Q/M , the relative distance r/M , and the angle of observation relative
to the rotation axis of the black hole. Additionally, one could extract how fast one
is moving in comparison to a standard observer at that point in the manifold. It
is interesting however, that from an observation of the shadow alone an observer
can never conclude that the Taub-NUT charge must vanish.
Note that if one looks at the projection of the shadows of the standard observers on
the complex plane and chooses a parabolic and a hyperbolic Möbius transforma-
tion (see Appendix A.2) for each standard observer such that all shadows intersect
the real axis at +1 and −1, it turns out that the changes of the shape due to vari-
ations of r/M and Q/M are extremely small. Hence reading off these parameters
from the shadow would require a very precise measurement of the shadow curve.
Adding in the fact that the light sources can be rather messy, the observational
task is certainly formidable, so that at least in the foreseeable future there is little
hope that from the shape of the shadows alone one can extract in practice more
than a rough estimate on a/M . However, from a theoretical point of view it seems
plausible (and our results are a strong indication in this direction) that one can
extract very detailed information about a black hole just by looking at it.

Finally we showed that the celestial sphere is also of interest as a mathematical
tool to prove properties of trapping in general black hole spacetimes.
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In this chapter we will move away from geodesics on to fields in black hole
spacetimes. However these considerations are closely related. We will use the
following pages to elaborate on this relation, before going into the proof of the
main theorem of this chapter. We will now discuss the quasinormal modes (QNM)
that will serve as a bridge between trapping and mode stability. We start with
some general remarks
A partial differential equation (PDE) is called separable, if there exists a coordinate
system in which a product Ansatz can be chosen such that the PDE turns into
a set of ordinary differential equations (ODE) for each factor. The factors each
only depend on one variable. For a wave equation the solutions described by the
product of the solutions of these ODEs are called wave modes, or simply modes.
We will use the wave equation for the massless scalar field on Kerr for illustration.
We will consider the rescaled D’Alembertian given by 2 = Σ2g. This form of
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4. Mode Stability

the wave equation in Boyer-Lindquist coordinates can be found in many papers
Andersson and Blue (2009)Finster et al. (2005)and is given by

2ψ =

[
∂

∂r
∆
∂

∂r
+

1

∆
R(r; a,M ; ∂t, ∂φ, Q(∂φ, ∂θ))

]
ψ = 0 (4.1)

where the function R is the same as in the geodesic equation.

The partial derivatives associated with the two Killing vectorfields are symmetry
operators of the wave equation. We want our mode solutions to be eigenfunctions
of these symmetry operator.Thus

∂tψ(t, r, φ, θ) = −iωψ(t, r, φ, θ), (4.2)

∂φψ(t, r, φ, θ) = imψ(t, r, φ, θ), (4.3)

(4.4)

and therefore the wave mode has to be of the form ψ(t, r, φ, θ) = T (t)P (φ)ψ̃(r, θ)
with

T (t) = e−iωt, (4.5)

P (φ) = eimφ. (4.6)

The orbits in φ are closed hence P (φ) = P (φ + 2π) and therefore m has to be
an integer. The orbit in t is unlimited and thus there are no such restrictions on
ω. It can be any complex number. If we now plug this Ansatz into equation(4.1)

we are left with a PDE for ψ̃(r, θ). This can then be separated into two ordinary
differential equations for Sωml(θ) and Rω

ml(r). So we can write our general mode
solution as a product of these functions which each depend on one variable only

ψ(t, r, θ, φ) = T (t)Rω
ml(r)S

ω
ml(θ)P (φ). (4.7)

We are now interested in the properties of these mode solutions.

Overview of this chapter

In section 4.1 we discuss the notion of quasinormal modes and how they relate
to trapped null geodesics. In section 4.3 we collect some background on the ra-
dial Teukolsky equation and discuss the asymptotic behavior of its solutions in
section 4.3.1. Lemma 4.3.1 collects the facts about solutions with no incoming
radiation which we shall need for the proof of our main result. The phenomenon
of superradiance is reviewed in section 4.3.2. This analysis yields the previously

80



4.1. Quasi Normal Modes and their location in Phase-Space

known fact that for non-superradiant frequencies and for half-integer spins, mode
stability holds. Section 4.4 introduces the integral transformation which will be
used along the lines of Whiting (1989) to transform the radial Teukolsky equation
to a non-superradiant equation. This transformation is the essential step in the
proof of mode stability. The limiting behavior of the transformed radial function
is analyzed in section 4.5, and the proof of the main theorem is given in section
4.6.
In section 4.7 we provide some background on the charged scalar field in Reissner
Nordström.

4.1. Quasi Normal Modes and their location in
Phase-Space

The quasi normal modes correspond to the free oscillations of a field. This is
a field that is purely outgoing on all boundaries of the patch of the manifold
under consideration. It turns out they are closely related to the trapped orbits
in the geometric optics approximation. The ray-approximation is valid for high
frequencies ω. Bekenstein (1973a) argues that the ray approximation is valid when
the characteristic frequency of the beam ωc is much larger then the inverse of the
characteristic scale of the black hole, hence ωc � M−1 . In this section we will
first introduce the general form of quasi normal modes. We will discuss their
origin and interpretation and how they relate to the quasi normal modes on a
Kerr geometry.

Most systems in physics, can oscillate in some way. These oscillation occur
usually at characteristic frequencies which are depending on the parameters of
the system. If we look at the strings of a guitar for example, the wavelength
of the oscillations have to be a proper fraction of twice the strings length. In a
perfect system there does not exist any energy dissipation and the oscillations,
once excited, can go on forever. However, as soon as we go to a real system we
have to take dissipation into account. This leads to a fall-off in the amplitude of
the oscillation over time as the system loses energy. The characteristic wavelength
does not change, because the scale of the system is still the same. Such damped
oscillations can be approximated by quasi normal modes. These are mode solutions
exp(iσt) with complex frequencies σ = ω+ iΓ. The complex part in the frequency
leads to the exponential decay. The different modes in a mechanical system usually
have different rates of decay, thus the late time behavior is usually dominated by
a single mode.
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4. Mode Stability

The following discussion about the quasi normal modes will focus on the location
of the real part of their frequency. The analysis of the quasi normal modes can in
principle be generalized to all integer spin field but to build the bridge between
trapping and QNMs the case of a scalar field is sufficient. The complex frequen-
cies of the quasi normal modes can be calculated in a number of different, but
equivalent, ways. Detweiler (1977) showed that calculating the frequencies in the
picture of free oscillations of the perturbation field is equivalent to calculating the
resonance frequencies in the scattering picture. Mashhoon (1985) calculated the
quasi normal frequencies through a perturbation of the trapped prograded equa-
torial null rays. Hod (2009) showed that these frequencies calculated by Mashoon
are equivalent to the frequencies calculated in the picture of free oscillations for
the high a limit, with (M2 − a2) � a2 and |a| < M . In Yang et al. (2012) it is
shown that the leading order terms of the wave parameters for the quasi normal
modes correspond to the conserved quantities for trapped null-geodesics. Similar
to the discussion in section 2.6 the real part of the frequency ω corresponds to the
energy E, the index m corresponds to the z-angular-momentum Lz and the real
part of λlm corresponds to L2.

Mashhoon (1985) calculated the quasi normal frequencies from the ray approxi-
mation in the high a limit to be

σn = mω+ − i
(
n+

1

2

)
βω+. (4.8)

The real frequency is simply given by the z-angular-momentum number of the
mode times the Kepler frequency of the null ray at r1 given by

ω+ ≡
M1/2

r
3/2
1 + aM1/2

. (4.9)

The function β is given by Mashhoon (1985)

β =
(12M)1/2(r1 − r+)(r1 − r−)

r
3/2
1 (r1 −M)

. (4.10)

Hod (2009) showed that in the extremal limit these quasi normal modes can be
rewritten in terms of the Bekenstein-Hawking temperature of the black-hole

TBH =
(M2 − a2)1/2

4πM [M + (M2 − a2)1/2]
. (4.11)

For the limit TBH → 0 we get

σn = mωH + 2πTBH

(
1−
√

3

2

)
m− i2πTBH

(
n+

1

2

)
+O(MT 2

BH) (4.12)

82



4.2. Mode Stability on the real axis

and the horizon frequency given in (2.55) expands as

ωH =
1

2M
− 2πTBH +O(MT 2

BH). (4.13)

For the Schwarzschild black hole Press (1971) found that the real part of the quasi
normal frequencies of a Schwarzschild black hole are given by

ω = l
1

271/2M
. (4.14)

This ratio is well known from trapping (2.32). Goebel (1972) obtained the same
result from considerations similar to the ones of Mashhoon presented above.

The above discussion covers only a small fraction of the properties and interpre-
tations of quasi normal modes. The quasi normal modes are often interpreted as
the vibrations of the black hole (Press (1971)) however Goebel (1972) argued these
can not be “excited” in the usual sense as for example the vibrations of molecules
in a gas. Furthermore they do not provide a source for fields. They only provide
a temporary storage for high-frequency modes, originating from other physical
processes in the spacetime such as the collision of two black holes. The quasi
normal modes are strongly dependent on the black hole parameters. Hence if a
precise measurement of the ring down after the black hole merger is obtained in
LIGO/VIRGO it allows for a detailed characterization of the parameters of the
black hole formed after the merger.

In the following section we will focus on the location of frequencies of the QNMs
in the complex plane. In particular we will expand the mode stability result by
Whiting (1989) to the real axis.

4.2. Mode Stability on the real axis

Remark 4.2.1. The material in section 4.2 through 4.6 was created in joint work
with Lars Andersson, Siyuan Ma and Bernard Whiting 2017

The field equations on the Kerr spacetime for massless test fields with spins s
between 0 and 2 imply that the scalar components with extreme spin weights s =
±s solve the Teukolsky Master Equation (TME) (Teukolsky, 1973), a separable,
spin-weighted wave equation. Let

L = ∂r∆∂r −
1

∆

{
(r2 + a2)∂t + a∂φ − (r −M)s

}2
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− 4s(r + ia cos θ)∂t +
1

sin θ
∂θ sin θ∂θ

+
1

sin2 θ

{
a sin2 θ∂t + ∂φ + is cos θ

}2

where (t, r, θ, φ) are Boyer-Lindquist coordinates and ∆ = r2 − 2Mr + a2. Then
(Whiting, 1989)

LΦ = 0 (4.15)

is a form of the TME on the Kerr exterior background with mass M and angular
momentum per unit mass a. The parameter s is the spin weight of the field Φ.

For completeness, we recall the defininition of the fields Φ solving the TME.
In order to do this, we make the spin weight explicit as a subindex. For s =
0, the TME is equivalent to the scalar wave equation ∇a∇aΦ0 = 0. For spins
s = 1/2, 1, 3/2, 2 the field equations are Dirac-Weyl, Maxwell, Rarita-Schwinger,
and linearized gravity, respectively. For spins 0, 1/2, 1, 2, see Teukolsky (1973),
for the spin-3/2 case, Torres del Castillo and Silva-Ortigoza (1992), see also Silva-
Ortigoza (1995). Working in the Kinnersley principal tetrad, let φ0, φ2 be the
Newman-Penrose scalars of spin weights 1,−1 for a Maxwell test field on the Kerr
background, and let Ψ̇0, Ψ̇4 denote the linearized Weyl scalars of spin weights 2,−2
for a solution of the linearized vacuum Einstein equations on the Kerr background,
see Aksteiner and Andersson (2011) for details. Let the scalar ζ be chosen so that

ζ ∝ Ψ
−1/3
2 , where Ψ2 is the spin weight zero Weyl scalar. In Boyer-Lindquist

coordinates, we can take ζ = r − ia cos θ. The scalar fields Φs for integer s are
defined by setting

Φ−2 = ∆−1ζ4Ψ̇4, Φ−1 = ∆−1/2ζ2φ2, (4.16a)

Φ1 = ∆1/2φ0, Φ2 = ∆Ψ̇0 (4.16b)

Similarly, let χ0, χ1 denote the scalars of spin weights ±1/2 for a Dirac-Weyl test
field, and H0, H3 the scalars of spin weights ±3/2 for a Rarita-Schwinger test field.
We define

Φ−3/2 = ∆−3/4ζ3H3, Φ−1/2 = ∆−1/4ζχ1, (4.16c)

Φ1/2 = ∆1/4χ0, Φ3/2 = ∆3/4H0 (4.16d)

The TME admits separated solutions of the form

Φ = e−iωteimφS(θ)R(r). (4.17)

where ω,m are the frequencies corresponding to the Killing vector fields (∂t)
a,

(∂φ)a. Let
K = (r2 + a2)ω − am (4.18)
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Then with

R = ∂r∆∂r +
K2 − 2iK(r −M)s− (r −M)2s2

∆
+ 4sirω − Λ (4.19)

S =
1

sin θ
∂θ sin θ∂θ −

m2

sin2 θ
+ a2 cos θ2ω2 − 2aωs cos θ − 2ms cos θ

sin2 θ
− s2 cot2 θ

+ Λ + 2aωm− a2ω2, (4.20)

where Λ is a separation constant, which can be assumed to be real for real ω, we
have after making the substitutions ∂t ↔ −iω, ∂φ ↔ im,

L = R + S,

and

[R,S] = 0.

In particular, R,S are commuting symmetry operators for L. It follows from
the above that for separated waves of the form (4.17), (4.15) is equivalent to the
equations RR = 0, SS = 0. We shall refer to the equations

RR = 0 (4.21a)

SS = 0 (4.21b)

as the radial and angular Teukolsky equations, respectively. As for the treatment of
the real frequency case by Shlapentokh-Rothman (2015), we shall not be concerned
with the analysis of the angular Teukolsky equation here, but point out that S is
formally self-adjoint on [0, π] with respect to sin θdθ. Imposing the condition that
the solutions correspond to regular spin-weighted functions fixes the boundary
conditions at θ = 0, π and equation (4.21b) becomes a Sturm-Liouville problem
which has a discrete, real spectrum; see Leaver (1986) for more details. The
separation constant used here is related to that used in Teukolsky and Press (1974)
by Λ+2aωm−a2ω2 = E−s2, and to the one used in Whiting (1989) and Teukolsky
(1972) by Λ + 2aωm− a2ω2 = A+ s.

For fields of non-zero spin, the TME does not admit a real action, and hence
standard arguments do not yield energy conservation and dispersive estimates.
This is an obstacle to proving stability for the test fields with non-zero spin on
the Kerr exterior spacetime, which would be an important step towards proving
non-linear stabilty of the Kerr black hole, i.e. that a Kerr black hole with |a| < M
is dynamically stable as a solution to the vacuum Einstein field equations, in the
sense that the maximal development of a sufficiently small perturbation of the
Kerr solution is asymptotic in the future to a member of the Kerr family.
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In Whiting (1989), one of the authors gave a proof of mode stability. In particu-
lar, the TME has no separated wave solutions, or modes, which are such that the
frequency ω has positive imaginary part, and which have no incoming radiation
in the sense that the wave is outgoing at infinity, and ingoing at the horizon, see
section 4.3.1. The main result of Whiting (1989) states that the TME admits no
exponentially growing solutions without incoming radiation. In the case of =ω > 0,
the condition of no incoming radiation can be restated as saying that the solution
has support only on the future horizon and null infinity. On the other hand, there
do exist mode solutions with no incoming radiation for certain frequencies with
negative imaginary part. This case corresponds to quasi-normal modes (Kokkotas
and Schmidt, 1999), which are exponentially decaying in time.

It is known that exponentially growing modes must arise by quasi-normal fre-
quencies passing from the lower half plane through the real axis into the upper
half plane as a is changed from zero. This was argued heuristically by Press and
Teukolsky (1973, p. 651) and later shown by Hartle and Wilkins (1974), see also
Teukolsky and Press (1974, p. 452). For this reason, the mode stability problem
can be reduced to considering the case of real frequencies.

Recently, the mode stability argument has been revisited for the case of real
frequencies, restricting to the spin-0 case (Shlapentokh-Rothman, 2015). In the
case of real frequencies, the mode stability result states that restricting to sepa-
rated waves with no incoming radiation in the above sense, the radial Teukolsky
equation has no non-trivial solutions. This has the consequence that there are lin-
early independent solutions Rhor, Rout which are purely ingoing at the horizon and
outgoing at infinity, respectively, a fact which plays a central role in the proof of
boundedness and decay for scalar waves on sub-extreme Kerr exterior spacetimes
with |a| < M (Dafermos et al., 2014), in particular it is used to treat the superra-
diant range of frequencies; see section 4.3.2 for background on superradiance. We
mention here a recent paper (Finster and Smoller, 2016) which also discusses the
stability problem for the Teukolsky equation.

Motivated by the relevance of the TME for the black hole stability problem we
here give a proof of mode stability on the real axis for fields with arbitrary spin.
Our main result is the following, cf. Theorem 4.6.1 below.

Theorem 4.2.1 (Mode stability on the real axis). Let Φ be a separated solution
to the TME with ω > 0 for the sub-extreme Kerr black hole. Assume that Φ has
purely ingoing radiation at the horizon and purely outgoing radiation at infinity.
Then Φ = 0.

Remark 4.2.2. A classical scattering argument can be used to show mode stability
on the real axis for half-integer spins, or for frequences outside of the superradiant
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range, see equation (4.26) below. The proof of mode stability on the real axis
presented in this section is independent of that scattering argument.

The fact that there are no solutions to the TME with no incoming radiation
has the important consequence that the radial Teukolsky equation has two funda-
mental solutions Rhor and Rout which are ingoing at the horizon, and outgoing at
infinity, respectively, and are linearly independent, with non-vanishing Wronskian.
This implies that one can construct solutions of the inhomogenous Teukolsky equa-
tion using the method of variation of the parameter, see Remark 4.6.1 below for
details. The properties of the solutions Rhor and Rout can be used to estimate the
solution of the inhomogenous Teukolsky equation.

Unless otherwise stated, we shall in the rest of the section restrict to positive
frequency, ω > 0. Note that the substitution (ω,m, s) → (−ω,−m,−s) maps
solutions of TME to solutions.

In case ω = 0, (4.17) represents a time independent solution of the TME. In
this case, the radial Teukolsky equation becomes a hypergeometric equation with
three regular singular points r−, r+,∞ which requires a separate discussion. It has
been pointed out that this equation does not have solutions which are well-behaved
at the horizon and at infinity, see Teukolsky (1972, p. 1117), see also Press and
Teukolsky (1973, p. 651).

4.3. The radial Teukolsky equation

The radial Teukolsky equation is a second order ordinary differential equation
with rational coefficients, and an analysis of its singular points yields that it is a
confluent Heun equation (Slavyonov and Lay, 2000, Ronveaux, 1995), with regular
singular points at r−, r+ and an irregular singular point of rank 1 at ∞. Here we
use the notion of rank following Erdélyi (1956, p. 60). The s-rank of r =∞ as in
(Slavyonov and Lay, 2000) is 2. In this context it is natural to consider the radial
Teukolsky equation on the complex r-plane. In a neighborhood of each regular
singular point, the general solution is a linear combination of the fundamental
Frobenius solutions, while at the irregular singular point, one considers the Thomé,
or normal, solutions. These are formal solutions but in each Stokes sector, a pair
of solutions can be found which are asymptotically represented by the normal
solutions, cf. Erdélyi (1956, Chapter III) for details, see also Olver (1997).

Equation (4.21a) with R given by (4.19) is in self-adjoint form. The form of the
equation and its solutions can be changed by transformations of the independent
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variable r (eg. Möbius transformations), s-homotopic transformations (rescalings),
and integral transformations of the dependent variable. In the rest of this section,
as a preparation for the integral transformations considered in section 4.4, we will
state a few basic facts about the radial Teukolsky equation and its solutions.

The rotation speeds ω± and surface gravities κ± of the outer and inner horizons
located at r± = M ±

√
M2 − a2 are given by

ω± = a/(2Mr±), (4.22)

κ± = ± r+ − r−
4Mr±

(4.23)

Associated to null generators of the horizons,

χa± = (∂t)
a + ω±(∂φ)a, (4.24)

we have for a wave with time frequency ω and azimuthal frequency m, the fre-
quencies

k± = ω − ω±m. (4.25)

The superradiant range of frequencies is characterized, independent of the signs of
ω, m and a, by

ωk+ < 0 (4.26)

The tortoise coordinate r∗ is defined by

dr∗ =
r2 + a2

∆
dr (4.27)

We have

r∗ ∼
1

2κ+

ln(r − r+), for r → r+ (4.28)

r∗ ∼ r + 2M ln(r), for r →∞ (4.29)

Let r] be defined by

dr] =
a

∆
dr

and set u± = t± r∗ and φ± = φ± r]. Then (u+, r, θ, φ+) and (u−, r, θ, φ−) are the
ingoing and outgoing Eddington-Finkelstein coordinates, respectively. The ingoing
coordinates are regular on the future horizon, while the outgoing ones are regular
on the past horizon.

For later use, it will be convenient to introduce the quantities

ξ =
i(am− 2Mr+ω)

r+ − r−
= −i k+

2κ+

(4.30a)

η =
−i(am− 2Mr−ω)

r+ − r−
= −i k−

2κ−
(4.30b)
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4.3. The radial Teukolsky equation

4.3.1. Asymptotics

We shall now discuss the asymptotic behavior of the solutions of the radial Teukol-
sky equation (4.21a) at the singular points. The radial function R used here cor-
responds to the function R used in (Teukolsky, 1973) and (Teukolsky and Press,
1974), multiplied by a factor ∆s/2. The asymptotic behavior of R which we state
below can be read off from (Teukolsky and Press, 1974, Table 1) after taking the
factor ∆s/2 into account, see also Castro et al. (2013) for discussion of asymptotics.
For completeness we shall indicate the derivation of these results.

Asymptotics at r =∞

In order to analyze the possible asymptotic behavior of solutions to the radial
Teukolsky equation at infinity, it is convenient to transform the equation to normal
form. Write (4.21a) as

∂r∆∂rR + V0R = 0 (4.31)

and let G = ∆−1/2. The rescaling R = yG transforms (4.31) to the form

∂2
ry +Qy = 0 (4.32)

with

Q = −1

2
∂r
∂r∆

∆
− 1

4

(
∂r∆

∆

)2

+
V0

∆

The leading terms in Q at r =∞ are

Q = ω2 +
2iωs+ 4ω2M

r
+O(r−2).

From this we can determine following Erdélyi (1956, Chapter III) that the two
normal solutions to the radial Teukolsky equation (4.21a) near r = ∞ have the
asymptotic forms

R ∼ e±iωrr±2iMωr∓s−1 (4.33)

with the upper sign corresponding to outgoing waves. Due to the fact that the
singular point at r =∞ is irregular, of rank 1, we shall need some further details
concerning the Stokes phenomenon. As mentioned above, the rank of the irregular
singular point r = ∞ is 1. Following Erdélyi (1956, Chapter III.5) we find that
the Stokes line is the real line =r = 0 in the complex r-plane. The Stokes line
decomposes the complex r-plane into two Stokes sectors, and in each Stokes sector,
one of the two normal solutions is exponentially increasing, and one is exponentially
decreasing. These are referred to as the dominant and recessive solutions.
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4. Mode Stability

In particular, if we consider a sectorial region S, |r| > A, α < Arg r < β,
contained in a Stokes sector, the asymptotic expansions of the two normal solutions
hold uniformly in Arg r, for r ∈ S. For later use, we note here that for a sectorial
region S in the upper half plane, with 0 < α < π/2 < β < π as in figure 4.1, the
outgoing condition at r = ∞, i.e. the upper sign choice in (4.33), corresponds to
the recessive normal solution in S.

r

S

Figure 4.1.: The sectorial region S

Asymptotics at r±

The characteristic exponents for regular singular points r+, r− of the radial Teukol-
sky equation are

{ξ − s/2,−ξ + s/2} for r+ (4.34a)

{η − s/2,−η + s/2} for r− (4.34b)

Let r0 be one of the regular singular points, with characteristic exponents ρj,
j = 1, 2, which we order so that <ρ1 ≤ <ρ2. We first consider the non-resonant
case where ρ1 − ρ2 is not an integer. In this case the Frobenius solutions at r0 are
of the form

Rj(r) = (r − r0)ρjR0,j(r), j = 1, 2, (4.35)

where R0,j(r) are analytic in a neighborhood of r0 of radius r+− r−, cf. Slavyonov
and Lay (2000, §1.1.4), see also Erdélyi (1956, p. 60). We may normalize the
solutions so that R0,j(r+) = 1.

We next consider the case of resonance at r+, i.e. ξ = 0 and s an integer. Note
that ξ = 0 corresponds to the upper bound of the range of superradiant frequencies,
see section 4.3.2. In this case, the characteristic exponents ρj take values−s/2, s/2,
and the Frobenius solutions of (4.21a) corresponding to ρ1 contains a logarithmic
term,

R1(r) = (r − r+)ρ1R0,1 + A2(r − r+)ρ2R0,2(r) ln(r − r+). (4.36)
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4.3. The radial Teukolsky equation

Here, forR0,1(r+) = 1, A2 is a non-zero constant that can be computed. In the
resonant case, we choose R0,1 so that R0,1 =

∑∞
n=0 cn(r − r+)n with c|s| = 0, cf.

Slavyonov and Lay (2000, Theorem 1.3). The case of resonance at r− is similar.

Waves with no incoming radiation

We shall say that waves which are outgoing at infinity and ingoing at the horizon,
i.e. r+, satisfy the no incoming radiation condition. A discussion of the boundary
conditions for the radial Teukolsky equation can be found in (Teukolsky, 1973, §V),
where also the notion of ingoing and outgoing waves is defined, see also (Press and
Teukolsky, 1973, p. 653, eq. (2.10)).

As discussed by Penrose (1965), an analysis of the asymptotic behavior of mass-
less fields at null infinity leads, upon taking into account the scaling properties of
the tetrad components of the field, to specific rates of fall-off depending on the spin
weight of the field. This is known as the peeling property; see Mason and Nicolas
(2012), Frauendiener et al. (1996), Andersson et al. (2014), Hinder et al. (2011) for
discussions of various aspects of peeling. The peeling property can be summarized
by saying that for a scalar component ϕs of spin weight s, defined with respect to
the Kinnersley tetrad, we have ϕs = O(r−3−s). Taking into account the rescalings
given in (4.16) we find for that the peeling behavior of the solution of the TME
is

Φs = O(r−1−s), as r →∞. (4.37)

In order to analyze the behavior of spinning fields at the horizon, a tetrad which
is well behaved at the horizon must be used. Following Teukolsky and Press (1974,
§IV), see also Hawking and Hartle (1972) and Znajek (1977), one finds that the
fields ∆s/2Φs are regular on the horizon.

Outgoing waves at r =∞ must have an asymptotic form compatible with peel-
ing, as discussed above, and should have positive radial group velocity, while in-
going waves at the horizon as seen by a physically well-behaved observed must be
non-special (i.e. neither vanishing nor singular on the horizon) and should have
negative radial group velocity.

Based on the above discussion of Frobenius and Thomé solutions, we are led to
the following definition.

Definition 4.3.1 (No incoming radiation condition). Let R be a solution of the
radial Teukolsky equation. Then we shall say that R has no incoming radiation
provided

R(r) ∼ eiωrr2iMωr−s−1 at r =∞, (4.38)
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4. Mode Stability

R(r) ∼ (r − r+)ξ−s/2 at r = r+. (4.39)

In particular, we shall require that R(r) is equal to the Frobenius solution with
exponent ξ − s/2 at r = r+ and equal near infinity r = ∞ to the normal solution
which is recessive in the upper half plane.

Specializing the discussion in this section to the case of waves with no incoming
radiation, we can state the following lemma, which summarizes the properties that
we shall make use of. Note that we here view R as a solution of (4.21a) in the
complex r-plane. The results stated in the lemma are direct consequences of the
discussion in this section and the references given there.

Lemma 4.3.1. Let R be a solution to the radial Teukolsky equation with no in-
coming radiation. Then the following hold:

1. If ξ 6= 0 or if s is not a positive integer, then near r+,

R = (r − r+)ξ−s/2R+,1(r), (4.40)

where R+,1 has a power series expansion in r − r+ which converges in the
disk |r − r+| < r+ − r−.

2. If ξ = 0 and s is a positive integer, then near r+,

R = (r − r+)−s/2R+,1(r) + A(r − r+)s/2 ln(r − r+)R+,2(r) (4.41)

where R+,1, R+,2 have power series expansions in r − r+ which converge in
the disk |r − r+| < r+ − r−. Here A is a constant which can be calculated
from R+,1(r+).

3. Let S be a sectorial region in the upper half r-plane, of the form |r| > r0,
α < Arg r < β with 0 < α < β < π. Then R has an asymptotic expansion

R ∼ eiωrr2iMωr−s−1

∞∑
n=0

cnr
−n, as r →∞, (4.42)

which is valid uniformly in S. In particular, the estimate

e−iωrR = O(r−s−1) (4.43)

is valid in S.
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4.3. The radial Teukolsky equation

Remark 4.3.1. 1. It follows from the properties of the Frobenius solutions, cf.
Slavyonov and Lay (2000, Theorem 1.3), that in the non-resonant case, if
R+,1(r+) = 0 then R ≡ 0. To see this, the coefficients in the expansion of
R+,1 are determined by R+,1(r+), and hence if R+,1(r+) = 0, then R vanishes
in a neighborhood of r+ and hence must be identically zero. In the resonant
case with s = 0 and ξ = 0, the logarithmic solution is excluded by condition
(4.39). Finally, in the resonant case with s > 0 and ξ = 0, if R+,1(r+) = 0,
we find that also A = 0 and hence it follows that R(r) ≡ 0, see also the
discussion in section 4.3.1.

2. The estimate in (4.43) can be rephrased as saying that there is a constant C
such that in the sectorial region S,

|e−iωrR| ≤ C|r−s−1|

The constant C depends on the parameters of the system, and the limit

lim
r→+∞

|rs+1R(r)|

where the limit is taken along the positive real line. By (Olver, 1997, Chapter
7, Theorem 2.2), the asymptotic form (4.42) of R is valid in a circular sector
|Arg(−iz)| < 3π/2− δ for δ > 0, and this is the maximal sector of validity.

3. For completeness, we record that the asymptotic representation along the real
line can be stated in terms of the tortoise coordinate as

R ∼
{
eiωrr2iMωr−s−1 ∼ eiωr∗r−s−1 as r →∞
(r − r+)ξ−s/2 ∼ ∆−s/2e−ik+r∗ as r → r+

(4.44)

which, as mentioned above, after taking into account the rescaling by ∆s/2,
agrees with the asymptotic form stated in (Teukolsky and Press, 1974, Table
1).

4.3.2. Superradiance

In this subsection we shall review the classical scattering analysis for spinning fields
following Teukolsky and Press (1974), see also Chandrasekhar (1998). The results
that we present here are not new, however, to the best of our knowledge the fact
that superradiance does not happen for the spin-3

2
case has not been discussed

before, see Remark 4.3.3 below. We make the dependence of the spin weight
explicit by a subindex s. Let Rs be a solution of the radial Teukolsky equation
(4.21a) with spin weight s. The rescaling υs = (r2 +a2)1/2Rs transforms the radial
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4. Mode Stability

Teukolsky equation to an equation with independent variable r∗ ∈ (−∞,∞), of
the form

d2

dr2
∗
υs + Vsυs = 0 (4.45)

with

Vs =
∆

(r2 + a2)2
V0,s − Vresc

where

Vresc =
1

(r2 + a2)

d2

dr2
∗
(r2 + a2)1/2 =

∆

(r2 + a2)4

(
a2∆ + 2Mr(r2 − a2)

)
. (4.46)

We shall refer to (4.45) as the Schrödinger form of the radial Teukolsky equation.
We have

lim
r→r+

Vs = (iκ+s+ k+)2, (4.47a)

lim
r→∞

Vs = ω2. (4.47b)

In particular, for s 6= 0, the potential Vs is complex and

V s = V−s, (4.48)

where V s denotes the complex conjugate. Let υs, υ−s be (a priori independent)
solutions of (4.45) with spin weight s,−s respectively, and define the Wronskian

W [υs, υ−s] = υ′sυ−s − υ′−sυs

where we have used a ′ to denote d/dr∗. Due to (4.48), both υs and υ−s solve the
same equation, and hence the Wronskian is conserved,

W [υs, υ−s]
′ = 0. (4.49)

We now make a scattering ansatz for Rs(r) which is purely ingoing at the horizon
and a superposition of an ingoing and an outgoing part at infinity,

Rs(r) ∼
{
Yhole,s∆

−s/2e−ik+r∗ , at r = r+

Yin,se
−iωr∗rs−1 + Yout,se

iωr∗r−s−1, at r =∞. (4.50)

Here we have intentionally left the normalization of the ingoing mode free. The
fact that the Wronskian is conserved gives the identity

− 4Mr+(ik+ + sκ+)Yhole,sYhole,−s = −2iωYin,sYin,−s + 2iωYout,sYout,−s. (4.51)
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4.3. The radial Teukolsky equation

Following Teukolsky and Press (1974), see also Starobinsky and Churilov (1974),
we now use the Teukolsky-Starobinsky Identities (TSI) to establish a relation be-
tween the fields with spin weights s,−s. Define the operators D,D† by D =
(d/dr− iK/∆) and D† = D(−ω,−m). For real ω the dagger operation is identical
with a complex conjugation. The TSI for the solutions of the radial Teukolsky
equation are Chandrasekhar (1998), see also Kalnins et al. (1989), Fiziev (2009),

∆s/2D2s∆s/2R−s = CsRs (4.52a)

∆s/2D†2s∆s/2Rs = CsR−s (4.52b)

where Cs are constants depending on the parameters s, a,M,m, ω, and the sepa-
ration constant Λ.

Remark 4.3.2. The TSI can be understood as saying that the operator ∆s/2D2s∆s/2

applied to R−s is proportional to a solution Rs of the radial Teukolsky equation
with spin weight s and vice versa. In applying the TSI we thus restrict to solutions
Rs, R−s satisfying this condition. It can be shown, cf. Aksteiner et al. (2016) and
references therein, that if the spin-weighted fields Rs, R−s are the radial functions
corresponding to the components with extreme spin weight of a field satisfying the
spin-s test field equations on the Kerr background, then the TSI hold.

Applying (4.52) to the asymptotic solutions of R±s at the horizon and at infinity,
and comparing leading order terms gives relations between Yhole,±s, Yin,±s, and
Yout,±s. Some calculations give the identity

As|Yhole,s|2 = |Yin,s|2 −Bs|Yout,s|2 (4.53)

where

Bs = (2ω)4s

|Cs|2 , B−s = B−1
s (4.54)

and As are given by

A−s =


(

2Mr+
ω

)2s+1 ∏s
n=0(k2++(s−n)2κ2+)

k+
if s = 0, 1, 2...(

2Mr+
ω

)2s+1∏bsc
n=0(k2

+ + (s− n)2κ2
+) if s = 1

2
, 3

2
...

As =

(
2Mr+

ω

)2 (k2
+ + s2κ2

+)

A−s

(4.55)

where bsc is the integer part of s, i.e. the largest integer less than or equal to s.
For the current considerations, equation (4.55) has been checked up to s = 2 but
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4. Mode Stability

it can be expected that the relation holds for all half-integer spins s ≥ 0. The
reflection and transmission coefficients Rs, Ts are defined as

Rs = Bs
|Yout,s|2
|Yin,s|2

= B−s
|Yout,−s|2
|Yin,−s|2

, Ts = As
|Yhole,s|2
|Yin,s|2

= A−s
|Yhole,−s|2
|Yin,−s|2

Then Rs represents the fraction of the ingoing wave energy which is reflected out
to infinity, while Ts represents the fraction which is transmitted into the black hole.
By construction we have the conservation law Rs + Ts = 1.

From the values of the coeffients As given in (4.55) we see that for integer spins,
As changes sign with ωk+, while for half-integer spins, As is positive. This means
that when ω < mω+ (recall we are considering the case ω > 0), the reflection
coefficient for a field with integer spin will be greater than unity. This phenomenon
is known as superradiance.

If As > 0, i.e. for the non-superradiant frequencies or for the half-integer spins,
then Rs < 1. In particular, this implies that if Yin,s = 0, then also Yout,s = 0
so that a solution with no incoming radiation must be zero. Thus, in these cases
mode stability holds for real frequencies, and the classical scattering analysis given
here is sufficient to prove Theorem 4.2.1.

Remark 4.3.3. The fact that the coefficient A± 1
2

is positive also for superradiant

frequencies is known and follows from the fact that the spin-1
2

field admits a future
directed conserved current; see Mason and Nicolas (1998) concerning the spin-3/2
case.

It remains to determine the square modulus of the constants Cs in (4.52). For

this purpose we apply ∆s/2D†2s∆s/2 to (4.52a) and use (4.52b) to get

∆s/2D†2s∆sD2s∆s/2R−s = |Cs|2R−s (4.56)

The left hand side can now be evaluated using the TME for R−s.

One finds

|C 1
2
|2 =Λ +

1

2
(4.57a)

|C1|2 =(Λ + 1)2 + 4amω − 4a2ω2 (4.57b)

|C3
2
|2 =

(
Λ +

3

2

)3

+

(
Λ +

3

2

)2

+ 16

(
Λ +

3

2

)
(a2ω2 − amω)− 16a2ω2 (4.57c)

|C2|2 =(Λ + 2)4 + 4(Λ + 2)3 + 4(Λ + 2)2(1 + 10amω − 10a2ω2) (4.57d)

+ 48(Λ + 2)(amω + a2ω2) + 144ω2(a2m2 +M2 − 2a3mω + a4ω2)
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For s = 1 and s = 2 this agrees with the expressions obtained in (Teukolsky and
Press, 1974) and (Chandrasekhar, 1998) after taking into account the different
conventions used there.

4.4. Integral transformations

As in (Shlapentokh-Rothman, 2015), it is convenient to transform the radial
Teukolsky equation to its canonical form before introducing the integral trans-
form that shall be used. The rescaling

R(r) = (r − r−)η−s/2(r − r+)ξ−s/2e−iωrg(r) (4.58)

puts the radial Teukolsky equation in canonical form. Letting

γ = 2η − s+ 1 (4.59a)

δ = 2ξ − s+ 1 (4.59b)

p = − 2iω (4.59c)

α = 1− 2s (4.59d)

σ = − Λ− 2ir−(1− 2s)ω − s (4.59e)

we have that RR = 0 is equivalent to

Trg(r) = 0 (4.60)

where

Trh(r) = (r − r−)(r − r+)
d2h

dr2

+ (γ(r − r+) + δ(r − r−) + p(r − r−)(r − r+))
dh

dr
+ (αp(r − r−) + σ)h (4.61)

is a Heun operator in canonical form, with parameters γ, δ, p, α, σ.

Let T̃ be a new Heun operator with different parameters given by

γ̃ := α = 1− 2s (4.62a)

δ̃ := γ + δ − α = 1− 4iMω (4.62b)

p̃ := p (4.62c)

α̃ := γ = 1− s+ 2η (4.62d)

σ̃ := σ (4.62e)
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and let f(x, r) be defined as

f(x, r) = e
−p (x−r−)(r−r−)

r+−r− . (4.63)

With the above choice of parameters for T̃ we have that

(T̃x − Tr)f(x, r) = 0. (4.64)

As we shall see, this means that we can use f(x, r) as the kernel for an integral
transformation between solutions of these two Heun equations. Let a contour C in
the complex r-plane be given and let g(r) be a solution to (4.61) with parameters
as in (4.59). Defining g̃(x), following Whiting (1989), by

g̃(x) =

∫
C
f(x, r)(r − r−)γ−1(r − r+)δ−1eprg(r)dr, (4.65)

we have that

T̃xg̃(x) =

∫
C
T̃xf(x, r)(r − r−)γ−1(r − r+)δ−1eprg(r)dr

=

∫
C
Trf(x, r)(r − r−)γ−1(r − r+)δ−1eprg(r)dr

= (r − r−)γ(r − r+)δepr
(
df(x, r)

dr
g(r)− f(x, r)

dg(r)

dr

)∣∣∣∣
∂C

+

∫
C
f(x, r)(r − r−)γ−1(r − r+)δ−1eprTrg(r)dr.

(4.66)

The last step is an integration by parts. Note that the expression in the last line
vanishes identically, because g(r) satisfies (4.61). Hence, provided the integral in
(4.65) converges and the boundary condition

(r − r−)γ(r − r+)δepr
(
df(x, r)

dr
g(r)− f(x, r)

dg(r)

dr

)∣∣∣∣
∂C

= 0 (4.67)

is satisfied, we see that g̃ satisfies the transformed equation

T̃xg̃(x) = 0 (4.68)

Using the parameters (4.59) in equation (4.65) and using the relation (4.58) we
can write g̃ in the form

g̃(x) =

∫
C
e

2iω
(x−r−)(r−r−)

r+−r− (r − r−)2η−s(r − r+)2ξ−se−2iωrg(r)dr (4.69a)

=

∫
C
e

2iω
(x−r−)(r−r−)

r+−r− (r − r−)η−s/2(r − r+)ξ−s/2e−iωrR(r)dr (4.69b)

Remark 4.4.1. Assuming no incoming radiation for R, we have

(r − r−)η−s/2(r − r+)ξ−s/2e−iωrR(r) ∼
{

(r − r+)2ξ−s for r → r+

r−2s−1 for r →∞ (4.70)
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4.4.1. Transforming to self-adjoint and Schrödinger form

We now transform (4.68) to self-adjoint form, by the s-homotopic transformation

u(x) = (x− r−)−s(x− r+)−2iMωe−iωxg̃(x) (4.71)

Then u satisfies the equation

∂x∆∂xu(x) + Ṽ0(x)u(x) = 0 (4.72)

where

Ṽ0(x) = −Λ + ∆ω2

(
x+ r−
x− r+

)2

− 4iω(x− r−)η − x− r+

x− r−
s2 (4.73)

Let x∗ be the tortoise coordinate corresponding to x,

dx∗ =
x2 + a2

∆
dx

Then, writing ′ = d/dx∗, and defining

U = (x2 + a2)1/2u, (4.74)

we have the Schrödinger form of the transformed equation,

U ′′ + Ṽ U = 0, (4.75)

where now

Ṽ =
∆

(x2 + a2)2
Ṽ0 − Vresc (4.76)

with Vresc as in (4.46).

Remark 4.4.2. For ω ∈ R, the potential Ṽ given by (4.76) is real. Hence if U is
a solution to (4.75) the Wronskian W [U, Ū ] = U ′Ū − Ū ′U is conserved, W ′ = 0,
where Ū denotes the complex conjugate of U .

We have

Ṽ
∣∣
x=r+

=
(r+ − r−)2

r2
+

ω2, lim
x→∞

Ṽ (x) = ω2

Remark 4.4.3. In the paper (Shlapentokh-Rothman, 2015) where the problem of
mode stability on the real axis is considered for the case s = 0, the integral trans-
form (4.69) is applied with the contour C consisting of the real half-line starting at
r+, C = [r+,∞).
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4.5. Limits

Recall (Montgomery and Vaughan, 2006, Theorem C.2) that for <ζ > 0,∫ ∞
0

e−xxζ−1dx = Γ(ζ), (Euler’s integral). (4.77)

where Γ(ζ) is the Gamma function. The Gamma function extends to a meromor-
phic function on the complex plane with simple poles at the non-positive integers.
Let ρ > 0 and let H be the contour in the complex z-plane which consists of the
half line from −∞ − iρ to −iρ, the semi-circle of radius ρ connecting −iρ with
iρ and the half line from iρ to iρ − ∞, see figure 4.2. Then for ζ ∈ C we have

z

H

Figure 4.2.: Hankel’s contour

(Montgomery and Vaughan, 2006, Theorem C.3),

1

2πi

∫
H
ezz−ζdz =

1

Γ(ζ)
, (Hankel’s integral). (4.78)

Among the many relations known for the Gamma function, we also recall the
product formula (Montgomery and Vaughan, 2006, Eq. (C.6))

Γ(ζ)Γ(1− ζ) =
π

sin(πζ)

We now consider the integral transform (4.69) for a contour C. We restrict to the
case

ω > 0.

and to contours C such that the integral (4.69) converges, and the boundary con-
dition (4.67) is satisfied.

Let

ν = 2ω(x− r−)/(r+ − r−),

and define

h(r) = (r − r−)η−s/2(r − r+)−ξ+s/2e−iωrR(r) (4.79)
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We note that in view of (4.70), we have

h(r) ∼
{

1 for r → r+

r−2ξ−s−1 for r →∞ (4.80)

We have the following corollary to Lemma 4.3.1.

Corollary 4.5.1. Let h be given by (4.79). Then, h is analytic on the complex
plane except at the singular points r−, r+ of the radial Teukolsky equation, where
h may have branch points. Further, it holds that

1. In the non-resonant case, ξ 6= 0 or s not a positive integer, h(r) is analytic
at r+.

2. Let S be the circular sector defined in Lemma 4.3.1. Then

h(r) = O(r−s−1)

holds in S.

Remark 4.5.1. By Lemma 4.3.1, h is analytic for |r − r+| < |r+ − r−| if s ≤ 0.

A calculation shows

lim
r→r+

|h(r)|2 = |r+ − r−|−2s lim
r→r+

∆s|R(r)|2 (4.81)

For a given C, we define, after choosing a suitable branch of h if necessary,

I(ν, α) =

∫
C
eiν(r−r+)(r − r+)αh(r)dr (4.82)

Then

g̃(x) = eiν(x)(r+−r−)I(ν(x), 2ξ − s)

In the rest of this section, we shall calculate the limit limν→∞ ν
α+1I(ν, α). This

argument is closely related to the proof of Watson’s Lemma, cf. (Wang and Guo,
1989, §1.9), which can be used to derive an expansion at ν =∞ of this expression.
See also Shlapentokh-Rothman (2015) for s = 0.
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4. Mode Stability

4.5.1. The case r =∞, s > 0

Let ρ0 > 0 be small. We choose C to be the rotated Hankel type contour in the
complex r-plane which consists of the half line from i∞+ r+ − ρ0 to r+ − ρ0, the
semicircle of radius ρ0 connecting r+ − ρ0 with r+ + ρ0, and the half line from
r+ + ρ0 to i∞ + r+ + ρ0, see figure 4.3. Using this contour in the definition of
g̃(x), we find that due to the exponential decay of the kernel eiν(r−r+) for =r ↗∞,
the boundary condition (4.67) is satisfied with this choice of C and hence g̃(x) is
a solution to the transformed equation (4.68).

We calculate

I(ν, α) =

∫
C
eiν(r−r+)(r − r+)αh(r)dr

substitute ν(r − r+) = −it

= (−i)α+1ν−α−1

∫
Ct
ettαh(r+ − ν−1it)dt (4.83)

where Ct coincides with the Hankel contour with ρ = νρ0.

A limiting argument together with Hankel’s integral formula (4.78) now yields
the following result.

Lemma 4.5.1. Let C be the contour as in figure 4.3, and let h satisfy the conclu-
sions of Corollary 4.5.1. Then it holds that

lim
ν→∞

να+1I(ν, α) = (−i)α+1 2πi

Γ(−α)
h(r+)

r
r+r− C

Figure 4.3.: The contour used in Lemma 4.5.1
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4.5. Limits

Proof. If r+ is a branch point for h, we choose a branch of h by cutting the complex
plan along the half line in the imaginary direction starting at r+, see figure 4.3. In
view of its definition, the integral I(ν, α) is independent of ρ0. Hence we can set
ρ0 = ν−1ρ so that Ct coincides with the Hankel contour. Starting from (4.83) we
have,

lim
ν→∞

να+1I(ν, α) = lim
ν→∞

(−i)α+1

∫
Ct
ettαh(r+ − ν−1it)dt

= (−i)α+1h(r+)

∫
H
ettαdt

= (−i)α+1 2πi

Γ(−α)
h(r+)

where in the last step we used (4.78).

Corollary 4.5.2. Assume that R is a solution of the radial Teukolsky equation
with ω > 0, and with no incoming radiation. Let U be defined via (4.74) and the
integral transform (4.69) with the contour C as in figure 4.3. Then U solves (4.75)
and satisfies

lim
x→∞
|U(x)| = C lim

r→r+
∆s/2|R(r)| (4.84)

where

C =

(
r+ − r−

2ω

)−s+1
2π

|Γ(s− 2ξ)| |r+ − r−|−s (4.85)

and the limit on the left hand side of equation (4.84) is taken along the real axis.

Proof. Due to the exponential decay of the kernel as =r →∞, the integral (4.69)
converges, and the boundary condition (4.67) is satisfied. Therefore g̃ solves (4.68)
and U solves (4.75). In order to evaluate the limit of U at x =∞, we use Lemma
4.5.1. We have

lim
x→∞
|U(x)| = lim

x→∞
|x−s+1g̃(x)|

=

(
r+ − r−

2ω

)−s+1

lim
ν→∞

ν−s+1|I(ν, 2ξ − s)|

=

(
r+ − r−

2ω

)−s+1
2π

|Γ(s− 2ξ)| |r+ − r−|−s lim
r→r+

∆s/2|R(r)|

Remark 4.5.2. With the above choice of contour, Corollary 4.5.2 is valid for
arbitrary s. For s > 0, C defined by (4.85) is bounded and non-zero. However, if
ξ = 0, then with s a non-positive integer, the constant C will vanish. Therefore,
we shall in the next subsection consider a different contour which is more suitable
for the case s ≤ 0.
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4. Mode Stability

4.5.2. The case s ≤ 0

We consider the contour C consisting of the half line connecting r+ with i∞, i.e.

C = {r ∈ [r+, i∞)}, (4.86)

see figure 4.4. Due to the exponential decay of the kernel eiν(r−r+) as =r → ∞,

r
r+r−

C

Figure 4.4.: A contour of Euler type

the boundary condition at i∞ is automatically satisfied. Further, due to g(r) ∼ 1
at r = r+, the boundary condition at r = r+ is satisfied. Thus, with this choice of
contour we have that g̃(z) is a solution to the transformed equation (4.68).

Starting with I(ν, α) defined by (4.82), we calculate

I(ν, α) =

∫
C
eiν(r−r+)(r − r+)αh(r)dr

substitute ν(r − r+) = it

= iα+1ν−α−1

∫ ∞
0

e−ttαh(r+ + ν−1it)dt

A limiting argument together with Euler’s integral formula (4.77) now yields the
following result which is the analog of Lemma 4.5.1.

Lemma 4.5.2. Assume that h satisfies the conclusions of Corollary 4.5.1. Then
it holds that

lim
ν→∞

να+1I(ν, α) = iα+1Γ(α + 1)h(r+)

Using the definitions we obtain the following analog of Corollary 4.5.2
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4.6. Mode stability on the real axis

Corollary 4.5.3. Assume that R is a solution of the radial Teukolsky equation
with ω > 0 and with no incoming radiation. Assume s ≤ 0 and let U be given by
(4.74), and defined via the integral transform (4.69) with the contour C given by
(4.86). Then U solves (4.75), and we have

lim
x→∞
|U(x)| = C lim

x→r+
∆s/2|R(r)| (4.87)

where

C =

(
r+ − r−

2ω

)−s+1

|Γ(2ξ − s+ 1)||r+ − r−|−s (4.88)

Proof. The fact that U solves (4.75) follows as in Corollary 4.5.2 due to the expo-
nential decay of the kernel as =r →∞. Lemma 4.5.2 yields

lim
x→∞
|U(x)| = lim

x→∞
|x−s+1g̃(x)|

=

(
r+ − r−

2ω

)−s+1

lim
ν→∞

ν−s+1|I(ν, 2ξ − s)|

=

(
r+ − r−

2ω

)−s+1

|Γ(2ξ − s+ 1)||r+ − r−|−s lim
r→r+

(∆s/2|R(r)|)

Remark 4.5.3. For s ≤ 0, C defined by (4.88) is bounded and non-zero.

4.6. Mode stability on the real axis

We are now ready to prove our main result.

Theorem 4.6.1. Assume that ω > 0 and that R is a solution of the radial Teukol-
sky equation with no incoming radiation. Then R = 0.

Proof. We first consider the case s ≤ 0. Let U(x) be given by (4.74) and con-
structed via the integral transform (4.69) as explained above. By corollary 4.5.3,
U(x) solves (4.75). By Remark 4.4.2 the Wronskian W [U, Ū ] = U ′Ū − Ū ′U is
conserved, W ′ = 0. From the definition of U , we can write it as

U(x) = Z(x)I(ν(x), 2ξ − s).

where

Z(x) = (x2 + a2)1/2(x− r−)−s(x− r+)−2iMωe−iωxeiν(x)(r+−r−) (4.89)
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4. Mode Stability

We have
W [U, Ū ] = W [Z, Z̄]IĪ +W [I, Ī]ZZ̄ (4.90)

From (4.82) we have by differentiating under the integral sign,

d

dx
I(ν, α) = i

dν

dx
I(ν, α + 1) (4.91)

where
dν

dx
=

2ω

r+ − r−
(4.92)

Write Z ′ = dZ/dx∗ as in section 4.4. For x→ r+, we have

Z ′ =
∆

x2 + a2

(−2iMω

x− r+

)
Z(x) +O(x− r+)

=
r+ − r−
r2

+ + a2
(−2iMω)Z(x) +O(x− r+)

= − 4iMκ+ωZ(x) +O(x− r+)

This gives
W [Z, Z̄](r+) = −16iM2κ+ωr+(r+ − r−)−2s

In view of the discussion above I(ν(x), α) and dI(ν(x), α)/dx have well defined
limits at x = r+, and hence

lim
x→r+

dI(ν(x), α)

dx∗
= 0

This gives

W [U, Ū ](r+) = W [Z, Z̄](r+)I(ν(r+), 2ξ − s)Ī(ν(r+), 2ξ − s)

In particular,
iW [U, Ū ](r+) > 0 (4.93)

for |a| < M . We now consider the limit x→∞. Equations (4.89) and (4.92) give
for large x,

Z ′ = (iω +O(1/x))Z(x) (4.94)

which yields
Z ′(x)Z̄(x) = (iω +O(1/x))Z(x)Z̄(x)

From (4.91) and corollary 4.5.3, we have that

dI(ν(x), α)

dx∗
= O(1/x)I(ν(x), α)
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for large x. This means that

lim
x→∞

W [U, Ū ](x) = lim
x→∞

W [Z, Z̄](x)|I(ν(x), 2ξ − s)|2

= 2iω lim
x→∞
|Z(x)|2|I(ν(x), 2ξ − s)|2

= 2iω lim
x→∞
|U(x)|2

Write |U(∞)|2 = limx→∞ |U(x)|2 and |U(r+)|2 = limx→r+ |U(x)|2. The conserva-
tion property of the Wronskian gives for ω > 0 and |a| < M

0 = i(W (∞)−W (r+))

= − 2ω|U(∞)|2 − iW (r+)

In view of (4.93) this can hold only if |U(∞)|2 = 0. Taking into account the
definition of U(x), and Corollaries 4.5.2 and 4.5.3, this implies that R+,1(r+) = 0.
Hence in view of point 1 of Remark 4.3.1, we have that R(r) ≡ 0.

For the case s = s > 0 we shall present two alternative approaches. Let Rs

denote a solution to the radial Teukolsky equation with no incoming radiation. It
is straightforward to check that the TSI relation (4.52b) yields a solution R−s with
no incoming radiation. In order to demonstrate that Rs = 0 it suffices to show
that the solution R−s defined by

R−s = ∆s/2D†2s∆s/2Rs (4.95)

is non-vanishing. This follows due to the asymptotic form of Rs given by (4.44),
and the fact that D† is to leading order

D† =
d

dr
+ iω +O(1/r)

Arguing as in the first part of the proof, we find that R−s must vanish, and hence
also Rs. The inference we want to draw from equation (4.95) is that if R−s = 0 then
Rs = 0 must also hold. The argument for this fails at algebraically special modes
(Chandrasekhar, 1984). However, this fact is not an obstacle to our inference
since algebraically special modes do not have no incoming radiation in the sense
of definition 4.3.1 and occur in case Cs vanishes, which does not happen for real
frequencies.

A second, alternate argument for the case s > 0 can be given as follows. For
the non-resonant case, with s > 0 we can argue along exactly the same lines as
in the first part of the proof, but with corollary 4.5.2 playing the role of corollary
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4. Mode Stability

4.5.3. Finally, for the resonant case, with ξ = 0 and s a positive integer, we can
apply the scattering relation (4.53). In the resonant case, we have k+ = 0 which
yields that the transmission coefficient vanishes, Ts = 0. Assuming no incoming
radiation, this yields

Yin,s = 0

We now show that for spins s = 1, 2, the TSI constant Cs given in equation (4.57)
is non-vanishing in the case of resonant frequencies, k+ = 0, where k+ is given by
(4.25). If k+ = 0, then ω = am/(2Mr+). For s = 1, this gives

|C1|2 = (Λ + 1)2 + 4amω − 4a2ω2 = (Λ + 1)2 + (8Mr+ − 4a2)ω2 > 0.

For s = 2, =C2 = 12Mω, cf. Teukolsky and Press (1974, Eq. (3.25)), see also
Chandrasekhar (1998, p. 462-463). This shows that |C2|2 > 0. Hence, Rs = 0,
which completes the proof of Theorem 4.6.1.

Remark 4.6.1. The radial Teukolsky equation (4.21a) has conserved Wronskian

WR[R1, R2] = ∆∂rR1R2 −∆R1∂rR2,

i.e. ∂rWR[R1, R2] = 0 if R1, R2 solve (4.21a). Let Rhor and Rout be solutions of
the radial Teukolsky equation which are ingoing at the horizon and outgoing at
infinity, respectively. Theorem 4.6.1 implies that WR[Rhor, Rout] is non-vanishing.

Consider an inhomogenous version of the radialy Teukolsky equation,

RR = F (4.96)

In view of the above, we can use the method of variation of parameter to find a
particular solution to (4.96),

R(r) =
1

WR[Rout, Rhor]

(
Rhor(r)

∫ ∞
r

Rout(t)F (t)dt+Rout(r)

∫ r

r+

Rhor(t)F (t)dt

)
Due to the regular dependence of WR on ω this can in principle be used to estimate
the solution of the inhomogenous Teukolsky equation. This fact is related to the
so-called quantitative mode stability, cf. Shlapentokh-Rothman (2015).

4.7. Charged scalar field in Reissner Nordström

In this section we will discuss the charged massive and massless scalar field on a
Reissner-Nordström geometry. There has been a good amount of work devoted
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4.7. Charged scalar field in Reissner Nordström

to this problem, see for example Hod and Piran (1997, 1998a,b), Hartman et al.
(2010), Hod (2005, 2013, 2010). One can hope for it to serve as a toy model to un-
derstand superradiance. It has the great advantage that we are back to spherical
symmetry which should simplify the analysis. However as we will discuss in this
section the slow fall-off of the vector potential provides an obstacle for standard
techniques to work.
Within this section we assume both, the background metric and the background
electro-magnetic fields to be fixed. First we introduce the modified electro-magnetic
connection

Dµ = ∇µ + iqAµ (4.97)

where q denotes the charge coupling constant. The action for the charged scalar
field is given by

Sq(ϕ) =

∫
(gµνDµϕDνϕ+m2ϕϕ)︸ ︷︷ ︸

= L

√−gdnx, (4.98)

where ϕ is a complex scalar field and g denotes the determinant of the metric.
Let χ be a scalar function on the manifold. Then the action is invariant under a
simultaneous replacement

ϕ̃→ eiqχϕ, (4.99)

Ãµ → Aµ +∇µχ. (4.100)

The charged scalar field equation, which is the Euler-Lagrange equation for (4.98),
is given by

[DµDµ −m2]ϕ = 0. (4.101)

The symmetric stress energy tensor is then given by

STµν(ϕ) = 2
1√−g

δSq(ϕ)

δgµν
= DµϕDνϕ+DνϕDµϕ−gµν(DρϕDρϕ+m2ϕϕ). (4.102)

The Noether or canonical stress energy is given by

CT µν(ϕ) =
∂L

∂(∇µϕ)
∇νϕ+

∂L
∂(∇µϕ)

∇νϕ− δµνL (4.103)

Further we can define the charge current

Jµ =
δSq(ϕ)

δAµ
= iq(ϕDµϕ− ϕDµϕ) (4.104)

Which is divergence free if ϕ satisfies (4.101)

∇µJ
µ = 0 (4.105)
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on the other hand the symmetric stress energy is not divergence free in this case.
In fact we get

∇µTµν = FµνJ
µ (4.106)

where Fµν is the electro magnetic field strength tensor

Fµν = ∇µAν −∇νAµ. (4.107)

Hence the relation (4.106) tells us that the change in energy is given by the in-
teraction of the fields charge with the background electro-magnetic field. The
electro-magnetic field strength tensor can also be interpreted as an additional
curvature term of the modified electro-magnetic connection as compared to the
standard connection

[Dµ, Dν ]ϕ = Fµνϕ. (4.108)

A straight forward calculation then gives us the following relationship between the
canonical and the symmetric stress energy.

CTµν(ϕ) = STµν(ϕ) + JµAν = STµν(ϕ) + Aν
δSq(ϕ)

δAµ
(4.109)

This suggests that the symmetric stress energy can be interpreted as the fields
internal energy while the canonical stress energy is the sum of the internal energy
plus the potential energy (charge times electro-magnetic potential) and therefore
represents the total energy of the field.
Now let Kν be an arbitrary vector field on the manifold, then the associated
momentum flux is given by 1

PK
µ = Kν

[
CTµν(ϕ)

]
. (4.110)

A straight forward calculation shows that the divergence of this flux is given by

∇µPK
µ = LieK(g)µνT

µν + LieK(A)µJ
µ (4.111)

or written in a more suggestive way

∇µPK
µ = LieK(g)µν2

1√−g
δSq(ϕ)

δgµν
+ LieK(A)µ

δSq(ϕ)

δAµ
(4.112)

We see that if the vector field K is Killing and the vector potential is invariant
under the flow of the Killing vector field then we get the conserved fluxes found
in Tóth (2017), hence

∇µPK
µ = 0. (4.113)

1Note since CTµν is not symmetric it matters with which index we contract the vector field
here.
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Note that the above conditions is nothing but the statement thatK is the generator
of a symmetry of the action (4.98) and hence PK is the conserved Noether flux
associated with that symmetry. From the here presented considerations, especially
the relation (4.109) and (4.112) hold in a more general situation.

Conjecture 4.7.1. Let S(ξ, F i) be an action for the field ξ (which can in principal
be a tensor field) with F i being an arbitrary number of background fields (which
are not scalar) that couple to ξ. Then a relation of the form

CTµν(ξ) = STµν(ξ) +
∑
i

F i
να1...αn

δSq(ξ)

δ(F i)α1...αnµ
(4.114)

and for

PK
µ = Kν

[
CTµν(ξ)

]
. (4.115)

the divergence is roughly of the form

∇µPK
µ = LieK(g)µν2

1√−g
δSq(ϕ)

δgµν
+
∑
i

LieK(F i)µα1...αn

δSq(ϕ)

δF i
µα1...αn

(4.116)

Note that there is a substantial chance that the conjecture above has already been
proven somewhere in the literature however we were unable to find this statement
anywhere. Further more it is expected but remains to be shown that the Belinfante
(1940)-Rosenfeld (1940) symmetrisation procedure can be expressed in the above
form as well.

Now lets go to the specific setting of a charged scalar field in Reissner Nordström
where the metric is given by (2.33) with a = Λ = l = 0 and the the electro
magnetic potential can be chosen as Aν = −δ0

νQ/r. If we choose Kµ = (∂t)
µ

we get a conserved flux PK . If we integrate the momentum flux across the three
dimensional space like hypersurface Στ := {p ∈ M|t(p) = τ}, which is a Cauchy
surface for the exterior region, we get∫

Στ

PK
µn

µdσ =

∫ ∞
r+

∫
Ω

(
r2

∆
|∂tϕ|2 +

(
m2 − q2Q2

∆

)
|ϕ|2 +

∆

r2
|∂rϕ|2 (4.117)

+
1

r2

(
|∂θϕ|2 +

1

sin2 θ
|∂φϕ|2

))
r2 sin2 θdrdθdφ

For m = 0 we would need to prove the following Hardy type estimate∫ ∞
r+

(r − r+)(r − r−)|∂rϕ|2 −
r2q2Q2

(r − r+)(r − r−)
|ϕ|2dr > 0 (4.118)
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which is roughly equivalent to proving∫ ∞
0

r|∂rϕ|2 −
C

r
|ϕ|2dr (4.119)

to be positive. However this is the critical case for the standard Hardy estimate
and does not hold. However the degeneracy of the energy at r+ originates from the
failure of the coordinate system, so there is a chance that a similar result as we will
discuss below for Minkowsky can be obtained when working in coordinates that
are regular at the horizon. The only case one can prove positivity of the energy
(4.117) known to us is if m2 > q2Q2/r+. If we apply a gauge transformation
to the vector potential such that it vanishes at the horizon instead of infinity
Ãν = −δ0

ν(Q/r−Q/r+) one can show that the coefficient of the |ϕ|2 term is always
positive and thus is the energy. This has already been shown in Bachelot (2004).
On the other hand we can define the dyadosphere as the region in the manifold
where m2 − q2Q2

∆
≤ 0. The boundary is then given by

rD = M +

√
M2 +

(
q2

m2
− 1

)
Q2 > r+. (4.120)

Note that in the limit of the massless charged field m → 0 we have that rD ≈
M +

∣∣ q
m
Q
∣∣ going to infinity. Therefore in contrast to the ergosphere in Kerr the

dyadosphere is not compact in the massless limit. Time and again the slow fall-off
of the electro magnetic potential towards infinity will prove as major obstacle to
prove any of the known results in the case of mass less fields of Kerr. In return it
allows for some results in the case of massive fields that do not hold true in Kerr.
Interesting enough, when we take Minkowski space with a point charge at the
origin as a background we get the energy to be∫

Στ

PK
µn

µdσ =

∫ ∞
0

∫
Ω

(
|∂tϕ|2 +

(
m2 − q2Q2

r2

)
|ϕ|2 + |∂rϕ|2 (4.121)

+
1

r2

(
|∂θϕ|2 +

1

sin2 θ
|∂φϕ|2

))
r2 sin2 θdrdθdφ.

The relevant Hardy estimate for the massless case is now∫ ∞
0

r2|∂rϕ|2 − q2Q2|ϕ|2dr ≥ 0 (4.122)

which is true as long as q2Q2 ≤ 1/4. It would be interesting to check how this
bound relates to known physical systems such as the hydrogen atom.
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4.7.1. Mode analysis

We will now take a look at the mode solutions of the form

ϕ = e−iωtYlm(φ, θ)R(r) (4.123)

where Ylm are the standard spherical harmonics with eigenvalue l(l+1). The radial
equation is then given by(

∂

∂r
∆
∂

∂r
+
r4

∆

(
ω +

qQ

r

)2

− l(l + 1)− r2m2︸ ︷︷ ︸
=Vq(r)

)
R(r) = 0 (4.124)

Along the lines of the previous section it can be shown that for m = 0 the super-
radiant scattering occurs in the frequency range Bekenstein (1973b)

ω

(
ω + q

Q

r+

)
< 0 (4.125)

This is similar with the Kerr case where ωH is the corresponding black hole prop-
erty at the horizon and m gives the coupling of a mode to this black hole property.
Here however the coupling q is not a parameter of the mode solution and can thus
be chosen freely. Hod (2013, 2015) showed a no bomb theorem for this equation by
proving that for any combination of m, M , q and Q the potential Vq(r) can have
at max two zeros in the interval (r+,∞). When we calculate the charge density
for modes in Στ we get∫

Στ

Jµn
µdσ =

∫ ∞
r+

2r3qQ

∆

(
ω +

qQ

r

)
|R(r)|2dr. (4.126)

This integral is of course not well defined, but we see that the superradiant modes
are those for which the charge density changes sign when going from the horizon to
infinity. Hence a negative charge flux across the horizon requires the total positive
charge flux at infinity to be outgoing. Di Menza and Nicolas (2015) showed that it
is possible to find numerically a finite energy solution on a fixed background that
does extract energy from the black hole. Baake and Rinne (2016) showed that one
can numerically find solutions to the full coupled Einstein-Maxwell-charged-scalar-
field system in spherical symmetry where superradiant energy extraction can be
observed.
We will now try to repeat the procedure of section 4.4 for the mode stability for
the massless charged scalar field. The rescaling

R(r) = (r − r−)η(r − r+)ξe−iωrg(r) (4.127)
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with ξ = ir+(qQ−ωr+)
r+−r− and η = ir−(qQ−ωr−)

r+−r− puts equation (4.124) in canonical form.
Letting

γ = 2η + 1 (4.128a)

δ = 2ξ + 1 (4.128b)

p = − 2iω (4.128c)

α = 1− 2iqQ+ 4iMω (4.128d)

σ = − l(l + 1)− iqQ− 4qQωr− + 4ω2r2
− + 2iωr+ (4.128e)

we have that RR = 0 is equivalent to

Trg(r) = 0 (4.129)

where Tr is again given by (4.61) with parameters γ, δ, p, α, σ. Let T̃ be a new
Heun operator with different parameters given by

γ̃ := α (4.130a)

δ̃ := γ + δ − α (4.130b)

p̃ := p (4.130c)

α̃ := γ (4.130d)

σ̃ := σ. (4.130e)

Now even if the integral transform could be shown to work exactly as it does
for Teukolsky in Kerr, it wouldn’t help much. If we go from T̃xg̃(x) = 0 to the
Schrödinger form, one finds that in this case we still do have superradiance for the
interval where

ω

(
ω + q

Q

2M

)
< 0. (4.131)

So we would in fact gain a small stable frequency range for the frequencies where
(4.125) is satisfied but (4.131) is not. Now if we artificially replace the vector po-
tential by A∗ν = −δ0

νQ/r
2 and apply the procedure, then the transformed equation

T̃ ∗x g̃(x) = 0 does not have any superradiance anymore and the mode stability proof
should go through.

Conclusion

Despite the simplification due to spherical symmetry the charged scalar field on
Reissner Nordström poses substantial difficulties which we were not able to over-
come within the scope of this work. The difficulties mostly seem to originate in
the slow fall-off of the vector potential. The problem seems worthy of further
investigations.
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A.1.

Let f(x) be a smooth function on [−1, 1] vanishing at the boundary points with a
unique maximum with value 1 at zero. Furthermore, we consider that f(0) = 1,
f ′(0) = 0 and f ′′(0) < 0. Then, we define:

g1a(x) = arcsin(f(x)) : [−1, 0)→[0, π/2) (A.1)

g2a(x) = π − arcsin(f(x)) : [−1, 0)→(π/2, π] (A.2)

g1b(x) = arcsin(f(x)) : (0, 1]→[0, π/2) (A.3)

g2b(x) = π − arcsin(f(x)) : (0, 1]→(π/2, π] (A.4)

Note that g′1a/b(x) = −g′2a/b(x). By standart analytic arguments one gets that

d/dx(arcsin(f(x)))|x=0 =
√
−f ′′(0). Note that on [−1, 0) the derivative of g1(x) is

positive while on (0, 1] it is negative. Together, this gives us that the function

g(x) =


g1a(x) if x ∈ [−1, 0)

π/2 if x = 0

g2b(x) if x ∈ (0, 1]

(A.5)

is smooth at x = 0 and therefore on [−1, 1], with d/dx(g(x))|x=0 =
√
−f ′′(0).

A.2. Möbius transformation

The Riemann sphere S2 can be globally parametrized by stereographic projection
by means of C := C ∪ {∞}. A Möbius transformation is a map

χ : C −→ C,

c −→ χ(z) :=
az + b

cz + d
, a, b, c, d ∈ C, ad− bc = 1.
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The set of all Möbius transformations define a group, denoted by Mb.

This group is isomorphic to the set of positively oriented conformal maps of S2

endowed with the standard round metric.

In this appendix we prove the following theorem.

Theorem A.2.1. Let C := C ∪ {∞} be the Riemann sphere and Mb the set of
Möbius transformations. Let c : S1 −→ C be an embedding. If there exists χ 6= IdC
that leaves c invariant as a set, then c is a generalized circle (i.e. a circle or a
straight line with the point at infinity attached), or there exists n ∈ N such that
χn = IdC and c is conjugate to a closed curve invariant under rotations of angle
2πm
n

, m ∈ Z around the origin of C.

By “invariant as a set” we mean that there is a diffeomorphism f : S1 −→ S1

such that χ ◦ c = c ◦ f (the image of c and χ ◦ c are obviously the same). A closed
embedded curve c is conjugate to another closed embedded curve c1 if there exists
χ1 ∈ Mb such that χ1 ◦ c = c1.

Proof: We first note that the problem is invariant under conjugation: for any
ξ ∈ Mb the conjugate curve cξ := ξ ◦ c is invariant (as a set) under the conjugate
transformation χξ := ξ · χ · ξ−1, as it is obvious from:

χξ ◦ cξ = (ξ ◦ χ ◦ ξ−1) ◦ (ξ ◦ c) = ξ ◦ (χ ◦ c) = ξ ◦ c ◦ f = cξ ◦ f.
It is well-known that all Möbius transformations (different from the identity) can
be classified by conjugation into four disjoint classes: parabolic, elliptic, hyperbolic
or loxodromic. Each class admits a canonical representative, in the sense that any
element in the class is conjugate to this representative. The representatives can
be chosen as follows:

Parabolic: χP (z) =
z

1 + z
(A.6)

Elliptic: χE(z) = eiθz, 0 6= θ ∈ Rmod 2π

Hyperbolic: χH(z) = eλz λ ∈ R \ {0}
Loxodromic: χL(z) = kz k ∈ C \ {R} and |k| 6= 1C.

Thus, we may assume without loss of generality that the transformation χ leaving
c invariant is one of these canonical transformations. Obviously χm,m ∈ Z also
leaves c invariant. The action of χm is immediate to obtain in the elliptic, hyper-
bolic and loxodromic canonical cases. In the parabolic case, a simple inductive
argument shows that:

χmP (z) =
z

mz + 1
, m ∈ Z.
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Thus, it follows easily that the cyclic group {χn;n ∈ Z} is finite (i.e. χm = Id for
some m ∈ Z) if and only if χ is elliptic and θ

2π
∈ Qmod 1

.

Let us consider first the loxodromic, hyperbolic and parabolic cases. We start
by showing that the embedded loop c must pass through the origin z = 0 of the
complex plane. Let 0 6= z0 ∈ C be any point on the curve, i.e. z0 ∈ Im(c) and
define, for each m ∈ Z, zm := χm(z0) ∈ C. From invariance of the curve under χ,
all points in the sequence {zm} lie on the image of the curve. From compactness
of Im(c) ⊂ C it follows that the set of accumulation points of {zm} is non-empty
and a subset of Im(c).

When χ is hyperbolic or loxodromic, the canonical form is χk(z) := kz with
|k| 6= 1. The sequences are now zm := χmk (z0) = kmz0. If |k| > 1, the sequence
converges to z = 0 as m → −∞. If |k| < 1, the sequence converges to z = 0
as m → ∞. In either case z = 0 is an accumulation point, so the loop c passes
through z = 0. When χ is parabolic, the sequence is zm = z0

mz0+1
which converges

to z = 0 as |m| → ∞, and we reach the same conclusion.

We can now show that a loxodromic Möbius transformation does not leave any
closed embedded loop invariant. Let us take differentials in the invariance equation
χ ◦ c = c ◦ f and evaluate at the invariant point p := {z = 0}:

dχ|p(ċ) = ḟ |c−1(p)ċ,

which simply states the fact that the differential map of χp must preserve the
direction of ċ|p (it may change its scale, but not the direction). The differential
of χ(z) = kz at z = 0 is dχ|z=0 = k. Thus, this differential acts on a vector v by
scaling with |k| and rotating by arg(k). When k is not real, all vectors v 6= 0 change
direction and we reach a contradiction. Thus, no embedded loop is invariant under
a loxodromic Möbius transformation.

We next consider the hyperbolic case. The canonical representative is now χ =
χH . Let ξ be a rotation of the form ξ(z) = eiαz α ∈ R. Upon conjugation with ξ,
the map χH remains unchanged. The conjugate curve ξ ◦ c passes though z = 0,
and the parameter α can be adjusted so that its tangent vector there points along
the real axis x. Since c is an embedded curve, there is a neighbourhood U of
z = 0 such that U ∩ c is connected and in fact a graph over the real axis. After
restricting U if necessary we may assume that U is an open disk centered at z = 0.
We consider the curve cU := c ∩ U from now on. This curve can be parametrized
by x, i.e. c(x) = x + iy(x) where y(x) is a smooth function of x ∈ (−ε, ε). The
parameter λ in the definition of χH can be assumed to be negative (if it were
positive simply replace χH by χ−1

H ). Then χH maps U into itself, and leaves the
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curve cU invariant. So, it must be the case that, for all x ∈ (−ε, ε):
eλ(x+ iy(x)) = x′(x) + iy(x′(x)) ⇐⇒ y(eλx) = eλy(x). (A.7)

where x′(x) indicates the reparametrization of the curve induced by the Möbius
transformation χH . Define the function P (u) := e−λuy(eλu). By construction,
P (u) is smooth on (−∞, λ−1 ln ε). In terms of P , the function y(x) restricted to
x > 0 takes the form y(x) = xP (λ−1 lnx). The invariance property (A.7) becomes,
when applied at the point x = eλu:

P (u+ 1) = e−λue−λy(eλueλ) = e−λuy(eλu) = P (u).

So P (u) is a periodic function of period one. We can now compute the derivative
of y(x) (prime denotes derivative with respect to u):

dy(x)

dx
= P (λ−1 lnx) + λ−1P ′|λ−1 lnx.

If P (u) is not a constant function the combination P (u) + λ−1P ′(u) does not
converge as u → −∞. To show this, take the sequence un = u0 − n with u0 ∈
[−1, 0) defined by the condition that P (u0) attains the supremum of P (u) and
another sequence u′n = u1 − n where u1 ∈ [−1, 0) is the value where P (u) attains
the infimum. By periodicity, the sequences P (un) and P (u′n) are both constant.
Moreover, P ′ vanishes on all points un and u′n. Thus, the sequences {P (un) +
λ−1P ′(un)} and {P (u′n) + λ−1P ′(u′n)} converge to the same limit if and only if
P (u0) = P (u1), i.e. if the function P (u) is constant, as claimed. As a consequence,
dy
dx

converges as x→ 0+ if and only if P (u) = a for some constant a, or equivalently

iff y(x) = ax. Since, in our setup, dy
dx

= 0 at x = 0 we conclude that y(x) = 0. We
have proved this fact in a neighbourhood U of 0, but this extends to the whole
loop c by applying repeatedly the transformation χH . In summary, we have shown
that the only embedded loops invariant under the canonical representative χH of
hyperbolic Möbius transformations is the line (x, y = 0), and arbitrary rotations
thereof around the origin. We now use the property that Möbius transformations
map generalized circles into generalized circles, and conclude that an embedded
loop which is not a generalized circle can never be invariant under a hyperbolic
Möbius transformation.

We want to use a similar argument for the parabolic case. To that aim, it is
preferable to use a different representative. More precisely, recall that for χ = χP
given in (A.6) the invariant embedded loop c necessarily passes through z = 0.
Let us apply a conjugation with the inversion map ξ̂(z) = −1/z. The conjugate
χ̂P = ξ̂ ◦χP ◦ ξ̂−1 is given by χ̂P (z) = z−1 and the conjugate loop ĉ := ξ̂ ◦ c passes
through the point at infinity. Consider the vector field:

ζ = z2∂z + z2∂z.
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This field is smooth in a neighbourhood of the point at infinity. Indeed, the vector
field ∂x′ = ∂z′+∂z′ is clearly smooth in a neighbourhood of zero. The inversion map
z′ = −1

z
transforms this neighbourhood of zero into a neighbourhood of infinity

and transforms the vector field ∂x′ into ζ, from which smoothness follows. In the
coordinates {x, y} defined by z = x+ iy we have:

ζ =
(
x2 − y2

)
∂x + 2xy∂y.

The property of invariance of an embedded loop under a Möbius transforma-
tion is preserved by reparametrizations of the curve, so we are free to choose
the parametrization of ĉ. However, we must make sure that the parameter is
smooth everywhere, including a neighbourhood of infinity. To that aim we choose
to parametrize ĉ with arc length s with respect to the round sphere metric:

ds2 =
1(

1 + 1
4
(x2 + y2)

)2 (dx2 + dy2), (A.8)

which extends smoothly to the point at infinity. As before, let 0 6= z0 = ĉ(s0) =
(x0, y0) ∈ C be a point on the curve. From the condition that the tangent vector
T |p of the curve is unit with respect to (A.8), there exists α ∈ [0, 2π) such that:

T |p = F |p (cosα∂x + sinα∂y) ,

with F |p determined by:

F |p = 1 +
1

4

(
x2 + y2

)∣∣∣∣
(x0,y0)

.

We compute the scalar product with the vector ζ to find:

〈T |p, ζ|p〉 =
cosα(x2 − y2) + 2 sinαxy

1 + 1
4

(x2 + y2)

∣∣∣∣
(x0,y0)

.

Consider now the sequence of points {zm = (x0 −m, y0)}. From invariance under
χ̂P , they also also lie on the curve ĉ. In fact, the set Im(ĉ) defines a periodic
submanifold, in the sense that a unit translation along the x axis leaves it invariant.
As a consequence, all the tangent vectors Tpm of the curve at each point zm must
be parallel to each other (in the natural euclidean sense of the term). Hence α
is the same for all zm. Let us compute the limit along the sequence of the scalar
product 〈T |pm , ζ|pm〉:

lim
m−→∞

〈T |pm , ζ|pm〉 = lim
m−→∞

cosα((x0 −m)2 − y2
0) + 2 sinα(x0 −m)y0

1 + 1
4

((x0 −m)2 + y2
0)

= 4 cosα.
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Given that the curve is smooth everywhere, including infinity, and that the se-
quence {zm} converges to the point at infinity, it follows that all the tangent
vectors T |pm must converge, namely to the unit tangent vector T∞ to the curve
there. The scalar products above must then converge to a single finite value, and
this must happen independently of the initial point z0. Since the limit depends on
α we conclude that α must be the same for all points along the curve. If α = π

2
or

α = 3π
2

then the curve would be an infinite collection of vertical lines in the {x, y}
plane, all of them passing though the point at infinity and the curve ĉ would not
be embedded. Thus the tangent vector Tp must have a non-zero component along
the x axis everywhere along the curve. This implies that it can be described as a
graph y(x) on the x axis. Since y(x) must reach a local maximum and α vanishes
there we conclude that α = 0 at all points, and hence that y = y0 = const. So,
the embedded loop ĉ must be the straight line y = y0. This claim is for embedded
curves invariant under the parabolic transformation z → z−1. Upon conjugation,
and using again that Möbius transformations map generalized circles into gener-
alized circles, we conclude that the only embedded closed loops invariant under a
parabolic transformation are generalized circles.

It only remains to consider the elliptic case, i.e. χ = χE. Since χE is a rotation
of angle θ of the complex plane around its origin, the invariant embedded loop
c defines a figure invariant under a rotation of angle θ 6= 2πk, k ∈ Z. Consider
the set of all angles β ∈ (0, 2π) under which this figure is invariant and let β0 be
its infimum. If β0 = 0, the curve must be a circle. If β0 is different from zero,
then there must exist n ∈ N such that β0 = 2π

n
(if such n did not exist, define

n ∈ N by nβ0 < 2π < (n + 1)β0, the angle (n + 1)β0 − 2π is positive, smaller
that β0 and belongs to the set of rotation angles that leave the figure invariant,
which is a contradiction.) Thus β0 = 2π

n
and in fact all other symmetry angles

must be a multiple of this (by a similar argument as before). The number n is
called the order of symmetry of the figure. In summary, the closed embedded loop
c is invariant under χE if and only if it is a circle centered at zero, or a figure
with a discrete rotational symmetry of order n. The statement of the theorem
then follows once again from the fact that the collection of generalized circles is
preserved under Möbius transformations. 2

As discussed in the main text, the shadow curve for suitable chosen observers at
any point in the class of black hole spacetimes under consideration here has the
property of being reflection symmetric. In precise terms, let the map r : C −→ C
be defined by reflection with respect to the real axis y = 0, i.e. r(z) = z. A closed
embedded loop c : S1 −→ C is reflection symmetric if there exists a smooth
map f1 : S1 −→ S1 such that r ◦ c = c ◦ f1. One checks immediately that f1 is a
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diffeomorphism of S1 (in fact an orientation reversing diffeomorphism). Our aim is
to determine which elements χ ∈ Mb have the property that the conjugate curve
χ ◦ c is also reflection symmetric. Thus, we want to impose the condition that
there exists a diffemorphism f2 : S1 −→ S1 such that r ◦ χ ◦ c = χ ◦ c ◦ f2, which
in turn is equivalent to χ−1 ◦ r ◦ χ ◦ r−1 ◦ c ◦ f1 = c ◦ f2, i.e. to:

χ−1 ◦ r ◦ χ ◦ r−1 ◦ c = c ◦ f,

where f := f2 ◦ f−1
1 is an orientation preserving diffeomorphism of S1. The map

χ̃ := χ−1 ◦ r ◦ χ ◦ r−1 is by construction an element of the Möbius group, and
leaves the loop defined by c invariant (as a submanifold). From Theorem A.2.1
it follows that χ̃ is the identity map, unless either Im(c) is conjugate to a figure
with discrete rotational symmetry of order n and, in addition, χ̃ is conjugate to
χm,n := z → ei

2πm
n z for some integer m between −n and n, or else c is a generalized

circle.

In this paper we are interested in Möbius transformations sufficiently close to
the identity that map reflection symmetric curves into reflection symmetric curves.
Since, for fixed n {ξm,n;−n < m < n} is discrete, it is disjoint to a sufficiently
small neighbourhood of the identity map IdC, and we can ignore the case of discrete
rotational symmetry of order n. Also, we restrict ourselves to non-degenerate
spacetimes points, where the shadow curve is not a generalized circle (for simplicity
we call such curves “non–circular”). So, we conclude that χ̃ must be the identity
map, i.e.:

χ−1 ◦ r ◦ χ ◦ r−1 = IdC ⇐⇒ r ◦ χ ◦ r−1 = χ.

Letting χ correspond to the SL(2,C) matrix:(
α β
γ δ

)
,

it is immediate to compute that r ◦ χ ◦ r−1 corresponds to the SL(2,C) matrix:(
α β

γ δ

)
.

Thus, is χ is sufficiently close to the identity map and the reflection symmetric
curve c is non-circular, it must be the case that χ ∈ SL(2,R), i.e. all α, β, γ, δ are
real parameters.

Our second aim is to identify the infinitesimal transformations with generate
this subgroup of Möbius transformations. Consider a one parameter subgroup
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τ : R −→ SL(2,C) of SL(2,C) and denote by χτ(s), s ∈ R the corresponding curve
in the Möbius group. A straightforward computation gives, for each z ∈ C:

dχτ(s)(z)

ds
= β0 + (α0 − δ0)− γ0z

2,

where α0 = dα(s)
ds

∣∣∣
s=0

, β0 = dβ(s)
ds

∣∣∣
s=0

, γ0 = dγ(s)
ds

∣∣∣
s=0

, δ0 = dδ(s)
ds

∣∣∣
s=0

. The condition

that the curve τ(s) takes values in SL(2,C) requires that δ0 = −α0. Thus, the
infinitesimal generator of this one-parameter subgroup is:

ξ =
(
β0 + 2α0z − γ0z

2
)
∂z +

(
β0 + 2α0 z − γ0 z

2
)
∂z.

Thus if we restrict ourselves to the subgroup of transformation preserving the
reflection symmetry of a non-circular curve c, the generators are:

ξ = β0 (∂z + ∂z) + 2α0 (z∂z + z∂z)− γ0

(
z2∂z + z2∂z

)
, α0, β0, γ0 ∈ R.

In terms of Cartesian coordinates {x, y} on the complex plane, i.e. z = x + iy,
this vector field becomes:

ξ = β0∂x + 2α0 (x∂x + y∂y)− γ0

((
x2 − y2

)
∂x + 2xy∂y

)
.

So, the three generators of Möbius transformations preserving reflection symmetry
turn out to be the translations along the x axis ξ1 = ∂x, the dilations about
the origin ξ2 = x∂y + y∂x and a third conformal Killing vector given by ξ3 =
(x2 − y2)∂x + 2xy∂y. These vector fields generate a Lie algebra with structure
constants:

[ξ1, ξ2] = ξ1, [ξ1, ξ3] = 2ξ2, [ξ2, ξ3] = ξ3.

Note that the subset of reflection symmetric transformations that leave the ori-
gin {x = 0, y = 0} invariant is generated by {ξ2, ξ3}, which is, naturally, a
two-dimensional subalgebra. Another observation is that the only element in
{ξ1, ξ2, ξ3} which is a Killing vector of C∪{∞} endowed with the spherical metric

ds2 =
(
1 + 1

4
(x2 + y2)

)−2
(dx2 +dx2), is 4ξ1 + ξ3 (and its constant multiples). This

Killing field corresponds to rotations of the sphere leaving invariant the poles with
corresponding equator mapping onto the real axis by stereographic projection.

A.3. Partial derivatives of f and h

∂f

∂a
=

4x∆2 − a2{x2 + (l + a cos θ)2})∆′ −∆(4a2x+ (x2 + l2 − a2 cos2 θ)∆′)

4a2x∆3/2 sin θ
(A.9a)
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∂f

∂l
=
l{x2 + (l + a cos θ)2}∆′ − 2∆(2lx+ (l + a cos θ)∆′)

4ax∆3/2 sin θ
(A.9b)

∂f

∂M
= −{x

2 + (l + a cos θ)2}(2∆ + x∆′) + 4x2∆

4ax∆3/2 sin θ
(A.9c)

∂f

∂Q
= −Q(∆′{x2 + (l + a cos θ)2}+ 4x∆)

4ax∆3/2 sin θ
(A.9d)

∂f

∂θ
= −2a(l + a cos θ)∆′ sin2 θ + cos θ(∆′{x2 + (l + a cos θ)2} − 4x∆)

4ax∆1/2 sin2 θ
(A.9e)

∂f

∂x
=
{x2 + (l + a cos θ)2}((M − x)3 −M(M2 − a2 −Q2 + l2))

2ax2∆3/2 sin θ
(A.9f)

∂h

∂a
=

4ax(−8x∆(r)∆(x) + (∆(r) + ∆(x))((r2 − x2)∆′(x) + 4x∆(x))√
∆(x)∆(r)((r2 − x2)∆′(x) + 4x∆(x))2

(A.10a)

∂h

∂Q
=

4Qx(−8x∆(r)∆(x) + (∆(r) + ∆(x))((r2 − x2)∆′(x) + 4x∆(x))√
∆(x)∆(r)((r2 − x2)∆′(x) + 4x∆(x))2

(A.10b)

∂h

∂l
=

4lx(8x∆(r)∆(x)− (∆(r) + ∆(x))((r2 − x2)∆′(x) + 4x∆(x))√
∆(x)∆(r)((r2 − x2)∆′(x) + 4x∆(x))2

(A.10c)

∂h

∂M
=

4x (r∆(x)(−4x∆(x) + (x2 − r2)∆′(x)) + ∆(r)(2(r2 + x2)∆(x) + x(x2 − r2)∆′(x))√
∆(x)∆(r)((r2 − x2)∆′(x) + 4x∆(x))2

(A.10d)

∂h

∂r
=

2x∆(x)(4x∆(x)∆′(r) + (∆′(r)(r2 − x2)− 4r∆(r))∆′(x))√
∆(x)∆(r)((r2 − x2)∆′(x) + 4x∆(x))2

(A.10e)

∂h

∂x
=

2(r2 − x2)∆(r)((x−M)3 +M(M2 − a2 −Q2 + l2))√
∆(x)∆(r)((r2 − x2)∆′(x)

2
+ 2x∆(x))2

. (A.10f)
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S. Aksteiner, L. Andersson, and T. Bäckdahl. On the structure of linearized gravity
on vacuum spacetimes of Petrov type D. January 2016. arXiv.org:1601.06084.

S. Alexakis, A. D. Ionescu, and S. Klainerman. Uniqueness of Smooth Stationary
Black Holes in Vacuum: Small Perturbations of the Kerr Spaces. Communica-
tions in Mathematical Physics, 299(1):89–127, October 2010. ISSN 0010-3616,
1432-0916. doi: 10.1007/s00220-010-1072-1. URL https://link.springer.

com/article/10.1007/s00220-010-1072-1.
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D. Kubizňák and P. Krtouš. Conformal Killing-Yano tensors for the Plebański-
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Jerzy F Plebañski. A class of solutions of Einstein-Maxwell equations. An-
nals of Physics, 90(1):196–255, March 1975. ISSN 0003-4916. doi: 10.
1016/0003-4916(75)90145-1. URL http://www.sciencedirect.com/science/

article/pii/0003491675901451.

W. H. Press and S. A. Teukolsky. Perturbations of a Rotating Black Hole. II.
Dynamical Stability of the Kerr Metric. Astrophysical J., 185:649–674, October
1973. doi: 10.1086/152445.

William H. Press. Long wave trains of gravitational waves from a vibrating black
hole. The Astrophysical Journal Letters, 170:L105, December 1971. ISSN 0004-
637X. doi: 10.1086/180849. URL http://adsabs.harvard.edu/abs/1971ApJ.

..170L.105P.

A Ronveaux, editor. Heun’s Differential Equations. Oxford University Press, 1995.

L Rosenfeld. ¡not available¿. In Mem. Acad. R. Belgique Coll. Sci., volume 18,
page 6. 1940. URL http://tinyurl.sfx.mpg.de/uo9z.

Jan Sbierski. The C0-inextendibility of the Schwarzschild spacetime and the space-
like diameter in Lorentzian Geometry. 2015. URL https://arxiv.org/abs/

1507.00601.

J. Schee and Z. Stuchlik. Optical phenomena in the field of braneworld Kerr
black holes. International Journal of Modern Physics D, 18(06):983–1024, 2009.
doi: 10.1142/S0218271809014881. URL http://www.worldscientific.com/

doi/abs/10.1142/S0218271809014881.
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