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Abstract. The space missions Voyager and Cassini together with earthbound observations re-
vealed a wealth of structures in Saturn’s rings. There are, for example, waves being excited at ring
positions which are in orbital resonance with Saturn’s moons. Other structures can be assigned to
embedded moons like empty gaps, moon induced wakes or S-shaped propeller features. Further-
more, irregular radial structures are observed in the range from 10 meters until kilometers. Here
some of these structures will be discussed in the frame of hydrodynamical modeling of Saturn’s
dense rings. For this purpose we will characterize the physical properties of the ring particle en-
semble by mean field quantities and point to the special behavior of the transport coefficients. We
show that unperturbed rings can become unstable and how diffusion acts in the rings. Additionally,
the alternative streamline formalism is introduced to describe perturbed regions of dense rings with
applications to the wake damping and the dispersion relation of the density waves.
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AMS subject classification: 35Q35, 70F15, 70F07

1. Introduction

The planet Saturn owns the most impressing and largest ring complex in our solar system. All
outer planets are girdled by a ring system, but these are not as large and bright as the rings of
Saturn. The latter consist of the inner dense main rings and the outer faint rings. The outer rings
are formed by micrometer sized icy dust particles with very low particle number density (< 1
m~3). Thus, collisions between the particles are of minor importance and these rings are not suited
for hydrodynamic applications.

*Corresponding author. E-mail: mseiss @uni-potsdam.de
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This article will concentrate on the most massive rings of Saturn — the A and B ring. These
dense regions have optical depths larger than 0.5, where the geometric optical depth is defined by

TZ//?TRQTL(ZL‘,Q/,Z,R) dz dR. (1.1)

Here, n(x,y, z, R) denotes the particle number density of the medium along the line of sight with
R labeling the radius of the ring particles. The optical depth profile along the radial distance to
Saturn is shown in figure 1 giving an estimate of the distribution of the surface mass density in the
rings. The A and B ring are separated by the Cassini division with smaller densities (7 ~ 0.1) than
in the A and B ring. However, the Cassini division is similar to the C ring which orbits inside the B
ring. All main rings — A, B and C ring and Cassini division — are dense enough to be collisionally
dominated, and thus, are suited for a hydrodynamic description.
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Figure 1: Optical depth profile from the Voyager PPS scan. The radius of Saturn exceeds 60,000
km. CD denotes the Cassini division.

Additionally, the ring system contains the innermost low density dusty D ring located between
the C ring and Saturn’s atmosphere consisting mainly of micrometer sized particles. Finally, the
bizarre, faint and kinky F ring orbits outside the A ring and is formed by micrometer up to kilometer
sized objects.

A wealth of structures in Saturn’s rings has been puzzling scientists since decades. Here we
will present some of them which can be understood in the context of hydrodynamical ring models.
First, we will characterize the physical properties of the granular ring particle ensemble in section
2. In section 3. the basic hydrodynamic balance equations are introduced and we emphasize the
peculiar behavior of the granular transport coefficients (section 3.). Next, we demonstrate that the
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unperturbed rings can become unstable and how diffusion acts in the rings. Finally, the streamline
formalism is introduced for the description of perturbed rings with its applications to the wake
damping and the dispersion relation of the density waves at resonances (section 4.). The latter
density waves are a result of the interplay between ring gravity and tidal forces and provide a
possibility to determine the ring mass.

2. A cosmic granular ’gas” in orbit around Saturn

Saturn’s rings generally consist of ice particles which are polluted by a small fraction of silicates.
The size distribution of the particles in dense ring regions can be determined with the help of
occultation experiments [82, 20, 27]. These observations indicate that the particle sizes can be
modeled by a power law distribution n(R) ~ no(R/Ry) ™ in the size range of several centimeters
until tens of meters. The collective dynamics of the ring particles is mainly determined by a
Kepler motion around the central planet and the small fluctuations caused by collisions between
them. Perturbations induced by the moons of Saturn can alter this motion pattern of the particles
leading to a formation of certain structures in the rings.

The collisions between ring particles are inelastic and characterized by a coefficient of restitu-
tion €, which quantifies the dissipative decay of the relative velocities between the particles during
the collisions (e = 0 for totally inelastic and € = 1 for elastic). The in-elasticity of the particles
is crucial for the stability of the rings. Without dissipation the velocity dispersion of the parti-
cles would increase with each collision (viscous heating driven by shear) until the particles hit
the surface of Saturn or escape the system. Thus, the rings would finally evaporate [29]. Several
attempts have been made to quantify the coefficient of restitution on base of theoretical models
[2, 7, 13, 1, 14] and experiments [12, 30, 32] — mainly confirming a decreasing coefficient of
restitution with increasing collision velocity.

Beside restitution also fragmentation and coagulation play an important role [44, 15, 4, 64].
The observed ring particles are most probably agglomerates of smaller constituents and their dis-
tribution reflects the balance between coagulation and fragmentation. The particles form agglom-
erates because of the adhesive contact forces on one side [1, 14] and the particle self-gravity on
the other [23, 80]. Smaller agglomerates (< 1m) are mainly hold together due to the adhesive
surface forces (strength regime) whereas larger agglomerates are stabilized by their self-gravity
[80, 1] (gravity regime). The particle agglomerates can be destroyed by collisions, tidal forces or
meteoroid impacts.

However, coagulation and fragmentation will not be discussed further in this article and we will
focus on the effect of the in-elasticity of the collisions. The particles move on Kepler orbits around
the planet, which are nearly circular. The third Kepler law tells us that the inner particles move
with higher mean velocities around the planet than the outer ones. Thus, a systematic shear flow
induces a viscous friction which heats up the granular ensemble. This process is balanced by a
cooling of the material due to the in-elasticity of the collisions and leads to a rather small velocity
dispersion of the order RY), where (2 = /G M,/a® denotes the Kepler frequency. The Kepler
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frequency depends on the gravitational constant (G, the mass of Saturn M, and the semi-major axis
a of the particle. In addition, the shear flow implicates a non-isotropic velocity dispersion which
is precisely described by a tensor. The velocity dispersion with mm/s and cm/s! is by a factor of
10~7-10~® smaller than the systematic Kepler flow —i.e. RQ) < a2 (nearly circular orbits), which
is the reason one can speak about “cold” discs in the context of planetary rings.

Furthermore, the small velocity dispersion controls also the disc height H via ¢ ~ QQH, and
thus the ring has also a very small vertical extent of around 10 m (a few mean particle radii) in
contrast to the ring diameter of the order 10% m. If one compares the disc height with the observed
normal optical depth of the order of unity one has to conclude that the rings are rather densely
packed systems. Thus, the mean free path of the particles is of the order of the particle radii. This
can cause the particles to arrange vertically in more than one layers [81, 50], whereas in dilute
systems the vertical density profile is well described by a Gaussian.

In the end of this introduction to the granular matter of planetary rings we will call attention
to the fact that most parts of Saturn’s A and B ring are gravitationally unstable. The particles tend
to form clumps due to their gravitational attraction, but these clumps are always pulled apart by
the shear flow [51, 52]. Thus, the material forms lengthy clumps, called self-gravity or Toomre
wakes, with a typical tilt angle of around 20° (relative to azimuthal direction) and a wavelength of
around 100 meter [52, 18, 31]. These wakes interfere with other structures which we will discuss
later (e.g. generated by the gravity of moons). However, if these induced structures are much
larger than the typical wavelength of 100 m, the self-gravity wakes will not alter them directly,
but reasonably influence the kinetic transport coefficients. Summarizing, the transport processes
in a granular ring particle ensemble are dom! inated by dissipative collisions and the effect of the
self-gravity wakes.

3. Hydrodynamic set of equations

The myriad of particles forming the dense rings of Saturn can be modeled as a granular gas, where
the motion of the gas is determined due to the gravity of Saturn, its moons and the interactions
between the particles. The physics of such a dissipative gas can be described with the help of the
hydrodynamic theory.

As already mentioned, planetary rings are very thin discs so that often just vertically integrated
values of the rings are observed (as e.g. surface mass density). Thus, it is convenient (if one is not
aiming at the vertical structure of the rings) to use vertically averaged quantities to model the rings
(mean velocities, granular ring temperature, transport coefficients). For example, the surface mass
density can be defined by )

oo
X(z,y) =/ pz,y,z)dz (3.1)

by integrating the volume mass density p of the ring matter. One can derive a linear relation
between surface mass density and the well observable optical depth 7 o< X often used for planetary
rings (compare with eq. (1.1)).
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3.1. Balance equations

The hydrodynamical balance equations (vertically integrated), which describe the motion of the
ring particle ensemble, represent three conservation laws: First, the conservation of mass is ex-
pressed by the continuity equation

S+ V- (Su) =0, (3.2)

where u represents the mean velocity. Second, the momentum balance equation gives the evolution
of the mean velocity u A
You+3(u-Viu=F-V-P. (3.3)

The external and internal volume forces are denoted by F and V - P, respectively. The internal
forces are described by the gradient of the pressure tensor P. Finally, the conservation of energy
(or energy balance equation)

3 R

52(8t+u-V)T:V-Q—P:é—F (3.4)
completes the ensemble of hydrodynamic equations. The thermal energy is determined by the trace
of the velocity dispersion tensor 7" = Tr P/(3 ¥), which represents the granular “temperature” of
the ring material characterizing the velocity fluctuations. The heat flow in the medium is repre-
sented by Q, and I'(¢€) measures the loss of heat due to the inelastic collisions. The components of

the shear tensor € are defined by
1 8u1 an
i = = . 3.5
i 2 (0% + 8:151) ( )

3.2. Constitutive Relations

Expressions for the pressure tensor P and the energy flux Q are needed in order to close the balance
equations (3.2)-(3.4). The pressure tensor P can be expressed by Newton’s linear constitutive
relation

A ~ 2 ~
P:p|—22yé+2(§V—C>V~ul, (3.6)

with the pressure p, the bulk and shear viscosities ( and v and the unit tensor 1. The energy flux Q
can be linearly expressed by Fourier’s law

Q= —kVT + uVvy (3.7)

where x denotes the heat conductivity. The second term of the energy flux with the coefficient u
arises from the dissipative collisions among the granules and has no analog for molecular gases.
Now, the interesting question is, whether and how do the coefficients (p, v, (, k, u, [') depend on
the mean field variables (32, u, 1)?
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3.3. Transport coefficients

Generally, the transport coefficients are functions of the surface mass density > and the ring tem-
perature T'. However, for granular systems the transport coefficients depend also on the physical
conditions of the system — whereas molecular gases are usually not influenced by the physical
environment (see discussion section). Important for the rings is the fact that the disc height H
scales with the dispersion velocity ¢ oc /7. Thus, the system arranges in a way that the collision
frequency w becomes independent of the velocity dispersion in the first approximation

wocncoc%HroQT, (3.8)

which is the most obvious difference to usual molecular gases.
Unfortunately, the transport coefficients can not be measured directly at Saturn’s rings. Thus,
several attempts have been made in order to determine these important quantities:

e The coefficients have been calculated theoretically with the help of kinetics [29, 3, 62].

e Numerical N-body simulations have been used in order to calculate the transport coefficients
systematically [81, 52, 53, 22].

e The transport coefficients can be additionally estimated by fitting the hydrodynamical mod-
els to observed ring structures [26, 77, 70].

The dependencies of the ring viscosity stepped in the focus of ring scientists when examining
the stability of dense planetary rings (section 4.1.) as well as their origin and evolution (section
4.2.1.). Several attempts have been made to determine the behavior of the viscosity analytically
and numerically.

The kinematic shear viscosity v connects the shear flow (Qu, /0x = —3/2€2 for an unperturbed
Kepler disc) and the radial transport of the angular momentum through a plane spanned along the
shear flow and vertical direction. The transport of the angular momentum contains three different
contributions:

V=1 + Uy + Vg 3.9

These distinct parts of the shear viscosity arise from different processes: (a) if a particle crosses
the reference plane (local, kinematic transport) or (b) if one particle from one side of the reference
plane collides with a particle on the other side (non-local transport, arising from finite particle
sizes), and (c) if interactions between self-gravity wakes gravitationally amplify the angular mo-
mentum transports [22]. Furthermore, massive wakes additionally heat the individual ring particles
not belonging to the wake clusters.

The local viscosity 14 can be written as

37 71

—_— 3.10
Q142 (3.10)

V=

obtained by identifying the pressure tensor component P, = F,, = %I/QE (see eq. (3.6)) with
the statistically derived expression using the assumption of a triaxial Gaussian velocity distribution
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[29]. The nonlocal viscosity component, caused by the finite particle sizes, can be expressed by
Vol = Ky AR*Qr (3.11)

[3, 81, 50, 53]. Both coefficients /; and K are of the order of unity. Therefore, the viscosity v
depends on the density > and the temperature 7" of the disc [42, 81]. If self-gravity wakes form in
the rings, local and gravitational viscosity can be determined by

G332
03

where 1/ and v, have equal contributions and K3 takes values between 2 and 40 depending on the
ring region [22]. The scalar local pressure is usually modeled by the gas state equation

QRT
C )

U+ Vg = K3 (3.12)

p=3c [1+ (3.13)
where in dense systems the excluded volume due to the finite size of the particles grows in impor-
tance. Bulk viscosity ¢ and heat conductivity x are assumed to obey similar dependencies like the
shear viscosity [53]. Further, the coefficient ;1 can be related to the non-local component of the
heat conductivity s as p o< 7'k, /%, where u has to vanish for elastic collisions (e — 1) [35, 11].
Finally, the granular cooling term is given as

= Kw(l-e)T. (3.14)

N-body box simulations have been performed for planetary rings to measure ring temperature
and viscosity [42, 81]. Later, this method was used for a complete scan of all hydrodynamic trans-
port coefficients in a non-self-gravitating ring [53] as well as for the investigation of the influence
of self-gravity to the velocity dispersion and the viscosity [52, 22].

The transport coefficients can be measured fitting the hydrodynamical models to observed ring
structures, but here their dependence on surface density > and temperature 7" have to be guessed
beforehand. For example, the damping of the density waves are appropriate to estimate the shear
viscosity in a wide range of the A and C ring giving values of 100 and 1 cm?s~!, respectively (e.g.
[26, 77]). These values are in a good agreement with the predicted values of N-body simulations
[22]. Further, nonlinear effects in strong density waves in Saturn’s A ring could be related to a ring
pressure p = ¥ ¢ with ¢ =3 — 5 mm s~! [70] (see section 4.3.3.).

3.4. Restrictions of the model

Usually, two conditions should be fulfilled in order to apply the hydrodynamic theory to a fluid.
First, the mean free path length should be much smaller than the investigated macroscopic struc-
ture, and thus, the collision frequency must be much larger than the dynamical frequency (= 2).
Second, the mean free path should be much larger than the particle sizes (or the length scale of
particle-particle interactions), otherwise correlations between the particles have to be considered
additionally.
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First the collision frequency is not always large enough, especially considering wavy structures
(e.g. moonlet wakes, density waves or overstable waves) which oscillate with the orbital frequency.
This raises problems especially for dilute systems, like C ring or Cassini division, where the colli-
sion frequency is of the order of the orbital frequency [53]. Thus, there is a delayed reaction of the
system to its state and a local thermodynamic equilibrium is not always established. In this case a
full kinetic theory would have to be applied to consider this effects. Nevertheless, hydrodynamic
models of density waves are also successfully applied to dilute ring regions like Cassini division
and Cring [17]. In the denser regions (A and B ring) the collision frequency can increase to around
20 collision per orbit, favoring a hydrodynamical modeling.

The other violation — the mean free path length is of the order of the particle sizes — can
be partly accounted using the nonlocal description of the transport coefficients. Nevertheless,
the finite correlation length between different ring regions is not regarded in the hydrodynamic
description. Even more problematic is the fact that correlations alter the velocity distribution and
all related statistic moments — i.e. the state variables. However, the first three statistic moments
of the velocity distribution, represented by the hydrodynamical state variables X, u, 7', will be
just sufficient to describe the granular gas if the local velocity distribution is close to a Gaussian
equilibrium solution.

4. Applications to planetary rings

As discussed above, the hydrodynamic equations contain some deficits in the physical description
of the real ring system. Nevertheless the benefits are still quite impressive, and thus, one finds
excellent applications of hydrodynamic modeling in the ring science. Here we will present a few
prominent examples:

First, two types of hydrodynamic instabilities which can arise in the unperturbed rings are
described. Second, the radial diffusion equation is discussed with its applications to the evolution
of the disc and the formation of gaps around embedded moonlets (small moons). Finally, the
alternative streamline formalism, using the Newtonian stress relation (3.6), is presented in context
of moonlet wakes and density waves.

4.1. Hydrodynamic instabilities in unperturbed rings

In this section perturbations by satellites are neglected and the stability of a homogeneous unper-
turbed Kepler disc will be discussed characterized by a uniform surface mass density ., no radial
mean velocity uo = 0 and an azimuthal mean velocity vy = €(r) r (ground state).

Here a simplified, but illustrative model, is presented in order to analyze the stability of this
ground state. The following assumptions are used:

1. An isothermal model is applied.

2. Pressure and self-gravity are neglected.
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3. A Cartesian co-rotating frame is used, where x = r — rg and y = 7(p — o) point to the
radial and azimuthal direction, respectively. Curvatures are neglected (Hill approximation).

4. All forces are linearized around the origin (x = y = 0) and further the Kepler mean velocity
is approximated by the shear stream vy = —3/2€ x with Qg = Q(r).

5. The hydrodynamic equations (3.2)-(3.3) are linearized around the ground state according to
Y=Yy+o0,u=vandv = —-3/2Qx + v/, where o, v’ and v’ are the deviations from the
ground state. Thus, the viscosity can be linearized as v = vy + (31 3/%g, where 3 denotes
the gradient of v with respect to X at the ground state.

6. Justradial structures are regarded, and thus, azimuthal dependencies are neglected (9, — 0).

These simplifications lead to the following set of equations:

Do

27 50, 4.1
D/ 4

Dljf = 200V + 1 (g + %) 02/ 4.2)
Dv' 1 3 1

DZ = —5u o ' — 5% % 0,0 4.3)

where D/Dt := 8, +u -V denotes substantial derivative and the ratio ¢ is assumed to be constant.

14
Next, a wave solution of the form

o o
u | = 4@ | exp(st+ ikx) 4.4)
v’ v’

is assumed leading to the algebraic system of equations

S ZkZ() 0
0 S+ k’2l/0 (% + %) —2 Q()
Zk’gQO % %QO s+ k?2 1240

8

=0. 4.5)

S >

The system of equations will have a solution if, and only if, the determinant vanishes giving the
dispersion relation [56, 65, 55]

s3 + s2 k2, (g + %) +s {Qg + k'3 <§ + %)} +305(1 + B)pk* = 0. (4.6)

This third order polynomial has three solutions which can be expanded for small wavenumbers &
aiming at structures with large wavelength. The solutions have possible positive real parts, which
lead to unstable modes, being discussed in the next two subsections.
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4.1.1. Viscous instability

For small wavenumbers one solution of equation (4.6) reads
s1=—=3v(1+ B)k* + O(k*), (4.7)

thus, the solution becomes unstable for § < —1 and the material would flow from diluter to denser
regions — small density inhomogeneities are amplified ("up-hill” diffusion) [79, 41].

There has been a long discussion about the existence of viscous instability in the rings in the
ring community, especially, in order to explain the observed irregular radial structures found in the
Voyager data. The possible existence of a viscous instability stimulated a careful inspection of the
dependence of the viscosity v on the surface mass density 3 [3, 81]. Many of these investigations
yielded 3 > —1 and viscous instability does not seem to work in dense rings.

4.1.2. Viscous overstability

The other two conjugate complex solutions of equation (4.6) have the form

3 1 2

allowing oscillations to evolve. The disc will become unstable if the gradient 5 becomes larger

/6 /6CI’1 3 v 3 *

In this case an oscillatory instability appears — called viscous overstability.

The possible occurrence of overstability in the rings was first recognized on base of a streamline
model [8]. Later a systematic linear analysis of the hydrodynamic equations, including the effect
of pressure and self-gravity, was presented [56]. This model has been further developed including
the effect of thermal diffusion and better estimates of the transport coefficients [65, 55]. The
appearance of overstability could be demonstrated in N-body simulations of the rings which partly
can coexist with self-gravity wakes [53]. In recent studies the nonlinear effects [54, 38, 39] and
a more general kinetic analysis [36, 37] have been included which has improved the overstability
model.

Radial wavelike axisymmetric structures with a wavelength of 100 - 200 m have indeed been
found independently in UVIS and RSS occultation scans of Cassini [19, 74], proving the existence
of overstability in the rings.

4.2. Diffusion in the rings

The interactions between the particles can not only cause instabilities they can also cause a dif-
fusion of ring particles smoothing out inhomogeneities in the ring density >. The generation of
these inhomogeneities can be of different origin — we will focus on gravitational perturbations by
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embedded moons. Most of the ring structures are stretched in azimuthal direction, so that the radial
diffusion of the ring material is of main interest.

The radial mean velocity wu, is much smaller than the azimuthal velocity 72, which is almost
not influenced by the diffusion. With these assumptions the mean azimuthal velocity component
can be considered to be stationary and is written in polar coordinates as [45, 48, 73]

rYu, = —3vro.(vrvY) (4.10)

assuming that the diffusion of the particles is mainly caused by the Kepler shear. Combining
this equation with the continuity equation (polar coordinates) one obtains a non-linear diffusion
equation for the dense rings

XX+ (2 — Q)% = 3ar (V70 (v/rvE)] 4.11)

,
where a co-rotating frame has been chosen fixed at (ag,$2ot).

4.2.1. Evolution of the ring

The diffusion equation is related to a characteristic time scale

(A

taif = 4.12)
One possible ring origin scenario assumes that the rings have been formed in a catastrophic disrup-
tion of a parent body (e.g. moon, comet). A spreading of the fragments to the present dense ring
width of Ar ~ 44,000 km (A and B ring) would need t4;g ~ 5-10° yr assuming v = 100 cm? s,
which is about the age of our Solar system. However, the time scale is sensitive to the viscosity,
and thus also to the surface mass density, which was much higher in the ancient rings. Moreover,
the surface mass density is still not well known for the B ring. Therefore, the measurement of the
ring mass became one of the major goals of the Cassini mission. More precise models, which have
been published recently [16, 49], confirmed the age of the rings to be between 3 - 10° and 4 - 10°
years. Furthermore, it has been shown that resonances with moons vividly influence the diffusion
of the ring material! . These resonances force the production of moons with a certain size at the
outer A ring edge [16].

4.2.2. Gaps induced by embedded moonlets

Moons embedded in the rings perturb the surrounding particle ensemble due to their gravity, re-
sulting in the formation of structures around the moon which can serve as “fingerprints” for their
detection. The diffusion is counteracting the structure formation, which leads to a smoothing out
of the induced structures. Spahn and Sremcevi¢ developed a model of the balance of probabilistic
scattering and viscous diffusion in order to combine both competing effects [68]. The model makes
use of the fact that the zone of gravitational influence of the moon is rather small in comparison to
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the azimuthal extent of the induced structures. This length of gravitational influence is related to

the Hill radius s
M.,

which depends on the mass of the moon M,,, the mass of Saturn M and the semi-major axis of
the moon ay,.

Neglecting the particle interactions one can perform test particle integrations of the equation
of motion [63, 69]. Three types of particle behavior and related structures can be distinguished,
depending on the radial distance x = r — a,, in which the particles enter the moon:

1. Particles with small impact parameter |z| = |r — ao| < 1h move on horseshoe orbits.
They slowly approach the moon and meanwhile exchange energy leading to a flipping of
the impact parameter z,,s ~ —=i,. The eccentricity remains almost unchanged but varies
significantly for z;, — 1h [25, 24, 69, 67].

2. Particles with impact parameter in the range 1h < |zj,| < 4h are heavily scattered by the
moon. Partly, the particles move on chaotic orbits and the final radial mean positions x4

change drastically. This causes a depleted region of material at this radial position (gap)
[33, 43, 46, 69, 67].

3. The semi-major axis almost does not change during an encounter for particles with large
initial impact parameter |z;,| > 4h but the moonlet induces a systematic eccentricity oc x>
resulting in a wavy like density structure in this region, called moonlet wakes [21, 60, 10,
66, 34, 40].

The diffusion of the particles causes the density depleted regions (gaps), formed by the moon,
to smooth out along the azimuth. This diffusion can be modeled by the equation (4.11) if one uses
the moon produced radial density distribution (7, ¢ = 0), gained from test particle integrations,
as a boundary condition [68]. Figure 2 shows the resulting radial density profile after a single
scattering. The complete stationary density signature after many single scatterings is presented in
figure 3. The moonlet wakes are not visible in this model, because systematic and coherent particle
motions have been averaged out [68]. Two qualitative different structures can be distinguished
based on the sizes of the moons: (a) a S-shaped density structure - called propeller - for small
moons with radii R0on < 500 m which are just local density perturbations and (b) a completely
open! ed and empty gap produced by a moon with radius R,00on > 500 m [68].

Both types of structures have indeed been observed in Voyager and Cassini spacecraft data.
Saturn’s rings habit two known larger moons named Pan and Daphnis [59, 47] orbiting in empty
gaps being swept free by their gravity. To date, more than 150 propeller structures have meanwhile
been detected in the images of the Cassini cameras pointing to smaller moons with radii of around
50 meter up to a few hundred meters in the A ring [76, 71, 75, 78].

An analytical solution for the model using a linearized version of the diffusion equation (4.11)

L R >
RETT 0yo :U@Ia (4.14)
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Figure 2: The density profile is shown after the gravitational scattering due to the moon. A density
depleted region at around 2 h is visible with two adjacent regions of enhanced material. The arrows

indicate the strength and mean point of the perturbations as used for equation (4.17) (figure taken
from ref. [72]).
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Figure 3: Two numerical solutions of equation (4.11) are presented for different moon sizes. The
small moon is just producing a local S-shaped structure of two radial separated gaps, whereas the
large moon produces a complete empty gap going around the whole circumference of the ring
(figure taken from ref. [72]).
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could be derived [72] where the definitions of the linearized quantities are analog to those given in
section 4.1.

The radial structure of the moonlet density profile can be scaled with the Hill radius A of the
moonlet. Thus, if one applies this scaling law to the linear diffusion equation (4.14) with & = x/h,
one can also conclude a scaling law for the azimuthal direction as [68, 72]

QO h3 Mmoon

= REN X ” (4.15)

Qo
and a scaled azimuthal coordinate can be defined as & = y/(agK). Thus, inferring the moonlet
mass from the radial structure, the viscosity of the ring can be gained from the azimuthal extent of
the gaps [68]. These scaling laws could be confirmed by N-body simulations [58].

An approximate Green solution solving the problem for o = (% — Z;) has been found [72] in

the form /3
3o —2/3
) - 70
y (8®) e | =55
and it has been shown that the source function of the density depletion can be approximated by a

combination of 3 weighted 6(Z — %) functions. Thus, the solution of the density perturbation can
be written as

(&, D)
%o

B+ 7

G(%,®, 7) = — ] Bi [(3@)‘2/3 :zof} , (4.16)

=1+0.16G(F,®, —1) — 0.76 G(&, ®, —2.5) + 0.26 G(Z, , —5) . (4.17)

Figure 4 (upper part) shows the density distribution around a moon with 20 meter radius, using
the analytical solution (4.17). This structure has additionally been superposed by a wave-like wake
pattern obtained by an analytic model presented in section 4.3.2.. The lower panel of figure 4 shows
the result of a N-body simulation for comparison [58]. The analytical solution deviates from the
simulation close to the azimuthal position of the moon, because of two model assumptions: (a) The
moon gravity action is reduced to the position y = ¢ = 0 (scattering line) and (b) the initial density
distribution is approximated by three weighted d-functions. However, the density distribution of
the analytical solution and the simulation converge to each other for growing azimuth resulting in
a fair agreement [58] between analytics and numerics.

Many S-shaped propeller” structures (> 150) have already been observed in the Cassini imag-
ing data [76, 71, 75, 78]. Difficulties arise in the interpretation of the images, because one cannot
deduce the density in the rings from the observed brightness directly. Thus, photometric modeling
of the observed structure is needed to get a better interpretation [71]. The mass and the radii of
the moons, producing the observed “propellers”, could be estimated on the base of radial predicted
structures [68, 72, 58], which led to inferred moonlet radii between 50 - 500 meter. Thus, there ex-
ists an additional moonlet population having sizes much larger than those of the main ring particle
population ranging from several centimeters to tens of meters. The moonlet size distribution fol-
lows a rather steep power law with indices between —5 and —10 in ! contrast to the main particle
size distribution with an index of around —3 [71, 75]. Difficulties still exist in the interpretation of
the azimuthal gap length to quantify the ring viscosity offering opportunities for future studies.
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Analytical solution

y, km

N—body simulation

Figure 4: Density distribution of a propeller induced by a moon with radius of 20 m. The analytical
propeller model is plotted in the upper panel combining the gap (eq. (4.17)) and wake model (see
section 4.3.2.). The result of a N-body simulation is shown for comparison in the lower panel.

4.3. Streamline formalism

The following concept is ideally suited to describe perturbed regions of dense planetary rings,
especially if oscillatory structures are studied caused by the systematic excitation of the particle
eccentricities (e.g. moonlet induced wakes or density waves). Unperturbed particles move on Ke-
pler ellipses around Saturn oscillating around its radial mean position. Therefore, it is convenient
to use this knowledge about the solution and look how interactions between the particles change
their orbits. Based on this idea, Borderies, Goldreich and Tremain introduced the streamline for-
malism to planetary rings in the 1980’ties. The idea is to follow particles along their streamline
and to calculate perturbations on the particles arising from certain interactions [5].
The streamline positions and velocities can be written in the form [6, 5, 57]

X —eag cos ¢ (4.18)
Y + 2eaq sin ¢ (4.19)
u = eapfly sing (4.20)
vo= —ngX + 2eapfdy cos @, 4.21)

with the angle ¢ = Qot — w and Y = —3/2 XQot (set yo = 0). The eccentricity of the particle
in the streamline and its reduced semi-major axis are denoted by e and X = a — ayg, respectively.
The distance between the streamlines changes due to the perturbations leading to a compression or
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decompression of the material in this regions quantified by

dx de do
— g =2 i 4.22
J e 1 aOdX cosqﬁ—l—eaodXsmqﬁ ( )
= 1+qcos(¢+7), (4.23)

where the term d¢/dX is identified with the radial wave number k. The non-linearity parameter
and the phase shift are labeled by ¢ and +/, respectively, and are defined by

de

"= —ap—— 4.24
qcos?y e (4.24)
de
iny = —age—. 4.25
gsin~y o (4.25)
Thus, the surface mass density is obtained by
Yo
Y=— 4.26
7 (4.26)

using the compression factor J 1.

Usually structures in planetary rings get very elongated in azimuthal direction because of the
Kepler shear which stretches all structures in this direction. Thus, radial changes for density and
mean velocities dominate over azimuthal changes (tight winding approximation) and the radial
gradient of the eccentricity becomes much smaller than the radial gradient of the phase ¢ in the
tight winding approximation. Therefore, we will use the approximations g ~ ape - |k| and 7' =~
—m/2sign(X) in the following.

The perturbations are assumed to lead to small changes of eccentricity e and longitude of
pericenter v during one orbital period. Thus, their time evolution can be calculated by means of
the orbit averaged Gaussian perturbation equations

de 1 2
= i 2 4.2
B 2man /0 (Gysin ¢ + 2G,, cos ¢) d¢ 4.27)
dw 1 / " (=G cos ¢ + 2G, sin ¢) do (4.28)
— — in :
dt  2meapfd /o v €08 u®

which are given in a linearized form for small eccentricities e < 1 and G = (G, G,) denotes the
acceleration at the streamline.

4.3.1. Effect of Newtonian stress

The collisions between the ring particles lead to an acceleration G of the particles which is modeled
by the gradient of the pressure tensor P

1 ~
G=-5V-P. (4.29)
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Considering the structures being tightly wound, the calculation of the radial and azimuthal accel-
erations reduces to

1dP,, Kk dPy,
Y dr % do

1dP,, Kk dP,,
Y dr % do

G, = (4.30)

G, = 4.31)

with d/dx = J~'d/dX = kJ'd/d¢. If one combines the equations (4.27)-(4.28) with the
equations (4.30)-(4.31) and integrates them by parts one will obtain

de k 2
G I Seanty ), \Teecos92hnsne)d 432
dt 21 Sg apQo /0 (Poy co8 ¢ ySing ) do (4.32)
dwo k 27
At 27 Sgeanl Foo i 2P, 4,
dt Qﬂgoeaogo/o (Ppysing + 2P, cos¢ ) do, (4.33)

and for the radial derivatives of the velocities one may write

du du
& = Tax = a0 cos(9) (4.34)
dvv  __jdv 3 :

Now the components of the pressure tensor can be calculated using the relation (3.6). If we assume
an isothermal model with scalar pressure p = ¥ ¢? (ideal gas) and transport coefficients as used in
section 4.1. the pressure tensor can be written in the form

1 4 () coso
_ 2
P;w = C Zgj - VOEOQO (g + ;) J2+/6 (436)
3 _ 1
P, = 12X 3 + 2¢sin ¢ Nk 4.37)
Finally, the perturbation equations can be written in the form
de vok ¢
= 2 4.38
- a0 fla,5,7) (4.38)
dw
= —0uHla) (439)

Equation (4.38) describes the viscous damping of the eccentricity e, whereas the pressure force,
which does not dissipate energy, mainly changes the longitude of pericenter w and thus the wave-
length of the oscillatory structure. General Solutions for f(q, (3, %) and g(q) are given in ref. [57].

The nonlinearity parameter ¢ can come close to unity where the functions f(q, 3, l%) and g(q)
become highly nonlinear, for instance, in case of wakes induced by the large embedded moons
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or at strong resonances. Here, we will concentrate on small perturbations where the nonlinearity
parameter ¢ stays small for simplicity. Then the solutions reduce to

3
fla—0.0,5) = —2 (5 fa)a (4.40)
g(¢g —0) = % (4.41)

where the definition of [, is adapted from equation (4.9). Thus, we rediscovered the condition
for viscous instability in the streamline formalism and 3 < 3. is regarded for the damping of the
eccentricity [8].

4.3.2. Applications to moonlet induced wakes

In section 4.2.2. it has already been discussed that particles, which pass the perturbing moon distant
enough, are just slightly deflected. Their semi-major axis is not changing significantly, but they get
an induced eccentricity ey = C' h?®/(agx?) with C' = 6.72 and a synchronous and coherent phase
wo = 7/2sign(x). This synchronous phase together with the Kepler shear produces a wavy like
pattern at the edges - called moonlet wakes [60], which should not be confused with the self-gravity
wakes!

In case of moon wakes the relation

o= ax 7 (4.42)
can be derived from the definitions of ¢ and Y [60]. Thus the radial wavenumber k& = d¢/dX =
2Y/(3X?) = —Qot/X becomes time dependent and the wakes wind up along the azimuth. The
radial gradient of the eccentricity de/dX ~ —2e/X is much smaller than the radial gradient of
the phase ¢ which justifies the tight winding approximation.

Thus, the differential equation (4.38) can be solved using equation (4.40) to give for the eccen-
tricity

v .
e(t) = e(0) exp { 5305 (8 — fost) 248"} (4.43)
Therewith, the linearized solution for the nonlinearity parameter ¢ becomes
Qot . IZ0)
q(t) = aoe(0)781gn(X) exp {ﬁ(ﬁ — Berit) Qgt?’} . (4.44)

This analytical solution has been plotted in figure 4 together with the propeller gap model (see
section 4.2.2.). The wakes are in good agreement with the numerical solution. The wake crest
amplitude appeared just too strong for small radial distances and thus the nonlinearity parameter ¢
had to be restricted below 1. This restriction could be lifted using the full nonlinear expressions of
f(g—0,8,%) and g(q) [10, 57].

The most important restriction of this model is the assumption of a constant granular tempera-
ture in the wakes. However, the qualitative damping behavior of the wakes is not affected by this
simplifications [10, 40]. The change of the granular temperature in the non-isothermal case would
mainly lead to an increase of the mean viscosity and thus to a more efficient wake damping.
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4.3.3. Applications to density waves

Moons also induce large eccentricities to the ring particles over large radial distances if their orbital
motion is in resonance with a certain ring region where the particles get a periodic kick (commen-
surable with their orbital frequency). An important form is the Lindbland resonance defined by the
condition

(m—1)Qy=mQ; (4.45)

where () is the orbital frequency of the resonance position and €2 denotes the pattern speed of
the induced perturbation, which can be related to the orbital motion of the moon. Inner and outer
Lindbland resonances occur for the integer m > 0 and m < 0, respectively, where m denotes the
order of the resonance. The excitation of the particles at resonances can generate waves in the ring
density as a result of an interplay between gravitational stress (Maxwell stress-tensor of gravity)
and inertia forces (Coriolis) which widely occur in Saturn’s rings [28, 61, 9]. Their observation
permits to quantify the surface mass density and the viscosity in the rings. The surface mass density
can be gained from the data using the wave dispersion relation, which shall be derived here on base
of the streamline formalism.

The streamlines go around Saturn and have to be closed. Thus, the phase ¢ = Q(r)t — w must
satisfy the condition ¢ = m(Q(r) — )¢, thus

dw

e Q(r) — m(Q(r) — Q). (4.46)

Now, €(r) can be linearized around the resonance location as Q(r) ~ Qy — 3Q x/(2ay) and Q¢
can be replaced by equation (4.45), resulting in

dw 3

dt T 2a0

The precession of w is caused by particle interactions, where the contribution of self-gravity

can be calculated in a similar way as the effect of Newtonian stress and the change in the pericenter
position reads [9]

(m—1)z. (4.47)

dw 7GY,
= = k|h(q). 4.48
A general expression of h(q) is given for example by ref. [9], where the function fulfills h(q) — 1
for ¢ — 0.
Combing the radial dependence of the precession (4.47) with the contributions of the particle
interactions given by the equations (4.39) and (4.48) results in the dispersion relation:
3Q TG, [
—(m-1)x = k| — =k 4.49
2(10 (m ) o QO ’ ‘ 2 ( )
Figure 5 shows the Janus 2:1 density wave in a PPS optical depth profile together with a wavelet
power spectrum as an example. The dispersion relation (4.49) has been fitted to the spectrum
giving a surface mass density of 700 kg m~2, whereas the smaller nonlinear contribution due to
the pressure gradient has been neglected (second term in eq. (4.49)).
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Figure 5: Upper Panel: Optical depth profile of the Janus 2:1 Lindblad resonance in Saturn’s B
ring from the Voyager PPS scan. Lower Panel: Wavelet spectrum from the profile above. A clear
trend in the wavenumber k is visible, which can be explained by the dispersion relation (4.49) if a
surface mass density of 3 = 700 kg m~? is assumed.

5. Discussion

Planetary rings are — apart from their beauty and wealth of structures — the only real examples of
granular gases in nature. The quantitative description of their physical nature using macroscopic
or mean field balances of dense granular flows has been a challenge for decades.

Kinetic theory appears to be the most appropriate approach to explain the behavior of the
granular shear flow in Saturn’s rings. However, the mathematical treatment is quite difficult for
most applications. While kinetics of dissipatively colliding ring particles are useful to describe
the steady state of the rings — characterized by viscous heating and collisional dissipative cooling
— perturbed regions and related structures can easier be characterized by mean field balances of
mass, momentum and energy: a reduction of the kinetic description to hydrodynamic moments.

The problem, however, is that the properties of granular gases, transports and equation of state,
are not universal for granular gases and rather depend on the physical conditions. The physical
reason is found in a lack of a scale separation between size of the ring particles (interaction length
scale), the mean free path between them and the spatial scale on which mean field quantities (den-
sity, mean velocities and temperature) may change. For instance the molecular interaction scale
for molecular gases is in the order of the size of the molecules (Angstroms), their mean free path
is in the order of micrometers (depending on pressure and density), and densities, mean velocities
and temperatures of the flow usually change on scales larger than centimeters (depending on the
system investigated). In other words, these scales are separated by many orders of magnitudes
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for normal” gases or fluids, whereas they are of the same order for dense granular gases like in
Saturn’s ring! s.

This lack of scale separation is the reason that the transports have to be quantified separately
for each physical situation the granular gas rests in. The latter means, for instance, gradients of
external forces, which may show spatial scales in the order of the sizes of the granules and of their
mean free path. Thus, gradients of forces and of the state variables change over the mean free path
— indirectly influencing the matter properties of the granular gas.

Therefore the observed features (overstability or propellers) found in the A ring might not be
expected to evolve in other ring regions, like the much denser B ring or the less denser C ring.
It could well be that there a moonlet may not be able to generate an observable propeller or that
overstable waves do not emerge, although the condition for the instability is formally fulfilled.
One reason could be that a linear Newton constitutive relation is not sufficient anymore to describe
the transports in the rings and non-linear relations would be needed. Thus, the critical problem
of the reduced hydrodynamical approach is the characterization of the transports (closure of bal-
ance equations): The relation between shear and momentum transfer as well as between gradients
of the velocity dispersion (temperature) and heat flow mediated by the viscosities v and (, the
heat conductivity « and the coefficient p, respectively. In this sense we have to state that th! e
hydrodynamical description is not of general use for all granular flows.

Nevertheless, we demonstrated the benefit of the hydrodynamical approach in this review using
the structural examples of overstability, moonlet induced propeller-features, and density waves
at resonance locations — which are all structures that have been predicted theoretically and later
detected by experiments of the space vehicles Voyager and Cassini.

In the case of viscous overstability the linear ansatzes and proper parameterizations of the trans-
ports have been sufficient to predict the overstable viscous waves [65, 55, 53] obeying properties
which have indeed been confirmed by the Cassini experiments [19, 74]. These observations seem
to support the Fourier and Newton constitutive relations for the energy and momentum transports,
respectively, and the hydrodynamic approach in general, further allowing to estimate granular vis-
cosities in the rings. Also the more general investigation of the overstable waves using kinetic
theory could confirm the predictions due to the hydrodynamic approach [36, 37].

The prediction of the propeller-structures [68, 72, 58] caused by embedded skyscraper-sized
moonlets supports the hydrodynamics in perturbed ring regions as well. Meanwhile more than
one hundred propellers have been observed in the outer A ring of Saturn and even a few of the
largest of them show all features predicted by theory [76, 71, 75, 78]. However, careful inspections
of the observed propeller yielded that the particle size distribution is changing in the perturbed
regions — not included in the hydrodynamic model — which is substantial for the interpretation of
the observations [71] and could also have influence on the transport of momentum and heat.

These successes motivate to model structures in planetary rings using the hydrodynamical ap-
proach also in future even if kinetic theory offers a more accurate description of the rings. A
development of a simulation code, as used for preplanetary discs, would also be a worthwhile goal
in order to investigate ring structures.
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