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SummarySummary

Precipitation as the central meteorological feature for agriculture, water security, and human
well-being amongst others, has gained special attention ever since. Lack of precipitation may
have devastating effects such as crop failure and water scarcity. Abundance of precipitation,
on the other hand, may as well result in hazardous events such as flooding and again crop
failure. Thus, great effort has been spent on tracking changes in precipitation and relating them
to underlying processes. Particularly in the face of global warming and given the link between
temperature and atmospheric water holding capacity, research is needed to understand the
effect of climate change on precipitation.

The present work aims at understanding past changes in precipitation and other meteo-
rological variables. Trends were detected for various time periods and related to associated
changes in large-scale atmospheric circulation. The results derived in this thesis may be used
as the foundation for attributing changes in floods to climate change. Assumptions needed for
the downscaling of large-scale circulation model output to local climate stations are tested and
verified here.

In a first step, changes in precipitation over Germany were detected, focussing not only on
precipitation totals, but also on properties of the statistical distribution, transition probabilities
as a measure for wet/dry spells, and extreme precipitation events. Shifting the spatial focus
to the Rhine catchment as one of the major water lifelines of Europe and the largest river
basin in Germany, detected trends in precipitation and other meteorological variables were
analysed in relation to states of an “optimal” weather pattern classification. The weather pattern
classification was developed seeking the best skill in explaining the variance of local climate
variables. The last question addressed whether observed changes in local climate variables
are attributable to changes in the frequency of weather patterns or rather to changes within
the patterns itself. A common assumption for a downscaling approach using weather patterns
and a stochastic weather generator is that climate change is expressed only as a changed
occurrence of patterns with the pattern properties remaining constant. This assumption was
validated and the ability of the latest generation of general circulation models to reproduce the
weather patterns was evaluated.

Precipitation changes in Germany in the period 1951–2006 can be summarised briefly as
negative in summer and positive in all other seasons. Different precipitation characteristics
confirm the trends in total precipitation: while winter mean and extreme precipitation have
increased, wet spells tend to be longer as well (expressed as increased probability for a



8

wet day followed by another wet day). For summer the opposite was observed: reduced
total precipitation, supported by decreasing mean and extreme precipitation and reflected
in an increasing length of dry spells. Apart from this general summary for the whole of
Germany, the spatial distribution within the country is much more differentiated. Increases
in winter precipitation are most pronounced in the north-west and south-east of Germany,
while precipitation increases are highest in the west for spring and in the south for autumn.
Decreasing summer precipitation was observed in most regions of Germany, with particular
focus on the south and west. The seasonal picture, however, was again differently represented
in the contributing months, e.g. increasing autumn precipitation in the south of Germany is
formed by strong trends in the south-west in October and in the south-east in November. These
results emphasise the high spatial and temporal organisation of precipitation changes.

The next step towards attributing precipitation trends to changes in large-scale atmospheric
patterns was the derivation of a weather pattern classification that sufficiently stratifies the
local climate variables under investigation. Focussing on temperature, radiation, and humidity
in addition to precipitation, a classification based on mean sea level pressure, near-surface
temperature, and specific humidity was found to have the best skill in explaining the variance of
the local variables. A rather high number of 40 patterns was selected, allowing typical pressure
patterns being assigned to specific seasons by the associated temperature patterns. While
the skill in explaining precipitation variance is rather low, better skill was achieved for radiation
and, of course, temperature. Most of the recent GCMs from the CMIP5 ensemble were found
to reproduce these weather patterns sufficiently well in terms of frequency, seasonality, and
persistence.

Finally, the weather patterns were analysed for trends in pattern frequency, seasonality,
persistence, and trends in pattern-specific precipitation and temperature. To overcome un-
certainties in trend detection resulting from the selected time period, all possible periods in
1901–2010 with a minimum length of 31 years were considered. Thus, the assumption of a
constant link between patterns and local weather was tested rigorously. This assumption was
found to hold true only partly. While changes in temperature are mainly attributable to changes
in pattern frequency, for precipitation a substantial amount of change was detected within
individual patterns. Magnitude and even sign of trends depend highly on the selected time
period. The frequency of certain patterns is related to the long-term variability of large-scale
circulation modes.

Changes in precipitation were found to be heterogeneous not only in space, but also in time
– statements on trends are only valid for the specific time period under investigation. While
some part of the trends can be attributed to changes in the large-scale circulation, distinct
changes were found within single weather patterns as well. The results emphasise the need to
analyse multiple periods for thorough trend detection wherever possible and add some note of
caution to the application of downscaling approaches based on weather patterns, as they might
misinterpret the effect of climate change due to neglecting within-type trends.



ZusammenfassungZusammenfassung

Niederschlag als eine der wichtigsten meteorologischen Größen für Landwirtschaft, Wasserver-
sorgung und menschliches Wohlbefinden hat schon immer erhöhte Aufmerksamkeit erfahren.
Niederschlagsmangel kann verheerende Auswirkungen haben, wie z.B. Missernten und Was-
serknappheit. Übermäßige Niederschläge andererseits bergen jedoch ebenfalls Gefahren in
Form von Hochwasser oder Sturzfluten und wiederum Missernten. Daher wurde viel Arbeit in
die Detektion von Niederschlagsänderungen und deren zugrundeliegende Prozesse gesteckt.
Insbesondere angesichts von Klimawandel und unter Berücksichtigung des Zusammenhangs
zwischen Temperatur und atmosphärischer Wasserhaltekapazität, ist großer Bedarf an For-
schung zum Verständnis der Auswirkungen von Klimawandel auf Niederschlagsänderungen
gegeben.

Die vorliegende Arbeit hat das Ziel, vergangene Veränderungen in Niederschlag und ande-
ren meteorologischen Variablen zu verstehen. Für verschiedene Zeiträume wurden Tendenzen
gefunden und mit entsprechenden Veränderungen in der großskaligen atmosphärischen Zirku-
lation in Zusammenhang gebracht. Die Ergebnisse dieser Arbeit können als Grundlage für die
Attributierung von Hochwasserveränderungen zu Klimawandel genutzt werden. Die Annahmen
für die Maßstabsverkleinerung („Downscaling“) der Daten von großskaligen Zirkulationsmodel-
len auf die lokale Skala wurden hier getestet und verifziert.

In einem ersten Schritt wurden Niederschlagsveränderungen in Deutschland analysiert.
Dabei lag der Fokus nicht nur auf Niederschlagssummen, sondern auch auf Eigenschaften
der statistischen Verteilung, Übergangswahrscheinlichkeiten als Maß für Trocken- und Nie-
derschlagsperioden und Extremniederschlagsereignissen. Den räumlichen Fokus auf das
Rheineinzugsgebiet, das größte Flusseinzugsgebiet Deutschlands und einer der Hauptwas-
serwege Europas, verlagernd, wurden nachgewiesene Veränderungen in Niederschlag und
anderen meteorologischen Größen in Bezug zu einer „optimierten“ Wetterlagenklassifikation
analysiert. Die Wetterlagenklassifikation wurde unter der Maßgabe entwickelt, die Varianz des
lokalen Klimas bestmöglich zu erklären. Die letzte hier behandelte Frage dreht sich darum, ob
die beobachteten Veränderungen im lokalen Klima eher Häufigkeitsänderungen der Wetter-
lagen zuzuordnen sind oder einer Veränderung der Wetterlagen selbst. Eine gebräuchliche
Annahme für einen Downscaling-Ansatzmit Hilfe von Wetterlagen und einem stochastischen
Wettergenerator ist, dass Klimawandel sich allein durch eine Veränderung der Häufigkeit von
Wetterlagen ausdrückt, die Eigenschaften der Wetterlagen dabei jedoch konstant bleiben. Diese
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Annahme wurde überprüft und die Fähigkeit der neuesten Generation von Zirkulationsmodellen,
diese Wetterlagen zu reproduzieren, getestet.

Niederschlagsveränderungen in Deutschland im Zeitraum 1951–2006 lassen sich zusam-
menfassen als negativ im Sommer und positiv in allen anderen Jahreszeiten. Verschiedene
Niederschlagscharakteristika bestätigen die Tendenz in den Niederschlagssummen: während
mittlere und extreme Niederschlagstageswerte im Winter zugenommen haben, sind auch zu-
sammenhängende Niederschlagsperioden länger geworden (ausgedrückt als eine gestiegene
Wahrscheinlichkeit für einen Tag mit Niederschlag gefolgt von einem weiteren nassen Tag). Im
Sommer wurde das Gegenteil beobachtet: gesunkene Niederschlagssummen, untermauert
von verringerten Mittel- und Extremwerten und längeren Trockenperioden. Abseits dieser allge-
meinen Zusammenfassung für das gesamte Gebiet Deutschlands, ist die räumliche Verteilung
von Niederschlagsveränderungen deutlich heterogener. Vermehrter Niederschlag im Winter
wurde hauptsächlich im Nordwesten und Südosten Deutschlands beobachtet, während im
Frühling die stärksten Veränderungen im Westen und im Herbst im Süden aufgetreten sind. Das
saisonale Bild wiederum löst sich für die zugehörigen Monate auf, z.B. setzt sich der Anstieg
im Herbstniederschlag aus deutlich vermehrtem Niederschlag im Südwesten im Oktober und
im Südosten im November zusammen. Diese Ergebnisse betonen die starken räumlichen
Zusammenhänge der Niederschlagsänderungen.

Der nächste Schritt hinsichtlich einer Zuordnung von Niederschlagsveränderungen zu Ände-
rungen in großskaligen Zirkulationsmustern, war die Ableitung einer Wetterlagenklassifikation,
die die betrachteten lokalen Klimavariablen hinreichend stratifizieren kann. Fokussierend auf
Temperatur, Globalstrahlung und Luftfeuchte zusätzlich zu Niederschlag, wurde eine Klassi-
fikation basierend auf Luftdruck, Temperatur und spezifischer Luftfeuchtigkeit als am besten
geeignet erachtet, die Varianz der lokalen Variablen zu erklären. Eine vergleichsweise hohe
Anzahl von 40 Wetterlagen wurde ausgewählt, die es erlaubt, typische Druckmuster durch die
zusätzlich verwendete Temperaturinformation einzelnen Jahreszeiten zuzuordnen. Während
die Fähigkeit, Varianz im Niederschlag zu erklären, relativ gering ist, ist diese deutlich besser
für Globalstrahlung und natürlich Temperatur. Die meisten der aktuellen Zirkulationsmodelle
des CMIP5-Ensembles sind in der Lage, die Wetterlagen hinsichtlich Häufigkeit, Saisonalität
und Persistenz hinreichend gut zu reproduzieren.

Schließlich wurden die Wetterlagen bezüglich Veränderungen in ihrer Häufigkeit, Saisonalität
und Persistenz, sowie der Wetterlagen-spezifischen Niederschläge und Temperatur, untersucht.
Um Unsicherheiten durch die Wahl eines bestimmten Analysezeitraums auszuschließen, wur-
den alle möglichen Zeiträume mit mindestens 31 Jahren im Zeitraum 1901–2010 untersucht.
Dadurch konnte die Annahme eines konstanten Zusammenhangs zwischen Wetterlagen und
lokalem Wetter gründlich überprüft werden. Es wurde herausgefunden, dass diese Annahme
nur zum Teil haltbar ist. Während Veränderungen in der Temperatur hauptsächlich auf Ver-
änderungen in der Wetterlagenhäufigkeit zurückzuführen sind, wurde für Niederschlag ein
erheblicher Teil von Veränderungen innerhalb einzelner Wetterlagen gefunden. Das Ausmaß
und sogar das Vorzeichen der Veränderungen hängt hochgradig vom untersuchten Zeitraum
ab. Die Häufigkeit einiger Wetterlagen steht in direkter Beziehung zur langfristigen Variabilität
großskaliger Zirkulationsmuster.

Niederschlagsveränderungen variieren nicht nur räumlich, sondern auch zeitlich – Aussagen
über Tendenzen sind nur in Bezug zum jeweils untersuchten Zeitraum gültig. Während ein Teil
der Veränderungen auf Änderungen der großskaligen Zirkulation zurückzuführen ist, gibt es
auch deutliche Veränderungen innerhalb einzelner Wetterlagen. Die Ergebnisse betonen die
Notwendigkeit für einen sorgfältigen Nachweis von Veränderungen möglichst verschiedene
Zeiträume zu untersuchen und mahnen zur Vorsicht bei der Anwendung von Downscaling-
Ansätzen mit Hilfe von Wetterlagen, da diese die Auswirkungen von Klimaveränderungen durch
das Vernachlässigen von Wetterlagen-internen Veränderungen falsch einschätzen könnten.



1. Introduction1. Introduction

1.1 Background
For some people, the weather forecast is more exciting than any crime thriller: will it rain
tomorrow? But even for those, who await tomorrow’s weather more relaxed, precipitation is
directly or indirectly an (or even the most) important feature of local weather, affecting fields
as diverse as agriculture, water security, and human well-being, to name only a few. Both
extremes of precipitation – droughts and floods – can have devastating effects and cause high
damages. Some recent events in Germany still being in memory comprise the flash flood
affecting Braunsbach in 2016 (Bronstert et al., 2017), floods in many Central European rivers in
2013 (Schröter et al., 2015), the Elbe flood in 2002 (Ulbrich et al., 2003), and (memory being
refreshed due to its 20th anniversary this year) the Oder flood in 1997 (Keil et al., 1999). All
these (exemplarily selected) events were caused by extremely high intensities of precipitation.
The mentioned fluvial floods share even one more common feature – the generating precipitation
events were associated with a “Vb cyclone”. Droughts, on the other hand, as observed e.g. in
2003 in Central Europe, do not cause immediate damage and fatalities, but are often associated
with increasing mortality (Robine et al., 2008) and lead to interruption of river navigation and
crop failures, resulting in raised prices for consumers.

Given this hazardous potential of precipitation anomalies, changes in precipitation are of
great interest in the face of climate change and also given the close relationship between
temperature and atmospheric moisture content (Trenberth et al., 2003). Understanding past
changes is a requirement for deducing future changes (Min et al., 2011). Moreover, having
demonstrated the close link between precipitation and floods above, changes in precipitation
are likely to cause changes in floods as well. Understanding the effect of climate variations
on river flow will help to attribute changes in floods to climate change and take appropriate
measures to mitigate increased risks.

This thesis focuses on two different, yet overlapping regions in central Europe – namely
Germany and the Rhine catchment. The latter being the largest river basin in Germany,
comprising almost one third of its area. The climate is moderate and generally humid with
annual precipitation ranging from slightly above 400 mm year−1 in the north-east of Germany to
more than 2500 mm year−1 in the Alps with clear differences between windward and lee sides
of mountain ranges (see also Figure 1.1, page 13). Annual mean temperature ranges from
−4.7 ◦C at the peak of Zugspitze (the highest mountain of Germany) to more than 10 ◦C in the
Upper Rhine Plain and around 8 ◦C at the German coasts. Population density in the study region



12 Chapter 1. Introduction

is rather heterogeneously distributed – metropolitan areas with more than 2000 inhabitants
km−2 being surrounded by rural areas with less than 300 inhabitants km−2 (de.statista.com,
accessed September 2017). Especially the Rhine catchment comprises one of the largest
urban areas of Germany (the Ruhr Area), thus placing large numbers of people into generally
flood-prone areas.

This significant exposure to floods is accompanied by increasing flood trends during the
second half of the 20th century (Petrow and Merz, 2009). Observed trends are partly attributable
to river training (Vorogushyn and Merz, 2013), and partly to increases in flood-producing
precipitation (Pinter et al., 2006). Changes in the frequency and persistence of atmospheric
circulation types can trigger these changes in precipitation (Petrow et al., 2009). Further
increases in winter precipitation are expected under climate change, thus, in combination with
earlier snowmelt, aggravating flood risk in the Rhine (te Linde et al., 2010). But already in the
past, changes in precipitation have been observed. Hundecha and Bárdossy (2005) found
increasing magnitude and frequency of heavy precipitation for all seasons but summer in the
German part of the Rhine basin, which is also confirmed by Zolina et al. (2008) and Brienen
et al. (2013). However, they also indicate region- and season-specific dependence of their
results and found a low stability in time of these trends (analysed by 30-year moving windows).
The present work expands the existing knowledge in two aspects: precipitation trends have
been analysed for the whole of Germany using an unprecedentedly long and dense station
record, and time-stability of trends has been investigated based not only on 30-year periods, but
taking all periods into account with a length of 31 years up to the full record length of 110 years.

This brief summary points towards the importance of precipitation (changes) for flood
generation in the Rhine basin and indicates the role of atmospheric circulation in driving these
changes. Thus, this thesis will focus on (a) precipitation changes and (b) how precipitation
and changes thereof can be related to atmospheric circulation. The results will enhance
understanding of past changes in precipitation and shall lay the basis for future research on
attributing changes in floods to climate change. In the following sections, the two main topics of
this thesis are introduced by providing some background information.

1.1.1 Precipitation changes
A considerable amount of work has been dedicated to changes in precipitation during the past
decades, with a number of authors reporting on increasing extremes for different regions and
time periods (for an overview, see Table 2.1, page 22). The question arises, to which extent
climate change will be (and was) affecting precipitation characteristics. One expectation is the
intensification of extreme events due to atmospheric warming, following the Clausius–Clapeyron
relationship (Bürger et al., 2014). Given the observed warming during the last century (see
Figure 4.7, page 77, for observed temperature changes in the Rhine catchment), changes in
heavy precipitation are to be expected likewise. Annual precipitation was increasing by around
1 mm year−1 during the last century in many parts of Germany and the Rhine catchment (see
Figure 1.1, central panel). However, when changing the analysed period to only the second half
of the century (Figure 1.1, right panel), the trends are different in quite some places and their
spatial distribution is more heterogeneous. For the headwater region of the Rhine in the Swiss
Alps, precipitation decreased considerably during the second half of the century, although the
century-long trend is positive. This should rise awareness for the strong dependence of trend
analyses on the actual period under investigation, which is further acknowledged in chapter 4
and illustrated in Figure 1.2. Another aspect evident from Figure 1.1 is the fact that regions with
low annual precipitation (i.e. the north-east of Germany) are experiencing only low increases or
even decreases in annual precipitation (depending on the analysed period), thus potentially
aggravating water stress situations.

1.1.2 Large-scale atmospheric patterns
As already indicated above, observations of “weather” can be related to distinct, reoccurring
atmospheric states. These states are better predictable than the actual weather characteristics
and can easily be obtained from large-scale information such as general circulation models
(GCMs), thus making the analysis of atmospheric states an appealing tool for inferring the effect

de.statista.com
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Figure 1.1: Annual precipitation for Germany and the Rhine catchment (left). Linear trend of
annual precipitation for two selected time periods (center and right). Black outline indicates
state borders, dark red outline shows the Rhine catchment up to the German-Dutch border.
Same data set as used in chapter 3 and 4.

of climate change and for understanding atmospheric processes (Huth et al., 2008). By conditi-
oning a stochastic weather generator on these atmospheric states, a valuable downscaling tool
can be obtained for bridging the spatial gap between the global scale of GCMs and e.g. the
local scale of hydrological catchment models. Analysing a finite number of atmospheric states
rather than the virtually non-finite realisations of local weather itself reduces the complexity of
the target. Changes in precipitation and other variables, such as temperature, can either be
related to a changing occurrence of associated states or to a change of the states themselves.

Atmospheric states can be grouped into circulation or weather types (the difference between
both being explained later) by classification to reduce complexity, analyse past changes of
circulation, or to obtain a statistical downscaling tool to investigate past and future changes in
climate. Huth et al. (2008) define classification as “a task of grouping entities (cases) so that
they share common features (are similar) within each group, while being dissimilar between
groups”. Groups can be spatial, i.e. defined regions that share the same climate features. A
well-known example being the climate classification after Köppen, (Köppen and Geiger, 1930).
The grouping can also refer to the temporal dimension, i.e. by grouping time periods (days,
months, years, ...) that share common atmospheric or synoptic features. The latter is referred
to further on.

Some well-known classifications comprise those after e.g. Hess-Brezowsky (Germany),
Lamb (England), and Schüepp (Switzerland). All of them are subjective classifications, i.e.
the assignment of cases (days) to a certain (pre-defined) type is done subjectively. Another
group of classifications are objective classifications, which derive their types from the actual
data, grouping them by e.g. clustering or correlation-based methods. A third group consists of
objectivised versions of the formerly mentioned subjective classifications, i.e. using the same
pre-defined types, but assigning individual cases depending on objective distance measures or
threshold criteria. Objective (or objectivised) methods hold the advantage that they are efficiently
applicable to large amounts of data, making them attractive for analysing long time series or
ensembles of GCM runs. The downside of objective methods is, that their naming conventions
for types are not intuitive (usually only a mere number), whereas names of subjective methods
comprise some characteristics of the type (Huth et al., 2008).
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Two fundamentally different strategies for classification are cluster analysis and principal
component analysis. While the first assigns one defined type to each case, the latter results in
modes of variability and each case can be expressed as a linear combination of several modes.
The classification used in this thesis clearly belongs to the clustering methods and is compared
to well-established large-scale circulation modes in chapter 4.

The aforementioned Vb cyclone, however, belongs to yet another type of classification –
the “cyclone track typology” by van Bebber (1892). This classification categorises low-pressure
areas by their trajectory which they take over several days. Nowadays hardly used, is the
Vb cyclone the only widely known type of this classification as it is frequently associated
with intense precipitation over Central Europe, transporting moisture from the Mediterranean
northward and potentially leading to severe flooding. In contrast to other methods, the cyclone
track typology classifies the development over several days (track). Usually, the focus is on
single cases/days (however, there are options to classify sequences of days).

In chapter 3 of this thesis, a classification is established using the objective clustering method
“SANDRA” (Simulated ANnealing and Diversified RAndomization). A brief description of the
method is given in Philipp et al. (2007). This method offers the possibility to select and thus
optimise the classification variables (subjective and objectivised methods usually pre-define the
variables to use, e.g. mean sea level pressure, 500 hPa geopotential height), and has proven to
have good or even superior performance compared to other methods (see subsection 3.3.1,
page 44 for related references).

Depending on the variables used for classification, Huth et al. (2008) differentiates between
circulation classifications, based e.g. on sea level pressure or geopotential height, and weather
classifications, based on surface weather variables such as temperature and humidity amongst
others. The resulting groups are hence called “circulation patterns” or “weather patterns”.
Although the classification used here somewhat mixes variables from both definitions, the term
“weather pattern (classification)” is used throughout the thesis to distinguish from pure circulation
classifications and emphasise the envisaged application in a climate change attribution study.

A pure circulation classification, based solely on variables defined at certain lower- and
midtropospheric levels (Huth et al., 2008), allows for a clear separation between dynamic
(circulation-based) and thermo-dynamic (pattern-internal) variability. Many studies (Cahynová
and Huth, 2010, 2016; Huth, 2001; Küttel et al., 2011; Philipp et al., 2007) analysed, to which
extent observed changes in temperature, precipitation, and other surface variables can be
attributed to either type of variability. In terms of global warming one question to answer could
be, if observed warming is due to an increased occurrence of “warm” patterns or due to a
warming of the types itself. This kind of physical interpretation is often done on classifications
using few types only (Belleflamme et al., 2014). However, these classifications often suffer from
poor explained variances, i.e. large variability within each type (Huth et al., 2016).

In this thesis, the classification is developed particularly with regard to further application
as a downscaling tool for an approach based on weather patterns and a stochastic weather
generator. To condition a stochastic weather generator on weather patterns, the patterns are
required to have a time-constant link to surface variables (i.e. no within-type trends) and to
capture a preferably high fraction of variance of the variables under consideration (precipitation,
temperature, ...). This is best achieved when expanding a classification by synoptic variables
such as surface temperature and specific humidity, as done here and also suggested by
Hewitson and Crane (2006). The inclusion of temperature in the classification has the further
advantage of introducing a clear seasonal assignment to the patterns, thus allowing for a
continuous classification throughout the whole year. A disadvantage is the loss of clear physical
interpretability – global warming might either manifest as a trend within certain patterns, or as
an increased occurrence of warm patterns at the expense of cold patterns. The optimisation
of the classification for the specific application purpose requires for these more pragmatic
compromises. Although the development of an “optimal” classification for a downscaling tool
and the validation of the underlying assumptions (high explained variance, time-constant link
to surface variables) is in the focus here, this thesis also assesses the physical basis of the
weather patterns by integrating them into the context of established large-scale circulation
modes.
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Figure 1.2: Example time series (annual frequency of weather pattern 18) to illustrate how
trend direction and magnitude may differ, depending on the analysed period. Note the trend
over the whole period being virtually zero.
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Figure 1.3: Outline of workflow towards attributing observed changes in floods to climate
change. Steps that have to build on the results of this thesis are highlighted in light grey
shading.

1.2 Objectives and research questions

Starting with a comprehensive investigation of precipitation changes in Germany, this thesis
further analyses trends in different meteorological variables in relation to changes in the states
of an optimised weather pattern classification. Aiming at the attribution of changes in floods
to climate change using a downscaling approach based on weather patterns and a stochastic
weather generator, the underlying assumptions for such a downscaling approach are validated
here. To disentangle the effect of an anthropogenically influenced climate on floods (compared
to a climate without human interference), a hydrological model can be employed using different
climate data input. GCMs as from the current CMIP5 ensemble provide runs from both forcings
(all greenhouse gases as observed vs. natural greenhouse gases only). However, the global
scale of these models’ output is not suitable for a regional hydrological model and thus some
downscaling method has to be applied to bridge this spatial gap. Different approaches exists,
see e.g. Maraun et al., 2010 for a review. One promising approach comprises a stochastic
weather generator conditioned on weather patterns. This allows for generating long time series
of meteorological variables as needed for the hydrological model. The workflow is outlined in
Figure 1.3. However, some requirements are indispensable for this approach. Firstly, a weather
pattern classification with high skill in explaining the variability of local weather variables is
needed. Secondly, the link between weather patterns and local climate needs to be stationary,
meaning that climate change will only manifest as a change in the occurrence of individual
patterns.
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These assumptions are tested here based on an optimised weather pattern classification
developed for the Rhine basin. Thus, the applicability of the downscaling approach is validated
and the precipitation changes detected for Germany can be further discussed in relation to
changes in weather patterns. In addition to validating the downscaling approach, the thesis
elaborates on several research questions which are shortly outlined in the following.

What changes in precipitation can be detected in the past century?
A thorough analysis of trends is sought with particular focus on a large range of precipitation
characteristics, as well as on the spatial and temporal variability of trends. Despite the already
existing body of literature on different aspects of trends in precipitation, this thesis aims at
giving a general and comprehensive overview, extending previous studies in terms of number
of analysed parameters, time period covered, spatial coverage, and quality of the data used.

Are precipitation changes rather decadal fluctuations or long-term trends (persistent in time)?
Trends in precipitation may change direction and magnitude in time (as exemplary shown for
pattern frequency in Figure 1.2) which has already partly been acknowledged in the literature, as
stated above. To get a more comprehensive picture of changes, multiple periods are considered
for trend detection.

Can variability of daily precipitation be explained by weather patterns?
Values of daily precipitation are spread across a great range. Is it possible to stratify this range
using weather patterns? A possibly narrow distribution of precipitation values is needed for
developing an “optimal” weather pattern classification that can serve as a downscaling tool in
climate change attribution.

Can precipitation trends be related to changes in large-scale atmospheric patterns?
Changes in precipitation (and other meteorological variables) may be driven by a changing
frequency of occurrence of weather patterns, or by changing internal properties of these
patterns. To which of these (between-type and within-type changes) can observed changes be
related to? How do the weather patterns relate to large-scale atmospheric circulation?

1.3 Thesis outline and author contribution
The thesis combines two published papers and one submitted manuscript, whose findings
answer the research questions stated above. All of them are the achievement of varying teams
of authors, as listed in the respective chapters. This section provides an overview on the
following chapters and distinguishes my contribution to each manuscript.

Published article: “High spatial and temporal organization of changes in precipitation over Ger-
many for 1951–2006”
Focusses on the detection of trends in different precipitation characteristics across Germany.

Own contribution: data analyses; figures; text: data, methods, results; contributed to all
other sections; revisions to the full text made by all authors.

Published article: “Can local climate variability be explained by weather patterns? A multi-
station evaluation for the Rhine basin”
An “optimal” weather pattern classification is developed, aiming at maximising the amount of
variation explained by weather patterns. Additionally and in regard to a future application in
downscaling, GCM runs for the past century from the CMIP5 ensemble are evaluated for their
skill in reproducing weather patterns characteristics.

Own contribution: data analyses; figures; text: data, methods, results; contributed to all
other sections; revisions to the full text made by all authors.

Submitted manuscript: “Do changing weather types explain observed climatic trends in the
Rhine basin? An analysis of within and between-type changes”
Trends in precipitation (amongst other variables) are analysed for different time periods, asses-
sing the persistence of trends and completing the results on precipitation changes in the past
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century. Weather patterns are analysed for between- and within-type changes and observed
trends are related to atmospheric circulation modes.

Own contribution: data analyses; figures (except Figure 4.3 and respective computations);
text (major part of): data, methods, results, discussion/conclusion; contributed to all other
sections; revisions to the full text made by all authors.
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Abstract
Temporal changes in daily precipitation observed at more than 2300 stations in Germany during
the second half of the 20th century are analysed. Compared to other studies, this analysis is
based on a very high spatial density of observation locations and complete areal coverage of
Germany. Changes in four precipitation characteristics are investigated: (1) total amount of
seasonal and monthly precipitation, (2) mean and 95 % quantile (q95) of daily precipitation,
(3) transition probabilities to quantify wet and dry spells, and (4) precipitation amounts for a
7-day event with return period 100 years. For all parameters, strikingly clear trend patterns
in space and time (of the year) emerged. Stations with increasing and decreasing trends are
never found in direct neighbourhood, but are well separated from each other. Changes are
season and even month specific. These clear spatial and temporal patterns are an expression
of the organization of precipitation mechanisms over Germany. These findings add a note of
caution in regard to trend analyses: Spatially and temporally aggregated trend studies might
not disclose the complete range of changes and might miss important details. Interestingly, the
variability of daily precipitation has changed in parallel with the mean behaviour: Those regions
and seasons that show an increase in mean show also an increase in standard deviation,
leading to a disproportional increase in heavy precipitation. In addition, there is a tendency
towards higher persistence, in particular, longer wet spells in winter, spring, and autumn, and
longer dry spells in summer. If these trends continue, there will be an increasing potential for
floods in winter and spring, and increasing problems for water availability in summer in regions
that show signs of water stress today.

Keywords
precipitation change; trend analysis; extreme precipitation; transition probabilities; gamma;
Germany

Published as:
Murawski, A., Zimmer, J., and Merz, B. (2016b). “High spatial and temporal organization of
changes in precipitation over Germany for 1951–2006”. In: International Journal of Climatology
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2.1 Introduction

Precipitation is one of the most important climate variables. Given the link between temperature
and atmospheric water holding capacity, human-induced global warming may already have
contributed to changes in precipitation. Changes in extreme precipitation are of particular
importance in this respect, and it has been suggested that heavy precipitation events increase
with global warming (Min et al., 2011; Trenberth et al., 2007). Against this background, we
analyse changes in daily precipitation over Germany during the second half of the 20th century.

Much effort has been spent on detecting trends in precipitation, and in particular, in extreme
precipitation, as this can have adverse consequences for society. For Europe, most analyses of
observed precipitation found increasing heavy precipitation during the period of extensive data
coverage, i.e. from several decades to the last century (Alexander et al., 2006; Groisman et al.,
2005; Klein Tank and Können, 2003; Moberg et al., 2006; Zolina, 2014; Zolina et al., 2008, 2005).
For example, Moberg et al. (2006) investigated changes in precipitation extremes derived from
daily time series for Europe west of 60° E for 1901–2000. They found that winter precipitation
totals have increased by approximately 12 % with similar trends in some percentiles (90th, 95th,
98th) of daily winter precipitation (analysed on 121 stations north of 40° N). For summer, they
did not find significant trends over the whole area under investigation, but a slight tendency
towards more intense but less frequent precipitation. Zolina et al. (2010) analysed the duration
of wet spells in Europe over the period 1950–2008 using daily data from 699 rain gauges. They
found that wet periods, defined as consecutive days with significant precipitation (more than 1
mm), have become longer by about 15 % to 20 %. Interestingly, the total number of wet days
has not increased, pointing to a change in the structure of rainfall events. Moreover, heavy
precipitation events have become more intense. A similar study of Zolina et al. (2013) using
data for 1950–2009 specified that the changes found in the previous work have mainly occurred
in winter. Pauling and Paeth (2007) investigated the changes in winter precipitation anomalies
over Europe back to 1700. They found that over Central Europe wet winters were more frequent
during 1951–2000 with respect to the past 300 years (except 1701–1750). For Germany, Trömel
and Schönwiese (2007) analysed 132 time series of monthly total precipitation covering 1901–
2000. For most of the year, they found an increasing probability of exceeding the 95th percentile
and a decreasing probability of falling under the 5th percentile for several stations in the south of
Germany. The same results were found for the western part of Germany for summer. In winter,
both probabilities increased in the west of Germany. The opposite development was found for
the east of Germany in summer and autumn (decrease in both probabilities: exceeding the 95th
and falling below the 5th percentile). Hence, this study illustrated the large heterogeneity of
precipitation behaviour in space and in the annual course, and pointed to the importance of
region- and season- or even month-specific analyses. Zolina et al. (2008) analysed a much
denser network of stations (> 2000) for the period 1950–2004. They analysed linear trends in
extreme and heavy precipitation. As indicator, they used the 95 % and 99 % percentiles of the
gamma distribution fitted to daily precipitation values. Regrettably, their analysis was limited to
the western and southern parts of Germany. They found positive linear tendencies in heavy
precipitation for all seasons except summer where most trends were negative and emphasized
the importance of seasonal analysis, because their trend analyses without seasonal breakdown
did not show any clear spatial patterns. A subsequent study by Zolina (2014) analysed wet
spells over the whole of Germany at 3161 stations for 1950–2008, but was restricted to only
two seasons. Similar results were found by Hundecha and Bárdossy (2005) who analysed the
evolution of daily extreme precipitation for 1958–2001 in the German parts of the Rhine basin
using data of 611 precipitation stations. For the area of east-central Germany, Hänsel et al.
(2009) studied trends of monthly rainfall for 1951–2006 based on more than 200 precipitation
stations. They found season-specific trends with increasing monthly winter precipitation and
decreasing summer precipitation. Although the trend patterns showed similarities across the
region, the winter increase was highest in the mountainous south-western part, whereas the
summer decrease was most pronounced in the northern lowland. For the same period (1951–
2006), Łupikasza et al. (2011) analysed extreme precipitation trends for east-central Germany
and southern Poland. They used different indicators based on daily precipitation data at 43
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stations for the complete area. For all seasons and for east-central Germany, increasing trends
dominated the temporal changes, however, increases were particularly significant in winter.

Although several studies (see Table 2.1 for an overview) have analysed the time develop-
ment of precipitation for Germany, they either used data of sparse observational networks
or analysed only parts of Germany and/or restricted themselves to a very limited choice of
precipitation variables that mainly aim at quantifying extremes. In this article, we complement
this knowledge by analysing changes in four indicators that describe precipitation characteristics
quite extensively: (1) the total amount of seasonal and monthly precipitation, respectively, (2)
the mean and 95 % quantiles (q95) of daily precipitation, (3) transition probabilities to quantify
wet and dry spells, and (4) precipitation amounts for an extreme event of 7 days with return
period 100 years. All analyses are performed on a seasonal or even monthly level and are
based on data of more than 2300 precipitation gauges covering the whole area of Germany for
the period 1951–2006. Thus, an extended analysis of precipitation on an exceptionally good
and homogeneous data base is provided.

The analysis of changes in multi-day, extreme precipitation is of particular interest. Floods
are associated with different time scales of the triggering rainfall events. Trans-national and
trans-basin floods are typically related to multi-day, heavy precipitation events. The most recent
examples are the August 2002 and June 2013 floods in Central Europe. The flood in 2002 has
been the most expensive natural disaster in Germany so far, and the 2013 flood has been the
most severe flood – in hydrological terms – in Germany since 1951 (Schröter et al., 2015). Each
event caused damages in the order of EUR 10 billion for Germany alone (Merz et al., 2014). It
is important to understand whether the probability of precipitation events with the potential to
trigger large-scale floods has changed in the past decades.
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2.2 Data
The data used in this study were mainly derived from the precipitation gauge network of the
German Weather Service (DWD) and processed by the Potsdam-Institute for Climate Impact
Research (PIK). Data processing by Österle et al. (2006b) included the selection of 2342 stations
with continuous records in the period 1951–2006 and quality control of the data. Precipitation
was monitored at all stations, 270 stations also recorded other climate variables, such as air
temperature (daily minimum, maximum, and mean) and wind speed. These variables were
interpolated to the precipitation gauge stations, such that a complete set of meteorological
variables exists for each of the 2342 stations. Quality control of the data covered checking
for physically meaningful values, consistency of air temperatures, plausibility of sequences
with identical values, and spatially inconsistent measurements. Erroneous and missing values
were filled with the help of correlated neighbouring stations. The data processing is described
in detail in Österle et al. (2006b). The resulting gap-free data set of 2342 stations located in
and near Germany (Figure 2.1), and covering the period 1951–2006 in daily time steps was
available for this study. Other studies such as Zolina (2014) allowed gaps of up to 10 % in their
data which allowed the use of even a greater number of stations. Nevertheless, their Figure 1
illustrates nicely that the time span analysed here covers the period with the densest and most
complete (in terms of data gaps) network of precipitation stations in Germany – the number of
stations was considerably less before 1951 and decreased drastically again in the beginning of
the 2000s.

Snowfall has a larger wind drift undercatch error than rainfall for the Hellmann gauges used
in Germany. Hence, higher winter temperatures and associated redistribution from snowfall to
rainfall could wrongly be interpreted as increasing winter precipitation (Førland and Hanssen-
Bauer, 2000). To avoid this misinterpretation, undercatch errors were corrected considering
wind speed and aggregation state as proposed by Yang et al. (1999).

Most of the parameters were analysed on a seasonal basis. Statements referring to ‘winter’
include January and February of the particular year and December of the previous year. This
means that the seasonal analyses contain time series from December 1951 to November
2006. ‘Winter’ (WIN) always refers to December, January, February, ‘spring’ (SPR) to March,
April, May, ‘summer’ (SUM) to June, July, August, and ‘autumn’ (AUT) to September, October,
November.
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Figure 2.1: Map of Germany including elevation (in m a.s.l.) and locations of precipitation
gauges (dots). Bold lines show the regional sub-division into landscapes (abbreviations given
in subsection 2.3.3) with similar climate, geomorphology, and topography.

2.3 Methods

2.3.1 Threshold between wet and dry days

A distinction between ‘precipitation’ and ‘no precipitation’ (or ‘wet’ and ‘dry’) days is necessary to
derive transition probabilities and to fit probability density functions (pdf) to the precipitation data.
The threshold between these two states was set to 0.5 mm, i.e. only days with precipitation
larger or equal to 0.5 mm were considered as wet days. Days with less than 0.5 mm were
defined as ‘dry’ for transition probabilities and were not used when fitting the pdf. This threshold
of 0.5 mm (as in Groisman et al., 2005; Kundzewicz et al., 2006) was established to avoid that
measurement errors were taken as rain and to ignore amounts of precipitation that were not
discernible and not meteorologically relevant.

To quantify the amount of light precipitation which we neglected in our analyses, the mean
annual amount of precipitation contributed by events of less than 0.5 mm d−1 was examined.
The average amount of light precipitation is around 7 mm year−1 with up to 14 mm year−1 in
very few places in the northern half of Germany and less than 4 mm year−1 at some stations in
the south of Germany. Monthly mean light precipitation was always less than 2 mm, averaging
around 0.6 mm. Hence, we conclude that the contribution of light precipitation to the total
amount of precipitation is negligible even for those parts in the east of Germany with annual
precipitation of less than 600 mm.

2.3.2 Derivation of time series of precipitation characteristics

Total precipitation

Seasonal and monthly precipitation totals were analysed. The total precipitation of a particular
time period is the sum of all precipitation values within this time period without any distinction
between ‘precipitation’ and ‘no precipitation’.

Mean, variability, and heavy precipitation indicators for daily precipitation

For each station, a pdf of daily precipitation amount was derived by fitting a gamma pdf to the
observations (only days with precipitation ≥0.5 mm) of each season and year. The gamma
distribution is typically used for describing daily precipitation amounts (e.g. Furrer and Katz,
2008; Wilks and Wilby, 1999). We calculated the mean and standard deviation (SD) of the data
and derived the shape and scale of the gamma pdf by:
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Scale = SD2/Mean (2.1)

Shape = Mean2/SD2 (2.2)

Finally, the 95 % quantile (q95) was obtained from the fitted pdf. The time series of mean,
SD (not shown here), and upper quantile were further analysed for trends on a seasonal level.

Heavy precipitation indicators (e.g. q95) can be derived from fitted gamma pdf (e.g. Groisman
et al., 1999; Zolina et al., 2008, 2005) or directly from the empirical distribution (e.g. Brienen
et al., 2013; Hundecha and Bárdossy, 2005; Zolina et al., 2005). (Zolina et al., 2005) compared
both approaches and concluded that the gamma distribution-based indices were more robust to
sampling uncertainty. Another advantage of the distribution-based approach is that the fitted
distributions can be used to derive multi-day precipitation indicators.

It has been shown that the gamma distribution may not well represent the upper tail of
observational data (Furrer and Katz, 2008; Panorska et al., 2007). Hundecha et al. (2009) used
a mixture of gamma and generalized Pareto distributions with dynamically varying weights and
obtained a much better representation of daily precipitation variability. However, because of the
large number of fitting parameters, such an approach is not feasible in our application which is
based on samples of approximately 37 values (average number of wet days per season).

To check the suitability of the gamma distribution, we applied the Kolmogorov–Smirnov
test (Wang et al., 2003) with significance level α = 0.1 to every sample to which the gamma
pdf was fitted. For the large majority of stations and seasons, the test revealed no significant
difference between the data and the fitted pdf. The number of samples (i.e. years) that were
not well represented by the gamma pdf were counted for each station and season. If a station
had less than 40 (of 55) years that could reasonably be described by the gamma distribution in
a particular season, no trend test was performed and hence no trend would be detected. In
total, 12 stations were eliminated in winter, 27 in spring, 50 in summer, and 18 in autumn, i.e.
between 0.5 and 2.1 % of the stations were eliminated. Most of them were situated in central-
east Germany (northern part of region OMG – East Central Uplands, see subsection 2.3.3 for
abbreviations) and, especially for summer, in the region NOT – Northeast German Plain.

Transition probabilities

The occurrence of precipitation, or the absence of precipitation, is not completely random over
time. Because of the tendency for persistence at the daily time scale, the occurrence of wet
or dry spells (periods of consecutive days with or without rain) is likely. This characteristic is
frequently described by a two-state, first-order Markov model with two states (1: wet day, i.e.
precipitation ≥0.5 mm; 0: dry day, i.e. precipitation <0.5 mm). The occurrence of precipitation
is modelled as a binary-valued discrete random variable (Wilks and Wilby, 1999). The transition
probabilities of all possible transitions between dry and wet are given as: P00, dry day is followed
by another dry day; P01, dry day is followed by wet day; P10, wet day is followed by dry day;
P11, wet day is followed by another wet day. There are only two possibilities for the state of day
t + 1. Therefore, the probabilities of two complementary transitions add up to 1: P00 + P01 = 1;
P10 + P11 = 1, so only transitions P00 and P11 are examined. These probabilities were derived
from the observed daily time series by calculating the relative frequency of each transition of
each season and year.

Multi-day precipitation amount of given return period

Changes in the pdf of daily precipitation and in the transition probabilities may lead to changes
in the exceedance probability of extreme events with duration longer than 1 day. To investigate
changes in such extreme, multi-day precipitation events, time series of precipitation amount
for selected multi-day precipitation events, and selected return periods were derived for each
station and tested for trends. In this way, the joint effect of temporal changes in the pdf and in
the transition probabilities could be assessed. The following Monte Carlo procedure is set up
for each season and year and given station:

1. By randomly drawing from the transition probabilities P00 and P11 derived from the
observations, a new time series of wet and dry days is created (90 days for a season).
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2. Precipitation amounts are randomly drawn from the gamma pdf fitted to the station data
for each season and year, and assigned to ‘wet’ days of step 1. In this way, a synthetic
daily precipitation time series is generated for the period 1951–2006.

3. The maximum precipitation amount occurring within n consecutive days is selected.
4. By repeating steps 1–3 10 000 times, 10 000 synthetic times series of maximum n-day

precipitation are derived.
5. A generalized extreme value distribution (GEV) is fitted to these 10 000 values, and the

precipitation amount corresponding to a given return period is derived. For each season
and station, this results in one time series of n-day, m-year return period precipitation
amount. The assessment of multi-day precipitation was performed only for stations that
passed the Kolmogorov–Smirnov test in at least 40 years of 55 (for number of stations
being removed, see above).

2.3.3 Trend analyses under consideration of temporal and spatial correlation
Trends were analysed by means of the non-parametric Mann–Kendall trend test which calculates
a rank correlation coefficient (Kendall, 1938). Trends were judged to be significant if the
associated two-sided p-value was less or equal to 0.1 (significance level 10 %). The Mann–
Kendall trend test was applied to time series of annual values of the respective parameters.
For example, trends in the 95 % quantile of daily summer precipitation were based on, firstly,
estimating the 95 % quantile for each year given the daily precipitation values ≥0.5 mm of this
year’s summer, and secondly, analysing the resulting time series of annual values of the 95 %
quantile.

To quantify the magnitude of change, the slope of the trend was calculated using the
non-parametric trend slope estimator proposed by (Sen, 1968):

β = median
(

xn − xm

n −m

)
; for all n > m; xn, xm = respective parameter in years n, m (2.3)

Because persistence in the time series may distort the results of the Mann–Kendall trend
test, all (annual) time series were checked for autocorrelation. Most of them were free of any
autocorrelation, but a few showed significant correlation at some time lags. To account for the
bias in trend results for autocorrelated time series, a block bootstrap approach as proposed
by Khaliq et al. (2009) was used. The underlying idea is to resample the autocorrelated time
series in away that preserves the correlation structure. Then the test statistic is obtained from
the resampled time series. By doing this for a large number of times (10 000), a simulated
distribution of the test statistic was obtained. If the test statistic of the original time series lies in
the tails of the simulated distribution – i.e. it is unlikely to get the same test result from a time
series that contains a similar autocorrelation structure as the original series but no temporal
trend – the test result of the original time series is judged to be unaffected by autocorrelation.
To preserve the autocorrelation structure while resampling, the resampling is done in blocks
of determined length. Following the approach of Khaliq et al. (2009), the block length is the
number of significant (at significance level α = 0.1) contiguous serial correlations plus 1. The
block bootstrap approach was employed on Kendall’s tau statistic for time series that showed
an apparently significant trend. Only if the result of the block bootstrap approach confirmed the
presence of a trend, this was considered to be justified.

The results of our trend analyses show spatial clustering of stations with significant trends.
Obviously, neighbouring stations may experience similar changes in rainfall characteristics,
and thus a station is likely to show a trend if the neighbouring station does. In trend detection
studies with many sites within a region, it is advisable to evaluate the field significance, i.e. the
significance of trends across the region. This is done by comparing the number of observed
significant trends with the number expected within the region. It has been found that spatial
correlation between sites may inflate the results of trend tests (Douglas et al., 2000). Hence,
we apply the field significance test as given in Yue et al. (2003). This test accounts for
spatial correlation by a bootstrapping procedure which preserves the cross-correlation among
sites. Field significance was calculated for seven regions in Germany. The spatial extent
of these regions is given in Figure 2.1 and was chosen according to the Federal Agency of
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Nature Conservation (BfN). These regions represent landscapes with similarities in climate,
geomorphology, and topography. The abbreviations used in Figure 2.1 and in the following are
AL, Alps; ALV, Alpine Foreland; NOT, Northeast German Plain; NWT, Northwest German Plain;
OMG, East Central Uplands; SMG, Southwest Uplands/Scarplands; and WMG, West Central
Uplands.

2.3.4 Visualization of results
All trend analyses are performed directly on station data. To better visualize the findings, the
results obtained at every station are interpolated to a grid covering Germany by means of
inverse distance interpolation. This kind of visualization is useful to show spatial characteristics
of average values for transition probabilities and multi-day precipitation. For the display of trend
results, the magnitude of trends (absolute change derived from Sen’s slope over the study
period) is interpolated to the whole area. Stations with significant trends are marked with dots.

2.4 Results and discussion
2.4.1 Changes in total precipitation

When applying the Mann–Kendall trend test to time series of monthly and seasonal precipitation,
very distinct patterns emerge (Figure 2.2 and 2.3). Most obvious is that all seasons except
summer show almost only positive trends, i.e. trends towards higher precipitation. Table 2.2
gives the number of stations showing trends in seasonal and monthly total precipitation. Winter
precipitation increased significantly in the Northwest German Plain and East Central Uplands.
Many stations experienced a total increase of winter precipitation of 40 mm to 80 mm (i.e. 10 %
to 30 %, in some places 40 %), others, especially in the east of Germany, showed a total
increase of less than 40 mm (around 20 %). Spring precipitation increased significantly in
western regions (NWT, WMG, SMG) with a magnitude of 20 mm to 60 mm (i.e. 10 % to 30 %)
and a higher increase in mountainous regions of the Black Forest and the Sauerland. Summer
precipitation showed a distinct decrease of 20 mm to 100 mm (10 % to 30 %) in many parts
of Germany with field significance being observed for regions ALV, NOT, SMG, and WMG. In
some places, e.g. in the Black Forest, summer precipitation decreased even by more than
100 mm. Autumn precipitation increased mainly in the southern parts (regions AL, ALV, OMG,
SMG) by up to 140 mm (30 % to 50 %) in the mountain ranges. Patterns that can be found in
seasonal precipitation totals are quite differently pronounced in the associated months. Although
January, February, and December show only rather few stations with significant trends that
are not field significant for any region, winter precipitation trends are much more distinctive.
The same conclusion, i.e. single months do not necessarily show the same spatial pattern of
trends as the season to which they belong, can be drawn for almost all months. Seasonal
results rather seem to be a composition of the three contributing months: trend patterns that

Figure 2.2: Change of seasonal total precipitation (in mm per season for 1952–2006). Dots
indicate stations with significant trend (α = 0.1) in the respective season. The background is
coloured according to interpolated values of the magnitude of trends at all stations (derived from
Sen’s slope). Black lines show the regional sub-division into landscapes as given in Figure 2.1.
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Figure 2.3: Change of monthly total precipitation (in mm per month for 1951–2006). Plot as in
Figure 2.2.
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Figure 2.4: Change of mean and upper quantile of the gamma distribution of daily precipitation
for summer and winter (in mm for 1952–2006). Plot as in Figure 2.2.

are well pronounced in a single month or are similar in different months are expressed in the
seasonal result as well (e.g. compare the superposition of positive trends for March, April,
and May, leading to pronounced positive trends in spring for the Southwest of Germany, east
of the Rhine). Contradicting trend directions in 2 months cancel out each other, leading to
insignificant change in the respective season (e.g. compare March and May with spring for the
very South of Germany). This result should serve as a note of caution for previous studies (as
in section 2.1 and Table 2.1): trend results obtained on a seasonal basis might not be valid
for single months. Several months showed interesting spatial patterns of significant trends.
March revealed significantly increasing precipitation in five of seven regions and for 24 % of all
stations, whereas April and May showed only weak changes (except May where a decrease
of precipitation in the Alps was found). Thus, the change in spring precipitation was mainly
influenced by changing March precipitation. June showed significantly decreasing precipitation
of up to 60 mm for 24 % of all stations and for all regions except the Alps and the Northwest
German Plain. July precipitation revealed only very few and weak trends, and the change
of August precipitation is rather located in the west. The increase in autumn precipitation in
the southern half of Germany arose from quite distinct patterns in the respective months: in
October strong spatial clustering of positive trends was found in the Black Forest (southwest)
and surroundings whereas the increase in November precipitation was manifested mainly in the
southeast and central-east. It can be summarized that strikingly clear spatial patterns of trends
in seasonal and monthly precipitation totals emerged. Stations showing significant trends are
not erratically located but tend to be strongly spatially clustered. Increasing and decreasing
trends are never found in direct neighbourhood, but are well separated from each other. It
is also worthwhile to notice that the trend patterns of succeeding months are quite distinct
from each other and that seasonal trend patterns are hardly found in the respective months.
Therefore, trend studies should not be limited to seasonal analyses only, but should also check
single month (if an appropriate data base is available).

2.4.2 Changes in mean, variability, and heavy precipitation indicators

Figure 2.4 shows the trend results for the mean and the 95 % quantile of the daily precipitation
amounts for winter and summer. A remarkable attribute of these results is that, for a given



2.4 Results and discussion 33

Figure 2.5: Transition probabilities P00 and P11 (as fraction) for summer and winter, mean value
for 1951–2006.

season, the spatial patterns are very similar. This means the SD (not shown here) increases
(or decreases) in accordance with the mean, and hence, the upper quantile increases (or
decreases) with a similar pattern. To better understand the patterns of change in mean
precipitation, we analysed various empirical quantiles of the data as well (not shown here). We
found that in winter increasing mean precipitation in the North is caused by changes over the
complete distribution whereas in the Southeast only upper quantiles increase resulting only in
small changes of the mean. In summer, the patterns of trends are solely influenced by the upper
quantiles, and lower quantiles do not show any spatial pattern but are very heterogeneous.
Another striking characteristic is the direction of trends (Figure 2.4 and Table 2.2 ). Whereas
almost all significant trends in winter are positive, the great majority of trends in summer is
negative. In winter, stations showing significant trends are focussed in the north, west, and
southeast with regions NOT, NWT, WMG, and OMG being field significant for both indicators.
In contrast to that, summer exhibits a pattern of negative trends that is field significant for
all indicators in the West Central Uplands, and significant only for the mean in the Northeast
German Plain, Southwest Uplands, and East Central Uplands. The results for spring and
autumn are not shown here. However, it can be summarized that an increase of up to 7 mm
(for 1952–2006) in spring and 13 mm in autumn for the 95 % quantile was found with significant
changes in regions NWT, SMG, WMG, and ALV for spring, and NWT, SMG, and WMG for
autumn.

2.4.3 Transition probabilities
Spatial pattern

Figure 2.5 shows the spatial pattern, averaged over 1951–2006, of transition probabilities P00
and P11 for winter and summer. Transition probability P00 is always greater than 0.5, which
means there is a higher probability that a dry day follows after another dry day compared to a
change from dry to wet. In contrast, transition probability P11 could fall below 0.5 in some regions
and seasons. The probability for transition P00 is quite high in winter (approximately 0.66–
0.76). However, it has to be taken into account that the transition probabilities are influenced
by the chosen threshold (0.5 mm) for assigning a day as wet or dry. Further, P00 is rather
homogeneously distributed over Germany with slightly lower probabilities in the northwest of
Germany and some low mountain ranges of east-central Germany. In contrast to that, P11 shows
a marked spatial pattern which has large similarities to the spatial pattern of total precipitation
(not shown here) – mountainous parts of the west and south (except the Alps) have highest
transition probability P11 with values around 0.66–0.84. Lowest probabilities were found on the
lee side of the Harz Mountains in central-east Germany. This result can be explained by the fact
that lee sides and the east get relatively low precipitation in winter, and thus, the probability for
two wet days in a row is quite small. In summer, the spatial pattern of P11 has some similarities
to winter, however, the values are lower. In contrast, the values of P00 are somewhat higher
in summer compared to winter for most parts in the north and west, whereas the south and
south eastern mountain ranges show lower values of P00 with probabilities as low as 0.56 in the
Alps, exhibiting a similar pattern as total summer precipitation (not shown here). The patterns



34 Chapter 2. High spatial and temporal organization of changes in precipitation

Figure 2.6: Change of transition probabilities P00 and P11 (as fraction for 1952–2006) for all
seasons. Plot as in Figure 2.2.

of spring and autumn transition probabilities (not shown) are similar to those of summer and
winter with intermediate values.

Trends in transition probabilities

The trend results for transition probabilities are given in Figure 2.6. P00 (dry-dry) shows no
particular trends in winter and spring, but an increase in the west in summer and a decrease
in the south in autumn, which denotes a tendency for longer dry spells during summer in the
west and shorter dry periods in autumn in the south of Germany. This supports the observed
trends in seasonal total precipitation. As summer tended to become drier, longer dry periods
might occur and P00 increased. For autumn, decreasing P00 means that dry periods were more
often interrupted by rainfall which resulted in higher total precipitation, mainly in the south for
which a trend towards higher precipitation was observed. The absolute change of P00 is in the
range of 0.03 to 0.09 in summer and −0.03 to −0.09 in autumn. For transition P11 (wet-wet),
an upward trend of the probability in the range of 5 % to 15 % was observed in winter in all
regions of Germany except the Alps. Thus, wet spells tend to last longer which is in line with
observed increasing winter precipitation. In the west and north and in the Alps, P11 increased
also in spring (5 % to 15 %); in the south and west, P11 increased in autumn (5 % to 10 %).

2.4.4 Seven-day precipitation amount with return period 100 years
Spatial pattern, average over 1952–2006

Figure 2.7 shows the 7-day amount of precipitation with a return period of 100 years for each
season. The patterns of each season are again very similar to those of total precipitation (not
shown here). Salient features of these patterns are the strong control by orography, low values
in the east for winter, rather homogeneous values all over Germany and highest values in
the Alps for summer, and intermediate values for spring and autumn. These patterns should
not be surprising as the parameters that entered our Monte Carlo procedure [pdf (annually
averaged results not shown here) and transition probabilities] follow similar patterns. Far more
interesting are the huge differences of multi-day precipitation amounts. For instance, an event
that has a return period of 100 years in the east of Germany might occur at least once a year in
the Alps. For winter, the precipitation depth of the 100-year/7-day event varies from 50 mm to
70 mm in the eastern lowlands, 70 mm to 100 mm in the western and southern lowlands, and
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Figure 2.7: Seven-day precipitation amount with return period 100 years (in mm) for all seasons,
mean value for 1952–2006.

Figure 2.8: Change of 7-day precipitation amount with return period 100 years (in mm for
1952–2006) for all seasons. Plot as in Figure 2.2.

up to 260 mm in the mountains. In summer the range extends from 90 mm to 160 mm for most
regions of Germany to 310 mm in the Alps.

Trends in extreme, multi-day precipitation
In Figure 2.8, the change of the precipitation amount of the 100-year/7-day event during 1952–
2006 is shown. In winter, we detected an increase by around 10 % to 40 % in all regions except
the Alps and the Alpine Foreland with the highest increase in the East Central Uplands (up to
60 %). In spring, there is an increase of up to 40 % in the west (regions NWT, SMG, WMG)
and the Alpine Foreland. For summer, a field significant downward trend of up to −30 mm was
found in the West Central Uplands. Autumn showed increasing extreme precipitation in the
west. Interestingly, the spatial patterns of all seasons are very similar to the results of the trend
analyses for the parameters of the gamma distribution, whereas the patterns of the changes
in transition probabilities cannot be identified. This shows that the observed changes in the
pdf dominate the changes in the 100-year/7-day precipitation event. The changes in transition
probabilities are mostly below 15 %, and are comparatively small.
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2.5 Conclusions

This article used a quality-controlled data set of a very dense network of 2342 precipitation
stations with an average distance of 12 km between stations for the period 1951–2006 for
Germany. The data base allowed a comprehensive analyses of spatio-temporal precipitation
patterns. The time series of daily precipitation values for each station were used to derive
an indicator set describing different characteristics of precipitation: (1) precipitation totals to
capture the changes at the monthly and seasonal time scale, (2) mean and 95 % quantile to
represent the daily precipitation behaviour, (3) transition probabilities to describe persistence of
daily precipitation, and (4) 7-day precipitation amount with return period 100 years to exemplify
the combined effect of changes in persistence and in the pdf of daily precipitation on multi-day,
heavy precipitation.

For all indicators, strikingly clear spatial trend patterns emerged. Stations showing significant
trends are not erratically located but tend to be strongly spatially clustered. Increasing and
decreasing trends are never found in direct neighbourhood, but are well separated from each
other. These clear spatial patterns are an expression of the spatial organization of precipitation
mechanisms over Germany.

The trends in monthly and seasonal precipitation totals show not only clear spatial patterns
but also very distinct seasonality. The trends can be roughly summarized as getting wetter
in winter, spring, and autumn, and getting drier in summer. However, it has to be noted that
these trends are composed of different spatial patterns, for instance, the increase in winter
is particularly pronounced in the southeast and northwest, whereas the spring increase is
especially distinct in the west. Interestingly, the further stratification of seasonal totals in monthly
totals yielded different trend patterns, i.e. trend patterns of succeeding months are quite distinct
from each other, and the trend patterns of individual months can significantly depart from their
seasonal value. Hence, trend analyses at the seasonal scale may not disclose the complete
range of changes.

The overall patterns of trends detected at the seasonal time scale can also be seen at the
daily scale: Whereas almost all significant trends of daily precipitation indicators are positive
in winter, the great majority of trends in summer is negative, and moreover, the clusters of
increasing or decreasing stations are similar in both cases. Our analyses show increasing
heavy precipitation for winter, spring, and autumn, but show the opposite trend for summer
precipitation.

In order to complete the description of changes in daily precipitation, we analysed the
spatio-temporal behaviour of transition probabilities. P00, the probability of two dry days in
sequence, is rather homogeneously distributed over Germany. In contrast, P11, the probability
of two wet days in sequence, shows a clear spatial heterogeneity with highest probabilities in
the mountainous parts of the west and south (except the Alps) and the lowest values in lee
zones (especially east of the Harz Mountains). There is also a clear seasonal effect: lower P11
values and higher P00 values in summer, respectively, compared to winter transition probabilities.
Trends of transition probabilities show an overall increasing persistence for wet spells in winter,
spring, and autumn. However, this increase is region specific. For example, the increase in
spring is particularly marked in parts of north and northeast Germany, and there are regions,
e.g. Saxony and Bavaria, which do not show any change. Increased persistence (higher P00
and higher P11, see Figure 2.6) is found especially in the Northwest German Plain (except
summer), but also for many regions in winter and spring; in contrast to that, autumn shows
strong signals towards longer wet spells and shorter dry spells in all regions except the NWT.
The contrary behaviour is found for summer in the northern half of Germany: longer dry spells
and shorter wet spells.

The overall result of increasing persistence is in accordance with results of Petrow et al.
(2009) who analysed flood trends and their potential climatic causes across Germany for the
same period. They found a tendency for increasing persistence of rainfall-causing atmospheric
circulation patterns, especially for the winter half year (November–April). Changes in the
persistence of dry spells are less distinct. However, there is a clear tendency for longer dry
spells during summer in the west and shorter dry periods in autumn in the south of Germany.
This increase in persistence might be linked to global warming, because reduced meridional
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temperature gradients tend to lower the steering velocity of weather patterns and seem to favour
amplified waves with increased meridional wind components (e.g. Francis and Vavrus, 2012).

The combined effect of daily precipitation amount and persistence on multi-day heavy
precipitation was exemplarily analysed for the 100-year/7-day event. The spatial pattern,
averaged over the complete period, shows huge differences, from 50 mm to 70 mm in the
eastern lowlands up to more than 300 mm in the Alps. The differences within a season and
between seasons can be explained by different precipitation formation processes: areal frontal
precipitation plus localized, but stationary orographic upslope enhancement in winter; much
more localized convective precipitation in summer, being pronounced in certain regions (low
mountain ranges and Alpine Foreland due to Alpine pumping). The footprint of the cyclone track
Vb (van Bebber, 1892) is clearly visible in summer in Saxony, Brandenburg, and in the south
and east of Bavaria.

The results of the trend analyses show that, overall, the 100-year/7-day precipitation amount
increased during winter, spring, and autumn. Strong increase is confined to parts of Germany,
differently for different seasons. For some regions, the increase is remarkable, e.g. an increase
in the order of up to 50 mm in the southeast and central-west in winter. The overall tendency for
summer is downward with the highest decrease of up to −30 mm in central Germany.

Multi-day, heavy precipitation is closely connected to the occurrence of regional flooding,
especially on time scales of a few days. Recent experience, e.g. the May/June 2013 flood in the
Elbe and Danube catchments in Central Europe, underlines that multi-day rainfall accumulations
may lead to disastrous flooding. Such extreme precipitation events are becoming more likely
with increased persistence. However, the cyclone track across the catchment areas and the
timing play an important role, too.

In summary, remarkable changes in daily precipitation are observed during the second half
of the 20th century. Based on a very high density of stations, it is shown that temporal changes
are spatially well structured. In case the observed trends continue, there will be an increasing
potential for floods in winter and spring, e.g. in parts of northwest and southeast Germany, and
at the same time, increasing probabilities for water stress in summer in regions that show signs
of water stress today.
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Abstract
To understand past flood changes in the Rhine catchment and in particular the role of anthropo-
genic climate change in extreme flows, an attribution study relying on a proper GCM (general
circulation model) downscaling is needed. A downscaling based on conditioning a stochastic
weather generator on weather patterns is a promising approach. This approach assumes a
strong link between weather patterns and local climate, and sufficient GCM skill in reproducing
weather pattern climatology. These presuppositions are unprecedentedly evaluated here using
111 years of daily climate data from 490 stations in the Rhine basin and comprehensively testing
the number of classification parameters and GCM weather pattern characteristics. A classifica-
tion based on a combination of mean sea level pressure, temperature, and humidity from the
ERA20C reanalysis of atmospheric fields over central Europe with 40 weather types was found
to be the most appropriate for stratifying six local climate variables. The corresponding skill is
quite diverse though, ranging from good for radiation to poor for precipitation. Especially for
the latter it was apparent that pressure fields alone cannot sufficiently stratify local variability.
To test the skill of the latest generation of GCMs from the CMIP5 ensemble in reproducing the
frequency, seasonality, and persistence of the derived weather patterns, output from 15 GCMs
is evaluated. Most GCMs are able to capture these characteristics well, but some models
showed consistent deviations in all three evaluation criteria and should be excluded from further
attribution analysis.
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Murawski, A., Bürger, G., Vorogushyn, S., and Merz, B. (2016a). “Can local climate variability
be explained by weather patterns? A multi-station evaluation for the Rhine basin”. In: Hydrology
and Earth System Sciences 20.10, pp. 4283–4306. DOI: 10.5194/hess-20-4283-2016
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3.1 Introduction

The Rhine River is a trans-boundary river with a catchment area of 185 000 km2 and significant
flood risk. Along the main river reach from Karlsruhe in south-western Germany to Rees at the
Dutch–German border, an area of 14 600 km2 is at risk of being flooded for an extreme scenario
with a return period of 200 to 500 years (Thieken et al., 2015). This enormous economic
exposure to floods is accompanied by expectations that flood magnitudes will increase due
to climate change e.g. Bosshard et al., 2014; Dankers and Feyen, 2009; te Linde et al., 2010.
Further, the Rhine catchment has experienced increasing flood trends during the second half
of the 20th century (Petrow and Merz, 2009). It has been argued that climatic drivers, land
use changes and river training may have contributed to the observed trends (Petrow et al.,
2009; Pinter et al., 2006; Villarini et al., 2011; Vorogushyn and Merz, 2013). Whereas the
role of river training in the main Rhine channel has been quantified (Lammersen et al., 2002;
Vorogushyn and Merz, 2013), the effect of climatic and land use changes remains unclear. In
particular, the contribution of anthropogenic climate change to flood trends is an open question.
To understand the role of climatic drivers in past changes in river flooding, rigorous attribution
studies are needed (Merz et al., 2012).

Several studies tried to quantify the role of changes in meteorological variables in river
flows using hydrological models with alternative sets of climate drivers (Duethmann et al.,
2015; Hamlet and Lettenmaier, 2007; Hamlet et al., 2007; Hundecha and Merz, 2012). If
an attribution of hydrological changes to changes in the atmospheric composition such as
greenhouse gas concentration is attempted, output from GCMs (general circulation models),
representing two different “worlds” with and without anthropogenically induced climate change,
are to be compared (Min et al., 2011). This requires that output of GCMs is properly downscaled
to a resolution compatible with hydrological models.

Different approaches are applied in the hydrological community for statistical downscaling
(for a review, see Fowler et al., 2007; Maraun et al., 2010). Statistical downscaling approaches
using weather generators offer the possibility of generating multiple realizations of long synthetic
time series, e.g. 100 years of daily values, and are considered to have similar skills compared to
regional climate models (RCMs) (Hewitson and Crane, 2006). This provides a basis for a more
robust estimation of changes in hydrological variables and moments of their distributions. They
are particularly suited for quantifying rare floods and their impacts (e.g. Falter et al., 2015), in
case they are capable of representing the statistical behaviour of extreme events. Examples of
using weather generators to bridge the spatial gap between GCMs and hydrological impacts are
widespread (e.g. Elshamy et al., 2006; Fatichi et al., 2011; Fowler et al., 2000, 2005; Hewitson
and Crane, 2006; Katz, 1996; Kilsby et al., 2007; Kim et al., 2015; te Linde et al., 2010; Lu
et al., 2015; Semenov and Barrow, 1997; Wilks, 1992).

In order to represent different climate states, parameters of a weather generator can be
conditioned on the climate model output by applying a change factor (Kilsby et al., 2007) or on
covariates such as weather patterns. The latter approach is expected to better capture change
in variability of the changing climate state. Weather patterns are classifications of atmospheric
circulation fields or other synoptic fields (Huth et al., 2008). The underlying assumption of
the downscaling based on weather patterns is that the regional or local behaviour of climate
variables is partly a response to the larger-scale, synoptic forcing. The weather generator is
then parameterized separately for each class of weather patterns (e.g. Bárdossy and Plate,
1991, 1992; Corte-Real et al., 1999; Fowler et al., 2005; Haberlandt et al., 2015). Statistical
downscaling tends to underestimate the variance of regional or local climate if the contribution
of local processes is not considered, and may poorly represent extremes. Different methods
have been proposed to rectify this problem: variable inflation (Karl et al., 1990), expanded
downscaling (Bürger, 1996), and randomization (Kilsby et al., 1998). This problem typically
occurs in downscaling approaches that are based on regression models and weather patterns.
It is circumvented when a weather generator is conditioned on weather patterns, provided that
the weather generator is able to adequately capture the tail behaviour of the surface climate
variables.

A downscaling approach based on weather pattern classification builds on four assumptions.
Firstly, local climate needs to be sufficiently explained by the classification of the large-scale
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synoptic situation. Bárdossy et al. (2002) summarize that many studies have shown that there
is a strong link between atmospheric circulation types derived from CTCs (circulation-type
classifications) and surface variables such as near-surface temperature and precipitation. Even
when the small-scale climate is governed by mesoscale events such as convective systems,
these are, in turn, conditional on the synoptic state (Goodess and Jones, 2002). On the other
hand, weather patterns can only be a proxy for local weather, due to the categorization of
continuous data by the discrete classification, and more importantly, due to the fact that the
large-scale situations do not fully represent smaller-scale features. This so-called within-type
variability (e.g. Huth et al., 2008) is caused, for instance, by small-scale processes, such as
orography-enhanced rainfall, or by variations in dynamic properties (pressure gradient, vorticity,
intensity) of weather patterns (Beck et al., 2007).

Secondly, the linkage between weather patterns and regional and local climate is assumed
to be stationary. This means that climate change will mainly manifest itself as a change in
the frequency, persistence, and seasonality of these weather patterns. The transfer function
between synoptic state and regional and local climate thus remains constant. Land use and
land cover change, for example, could introduce a variable forcing on local climates (Hewitson
and Crane, 2006). Using long observational time series, it has been argued that the linkages
between large-scale weather patterns and regional climates are characterized by distinct
variabilities (Beck et al., 2007).

The third assumption is that GCMs are able to properly reproduce weather patterns. GCMs
are often strongly biased in variables such as precipitation (e.g. Sunyer et al., 2015), but are
expected to reflect large-scale circulations well. This skill in representing the synoptic situations
compared to the poor skill in representing surface variables is utilized for statistical downscaling.
For example, Hewitson and Crane (2006) conclude that much of the discrepancy between GCM
projections of precipitation over South Africa may result from differences in their precipitation
parameterization schemes, whereas the synoptic dynamics are well simulated. It has been
shown, however, that the skill of GCMs in reproducing weather pattern characteristics such as
geopotential height and sea level pressure varies strongly (Brands et al., 2013; Wójcik, 2015).

Finally, to obtain meaningful input for the hydrological model, a weather generator has
to adequately represent the space–time dynamics of the catchment meteorology. This is a
particular challenge for large river basins, where the correlation structure of e.g. precipitation
becomes difficult to capture over large distances.

In the presented paper we evaluate the assumptions for weather pattern based downscaling
for the Rhine catchment. This is a prerequisite for conditioning a weather generator on circulation
patterns for understanding the role of climatic drivers in past and future flood changes in the
Rhine basin. We focus on the first and third assumptions here. The assumption of stationarity
of the linkage between weather patterns and local climate and the skill of the weather generator
itself will be investigated separately. In the future we intend to use a multi-site, multi-variate
weather generator (Hundecha and Merz, 2012; Hundecha et al., 2009) for downscaling GCM
output to drive a regional hydrological model. An extreme value statistic on the simulated
streamflow will then allow us to quantify the role of climatic change in flood flows.

To underpin the first and third assumptions, we derive an “optimal” weather pattern classi-
fication and investigate (1) to which extent weather patterns are able to stratify local climate
variables, and (2) the skill of the GCMs in reproducing these weather patterns. It has been
argued that there is no “best” statistical downscaling approach, but that the optimal classification
depends on the application and region (Hewitson and Crane, 2006; Huth et al., 2008). We look
specifically from the perspective of a hydrological impact study for the Rhine catchment.

There is a significant body of literature on weather pattern classification. Our work extends
these studies in several aspects. Firstly, we test the skill of several classification variables.
Often classifications are based on msl (mean sea level pressure) only. We use, in addition, the
synoptic temperature and humidity fields to classify weather patterns. Considering temperature
as a classification variable has the advantage that one classification can be used throughout
the year. Secondly, we test the ability of weather pattern classifications to stratify a comparatively
large number of climate variables with daily resolution: precipitation, minimum, mean, and
maximum temperature, radiation, and relative humidity. Other studies often consider only one
or two variables (e.g. Anagnostopoulou et al., 2008; Beck et al., 2007; Beck and Philipp, 2010;
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Haberlandt et al., 2015; Kyselý, 2007; Łupikasza, 2010) and only a few studies are available
with an extended list of up to eight variables (e.g. Cahynová and Huth, 2010; Enke et al., 2005b;
Kidson, 1994). We use a comparatively long time period of 111 years. The periods of other
studies are typically much shorter, e.g. 11 to 50 years (Anagnostopoulou et al., 2008; Beck
and Philipp, 2010; Bettolli and Penalba, 2012; Brinkmann, 1999, 2000; Brisson et al., 2010;
Cahynová and Huth, 2010; Goodess and Jones, 2002; Hewitson and Crane, 2006; Kidson,
1994; Łupikasza, 2010) or 100 years (Kyselý, 2007). Beck et al. (2007) cover a longer period,
going back to 1780, however, using only monthly resolution. Fourthly, our analysis covers a
large, transboundary area of around 160 000 km2 and a very large number of climate stations
(490). Weather pattern classifications typically work with a comparatively low number of stations,
ranging from e.g. 1 station for Prague (Kyselý, 2007) to 84 stations for New Zealand (Kidson,
1994).

Further, we analyse the newest generation of climate models from the Coupled Model
Intercomparison Project Phase 5 (CMIP5). We investigate their ability to reproduce frequency,
persistence, and seasonality of weather patterns. Wójcik (2015) emphasizes the need to assess
the reliability of GCMs prior to any statistical downscaling approach. Whereas Perez et al.
(2014) analysed the frequency of patterns over the north-eastern Atlantic and Belleflamme et al.
(2013) examined the frequency and persistence of patterns over Greenland, so far no other
study analysed seasonality as done here. Particularly for understanding the role of climate
change in flood flows, matching the seasonality is essential.

3.2 Data
For the workflow proposed here, three different sets of climate data are needed: (1) data on
which to establish the weather pattern classification, (2) compatible output of climate models
with different greenhouse gas (GHG) forcings, i.e. the same variables and spatial coverage as
(1), and (3) observations from local climate stations in the investigated area (Rhine catchment)
for all meteorological variables of interest, preferably covering the same time period as (1).

To investigate the suitability of different climate variables to establish the weather pattern
classification, long-term reanalysis fields can be used. We utilized the newly available ERA-20C
– a gridded reanalysis data set from the ERA-CLIM project (Poli et al., 2013). This data set is
a pilot reanalysis of the 20th-century assimilating surface observations only and is forced by
a HadISST2.1.0.0 ensemble of sea surface temperature and sea ice conditions, available for
the period 1900–2010. The 3- or 6-hourly data, depending on the variable, were aggregated
to daily averages for this study. The spatial resolution of 1°× 1° was chosen. There are finer
resolutions available for ERA-20C, but the resolution of GCMs is not finer than 1.25°× 0.94°.

The skill of different weather pattern classifications was assessed according to their ability
to stratify climate station data located in the Rhine catchment (Figure 3.1). Sets of daily
precipitation, temperature (mean, min, max), relative humidity, and global radiation data for
the period 1901–2010 were available from the national meteorological services and kindly
processed and quality controlled by the Potsdam Institute for Climate Impact Research (PIK)
(Österle et al., 2006a). For the German part of the catchment 432 stations were available, 9
stations for the Austrian part, and 49 stations for Switzerland and Liechtenstein. To date no
data from meteorological stations in France were available. This set of 490 climate stations
allows for the classification results to be compared to a large and dense station network.

For the assessment of the effect of anthropogenic GHG emissions on changes in floods,
data from modelling experiments with two different GHG forcings representing (a) the historical
(natural + anthropogenic) GHG concentrations (All-Hist) and (b) only natural GHG concentrations
(Nat-Hist) are required. These experiments are available from a number of GCMs of the CMIP5
project (Taylor et al., 2012). An overview of the models and the number of runs available for
the All-Hist experiment used here are given in Table 3.1. The model output is available in daily
time steps, mostly starting as early as the mid-19th century. All available runs were analysed in
relation to the ability of different GCMs to replicate the frequency, persistence, and seasonality
of weather patterns.
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Figure 3.1: Locations of the climate data stations used. See text for more details on single
data sets. The dark red line shows the Rhine catchment; the black lines denote state borders.

Table 3.1: Overview of GCMs used (http://esgf-data.dkrz.de/).

Resolution
Model Institute ID Country Period Lon × Lat Runs

BCC-CSM1.1 BCC China 1850–2012 2.8 × 2.8 3
BNU-ESM GCESS China 1950–2005 2.8 × 2.8 1
CanESM2 CCCMA Canada 1850–2005 2.8 × 2.8 5
CESM1-CAM5 NSF-DOE-NCAR USA 1850–2005 1.2 × 0.9 1
CNRM-CM5 CNRM-CERFACS France 1850–2005 1.4 × 1.4 10
CSIRO-Mk3.6.0 CSIRO-QCCCE Australia 1850–2005 1.9 × 1.9 10
GFDL-CM3 NOAA-GFDL USA 1860–2005 2.5 × 2.0 3
GFDL-ESM2 M NOAA-GFDL USA 1861–2005 2.5 × 2.0 1
HadGEM2-ES MOHC UK 1859–2005 1.9 × 1.2 4
IPSL-CM5A-LR IPSL France 1850–2005 3.8 × 1.9 6
IPSL-CM5A-MR IPSL France 1850–2005 2.5 × 1.3 3
MIROC-ESM MIROC Japan 1850–2005 2.8 × 2.8 3
MIROC-ESM-CHEM MIROC Japan 1850–2005 2.8 × 2.8 1
MRI-CGCM3 MRI Japan 1850–2005 1.1 × 1.1 5
NorESM1-M NCC Norway 1850–2005 2.5 × 1.9 3

http://esgf-data.dkrz.de/
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3.3 Methods

3.3.1 Weather pattern classification

Within COST Action 733 “Harmonisation and Applications of Weather Type Classifications of
European Regions” a collection of circulation-type classification approaches was compiled and
made available (COST733CLASS software: http://cost733.geo.uni-augsburg.de/cost733
class-1.2/, Philipp et al., 2016). Included, among others, is the SANDRA classification method
(simulated annealing and diversified randomization), which is “a non-hierarchical technique for
minimizing the sum of Euclidean Distances within the classes” (Philipp, 2009). The method is
similar to k-means clustering, but is able to get closer to the global optimum instead of getting
trapped in a local one. A detailed description of the method can be found in Philipp et al. (2007).
Several studies found a good or even superior performance of SANDRA compared to other
classification methods (e.g. Beck and Philipp, 2010; Huth, 2010; Huth et al., 2008; Philipp et al.,
2007; Philipp, 2009; Philipp et al., 2016).

Methods for assigning new data to an already existing classification are also available in the
COST733CLASS software. This was used to apply the selected classification to GCM data.
The method takes data of the same spatial domain and resolution and compares every case,
i.e. day, to the centroids of the existing classification. The class with the smallest Euclidean
distance to the respective case is assigned. In this way a catalogue (i.e. time series) of weather
patterns can be obtained for every GCM data set, which can then be analysed and compared
to the catalogue derived from reanalysis data (see subsection 3.4.2). Since the GCMs do not
necessarily have the same spatial resolution as the classification input, they were first linearly
re-interpolated to the same grid as the ERA-20C data.

By employing a weather pattern classification we are aiming towards providing a stratification
of observed weather variables such as precipitation, temperature, relative humidity, and solar
radiation (as required for the hydrological model). For use with the weather generator, it
is desirable to obtain a classification that provides patterns that are preferably as distinct
as possible from each other in terms of local weather characteristics. To derive an optimal
classification, different characteristic variables, e.g. msl, geopotential height, temperature,
humidity, different spatial domains, and different numbers of weather-type classes, can be
tested. Historically, the first classifications were based on sea level pressure. An improvement of
classifications and variable stratification can be achieved by additionally considering geopotential
height (Nied et al., 2014; Spekat et al., 2010). Given the further aim of this classification to be
used for downscaling of historical runs of CMIP5 models, geopotential height is available only
in a few runs and is thus excluded from our consideration.

Note that the term “weather (pattern) classification” is used to contrast the difference to air
mass classifications, since surface weather variables are used here instead of variables defined
at different tropospheric levels (Huth et al., 2008).

3.3.2 Finding optimal classification parameters

Here we tested different combinations of variables for weather-type classification. Classifications
on mean sea level pressure (msl) are commonly applied (e.g. Masson and Frei, 2014; Philipp,
2009; Wilby and Quinn, 2013). Other frequently used variables include geopotential height of
different levels, thickness between different levels, vorticity and temperature at certain levels,
or total column water vapour (e.g. Anagnostopoulou et al., 2008; Bárdossy et al., 2002; Nied
et al., 2014; Philipp et al., 2016). However, our selection was restricted to variables that are
also available from the GCM outputs. Goodess and Jones (2002) state that temperature and
humidity are the two most important variables to be included when using a circulation-type
approach for downscaling of rainfall. Thus we included temperature in 2 m (temp) (used, among
other variables, in e.g. Kalkstein et al., 1987) and specific humidity (hus, as e.g. in Hewitson
and Crane, 2006). This led to four combinations of variables: msl, temp, msl + temp, and
msl + temp + hus.

Different options for the selection of a spatial domain were tested here: one covering
the whole of Europe, others being considerably smaller, and partly focussing on the Rhine
catchment; see Figure 3.2. One domain is identical to domain D07 in Philipp et al. (2010);

http://cost733.geo.uni-augsburg.de/cost733class-1.2/
http://cost733.geo.uni-augsburg.de/cost733class-1.2/
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Figure 3.2: Spatial domains of weather pattern classifications in degree of geographic lon-
gitude/latitude. The dark grey polygon shows the location of the Rhine catchment. Domain
3:26 / 43:58 as in Philipp et al. (2010), region D07; −15:30 / 35:70 as in Nied et al. (2014).

another one is a westward shifted version of it. The domain from Nied et al. (2014) was included
as well.

A wide range of numbers of classes was tested to assess the power of classification: 9, 18,
27 (all frequently used, e.g. in Huth et al., 2016; Philipp et al., 2010), and 40 (as in Bissolli and
Dittmann, 2001; Nied et al., 2014; Philipp, 2009). Many authors (e.g. Huth, 2010) consider 40
already a very large number, but e.g. Jones and Lister (2009) use 6–11 patterns per season in
a total of 34. Thus, when establishing a classification for the whole year, a greater number of
classes can be useful.

These different parameter sets allow for 120 possible combinations, which poses an intrac-
table computational problem. To break this number down in a reasonable way that still yields
reliable results, firstly, some parameter values were prioritized (domains (long/lat in degrees)
−27:45 / 33:74 and −8:15 / 43:58, 18 and 40 classes). Secondly, four classification variables
were combined with four prioritized parameters and the best-performing variable (combination)
was selected. This variable was then combined with all spatial domains finding the optimal one.
Finally, all numbers of classes were evaluated with the best variable and domain. This reduces
the number of combinations to 26, which is still a rather large computational effort.

3.3.3 Evaluation of classifications
First of all it has to be clear whether the classification itself should be evaluated (i.e. stratification
of the input variables, such as msl) or whether the stratification of other variables, such as
precipitation, that were observed on days with certain weather patterns, should be evaluated
based on the developed classification. The latter is needed here. Hence, given a certain
classification catalogue, data from weather stations can be assigned to the patterns that
occurred on the same day, resulting in a distribution of values associated with each pattern.
The distribution of values linked to a pattern can then be compared to the original (complete)
population of values.

The quality of a given classification can be evaluated using different statistical metrics. For
example, Huth et al. (2008) and Beck and Philipp (2010) give various quality measures, among
them the explained variation (EV) and the so-called Pseudo-F statistic (PF). These are chosen
because EV is frequently used in similar applications and is easily understood, while PF has
the advantage of considering the number of classes and cases per class.
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Figure 3.3: Average daily values of meteorological variables for example patterns 12, 14, and
33 to emphasize the need for multi-variate evaluation of weather pattern classifications (Tav –
average temperature; PREC – precipitation; RAD – global radiation; HUMID – relative humidity).
The black lines show state borders; the grey outline denotes the Rhine catchment.

The explained variation (Equation 3.1) is defined as the ratio of the sum of squared deviations
from the mean within classes (WSS) and the total sum of squared deviations from the overall
mean (TSS). In Equation 3.3 and Equation 3.4 k denotes the number of classes (i.e. patterns),
m is the number of dimensions (i.e. variables), n is the number of cases (i.e. days), and Cj
denotes class/pattern j . Thus EV ranges between zero (poor) and one (perfect stratification).

The Pseudo-F statistic (PF, Equation 3.2) of Caliński and Harabasz (1974) is the ratio
between the sum of squared deviations between means of classes (BSS, Equation 3.5) and
the sum of squared deviations within classes (WSS, Equation 3.4), weighted by the number of
classes and cases. A minimum of within-type variation (and a maximum of distinction between
types/classes) is achieved by large values of PF; poor clustering is denoted by values close to
zero.

Both indices are usually applied to one meteorological variable at a time, thus evaluating
the skill of the classification in stratifying e.g. temperature or precipitation (Huth et al., 2016).
When mapping each variable per weather pattern, it becomes evident that some patterns might
be very similar with regards to one (or more) variable(s), while being substantially different in
other variables. For example in Figure 3.3, the selected pattern nos. 12, 14, and 33 have a very
similar mean temperature for the whole area but very different precipitation. A classification
focussing only on one variable would neglect the variability of the others. We therefore evaluate
the stratification with respect to both single- and multi-variate performance.

Each evaluation metric is applied to normalized climate data, derived separately for each
station and aggregated as an area-weighted average over the complete Rhine catchment.
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EV = 1− WSS
TSS

=
BSS
TSS

(3.1)

PF =
BSS/(k − 1)
WSS/(n − 1)

(3.2)

TSS =
n∑

i=1

m∑
l=1

(xil − x̄l )2 (3.3)

WSS =
k∑

j=1

∑
i∈Cj

m∑
l=1

(xil − x̄jl )2 (3.4)

BSS =
k∑

j=1

nj

m∑
l=1

(x̄jl − x̄l )2 (3.5)

3.4 Results

3.4.1 Stratification of local climate variables

Selection of classification variables

To select the classification variables, both evaluation metrics (EV and PF) point to the same
choice (see Figure 3.4). The multi-variate evaluation clearly suggests a classification including
temperature (EV around 0.5). This preference is even stronger for single-variate evaluations
of temperature (Tav, Tmin, Tmax), with explained variation (EV) around 0.75. For precipitation
(PREC) the temp-only classification performs worst, though EV values are low for all classificati-
ons (EV < 0.2). From the literature there is no evidence that other studies acquire considerably
better results in similar analyses, but surprisingly the exact values of their evaluation criteria
are typically not given. Nevertheless this low skill needs to be discussed further (see also
section 3.4.1 and 3.5). Any classification including msl improves the stratification of precipitation
compared to the classification based on temperature only. Thus a classification including both
temperature and mean sea level pressure should be chosen to obtain a reasonably good
stratification of all variables.

For relative humidity (HUMID) and global radiation (RAD) the same relation between clas-
sifications as for temperature was found (classification including temp better than msl only),
although the differences between classifications for HUMID are small. Including specific hu-
midity as a classification variable slightly improves the stratification of all variables. Thus
the classification on msl + temp + hus was finally selected. This selection holds the additional
advantage of a strong seasonal restriction of pattern occurrence. While patterns from an
msl-only classification show only weak seasonality (i.e. each pattern might occur in any month
throughout the year), the use of raw values (i.e. no anomalies) of temperature and specific
humidity confines each pattern to a specific season with a clear peak of occurrence in a certain
month. This allows us to use one classification for the whole year instead of using separate
classifications for each season, as is frequently done in other studies.

For both metrics and all meteorological variables the smaller spatial domains deliver better
results (Figure 3.5). The three smallest domains (coloured in purple, orange, and yellow) differ
only in their exact location, but are of roughly the same size. The orange domain gives slightly
better results for all variables and was chosen for further analysis.

The choice of an optimal number of classes is less obvious (Figure 3.5). The analysis of
the EV shows a slight tendency towards a greater number of classes, whereas PF prefers a
lower number. However, for the use with a weather generator, a high number of classes with
consequently narrow distributions for each class are preferred. At the same time a sufficient
amount of observations per class are needed for fitting the distributions. Considering this
tradeoff, a classification with 40 classes was selected here.

Average values of meteorological variables per pattern of the final classification are shown
in Appendix 3.A, Figure 3.A1–3.A6.
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Figure 3.4: Evaluation metrics for the selection of classification variables (x axis). Weather
variables from station data in columns. Note the log scaling of PF.
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Figure 3.5: Evaluation metrics for the chosen classification variables, combining results of
selection steps 2 and 3. It aims at selecting (a) the best spatial domain (colour scale), and then
(b) selecting the best number of classes (point shapes).
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Figure 3.6: Comparison of selected classification from section 3.4.1 (original) and other
classifications: Hess–Brezowsky Grosswetterlagen (GWL), classification variables as in Nied
et al. (2014), a classification on a coarse grid, and one with 100 classes.

Comparison to other classifications

The selected classification was compared with the Hess–Brezowsky Grosswetterlagen (GWL)
catalogue of circulation patterns, to the classification after Nied et al. (2014), and to two
experiments where only one parameter of the selected classification was modified (Figure 3.6):
a classification based on a coarse grid (2.5° × 2.5° instead of 1° × 1°), and one using 100
classes (as in Perez et al., 2014). A comparison to the well-established Hess–Brezowsky
Grosswetterlagen (applied in e.g. Fleig et al., 2015; Kyselý, 2007) shows that GWL is inferior to
our classification, with EV values not exceeding 0.1. The stratification skill obtained by GWL
is best comparable to a classification based on msl only, but is inferior when including other
variables in the classification scheme. The classification based on 500 hPa geopotential height,
500 hPa temperature, and total column water vapour as used by Nied et al. (2014) performs
equally well as the selected classification with only slightly lower skill values.

ERA-20C data were originally used with 1°×1° resolution. A coarser resolution of 2.5°×2.5°
results in an identically good stratification. Hence small-scale features that might be present in a
high-resolution reanalysis data set do not distort the results, which is also true for a classification
extent covering all of Europe (not shown here).

A last test was dedicated to the number of patterns: 100 patterns as in Perez et al., 2014
were tested, confirming the general tendency (increasing EV, decreasing PF values for an
increasing number of classes), although the improvement of EV seems to level off for a high
number of classes, meaning that the gain in stratification skill is only minimal.

Stratification skill for precipitation

The stratification skill (i.e. EV and PF values) is rather low for precipitation, but maps of mean
pattern precipitation (Figure 3.A2) indicate distinct precipitation patterns. Therefore a more
detailed investigation of explained variance for individual patterns was done. EV can be
expressed as the sum of EV values for individual patterns weighted by the respective relative
frequency of the pattern (nj/n)

EV =
k∑

j=1

nj

n
· EVj with (3.6)

EVj =
(x̄j − x̄)2

TSS/n
. (3.7)

This allows one to analyse the contribution of each pattern to the overall EV value. Figure 3.7
shows the cumulated EVj values of each pattern. In an idealized case where mean precipitation
and frequency of occurrence are uniformly distributed among all types, Equation 3.6 describes
(as an integral over a square) a cubic function with a saddle point at the overall mean precipita-
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Figure 3.7: Precipitation intensity of patterns in relation to pattern frequency (bars) and
cumulated explained variation per pattern (dots). The pattern number is given at the bottom of
the bars. The grey horizontal line denotes the average frequency to aid distinction of rare and
frequent patterns.

tion. Patterns associated with the tails of the distribution would contribute most to the overall
EV, while average types have contributions close to zero (because their mean is close to the
overall mean; thus, the deviation between both is small, resulting in near-zero EVj).

However, in the case of precipitation, patterns with below-average mean precipitation
contribute only little to the overall EV, because the overall mean is rather small (2.4 mm) and
hence the deviation between the mean of low-precipitation patterns and the overall mean is
small. This applies to more than half of all the patterns (24 out of 40). Most EV contribution is
gained by patterns with very high precipitation – 50 % of total EV is contributed by the seven
patterns with the highest precipitation. This behaviour clearly originates from the strongly right
skewed distribution of precipitation. Thus, the small skill values can be considered inherent to
precipitation.

Additionally, analysing precipitation frequency and intensity per pattern (not shown) reveals
that the variations in Figure 3.A2 are mainly caused by pattern-specific precipitation frequency.

3.4.2 Performance of GCMs

After selecting the most appropriate classification, all GCMs (15 models with up to 10 runs
for experiment All-Hist) were assigned to the centroids of the final classification, resulting in a
catalogue (i.e. time series) of patterns for each GCM run. These time series were compared to
the catalogue derived from the reanalysis data to assess the ability of GCMs to reproduce the
weather pattern climatology in terms of frequency, seasonality, and persistence as suggested
e.g. by Bárdossy et al. (2002). Seasonality is evaluated by the first, last, and peak months of
pattern occurrence. All patterns show a distinct seasonality. Each season is characterized by a
limited number of consecutive months in which a pattern occurs. We evaluate the beginning
(i.e. first month) and end (i.e. last month) of pattern occurrence. The peak month is defined as
the month with the highest number of days with pattern occurrence. Some patterns show two
distinct seasons. In this case both seasons are evaluated separately. Results from different
runs of each GCM are averaged.
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Figure 3.8: Relative frequency of patterns in GCMs (coloured dashes) compared to frequency
in reanalysis data (black dashes).

Frequency of patterns

The frequency of patterns as obtained from each GCM run was compared to pattern frequencies
in the reanalysis data (Figure 3.8). The time series are compared for the whole period, i.e. no
separation by seasons or individual years was done. Especially for patterns with high mean daily
precipitation, a good agreement between reanalysis and GCMs (All-Hist) would be desirable
(maps of average daily values in the Appendix 3.A, Figure 3.A1–3.A6). Frequencies for different
runs of one GCM were averaged, but differences between runs are much smaller (usually less
than 0.5 %) than between GCMs. The deviations between reanalyses and GCM frequencies
are highly diverse for different patterns, e.g. pattern 30 – a high-precipitation pattern with more
than 6 mm per day on average (see Appendix 3.A, Figure 3.A2) – is well reproduced, while
some GCMs have difficulties in matching e.g. patterns 11 or 39. No clear season-specific
deviations were found – some models have higher deviations in winter, others in summer (not
shown). For eight patterns all GCMs underestimate the frequency found in the reanalysis and
for another seven patterns all GCMs overestimate the frequency. By having a closer look at
this behaviour, it becomes apparent that particularly cold weather patterns (1, 12, 14, 21, 33,
34, 37) are underestimated, although the warm pattern 27 is also underestimated. Apparently,
all GCMs have difficulties in reproducing these weather patterns. However, it goes beyond
the scope of this paper to analyse the genesis of these weather patterns and why GCMs are
not capable of capturing them well. With regards to the overestimated patterns (3, 6, 7, 11,
20, 23, 35), they show a tendency towards average to above-average precipitation, but other,
high-precipitation patterns seem to be well captured. The remaining 25 patterns enclose the
reanalysis values in their range. Among the models with an overall good performance in terms
of frequency are CNRM-CM5, GFDL-CM3, and HadGEM2-ES, while the models BCC-CSM1.1,
CCSM4, IPSL-CM5A-LR, MIROC-ESM, and MIROC-ESM-CHEM show the highest deviations
from the reanalyses. In the work of Belleflamme et al., 2014, which uses a similar set of GCMs,
three of these badly performing models were found to have the best rankings in reproducing
pattern frequency (in summer), which shows that statements about GCM performance are
somewhat dependent on the actual application and its geographic focus.
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Figure 3.9: Comparison of seasonality of patterns in GCMs (coloured vertical dashes) and
reanalysis data (black horizontal dashes). Seasonality is presented as start month(s) (upper
panel), peak month(s) (middle panel), and end month(s) (lower panel) of occurrence of patterns.
Dashes for GCMs are only vertical to avoid overlapping – each symbol denotes 1 distinct month.
If a pattern occurs in two distinct seasons, both are shown.

Seasonality

The seasonality of patterns in terms of the earliest and last months of occurrence in the course
of the year, and the most frequent month of occurrence, is generally well reproduced, even for
patterns with two peaks (Figure 3.9). While start and end are often matched perfectly, the peak
months deviate more often, but usually by not more than 1 or 2 months. A deviation of 1 month
is considered an acceptably good performance. This good reproduction of pattern seasonality
is certainly due to the use of variables with a strong seasonal cycle (temperature and specific
humidity) for classification – near-surface temperature and its gradient between continent and
sea give very season-specific patterns that are beneficial for the seasonal stratification of
weather patterns.

Most GCMs are able to reproduce the correct start months in 16 to 34 patterns; the highest
number of mismatched patterns (20 or more) are found in BCC-CSM1.1, BNU-ESM, MIROC-
ESM, and MIROC-ESM-CHEM. The correct end months are reproduced in 18 to 32 patterns.
Only one GCM with more than 20 mismatched patterns was found (BCC-CSM1.1), and 15 or
more mismatches occurred in BNU-ESM and CESM1-CAM5. Models BCC-CSM1.1, BNU-ESM,
IPSL-CM5A-LR, MIROC-ESM, MIROC-ESM-CHEM, and MRI-CGCM3 fail in more than half
of all patterns to match the peak months. All GCMs are generally slightly better in capturing
the correct start and end months of summer or winter patterns compared to spring/autumn
patterns.

Persistence

Finally the persistence of patterns is assessed as the number of consecutive days with the
same weather pattern. In Figure 3.10 the average duration in reanalysis data is compared to
the duration in GCMs. The mean duration of patterns is mainly around 2 days, which is usually
well represented by the GCMs. Deviations from the persistence of reanalysis data that are
greater than 1 day were only found in very few patterns (14, 39); usually mean persistence
deviates by less than 1 day.
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Figure 3.10: Persistence of patterns (mean number of consecutive days with the same pattern)
in GCMs (coloured dashes) compared to persistence on reanalysis data (black dashes).

The best agreement between reanalyses and GCMs was found for CESM1-CAM5, CNRM-
CM5, GFDL-CM3, and HadGEM2-ES, while the greatest deviations occurred for BCC-CSM1.1,
CSIRO-Mk3.6.0, IPSL-CM5A-LR, MIROC-ESM, and MIROC-ESM-CHEM. There is no general
difference in deviation from reanalysis for different seasons, though most GCMs match the
persistence of spring or autumn patterns slightly better than the persistence of summer or
winter patterns. Other studies found patterns to last longer than in our case (e.g. Kyselý, 2007,
who found a mean persistence for Hess–Brezowsky Grosswetterlagen of 4.3–5.2 (and up to
6.2) days), which might be due to our comparatively large number of patterns.

3.5 Discussion
3.5.1 On the optimal classification

This study derives an “optimal” weather pattern classification for the Rhine catchment and inves-
tigates to which extent weather patterns are able to stratify local climate variables. Furthermore,
the ability of the latest GCM generation to reproduce these weather patterns is evaluated in
terms of frequency, seasonality, and persistence. The particularities of this study, compared to
past studies on weather pattern classifications, include (1) the investigation of the skill of several
classification variables, (2) the large number of local weather variables used for classification
evaluation, (3) the large study area (160 000 km2) and the very high number of climate stations
(490), and (4) the use of long time series (111 years).

It has been argued that there is no “best” classification and that the optimal solution depends
on the specific application and region. The best classification for the Rhine catchment was
achieved with a combination of mean sea level pressure, temperature, and specific humidity
as classification variables. Often, weather patterns are classified on pressure fields only. Our
results suggest that adding humidity and temperature, which exhibit a distinct seasonal cycle,
as classification variables improves the stratification of local climate variables considerably and
support the findings of Goodess and Jones (2002). Including temperature as a classification
variable yields a very good stratification of weather patterns throughout the year, i.e. weather
patterns also show a distinct seasonality. In this way a single classification can be used for the
whole year, and there is no need to provide different classifications for each season separately,
contrary to classifications based solely on mean sea level pressure.
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Concerning the number of classes, our results do not give a clear indication about the optimal
number. We have selected a comparatively large number, i.e. 40 patterns. This selection
is in line with other studies that compared classifications. Philipp (2009) found for SANDRA
classifications that best skills are reached for class numbers greater than 30. Tveito (2010)
compared 73 classifications from the COST733 collection of classifications catalogues and
found the best performances for high numbers of classes; generally for the same classification
method a solution with more types performed better. The 10 best classifications had at least 26
classes and the best 3 classifications had 30, 40, and 29 types, respectively. Of course, the
decision about the number of classes is guided by the purpose of the classification and the data
availability. The stratification of local climate variables into a large number of classes requires a
sufficient amount of data. Our sensitivity analysis with 100 weather patterns clearly indicated
worse performance compared to the classification based on 40 patterns, but in general, a larger
number of classes is advisable if not limited by the amount of available data.

In terms of spatial domain, the best results are obtained for rather small classification areas
covering the target area. Increasing the classification domain covering the whole of Europe
slightly aggravates the stratification of local variables, particularly of temperature. It is however
difficult to make generalizations with regards to the selection of the spatial domain given our
results.

The “optimal” classification is only partially able to stratify local climate variables, i.e. the
classification explains a modest share of the local climate variability. EV values, averaged
across all 490 stations in the Rhine catchment, are in the range of 10–20 % for precipitation,
70–80 % for temperature, 10–20 % for humidity, and 40 % for radiation. Hence, especially local
precipitation and humidity are governed by processes that are not completely represented by
the large-scale distribution of pressure, temperature, and humidity. This result questions the
widespread downscaling approaches that are based on weather pattern classification. The
within-type variability dominates vs. the between-type variability, at least for local precipitation
and humidity. Before applying the weather pattern based downscaling approach, one should
therefore investigate whether the link between the large-scale synoptic situation and the local
climate variable of interest is strong enough for the given purpose.

Although downscaling approaches based on weather patterns are widespread, there are
not many studies that have assessed the skill of weather patterns for stratifying local climate
variables. The available studies report skill values that are comparable to our results. For
example, Osborn and Jones (2000) found large residuals between precipitation predicted
from circulation indices and observed precipitation. Enke and Spekat (1997) obtained 20.5 %
of explained variation for precipitation and 80.9 % for mean temperature. Huth et al. (2016)
compared a large number of classifications from COST733 using different classification methods,
numbers of patterns, spatial domains, classification variables, and sequence lengths of 1 or
4 days. For all domains and classification settings they obtained EV values of max. 0.33 for
precipitation and max. 0.46 for mean temperature. The much higher values for temperature
in our study can be explained by the use of 2 m temperature as an additional classification
variable. Our classification using only sea level pressure obtains similarly low values. For
those classifications that are best comparable to our study, i.e. method SANDRA, whole year,
1-day sequence, classification on sea level pressure, 9, 18, or 27 types, a comparable spatial
domain, they obtain EV values of 0.07–0.28 for temperature and 0.08–0.27 for precipitation.
These results are averages across all seasons, whereas the results for the winter are generally
better. The study of Enke et al. (2005a) suggested that classifications that are highly optimized
towards a certain local climate variable, such as precipitation, may have significantly better skill
than classifications for several variables. However, highly optimized classifications have the
disadvantage that their skill deteriorates when applied for other target variables.

Downscaling using the weather pattern approach is based on the assumption of a time-
constant relationship between patterns and local climate variables. Instationarities in the
relationship between weather types and local variables are a long-debated issue in downscaling
(IPCC, 2007), and several studies indicated their presence (e.g. Beck et al., 2007; Haberlandt et
al., 2015; Widmann and Schär, 1997). Those classifications were, however, based on sea level
pressure only (Beck et al., 2007; Haberlandt et al., 2015) or additionally included geopotential
height (Widmann and Schär, 1997). The addition of temperature and specific humidity might
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provide a better classification also in terms of capturing transient changes in local climate by
changes in weather pattern sequencing. This suggestion is supported by the regional climate
simulations of Schär et al., 1996. For the European Alps, they found that increased warming
can lead to larger moisture fluxes and larger precipitation rates even when the synoptic situation
remains unchanged. Thus, it should be further investigated whether classifications that are
based on additional variables besides pressure fields show less instationarity in the link between
synoptic situation and local climate.

3.5.2 On the skill of GCMs
Concerning the skill of the latest generation of GCMs in reproducing these weather patterns,
we find that the main characteristics of weather patterns derived from ERA-20C reanalysis data
are well represented in GCMs that are forced with observed GHG concentrations. Interestingly,
the performance of GCMs is usually similar for a certain GCM for the analysed characteristics,
i.e. frequency, seasonality, or persistence of patterns. This result suggests that some GCMs
are much better suited for downscaling based on weather pattern classifications. Others should
be excluded or their results should at least be interpreted with the greatest care. From the
results obtained, it would be advisable not to consider the models BCC-CSM1.1, MIROC-ESM,
and MIROC-ESM-CHEM. This would leave 12 GCMs with acceptable performance. However,
it should be noted that the skill of GCMs may depend on the specific classification, i.e. the
classification variables and the region. Other classifications might result in a different ranking of
GCMs.

3.6 Conclusions
In the scope of an attribution study aimed at quantifying the role of climate change, in particular
the contribution of anthropogenic climate change to changes in flood flows in the Rhine catch-
ment, we developed a weather pattern classification. This classification is intended to be used
for downscaling of general circulation model outputs with a multi-site, multi-variate weather
generator. An optimal classification was selected by evaluating four different combinations of
classification variables based on the ERA-20C reanalysis data, by testing six spatial domains
and four numbers of classes. The best stratification of local variables (daily precipitation, humi-
dity, radiation, and mean, minimum, and maximum temperature) was obtained when using 40
classes from the SANDRA classification, with sea level pressure, temperature, and specific hu-
midity combined over a relatively small central European domain. The performance of different
classifications was assessed with explained variation (EV) and Pseudo-F statistic. The optimal
classification showed rather high EV (similar to the Pseudo-F statistic) for single variables
except precipitation and humidity. A multi-variate evaluation demonstrates that the classification
is reasonable, although single variables are not very well stratified. Different weather patterns
can be similar in one variable (e.g. temperature), but exhibit very distinct behaviour in others
(e.g. precipitation). Often, weather patterns are classified on pressure fields only. Our results
suggest that adding humidity and temperature as classification variables improves the stratifi-
cation considerably. This results in a very good stratification of weather patterns throughout
the year. In this way a single classification can be used for the whole year, and there is no
need to provide different classifications for each season. Adding further classification variables
to pressure fields may also alleviate the often encountered problem that the link between the
synoptic situation and the local climate is not constant in time.

GCMs should properly reproduce the climatology of weather patterns in order to be applica-
ble for the attribution of flood changes. Hence, the performance of 15 GCMs from the CMIP5
project in matching the climatology of ERA-20C reanalysis in terms of frequency, seasonality
(month of occurrence), and persistence (number of consecutive days) of weather patterns
was evaluated. The frequency of weather patterns is matched well by the majority of GCMs,
with a few GCMs showing systematic deviations. No season-specific deviations were found.
Due to the use of temperature for pattern classification, the seasonality of weather patterns
matched well in most of the GCMs. All GCMs were found to be able to better capture the
seasonality of summer and winter patterns compared to spring and autumn ones. The mean



56 Chapter 3. Can local climate variability be explained by weather patterns?

duration of patterns was about 2 days, with most GCMs being able to reproduce this persistence.
Overall, three GCMs, BCC-CSM1.1, MIROC-ESM, and MIROC-ESM-CHEM, were found to
systematically deviate from the reanalysis weather pattern climatology. The variation between
different realizations of one GCM was found to be small compared to the difference between
various GCMs.

3.7 Data availability
CMIP5 data can be accessed via e.g. the esgf-data.dkrz.de node or any other node listed
at http://cmip-pcmdi.llnl.gov/cmip5/. The following search criteria are needed to obtain
our data set: project “CMIP5”, experiment family “Historical”, experiment “historical” and
“historicalNat”, time frequency “day”, variable “huss”, “psl”, and “tas”. More information on
the models used is given in Table 1. ERA-20C data are available from http://apps.ecmwf.
int/datasets/data/era20c-daily/; level: surface; date: 1900-01-01 to 2010-12-31; time:
all available; parameter: “2 metre temperature”, “Mean sea level pressure”; from Level 91:
“Specific humidity”. The climate station data are owned by PIK and are not publicly accessible.
A detailed description of the data processing method is given in Österle et al. (2006).
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3.A Appendix
Maps of meteorological mean values for each pattern
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Figure 3.A1: Average (over all days with the respective pattern) mean temperature for all
weather patterns. Black lines denote state borders, the grey line the Rhine catchment.
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Figure 3.A2: As in Figure 3.A1 but for daily precipitation.



3.A Appendix 59

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40

48° N

50° N

52° N

48° N

50° N

52° N

48° N

50° N

52° N

48° N

50° N

52° N

48° N

50° N

52° N

6° E 10° E 6° E 10° E 6° E 10° E 6° E 10° E 6° E 10° E 6° E 10° E 6° E 10° E 6° E 10° E

500 1000 1500 2000

(W m−2)

Figure 3.A3: As in Figure 3.A1 but for global radiation.
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Figure 3.A4: As in Figure 3.A1 but for relative humidity.
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Figure 3.A5: As in Figure 3.A1 but for daily maximum temperature.
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Figure 3.A6: As in Figure 3.A1 but for daily minimum temperature.
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Abstract
For attributing hydrological changes to anthropogenic climate change, catchment models are
driven by climate model output. A widespread approach to bridge the spatial gap between global
climate and hydrological catchment models is to use a weather generator conditioned on weather
patterns (WPs). This approach assumes that changes in local climate are characterized by
between-type changes of patterns. In the presented study we test this assumption by analyzing
a previously developed “optimal” WP classification for the Rhine basin. We quantify changes
in pattern characteristics and associated climatic properties. The amount of between- and
within-type changes is investigated by comparing observed trends to circulation-induced trends.
To overcome uncertainties in trend detection resulting from the selected time period, all possible
periods in 1901–2010 with a minimum length of 31 years are analyzed. Increasing frequency
is found for some patterns associated with high precipitation, although the trend sign highly
depends on the considered period. Trends and interannual variations of WP frequencies are
related to the long-term variability of large-scale circulation modes, particularly the Scandinavian
and the East-Atlantic/Western-Russia patterns. Long-term WP internal warming is evident for
summer patterns and enhanced warming for spring/autumn patterns since the 1970s. Observed
trends in temperature (and to a certain amount in precipitation) for recent decades are mainly
attributed to frequency changes of specific WPs, but some amount of within-type changes
remains. This restriction has to be kept in mind when using a weather-pattern/weather-generator
approach for downscaling of climate fields for usage in hydrological attribution studies.

Keypoints
• large (490 stations) and long (111 years) data set for Rhine catchment
• testing fundamental assumption for weather pattern based downscaling using multiple

periods
• changes in temperature and precipitation are mainly attributable to changes in the occur-

rence of patterns

Submitted as (current status “minor revision”):
Murawski, A., Vorogushyn, S., Bürger, G., Gerlitz, L., and Merz, B. (in review). “Do changing
weather types explain observed climatic trends in the Rhine basin? An analysis of within and
between-type changes”. In: Journal of Geophysical Research: Atmospheres
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4.1 Introduction

Understanding how hydrological change is linked to human-induced climate change is important
for water resources management and climate adaptation. Various studies investigate the
variability and change of hydrologically relevant climate variables for Central Europe. Specific
regional scale weather patterns (WPs) or large-scale circulation modes have been found to
be related with hydro-meteorological extremes, see e.g. Steirou et al. (2017) for a review.
However, the length of observational time series (mostly below 100 years) is often insufficient
to investigate the statistical relationships between climatic conditions and rare flood events. A
widespread approach to link hydrological extremes to variations of the large-scale circulation is
to force spatially distributed hydrological models at the catchment scale with the output from
global climate models. To bridge the spatial gap between coarse global climate models and
catchment models, numerous downscaling approaches have been developed, see e.g. Maraun
et al. (2010) for a review. In particular, the approach of conditioning a weather generator (WGN)
by means of climate model output data offers the possibility to generate very long (≥ 10,000
years) synthetic time series at several locations considering the spatial correlation structure of
meteorological variables (Elshamy et al., 2006; Fatichi et al., 2011; Fowler et al., 2000, 2005;
Hewitson and Crane, 2006; Kilsby et al., 2007; Kim et al., 2016; te Linde et al., 2010; Lu et al.,
2015; Steinschneider and Brown, 2013). This approach is particularly suitable for a robust
estimation of changes in floods since their statistical moments can be better captured using
very long time series of climate time series.

Weather generators produce sequences of stationary weather. Hence, to be useful for
climate change impact investigation they need to be conditioned on large-scale climate fields
as simulated e.g. by climate models. A natural way to do this is to decompose the large-
scale variability into a discrete and finite set of dominant weather types, within which the
weather is considered stationary. This can be done subjectively by inspecting synoptic weather
charts (“Großwetterlagen”) (e.g. Brezowsky and Hess, 1952) or objectively by using automated
statistical tools such as clustering.

Recently an optimal weather classification comprising 40 classes has been developed and
validated for the Rhine catchment in Murawski et al. (2016a). This classification is based
on the ERA-20C data for sea level pressure, near-surface temperature and specific humidity
and utilizes the state-of-the-art SANDRA algorithm (Philipp et al., 2007; Philipp, 2009). In
order to utilize a weather pattern classification for downscaling applications, a robust statistical
relationship between WPs and local scale observations is required, i.e. the variance explained
by the clustering (or rather the fraction of local between-type variance) should be substantial.
If that fraction is large enough, local variability is believed to be sufficiently conditioned on
the large-scale climate fields. To be applied to simulated climate fields, however, two more
conditions are required to hold: i) the climate models reliably simulate the statistics of the
weather types; and ii) the link between the weather types and the local weather remains valid.

The ability of the classification to stratify local climate variables (such as temperature and
precipitation) has been proven in Murawski et al. (2016a). We found the majority of CMIP5 GCMs
(Taylor et al., 2012) to be capable of reproducing the WP climatology of the ERA-20C reanalysis
data. In this follow-up paper we tackle the last point, ii), about the stability of the link between
weather types and local variables that is required to drive a hydrological model. Therefore we
conduct a systematic analysis of trends in WP frequencies and WP internal characteristics and
investigate whether observed trends in local climate variables can be attributed to changes in
WP compositions. We explicitly emphasise that the classification of Murawski et al. (2016a)
aims at optimising the amount of explained variance. It does not aim at separating between
dynamical and thermodynamic fractions in past climate observations Shepherd (2014), as
it includes both, dynamic and thermodynamic variables. The classification is tested for the
assumption, that observed temporal changes can be fully explained by between-type changes.
This is a prerequisite for using it for weather generator based downscaling.

The main goal of the ERA-20C reanalysis project was to create a century-long set of
atmospheric fields that are as immune as possible to artificial trends induced by the growing
data coverage, we assume that large-scale trends are well captured by the input data. This is
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further supported by Poli et al. (2013) who show that ERA-20C trends are particularly reliable
near the surface of the Northern Hemispheric extra-tropics.

Climate change might manifest itself in WPs in two different manners. On the one hand, the
occurrence of WPs might change, reflected in changes in the frequency of patterns (e.g. dry
patterns occur more often), in the seasonality (e.g. a summer pattern being observed already in
spring), or in the persistence of patterns (e.g. a dry and warm pattern occurs for longer periods).
These changes are termed between-type changes. On the other hand, within-type changes can
occur, i.e. the characteristics of local climate variables for a given WP can change (e.g. more
precipitation). The assumption of a stationary link between WPs and local climate requires that
climate change manifests only as between-type change. Although there are numerous studies
that have relied on a stationary link between WPs and local climate, previous analyses indicated
that this assumption might be violated (Widmann and Schär, 1997). Hewitson and Crane (2006)
pointed out that land use and land cover changes could affect local climate and thus modify
the link to WPs. Jacobeit et al. (2003) detected within-type changes in some circulation types
over Europe. Beck et al. (2007) found that large parts of the climate variability between 1780
and 1995 in Central Europe could not be explained by variability in WPs. Cahynová and Huth
(2010) applied decomposition of climatic differences and the hypothetical trend methodology
to differentiate the role of frequency and within-type changes on trends in 6 climate variables
over the Czech Republic. Both decomposition techniques, of which we only use the latter here,
indicated that a relatively small share of changes could be explained by frequency changes
in the period 1961–1998. Küttel et al. (2011) indicated a strong role of within-type changes
for changes in winter temperature and precipitation in Eastern Europe and Scandinavia by
comparing multiple 50-year periods back to 1750. Also Fleig et al. (2015) analyzed the role of
frequency and within-type changes on monthly temperature and precipitation trends in Europe
using the hypothetical trend technique. The relative share of frequency changes was found
to vary strongly between 0 and 100 % depending on the month and particular area within the
European domain. Haberlandt et al. (2015) investigated the stationarity of the weather pattern–
precipitation link in a modeling study based on ECHAM/REMO climate model simulations and
stochastic weather generator experiments. They concluded that the change in pattern frequency
was not able to fully explain the change in future simulated total precipitation change.

This study extends the discussion on the stationarity of the weather pattern–local climate link
in two ways. First, previous studies indicating non-stationarity used mainly circulation variables
for classification. While such classifications are able to clearly separate between dynamic and
thermodynamic changes, they might insufficiently stratify local climate variables like temperature
and precipitation and thus lead to within-type variability, thus impeding the application of a
weather generator based on WPs. To our knowledge only a few studies additionally consider
other atmospheric variables to improve the discrimination of weather variables (Enke et al.,
2005a; Fleig et al., 2015). We address the question if a classification based on mean sea level
pressure, temperature and humidity is able to reduce within-type variability of WPs. Second, our
analysis uses the idea of multiple trends, where all possible periods with a minimum length of
31 years are investigated. Since temporal changes are typically very sensitive to the selection
of the start and end years of the time series, the multiple trend approach gives an indication of
the robustness of the results.

In the following we introduce and interpret our WP classification with particular focus on
classes associated with dry and moist conditions in the Rhine catchment. Typical characteristics
i.e. the spatial distribution of sea level pressure, temperature and humidity are illustrated for each
WP. Relationships with well known circulation indices (such as the North Atlantic Oscillation) are
analyzed, which allows the interpretation of WPs, their frequencies and changes from a large-
scale perspective. Subsequently, trends in frequency, seasonality and persistence of WPs are
analyzed and compared with changes of large-scale circulation indices. Within-type changes
in 4 meteorological variables based on homogenized daily observation series at 490 climate
stations over the 110 year period 1901–2010 are quantified. Finally, the relative contribution of
frequency-related changes in explaining trends in selected meteorological variables is estimated.
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4.2 Data and weather pattern classification
A previously developed weather pattern classification (Murawski et al., 2016a) is tested for
stationarity of the link between patterns and associated climate variables. The classification uses
mean sea level pressure, 2 m temperature, and specific humidity from the ERA-20C reanalysis
(Poli et al., 2013) in the period 1900–2010 (explained variation of the input fields: 0.82). It
covers the spatial domain 3–26° E/43–58° N with 40 classes/patterns and was optimised in
terms of variables used for classification, spatial domain, and number of classes, to provide the
best stratification of local climate variables. The ensemble mean of ERA-20C was used here
only, thus no conclusions regarding the uncertainty due to the reanalysis are possible. Due to
the integration of dynamic (sea level pressure) and thermodynamic variables (temperature and
specific humidity), the classification identifies weather patterns, characterized by anomalous
pressure patters (and associated circulation modes) and specific thermal and hygric conditions.
While major circulation patterns can be observed during the entire year, temperature and
humidity feature a distinct seasonal cycle, enabling a continuous classification throughout the
year and an assignment of weather patterns to individual seasons. The regional scale weather
conditions for each WP are analysed in terms of daily mean precipitation, temperature, relative
humidity and global shortwave radiation (hereafter referred to as PREC, Tav, RH, RAD). Each
pattern shows a clear seasonality of occurrence, thus we can assign winter, summer and
spring/autumn patterns.

The analysis is based on 490 stations in the Rhine catchment for the period 1901–2010 (432
stations for the German part, 9 stations for Austria, 49 stations for Switzerland and Liechtenstein;
Figure 4.2). The station data were collected from the national meteorological services. Data
processing and quality control was performed by the Potsdam Institute for Climate Impact
Research (PIK) (Österle et al., 2006a; Österle et al., 2006b; Österle et al., 2016). This data set
includes global shortwave radiation that was inferred from sunshine duration following Österle
(2001) if not directly available. To date no station data for the French part of the Rhine catchment
are available. A more detailed description of the data set and the homogenisation process is
given in the Supplementary.

Figure 4.1 illustrates the spatial distribution of sea level pressure, temperature and humidity
for WPs featuring exceptionally dry or moist conditions over the Rhine catchment (a complete
overview of all WPs is provided in the Supplementary). Dry conditions include all days with
mean precipitation sums (calculated as a spatial mean over all stations) below the 25 % quantile,
moist conditions comprise days above the 75 % quantile of the empirical distribution. In general,
moist conditions are characterized by significantly negative pressure anomalies over Central
Europe, Scandinavia and/or the North Western Atlantic Ocean. The Rhine catchment is either
located in the core region of the low pressure cell or at its southern/southeastern edge. The
associated cyclonic circulation pattern is accompanied by enhanced westerly moisture fluxes
resulting in positive moisture anomalies over vast parts of Central and Southern Europe. The
temperature anomalies of moist WPs follow the seasonal cycle. In contrary, dry conditions (for
all seasons) depict strong positive pressure anomalies over Scandinavia and/or Central Europe,
triggering an anticyclonic circulation pattern. WPs featuring positive pressure anomalies over
Central Europe (WP 21, 36, 40) are associated with a direct blocking of the prevailing westerly
flow and precipitation suppressing subsidence over the Rhine catchment. WPs characterized
by a high pressure centre over Scandinavia (WP 5, 12, 14, 32, 37, 38) provoke an anticyclonic
circulation over Northern Europe. The Rhine is located at its southern edge and thus is under
influence of north-easterly winds, advecting cold and dry air masses. Dry WPs are distinctly
more often observed during winter than during all other seasons and are often accompanied with
an intrusion of continental cold air, as represented by strongly negative temperature anomalies
(e.g. in WP 12 and 14).
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Figure 4.1: Centroids of patterns (wet and dry patterns only) expressed as anomalies (deviation
from the overall mean (mean sea level pressure, msl; 2 m temperature, t2m), or the mean of
the season’s months only (specific humidity, q)). Black rectangle denotes the domain used for
classification, grey outline indicates the Rhine catchment.
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Figure 4.2: Locations of climate stations used. Red line shows Rhine catchment, black lines
denote state borders. Background shading from light gray (low areas) to dark gray (high
altitudes).

4.3 Methods

4.3.1 Relationship of WPs and large-scale circulation modes

In order to identify large-scale atmospheric mechanisms favouring the occurrence of particular
WPs and to attribute trends of WP frequencies to changes of northern hemispheric circulation
modes, we investigate the relationship between WP frequencies and well known teleconnection
indices.

As potential large-scale drivers, we consider monthly time series of the North Atlantic Oscil-
lation (NAO), Scandinavian pattern (SCA), East-Atlantic pattern (EA) and East-Atlantic/Western-
Russia pattern (EAWR) for the period 1950–2010. These are based on a Rotated Principal
Component Analysis of 500 hPa geopotential height (GPH) fields (Barnston and Livezey, 1987)
and represent leading (statistically independent) circulation modes over a domain North of 20° N.
Positive and negative phases of each circulation mode are accompanied by specific large-scale
pressure patterns and associated moisture fluxes. The NAO is characterized by two centres of
action over the North Atlantic (Iceland Low) and the subtropical Atlantic (Azores High) and repre-
sents the strength of the meridional pressure gradient over the North Atlantic/European domain.
Its positive phase features negative pressure anomalies over the North Atlantic and Scandinavia
and positive anomalies over Southern Europe and is accompanied by a northward shift of
westerly moisture fluxes. Positive (negative) precipitation anomalies during the positive NAO
phase have been frequently reported for Northern Europe (the Mediterranean) (Steirou et al.,
2017; Uvo, 2003). SCA is associated with strongly positive GPH anomalies over Scandinavia
and is known to reflect blocking situations over Northern and Central Europe, accompanied
by negative precipitation anomalies (Bueh and Nakamura, 2007; Comas-Bru and McDermott,
2014). EA is frequently referred to as a southward shifted NAO with its major center of action
over the British Isles. Positive (negative) precipitation anomalies over Northern Europe (the
Mediterranean) are characteristic during its positive phase. EAWR features a dipole like pattern
of GPH anomalies between Central Europe and Russia. The positive phase is associated with
strongly positive anomalies over Europe, which is accompanied by an anticyclonic circulation
pattern and a southward deflection of westerly moisture fluxes (Krichak and Alpert, 2005).
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We conduct a systematic spearman correlation analysis of WP frequencies with well-known
teleconnection indices at a monthly scale, i.e. the time series of WP frequencies are correlated
with the mean state of any index and correlations are tested for significance (t-test, α = 0.1) for
each month of the year, respectively. Positive (negative) correlations indicate an increased (de-
creased) WP frequency during the positive phase of the considered index. The circulation modes
are obtained from NOAA (http://www.cpc.ncep.noaa.gov/ data/teledoc/telecontents.shtml).

With the aim of attributing potential changes of WP frequencies to changes (or multi-
decadal variations) of large-scale circulation modes, a trend analysis for multiple periods is
performed for the teleconnection indices and for each WP respectively (see subsection 4.3.2 for
methodological details).

4.3.2 Trend detection methods
The fundamental assumption of weather pattern-based downscaling is a stationary link between
patterns and local climate, i.e. no within-type change, and climate change manifests only
as between-type change. In this way a constant parametrization of a weather generator
conditioned on weather patterns can be used. To test this assumption, different trend analyses
are performed.

For trend detection the non-parametric two-sided Mann-Kendall test (Kendall, 1938), which
is based on a rank correlation coefficient, is applied (p < 0.05). The magnitude of change is
derived from Sen’s slope (Sen, 1968, Equation 4.1):

β = median
(

xn − xm

n −m

)
; for all n > m; xn, xm = time series values in years n, m (4.1)

Trend magnitudes are known to be sensitive to the selection of start and end points of
the investigation period. In particular in our analysis, it might be expected to have periods
incorporated in the data that are mainly influenced by anthropogenic climate change, while
this effect is not clearly evident in other periods (i.e. might be masked by internal variability
or natural forcings). To eliminate any potential effect of a fixed time period, trend analyses
for multiple periods are performed. Statistical tests are applied to every time period with a
minimum length of 31 years resulting in trend matrices indicating the magnitude and (field)
significance of multiple trends within the period 1900/01–2010. Each pixel/cell of the triangular
matrix represents the trend results for a combination of a particular start year (x-axis) and end
year (y-axis). In the case of variables derived at each climate station separately (e.g. pattern
mean temperature), each pixel represents the spatial average across all stations.

To account for possible autocorrelation in the time series, which might distort the result of
the Mann-Kendall trend test, a block bootstrap approach as proposed by Khaliq et al. (2009) is
applied. This approach is based on resampling a correlated time series such that the correlation
structure is preserved (i.e. taking blocks of data that are longer than the number of significantly
autocorrelated time lags). The test statistic (here Kendall’s tau) is derived from the resampled
time series. Repeating this procedure a large number of times (1000) results in a simulated
distribution of the test statistic. If the test statistic of the original series lies in the tails of this
distribution it is unlikely to obtain that value from a time series with the same correlation structure
but no temporal trend, thus the trend of the original time series is judged to be unaffected by
autocorrelation.

When performing trend analyses on multiple stations within a region the question arises
whether the observed number of trends is significantly larger than what might be found by
chance only. Applying the block bootstrapping for all stations simultaneously, thus preserving
the spatial correlation between neighbouring stations, field significance can be evaluated as
well. The number of trends in the shuffled time series is counted and compared to the observed
number. If the observed number lies in the tails of the distribution of simulated number of trends,
this is judged to be field significant. Performing this analysis for each individual period and
highlighting the field significant periods gives contours of field significance as presented e.g. in
Figure 4.5.

For the detection of changes in pattern characteristics, trend analyses (i.e. Mann-Kendall
test and Sen’ slope) are performed on annual mean values of pattern frequency, seasonality,



70 Chapter 4. Do changing weather types explain observed climatic trends?

persistence (“between-type changes”) and on pattern-specific annual mean climatic values of
all stations (“within-type changes”). Seasonality is expressed as the average date of pattern
occurrence, taking into account the circular nature of dates when calculating trends (i.e. con-
sidering that the difference between day 365 and day 1 is +1 rather than −364) by using an
approach of Bayliss and Jones (1993) that converts the date into an angular value. Patterns
that occur mainly in spring and autumn show two distinct peaks of seasonal occurrence, which
are analysed separately for shifts in seasonality. For aggregating trend results of climatic values
across all stations, trend magnitudes were spatially averaged across all stations and field
significance is calculated as described above.

4.3.3 Relative share of between- and within-type changes
For attributing the change in a certain meteorological variable to changes in pattern frequency,
the “hypothetical trend” approach as proposed by e.g. Huth (2001) is applied, comparing the
weather pattern-induced trend to the observed trend (Fleig et al., 2015). A hypothetical time
series of daily (e.g. precipitation) values of a climate station is constructed by replacing each
original daily value with the station-specific long-term monthly mean value of the respective
weather pattern associated with that day (for a detailed description see Fleig et al., 2015). The
ratio of the linear trend (i.e. Sen’s slope) in the weather pattern-induced (i.e. hypothetical) series
to the linear trend in the observed time series is then computed. It can potentially take values
from −∞ to∞. The meaning of some selected values is:

R > 0 : Pattern-induced and original trend are of the same sign. (4.2)
R < 0 : Pattern-induced and original trend are of opposite sign. (4.3)
R = 1 : Original trend is completely attributed to trend in pattern frequency. (4.4)

0 < R < 1 : Within-type trends are of the same sign as between-type trends. (4.5)
R > 1 : Within-type trends are of the opposite sign to between-type trends. (4.6)

The hypothetical trend approach is able to identify opposing trends, e.g. in case a changed
frequency of patterns would lead to an increase in precipitation, but a decreasing trend was
observed due to drying of the corresponding patterns. The method is applied for multiple
periods, calculating long-term monthly pattern mean values separately for each period. The
trend ratio only gives meaningful results for significant trends (Cahynová and Huth, 2010).
Although trend magnitudes of original and weather pattern-induced trends are presented for all
stations, trend ratios are only calculated for stations with significant (p < 0.05) original trends.

4.4 Results
4.4.1 Attribution of WPs to large-scale circulation modes

Results of the correlation analysis (Figure 4.3) clearly reveal that WPs (particularly those
triggering moist or dry conditions over the target region) result from the superposition and
regional manifestation of large-scale pressure modes and thus represent major atmospheric
processes, such as the formation of cyclonic and anticyclonic circulation patterns and the
associated deflection of large-scale heat and moisture fluxes. Moisture conditions during winter
are strongly related with the state of the East-Atlantic/Western-Russia and the Scandinavian
patterns. WPs showing a strong positive correlation with EAWR and SCA are associated
with blocking over Central Europe and Scandinavia, respectively. Monthly frequencies of dry
WPs 36, 14, 40, and 21 show positive (and partially statistically significant) correlations with
EAWR, which indicates an increased occurrence of dry WPs during its positive state. The same
applies for SCA (positive correlations for WP 14, 37 and 12). Moist WPs (characterized by
negative pressure anomalies over Northern and/or Central Europe and a consequential cyclonic
circulation) show an inverse relationship. A clear influence of the North Atlantic Oscillation on
the frequency of dry and moist WPs during winter is not detectable, slight positive correlations
with NAO are found for the dry WPs 36 and 40, negative correlations are detected for the moist
WP 17. During spring, summer, and autumn the relationship between WP frequencies and
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Figure 4.3: Correlation of pattern frequency and averaged index of selected large-scale
atmospheric circulation modes. Correlations are only shown if the pattern has a maximal
occurrence of at least 20 % in the respective months. Asterisks indicate significant correlations.
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large-scale atmospheric conditions is less pronounced. For the moist WPs 2, 18 and 35 a
negative relationship with NAO is detected.

The trend analysis of teleconnection indices for multiple periods (Appendix, Figure 4.A1)
indicates significant positive trends of EA and NAO for the period after 1948, particularly for
the winter season. Likewise for EAWR trends are positive (although not statistically significant)
during most periods. For wintertime SCA a slight negative trend is detected. These trends
might be interpreted as a consequence of an intrinsic multi-decadal variability of wintertime
circulation modes (Hurrell et al., 1995; Krichak and Alpert, 2005; Selten et al., 1999; Wang
et al., 2012), which however might explain observed trends of WP frequencies (and local scale
observations) to a certain extent.

4.4.2 Between-Type Changes
Changes in pattern frequency are detected for many patterns in distinct periods and with
varying trend direction and magnitude (Figure 4.4, for full set of WPs see Supplementary).
For wet winter patterns 24 and 17 slightly decreasing frequencies of up to 0.05 % per year
(season and precipitation intensity are depicted by icons in the sub-plots) are detected in most
periods since the 1950s and increasing trends in periods ending around 1970 and 1980. Both
patterns are negatively correlated with EAWR and recent changes of WP frequencies are
clearly related to positive trends of the winter EAWR index after 1950. Wet winter WPs 30
and 23, featuring a strong negative relationship with SCA, show increasing frequencies (only
statistically significant for WP 30) since the 1950s, which is also in agreement with observed
trends of the SCA index. For both WPs long-term increases in frequency of up to 0.05 % are
detected. Both feature very similar temperature and humidity patterns, with a low pressure
anomaly over Scandinavia (see Figure 4.1), which is slightly shifted southwards in WP 23. This
similarity results in rather similar mean local climate (see Appendix in Murawski et al., 2016a).
Dry winter WPs, which are positively correlated with the EAWR pattern (36, 14, 40), show
slightly positive frequency trends in recent periods (increasing frequency in WP 40 is detected
for many periods ending between 1990 and 2010 with magnitudes of up to 0.1 % per year) and
decreasing frequency ending in the 1970/1980s. Although WP 36 and 14 feature rather similar
msl and humidity patterns, they clearly differ in temperature. Thus, this pair of WPs would be
prone for capturing temperature changes by a mere exchange of these two, but their trends in
frequency are in the same direction for most periods. Dry winter WPs 40 and 12 show almost
opposite frequency trends: decreasing (increasing) trends for periods ending between 1990
and 2010 with particularly higher magnitudes around 1960, and increasing (decreasing) trends
until the 1970s. While WP 40 might be interpreted as a superposition of a positive NAO and
a positive EAWR pattern, which favours blocking over Central Europe, WP 12 rather occurs
under negative NAO conditions in combination with a positive state of SCA (see Figure 4.3).
Again the observed frequency trends of both WPs follow those of relevant large-scale circulation
modes after 1950. For WP 37, being strongly positively correlated with SCA, slightly decreasing
frequency is detected for several periods starting around 1910 and 1920 or ending in 1970 or
1980.

Wet summer patterns 39 and 18 became more frequent in recent decades (more than 0.1 %
per year for WP 39), but show alternating trend direction in earlier periods (negative in the middle
of the century, positive again between 1900 and 1930), but no trends persisting over the whole
century. Although trends in the frequency of these WPs are quite similar throughout the century,
they have notably different pressure anomalies (see Figure 4.1). While WP 18 is dominated by
a low pressure anomaly over central Europe, the pressure anomaly is less pronounced and
rather located in the south-east of Europe in WP 39, which is furthermore associated with higher
temperature and humidity than WP 18. Both WPs are positively correlated with EA, which
features a strong inter-decadal variability with mainly positive trends during recent decades.
WP 18 is also strongly negatively correlated with NAO.

While most spring/autumn patterns do not show significant trends in recent decades, for
wet WP 35 increasing frequency is detected for periods beginning after 1930 and ending after
2000, which is in agreement with positive trends of the positively correlated EA pattern in spring
and autumn. In contrary the negatively correlated WP 5 (dry) shows slightly (but mostly not
significant) decreasing frequency after 1930. For wet WP 11 (also positively correlated with EA)
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Figure 4.4: Multiple trends of pattern frequency (dry and wet patterns only). Each value
of the upper triangle denotes the trend magnitude of a specific period, given by its start
year (horizontal axis) and end year (vertical axis). Black contours enclose time periods with
statistically significant trends (Mann-Kendall test, p < 0.05). Icons in lower right corner of
panels denote season(s) of pattern occurrence (snowflake – DJF, flower – MAM, sun – JJA, leaf
– SON; black – main season, grey – few occurrences), mean daily precipitation (1 drop: [0, 1.25]
mm d−1, 2 drops: (1.25, 4] mm d−1, 3 drops: (4, 7.4] mm d−1), and frequency of pattern (one
quarter of circle filled black: pattern occurs in [0, 2] % of days, two quarters filled: (2, 3] %, three
quarters filled: (3, 3.5] %, all filled: (3.5, 3.8] %). (Icons (drop and seasons) made by Freepik
and Icon Works from www.flaticon.com)



74 Chapter 4. Do changing weather types explain observed climatic trends?

only few increasing trends of low magnitude are detected, mostly for periods starting around
1900. For dry WP 38, which is positively correlated with NAO and EAWR, decreasing trends in
frequency are only detected for periods starting between 1900 and 1920.

Summarizing, the trend patterns of WP frequencies are found to follow the trends (or
more likely the long-term variability) of Northern Hemispheric circulation modes. This is most
pronounced during winter season where dry (wet) conditions are related with the positive
(negative) manifestation of EAWR and/or SCA. Those dry patterns related with a positive EAWR
state show significant positive trends during recent decades, for patterns related to a positive
SCA a frequency decrease is detected. Reversal relationships are found for wet WPs.

The seasonality of patterns (Appendix, Figure 4.A2, for full set of WPs see Supplementary)
changes only little with usually less than one day change per year. For dry and wet winter
patterns many weak short-term trends are found, usually of alternating direction and being
close to zero for century-long periods. Some general trend patterns are evident in association
with large-scale pressure modes, e.g. WP 40 (and 12) are positively (negatively) correlated
with NAO and show tendencies towards later (earlier) occurrence of up to 1 day per year for
the most recent decades and earlier (later) occurrence of the same magnitude for periods
roughly ending before 1990. For the wet winter pattern 20 earlier occurrence of up to 2 days per
year is detected for periods ending before 1970 and starting after 1950, and later occurrence
of the same magnitude is detected for periods in between. The seasonality of wet summer
patterns exhibits hardly any significant trends and is of low magnitude only. For spring/autumn
a clear tendency of earlier occurrence in spring of up to 1 day per year (translating to a shift
of one month for a 30-year period) is evident for recent periods. Simultaneously, the autumn
peak of many patterns shifted to later occurrence in recent periods. However, the latter is less
pronounced than the shift in spring.

The majority of patterns does not exhibit a change in persistence and only very few show
long-term but weak changes (Appendix, Figure 4.A3, for full set of WPs see Supplementary).
Increasing persistence in long-term periods is found for wet summer pattern 2, although the
trend weakened and is not significant in recent decades. This is in general consistent with the
observed increases in frequency of this pattern. Dry winter WP 14 shows a significant increase
in persistence for periods starting in the 1960s and lower persistence for periods ending around
1980. This suggests a local minimum in persistence of this relatively dry winter pattern in
this decade. The magnitude of these trends average around 0.05 and −0.03 days per year,
respectively, which sums up to a change of 1.5 (−0.9) days for 30 years. Considering an average
persistence of this pattern of almost 3 days, this change translates to a relatively significant
proportion (average persistence of patterns varies between 1.4 and 3 days). In general, most
signals detected in pattern frequency are found in persistence as well. This synchronization
indicates that changes in pattern frequency are mostly caused by changes in persistence, which
are likewise related to the inter-decadal variability of the Northern Hemispheric circulation, as
represented by the NAO-, SCA-, EA- and EAWR-teleconnection indices.

4.4.3 Within-Type Changes
Multiple trend analyses on pattern-specific mean climatic values are presented in Figure 4.5
and 4.6 and Appendix, Figure 4.A4 and Figure 4.A5 (for panels with full set of patterns see
Supplementary). For Tav (Figure 4.5) many dry winter patterns show a warming trend until the
1980s and a cooling trend for recent periods (WP 36, 14, 37, 12). The cooling is not pronounced
for wet winter patterns (except WP 20), but warming trends are detected for some short periods
in the middle of the century (WP 20, 23). All wet summer patterns exhibit long-term significant
warming, however of low magnitudes of max. 0.05 K. Spring/autumn patterns reveal warming
trends in the beginning of the century which do not persistent in recent decades.

Trends in precipitation (Figure 4.6) are most pronounced (i.e. highest absolute magnitudes)
in wet patterns, while for dry patterns almost no significant trends were detected and if so,
their magnitudes are close to zero. Wet winter patterns show long-term wetting trends of
up to 0.05 mm per year, however, all of them (except WP 30) indicate non-significant drying
trends in very recent periods. Wet summer pattern 39 shows significant long-term decreasing
precipitation, while wet summer WP 18 indicates opposite trends. In spring/autumn only for WP
35 significant wetting is detected for periods starting between the 1920s and 1950.
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Figure 4.5: Multiple trends of pattern mean daily temperature (dry and wet patterns only). Plot
as in Figure 4.4, except that black contours enclose time periods with field significant trends
(p < 0.05).
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Figure 4.6: Multiple trends of pattern mean daily precipitation (dry and wet patterns only). As
in Figure 4.5.
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Figure 4.7: Trends in catchment average mean daily temperature for all seasons (upper panel)
and associated ratio of weather pattern-induced and original trend slopes (see subsection 4.3.3).
Ratios are only calculated for stations with significant original trends and presented as averages
across stations. Gaps appear for periods with no significant trends.

Most trends in shortwave radiation (Appendix, Figure 4.A4) are rather short-term and only
few sustain during the whole century. This suggests the presence of decadal fluctuations in
shortwave radiation associated with various weather patterns. Especially for winter, trends, if
present at all, prevail only in very few periods. In spring/autumn many wet or dry pattern show
increasing trends for periods ending around 1960 and decreasing trends for periods starting
around 1940. For summer WPs 39 and 2 long-term increasing trends in shortwave radiation
are detected, which weakened or switched sign in more recent decades.

For relative humidity (Appendix, Figure 4.A5) very heterogeneous trends are found with
periods of positive and negative trends in most patterns. Especially for wet summer and dry
spring/autumn patterns trends in relative humidity are parallel to those in shortwave radiation.
This also suggests strongly pronounced fluctuations in weather pattern related humidity.

4.4.4 Relative share of between- and within-type changes

Trends in annual climatic variables averaged over the catchment are analysed for multiple
periods (Figure 4.7 and 4.8, upper panel). Trends in temperature variables are positive over
nearly all periods starting after 1950 or ending after 2000 in all seasons (less pronounced
in autumn). Increased warming of more than 0.03° C a−1 since the 1960s is detected. A
pronounced cooling is found for winter for periods ending before 1950 and for spring for periods
starting around 1940. Weather pattern-induced trends (lower panel) follow the observed trends
to a large degree and explain 50 % to almost 100 %, especially for recent periods with high
magnitudes of change. Periods with negative slope ratios (i.e. weather pattern-induced trends
are of opposite sign to the original trends) occur only for periods with almost no trends.

Trends in precipitation are detected for winter in almost all periods (magnitude of change
usually less than 1 mm per year and up to more than 2 mm per year only for very few periods).
For spring and autumn increasing precipitation was mainly found for periods starting after 1940,
whereas changes in summer precipitation are close to zero and only pronounced negative
for few periods starting in the 1950s. Up to 50 % of the changes in precipitation, although
only weak, can be explained by weather pattern-induced changes. For periods with more
pronounced precipitation changes (e.g. winter, periods around 1930–1960, and spring, periods
starting around 1940) more than half of the change is attributable to between-type changes.
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Figure 4.8: Trends in catchment average daily precipitation for all seasons. As in Figure 4.7.

Changes in shortwave radiation and relative humidity (Appendix, Figure 4.A6 and 4.A7)
show decadal variations in trend direction, which is most pronounced in spring and summer.
Weather pattern-induced changes are usually of not more than half the magnitude of original
trends, indicating some substantial proportion of within-type changes.

4.5 Discussion and conclusions
In this paper we analysed the “optimal” weather pattern classification presented in Murawski
et al. (2016a) for trends within and between patterns. The climatic properties of the patterns will
be used to parametrise a weather generator to serve as a downscaling tool in a climate change
attribution study. The assumption for this weather generator-based approach is that changes
in local climate variables can be explained by changes in the pattern frequency, seasonality,
and persistence. This assumption was examined here by applying trend analyses to pattern
characteristics and the mean climatic properties of patterns over multiple periods. Between-type
and within-type changes analysed here cannot be interpreted as dynamic and thermodynamic
changes, because temperature and specific humidity are included in the classification. The
classification of Murawski et al. (2016a) aims at optimising the amount of explained variance
rather than to purely separate between dynamic and thermodynamic predictors. However, the
analysis shows that such kind of classification is superiour in terms of the envisaged application.
WP classifications are common in the literature (e.g. Hewitson and Crane, 2006; Kalkstein
et al., 1987) and are different from the circulation pattern classifications that use only pressure
variables (Huth et al., 2008).

Trends in the frequency of patterns were found in most patterns, although they were usually
not uniform across all periods, but might change direction between decades and smooth out
for longer periods. Some increases in frequency were detected particularly in winter patterns
that are associated with high precipitation. It was shown that trends of Central European
WPs in recent decades follow the variability of large-scale teleconnection indices, such as
the North Atlantic Oscillation and the Scandinavian, East-Atlantic and East-Atlantic/Western
Russia patterns. Thus the WP classification is capable to depict major Northern Hemispheric
circulation modes and associated anomalies of moisture and heat fluxes.

Changes in persistence were usually less pronounced, but are in agreement with obser-
ved changes of WP frequencies. For pattern seasonality a tendency, albeit small, in recent
decades towards earlier occurrence of wet spring patterns was found, representing increased
precipitation during snow melt and thus potentially increase flood severity.
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The hypothetical trend analysis shows, that a substantial portion of changes in precipitation
and particularly temperature at 490 stations within the Rhine catchment can be attributed to
changes of the WP composition. These periods coincide with the highest observed warming,
thus clearly emphasizing the importance of between-type changes for overall temperature
trends. This relation is already indicated in Corti et al. (1999), but seems to not hold true
anymore after 1995 (Yiou et al., 2007) – however, conclusions on the periods after 1995 are not
possible from our analyses (using at least 30-year periods until 2010 latest). Explained trend
ratios were especially high during winter season, where moist and dry conditions are strongly
related to variations of the East-Atlantic/Western-Russia and the Scandinavian pattern. The
significant link between large scale circulation modes and weather pattern frequencies as well
as the high potential of the WP classification to explain observed trends of surface variables
support the utilization of a modelling chain, including WP classification, a stochastic weather
generator and a distributed catchment model, to investigate the variability and change of flood
probabilities in the Rhine catchment.

However, some weather patterns are characterised by heterogeneous local weather conditi-
ons and high ratios of within-type trends. A long-term warming trend was found for all summer
patterns. Such a clear signal was not evident for winter patterns where trends were weaker and
not persistent on long periods. Winter patterns rather showed a cooling in the last decades and
slight warming before. Many spring/autumn patterns showed a strong warming trend until about
1970. Trends for pattern-specific shortwave radiation and relative humidity were dominated by
decadal fluctuations. These results hint towards the high variability of trend detection results
depending on the selected time period and emphasise the usefulness of assessing multiple
periods.

We found that within-type changes dominated in periods with overall small changes in
temperature. In the literature different percentages for within-type temperature changes were
reported depending on the selected period and methodology. Küttel et al. (2011) found 70 %
within-type change of winter temperature for central Europe when comparing the first and
second half of the 20th century. Cahynová and Huth (2016) and Huth (2001) summarized that
trends in summer temperature (1949–1980) at two Czech Republic stations were unrelated to
frequency changes, while a warming trend in winter could be assigned to changes in pattern
frequency. Also Philipp et al. (2007) found higher amounts of between-type temperature changes
since 1850 for winter (59 %) than for summer (33.9 %) and again evidence for high within-type
variability. Cahynová and Huth (2010) concluded that internal changes were “responsible
for a major part of the observed climatic trends in spring, summer, and autumn; but also in
winter for variables other than temperature”. In contrast to the previous studies, our results
suggest a much stronger role of between-type trends (75–100 %) for periods with notable
temperature changes revealed by multiple period analyses. This advantage can clearly be
assigned to the optimised weather pattern classification (Murawski et al., 2016a), which included
temperature as a characteristic variable additionally to the pressure fields. We show indeed
that observed changes in temperature and precipitation can be attributed to weather patterns (if
thermodynamic variables are included), which finally allows a weather generator based analysis
of flood changes during recent decades. This is only possible, because the classification
accounts for both, dynamical and thermodynamical changes.

Although considering the specific humidity for weather pattern classification, we were not
able to significantly improve the amount of changes in relative humidity that is attributable
to changes in pattern frequency. Cahynová and Huth (2010) found near zero (summer) to
only 20 % of between-type changes in humidity, which is clearly supported by our results.
Changes in shortwave radiation were attributable to changes in pattern frequency by a slightly
higher proportion than humidity (around 50 % for periods with decreasing trends), but were
nevertheless highly influenced by within-type changes. Decreasing shortwave radiation in
periods starting around 1940 and ending around 1990 might be attributed to high aerosol
loading in the atmosphere: Andronova and Schlesinger (2000) found a cooling of near-surface
temperature between 1940 and 1970 being explained by volcanic activities and partly by solar
irradiance, while Walter and Schönwiese (2003) found a particularly strong cooling-effect of
sulphur dioxide at a global scale in this period. The same cooling effect was reported in an
updated study by Schönwiese et al. (2010), who found almost zero trends in temperature for
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1945–1975 along with a strong increase in forcing by sulphate aerosols. The cooling found
in our data is only weak, possibly being masked by other effects. The high aerosol loading,
however, is clearly visible in decreasing trends of shortwave radiation in these periods.

Observed precipitation changes were represented by weather pattern-induced trends in
nearly all periods, i.e. observed and weather pattern-induced trends were of the same direction
and slope ratios were positive. However, weather pattern-induced trends accounted for somew-
hat more than half of the observed changes only in periods ending in the 2000s, earlier periods
were dominated by within-type changes. Comparable amounts of within-type changes were
also found by Küttel et al. (2011) (60 % of winter precipitation), however, for other periods. A
general trend direction for a specific season was not evident – the two wettest summer patterns
(18 and 39) showed rather opposite within-type trend directions.

In the presented paper, being a follow-up from Murawski et al. (2016a) where an “optimal”
classification of weather patterns was developed, we thoroughly analysed the underlying
assumptions for a WP–WGN based downscaling approach. Contrary to previous studies, we
found a higher portion of observed trends in temperature and precipitation being explained by
pattern frequency. This would justify an application of a pattern-conditioned weather generator,
although a certain portion of uncertainty (i.e. non-attributable amount of changes) is inherent to
the method. Low explained share of humidity and shortwave radiation trends is a clear limitation.
However, for the purpose of flood change attribution to anthropogenic climate change, the role
of the latter two variables for higher floods is believed to be minor and can be investigated in a
sensitivity study. Hence, the use of WP–WGN based downscaling can be acceptable for flood
attribution if properly interpreted.
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Trend results
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Figure 4.A2: Multiple trends of pattern seasonality (dry and wet patterns only). As in Fig. 4.4
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Figure 4.A3: Multiple trends of pattern persistence (dry and wet patterns only). As in Fig. 4.4
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Figure 4.A4: Multiple trends of pattern mean daily shortwave radiation (dry and wet patterns
only). As in Fig. 4.5.
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Figure 4.A5: Multiple trends of pattern mean daily relative humidity (dry and wet patterns only).
As in Fig. 4.5.
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section 4.3.3). Ratios are only calculated for stations with significant original trends and
presented as averages across stations. Gaps appear for periods with no significant trends.
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1. Text 4.S1
2. Dataset 4.S1
3. Figure 4.S1 to 4.S8

Additional supporting information (files available electronically)
1. Archive containing:

• weather pattern catalogue,
• mean sea level pressure fields of pattern centroids,
• 2 m temperature fields of pattern centroids,
• specific humidity fields of pattern centroids

Introduction
Here we provide additional information on the climate station data used.

The weather pattern classification used in the manuscript was derived using the COST733-
CLASS software (http://cost733.geo.uni-augsburg.de/cost733class-1.2/). Details regarding the
classification are given in “Can local climate variability be explained by weather patterns? A
multi-station evaluation for the Rhine basin”.

The classification uses mean sea level pressure, 2 m temperature, and specific humidity from
the ERA20C reanalysis in the period 1900–2010. It covers the spatial domain 3–26° E/43–58° N
with 40 classes/patterns. The classification catalogue (i.e. time series of patterns) and the
centroids of the 40 classes are provided here as original data files, along with a plot of the
centroids.

Text S1. Description of the climate station data processing and quality control
Climate station data used in this paper were provided by the Potsdam Institute for Climate
Impact Research (PIK), obtained from the national meteorological services. The data set used
here covers the period 1901–2010. Descriptions of the data processing and quality control
for a previous version of the data set (covering the period 1951–2003) are given in Österle
et al. (2006a), Österle et al. (2006b), and Österle et al. (2016). The data set was extended to
the current period of 1901–2010 as new data became available, using the same procedures.
Since the data availability in the beginning of the century is considerably lower, the data set
starting in 1901 contains only 1440 stations (of which 432 are located in the Rhine catchment)
for Germany compared to 2342 stations for the period starting in 1951.

The data processing done by PIK included filling of missing values and correction of non-
natural inhomogeneities such as changes in the station location, measurement methods or
devices. The procedure is shortly summarised here, for more detailed information please
refer to the given references. Checking for missing values in the data included checking a) for
values exceeding the physically possible range of the respective parameter, b) the consistency
between average, minimum, and maximum daily temperature and between sun shine duration
and cloudiness, and c) the plausibility of occurrence of sequences with the same value. Filling
the gaps of a station time series was done by finding the neighbouring station with the highest
correlation and adding the difference between the long-term monthly mean values of both
stations to the neighbouring station’s value. For parameters with a fixed range of values (e.g.
relative humidity), the gaps were filled using relative differences. Global shortwave radiation,
if not available at the station, was obtained from sunshine duration as described in Österle
(2001). Inhomogenities due to the relocation of stations were identified by removing the annual
cycle from the data and comparing the time series before and after the relocation using the
t-test. If the t-test indicated a significant difference between the two sub-series, the same test
was applied to a neighbouring station without relocations. If this station showed the same
inhomogeneity, it was judged to be natural. Otherwise the homogeneity was corrected by
adapting the sub-series previous to the relocation using a similar procedure as for filling gaps.
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In a last step the homogeneity in relation to neighbouring stations was tested, considering 10
neighbouring stations.

Data Set S1. Weather pattern classification files
Archive with classification data files: classification catalogue with columns: year, month, day,
weather pattern; netcdf files of pattern centroids.

Figure 4.S1. Plots of pattern centroids
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Figure 4.S1: Centroids of msl, t2m, and q anomalies for the 40 patterns. Note that the input
fields have been rescaled to [-1,1] for classification (not as shown here) and that for classification
only the area enclosed by the rectangle has been considered.
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Figure 4.S1: Continued.
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Figures 4.S2–4.S4. Plots of multiple between-type trends for all WPs
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Figure 4.S2: Multiple trends of pattern frequency. Each value of the upper triangle denotes
the trend magnitude of a specific period, given by its start year (horizontal axis) and end
year (vertical axis). Black contours enclose time periods with statistically significant trends
(Mann-Kendall test, p < 0.05). Icons as in Figure 4.4, page 73.
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Figure 4.S3: Multiple trends of pattern seasonality. As in Fig. 4.S2
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Figure 4.S4: Multiple trends of pattern persistence. As in Fig. 4.S2
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Figures 4.S5–4.S8. Plots of multiple within-type trends for all WPs
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Figure 4.S5: Multiple trends of pattern mean daily temperature. Plot as in Fig. 4.S2, except
that black contours enclose time periods with field significant trends (p < 0.05).
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Figure 4.S6: Multiple trends of pattern mean daily precipitation. As in Fig. 4.S5.
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Figure 4.S7: Multiple trends of pattern mean daily shortwave radiation. As in Fig. 4.S5.
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Figure 4.S8: Multiple trends of pattern mean daily relative humidity. As in Fig. 4.S5.
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5.1 Main results

The objective of this thesis was to analyse past precipitation changes in Germany and the
Rhine basin, and to relate these to changes in weather patterns. Being able to explain
precipitation changes by pattern changes allows for using a weather pattern-based approach
for downscaling of GCM output to use in climate change attribution studies and helps to
understand whether observed precipitation changes are likely to persist or will fluctuate along
with decadal oscillations of large-scale atmospheric circulations. This chapter summarises the
main achievements with respect to the research questions framed in the beginning.

What changes in precipitation can be detected in the past century?
Are these changes rather decadal fluctuations or long-term trends (persistent in time)?
Changes in precipitation in Germany and the Rhine basin are highly dissimilar, depending on the
investigated region, period, season, and even month. A general trend towards more precipitation
was found for winter. This trend is persistent basically over the whole century, although the
magnitude of the trend is variable (see Figure 4.8, page 78 for spatially aggregated results
of the Rhine basin). In chapter 2, a parallel shift in most winter precipitation characteristics
was found – total precipitation increases along with daily mean and extreme precipitation as
well as persistence of precipitation (i.e. transition probabilities). Although multiple periods
were investigated only for mean daily totals, it is to be expected to observe the same parallel
behaviour also for other precipitation characteristics throughout the century. Trends towards
wetter spring/autumn and dryer summer that were observed for the 1951–2006 period are
not persistent during the whole century (see Figure 4.8, page 78). No long-term trend was
observed and detected short-term trends are of varying direction, but generally point rather
towards increasing spring and autumn precipitation in the second half of the 20th century. Thus,
only for winter a clear and long-term persistent trend signal was detected, meaning higher
precipitation amounts, longer wet periods, and increased extreme events. In combination with
the expected warming, which is also clearly observed in winter temperatures for the Rhine basin
(see Figure 4.7, page 77), the increased precipitation is likely to occur in the form of rain rather
than snow. Only for the most recent decades (since the 70s), decreasing winter precipitation
was observed in the Rhine basin. Whether this trend is going to continue in future, has yet to be
validated. The opposite signal was detected for summer precipitation, although the century-long
time series shows no signal.
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Detected trends do not only differ depending on the time period under consideration, but
also show high spatial variability. Thus, it is hardly possible to find a general conclusion that is
valid for the entire region. This heterogeneity is also reflected in the large amount of published
work on detection of trends in precipitation (see Table 2.1, page 22). Each of these studies
represents only one small pixel of the overall image of which this thesis sheds light on, first,
a great variety of precipitation characteristics, and, second, a comprehensive range of time
periods. Considering the results found here, it is strongly recommended to authors of future
trend analysis studies to not only consider the full period of available data, but also investigate
sub-periods, as apparent trends may actually consist of different, opposing short-term trends.

Can variability of daily precipitation be explained by weather patterns?
Daily precipitation follows a positively skewed distribution with many observations close to zero
and (luckily) only few high and extremely high values. Nearly the full range of these values can
be observed under nearly all weather patterns. It was not possible to obtain a classification that
associates only a narrow range of precipitation values with each pattern. Nevertheless, the
distribution of precipitation differs strongly among patterns and predominantly dry patterns exist
as well as patterns with raised likelihood for high and extreme precipitation. In section 3.4.1,
page 49 the issue of small explained variance for precipitation was elaborated on in greater
detail, showing that the low skill is inherent to the skewed distribution of daily precipitation.

Can precipitation trends be related to changes in large-scale atmospheric patterns?
Large-scale atmospheric circulation is the main driver of local weather. Under the effect of
climate change, it is commonly assumed to observe changes in circulation (i.e. changes in the
frequency of patterns, termed between-type changes), thus affecting local weather (Beck et al.,
2007; Cahynová and Huth, 2010; Hewitson and Crane, 2006). However, circulation may as
well remain constant, but simply cause different local weather (termed within-type changes)
(Beck et al., 2007; Brinkmann, 1999; Fleig et al., 2015). Within this thesis, a weather pattern
classification was developed, optimising the amount of explained variability in local weather for
the Rhine basin. Although deriving the optimal classification for the target region, only part of the
trends and variability of local precipitation can be attributed to between-type changes. Usually
more than half of the magnitude of changes is related to changing internal characteristics
of weather patterns. However, within-type changes are highest for periods with low overall
trends (see Figure 4.8, page 78), especially in winter and spring. The long-term increasing
trend for winter precipitation is related to accordingly increasing frequency of high-intensity
winter patterns. Particularly these patterns are highly correlated with the state of large-scale
teleconnection indices such as the North Atlantic Oscillation (NAO), the Scandinavian pattern
(SCA), the East-Atlantic pattern (EA), and the East-Atlantic/Western-Russia pattern (EAWR).
Trends in precipitation can partly be explained by the frequency of weather patterns and these
are in turn associated with large-scale circulation. However, a considerable amount of change
within the patterns remains, possing a considerable source of uncertainty to any application in
downscaling.

5.2 Discussion and directions for further research
5.2.1 Weather pattern classification for downscaling

The skill of an optimised weather pattern classification to explain changes in local precipitation
and other variables can be exploited for downscaling of large-scale circulation model output.
GCMs are widely known to have deficiencies in correctly representing particularly precipitation
(Hewitson and Crane, 2006; Sunyer et al., 2015), but are believed to capture large-scale
circulation comparatively well. Thus, it is a promising approach to infer local precipitation and
other meteorological variables of interest only from circulation information of the GCMs. These
data may then be used, e.g. for running a hydrological model, thus investigating the influence of
different climate realisations on streamflow characteristics, such as floods.

A possible further research goal could be to attribute observed changes in floods to climate
change, as outlined in Figure 1.3, page 15. The prerequisites to make a weather pattern-based
downscaling approach applicable are completed and validated within this thesis. Using a
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stochastic weather generator that generates fields of local weather conditioned on weather
patterns, allows for employing runs of GCMs using different greenhouse gas forcings. The
ability of recent GCMs to reproduce the main characteristics of weather patterns has been
tested and proven for most of the individual GCMs (see subsection 3.4.2, page 50).

The general skill of weather pattern classification compared to other downscaling methods
was recently evaluated for the prediction of droughts in north-eastern Brazil (Delgado et al.,
2017). Although the classification used there was, of course, optimised for the specific purpose
and region, the classification method and optimisation workflow was the same as used within
this thesis. Three different downscaling methods (empirical quantile mapping (Wetterhall et al.,
2012), expanded downscaling (Bürger, 1996), weather patterns) in combination with two GCMs
were compared by their skill in predicting meteorological drought conditions. While the former
two methods work with daily precipitation (and temperature) values from the GCMs as input
and allow to directly calculate the desired drought indices, the classification method relates
monthly (or even longer) average conditions of different variables at surface and tropospheric
levels, such as sea surface temperature, near-surface wind, 850 hPa geopotential height and
temperature, to discrete drought index values. The classification approach showed competitive
skill in predicting the correct drought index value when considering the full range, but has
deficiencies particularly in capturing the extremes (i.e. droughts). Due to the nature of the
method to assign only one fixed (averaged) value per pattern, a limited range of values can be
predicted only.

However, the downscaling approach outlined in this thesis would combine weather patterns
and a stochastic weather generator, thus having the potential to generate different values for the
same pattern (the values following the pattern’s specific distribution of the respective variable).
A good classification would consist of patterns whose distributions are as different from each
other as possible. This goal was not completely achieved by the “optimised” classification used
here, as indicated in section 3.A. When investigating the empirical distribution of precipitation
for each pattern (not shown here), some patterns share a rather similar distribution. In the ideal
case, each pattern would be associated with a narrow and very confined range of values for
each meteorological variable under consideration. Given this, a changed frequency of patterns
would have a clear effect on local climate which would be beneficial in the attribution study.
Since this clear stratification of local climate (and especially precipitation) is only partly achieved
by the presented classification, it is to be expected to find only small differences in local climate
simulated by the stochastic weather generator under the two different “climates”. Thus, it has
to be summarised that some limitations exist in the outlined attribution approach. These are
discussed further in the following section.

5.2.2 Limitations for downscaling
For any application of the weather pattern classification, e.g. as a downscaling tool as described
above, one has to keep in mind that a considerable amount of precipitation changes could not
be assigned to changing frequency of weather patterns. This amount certainly holds part of the
climate change signal and would be missing in the climate data resulting from the downscaling.
Thus, two possible errors are to be expected: either the within-type change that is neglected is
in the same direction as the between-type change – this would lead to an underestimation of the
climate change impact. Or the within-type changes are actually opposing to the between-type
changes, which would result in an overestimation. The uncertainties imposed by within-type
changes have to be kept in mind when applying a weather pattern-based downscaling approach
and attempts should be made to quantify them.

Another drawback in the attribution approach is the low skill of the weather pattern classifica-
tion to stratify especially precipitation. While for local temperature, due to including temperature
as a classification variable, a good stratification (meaning narrow distribution per pattern) was
achieved, the possible range of precipitation values per pattern is much wider. This problem
was intensively discussed in section 3.4.1, page 49.

Apart from these uncertainties, it should be clearly noted, that the downscaling approach
was only validated for the past, i.e. the period on which the patterns have been established. For
conditioning a stochastic weather generator on the weather patterns, a distribution per pattern
and variable has to be implemented based on observed data. Whether this distribution would
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hold under future climate change conditions cannot be proved here. However, the same would
occur for the hydrological model – is the parametrisation fitted on observed periods still valid in
the future? Nevertheless, the first goal when attributing changes in floods to climate change
would be to focus on past periods.

5.3 Concluding remarks
Two general conclusions on precipitation changes can be drawn: due to the spatial and temporal
heterogeneity of trends, the validity of trend analyses is clearly restricted to the respective time
period and region. Changes in precipitation are partly attributable to large-scale circulation
changes.

The workflow used here for obtaining an optimal weather pattern classification, can be
applied to any other region, as demonstrated by Delgado et al. (2017) for north-eastern Brazil.
The very classification used here is limited to the Rhine basin, for which it has been optimised.
However, some general advice can be given for further applications: a small spatial domain,
combined with a reasonably high number of classes allows for a good stratification of local
variables. Although the weather pattern classification mixes information on the atmospheric
circulation with thermo-dynamic variables, which hampers the physical interpretability (see
related discussion in subsection 1.1.2, page 12), the correlation to large-scale circulation modes
(chapter 4, page 63) demonstrates that the patterns derived are able to capture the general
circulation. The addition of temperature as a classification variable aids in adding seasonal
information which is valuable when conditioning a weather generator for generating continuous
time series of local climate data.

This thesis validates the necessary assumptions for a downscaling approach based on
weather patterns and a weather generator. Any further work in this direction may directly build
upon the results obtained here.



BibliographyBibliography

Alexander, L. V., Zhang, X., Peterson, T. C., Caesar, J., Gleason, B., Klein Tank, A. M. G.,
Haylock, M., Collins, D., Trewin, B., Rahimzadeh, F., et al. (2006). “Global observed changes
in daily climate extremes of temperature and precipitation”. In: Journal of Geophysical
Research: Atmospheres 111.D5. DOI: 10.1029/2005jd006290.

Anagnostopoulou, C., Tolika, K., Maheras, P., Kutiel, H., and Flocas, H. A. (2008). “Perfor-
mance of the general circulation HadAM3P model in simulating circulation types over the
Mediterranean region”. In: International Journal of Climatology 28.2, pp. 185–203. DOI:
10.1002/joc.1521.

Andronova, N. G. and Schlesinger, M. E. (2000). “Causes of global temperature changes during
the 19th and 20th centuries”. In: Geophysical Research Letters 27.14, pp. 2137–2140.

Bárdossy, A. and Plate, E. J. (1991). “Modeling daily rainfall using a semi-Markov representation
of circulation pattern occurrence”. In: Journal of Hydrology 122.1, pp. 33–47. DOI: 10.1016
/0022-1694(91)90170-M.

Bárdossy, A. and Plate, E. J. (1992). “Space-time model for daily rainfall using atmospheric
circulation patterns”. In: Water Resources Research 28.5, pp. 1247–1259. DOI: 10.1029/91
WR02589.

Bárdossy, A., Stehlík, J., and Caspary, H.-J. (2002). “Automated objective classification of daily
circulation patterns for precipitation and temperature downscaling based on optimized fuzzy
rules”. In: Climate Research 23.1, pp. 11–22. DOI: 10.3354/cr023011.

Barnston, A. G. and Livezey, R. E. (1987). “Classification, seasonality and persistence of low-
frequency atmospheric circulation patterns”. In: Monthly weather review 115.6, pp. 1083–
1126.

Bayliss, A. C. and Jones, R. C. (1993). Peaks-over-threshold flood database: Summary statistics
and seasonality. Institute of Hydrology.

van Bebber, W. J. (1892). Das Wetter in den barometrischen Maxima. Hammerich & Lesser.
Beck, C., Jacobeit, J., and Jones, P. D. (2007). “Frequency and within-type variations of large-

scale circulation types and their effects on low-frequency climate variability in central europe
since 1780”. In: International Journal of Climatology 27.4, pp. 473–491. DOI: 10.1002/joc
.1410.

Beck, C. and Philipp, A. (2010). “Evaluation and comparison of circulation type classifications
for the European domain”. In: Physics and Chemistry of the Earth 35.9-12, pp. 374–387.
DOI: 10.1016/j.pce.2010.01.001.

https://doi.org/10.1029/2005jd006290
https://doi.org/10.1002/joc.1521
https://doi.org/10.1016/0022-1694(91)90170-M
https://doi.org/10.1016/0022-1694(91)90170-M
https://doi.org/10.1029/91WR02589
https://doi.org/10.1029/91WR02589
https://doi.org/10.3354/cr023011
https://doi.org/10.1002/joc.1410
https://doi.org/10.1002/joc.1410
https://doi.org/10.1016/j.pce.2010.01.001


104 Chapter 5. Discussion and conclusions

Belleflamme, A., Fettweis, X., and Erpicum, M. (2014). “Do global warming-induced circulation
pattern changes affect temperature and precipitation over Europe during summer?” In:
International Journal of Climatology 35.7, pp. 1484–1499. DOI: 10.1002/joc.4070.

Belleflamme, A., Fettweis, X., Lang, C., and Erpicum, M. (2013). “Current and future atmospheric
circulation at 500 hPa over Greenland simulated by the CMIP3 and CMIP5 global models”.
In: Climate Dynamics 41.7-8, pp. 2061–2080. DOI: 10.1007/s00382-012-1538-2.

van den Besselaar, E. J. M., Klein Tank, A. M. G., and Buishand, T. A. (2013). “Trends in
European precipitation extremes over 1951–2010”. In: International Journal of Climatology
33.12, pp. 2682–2689. DOI: 10.1002/joc.3619.

Bettolli, M. L. and Penalba, O. C. (2012). “Synoptic sea level pressure patterns-daily rainfall
relationship over the Argentine Pampas in a multi-model simulation”. In: Meteorological
Applications 21.2, pp. 376–383. DOI: 10.1002/met.1349.

Bissolli, P. and Dittmann, E. (2001). “The objective weather type classification of the German
Weather Service and its possibilities of application to environmental and meteorological
investigations”. In: Meteorologische Zeitschrift 10.4, pp. 253–260. DOI: 10.1127/0941-2948
/2001/0010-0253.

Bosshard, T., Kotlarski, S., Zappa, M., and Schär, C. (2014). “Hydrological Climate-Impact
Projections for the Rhine River: GCM–RCM Uncertainty and Separate Temperature and
Precipitation Effects”. In: Journal of Hydrometeorology 15.2, pp. 697–713. DOI: 10.1175/jh
m-d-12-098.1.

Brands, S., Herrera, S., Fernández, J., and Gutiérrez, J. M. (2013). “How well do CMIP5 Earth
System Models simulate present climate conditions in Europe and Africa?” In: Climate
Dynamics 41.3, pp. 803–817. DOI: 10.1007/s00382-013-1742-8.

Brezowsky, H. and Hess, P. (1952). “Katalog der Großwetterlagen Europas”. In: Berichte der
Deutscher Wetterdenst in der US-Zone 33.

Brienen, S., Kapala, A., Mächel, H., and Simmer, C. (2013). “Regional centennial precipitation
variability over Germany from extended observation records”. In: International Journal of
Climatology 33.9, pp. 2167–2184. DOI: 10.1002/joc.3581.

Brinkmann, W. A. R. (1999). “Within-type variability of 700 hPa winter circulation patterns over
the Lake Superior basin”. In: International Journal of Climatology 19.1, pp. 41–58.

Brinkmann, W. A. R. (2000). “Modification of a correlation-based circulation pattern classification
to reduce within-type variability of temperature and precipitation”. In: International Journal of
Climatology 20.8, pp. 839–852. DOI: 10.1002/1097-0088(20000630)20:8<839::aid-joc5
00>3.0.co;2-x.

Brisson, E., Demuzere, M., Kwakernaak, B., and Van Lipzig, N. P. M. (2010). “Relations between
atmospheric circulation and precipitation in Belgium”. In: Meteorology and Atmospheric
Physics 111.1-2, pp. 27–39. DOI: 10.1007/s00703-010-0103-y.

Bronstert, A., Agarwal, A., Boessenkool, B., Fischer, M., Heistermann, M., Köhn-Reich, L.,
Moran, T., and Wendi, D. (2017). “Die Sturzflut von Braunsbach am 29. Mai 2016 – Entste-
hung, Ablauf und Schäden eines "‘Jahrhundertereignisses"’. Teil 1: Meteorologische und
hydrologische Analyse”. In: Hydrologie & Wasserbewirtschaftung 61.3, pp. 150–162. DOI:
10.5675/HyWa_2017,3_1.

Bueh, C. and Nakamura, H. (2007). “Scandinavian pattern and its climatic impact”. In: Quarterly
Journal of the Royal Meteorological Society 133.629, pp. 2117–2131.

Bürger, G., Heistermann, M., and Bronstert, A. (2014). “Towards Subdaily Rainfall Disaggrega-
tion via Clausius–Clapeyron”. In: Journal of Hydrometeorology 15.3, pp. 1303–1311. DOI:
10.1175/jhm-d-13-0161.1.

Bürger, G. (1996). “Expanded downscaling for generating local weather scenarios”. In: Climate
Research 7.2, pp. 111–128.

Cahynová, M. and Huth, R. (2010). “Circulation vs. climatic changes over the Czech Republic:
A comprehensive study based on the COST733 database of atmospheric circulation classifi-
cations”. In: Physics and Chemistry of the Earth 35.9-12, pp. 422–428. DOI: 10.1016/j.pce
.2009.11.002.

Cahynová, M. and Huth, R. (2016). “Atmospheric circulation influence on climatic trends in
Europe: an analysis of circulation type classifications from the COST733 catalogue”. In:
International Journal of Climatology 36.7, pp. 2743–2760. DOI: 10.1002/joc.4003.

https://doi.org/10.1002/joc.4070
https://doi.org/10.1007/s00382-012-1538-2
https://doi.org/10.1002/joc.3619
https://doi.org/10.1002/met.1349
https://doi.org/10.1127/0941-2948/2001/0010-0253
https://doi.org/10.1127/0941-2948/2001/0010-0253
https://doi.org/10.1175/jhm-d-12-098.1
https://doi.org/10.1175/jhm-d-12-098.1
https://doi.org/10.1007/s00382-013-1742-8
https://doi.org/10.1002/joc.3581
https://doi.org/10.1002/1097-0088(20000630)20:8<839::aid-joc500>3.0.co;2-x
https://doi.org/10.1002/1097-0088(20000630)20:8<839::aid-joc500>3.0.co;2-x
https://doi.org/10.1007/s00703-010-0103-y
https://doi.org/10.5675/HyWa_2017,3_1
https://doi.org/10.1175/jhm-d-13-0161.1
https://doi.org/10.1016/j.pce.2009.11.002
https://doi.org/10.1016/j.pce.2009.11.002
https://doi.org/10.1002/joc.4003


5.3 Concluding remarks 105

Caliński, T. and Harabasz, J. (1974). “A dendrite method for cluster analysis”. In: Communicati-
ons in Statistics – Theory and Methods 3.1, pp. 1–27. DOI: 10.1080/03610927408827101.

Comas-Bru, L. and McDermott, F. (2014). “Impacts of the EA and SCA patterns on the European
twentieth century NAO–winter climate relationship”. In: Quarterly Journal of the Royal
Meteorological Society 140.679, pp. 354–363.

Corte-Real, J., Hu, H., and Qian, B. (1999). “A weather generator for obtaining daily precipitation
scenarios based on circulation patterns”. In: Climate Research 13.1, pp. 61–75.

Corti, S., Molteni, F., and Palmer, T. N. (1999). “Signature of recent climate change in frequencies
of natural atmospheric circulation regimes”. In: Nature 398.6730, pp. 799–802.

Dankers, R. and Feyen, L. (2009). “Flood hazard in Europe in an ensemble of regional climate
scenarios”. In: Journal of Geophysical Research 114.D16, p. D16108. DOI: 10.1029/2008J
D011523.

Delgado, J. M., Voss, S., Bürger, G., Vormoor, K., Murawski, A., Rodrigues, M., Martins, E.,
Vasconcelos Júnior, F., and Francke, T. (2017). “Seasonal Drought Prediction for Semiarid
Northeast Brazil: Verification of Six Hydro-Meteorological Forecast Products”. In: Hydrology
and Earth System Sciences Discussions, pp. 1–18. DOI: 10.5194/hess-2017-572.

Douglas, E. M., Vogel, R. M., and Kroll, C. N. (2000). “Trends in floods and low flows in the
United States: impact of spatial correlation”. In: Journal of hydrology 240.1, pp. 90–105. DOI:
10.1016/s0022-1694(00)00336-x.

Duethmann, D., Bolch, T., Farinotti, D., Kriegel, D., Vorogushyn, S., Merz, B., Pieczonka, T.,
Jiang, T., Su, B., and Güntner, A. (2015). “Attribution of streamflow trends in snow and
glacier melt-dominated catchments of the Tarim River, Central Asia”. In: Water Resources
Research 51.6, pp. 4727–4750. DOI: 10.1002/2014WR016716.

Elshamy, M. E., Wheater, H. S., Gedney, N., and Huntingford, C. (2006). “Evaluation of the rainfall
component of a weather generator for climate impact studies”. In: Journal of Hydrology
326.1-4, pp. 1–24. DOI: 10.1016/j.jhydrol.2005.09.017.

Enke, W., Schneider, F., and Deutschländer, T. (2005a). “A novel scheme to derive optimized
circulation pattern classifications for downscaling and forecast purposes”. In: Theoretical
and Applied Climatology 82.1-2, pp. 51–63. DOI: 10.1007/s00704-004-0116-x.

Enke, W. and Spekat, A. (1997). “Downscaling climate model outputs into local and regional
weather elements by classification and regression”. In: Climate Research 8.3, pp. 195–207.

Enke, W., Deutschländer, T., Schneider, F., and Küchler, W. (2005b). “Results of five regional
climate studies applying a weather pattern based downscaling method to ECHAM4 climate
simulation”. In: Meteorologische Zeitschrift 14.2, pp. 247–257. DOI: 10.1127/0941-2948/20
05/0028.

Falter, D., Schröter, K., Dung, N. V., Vorogushyn, S., Kreibich, H., Hundecha, Y., Apel, H., and
Merz, B. (2015). “Spatially coherent flood risk assessment based on long-term continuous
simulation with a coupled model chain”. In: Journal of Hydrology 524, pp. 182–193. DOI:
10.1016/j.jhydrol.2015.02.021.

Fatichi, S., Ivanov, V. Y., and Caporali, E. (2011). “Simulation of future climate scenarios with a
weather generator”. In: Advances in Water Resources 34.4, pp. 448–467. DOI: 10.1016/j.a
dvwatres.2010.12.013.

Fleig, A. K., Tallaksen, L. M., James, P., Hisdal, H., and Stahl, K. (2015). “Attribution of European
precipitation and temperature trends to changes in synoptic circulation”. In: Hydrology and
Earth System Sciences 19.7, pp. 3093–3107. DOI: 10.5194/hess-19-3093-2015.

Førland, E. J. and Hanssen-Bauer, I. (2000). “Increased precipitation in the Norwegian Arctic:
true or false?” In: Climatic Change 46.4, pp. 485–509.

Fowler, H. J., Blenkinsop, S., and Tebaldi, C. (2007). “Linking climate change modelling to
impacts studies: recent advances in downscaling techniques for hydrological modelling”. In:
International Journal of Climatology 27.12, pp. 1547–1578. DOI: 10.1002/joc.1556.

Fowler, H. J., Kilsby, C. G., and O’Connell, P. E. (2000). “A stochastic rainfall model for the
assessment of regional water resource systems under changed climatic condition”. In:
Hydrology and Earth System Sciences 4.2, pp. 263–281. DOI: 10.5194/hess-4-263-2000.

Fowler, H. J., Kilsby, C. G., O’Connell, P. E., and Burton, A. (2005). “A weather-type conditioned
multi-site stochastic rainfall model for the generation of scenarios of climatic variability and

https://doi.org/10.1080/03610927408827101
https://doi.org/10.1029/2008JD011523
https://doi.org/10.1029/2008JD011523
https://doi.org/10.5194/hess-2017-572
https://doi.org/10.1016/s0022-1694(00)00336-x
https://doi.org/10.1002/2014WR016716
https://doi.org/10.1016/j.jhydrol.2005.09.017
https://doi.org/10.1007/s00704-004-0116-x
https://doi.org/10.1127/0941-2948/2005/0028
https://doi.org/10.1127/0941-2948/2005/0028
https://doi.org/10.1016/j.jhydrol.2015.02.021
https://doi.org/10.1016/j.advwatres.2010.12.013
https://doi.org/10.1016/j.advwatres.2010.12.013
https://doi.org/10.5194/hess-19-3093-2015
https://doi.org/10.1002/joc.1556
https://doi.org/10.5194/hess-4-263-2000


106 Chapter 5. Discussion and conclusions

change”. In: Journal of Hydrology 308.1-4, pp. 50–66. DOI: 10.1016/j.jhydrol.2004.10
.021.

Francis, J. A. and Vavrus, S. J. (2012). “Evidence linking Arctic amplification to extreme weather
in mid-latitudes”. In: Geophysical Research Letters 39.6. DOI: 10.1029/2012gl051000.

Furrer, E. M. and Katz, R. W. (2008). “Improving the simulation of extreme precipitation events
by stochastic weather generators”. In: Water Resources Research 44.12. DOI: 10.1029/200
8wr007316.

Goodess, C. M. and Jones, P. D. (2002). “Links between circulation and changes in the
characteristics of Iberian rainfall”. In: International Journal of Climatology 22.13, pp. 1593–
1615. DOI: 10.1002/joc.810.

Groisman, P. Y., Karl, T. R., Easterling, D. R., Knight, R. W., Jamason, P. F., Hennessy, K. J.,
Suppiah, R., Page, C. M., Wibig, J., Fortuniak, K., Razuvaev, V. N., Douglas, A., Førland,
E., and Zhai, P.-M. (1999). “Changes in the probability of heavy precipitation: important
indicators of climatic change”. In: Weather and Climate Extremes. Springer, pp. 243–283.
DOI: 10.1007/978-94-015-9265-9_15.

Groisman, P. Y., Knight, R. W., Easterling, D. R., Karl, T. R., Hegerl, G. C., and Razuvaev, V. N.
(2005). “Trends in intense precipitation in the climate record”. In: Journal of climate 18.9,
pp. 1326–1350. DOI: 10.1175/jcli3339.1.

Haberlandt, U., Belli, A., and Bárdossy, A. (2015). “Statistical downscaling of precipitation using a
stochastic rainfall model conditioned on circulation patterns – an evaluation of assumptions”.
In: International Journal of Climatology 35.3, pp. 417–432. DOI: 10.1002/joc.3989.

Hamlet, A. F. and Lettenmaier, D. P. (2007). “Effects of 20th century warming and climate
variability on flood risk in the western U.S.” In: Water Resources Research 43.6, W06427.
DOI: 10.1029/2006WR005099.

Hamlet, A. F., Mote, P. W., Clark, M. P., and Lettenmaier, D. P. (2007). “Twentieth-century trends
in runoff, evapotranspiration, and soil moisture in the western United States”. In: Journal of
Climate 20, pp. 1468–1486. DOI: doi:10.1175/JCLI4051.1.

Hänsel, S., Petzold, S., and Matschullat, J. (2009). “Precipitation trend analysis for central
eastern Germany 1851–2006”. In: Bioclimatology and natural hazards. Springer, pp. 29–38.
DOI: 10.1007/978-1-4020-8876-6_3.

Hewitson, B. C. and Crane, R. G. (2006). “Consensus between GCM climate change projections
with empirical downscaling: precipitation downscaling over South Africa”. In: International
Journal of Climatology 26.10, pp. 1315–1337. DOI: 10.1002/joc.1314.

Hundecha, Y. and Bárdossy, A. (2005). “Trends in daily precipitation and temperature extremes
across western Germany in the second half of the 20th century”. In: International Journal of
Climatology 25.9, pp. 1189–1202. DOI: 10.1002/joc.1182.

Hundecha, Y. and Merz, B. (2012). “Exploring the relationship between changes in climate and
floods using a model-based analysis”. In: Water Resources Research 48.4, W04512. DOI:
10.1029/2011wr010527.

Hundecha, Y., Pahlow, M., and Schumann, A. (2009). “Modeling of daily precipitation at multiple
locations using a mixture of distributions to characterize the extremes”. In: Water Resources
Research 45.12, W12412. DOI: 10.1029/2008wr007453.

Hurrell, J. W. et al. (1995). “Decadal trends in the North Atlantic Oscillation: regional temperatu-
res and precipitation”. In: Science 269.5224, pp. 676–678.

Huth, R. (2001). “Disaggregating climatic trends by classification of circulation patterns”. In:
International Journal of Climatology 21.2, pp. 135–153.

Huth, R. (2010). “Synoptic-climatological applicability of circulation classifications from the
COST733 collection: First results”. In: Physics and Chemistry of the Earth 35.9-12, pp. 388–
394. DOI: 10.1016/j.pce.2009.11.013.
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