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Abstract

We introduce an approach to detecting inconsistencies in large biological networks by using

answer set programming. To this end, we build upon a recently proposed notion of consistency

between biochemical/genetic reactions and high-throughput profiles of cell activity. We then

present an approach based on answer set programming to check the consistency of large-scale

data sets. Moreover, we extend this methodology to provide explanations for inconsistencies

by determining minimal representations of conflicts. In practice, this can be used to identify

unreliable data or to indicate missing reactions.

KEYWORDS: answer set programming, bioinformatics, consistency, diagnosis

1 Introduction

Molecular biology has seen a technological revolution with the establishment of high-

throughput methods in the last years. These methods allow for gathering multiple

orders of magnitude more measured data than was procurable before. Furthermore,

there is an increasing number of biological repositories on the Web, such as KEGG,

Biomodels, Reactome, MetaCyc, and others, incorporating thousands of biochemical

reactions and genetic regulations. However, both measurements as well as biological

networks are prone to considerable incompleteness, heterogeneity, and mutual

inconsistency, which makes it highly nontrivial to draw biologically meaningful

conclusions in an automated way. As a consequence, appropriate representation and

powerful reasoning tools are needed to model complex biological systems, in the

face of incompleteness and inconsistency.

In this paper, we deal with the analysis of high-throughput measurements in

molecular biology, like microarray data or metabolic profiles. Up to now, it is still

common practice to use expression profiles merely for detecting overexpressed or

underexpressed genes under specific conditions, leaving the task of making biological
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324 M. Gebser et al.

sense out of a multitude of gene identifiers to human experts. However, many

efforts have also been made to better utilize high-throughput data, in particular, by

integrating them into large-scale models of transcriptional regulations or metabolic

processes (Friedman et al. 2000; Klamt and Stelling 2006).

One possible approach consists of investigating the compatibility between exper-

imental measurements and knowledge available in reaction databases. This can be

done by using formal frameworks, for instance, the ones developed in (Gutierrez-

Rios et al. 2003) and (Siegel et al. 2006). A crucial feature of this methodology is

its ability to cope with qualitative knowledge (for instance, reactions lacking kinetic

details) and noisy data. In what follows, we rely upon the so-called Sign Consistency

Model (SCM) because of (Siegel et al. 2006). SCM imposes constraints between

experimental measurements and a graph representation of cellular interactions called

an influence graph (Soulé 2003). Such a graph provides an overapproximation of the

actual biological model, where an “influence” is modeled by a disjunctive causal

rule. This is particularly well suited for dealing with incomplete (missing reactions)

or unreliable (noisy data) information.

Building on the SCM framework, we develop declarative techniques based on

answer set programming (ASP) (Baral 2003; Gelfond 2008) to detect and explain

inconsistencies in large data sets. This approach has several advantages. First, it

allows us to formulate biological problems in a declarative way, thus easing the

communication with biological experts. Second, although we do not detail it here,

the rich modeling language facilitates integrating different knowledge representation

and reasoning techniques, like abduction, explanation, planning, prediction, etc., in

a uniform and transparent way (cf. Gebser et al. 2010, for such extensions). And

finally, modern ASP solvers are based on advanced Boolean constraint solving

technology and thus provide us with highly efficient inference engines. Apart from

modeling the aforementioned biological problems in ASP, our major concern lies

with the scalability of the approach. To this end, we apply our methods to

the gene regulatory network of yeast (Sudarsanam et al. 2000; Guelzim et al.

2002) and, moreover, design an artificial yet biologically meaningful benchmark

suite indicating that an ASP-based approach scales well on the considered class

of applications. Notably, to the best of our knowledge, the functionalities we

provide go beyond the ones of the only comparable approach (Guziolowski et al.

2009).

To begin with, we introduce SCM in Section 2. Section 3 gives the syntax

and semantics of ASP used in our application. In Section 4, we develop an

ASP formulation of checking the consistency between experimental profiles and

influence graphs. We further extend this approach in Section 5 to identifying minimal

representations of conflicts if the experimental data are inconsistent with an influence

graph. In Section 6, we describe simple yet effective techniques for input reduction

along with a connectivity property that is used to refine the encoding presented

in Section 5. Section 7 is dedicated to an empirical evaluation of our approach

along with an exemplary case study on yeast. For making our methods easily

accessible, an available Web service is presented in Section 8. Section 9 concludes

the paper with a discussion and outlook on future work. Finally, Appendices A
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Fig. 1. Simplified model of operon lactose in Escherichia coli, represented as an influence

graph. The vertices represent either genes, metabolites, or proteins, while the edges indicate

the regulations among them. Edges with an arrow stand for positive regulations (activations),

while edges with a tee head stand for negative regulations (inhibitions). Vertices G and Le

are considered to be inputs of the system; that is, their signs are not constrained via their

incoming edges.

and B contain proofs of soundness and completeness for our problem formulations

in ASP.

2 Influence graphs and sign consistency constraints

Influence graphs (Soulé 2003) are a common representation for a wide range

of dynamical systems. In the field of genetic networks, they have been investi-

gated for various classes of systems, ranging from ordinary differential equations

(Soulé 2006) to synchronous (Remy et al. 2008) and asynchronous (Richard et al.

2004) Boolean networks. Influence graphs have also been introduced in the field

of qualitative reasoning (Kuipers 1994) to describe physical systems where a

detailed quantitative description is unavailable. In fact, this has been the main

motivation for using influence graphs for knowledge representation in the context

of biological systems.

An influence graph is a directed graph whose vertices are the input and state

variables of a system and whose edges express the effects of variables on each other.

Definition 2.1 (Influence Graph)

An influence graph is a directed graph (V , E, σ), where V is a set of vertices, E is a

set of edges, and σ : E → {+, –} is a (partial) labeling of the edges.

An edge j→ i means that the variation of j in time influences the level of i. Every

edge j→ i of an influence graph can be labeled with a sign, either + or –, denoted

by σ(j, i), where + (–) indicates that j tends to increase (decrease) i. An example of

influence graph is given in Figure 1; it represents a simplified model of the operon

lactose in Escherichia coli.

In SCM, experimental profiles are supposed to come from steady-state shift

experiments where, initially, the system is at steady state, then perturbed using

control parameters, and eventually, it settles into another steady state. It is assumed

that the data measure the differences between the initial and the final state. Thus,
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Table 1. Some vertex labelings (reflecting measurements of two steady states) for the

influence graph depicted in Figure 1; unobserved values indicated by question mark ?

species Le Li G LacY LacZ LacI A cAMP-CRP

μ1 – – – – – + – +

μ2 + + – + – + – –

μ3 + ? – ? ? + ? ?

μ4 ? ? ? – + ? ? +

for genes, proteins, or metabolites, we know whether the concentration has increased

or decreased, while quantitative values are unavailable, unessential, or unreliable.

By μ(i), we denote the sign, again either + or –, of the variation of a species i

between the initial and the final condition. One can easily enhance this setting to

also considering null (or more precisely, nonsignificant) variations, by exploiting the

concept of sign algebra (Kuipers 1994).

Given an influence graph (as a representation of cellular interactions) and a

labeling of its vertices with signs (as a representation of experimental profiles),

we now describe the constraints that relate both. Informally, for every noninput

vertex i, its variation μ(i) ought to be explained by the influence of at least one

predecessor j of i in the influence graph. Thereby, the influence of j on i is given by

the sign μ(j)σ(j, i) ∈ {+, –}, where the multiplication of signs is derived from that of

numbers. Sign consistency constraints can then be formalized as follows.

Definition 2.2 (Sign Consistency Constraints)

Let (V , E, σ) be an influence graph and μ : V → {+, –} be a (partial) vertex labeling.

Then, (V , E, σ) and μ are consistent, if there are some total extensions σ′ : E →
{+, –} of σ and μ′ : V → {+, –} of μ such that μ′(i) is consistent for each noninput

vertex i ∈ V , where μ′(i) is consistent, if there is some edge j→ i in E such that

μ′(i) = μ′(j)σ′(j, i).

Note that labelings σ and μ of vertices and edges, respectively, are admitted to

be partial. This occurs frequently in practice where the kind of an influence may

depend on environmental factors or experimental data may not include all elements

of a biological system. In order to decide whether a partially labeled influence graph

and a partial experimental profile are mutually consistent, we thus consider the

possible totalizations of them. If at least one total edge and one total vertex labeling

(extending the given labelings) are such that the signs of all noninput vertices are

explained, it is sufficient for mutual consistency.

Table 1 gives four vertex labelings for the influence graph in Figure 1. Total

labeling μ1 is consistent with the influence graph: the variation of each vertex

(except for input vertex Le) can be explained by the effect of one of its regulators.

For instance, in μ1, LacY receives a positive influence from cAMP-CRP as well

as a negative influence from LacI, the latter accounting for the decrease of LacY.

The second labeling, μ2, is not consistent: LacY receives only negative influences

from cAMP-CRP and LacI, and its increase cannot be explained. Partial vertex
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labeling μ3 is consistent with the influence graph in Figure 1, as setting the

signs of Li, LacY, LacZ, A, and cAMP-CRP to +, –, –, –, and +, respectively,

extends μ3 to a consistent total labeling. In contrast, μ4 cannot be extended

consistently.

3 Answer set programming

This section provides a brief introduction to ASP, a declarative problem-solving

paradigm offering a rich modeling language (Syrjänen; Gebser et al 2009a) along

with highly efficient inference engines based on Boolean constraint solving technol-

ogy (Giunchiglia et al. 2006; Drescher et al. 2008; Gebser et al. 2009c). The basic

idea of ASP is to encode a problem as a logic program such that its answer sets

represent solutions.

In view of our application, we take advantage of the elevated expressiveness of

disjunctive programs, capturing problems at the second level of the polynomial

hierarchy (Eiter and Gottlob 1995). A disjunctive logic program P is a finite set of

rules of the form

a1; . . . ; al ← al+1, . . . , am, not am+1, . . . , not an , (1)

where ai is an atom for 1 � i� n. A rule r as in (1) is called a fact if l =m= n= 1

and an integrity constraint if l = 0. Let head (r) = {a1, . . . , al} be the head of r,

body(r) = {al+1, . . . , am, not am+1, . . . , not an} be the body of r, as well let body(r)+ =

{al+1, . . . , am} and body(r)− = {am+1, . . . , an}.
An interpretation is represented by the set of atoms that are true in it. A model

of a program P is an interpretation in which all rules of P are true according to

the standard definition of truth in propositional logic. Apart from letting “;” and

“,” stand for disjunction and conjunction, respectively, this implies treating rules

and default negation “not” as implications and classical negation, respectively. Note

that the (empty) head of an integrity constraint is false in every interpretation, while

the empty body is true in every interpretation. Answer sets of P are particular

models of P satisfying an additional stability criterion. Roughly, a set X of atoms

is an answer set, if for every rule of form (1), X contains a minimum of atoms

among a1, . . . , al whenever al+1, . . . , am belong to X and no am+1, . . . , an belongs to X.

However, the disjunction in heads of rules, in general, is not exclusive. Formally, an

answer set X of a program P is a ⊆-minimal model of

{head (r)← body(r)+ | r ∈ P , body(r)− ∩X = ∅} .

For example, program {a; b←. c; d← a, not b. ← b.} has answer sets {a, c} and {a, d}.
Although answer sets are usually defined on ground (i.e., variable-free) programs,

ASP allows for nonground problem encodings, where schematic rules stand for their

ground instantiations. Grounders, such as gringo (Gebser et al. 2009a) and lparse

(Syrjänen), are capable of combining a problem encoding and an instance (typically

a set of ground facts) into an equivalent ground program, which is then processed by

an ASP solver. We follow this methodology and provide encodings for the problems

considered below.
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4 Checking consistency

We now come to the first main question addressed in this paper, namely, how to

check whether an experimental profile is consistent with a given influence graph.

Note that, if the profile provides us with a sign for each vertex of the influence

graph, the task can be accomplished simply by checking whether each noninput

vertex receives at least one influence matching its variation. However, as soon as the

experimental profile has missing values (which is very likely in practice), the problem

becomes NP-hard (Veber et al. 2004). In fact, a Boolean satisfiability problem over

clauses C1, . . . , Cm and variables x1, . . . , xn can be reduced as follows: introduce

unlabeled input vertices x1, . . . , xn, noninput vertices C1, . . . , Cm labeled +, and edges

xj→Ci labeled + (–) if xj occurs positively (negatively) in Ci. It is not hard to check

that the labeling of C1, . . . , Cm by + is consistent with the obtained influence graph

iff the conjunction of C1, . . . , Cm is satisfiable.

We next provide a logic program such that each of its answer sets matches a

consistent extension of vertex and edge labelings. Our encodings as well as instances

are available at (BioASP Tools). The program for consistency checking is composed

of three parts, described in the following subsections.

4.1 Problem instance

An influence graph as well as an experimental profile are given by ground facts. For

each species i, we introduce a fact vertex (i), and for each edge j→ i, a fact edge(j, i).

If s ∈ {+, –} is known to be the variation of a species i or the sign of an edge j→ i,

it is expressed by a fact observedV (i, s) or observedE (j, i, s), respectively. Finally, a

vertex i is declared to be input via a fact input(i).

For example, the negative regulation LacI→LacY in the influence graph shown

in Figure 1 and observation + for LacI (as with μ3 in Table 1) give rise to the

following facts:

vertex (LacI),

vertex (LacY),

edge(LacI,LacY),

observedV (LacI,+),

observedE (LacI,LacY, –).

(2)

Note that the absence of a fact of form observedV (LacY, s) means that the variation

of LacY is unobserved (as with μ3). In (2), we use LacI and LacY as names for

constants associated with the species in Figure 1 but not as first-order variables.

Similarly, for uniformity of notations, + and – are written in (2) for constants

identifying signs.

4.2 Generating solution candidates

As mentioned above, our goal is to check whether an experimental profile is

consistent with an influence graph. If so, it is witnessed by total labelings of
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the vertices and edges, which are generated via the following rules:

labelV (V ,+); labelV (V , –)← vertex (V ),

labelE (U,V ,+); labelE (U,V , –)← edge(U,V ).
(3)

Moreover, the following rules ensure that known labels are respected by total

labelings:

labelV (V , S)← observedV (V , S),

labelE (U,V , S)← observedE (U,V , S).
(4)

Note that the stability criterion for answer sets demands that a known label derived

via a rule in (4) is also derived via (3), thus excluding the opposite label. In fact, the

disjunctive rules used in this section could actually be replaced with nondisjunctive

rules via “shifting” (Gelfond et al. 1991)1, given that our first encoding results in a

so-called head-cycle-free (HCF) (Ben-Eliyahu and Dechter 1994) ground program.

However, similar disjunctive rules are also used in Section 5 where they cannot

be compiled away. Also note that HCF programs, for which deciding answer set

existence stays in NP, are recognized as such by disjunctive ASP solvers (Leone

et al. 2006; Drescher et al. 2008). Hence, the purely syntactic use of disjunction, as

done here, is not harmful to efficiency.

The following ground rules are obtained by combining the schematic rules in (3)

and (4) with the facts in (2):

labelV (LacI,+); labelV (LacI, –)← vertex (LacI),

labelV (LacY,+); labelV (LacY, –)← vertex (LacY),

labelE (LacI,LacY,+); labelE (LacI,LacY, –)← edge(LacI,LacY),

labelV (LacI,+)← observedV (LacI,+),

labelE (LacI,LacY, –)← observedE (LacI,LacY, –).

(5)

One can check that the program consisting of the facts in (2) and the rules in (5)

admits two answer sets, the first one including labelV (LacY,+) and the second one

including labelV (LacY, –). On the remaining atoms, both answer sets coincide by

containing the atoms in (2) along with labelV (LacI,+) and labelE (LacI,LacY, –).

4.3 Testing solution candidates

We now check whether generated total labelings satisfy the sign consistency con-

straints stated in Definition 2.2, requiring an influence of sign s for each noninput

vertex i with variation s. We thus define receive(i, s) to indicate that i receives an

influence of sign s:

receive(V ,+)← labelE (U,V , S), labelV (U, S),

receive(V , –)← labelE (U,V , S), labelV (U,T ), S 
= T .
(6)

Inconsistent labelings, where a noninput vertex does not receive any influence

matching its variation, are then ruled out by integrity constraints of the following

1 Alternatively, one could also use cardinality constraints (cf. Syrjänen), which would however preclude
a comparison with dlv in Section 7.
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form:

← labelV (V , S), not receive(V , S), not input(V ). (7)

Note that the schematic rules in (6) and (7) are given in the input language of

grounder gringo (Gebser et al. 2009a). This allows us to omit an explicit listing of

some “domain predicates” in the bodies of rules, which would be necessary when

using lparse (Syrjänen). At (BioASP Tools), we provide encodings for gringo and

also (more verbose ones) for lparse.

Starting from the answer sets described in the previous subsection, the included

atoms labelE (LacI,LacY, –) and labelV (LacI,+) allow us to derive receive(LacY, –)

via a ground instance of the second rule in (6), while receive(LacY,+) is not derivable.

After adding receive(LacY, –), the solution candidate containing labelV (LacY, –)

satisfies the ground instance of the integrity constraint in (7) obtained by substituting

LacY for V and – for S . Assuming LacI to be an input, as it can be declared via fact

input(LacI), we thus obtain an answer set containing labelV (LacY, –), expressing

a decrease of LacY. In contrast, since receive(LacY,+) is underivable, the solution

candidate containing labelV (LacY,+) violates the following ground instance of (7):

← labelV (LacY,+), not receive(LacY,+), not input(LacY).

That is, the solution candidate with labelV (LacY,+) does not pass the consistency

test.

4.4 Soundness and completeness

By letting τ((V , E, σ), μ) denote the set of facts representing the problem instance

induced by an influence graph (V , E, σ) and a vertex labeling μ, and PC the logic

program consisting of the rules given in (3), (4), (6), and (7), respectively, we can

show the following soundness and completeness results.

Theorem 4.1 (Soundness)

Let (V , E, σ) be an influence graph and μ : V → {+, –} be a (partial) vertex labeling.

If there is an answer set of PC ∪ τ((V , E, σ), μ), then (V , E, σ) and μ are consistent.

Theorem 4.2 (Completeness)

Let (V , E, σ) be an influence graph and μ : V → {+, –} be a (partial) vertex labeling.

If (V , E, σ) and μ are consistent, then there is an answer set of PC ∪ τ((V , E, σ), μ).

The following correspondence result is immediately obtained from Theorems 4.1

and 4.2.

Corollary 4.3 (Soundness and Completeness)

Let (V , E, σ) be an influence graph and μ : V → {+, –} be a (partial) vertex labeling.

Then, (V , E, σ) and μ are consistent iff there is an answer set of PC ∪τ((V , E, σ), μ).

5 Identifying minimal inconsistent cores

In view of the usually large amount of data, it is crucial to provide concise

explanations whenever an experimental profile is inconsistent with an influence
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Fig. 2. A partially labeled influence graph and an MIC consisting of A and D.

graph (i.e., if the logic program given in the previous section has no answer set).

To this end, we adopt a strategy that was successfully applied on real biological

data (Guziolowski et al. 2007). The basic idea is to isolate minimal subgraphs of an

influence graph such that the vertices and edges cannot be labeled consistently. This

task is closely related to extracting minimal unsatisfiable cores (MUCs) (Dershowitz

et al. 2006) in the context of Boolean satisfiability (SAT). In allusion, we call a

minimal subgraph of an influence graph whose vertices and edges cannot be labeled

consistently a minimal inconsistent core (MIC), whose formal definition is as follows.2

Definition 5.1 (MIC )

Let (V , E, σ) be an influence graph and μ : V → {+, –} be a (partial) vertex labeling.

Then, a subset W of V is an MIC, if

(1) for all total extensions σ′ : E → {+, –} of σ and μ′ : V → {+, –} of μ, there is

some noninput vertex i ∈W such that μ′(i) is inconsistent and

(2) for every W ′ ⊂ W , there are some total extensions σ′ : E → {+, –} of σ and

μ′ : V → {+, –} of μ such that μ′(i) is consistent for each noninput vertex

i ∈W ′.

To encode MICs, we make use of three important observations made on Defini-

tion 5.1. First, the inherent inconsistency of an MIC’s vertices stipulated in the first

condition must be implied by the MIC and its external regulators, while vertices not

connected to the MIC cannot contribute anything. Moreover, the second condition

on proper subsets prohibits the inclusion of an input vertex in an MIC, as it

could always be removed without affecting inherent (in)consistency of the remaining

vertices’ variations. Finally, for establishing consistency of all proper subsets of an

MIC, it is sufficient to consider subsets excluding a single vertex of the MIC, given

that their consistency carries forward to all smaller subsets.

For illustration, consider the influence graph and the MIC in Figure 2. One can

check that the observed simultaneous increase of B and D is not consistent with

the influence graph, but the reason for this might not be apparent at first glance.

2 We note that verifying an MUC is DP-complete (Papadimitriou and Yannakakis 1982; Dershowitz
et al. 2006), and the same applies to MICs in view of the reduction of SAT described in Section 4.
However, solving a decision problem is not sufficient for our application because we also need to
provide MIC candidates to verify. As regards checking inconsistency of an (a priori unknown) MIC
candidate, we are unaware of ways to accomplish such a co-NP test in nondisjunctive ASP without
destroying the candidate at hand.
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However, once the MIC consisting of A and D is extracted, we see that the increase

of B implies an increase of A so that the observed increase of D cannot be explained.

Note that the elucidation of inherent inconsistency provided by an MIC takes its

vertices along with their regulators into account, the latter being incapable of jointly

explaining the variations of all vertices in the MIC.

We next provide an encoding for identifying MICs, where a problem instance,

that is, an influence graph along with an experimental profile, is represented by

facts as specified in Section 4.1. The encoding then consists of three parts: the

first generating MIC candidates, the second asserting inconsistency, and the third

verifying minimality.

5.1 Generating MIC candidates

The generating part comprises rules in (4) for deriving known vertex and edge labels.

In addition, it includes the following rules:

active(V ); inactive(V )← vertex (V ), not input(V ),

edgeMIC (U,V )← edge(U,V ), active(V ),

vertexMIC (U)← edgeMIC (U,V ),

vertexMIC (V )← active(V ),

labelV (V ,+); labelV (V , –)← vertexMIC (V ),

labelE (U,V ,+); labelE (U,V , –)← edgeMIC (U,V ).

(8)

The first rule permits guessing noninput vertices forming an MIC candidate. Such

vertices are marked as active. The subgraph of the influence graph consisting of the

active vertices, their regulators, and the connecting edges provides the context

of the MIC candidate.3 The vertices and edges contributing to this subgraph

are identified via vertexMIC and edgeMIC . The guessing of (unobserved) ver-

tex and edge labels is restricted to them in the last two rules of (8). Finally,

note that the rules in (4) propagate known labels also for vertices and edges

not correlated to the MIC candidate, viz., to the active vertices. This does not

incur additional combinatorics; rather, it reduces derivations depending on MIC

candidates.

5.2 Testing for inconsistency

By adapting the methodology used in (Eiter and Gottlob 1995), the following

subprogram makes sure that the active vertices cannot be labeled consistently,

taking (implicitly) into account all possible labelings for them, their regulators, and

3 In Definition 5.1, (in)consistency is checked only for the (noninput) vertices in an MIC, while other
vertices’ variations do not need to be explained. Hence, guessing unobserved vertex (and edge) labels
can be restricted to vertices belonging to or connected to the MIC, which reduces combinatorics.
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connecting edges:4

opposite(U,V )← labelE (U,V , –), labelV (U, S), labelV (V , S),

opposite(U,V )← labelE (U,V ,+), labelV (U, S), labelV (V ,T ), S 
= T ,

bottom ← active(V ), opposite(U,V ) : edge(U,V ),

← not bottom ,

labelV (V ,+)← bottom , vertex (V ),

labelV (V , –)← bottom , vertex (V ),

labelE (U,V ,+)← bottom , edge(U,V ),

labelE (U,V , –)← bottom , edge(U,V ).

(9)

In this (part of the) encoding, opposite(U,V ) indicates that the influence of regula-

tor U on V is opposite to the variation of V . If all regulators of an active vertex V

have such an opposite influence, the sign consistency constraint for V is violated,

in which case atom bottom along with all labels for vertices and edges are derived.

Note that the stability criterion for an answer set X imposes that bottom and all

labels belong to X only if the active vertices cannot be labeled consistently. Finally,

integrity constraint ← not bottom necessitates the inclusion of bottom in any answer

set, thus stipulating an inevitable sign consistency constraint violation for some

active vertex.

Reconsidering our example in Figure 2, the ground instances of (8) permit guessing

active(A) and active(D). When labeling A with + (or assuming labelV (A,+) to be

true), we derive opposite(A,D) and bottom , producing in turn all labels for vertices

and edges. Furthermore, setting the sign of A to – (or labelV (A, –) to true) makes us

derive opposite(B,A), which again gives bottom and all labels for vertices and edges.

We have thus verified that the sign consistency constraints for A and D cannot

jointly be satisfied, given the observed increases of B and D. That is, active vertices

A and D are sufficient to explain the inconsistency between the observations and

the influence graph.

5.3 Testing for minimality

It remains to be verified whether the sign consistency constraints for all active

vertices are necessary to identify an inherent inconsistency. This test is based on

the idea that, excluding any single active vertex, the sign consistency constraints for

the other active vertices should be satisfied by appropriate labelings, which can be

implemented as follows:

labelV’ (W,V ,+); labelV’ (W,V , –)← active(W ), vertexMIC (V ),

labelE’ (W,U,V ,+); labelE’ (W,U,V , –)← active(W ), edgeMIC (U,V ),

labelV’ (W,V , S)← active(W ), observedV (V , S),

labelE’ (W,U,V , S)← active(W ), observedE (U,V , S),

receive’ (W,V ,+)← labelE’ (W,U,V , S), labelV’ (W,U, S ), V 
= W,

receive’ (W,V , –)← labelE’ (W,U,V , S), labelV’ (W,U,T ), V 
= W, S 
= T ,

← labelV’ (W,V , S), active(V ), V 
= W, not receive’ (W,V , S).

(10)

4 In the language of gringo (and lparse), the expression opposite(U,V ) : edge(U,V ) used below refers to
the conjunction of all ground atoms opposite(j, i) for which edge(j, i) holds.
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This subprogram is similar to the consistency check encoded via the rules in (3),

(4), (6), and (7). However, sign consistency constraints are only checked for active

vertices, and they must be satisfiable for all but one arbitrary active vertex W . In fact,

labelings such that the variations of all active vertices but W are explained witness

the fact that W cannot be removed from an MIC candidate without reestablishing

consistency. As W ranges over all (noninput) vertices of an influence graph, each

active vertex is taken into consideration. Regarding computational complexity, recall

from Section 4 that checking consistency is NP-complete. As a consequence, one

cannot easily identify conditions to select a particular witness for consistency of an

MIC candidate minus some vertex W , and so we do not encode any such conditions.

This leads to the potential of multiple answer sets comprising the same MIC but

different witnesses, in particular, if many vertices and edges belong to the context

of the MIC.

For the influence graph in Figure 2, it is easy to see that the sign consistency

constraint for A is satisfied by setting the sign of A to +, expressed by atom

labelV’ (D,A,+) in the ground rules obtained from the above encoding part. In turn,

the sign consistency constraint for D is satisfied by setting the sign of A to –. This

is reflected by atom labelV’ (A,A, –), allowing us to derive receive’ (A,D,+). That is,

the ground instance of the above integrity constraint containing labelV’ (A,D,+)

is satisfied. The fact that atoms labelV’ (D,A,+) and labelV’ (A,A, –), used for

explaining the variation of either A or D, respectively, disagree on the sign of A also

shows that jointly considering A and D yields an inconsistency.

5.4 Soundness and completeness

Similar to Section 4.4, we can show the soundness and completeness for our MIC

extraction encoding PD , consisting of the rules in (4), (8), (9), and (10), respectively.

Theorem 5.1 (Soundness)

Let (V , E, σ) be an influence graph and μ : V → {+, –} be a (partial) vertex labeling.

If X is an answer set of PD ∪ τ((V , E, σ), μ), then {i | active(i) ∈ X} is an MIC.

Theorem 5.2 (Completeness)

Let (V , E, σ) be an influence graph and μ : V → {+, –} be a (partial) vertex labeling.

If W ⊆ V is an MIC, then there is an answer set X of PD ∪ τ((V , E, σ), μ) such

that {i | active(i) ∈ X} = W .

The following correspondence result is immediately obtained from Theorems 5.1

and 5.2.

Corollary 5.3 (Soundness and Completeness)

Let (V , E, σ) be an influence graph and μ : V → {+, –} be a (partial) vertex labeling.

Then, W ⊆ V is an MIC iff there is an answer set X of PD ∪ τ((V , E, σ), μ) such

that {i | active(i) ∈ X} = W .

As mentioned above, several answer sets may represent the same MIC because

witnesses needed for minimality testing are not necessarily unique.
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6 Refinements

In this section, we detail two encoding extensions aiming at the improvement of

grounding and solving efficiency. First, input reduction checks for some simple

cases to identify and distinguish uncritical vertices. Second, background knowledge

about connectivity of MIC can be exploited to more precisely render potential MIC

candidates.

6.1 Input reduction

It is not unlikely in practice that biological networks include simple tractable

substructures or that parts of experimental observations are easily explained. Dealing

with such particular cases before doing complex computations (like checking

consistency or finding MICs) is therefore advisable. Given an influence graph

(V , E, σ) and a partial vertex labeling μ capturing experimental data, we below

describe conditions to identify vertices that can always be labeled consistently. Such

vertices can then be marked as (additional) inputs to exclude their sign consistency

constraints from consistency checking and to make explicit that they cannot belong

to any MIC. Any of the following conditions is sufficient to identify a vertex i as

effectively unconstrained:

(1) There is a regulation i→ i in E such that σ(i, i) = +, that is, i supports its

variation.

(2) There is a regulation j→ i in E such that σ(j, i) is undefined. In fact,

undetermined regulations are used in practice to model influences that vary,

e.g., relative to environmental conditions. Any variation of the target i of such

a regulation can be explained by assigning the appropriate label to j→ i (with

respect to the label of j).

(3) There are regulations j→ i, k→ i in E such that μ(j)σ(j, i) = + and

μ(k)σ(k, i) = –. That is, any variation of i is already explained by the given

observations.

(4) An observed variation μ(i) of i is explained if there is some regulation j→ i

in E such that μ(j)σ(j, i) = μ(i). Any further regulations targeting i can be

ignored.

(5) If for all regulations i→ k in E, we have that k is an input, then the variation

of i is insignificant for its targets. In this case, if i is unobserved (μ(i) is

undefined) and target of at least one regulation j→ i, we can assign an

appropriate label to i (w.r.t. the labels of j and j→ i) without any further

conditions.

(6) There is a regulation j→ i in E such that j is unobserved (μ(j) is undefined),

an input, and all targets k 
= i of j (j→ k belongs to E) are inputs. Without

any further conditions, we can assign an appropriate label to j for explaining

the variation of i.

The reduction idea is to mark a vertex i as additional input, if it meets one of

the above conditions. Since the two last conditions inspect inputs, they may become

applicable to further vertices once inputs are added. Hence, checking the conditions
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A
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E

Fig. 3. A partially labeled influence graph with uncritical vertices surrounded by dots.

and adding inputs needs to be done exhaustively. As we see below, this can easily

be encoded in ASP.

Reconsidering the influence graph and partial observations in Figure 2, we see

that vertex B receives an influence from D matching its observed increase. Thus,

the fourth condition applies to already explained vertex B. Moreover, vertex E is

unobserved and does not regulate anything. That is, the fifth condition applies to E,

and its variation can simply be picked from influences it receives from A, C, and D.

After establishing that E can be labeled consistently, we find that C does not regulate

any critically constrained vertex. Applying again the fifth condition, we notice that

the variation of C is actually insignificant.

Figure 3 shows the situation resulting from the identification of uncritical vertices

by iteratively applying the above conditions. The fact that only A and D are critically

constrained tells us that only they can belong to an MIC. As a consequence, the

MIC containing A and D, shown on the right-hand side of Figure 2, is the only one

in this example.

The aforementioned idea to mark uncritical vertices as input can be encoded as

follows:

obs(V )← observedV (V , S),

get(V ,+)← observedE (U,V , S), observedV (U, S),

get(V , –)← observedE (U,V , S), observedV (U,T ), S 
= T ,

input(V )← observedE (V , V ,+),

input(V )← edge(U,V ), not observedE (U,V ,+), not observedE (U,V , –),

input(V )← get(V ,+), get(V , –),

input(V )← observedV (V , S), get(V , S),

input(V )← edge(U,V ), input (W ) : edge(V ,W ), not obs(V ),

input(V )← edge(U,V ), input (W ) : edge(U,W ) : W 
= V , input(U), not obs(U).

Auxiliary predicates obs and get are used to exhibit whether either variation has

been observed for a vertex and whether a particular influence is received for certain,

respectively. The last six rules check the described conditions (in the same order)

and mark a vertex as input if one of them applies. Importantly, the above rules

are stratified and thus yield a unique set of derived input vertices. This allows

us to perform the reduction efficiently within grounding, without deferring to any

procedural implementation external to ASP.

The situation shown in Figure 3 is reflected by the reduction encoding deriv-

ing atoms input(B), input(C), and input(E) from an instance (cf. Section 4.1)
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Fig. 4. A partially labeled influence graph and the graph (V [{A,D}], E[{A,D}]).

corresponding to the depicted influence graph and observed variations. Consistency

checking and MIC identification (cf. Sections 4 and 5) can then focus on the

remaining noninput vertices A and D.

6.2 Exploiting strongly connected components for MIC extraction

In what follows, we introduce a connectivity property of MICs that can be used

to further refine the encoding presented in Section 5. Incorporating additional

background knowledge into the problem encoding is straightforward (as soon as such

knowledge is established). In practice, ancillary (and actually redundant) conditions

may significantly narrow and thus speed up both the grounding and the solving

process.

6.2.1 MIC connectivity property

For analyzing interactions within an MIC, we make use of a graph described in

the following. Let (V , E, σ) be an influence graph and μ : V → {+, –} be a (partial)

vertex labeling, and let D(μ) denote the set of vertices labeled by μ. For a set W ⊆ V

of vertices, we define a graph (V [W ], E[W ]) by

V [W ] = W ∪ {j | (j→ i) ∈ E, i ∈W },
E[W ] = {(j→ i) | (j→ i) ∈ E, i ∈W } ∪ {(i→ j) | (j→ i) ∈ E, i ∈W, j /∈ D(μ)} .

The construction of (V [W ], E[W ]) is based on the idea that a regulator j of

some i ∈ W is connected to i via its sign consistency constraint, and a connection

in the opposite direction applies if j is unlabeled by μ. In fact, given some total

extensions σ′ : E → {+, –} of σ and μ′ : V → {+, –} of μ, we can check a matching

influence of j on i by μ′(i) = μ′(j)σ′(j, i) or equivalently by μ′(j) = μ′(i)σ′(j, i).

That is, provided that μ(j) is undefined, μ′(i) constrains μ′(j) by contraposition

whenever i does not receive a matching influence from any other regulator than j.

This observation motivates the inclusion of inverse edges from vertices in W to

regulators unlabeled by μ in E[W ].

For illustration, the right-hand side of Figure 4 shows graph (V [{A,D}], E[{A,D}])
resulting from the partially labeled influence graph on the left-hand side. The single

regulator B of A is labeled, and thus there is no inverse edge from A to B in

E[{A,D}]. On the other hand, A is an unlabeled regulator of D, and so E[{A,D}]
includes an inverse edge from D to A. The addition of this edge turns the subgraph

of (V [{A,D}], E[{A,D}]) induced by A and D into a strongly connected component.
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In view of that A and D belong to an MIC (as discussed in Section 5), we below

show that this connectivity is not by chance.

Theorem 6.1 (MIC Connectivity)

Let (V , E, σ) be an influence graph and μ : V → {+, –} be a (partial) vertex labeling.

If W ⊆ V is an MIC, then all vertices in W belong to the same strongly connected

component in (V [W ], E[W ]).

The proof is omitted in view of space limitations and can be obtained from the

authors.

6.2.2 Optimized MIC encoding

We now apply Theorem 6.1 to improve the basic MIC extraction encoding (cf.

Section 5) in two aspects: adding (redundant) constraints for search space pruning

and adding positive body literals for reducing grounding efforts. The following rules

pave the way by determining the (nontrivial) strongly connected components in

(V , E[V ]) as an overapproximation of the ones in (V [W ], E[W ]) for any W ⊆ V :

edges(U,V )← edge(U,V ), not input(V ),

edges(V ,U)← edge(U,V ), not input(V ), not observedV (U,+), not observedV (U, –),

reach(U,V )← edges(U,V ),

reach(U,V )← edges(U,W ), reach(W,V ), vertex (V ),

cycle(U,V )← reach(U,V ), reach(V ,U), U 
= V .

(11)

The first rule simply collects edges whose targets are not input, while the second

rule adds edges in the inverse direction for unobserved regulators. Reachability with

respect to the so-obtained graph is determined via the third and the fourth rule.

Finally, predicate cycle indicates whether two (distinct) vertices reach each other in

(V , E[V ]) relative to an influence graph (V , E, σ) and a (partial) vertex labeling μ.

In fact, if two vertices belong to an MIC W ⊆ V , then mutual reachability in

(V [W ], E[W ]) implies the same in (V , E[V ]), in view of that V [W ] ⊆ V and

E[W ] ⊆ E[V ]. Conversely, if two vertices do not reach each other in (V , E[V ]), then

they cannot jointly belong to any MIC.

The overapproximation of potential MICs provides an easy means to prune the

search space by adding the following integrity constraint:

← active(U), active(V ), U < V , not cycle(U,V ). (12)

The constraint makes the fact explicit that distinct vertices of an MIC must reach

each other in (V , E[V ]), and it immediately refutes MIC candidates that do not

satisfy this condition.

After making use of Theorem 6.1 to narrow search, we now shift the focus to

grounding. As a matter of fact, the quadratic space complexity of the minimality

test’s ground instantiation, as encoded in (10), is a major bottleneck in scaling. The

knowledge about potential pairwisely connected vertices in MICs, represented by

integrity constraint (12), also allows us to include positive body literals in order to

restrict the scope of minimality tests:
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labelV’ (W,V ,+); labelV’ (W,V , –)← active(W ), active(V ), cycle(V ,W ),

labelV’ (W,U,+); labelV’ (W,U, –)← active(W ), edgeMIC (U,V ), cycle(V ,W ),

labelE’ (W,U,V ,+); labelE’ (W,U,V , –)← active(W ), edgeMIC (U,V ), cycle(V ,W ),

labelV’ (W,V , S)← active(W ), observedV (V , S), cycle(V ,W ),

labelV’ (W,U, S)← active(W ), observedV (U, S), edge(U,V ), cycle(V ,W ),

labelE’ (W,U,V , S)← active(W ), observedE (U,V , S), cycle(V ,W ),

receive’ (W,V ,+)← labelE’ (W,U,V , S), labelV’ (W,U, S ),

receive’ (W,V , –)← labelE’ (W,U,V , S), labelV’ (W,U,T ), S 
= T ,

← labelV’ (W,V , S), active(V ), cycle(V ,W ), not receive’ (W,V , S).

(13)

In comparison with (10), the extra condition cycle(V ,W ) in the bodies of the first

three rules establishes that labels used for testing minimality are guessed only for

pairs W and V of vertices that can potentially jointly belong to an MIC. The same

restriction is used in the next three rules forwarding observed vertex and edge labels

but now limited to vertices that can jointly belong to an MIC and to their respective

regulators. Finally, the last two rules and the integrity constraint perform the same

test as in (10) for a restricted set of pairs W and V . (The fact that cycle(V ,W )

implies V 
= W in labelE’ (W,U,V , S) also allows us to drop this condition, used

in (10), from the bodies of the rules defining receive’ .)

The complete optimized MIC encoding consists of the original rules in (4), (8),

and (9), (11) and (12) as add-ons, and (13) as a replacement for (10). As regards

the computational impact, we note that the optimized encoding needs less than two

seconds for grounding and finding all MICs in the case study in Section 7.3, which

took more than a minute with the unoptimized encoding.

A second version of the optimized encoding is obtained by tightening the consid-

eration of connected vertices in (V [W ], E[W ]) relative to an MIC candidate W . This

can be achieved by adding condition active(V ) to the rules in (11) defining the edges

predicate. In this way, the static reachability information encoded in (11), which is

completely evaluated by grounder gringo, is turned into a dynamic relation computed

during search. As it turns out, there is no significant performance difference between

these two versions of the optimized MIC extraction encoding in the case study

in Section 7.3. Hence, more real examples are needed to reliably compare their

grounding and solving efficiency.

7 Empirical evaluation and application

For assessing the scalability of our approach, we start by conceiving a parameteriz-

able suite of artificial yet biologically meaningful benchmarks. After that, we present

a typical application stemming from real biological data, illustrating the exertion

in practice. All experiments were performed using input reduction as explained in

Section 6.1.

7.1 Checking consistency

We first evaluate our approach on randomly generated instances, aiming at structures

similar to those found in biological applications. Instances are composed of an
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Table 2. Run-times for consistency checking with claspD, cmodels, dlv, and gnt

claspD claspD claspD cmodels dlv gnt

α Berkmin VMTF VSIDS

500 0.14 0.11 0.11 0.16 0.46 0.71

1,000 0.41 0.25 0.25 0.35 1.92 3.34

1,500 0.79 0.38 0.38 0.53 4.35 7.50

2,000 1.33 0.51 0.51 0.71 8.15 13.23

2,500 2.10 0.66 0.66 0.89 13.51 21.88

3,000 3.03 0.80 0.79 1.07 20.37 31.77

3,500 3.22 0.93 0.92 1.15 21.54 34.39

4,000 4.35 1.06 1.06 1.36 30.06 46.14

influence graph, a complete labeling of its edges, and a partial labeling of its vertices.

Our random generator takes three parameters: (i) the number α of vertices in the

influence graph, (ii) the average degree β of the graph, and (iii) the proportion γ

of observed variations for vertices. To generate an instance, we compute a random

graph with α vertices (the value of α varying from 500 to 4, 000) under the model by

Erdős and Rényi (1959). Each pair of vertices has equal probability to be connected

via an edge, whose label is chosen independently with probability 0.5 for both

signs. We fix the average degree β to 2.5, which is considered to be a typical value

for biological networks (Jeong et al. 2000). Finally, 
γα� vertices are chosen with

uniform probability and assigned a label with probability 0.5 for both signs. For

each number α of vertices, we generated 50 instances by using five different values

for γ, viz., 0.01, 0.02, 0.033, 0.05, and 0.1. All instances are available at (BioASP

Tools).

We used gringo (2.0.0) (Gebser et al. 2009a) for combining the generated instances

and the encoding given in Section 4 into equivalent ground programs. For checking

consistency by computing an answer set (if it exists), we ran disjunctive ASP

solvers claspD (1.1) (Drescher et al. 2008) with “Berkmin,” “VMTF,” and “VSIDS”

heuristics and cmodels (3.75) (Giunchiglia et al. 2006) using zchaff, dlv (BEN/Oct 11)

(Leone et al. 2006), and gnt (2.1) (Janhunen et al. 2006). All runs were performed on

a Linux machine equipped with an AMD Opteron 2 GHz processor and a memory

limit of 2 GB RAM.

Table 2 shows average run-times in seconds over 50 instances per number α of

vertices, including grounding times of gringo and solving times. We checked that

grounding times of gringo increase linearly with the number α of vertices, and they

do not vary significantly over γ. For all solvers, run-times also increase linearly

in α.5 For fixed α values, we found two clusters of instances: consistent ones where

total labelings were easy to compute and inconsistent ones where inconsistency was

detected from preassigned labels. This tells us that the influence graphs generated as

5 Longer run-times of claspD with “Berkmin” in comparison with the other heuristics are due to a more
expensive computation of heuristic values in the absence of conflict information. Furthermore, the time
needed for performing “Lookahead” slows down dlv as well as gnt.
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Table 3. Run-times for grounding with gringo and solving with claspD

gringo claspD claspD claspD

α Berkmin VMTF VSIDS

50 0.24 1.16 (0) 0.65 (0) 0.97 (0)

75 0.55 39.11 (1) 1.65 (0) 3.99 (0)

100 0.87 41.98 (1) 3.40 (0) 4.80 (0)

125 1.37 15.47 (0) 47.56 (1) 10.73 (0)

150 2.02 54.13 (0) 48.05 (0) 15.89 (0)

175 2.77 30.98 (0) 116.37 (2) 23.07 (0)

200 3.82 42.81 (0) 52.28 (1) 24.03 (0)

225 4.94 99.64 (1) 30.71 (0) 41.17 (0)

250 5.98 194.29 (3) 228.42 (5) 110.90 (1)

275 7.62 178.28 (2) 193.03 (4) 51.11 (0)

300 9.45 241.81 (2) 307.15 (7) 124.31 (0)

described above are usually (too) easy to label consistently, and inconsistency only

occurs if it is explicitly introduced via fixed labels. However, such constellations are

not unlikely in practice (cf. Section 7.3), and isolating MICs from them, as done in

the next subsection, turned out to be hard for most solvers. Finally, greater values

for γ led to an increased proportion of inconsistent instances, without making them

much harder.

7.2 Identifying minimal inconsistent cores

We now investigate the problem of finding an MIC within the same setting as

in the previous subsection. Because of the elevated size of ground instantiations

and problem difficulty, we varied the number α of vertices from 50 to 300, thus

using considerably smaller influence graphs than before. We again use gringo for

grounding, now taking the encoding given in Section 5. As regards solving, we

restrict our attention to claspD because all three of the other solvers showed drastic

performance declines.

Table 3 shows average run-times in seconds over 50 instances per number α of

vertices. Time-outs, indicated in parentheses, are taken as maximum time of 1,800

seconds. We observe a quadratic increase in grounding times of gringo, which is in line

with the fact that ground instantiations for our MIC encoding grow quadratically

with the size of influence graphs. In fact, the schematic rules in Section 5.3 give

rise to α copies of an influence graph. Considering solving times spent by claspD

for finding one MIC (if it exists), we observe that they are relatively stable, in

the sense that they are tightly correlated to grounding times. This regularity again

confirms that, though it is random, the applied generation pattern tends to produce

rather uniform influence graphs. Finally, we observed that unsatisfiable instances, i.e.,

consistent instances without any MIC, were easier to solve than the ones admitting

answer sets. We conjecture that this is because consistent total labelings provide a

disproof of inconsistency as encoded in Section 5.2.
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As our experimental results demonstrate, computing MICs is computationally

harder than just checking consistency. This is not surprising because the related

(yet simpler) decision problem of verifying an MUC is DP-complete (Papadimitriou

and Yannakakis 1982; Dershowitz et al. 2006) and thus more complex than just

deciding satisfiability. With our declarative technique, we spot the quadratic space

blowup incurred by the MIC encoding in Section 5 as a bottleneck. However, there

are approaches aiming at a reduction of grounding efforts, and some of them have

been presented in Section 6.

7.3 Biological case study

In the following, we present the results of applying our approach to real-world data of

genetic regulations in yeast. We tested the gene regulatory network of yeast provided

in (Guelzim et al. 2002) against genetic profile data of snf2 knockouts (Sudarsanam

et al. 2000) from the Saccharomyces Genome Database.6 The regulatory network

of yeast contains 909 genetic or biochemical regulations, all of which have been

established experimentally, among 491 genes.

Comparing the yeast regulatory network with the genetic profile of snf2, we found

the data to be inconsistent with the network, which was easily detected using the

approach of Section 4. Applying our diagnosis technique from Section 5, we obtained

a total of 19 MICs. While computing the first MIC took less than a second, using

gringo and claspD (regardless of the heuristic used), the computation of all MICs was

considerably harder. Using “VMTF” as search heuristic on top of the enumeration

algorithm (Gebser et al. 2007) inherited from clasp (Gebser et al. 2009c), claspD had

found all 19 MICs in about 30 seconds, while another 40 seconds were needed to

decide that there is no further MIC. With “VSIDS,” finding the 19 MICs took about

the same time as with “VMTF,” but another 80 seconds were used to verify that

all MICs had been found. Finally, using “Berkmin” heuristic, 12 MICs had been

found before aborting after 30 minutes. The observation that search heuristics matter

tells us that investigations into the structure of biological problems and particular

methods to solve them efficiently can earn considerable benefits.7 Furthermore, we

note that the potential existence of multiple answer sets encompassing the same

MIC did not emerge on the yeast network and snf2 knockout data. That is, we

obtained 19 answer sets, each one corresponding one-to-one to an MIC.

Six of the computed MICs are exemplarily shown in Figure 5. While the first three

of them are pretty obvious, we also identified more complex topologies. However,

our example demonstrates that the MICs obtained in practice are still small enough

to be understood easily. For finding suitable corrections to the inconsistencies, it

6 http://www.yeastgenome.org
7 Notably, by exploiting additional background knowledge, the optimized encoding presented in

Section 6.2 requires less than two seconds (regardless of heuristics) for grounding and finding all
19 MICs. In fact, its ground instantiation contains only 8,481 atoms and 10,843 rules, compared with
47,260 atoms and 56,522 rules with the basic encoding in Section 5. In addition to problem size, also the
difficulty drops dramatically from 23,345 conflicts down to 270 conflicts, encountered with “VMTF”
heuristic during search for all answer sets.
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ume6

hsf1

ume6

spo12

ume6

ino2

reb1

hsc82

ume6

top1

reb1

rap1

ume6

top1

reb1

sin3

ume6

top1

Fig. 5. Some MICs obtained by comparing the regulatory network of yeast

with a genetic profile.

reb1

hsc82 rap1 sin3

ume6

ino2 hsf1 spo12 top1

Fig. 6. Subgraph obtained by connecting the six MICs given in Figure 5.

is often even more helpful to display the connections between several overlapping

MICs. Observe that all six MICs in Figure 5 are related to gene ume6. Connecting

them yields the subgraph of the yeast regulatory network in Figure 6.

The most obvious problem in Figure 6 is that the observed increase of ume6

is incompatible with its four targets. This suggests that either the observation on

ume6 is incorrect or some regulations are missing or wrongly modeled. In the

first hypothesis though, one should note that the current model cannot explain a

decrease of ume6 : this would imply an increase of sin3 and in turn an increase of

reb1, but then there would be no explanation left for the variation of hsc82 and

rap1. So, in either case, our model should be revised. This is not a great surprise:

our literature-based network, although very reliable, was presumably far from being

complete.

Regarding the biological background, note that ume6 is a known regulator of

sporulation in yeast: in case of nutritional stress, yeast cells stop dividing and

produce spores by meiosis. These spores are reproductive structures better adapted

to extreme conditions. Gene ume6 is known as a key inhibitor of early meiotic

genes: upon entry in meiosis, this inhibitory effect is released and the target genes
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reb1

hsc82 rap1 sin3

ume6

Ume6p-Sin3p

ino2 hsf1 spo12 top1

opi1 pah1

Fig. 7. Local correction of the network on the basis of our diagnosis

method and literature research.

are expressed. Notably, a knockout of ume6 causes the expression of meiotic genes

during vegetative growth (hence its name, Unscheduled Meiotic Expression) as well

as almost complete failure of sporulation (Washburn and Esposito 2006). Also ume6

seems to have activation capabilities as well, though in that case the effect is believed

to be indirect (Chen et al. 2007).

In the current view, ume6 switches from inhibitor to (indirect) activator at the

beginning of meiosis: Ume6p (the protein corresponding to the gene ume6 ) has

a repressive effect when it forms a complex with Sin3p (note that sin3 is in our

network) and Rdp3p, which is degraded upon entry in meiosis (Mallory et al.

2007). This molecular mechanism can be interpreted in our model, and one possible

result is given in Figure 7. At least for negative targets, we now have a plausible

explanation: the real effector of the inhibition on hsf1, spo12, top1, and ume6 itself

is the complex Ume6p–Sin3p, whose variation is unobserved but depends on the

variation of ume6 and sin3. The variation of the targets can be explained if the

protein complex decreases, which is in turn possible if sin3 decreases. Regretfully,

sin3 is not observed in our data, but we note that a decrease of this gene is fully

compatible with the rest of the network, that is, if we suppose a decrease of reb1.

Now concerning ino2, our network should be updated with more recent evidence: as

reviewed in (Chen et al. 2007), ino2 has several additional regulators, such as opi1

and pah1 (see Figure 7). The observed variation of pah1 is not useful to explain

that of ino2, but opi1 is definitely a plausible candidate.

Here, we illustrated one main usage of our diagnosis technique: identifying poorly

modeled regions of a regulatory network that are incompatible with a given data set.

This is definitely a key asset if one wants to build a large-scale regulatory database

and check its coherence with newly produced data on a regular basis. Given new data,

our diagnosis method produces human-understandable representations of possible

incompatibilities with the current model, which serve as the basis for a targeted

literature research. With this data-driven approach, a network can then be improved

with considerably less effort than with a random traversal of publications, for a

much more coherent result.
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8 Web service

To make our methods easily accessible to a biological audience, we built a Web

service8 not requiring any locally installed software on the user side except for a Web

browser. It provides the possibility to upload textual representations of biological

networks as well as experimental profiles. Also, a number of predefined examples

allow a user to instantly experience the functionalities of the Web service. These

include consistency checking and diagnosis, i.e., finding MICs, whose implementation

has been detailed in Sections 4 and 5.

Influence graphs representing biological networks usually contain vertices that

are not subject to any regulation. Such entities are understood as controlled by

external factors, like environmental or particular experimental conditions. To avoid

trivial inconsistencies due to such unregulated and thus unexplainable vertices, the

Web interface provides an option “Guess input nodes” for automatically declaring

all vertices without any predecessor as inputs. While consistency checking simply

results in a positive or negative answer, we offer three diagnosis modes: “find one

inconsistency,” “find all inconsistencies,” and “approximate all inconsistencies.” The

first mode aims at finding a single MIC, and the second at finding all of them. For

the latter, we currently use an encapsulating script that repeatedly calls claspD while

feeding already identified MICs back as integrity constraints, until no further answer

set exists. This makes sure that each answer set corresponds to a new MIC and thus

avoids potential repetitions. The problem of enumerating answer sets that differ on

a set of “relevant” atoms (in our case, on instances of predicate active) is addressed

in (Gebser et al. 2009b). The integration of this technique into claspD, in order

to make the wrapper script obsolete, is subject to future work. Once MICs have

been computed, they can be represented either textually or graphically, as shown in

Figure 8. If the result consists of several MICs, it is possible to view overlapping

ones in a combined way, thus highlighting regions of inconsistency. Finally, the third

diagnosis mode, “approximate all inconsistencies,” works by marking the vertices

of a computed MIC as inputs before proceeding to look for further MICs. This

approach has been used in previous work (Guziolowski et al. 2009) and has been

integrated into our framework for comparison. However, the results obtained with

the third mode depend on the order in which MICs are found and their vertices

declared to be inputs in future computations. Further functionalities, like prediction

under consistency (Guziolowski et al. 2007) and inconsistency (Gebser et al. 2010),

are also featured by the Web service but are outside the scope of this paper.

9 Discussion

We have provided an approach based on ASP to investigate the consistency between

experimental profiles and influence graphs. In case of inconsistency, the concept of

an MIC can be exploited for identifying concise explanations, pointing to unreliable

data and/or missing reactions. The problem of finding MICs is closely related to

8 http://data.haiti.cs.uni-potsdam.de/wsgi/app
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Fig. 8. Representation of identified MICs in textual (left) and graphical (right) mode.

the extraction of MUCs in the context of SAT. From a knowledge representation

point of view, however, we argue for our ASP-based technique, as it provides an

easy way to model a problem in terms of a uniform encoding and specific instances.

The BioQuali system (Guziolowski et al. 2009) provides functionalities parallel to

our approach. It also works on influence graphs and applies the same consistency

notion. In preprocessing, BioQuali reduces an influence graph by iteratively marking

unobserved vertices that have no successors as uncritical. This technique is also real-

ized by input reduction, described in Section 6.1. After that, BioQuali transforms the

reduced subgraph into a Binary Decision Diagram, used for further computations.

While consistency checking with BioQuali yields the same results as our technique,

its diagnosis functionality works like the “approximate all inconsistencies” mode,

described in the previous section. In contrast to our method, this does, in general,

not admit finding all MICs.

By now, a variety of efficient ASP tools are available, both for grounding and

for solving logic programs. Our empirical assessment of these tools (on random as

well as real data) has in principle demonstrated the scalability of the approach. The

Web service implementation of finding all MICs, which is genuine to our method

and not available in any other existing tool, is still based on some workarounds for

avoiding redundant answer sets. It is a subject of future work to address this with

answer set projection (Gebser et al. 2009b).

As elegance and flexibility in modeling are major advantages of ASP, our current

application makes it attractive also for related biological questions, beyond the

ones addressed in this paper. For instance, ongoing work deals with repair and

prediction under consistency as well as inconsistency (Gebser et al. 2010). In future,

it will also be interesting to explore how far the performance of ASP tools can be

tuned by varying and optimizing encodings for particular tasks. In turn, challenging

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068410000554
Downloaded from https://www.cambridge.org/core. Universitaet Potsdam, on 20 Jun 2018 at 11:52:11, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068410000554
https://www.cambridge.org/core


Detecting inconsistencies in large biological networks with ASP 347

applications like the one presented here might contribute to the further improvement

of ASP tools, as they might be geared toward efficiency in such domains.
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Appendix A Proof of Theorems 4.1 and 4.2

We formalize the representation of instances, as described in Section 4.1, by defining

a mapping τ of an influence graph (V , E, σ) and a (partial) vertex labeling μ : V →
{+, –}:

τ((V , E, σ), μ) = {vertex (i) | i ∈ V }
∪ {edge(j, i) | (j→ i) ∈ E}
∪ {observedE (j, i, s) | (j→ i) ∈ E, σ(j, i) = s}
∪ {observedV (i, s) | i ∈ V , μ(i) = s}
∪ {input(i) | i ∈ V is an input}. (A1)

By PC , we denote the encoding containing the schematic rules in (3), (4), (6), and (7).

Proof of Theorem 4.1

Assume that X is an answer set of PC ∪ τ((V , E, σ), μ). Furthermore, let

PX = {(head (r)← body(r)+)θ |
r ∈ PC ∪ τ((V , E, σ), μ), (body(r)−θ) ∩X = ∅, θ : var(r)→ U},

where var(r) is the set of all variables that occur in a rule r, U is the set of all

constants appearing in PC ∪ τ((V , E, σ), μ), and θ is a ground substitution for the

variables in r. Then, by the definition of an answer set, we know that X is a

⊆-minimal model of PX .

Given X, we define σ′ and μ′ as follows:

σ′ = {(j→ i) �→ s | (j→ i) ∈ E, labelE (j, i, s) ∈ X},
μ′ = {i �→ s | i ∈ V , labelV (i, s) ∈ X}.

We show that σ′ and μ′ are total labelings of edges and vertices, respectively, such

that μ′(i) = μ′(j)σ′(j, i) holds for every noninput vertex i ∈ V and some edge j→ i

in E.

9 http://www.goforsys.org
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Regarding the uniqueness of labels assigned by σ′ and μ′, consider the following

rules from (3) and (4) including predicates labelE and labelV in their heads:

labelV (V ,+); labelV (V , –)← vertex (V ),

labelE (U,V ,+); labelE (U,V , –)← edge(U,V ),

labelV (V , S)← observedV (V , S),

labelE (U,V , S)← observedE (U,V , S).

(A2)

Since the given (partial) labelings σ and μ assign unique labels to the elements of their

domains, facts defining observedE and observedV are of the form observedE (j, i,+).

or observedE (j, i, –). and observedV (i,+). or observedV (i, –)., respectively, and at

most one of these facts is contained in τ((V , E, σ), μ) for an edge (j→ i) ∈ E or a

vertex i ∈ V . Because X is a ⊆-minimal model of PX , the atoms in the heads of facts

are in X, and all atoms in X over predicates observedE and observedV are derived

from facts in τ((V , E, σ), μ), in view of that these predicates do not occur in the head

of any rule in PC . Hence, at most one of the atoms labelE (j, i,+) and labelE (j, i, –)

or labelV (i,+) and labelV (i, –), respectively, is derivable for an edge (j→ i) ∈ E or

a vertex i ∈ V from a ground instance of the fourth or the third rule in (A2) and

then included in X. Furthermore, the second and the first rule in (A2) impose that

at least one of labelE (j, i,+) or labelE (j, i, –) and labelV (i,+) or labelV (i, –) belongs

to X for every edge (j→ i) ∈ E and vertex i ∈ V , respectively, while the atom

containing the opposite label cannot belong to a ⊆-minimal model of PX . Hence,

there is at most one term s such that labelE (j, i, s) ∈ X or labelV (i, s) ∈ X for an

edge (j→ i) ∈ E or a vertex i ∈ V , respectively, and it holds that s ∈ {+, –}, which

allows us to conclude that σ′ and μ′ are total labelings.

As regards extending σ and μ, we have that fact observedE (j, i, s). or observedV (i, s).

belongs to τ((V , E, σ), μ) if σ(j, i) = s or μ(i) = s, respectively, is given. This implies

that labelE (j, i, s) ∈ X or labelV (i, s) ∈ X, respectively, as the fourth or the third rule

in (A2) would be unsatisfied otherwise. Thus, σ′(j, i) = s if σ(j, i) = s, and μ′(i) = s

if μ(i) = s.

It remains to be shown that μ′(i) is consistent for each noninput vertex i ∈ V . To

this end, we note that the integrity constraint

← labelV (V , S), not receive(V , S), not input(V )

from (7) necessitates receive(i, r) ∈ X if μ′(i) = r (that is, if labelV (i, r) ∈ X) for a

noninput vertex i ∈ V . Otherwise, PX would contain an unsatisfied ground instance

in view that input(i) ∈ X exactly if fact input(i). is included in τ((V , E, σ), μ). However,

any ground instances of the integrity constraint contributing to PX do not contain

atoms over predicate receive. Such atoms can only be derived using the following

rules from (6):

receive(V ,+)← labelE (U,V , S), labelV (U, S),

receive(V , –)← labelE (U,V , S), labelV (U,T ), S 
= T .

Since X is a ⊆-minimal model of PX , receive(i,+) ∈ X or receive(i, –) ∈ X is possible

only if labelE (j, i, s) ∈ X and labelV (j, t) ∈ X such that s = t or s 
= t, that is, if

σ′(j, i) = s and μ′(j) = t such that μ′(j)σ′(j, i) = + or μ′(j)σ′(j, i) = –, respectively.
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As labelV (i, r) is accompanied by receive(i, r) in X for each noninput vertex i ∈ V ,

this allows us to conclude that μ′(i) = r implies μ′(j)σ′(j, i) = r for some regulator j

of i. Hence, we have that μ′(i) is consistent for each noninput vertex i ∈ V . �

Proof of Theorem 4.2

Assume that (V , E, σ) and μ are consistent. Then, there are total extensions σ′ : E →
{+, –} of σ and μ′ : V → {+, –} of μ such that, for each noninput vertex i ∈ V , we

have μ′(i) = μ′(j)σ′(j, i) for some edge j→ i in E.

We consider the following set X of atoms:

X = {vertex (i), labelV (i, s) | i ∈ V , μ′(i) = s}
∪ {edge(j, i), labelE (j, i, s) | (j→ i) ∈ E, σ′(j, i) = s}
∪ {receive(i, ts) | (j→ i) ∈ E, σ′(j, i) = s, μ′(j) = t}
∪ {observedE (j, i, s) | (j→ i) ∈ E, σ(j, i) = s}
∪ {observedV (i, s) | i ∈ V , μ(i) = s}
∪ {input(i) | i ∈ V is an input} .

For showing that X is an answer set of PC ∪ τ((V , E, σ), μ), we need to verify that X

is a ⊆-minimal model of

PX = {(head (r)← body(r)+)θ |
r ∈ PC ∪ τ((V , E, σ), μ), (body(r)−θ) ∩X = ∅, θ : var(r)→ U},

where var(r) is the set of all variables that occur in a rule r, U is the set of all

constants appearing in PC ∪ τ((V , E, σ), μ), and θ is a ground substitution for the

variables in r.

To start with, we note that X includes an atom vertex (i), edge(j, i), observedE (j, i, s),

observedV (i, s), and input(i), respectively, exactly if there is a fact with the atom in the

head in τ((V , E, σ), μ). Each of these facts belongs also to PX , is satisfied by X, but not

by any set Y of atoms excluding at least one of the head atoms. Furthermore, since σ′

and μ′ are total mappings, we have that |{labelE (j, i,+), labelE (j, i, –)} ∩X| = 1 and

|{labelV (i,+), labelV (i, –)} ∩ X| = 1 for every (j→ i) ∈ E and i ∈ V , respectively.

Hence, X, but no subset Y of X excluding at least one atom over predicates labelE

and labelV , satisfies all ground instances of the following rules from (3) in PX:

labelV (V ,+); labelV (V , –)← vertex (V ),

labelE (U,V ,+); labelE (U,V , –)← edge(U,V ).

In addition, since σ′ and μ′ extend σ and μ, respectively, all ground instances of the

following rules from (4) in PX are satisfied by X:

labelV (V , S)← observedV (V , S),

labelE (U,V , S)← observedE (U,V , S).

Since labelE (j, i, s) ∈ X and labelV (j, t) ∈ X if σ′(j, i) = s and μ′(j) = t, respectively,

we have that receive(i, ts) ∈ X exactly if there is a ground instance of the rules

receive(V ,+)← labelE (U,V , S), labelV (U, S),

receive(V , –)← labelE (U,V , S), labelV (U,T ), S 
= T

from (6) in PX such that labelE (j, i, s), labelV (j, t) ∈ X occur in the body and

receive(i, ts) in the head. Hence, no subset Y of X excluding any atom over predicate
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receive is a model of PX . Finally, since μ′(i) = μ′(j)σ′(j, i) for each noninput vertex

i ∈ V and some j→ i in E, labelV (i, r) ∈ X implies that receive(i, r) ∈ X. That is,

the ground instances of the integrity constraint

← labelV (V , S), not receive(V , S), not input(V )

from (7) that contribute to PX are satisfied by X.

We have now investigated all rules in PC ∪ τ((V , E, σ), μ) and shown that their

ground instances in PX are satisfied by X. Furthermore, we have checked for

all atoms in X that they cannot be excluded in any model Y ⊂ X of PX .

That is, X is indeed a ⊆-minimal model of PX and thus an answer set of PC ∪
τ((V , E, σ), μ). �

Appendix B Proof of Theorems 5.1 and 5.2

This appendix provides proofs for soundness and completeness of the MIC extraction

encoding in Section 5. We use τ((V , E, σ), μ) as defined in (A1) to refer to the facts

representing an influence graph (V , E, σ) and a (partial) vertex labeling μ : V →
{+, –}. By PD , we denote the encoding consisting of the schematic rules in (4), (8),

(9), and (10).

As an auxiliary concept, for any subset W ⊆ V , we say that σ′ : E → {+, –} and

μ′ : V → {+, –} are witnessing labelings for W if the following conditions hold:

(1) σ′ and μ′ are total,

(2) if σ(j, i) is defined, then σ′(j, i) = σ(j, i),

(3) if μ(i) is defined, then μ′(i) = μ(i), and

(4) μ′(i) is consistent (relative to σ′) for each noninput vertex i ∈W .

The above conditions make sure that σ′ and μ′ are total extensions of σ and μ,

respectively, such that the variations of vertices in W are explained. Comparing

Definition 5.1, the first condition requires the absence of witnessing labelings for an

MIC W , while the second condition stipulates the existence of witnessing labelings

for each W ′ ⊂W .

Proof of Theorem 5.1

Assume that X is an answer set of PD ∪ τ((V , E, σ), μ). Furthermore, let

PX = {(head (r)← body(r)+)θ |
r ∈ PD ∪ τ((V , E, σ), μ), (body(r)−θ) ∩X = ∅, θ : var(r)→ U},

where var(r) is the set of all variables that occur in a rule r, U is the set of all

constants appearing in PD ∪ τ((V , E, σ), μ), and θ is a ground substitution for the

variables in r. Then, by the definition of an answer set, we know that X is a

⊆-minimal model of PX .

Let W = {i | active(i) ∈ X}. We have to show that the following conditions hold:

(1) There are witnessing labelings for each W ′ ⊂W .

(2) There are no witnessing labelings for W .

We below consider these conditions one after the other.
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Condition 1. Let W ′ = W \ {k} for any k ∈ W . Furthermore, define σ′ and μ′ as

follows:

σ′ = {(j→ i) �→ s | (j→ i) ∈ E, labelE’ (k, j, i, s) ∈ X}
∪ {(j→ i) �→ + | (j→ i) ∈ E, labelE’ (k, j, i,+) /∈ X, labelE’ (k, j, i, –) /∈ X},

μ′ = {i �→ s | i ∈ V , labelV’ (k, i, s) ∈ X}
∪ {i �→ + | i ∈ V , labelV’ (k, i,+) /∈ X, labelV’ (k, i, –) /∈ X} .

We show that σ′ and μ′ are witnessing labelings for W ′.

Regarding the uniqueness of labels assigned by σ′ and μ′, consider the following

rules from (10) including predicates labelE’ and labelV’ in their heads:

labelV’ (W,V ,+); labelV’ (W,V , –)← active(W ), vertexMIC (V ),

labelE’ (W,U,V ,+); labelE’ (W,U,V , –)← active(W ), edgeMIC (U,V ),

labelV’ (W,V , S)← active(W ), observedV (V , S),

labelE’ (W,U,V , S)← active(W ), observedE (U,V , S).

(B1)

Since the given (partial) labelings σ and μ assign unique labels to the elements of their

domains, facts defining observedE and observedV are of the form observedE (j, i,+).

or observedE (j, i, –). and observedV (i,+). or observedV (i, –)., respectively, and at

most one of these facts is contained in τ((V , E, σ), μ) for an edge (j→ i) ∈ E or a

vertex i ∈ V . Because X is a ⊆-minimal model of PX , the atoms in the heads of

facts are in X, and all atoms in X over predicates observedE and observedV are

derived from facts in τ((V , E, σ), μ), in view of that these predicates do not occur in

the head of any rule in PD . Hence, at most one of the atoms labelE’ (k, j, i,+) and

labelE’ (k, j, i, –) or labelV’ (k, i,+) and labelV’ (k, i, –), respectively, is derivable for an

edge (j→ i) ∈ E or a vertex i ∈ V from a ground instance of the fourth or the third

rule in (B1) and then included in X. If either of labelE’ (k, j, i,+) and labelE’ (k, j, i, –)

or labelV’ (k, i,+) and labelV’ (k, i, –), respectively, are included in X, then the ground

instance of the second or the first rule in (B1) for k and an edge (j→ i) ∈ E or a

vertex i ∈ V is satisfied so that the atom containing the opposite label cannot belong

to a ⊆-minimal model of PX . Hence, there is at most one term s such that σ′(j, i) = s

or μ′(i) = s for an edge (j→ i) ∈ E or a vertex i ∈ V , respectively, and it holds that

s ∈ {+, –}. Furthermore, looking at the definitions of σ′ and μ′, it is obvious that

both are total, which allows us to conclude that σ′ and μ′ are total labelings.

As regards extending σ and μ, we have that fact observedE (j, i, s). or observedV (i, s).

belongs to τ((V , E, σ), μ) if σ(j, i) = s or μ(i) = s, respectively, is given. Along

with the premise that active(k) ∈ X, this implies that labelE’ (k, j, i, s) ∈ X or

labelV’ (k, i, s) ∈ X, respectively, as the fourth or the third rule in (B1) would be

unsatisfied otherwise. Hence, we have σ′(j, i) = s if σ(j, i) = s and μ′(i) = s if μ(i) = s.

It remains to be shown that μ′(i) is consistent for each noninput vertex i ∈ W ′.

To establish this, we first consider the following rules from (8):

edgeMIC (U,V )← edge(U,V ), active(V ),

vertexMIC (U)← edgeMIC (U,V ),

vertexMIC (V )← active(V ).

(B2)
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In view of that fact edge(j, i). belongs to τ((V , E, σ), μ) for every (j→ i) ∈ E, we

conclude that edge(j, i) ∈ X. Along with active(i) ∈ X for every i ∈ W , it follows

that edgeMIC (j, i) ∈ X for every (j→ i) ∈ E such that i ∈ W and vertexMIC (i) ∈
X for every i ∈ W . The last observation and the first rule in (B1) imply that

labelV’ (k, i,+) ∈ X or labelV’ (k, i, –) ∈ X for every i ∈W . For i ∈W ′, i.e., i 
= k, the

integrity constraint

← labelV’ (W,V , S), active(V ), V 
= W, not receive’ (W,V , S)

from (10) imposes receive’ (k, i,+) ∈ X if labelV’ (k, i,+) ∈ X and receive’ (k, i, –) ∈ X

if labelV’ (k, i, –) ∈ X, while any ground instances of the integrity constraint con-

tributing to PX do not contain atoms over predicate receive’ . Such atoms can only

be derived using the following rules from (10):

receive’ (W,V ,+)← labelE’ (W,U,V , S), labelV’ (W,U, S ), V 
= W,

receive’ (W,V , –)← labelE’ (W,U,V , S), labelV’ (W,U,T ), V 
= W, S 
= T .

Since X is a ⊆-minimal model of PX , receive’ (k, i,+) ∈ X or receive’ (k, i, –) ∈ X is

possible only if labelE’ (k, j, i, s) ∈ X and labelV’ (k, j, t) ∈ X such that s = t or s 
= t,

respectively. Comparing τ((V , E, σ), μ) and the rules in (B1), (B2), as well as (B3)

reveals that (j→ i) ∈ E is a necessary condition for labelE’ (k, j, i, s) ∈ X, and the

same applies to j ∈ V and labelV’ (k, j, t) ∈ X. By the construction of σ′ and μ′,

labelE’ (k, j, i, s) ∈ X implies that σ′(j, i) = s and labelV’ (k, j, t) ∈ X that μ′(j) = t. We

conclude that receive’ (k, i,+) ∈ X or receive’ (k, i, –) ∈ X necessitates μ′(j)σ′(j, i) =

+ or μ′(j)σ′(j, i) = –, respectively, for some regulator j of i. Finally, we have μ′(i) =

+ if labelV’ (k, i,+) ∈ X (and receive’ (k, i,+) ∈ X) and μ′(i) = – if labelV’ (k, i, –) ∈ X

(and receive’ (k, i, –) ∈ X). This shows that i receives some influence matching μ′(i) so

that μ′(i) is consistent. Since i ∈ W ′ is arbitrary, σ′ and μ′ are witnessing labelings

for W ′.

To conclude the proof of the first condition to verify, we note that witnessing

labelings for W ′ are also witnessing labelings for all subsets of W ′. Hence, it is

sufficient to check the existence of witnessing labelings for sets W ′ = W \ {k}
for any k ∈ W . As shown above, an answer set X of PD ∪ τ((V , E, σ), μ) yields

witnessing labelings for them. Hence, the second condition in Definition 5.1 holds

for W = {i | active(i) ∈ X}.

Condition 2. We now show by contradiction that there cannot be witnessing labelings

for W . To establish this, we first note that vertices in W cannot be input because if

fact input(i). belongs to τ((V , E, σ), μ), then input(i) must be included in X, so that

the rule

active(V ); inactive(V )← vertex (V ), not input(V ) (B3)

from (8) does not contribute a ground instance for i to PX . Since active(i) cannot

be derived from any other ground rule in PX , the fact that X is a ⊆-minimal model

of PX implies that active(i) /∈ X for any input vertex i. Furthermore, the integrity

constraint

← not bottom (B4)
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from (9) necessitates bottom ∈ X because X cannot be a model of PX otherwise.

Then, we get labelV (i,+), labelV (i, –) ∈ X and labelE (j, i,+), labelE (j, i, –) ∈ X for

all vertices i ∈ V and edges (j→ i) ∈ E, respectively, because of the following rules

from (9):

labelV (V ,+)← bottom , vertex (V ),

labelV (V , –)← bottom , vertex (V ),

labelE (U,V ,+)← bottom , edge(U,V ),

labelE (U,V , –)← bottom , edge(U,V ).

(B5)

We now show that the existence of witnessing labelings for W yields a contradic-

tion to the fact that X is a ⊆-minimal model of PX . To this end, assume that σ′ and

μ′ are witnessing labelings for W . Then, let

Y = (X \ ({bottom}
∪ {labelV (i, s) | labelV (i, s) ∈ X}
∪ {labelE (j, i, s) | labelE (j, i, s) ∈ X}
∪ {opposite(j, i) | opposite(j, i) ∈ X}))

∪ {labelV (i, s) | i ∈ V , μ′(i) = s}
∪ {labelE (j, i, s) | (j→ i) ∈ E, σ′(j, i) = s}
∪ {opposite(j, i) | (j→ i) ∈ E, μ′(i) 
= μ′(j)σ′(j, i)} .

Since bottom ∈ X \Y and X contains a maximum amount of atoms over predicates

labelV , labelE , and opposite (the atoms over opposite are consequences of the

inclusion of atoms over labelV and labelE ), we have that Y ⊂ X, and we show

that Y is a model of PX .

Considering the contributions of the facts in τ((V , E, σ), μ) and the rules in (10)

to PX , we observe that the atoms over predicates occurring in them are interpreted

the same in X and Y . Hence, such facts and rules stay satisfied by Y because they

were already satisfied by X. The same applies to the rules from (8) repeated in (B2)

and (B3). Furthermore, since σ′ and μ′ are total and extend σ and μ, respectively,

the contributions of the following rules from (4) and (8) to PX are satisfied by Y :

labelV (V , S)← observedV (V , S),

labelE (U,V , S)← observedE (U,V , S),

labelV (V ,+); labelV (V , –)← vertexMIC (V ),

labelE (U,V ,+); labelE (U,V , –)← edgeMIC (U,V ).

Since the integrity constraint in (B4) does not belong to PX and the rules in (B5)

are satisfied by Y in view of bottom /∈ Y , it remains to consider the following rules

from (9):

opposite(U,V )← labelE (U,V , –), labelV (U, S), labelV (V , S),

opposite(U,V )← labelE (U,V ,+), labelV (U, S), labelV (V ,T ), S 
= T ,

bottom ← active(V ), opposite(U,V ) : edge(U,V ).

The rules defining predicate opposite are such that, in order to satisfy their ground

instances in PX , Y must contain opposite(j, i) if labelE (j, i, r), labelV (j, s), and

labelV (i, t) belong to Y such that t 
= sr. This matches the definition of Y ,
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including labelE (j, i, r) if σ′(j, i)=r, labelV (j, s) if μ′(j)=s, labelV (i, t) if μ′(i)= t, and

opposite(j, i) if μ′(i) 
= μ′(j)σ′(j, i). Hence, rules defining opposite in PX are satisfied

by Y . It remains to be shown that bottom is not derivable from any ground instance

of the last rule. In this regard, recall that W = {i | active(i) ∈ X} = {i | active(i) ∈ Y },
and we have seen above that active(i) can only belong to X if i is not an input. As σ′

and μ′ are witnessing labelings for W , for every i ∈W , there is an edge (j→ i) ∈ E

such that μ′(i) = μ′(j)σ′(j, i). By the definition of Y , this implies opposite(j, i) /∈ Y ,

while edge(j, i) belongs to X and Y because X and Y are models of τ((V , E, σ), μ).

As a consequence, for every i ∈ W , we have {opposite(j, i) | edge(j, i) ∈ Y } 
⊆ Y

so that the ground instance for i in PX of the rule with bottom in the head is

satisfied by Y . We have thus established that Y ⊂ X is indeed a model of PX , a

contradiction to the assumption that X is a ⊆-minimal model of PX and an answer

set of PD ∪ τ((V , E, σ), μ).

The above contradiction shows that the second condition to verify, which is the

first condition in Definition 5.1, holds for W = {i | active(i) ∈ X}. The fact that the

second condition in Definition 5.1 holds for W has been shown before. Hence, W

is an MIC. �

Proof of Theorem 5.2 Assume that W = {k1, . . . , kn} is an MIC. Then, the following

conditions hold:

(1) There are witnessing labelings σ1, μ1, . . . , σn, μn for W \ {k1}, . . . ,W \ {kn}.
(2) There are no witnessing labelings for W .

We consider the following set X of atoms:

X = {vertex (i) | i ∈ V }
∪ {edge(j, i) | (j→ i) ∈ E}
∪ {observedE (j, i, s) | (j→ i) ∈ E, σ(j, i) = s}
∪ {observedV (i, s) | i ∈ V , μ(i) = s}
∪ {input(i) | i ∈ V is an input}
∪ {active(i) | i ∈W }
∪ {inactive(i) | i ∈ V \W is not an input}
∪ {edgeMIC (j, i) | (j→ i) ∈ E, i ∈W }
∪ {vertexMIC (j) | (j→ i) ∈ E, i ∈W }
∪ {vertexMIC (i) | i ∈W }
∪ {labelE’ (km, j, i, r) | (j→ i) ∈ E, i ∈W,σm(j, i) = r, 1 � m � n}
∪ {labelE’ (km, j, i, r) | (j→ i) ∈ E, σ(j, i) = r, 1 � m � n}
∪ {labelV’ (km, j, s) | (j→ i) ∈ E, i ∈W,μm(j) = s, 1 � m � n}
∪ {labelV’ (km, i, s) | i ∈W,μm(i) = s, 1 � m � n}
∪ {labelV’ (km, i, s) | i ∈ V , μ(i) = s, 1 � m � n}
∪ {receive’ (km, i, sr) | (j→ i) ∈ E, i ∈W, or (i→ k) ∈ E for k ∈W,

σm(j, i) = r, μm(j) = s, i 
= km, 1 � m � n}
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∪{receive’ (km, i, sr) | (j→ i) ∈ E, j ∈W or (j→ k) ∈ E for k ∈W,

σ(j, i) = r, μm(j) = s, i 
= km, 1 � m � n}
∪{receive’ (km, i, sr) | (j→ i) ∈ E,

σ(j, i) = r, μ(j) = s, i 
= km, 1 � m � n}
∪{labelV (i,+), labelV (i, –) | i ∈ V }
∪{labelE (j, i,+), labelE (j, i, –) | (j→ i) ∈ E}
∪{opposite(j, i) | (j→ i) ∈ E}
∪{bottom}.

For showing that X is an answer set of PD ∪ τ((V , E, σ), μ) (such that {i | active(i) ∈
X} = W ), we need to verify that X is a ⊆-minimal model of

PX = {(head (r)← body(r)+)θ |
r ∈ PD ∪ τ((V , E, σ), μ), (body(r)−θ) ∩X = ∅, θ : var(r)→ U},

where var(r) is the set of all variables that occur in a rule r, U is the set of all

constants appearing in PD ∪ τ((V , E, σ), μ), and θ is a ground substitution for the

variables in r.

To start with, we note that X includes an atom vertex (i), edge(j, i), observedE (j, i, s),

observedV (i, s), and input(i), respectively, exactly if there is a fact with the atom in

the head in τ((V , E, σ), μ). Each of these facts belongs also to PX , is satisfied by X,

but not by any set Y of atoms excluding at least one of the head atoms.

In view of that W cannot contain any input (otherwise, satisfaction of the second

condition in Definition 5.1 would immediately imply violation of the first one), we

have that either active(i) or inactive(i) belongs to X for every noninput vertex i ∈ V .

Hence, X satisfies all ground instances of the rule

active(V ); inactive(V )← vertex (V ), not input(V )

from (8) belonging to PX , while no set Y of atoms excluding both active(i) and

inactive(i) for any noninput vertex i ∈ V satisfies all of these ground instances.

Considering ground instances of the rules

edgeMIC (U,V )← edge(U,V ), active(V ),

vertexMIC (U)← edgeMIC (U,V ),

vertexMIC (V )← active(V )

from (8), all of them belong to PX , are satisfied by X, but not by any set Y of atoms

such that {edgeMIC (j, i) | edgeMIC (j, i) ∈ X} ∪ {vertexMIC (i) | vertexMIC (i) ∈
X} 
⊆ Y and {active(i) | active(i) ∈ X} ⊆ {active(i) | active(i) ∈ Y }, while it has been

shown above that {active(i) | active(i) ∈ X} 
⊆ {active(i) | active(i) ∈ Y } necessitates

{inactive(i) | inactive(i) ∈ Y } 
⊆ {inactive(i) | inactive(i) ∈ X} for Y being a model
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of PX . Hence, there cannot be any model Y ⊂ X of PX excluding some atom

edgeMIC (j, i) or vertexMIC (i) that belongs to X.

Now turning our attention to atoms of form labelE’ (km, j, i, r) and labelV’ (km, j, s),

we note that they are included in X if edgeMIC (j, i) ∈ X and vertexMIC (j) ∈ X,

respectively, and σm(j, i) = r, μm(j) = s in witnessing labelings σm and μm for W \{km},
where 1 � m � n, or if σ(j, i) = r, μ(j) = s. Then, the fact that active(km) ∈ X and

labels assigned by σm and μm are unique and respect those assigned by σ and μ

implies that none of the atoms can be removed from X without violating some

ground instance of the rules

labelV’ (W,V ,+); labelV’ (W,V , –)← active(W ), vertexMIC (V ),

labelE’ (W,U,V ,+); labelE’ (W,U,V , –)← active(W ), edgeMIC (U,V ),

labelV’ (W,V , S)← active(W ), observedV (V , S),

labelE’ (W,U,V , S)← active(W ), observedE (U,V , S)

from (10) that belongs to PX . However, X satisfies all of these ground instances by

its construction. We further consider the following rules from (10):

receive’ (W,V ,+)← labelE’ (W,U,V , S), labelV’ (W,U, S ), V 
= W,

receive’ (W,V , –)← labelE’ (W,U,V , S), labelV’ (W,U,T ), V 
= W, S 
= T .

As shown above, labelE’ (km, j, i, r) belongs to X if i ∈ W and σm(j, i) = r or

if σ(j, i) = σm(j, i) = r. Furthermore, labelV’ (km, j, s) is included in X if j ∈ W

or (j→ k) ∈ E, k ∈ W , and μm(j) = s or if μ(j) = μm(j) = s. Comparing the

cross product of these conditions with the definition of X yields that an atom

receive’ (km, i, sr) belongs to X exactly if labelE’ (km, j, i, r) and labelV’ (km, j, s) are

in X and i 
= km. Hence, when excluding any of the atoms receive’ (km, i, sr) from X,

some ground instance of the above two rules belonging to PX becomes unsatisfied,

and so we have that such atoms cannot be removed from X in order to construct a

model Y ⊂ X of PX . Moreover, the fact that σm and μm are witnessing labelings for

W ′ = W \ {km} implies that all ground instances of the integrity constraint

← labelV’ (W,V , S), active(V ), V 
= W, not receive’ (W,V , S)

from (10) that belong to PX are satisfied by X. In fact, for every i ∈ W ′, there is

some (j→ i) ∈ E such that μm(i) = μm(j)σm(j, i). Since labelE’ (km, j, i, σm(j, i)) and

labelV’ (km, j, μm(j)) belong to X, this implies that each atom labelV’ (km, i, μm(i)) for

i ∈ W ′ is accompanied by receive’ (km, i, μm(i)) = receive’ (km, i, μm(j)σm(j, i)) in X so

that the ground instance for km, i, and μm(i) of the integrity constraint is not in PX .

Finally, we consider atoms of the form labelV (i, s), labelE (j, i, s), and opposite(j, i)

that belong to X for all i ∈ V and (j→ i) ∈ E, respectively, and s ∈ {+, –}. Since

bottom is also in X, it is clear that the ground instances of the following rules
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from (4), (8), and (9), all of which belong to PX , are satisfied by X:

labelV (V , S)← observedV (V , S),

labelE (U,V , S)← observedE (U,V , S),

labelV (V ,+); labelV (V , –)← vertexMIC (V ),

labelE (U,V ,+); labelE (U,V , –)← edgeMIC (U,V ),

opposite(U,V )← labelE (U,V , –), labelV (U, S), labelV (V , S),

opposite(U,V )← labelE (U,V ,+), labelV (U, S), labelV (V ,T ), S 
=T ,

bottom ← active(V ), opposite(U,V ) : edge(U,V ),

labelV (V ,+)← bottom , vertex (V ),

labelV (V , –)← bottom , vertex (V ),

labelE (U,V ,+)← bottom , edge(U,V ),

labelE (U,V , –)← bottom , edge(U,V ).

As shown above, any model Y ⊆ X of PX must necessarily include observedV (i, s)

if μ(i) = s, observedE (j, i, s) if σ(j, i) = s, vertexMIC (i) if i ∈ W or (i→ k) ∈ E for

some k ∈ W , edgeMIC (j, i) if (j→ i) ∈ E for some i ∈ W , and active(i) if i ∈ W .

Proceeding by proof by contradiction, assume that there is a model Y ⊂ X of PX

such that labelV (i, s), labelE (j, i, s), or opposite(j, i) is not in Y for some i ∈ V or

(j→ i) ∈ E, respectively, and s ∈ {+, –}. From the previous considerations and the

first two rules repeated above, we know that labelV (i, s) and labelE (j, i, s) must belong

to Y if μ(i) = s or σ(j, i) = s, respectively. Furthermore, the third rule necessitates

{labelV (i,+), labelV (i, –)} ∩ Y 
= ∅ for every i ∈ W or i ∈ V such that (i→ k) ∈ E

for some k ∈ W , and the fourth rule implies {labelE (j, i,+), labelE (j, i, –)} ∩ Y 
= ∅
for every (j→ i) ∈ E such that i ∈W . In view of the last four rules, we immediately

conclude that bottom /∈ Y , which in turn implies that, for every i ∈ W , there is

some (j→ i) ∈ E such that opposite(j, i) does not belong to Y . Comparing the rules

defining opposite, the exclusion of opposite(j, i) is possible only if Y does not include

labelE (j, i, r), labelV (j, s), and labelV (i, t) such that t 
= sr. As we have shown above

that some atoms labelE (j, i, r), labelV (j, s), and labelV (i, t) for r, s, t ∈ {+, –} must

belong to Y , we can now conclude that t = sr holds and that the atoms over

predicates labelE and labelV in Y define (partial) labelings σ′ and μ′ as follows:

• For every i ∈ W , pick some edge (j→ i) ∈ E such that opposite(j, i) does not

belong to Y , and let σ′(j, i) = r if labelE (j, i, r) ∈ Y , μ′(j) = s if labelV (j, s) ∈
Y , and μ′(i) = t if labelV (i, t) ∈ Y .

As we have seen above, such an edge (j→ i) ∈ E exists for every i ∈ W , and the

fact that t 
= sr is not obtained for atoms labelE (j, i, r), labelV (j, s), and labelV (i, t)

in Y implies that σ′ and μ′ assign unique labels to (j→ i), j, and i, respectively.

When we totalize σ′ and μ′ by setting σ′(j, i) = σ(j, i) and μ′(i) = μ(i) if σ(j, i) or

μ(i), respectively, is defined and σ′(j, i) = + as well as μ′(i) = + for all remaining

edges in E and vertices in V , we obtain witnessing labelings for W . But this is

a contradiction to the fact that W is an MIC, which allows us to conclude that

there cannot be any model Y ⊂ X of PX that omits labelV (i, s), labelE (j, i, s), or

opposite(j, i) for some i ∈ V or (j→ i) ∈ E, respectively, and s ∈ {+, –}.
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To conclude the proof that X is a ⊆-minimal model of PX , note that the integrity

constraint

← not bottom

from (9) does not contribute any rule to PX because bottom ∈ X. We have now

investigated all rules in PD ∪ τ((V , E, σ), μ) and shown that their ground instances

in PX are satisfied by X. Furthermore, we have checked for all atoms in X that they

cannot be excluded in any model Y ⊂ X of PX . That is, X is indeed a ⊆-minimal

model of PX and thus an answer set of PD ∪ τ((V , E, σ), μ).
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