
Mathematisch-Naturwissenschaftliche Fakultät

M. Boettle | D. Rybski | J. P. Kropp

Quantifying the effect of sea level rise 
and flood defence

a point process perspective on coastal flood damage

Postprint archived at the Institutional Repository of the Potsdam University in:
Postprints der Universität Potsdam
Mathematisch-Naturwissenschaftliche Reihe ; 559
ISSN 1866-8372
https://nbn-resolving.org/urn:nbn:de:kobv:517-opus4-412405
DOI https://doi.org/10.25932/publishup-41240

Suggested citation referring to the original publication:
Natural Hazards and Earth System Sciences 16 (2016), pp. 559–576 
DOI https://doi.org/10.5194/nhess-16-559-2016
ISSN (print) 1561-8633
ISSN (online) 1684-9981





Nat. Hazards Earth Syst. Sci., 16, 559–576, 2016

www.nat-hazards-earth-syst-sci.net/16/559/2016/

doi:10.5194/nhess-16-559-2016

© Author(s) 2016. CC Attribution 3.0 License.

Quantifying the effect of sea level rise and flood defence –

a point process perspective on coastal flood damage

M. Boettle1, D. Rybski1, and J. P. Kropp1,2

1Potsdam Institute for Climate Impact Research (PIK), Potsdam, Germany
2University of Potsdam, Institute of Earth and Environmental Science, Potsdam, Germany

Correspondence to: D. Rybski (ca-dr@rybski.de)

Received: 17 August 2015 – Published in Nat. Hazards Earth Syst. Sci. Discuss.: 13 October 2015

Revised: 18 January 2016 – Accepted: 22 January 2016 – Published: 29 February 2016

Abstract. In contrast to recent advances in projecting sea

levels, estimations about the economic impact of sea level

rise are vague. Nonetheless, they are of great importance for

policy making with regard to adaptation and greenhouse-gas

mitigation. Since the damage is mainly caused by extreme

events, we propose a stochastic framework to estimate the

monetary losses from coastal floods in a confined region. For

this purpose, we follow a Peak-over-Threshold approach em-

ploying a Poisson point process and the Generalised Pareto

Distribution. By considering the effect of sea level rise as

well as potential adaptation scenarios on the involved param-

eters, we are able to study the development of the annual

damage. An application to the city of Copenhagen shows that

a doubling of losses can be expected from a mean sea level

increase of only 11 cm. In general, we find that for varying

parameters the expected losses can be well approximated by

one of three analytical expressions depending on the extreme

value parameters. These findings reveal the complex inter-

play of the involved parameters and allow conclusions of fun-

damental relevance. For instance, we show that the damage

typically increases faster than the sea level rise itself. This

in turn can be of great importance for the assessment of sea

level rise impacts on the global scale. Our results are accom-

panied by an assessment of uncertainty, which reflects the

stochastic nature of extreme events. While the absolute value

of uncertainty about the flood damage increases with rising

mean sea levels, we find that it decreases in relation to the

expected damage.

1 Introduction

Considering current CO2 emission pathways, severe climate

change impacts need to be anticipated (IPCC, 2007; Nicholls

and Cazenave, 2010). As one of the most perceivable effects

of global warming, sea level rise will amplify the magni-

tude as well as the frequency of coastal floods (Rahmstorf

and Coumou, 2011; Seneviratne et al., 2012) and is likely

to have significant economic impacts (Hinkel et al., 2014;

Nicholls and Tol, 2006). Even in the case of temperature sta-

bilisation, sea levels will continue to rise for many decades

(Meehl et al., 2012). Accordingly, greenhouse-gas mitigation

alone will not be sufficient, and additional preventive mea-

sures need to be considered to cope with the consequences

(Petherick, 2012). The most common method to assess the

efficiency of such measures is Cost–Benefit Analysis (Tol,

2002), in which the benefits in terms of averted damage are

compared to the investment costs. For this purpose, a concise

assessment of potential economic consequences is indispens-

able.

Adverse effects from sea level rise are particularly ex-

pected from storm surges, presupposing the coincidence of

extreme tidal and storm conditions (Woodworth et al., 2011).

Accordingly, not the mean sea level itself but rather its effect

on the tail of the sea level distribution needs to be studied.

Since the actual distribution of sea levels is in general un-

known, extreme value theory is commonly employed in order

to characterise extreme events by a unifying tail distribution

(Hawkes et al., 2008).

For estimating the annual flood damage at a specific site

(that is the sum of all damages caused within a year), infor-

mation on the occurrence of flood events, their magnitude
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(e) Damage distribution

(d) Damage function

Figure 1. From extreme sea levels to damage. (a) The analysis of extreme sea levels provides parameter estimations for the generalised

Pareto distribution. (b) The distribution of sea levels is influenced by mean sea level rise. (c) Flood defence measures, such as dykes, set the

threshold below which any damage is prevented. (d) The distribution of extreme sea levels is combined with the corresponding damage via

a damage function, providing the total damage in the region under study at a certain maximum flood level. (e) From the resulting distribution

of total annual damage the expected annual damage and its standard deviation can be derived. (Photographs: “Ilmpegel Ilmenau” by Michael

Sander (2006), “Sea” by Dedda71 (2008), “Kilometermarkierung Deich” by Georg HH (2006), and “Nashville Flood” by Eric Hamiter

(2010) from Wikimedia Commons – CC:BY-SA.)

as well as the corresponding damage is required. Due to the

stochastic nature of extreme events, the annual damage can-

not be predicted for a specific year and is characterised by

its average value over a longer time period. In reality, the ac-

tual damage fluctuates around this expected annual damage

with a certain variability. For instance, there are years with-

out any damage and others where a very unlikely flood event

(e.g. a 100- or 1000-year event) occurs. This variability can

be measured by several means such as the skewness of the

distribution or specific quantile values. We will use the stan-

dard deviation for this purpose as it can be straightforwardly

derived and further provides an intuitive way to quantify the

uncertainty of our damage estimations. Since environmen-

tal as well as climatic changes alter the statistics of extreme

events, we assume non-stationarity and investigate the devel-

opment of damage for specific parameter scenarios.

Considering sea level rise, we find analytic relations de-

scribing the damage for asymptotic parameter values (i.e.

for very large changes) and show that they represent good

approximations for the behaviour of damage under current

conditions. Furthermore, studying the mitigation effects due

to coastal protection measures in an analogous way, we pro-

vide three potential decays of residual damage, depending on

the shape of the sea level distribution. In general, our analyt-

ical relations are capable of describing the development of

damage for all parameter variations.

The paper is organised as follows. Section 2 provides the

methodologies for the estimation of annual flood damage via

a point process. The effect of sea level rise is investigated in

Sect. 3, where we provide analytical expressions describing

the asymptotic behaviour in a general setting. The generic

form of these results allows their application to arbitrary re-

gions, which is exemplified by two case studies in Denmark

(Sect. 4). Section 5 investigates the effect of coastal protec-

tion in a similar manner. A complementary block maxima

approach using the Generalised Extreme Value (GEV) dis-

tribution was followed previously (Boettle et al., 2013), in

which exactly one – namely the most severe – flood event per

year is taken into account. A comparison of the two methods

is presented in Sect. 6. Finally, our findings are discussed in

Sect. 7. Further results and the derivation of our analytic re-

sults are provided in the Appendix.

2 Methodology

Our proposed methodology (illustrated by Fig. 1) is based on

the combination of extreme value theory (Sects. 2.1, 2.2 and

2.3) and the concept of (stage-)damage functions (Sect. 2.4).

Thus, we are able to calculate the expected annual damage

(Sect. 2.5 and 2.6) within a considered region for different

parameter scenarios. All employed symbols and their mean-

ings are summarised in Table 1.

2.1 Peak-over-threshold approach

Extreme events are commonly characterised by employing

extreme value theory (Coles, 2001; Hawkes et al., 2008). Be-

sides the block maxima method, Peak-over-Threshold (POT)

is a widely used approach (Coles, 2001), where the distribu-

tion of water levels, given that they exceed a certain threshold

u, is estimated. Supposing the threshold u to be high enough

and assuming the independence of flood events, the excess

water levels follow approximately a Generalised Pareto Dis-

tribution (GPD). In addition to u, the GPD is determined by

a shape parameter ξ and a scale parameter σ . Its cumulative

distribution is of the following form:

Hu,ξ,σ (x)=

{
1− exp(− x−u

σ
) if ξ = 0

1−
(
1+ ξ x−u

σ

)−1/ξ
if ξ 6= 0,

(1)

with x > u. In the case ξ < 0, the water level is bounded from

above by a maximum possible water level xmax := u− σ/ξ

and we set Hu,ξ,σ (x)= 1 for x ≥ xmax accordingly.

Nat. Hazards Earth Syst. Sci., 16, 559–576, 2016 www.nat-hazards-earth-syst-sci.net/16/559/2016/
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Table 1. Overview of employed symbols, their meanings, and section in which they are introduced.

Symbol Meaning Section

ξ Shape parameter of the extreme value distribution 2.1

σ Scale parameter of the extreme value distribution 2.1

u Considered threshold of the extreme value distribution 2.1

µ 1-year event; i.e. sea level that is exceeded on average once a year 2.2

3 Intensity of the Poisson process; i.e. average number of sea level

exceedances per year above u

2.2

γ Exponent of the damage function 2.4

ω Presumed protection level; i.e. maximum sea level against

which the considered region is protected

5

In our context, u is the critical water level above which

damage occurs or corresponds to the given protection height

at the site. However, bearing in mind that Hu,ξ,σ describes

the limiting distribution of exceedances for an asymptotically

increasing threshold, u needs to be large enough to obtain

a good approximation of the true distribution. In particular,

if no protection is given and u is freely chosen, a compro-

mise between the adequacy of the statistical model (the larger

u, the better the approximation) and the omission of smaller

events (x < u) needs to be found.

2.2 Point process

Section 2.1 provided the distribution of water levels given

that the threshold u is exceeded. However, an estimation of

annual damage requires additional information on how of-

ten the sea level exceeds u. Therefore, we define a flood

event as such an exceedance and use a point process to model

the incidence of these events (Coles, 2001; Embrechts et al.,

1997). By employing a Poisson process (Reiss and Thomas,

2007), the number of flood events N within a specific year is

Poisson-distributed with a certain mean value 3, i.e.

N ∼ Poi(3). (2)

Consequently, 3 is the average number of flood events and

P(N = k)= 3k

k!
e−3 the probability of k events within 1 year.

The Poisson property Eq. (2) is a strong assumption, which

is strictly valid for independent water levels and is com-

monly assumed in practice (e.g. Mudersbach and Jensen,

2010; Hawkes et al., 2008). The parameter 3 can be esti-

mated by counting the number of observed events divided

by the corresponding time period. Furthermore, 3 can be di-

rectly related to the GPD parameters: denoting µ as the 1-

year event, i.e. the water level that is exceeded on average

once per year, it holds (Coles, 2001) that

3=

exp
(
−
u−µ
σ

)
if ξ = 0(

1+ ξ
u−µ

σ−ξ(u−µ)

)−1/ξ

if ξ 6= 0.
(3)

2.3 Parameter effects

We want to study the impact of sea level rise as well as poten-

tial protection measures on the flood damage. As illustrated

in Fig. 2, two general effects can be observed within our

framework. On the one hand, the frequency of flood events,

i.e. the number of annual floods Ni , is expected to change.

On the other hand, the intensities of occurring flood events

can change, which would be represented in a change of the

probability distribution of exceedances.

2.3.1 Sea level rise

We assume that a rise in mean sea levels results in a shift

of today’s sea level distribution towards higher water levels

without deformation of the distribution (Kauker and Langen-

berg, 2000; Mudersbach et al., 2013). Other possible effects,

e.g. a changing tide behaviour, can be modelled by a varying

scale parameter σ (see Appendix A). This scenario is illus-

trated in Fig. 2b where the time series is shifted by the mean

sea level rise leading to increased numbers of flood events

Ni (which in turn change the parameter3=
∑l
i=1Ni/l) and

a modified probability distribution of exceedances. Accord-

ingly, we adjust our model in such a way that every event

of certain annuality in a particular year is increased by the

corresponding sea level rise (McInnes et al., 2013). This is

achieved by a simple modification of the parameters. Firstly,

the frequency of exceedances will increase. Using the 1-year

event µ as variable parameter, we consider a shift from µ

to µ′ (i.e. a sea level rise of (µ′−µ) cm) and use Eq. (3)

to derive the altered occurrence rate. Prior to this, also the

scale parameter σ of the exceedance distribution needs to be

adjusted (Coles, 2001):

σ ′ = σ + ξ(µ−µ′), (4)

which implies an altered width of the distribution in the case

ξ 6= 0. These modifications result in a shift of each event with

certain annuality by the magnitude of mean sea level rise.

www.nat-hazards-earth-syst-sci.net/16/559/2016/ Nat. Hazards Earth Syst. Sci., 16, 559–576, 2016
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Figure 2. Illustrative time series of sea levels and their probability density function for several scenarios. (a) Current conditions with a thresh-

old u and the 1-year event µ. (b) Increased mean sea level with a corresponding shift of the time series and thus the 1-year event from µ to

µ′. (c) Supposing a protection height of u′ implying an adjustment of the threshold from u to u′. The values N1,N2, . . . represent in all cases

the number of exceedances within the corresponding year. The average value of the Ni provides an estimator for occurrence rate 3.

2.3.2 Protection measures

The implementation of a coastal protection measure will be

considered in such a way that any damage from flood levels

up to a specific protection height ω is avoided (as suggested

by Hallegatte et al., 2013). Hence, we choose a new thresh-

old u′ = ω representing the implemented protection height.

Figure 2c illustrates this approach and it can be seen that the

number of flood events Ni as well as the probability distribu-

tion of exceedances changes if we raise the threshold from u

to u′.

Given the GPD parameters with respect to a threshold u,

the GPD distribution with respect to u′ has the same shape

parameter ξ but a modified scale parameter σ ′ (see e.g. Katz

et al., 2005):

σ ′ = σ + ξ(u′− u). (5)

Again, this also enters the derivation of a change in flood

frequency using Eq. (3).

2.4 Damage functions

After having information about the occurrence of flood

events, the resulting damage is obtained by means of

a (stage-)damage function (Smith, 1994; Merz et al., 2010),

which describes the correlations between the flood height and

the corresponding damage (Fig. 1d).

Most commonly, damage functions are applied on the

building scale (see e.g. Merz et al., 2010, and references

therein). In our context, we use macroscopic damage func-

tions (Boettle et al., 2011; Prahl et al., 2015), which pro-

vide the total damage within a spatially delineated region as

a function of the maximum flood level. We assume that the

form of such damage functions follows a power law (as sug-

gested in Hallegatte et al., 2011; Boettle et al., 2011), i.e. for

the damage caused by a flood of maximum height x holds

the proportionality

F(x)∼ xγ . (6)

See Boettle et al. (2013) for more details. In general the

damage function exponent γ is unknown, but values of 1.6

and 4.1 have been found for our case studies (Boettle et al.,

2013).

Nat. Hazards Earth Syst. Sci., 16, 559–576, 2016 www.nat-hazards-earth-syst-sci.net/16/559/2016/
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2.5 Expected annual damage and uncertainty

The combination of the methodologies above provides the

probability distribution of the annual flood damage in a spe-

cific region (Fig. 1e). However, we restrict our investigations

to the expectation value and the standard deviation of the

annual damage. The annual damage D is calculated as the

sum of all single event damagesDi , i.e.D =D1+·· ·+DN ,

where N ∼ Poi(3) is the number of flood events in the con-

sidered year. The Poisson property of N implies for the ex-

pected number of flood events EN =3 and for its variance

VarN =3. Using Wald’s identities (Beichelt, 2006), the ex-

pected annual damage ED and the standard deviation SDD
are

ED =3EDi and (7)

SDD = (VarD)
1/2
=

(
3

(
VarDi +E2

Di

))1/2

, (8)

where EDi and VarDi describe the expected damage of a sin-

gle flood event and its variance, respectively. Please note that

all event magnitudes Di within 1 year are assumed to be in-

dependent and identically distributed (Coles, 2001).

2.6 Computational calculations

Given the extreme value parameters u,ξ,σ,3, and a damage

function F , we calculate the expected annual damage ED and

the standard deviation SDD by virtue of Eqs. (7) and (8).

For this purpose, the required information on the single

events Di is obtained via EDi =
∫
∞

u
F(x)hu,ξ,σ (x)dx and

SD2
Di
=

∫
∞

u

(
EDi −F(x)

)2
hu,ξ,σ (x)dx, where hu,ξ,σ (x)=

d
dx
Hu,ξ,σ (x) is the probability density function of ex-

ceedances. From the computational perspective, the men-

tioned integrals need to be discretised and the upper limit re-

placed by a finite value xmax. In the case ξ < 0, the limit xmax

represents the maximal possible water level as described in

Sect. 2.1, otherwise it is set to such a high value that the re-

sulting error becomes negligible. Partitioning the range of in-

tegration [u,xmax] by equidistant steps 1x with n midpoints

x1, . . .,xn, the following approximations are used:

EDi ≈1x

n∑
j=1

F(xj )hu,ξ,σ (xj ) and (9)

SD2
Di
≈1x

n∑
j=1

(
EDi −F(xj )

)2
hu,ξ,σ (xj ). (10)

3 Sea level rise impacts

We start in a general setting where the GPD parameters ξ , σ ,

u, as well as the damage function exponent γ are given and

investigate the behaviour of damage for rising sea levels.

All other parameters are kept constant in the following. As

described in Sect. 2.3.1, we parametrise the mean sea level by

the 1-year event µ. The following results are derived analyti-

cally (see Appendix B for details) and hold in an asymptotic

sense. More precisely, the expected damage ED divided by

the provided expression, Eqs. (11)–(13), converges to a non-

zero constant number for µ→∞ (or, if it is bounded, by

a value µmax, for µ→ µmax). Hence, the following relations

represent limit behaviours. Their practical use as approxima-

tions of the actual behaviour is examined in Sect. 4.

We find an increase of the annual damage by means of

two separate effects (as described in Sect. 2.3.1): (i) higher

frequency of events or (ii) higher severity of the events. De-

pending on the shape parameter ξ , three possible behaviours

need to be distinguished:

(i) In the case ξ = 0 (indicating an exponential tail in the

sea level distribution), sea level rise leads to an expo-

nentially increasing number of flood events while the

alterations of single floods are negligible, overall imply-

ing an exponential dependence of the expected annual

damage on the sea level:

ED(µ)∼ eµ/σ . (11)

(ii) In contrast, we find a less steep relation if the water lev-

els are bounded tailed (i.e. ξ < 0):

ED(µ)∼ µ
γ−1/ξ . (12)

Here, the two effects are superposed: the average dam-

age of an event increases with exponent γ and the num-

ber of events with exponent −1/ξ .

(iii) For the heavy-tailed case (ξ > 0), the damage can be

characterised by a power law:

ED(µ)∼ (µmax−µ)
−1/ξ , (13)

which holds for µ close to the maximum possible value

µmax. Approaching this value, the number of flood oc-

currences becomes very large and ends in a permanent

flooding of the area under study for µ= µmax. As for

ξ = 0, this behaviour is solely caused by more frequent

inundations and not by a changing severity of flood

events.

It can be seen that each of the three possible relations in-

volves a different set of parameters. Surprisingly, the dam-

age function exponent γ is not involved (in the case ξ ≥ 0) or

plays only a minor role (for ξ < 0, the term−1/ξ in Eq. (12)

is predominant for typical parameter values). This implies

that the functional behaviour of ED(µ) is mostly independent

of the determining factors of the damage function, such as the

orography and the location of values in the case study area.

In general, considering that |ξ | typically takes small values,

the expected damage increases super-linearly in all cases.

The expected annual damage only represents average val-

ues, and the actually occurring losses fluctuate considerably.

www.nat-hazards-earth-syst-sci.net/16/559/2016/ Nat. Hazards Earth Syst. Sci., 16, 559–576, 2016



564 M. Boettle et al.: Quantifying the effect of SLR and flood defence on coastal flood damage

80 90 100 110 120 130 140 150
Threshold u  [cm]

0

5

10

15

20

25

M
e

a
n

 e
x
c
e

s
s
e

s
  

[c
m

]

(a)  Copenhagen

70 80 90 100 110 120 130 140
Threshold u  [cm]

15

20

25

M
e

a
n

 e
x
c
e

s
s
e

s
  

[c
m

]

(b)  Kalundborg

Figure 3. Average magnitudes of excesses over the threshold u from available sea level records for varying thresholds in (a) Copenhagen

and (b) Kalundborg. The dashed red lines represent the thresholds u= 100 cm (Copenhagen) and u= 80 cm (Kalundborg), which were used

for our analysis.

Therefore, we also examine the uncertainty of our estima-

tions by means of the standard deviation of the damage, SDD ,

and find expressions similar to the average value but with an

additional factor of 0.5 in the exponents (see Appendix B for

their derivations):

SDD(µ)∼


e0.5µ/σ if ξ = 0 (for large µ)

µγ−0.5/ξ if ξ < 0 (for large µ)

(µmax−µ)
−0.5/ξ if ξ > 0 (for µ close to µmax).

(14)

This uncertainty measure represents just a lower bound

since it includes only the aleatory uncertainty from the fact

that one does not know when the extremes occur and does not

take into account additional epistemic uncertainties due to

a lack of knowledge, e.g. stemming from the stage–damage

relation (Merz et al., 2004) or the estimation of extreme value

parameters (Hosking and Wallis, 1987). However, the rela-

tions imply that although the variability increases in all cases,

the relative error of the estimate, SDD/ED , decreases with

rising sea levels. Surprisingly, this implies that, in a sense,

flood damage becomes more foreseeable.

Besides sea level rise, which is regarded as the main

driver for higher and more frequent extremes (Menéndez and

Woodworth, 2010), meteorological changes can play an im-

portant role. Evolving wind patterns, for instance, can lead to

a modified distribution of water levels (Haigh et al., 2010),

which in turn alters the damage distribution. Although this

effect is not understood (Mudersbach and Jensen, 2010), the

influence of a hypothetically changing scale parameter σ on

the damage is studied in Appendix B.

4 Application

We would like to illustrate how the respective variables be-

have in real examples and compare our analytic derivations

from the previous section with numerical calculations (as de-

scribed in Sect. 2.6) for two Danish case studies – namely

the city of Copenhagen and the municipality of Kalundborg.

The two locations were chosen due to the availability of dam-

age functions as well as sea level records. Details on the case

studies can be found in Hallegatte et al. (2011) and Boettle

et al. (2011), respectively.

For the estimation of extreme value parameters in the two

case studies, extreme sea level records from closely located

gauges were preprocessed by subtracting a linear trend of

0.45 cm (Copenhagen) and 0.16 cm (Kalundborg) per year

(derived from mean sea level data, available at http://www.

psmsl.org). Next, a threshold u, above which the behaviour

of water levels is modelled, needs to be chosen where a trade-

off between bias (low u) and variance (high u) is required.

One necessary condition for an appropriate threshold u is the

linear dependence between the mean excesses and the thresh-

olds close to u (Coles, 2001). As can be seen in the mean ex-

cess plots in Fig. 3, this holds for thresholds around 100 cm

(Copenhagen) and above 80 cm (Kalundborg), respectively.

Bearing also in mind that a sufficient number of sea levels

above the threshold is needed for the determination of pa-

rameters, the GPD parameters were estimated on the basis

of the remaining 69 (Copenhagen) and 106 (Kalundborg)

extreme sea levels. Using a maximum likelihood estima-

tion (Embrechts et al., 1997), the parameters ξ =−0.14 and

σ = 15.79 cm for Copenhagen and ξ = 0.08, σ = 13.65 cm

for Kalundborg were obtained. Since the damage function

of Kalundborg shows only a negligible damage for sea levels

below 140 cm, the threshold was raised to u= 135 cm, which

entails a modified scale parameter of σ = 17.78 cm accord-

ing to Eq. (5). Please note that this adjustment does not affect

the stochastic accuracy and just avoids the consideration of

negligible flood events. As the shape parameter ξ is nega-

tive for Copenhagen, the possible sea levels are bounded and

a maximum possible sea level of xmax ≈ 215 cm is deduced.

These parameters deviate from the previously performed es-

timation of GEV parameters based on annual maximum sea

Nat. Hazards Earth Syst. Sci., 16, 559–576, 2016 www.nat-hazards-earth-syst-sci.net/16/559/2016/
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Figure 4. Expected annual damage (dark blue) and standard deviations (light blue) in (a) Copenhagen and (b) Kalundborg as a function of the

mean sea level (parametrised by the 1-year flood µ). The dotted lines show the asymptotic relations Eqs. (12), (13) and (14) with γ = 1.6 and

ξ =−0.14 (Copenhagen) and γ = 4.1 and ξ = 0.08 (Kalundborg). The values for the current 1-year floods µ0 = 91.21 cm (Copenhagen)

and µ0 = 95.35 cm (Kalundborg) are indicated by brown vertical lines. The abscissa in the right panel is inverted and shows the difference

between the 1-year flood µ and µmax = 332.04 cm (at the top, the corresponding 1-year floods are displayed).

level records (Boettle et al., 2013). The occurrence rates 3

for the description of the Poisson process were estimated

by the average number of observed exceedances per year.

These are3= 0.585 (Copenhagen) and3= 0.083 (Kalund-

borg). Finally, the 1-year events µ= 91.21 cm (Copenhagen)

and µ= 95.35 cm (Kalundborg) were calculated by using

Eq. (3).

The available damage functions support our presumption

from Sect. 2.4 and follow roughly power laws with expo-

nents γ = 1.6 (Copenhagen) and γ = 4.1 (Kalundborg). Fur-

ther details on the damage functions can be found in Boettle

et al. (2013). The exponent γ is used for two purposes: (i) the

parametrisation of the damage function needed for the func-

tional description of sea level rise effects (Sect. 3) and (ii) for

an extrapolation of the damage function beyond the provided

range which in some cases is required for numerical calcula-

tions (namely, if xmax > 10m, Sect. 2.6).

Once having this information, the annual damage can be

calculated numerically (as described in Sect. 2.6) for varying

mean sea levels parametrised by the 1-year event µ. Figure 4

shows this annual mean damage and its standard deviation as

a function of µ and compares it with the asymptotic results.

Since ξ > 0 holds in the Kalundborg case, the parameter µ

is bounded from above by a value µmax and we parametrise

the damage by the difference µmax−µ. For µ approaching

µmax ≈ 332 cm, the number of flood events becomes very

large and ends in a permanent flooding of the considered re-

gion. It is likely that the municipality counteracts this ten-

dency as soon as the occurring damage exceeds a tolerable

value. Our projections are therefore explicitly based on a “no

adaptation” scenario. We also disregard a modification of the

damage function due to precedent damage and e.g. reduc-

tion of asset value. It can be seen that rising mean sea levels

lead to an increase in expected damage and standard devi-

ation, which is well described by our asymptotic results al-

ready for moderate values of µ. This holds particularly for

Kalundborg, but also in the case of Copenhagen – a similar

shape of the dashed and solid lines can be detected. Overall,

the asymptotic behaviours provide good estimates under the

current conditions for both case studies. This shows that ad-

equate projections of future flood damage can be obtained

based on very few parameters. It needs to be highlighted

again that in both cases the damage function exponent γ

plays only a minor role. While for Kalundborg the approxi-

mation is even independent from it, the asymptotic projection

for Copenhagen, µγ−1/ξ
≈ µ1.6+7.1, is clearly dominated by

the shape parameter ξ =−0.14.

In practice, one is often interested in a temporal develop-

ment of damage. In order to further elaborate on this issue,

our approach requires a projection of mean sea levels. For

the city of Copenhagen, such have been extracted from the

Dynamical Interactive Vulnerability Assessment (DIVA) tool

(Hinkel and Klein, 2003; Vafeidis et al., 2008) and we were

thus able to study the damage as a function of time. Again,

we suppose that changes in mean sea levels result in a shift

of extreme events and add the estimated mean sea level rise

to the corresponding events. Figure 5a displays the sea level

projections for the SRES scenarios B1 (medium climate sen-

sitivity) and A1B (high climate sensitivity) with a total rise

of 11 and 26 cm by 2050 respectively. Panel b shows the re-

sulting annual damage, exhibiting a steeper slope than the sea

levels with an increase by a factor of roughly 2 (B1) and 4.6

(A1B) by 2050, respectively.

5 The effect of protection measures

At this point, it is important to bear in mind that the severity

of a flood disaster is not only determined by environmental
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Figure 5. (a) Mean sea level projections for the SRES scenarios A1B (high climate sensitivity) and B1 (medium climate sensitivity) in

Copenhagen provided by the DIVA tool (Hinkel and Klein, 2003; Vafeidis et al., 2008). (b) The expected annual damage as a function of

time, based on the two scenarios.

factors but also to a significant extent by human decisions

(Pielke Jr and Downton, 2000). In particular, the implemen-

tation of a flood defence measure can counteract the increas-

ing flood risk (Fig. 1c). However, identifying the appropri-

ate height of the protection measure is crucial for choos-

ing a cost-efficient solution, i.e. an investment that pays off

within a considered time period. Therefore, we investigate

the effect of varying protection heights ω on the residual

damage, assuming that inundations from flood levels below

ω are completely avoided (as suggested by Hallegatte et al.,

2013). Since the distribution of sea levels is bounded in the

case ξ < 0, the damage vanishes for a protection measure

higher than the maximum possible water level xmax. This is

not the case for ξ ≥ 0. In summary, we find the asymptotic

relations

ED(ω)∼


ωγ e−ω/σ if ξ = 0 (for large ω)

(xmax−ω)
−1/ξ if ξ < 0 (for ω close to xmax)

ωγ−1/ξ if ξ > 0 (for large ω).

(15)

As for rising sea levels, the behaviour of the expected dam-

age depends fundamentally on the shape parameter ξ . While

we find a decay that is dominated by an exponential com-

ponent in the case ξ = 0, a power law relation independent

of the scale parameter σ is found if ξ > 0. For ξ < 0, the

expected damage follows a power law with the proximity of

the protection height ω to the maximum water level xmax. Re-

markably, the expressions differ not only in their functional

forms but also in the parameters involved. For instance, the

exponent γ of the damage function does not influence the be-

haviour in the case ξ < 0 (as in Copenhagen). This highlights

the decisive character of the shape parameter ξ , whose sign is

not always unambiguous (Martins and Stedinger, 2000). Al-

though a steep decrease in the damage is found in all cases,

full flood safety can only be achieved if ξ < 0, and a residual

risk needs to be dealt with otherwise, even if potential protec-

tion failures, such as dyke breaches, are disregarded. Consid-

ering the standard deviations, similar expressions are found

(again with an additional factor of 0.5 in the exponents):

SDD(ω)∼


ωγ e−0.5ω/σ if ξ = 0 (for large ω)

(xmax−ω)
−0.5/ξ if ξ < 0 (for ω close to xmax)

ωγ−0.5/ξ if ξ > 0 (for large ω)

. (16)

Hence, in all cases, the relative variation of the damage,

SDD/ED , grows with increasing protection levels. Conse-

quently, damage in regions with high flood protection stan-

dards is subject to a wider range of relative uncertainty, indi-

cating a higher contribution of low-probability high-impact

events to the total damage (Merz et al., 2009). This shows

that although coastal protection can reduce the average dam-

age significantly, it cannot always avert the threat of very ex-

treme floods.

Regarding the case studies Copenhagen and Kalundborg,

Fig. 6 shows that the results from the numerical analyses of

different protection levels can be very well approximated by

our analytical relations from Eqs. (15) and (16). In contrast

to the consideration of rising mean sea levels (Fig. 4), the

Copenhagen case provides a better accordance than Kalund-

borg. This is due to the fact that in Copenhagen the param-

eter space of ω is limited by xmax and hence the asymptotic

range of convergence is closer to the considered value. In

any case, our results represent suitable estimations, which

might be useful in planning and decision-making processes

of coastal protection measures.

6 Comparison with block maxima approach

Beside the point process approach, the method of block max-

ima using the GEV distribution is a common approach in

extreme value theory (Coles, 2001). Mathematically speak-

ing, the GEV distribution is the limit distribution of properly

normalised maxima of a sequence of independent and iden-

tically distributed random variables. In practice, it is used to
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Figure 6. Expected annual damage (dark green) and standard deviations (light green) in (a) Copenhagen and (b) Kalundborg as a function

of the protection level ω. The abscissa in the left panel is inverted and shows the difference between the protection level ω and the maximum

possible water level xmax = 215.28 cm (at the top, the corresponding protection heights are displayed). Since no considerable damage occurs

in Kalundborg for sea levels below 135 cm, only protection levels above ω = 135 cm are considered. The dotted lines follow the power laws

from Eqs. (15) and (16) with the estimated damage function exponents γ = 1.6 (Copenhagen) and γ = 4.1 (Kalundborg).

estimate the distribution of the maximum value within a time

window of a certain size (e.g. 1 year). Using the block max-

ima approach, only one flood event (the most severe) per year

is considered, implying that all other events (i.e. the second,

third, . . . largest) are neglected. However, the point process

approach and the block maxima approach are strongly in-

terrelated (Coles, 2001; Katz et al., 2005). In particular, the

parameters from the one approach can be easily derived from

the other.

Complementary to the work in hand, an analogous analy-

sis using the block maxima instead of the point process ap-

proach has been carried out recently (Boettle et al., 2013).

Considering sea level rise, the asymptotic results of the two

approaches differ significantly and a less steep increase in

annual damage is found for arbitrary shape parameters ξ if

block maxima are considered. This is due to the fact that the

average number of damage-causing floods per year increases

and the omission of events in the block maxima approach

takes effect. In the case that more than one flooding per year

is expected, the point process method therefore represents the

better choice as it adds significant information.

In contrast, an increasing variability in the sea levels, re-

flected in a changing scale parameter σ (see Appendix B),

leads to the same results for the two approaches. This can be

explained by Eq. (3), which indicates that for an increasing

scale parameter σ the number of annual flood events con-

verges to 1. That is, on average there is one exceedance of

the given threshold per year, which naturally coincides with

the annual maximum sea level.

Finally, investigating increasing protection levels, the re-

sults of the two approaches again coincide. This is not sur-

prising, since for high protection levels, inundations are very

rare and more than one flooding per year is very unlikely.

Consequently, the disregard of additional floods becomes

negligible and the annual flood damage is typically deter-

mined by one – the most severe – flood event.

Both approaches are based on extreme value theory but

differ in the extreme sea levels that are taken into account.

Since the point process approach presented in this work is

able to consider all relevant flood events, it can be consid-

ered as advantageous, particularly for the investigation of sea

level rise impacts. However, the choice of the threshold u is

crucial and not always evident which makes the method more

complex to apply. In general, as we have seen, the shape pa-

rameter ξ is very decisive for the damage behaviour. Its de-

termination is therefore of utmost importance and in case of

doubt the method with a better data availability should be fol-

lowed in order to guarantee the best possible estimation of ξ .

7 Discussion

Despite the accurate analytical formulation of the work at

hand, some weaknesses need to be noted. For instance, the

occurrence probability of a flood event on a specific day is

assumed to be independent from the other days. In the short-

term there is a strong correlation between sea levels. This

becomes apparent when considering the fact that storm surge

events typically last for several days. In addition, it has been

shown, that sea level records also comprise long-term corre-

lations (Barbosa et al., 2006; Dangendorf et al., 2014). The

clustering of extreme events (Eichner et al., 2007) might am-

plify the uncertainty. On the other hand, this is counteracted

by the fact that two or more subsequent flood events (e.g.

three sea level exceedances within 1 month) do not provide

individual damages. That is, the actual damage is likely to

be dominated by the first or highest of these events and will

most likely not equal the sum of the damages corresponding
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to these events (given that they occur in a sufficiently long

distance of time). In summary, although the presented ap-

proach still has some intrinsic errors, it overcomes the major

shortcoming of a block maxima approach and hence can be

considered as superior.

Studying the effect of sea level rise, we find that in any

case the expected damage increases super-linearly with the

mean sea level, when considering typical values of the shape

parameter. This means that the losses always increase at

a higher rate than the sea levels – a universal result that needs

to be explored when the climate change impacts of sea level

rise are discussed economically.

Our work also shows that the upcoming losses from sea

level rise are mostly determined by the type of sea level ex-

tremes (i.e. the sign of the parameter ξ ), which crucially dic-

tates the power of ED(µ) (assuming constant coastal assets).

This finding brings us to the following insights: (i) Since the

steepness of the damage function (exponent γ ) is mostly ir-

relevant, potential policies aiming at changing the slope of

the damage function via relocation of valuable assets can re-

duce the expected losses, but a priori have only a marginal

mitigation effect on the development of future flood damage.

That is, such policies change the proportionality constant but

hardly alter the proportionality. (ii) A reliable characterisa-

tion of sea level extremes is essential for a systematic assess-

ment of climate change impacts due to sea level rise in the

form of coastal floods. Thus, we plead for a high-resolution

sea level network (Woodworth, 2010) if the losses from sea

level rise are to be assessed on the regional or global scale.

In general, our results show how the complexity of climate

change, adaptation, and flood damage can be disentangled by

surprisingly simple and general expressions which are appli-

cable to arbitrary regions and case studies. These relations

are the basis for understanding the effect of sea level rise on

coastal flood damage and are of great importance for the de-

velopment of broad-scale assessment models in the context

of climate change (e.g. Leimbach et al., 2010; Nordhaus and

Yang, 1996).

The main text is complemented in two ways. Firstly,

an additional analysis of flood damage in Copenhagen and

Kalundborg as a function of the scale parameter σ is pro-

vided in Appendix A. Finally, all expressions describing the

asymptotic behaviours of the damage and its standard devia-

tion are mathematically proven in Appendix B.

Nat. Hazards Earth Syst. Sci., 16, 559–576, 2016 www.nat-hazards-earth-syst-sci.net/16/559/2016/



M. Boettle et al.: Quantifying the effect of SLR and flood defence on coastal flood damage 569

Appendix A: Further results

In addition to varying the parameters µ and ω as dis-

cussed in the main text, the alteration of the scale pa-

rameter σ represents also a potential impact from climate

change. Such an effect could be explained by changing

wind patterns leading to a lower or higher variability of

water levels. Although alterations of σ can be observed

(Mudersbach and Jensen, 2010), the underlying mechanism

behind is still unexplained. Nevertheless, for the sake of com-

pleteness, we investigate the hypothetical effect of a varying

scale parameter σ on the annual damage – analogous to the

other parameter shifts. The corresponding asymptotic rela-

tions, Eqs. (B14) and (B15), are derived in the following sec-

tion. Figure A1 illustrates the comparison of numerical cal-

culations with the asymptotic results. It can be seen that in

both case studies the increase of damage is less steep than

the asymptotic behaviours for σ close to the present value

σ0 and that a convergence is found for considerably larger

values of σ .

Appendix B: Analytical derivation of parameter effects

In this section we derive the asymptotic relations from the

main text. The section comprises three parts, each part con-

sidering the effects of changing parameters µ, σ , as well as

ω on one variable. First, in Sect. B1, we derive the effects

of changing parameter values on the expected number of an-

nual flood events. That is, how many threshold exceedances

of the sea level can be expected within one year? Given such

an exceedance, the magnitude of the sea level is still random

with a certain probability distribution, from which a proba-

bility distribution of the corresponding damage can be de-

rived. How this distribution alters with changing parameters

is described in Sect. B2. Finally, combining the number of

flood events and the damage of a single flood event provides

the annual damage. The derivation of the relations for the

expectation value and the standard deviation of the annual

damage is presented in Sect. B3.

The provided expressions describe the damage for asymp-

totically large parameter values or, in case they are bounded,

for parameters approaching their limit. This means that the

numerically calculated values divided by the analytic result

obtained converge to a non-zero constant number for increas-

ing parameter values. In the whole section, the Generalised

Pareto probability density function with regard to the thresh-

old u, the shape parameter ξ , and the scale parameter σ is

denoted by hu,ξ,σ .

B1 Effects on the occurrence rate

The investigation of the occurrence rate 3 is based on

Eq. (3). It has to be noted that shifting the parameterµ entails

a modification of the scale parameter σ by virtue of Eq. (4).

In particular, the denominator in the case ξ 6= 0 is constant

for varying µ. One can see that for ξ > 0 the parameter µ is

bounded from above by a value µmax = µ+ σ/ξ , at which

3 becomes infinite. Accordingly, we study the asymptotic

behaviour for µ approaching µmax in that case. Straightfor-

ward calculations provide the asymptotic relations for 3 as

a function of µ:

3(µ)∼


eµ/σ if ξ = 0 (for large µ)

µ−1/ξ if ξ < 0 (for large µ)

(µmax−µ)
−1/ξ if ξ > 0 (for µ close to µmax).

(B1)

Considering a variable scale parameter σ , we obtain the re-

lation

3(σ)∼ 1 (for large σ), (B2)

which holds for arbitrary values of ξ and asymptotically

large σ . In the last part of our analysis, we alter the protec-

tion height ω, represented by setting the threshold to u= ω,

which also leads to a modification of the scale parameter σ .

Using Eq. (5), we consider the occurrence rate for asymptot-

ically increasing ω and obtain

3(ω)∼


e−ω/σ if ξ = 0 (for large ω)

(xmax−ω)
−1/ξ if ξ < 0 (for ω close to xmax)

ω−1/ξ if ξ > 0 (for large ω),

(B3)

where ω is assumed to be below the maximum possible sea

level xmax in the case ξ < 0. If a protection level above this

value is chosen, no inundation can occur and 3 is 0.

With these expressions, the frequency of events is fully de-

scribed for large parameter values and, in combination with

the following section, the behaviour of the annual damage is

derived in Sect. B3. Note that Eq. (B1) holds only for small

values of 3 and that the results are therefore only valid for

the corresponding parameter values (Embrechts et al., 1997).

Otherwise, if 3 becomes too large, the GPD is not an ade-

quate estimation of the water levels.

B2 Effects on the event damage distribution

Not only the number of flood events is affected by evolving

parameters. As described in Sect. 2.2, in the case of a flood,

its magnitude follows a GPD, which in turn is modified by

changing parameters. In the following, all integrals are inte-

grated over the whole support of the corresponding density

function. For reasons of simplicity, we omit all integral lim-

its in the text. Furthermore, we assume the shape parameter

ξ to be small enough such that all integrals exist (Katz et al.,

2002) – this is ensured for ξ < 1/γ (expectation value) and

ξ < 0.5/γ (standard deviation). A divergence would imply

an infinite variance or average value of the annual damage.

Theorem 1 (µ relations). Let the water levels above

a threshold u follow a GPD with parameters ξ and σ and let

us suppose a power damage function F(x)= xγ (γ ∈ R+).

For the damageDi of a single event we obtain asymptotically

EDi (µ) ∼


1 if ξ = 0 (for large µ)

µγ if ξ < 0 (for large µ)

1 if ξ > 0 (for µ close to µmax)

(B4)
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Figure A1. Expected annual damage (red) and standard deviations (orange) in (a) Copenhagen and (b) Kalundborg as a function of the

scale parameter σ . The solid lines were numerically calculated with the available damage functions; the dashed continuations use an extrap-

olation of the damage function as a power law with exponent γ = 1.6 (Copenhagen) and γ = 4.1 (Kalundborg). The dotted line shows the

asymptotic results from Eqs. (B14) and (B15) and the current values of the scale parameter σ0 = 15.79 cm (Copenhagen) and σ0 = 17.78 cm

(Kalundborg) are displayed as brown vertical lines.

and

SDDi (µ) ∼


1 if ξ = 0 (for large µ)

µγ if ξ < 0 (for large µ)

µmax−µ if ξ > 0 (for µ close to µmax)

(B5)

with µmax := µ+ σ/ξ .

Proof. The relations for ξ = 0 follow immediately from

equations provided in Sect. 2.6. In the case ξ < 0, a vary-

ing µ leads to a linear increase in σ according to Eq. (4).

Therefore, the relations are equivalent to EDi (σ )∼ σ
γ and

SDDi (σ )∼ σ
γ . The definition of the expectation value now

provides

EDi (σ )/σ
γ
=

∫
F(z+ u/σ)h0,ξ,1(z)dz

σ→∞
−→∫

zγ h0,ξ,1(z)dz= const. 6= 0.

Furthermore, using the notation mk :=
∫
zkh0,ξ,1(z)dz, we

obtain(
SDDi (σ )/σ

γ
)2
=

∫
F(z+ u/σ)2h0,ξ,1(z)dz

−

(∫
F(z+ u/σ)h0,ξ,1(z)dz

)2

σ→∞
−→ m2γ −m

2
γ = const. 6= 0,

which shows the asymptotic relations for ξ < 0. In both cases

we used uniform convergence to swap the integral and the

limit.

As mentioned above, µ is bounded by µmax = µ+ σ/ξ in

the case ξ > 0 and we study the asymptotic behaviour for µ

approaching µmax. Considering µ→ µmax, Eq. (4) implies

σ → 0 and by using the uniform convergence of the inte-

grand, it follows that

EDi (µ)=

∫
F(σz+ u)h0,ξ,1(z)dz

µ→µmax
−→ F(u),

which shows EDi ∼ 1 for µ approaching µmax. In order to

investigate the standard deviation for ξ > 0, we make use of

the Taylor expansion around z= 0:

(σz+ u)γ = uγ + γ σuγ−1z+ γ (γ − 1)σ 2uγ−2z2
+O(σ 3).

Nat. Hazards Earth Syst. Sci., 16, 559–576, 2016 www.nat-hazards-earth-syst-sci.net/16/559/2016/



M. Boettle et al.: Quantifying the effect of SLR and flood defence on coastal flood damage 571

We obtain

VarDi (σ )=

∫
(σz+ u)2γ h0,ξ,1(z)dz

−

(∫
(σz+ u)γ h0,ξ,1(z)dz

)2

=

∫ (
u2γ
+ 2γ u2γ−1σz+ 2γ (2γ − 1)

u2γ−2σ 2z2
+O(σ 3)

)
h0,ξ,1(z)dz

−

(∫ (
uγ + γ uγ−1σz+ γ (γ − 1)

uγ−2σ 2z2
+O(σ 3)

)
h0,ξ,1(z)dz

)2

= u2γ
+ 2γ u2γ−1σm1+ 2γ (2γ − 1)

u2γ−2σ 2m2+O(σ 3)

−

(
u2γ
+ 2γ u2γ−1σm1+ γ

2u2γ−2σ 2m2
1

+2γ (γ − 1)u2γ−2σ 2m2+O(σ 3)
)

= const.︸ ︷︷ ︸
6=0

· σ 2
+O(σ 3)

with the kth moments mk :=
∫
zkh0,ξ,1(z)dz. Considering

that σ converges linearly to 0 for µ→ µmax, it follows that

SDDi (σ )/σ → const. 6= 0 for σ → 0 and in turn SDDi (µ)∼

µmax−µ for µ→ µmax.

Theorem 2 (σ relations). Let the water levels above

a threshold u follow a GPD with parameters ξ and σ and let

us suppose a power damage function F(x)= xγ (γ ∈ R+).

For the damage Di of a single flood event we obtain

EDi (σ )∼ σ
γ and SDDi (σ )∼ σ

γ (B6)

for asymptotically large σ .

Proof. The proof corresponds to the case of increasing µ for

ξ < 0 in Theorem 1.

Finally, we derive expressions for the dependence on the

protection height. As can be found in Coles (2001), a change

of the threshold from u to u′ affects the scale parameter σ by

virtue of Eq. (5), which leaves the annualities of sea levels

above the threshold unchanged.

Theorem 3 (ω relations). Let the water levels above

a threshold u= ω follow a GPD with parameters ξ and

σ , and let us suppose a power damage function F(x)= xγ

(γ ∈ R+). For the damage Di of a single event we obtain

asymptotically

EDi (ω)∼


ωγ if ξ = 0 (for large ω)

1 if ξ < 0 (for ω close to xmax)

ωγ if ξ > 0 (for large ω)

(B7)

and

SDDi (ω)∼


ωγ−1 if ξ = 0 (for large ω)

xmax−ω if ξ < 0 (for ω close to xmax)

ωγ if ξ > 0 (for large ω),

(B8)

where xmax := u− σ/ξ denotes the maximum possible sea

level in the case ξ < 0.

Proof. Let u denote the current value of the threshold and

ω the variable protection height corresponding to the new

threshold u′. We use Eq. (5) to calculate the scale parameter

σ ′ which describes the excesses above the threshold ω = u′

and obtain

EDi (ω)=

∫
F(x)hω,ξ,σ (x)dx

=

∫
(σ ′z+ω)γ h0,ξ,1(z)dz

=

∫
(σz+ ξz(ω− u)+ω)γ h0,ξ,1(z)dz . (B9)

In the case ξ ≥ 0, the uniform convergence of the integrand

provides

EDi (ω)/ω
γ
=

∫
(ξz+ 1+ z(σ − ξu)/ω)γ h0,ξ,1(z)dz

ω→∞
−→

∫
(ξz+ 1)γ h0,ξ,1(z)dz

= const. 6= 0 ,

which shows the asymptotic relation EDi (ω)∼ ω
γ for ξ ≥ 0.

For the corresponding standard deviation in the case ξ = 0 it

follows that

VarDi (ω)=

∫
(σz+ω)2γ h0,0,1(z)dz

−

(∫
(σz+ω)γ h0,0,1(z)dz

)2

.

Using the Taylor expansion around z= 0,

(σz+ω)γ = ωγ + γωγ−1σz

+ γ (γ − 1)/2ωγ−2σ 2z2
+O(ωγ−3),

we obtain
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VarDi (ω)=

∫ (
ω2γ
+ 2γω2γ−1σz

+γ (2γ − 1)ω2γ−2σ 2z2

+O(ω2γ−3)
)
h0,0,1(z)dz

−

(∫ (
ωγ + γωγ−1σz

+γ (γ − 1)/2ωγ−2σ 2z2

+O(ωγ−3)
)
h0,0,1(z)dz

)2

and straightforward calculations provide

VarDi (ω)= (m2−m
2
1)γ

2σ 2ω2γ−2

+

∫
O(ω2γ−3)h0,0,1(z)dz,

again using mk :=
∫
zkh0,0,1(z)dz. Now,

lim
ω→∞

VarDi (ω)/ω
2γ−2
= lim
ω→∞

(m2−m
2
1)γ

2σ 2

+ lim
ω→∞

∫
O(ω−1)h0,0,1(z)dz

= (m2−m
2
1)γ

2σ 2

= const. 6= 0

proves the expression for SDDi in the case ξ = 0.

For ξ > 0 it holds that

VarDi (ω)/ω
2γ
=

∫
1

ω2γ
(z(σ + ξω− ξu)+ω)2γ

h0,ξ,1(z)dz

−

(∫
1

ωγ
(z(σ + ξω− ξu)+ω)γ

h0,ξ,1(z)dz

)2

ω→∞
−→

∫
(ξz+ 1)2γ h0,ξ,1(z)dz

−

(∫
(ξz+ 1)γ h0,ξ,1(z)dz

)2

= const. 6= 0,

which proves the asymptotic relation SDDi (ω)∼ ω
γ .

For the case ξ < 0, we consider Eq. (B9):

EDi (ω) =

∫
(σz+ ξz(ω− u)+ω)γ h0,ξ,1(z)dz

=

∫
(ξz(ω− xmax)+ω)

γ h0,ξ,1(z)dz

ω→xmax
−→

∫
x
γ
maxh0,ξ,1(z)dz= x

γ
max,

where we use the uniform convergence of the integrand to

swap the integral and the limit. This proves the relation for

EDi . In order to investigate the standard deviation, we define

1ω := xmax−ω and examine the limit 1ω→ 0. A Taylor

expansion of (ω− ξ1ωz)γ around z= 0 provides

(ω− ξ1ωz)γ =ωγ + γωγ−1(−ξ1ω)z

+ γ (γ − 1)/2ωγ−2(−ξ1ω)2z2

+O(1ω3) (B10)

and for the variance it holds that

VarDi (ω)=

∫
(ω− ξ1ωz)2γ h0,ξ,1(z)dz

−

(∫
(ω− ξ1ωz)γ h0,ξ,1(z)dz

)2

Eq. (B10)
=

∫ (
ω2γ
+ 2γω2γ−1(−ξ1ω)z

+2γ (2γ − 1)/2ω2γ−2(−ξ1ω)2z2

+O(1ω3)
)
h0(z;ξ,1)dz

−

(∫ (
ωγ + γωγ−1(−ξ1ω)z

+γ (γ − 1)/2ωγ−2(−ξ1ω)2z2

+O(1ω3)
)
h0(z;ξ,1)dz

)2

= ω2γ
− 2γω2γ−1ξ1ωm1+ γ (2γ − 1)

ω2γ−2ξ21ω2m2+O(1ω3)

−

(
ωγ − γωγ−1ξ1ωm1+ γ (γ − 1)/

2ωγ−2ξ21ω2m2+O(1ω3)
)2

= ω2γ
− 2γω2γ−1ξ1ωm1+ γ (2γ − 1)

ω2γ−2ξ21ω2m2+O(1ω3)

−ω2γ
+ 2γω2γ−1ξ1ωm1

− 2γ (γ − 1)/2ω2γ−2ξ21ω2m2

− γ 2ω2γ−2ξ21ω2m2
1+O(1ω

3)

= γ 2ω2γ−2ξ21ω2m2

− γ 2ω2γ−2ξ21ω2m2
1+O(1ω

3)

and therefore

SDDi (ω)/1ω =
(
γ 2ω2γ−2ξ2m2− γ

2ω2γ−2ξ2m2
1

+O (1ω)
)1/2 1ω→0
−→ const. 6= 0,

which shows the statement of the theorem.
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B3 Effects on the annual damage

As stated in the main text, the total annual damage D is

calculated as the sum of all single event damages Di , i.e.

D =D1+ ·· ·+DN , where N ∼ Poi(3) is the number of

flood events in one year. This implies that EN = VarN =3

and using Wald’s identities (Beichelt, 2006), it follows

ED =3EDi as well as VarD =3(VarDi +E2
Di
) (B11)

and together with the results from Sects. B1 and B2 we obtain

ED(µ) ∼


eµ/σ if ξ = 0 (for large µ)

µγ−1/ξ if ξ < 0 (for large µ)

(µmax −µ)
−1/ξ if ξ > 0 (for µ close to µmax)

(B12)

as well as

SDD(µ) ∼


e0.5µ/σ if ξ = 0 (for large µ)

µγ−0.5/ξ if ξ < 0 (for large µ)

(µmax−µ)
−0.5/ξ if ξ > 0 (for µ close to µmax)

(B13)

as asymptotic relations for varying mean sea levels. An alter-

ing scale parameter σ leads to

ED(σ )∼ σ
γ and (B14)

SDD(σ )∼ σ
γ (B15)

for asymptotically large values of σ and for changing protec-

tion levels ω holds asymptotically

ED(ω) ∼


ωγ e−ω/σ if ξ = 0 (for large ω)

(xmax−ω)
−1/ξ if ξ < 0 (for ω close to xmax)

ωγ−1/ξ if ξ > 0 (for large ω)

(B16)

SDD(ω) ∼


ωγ e−0.5ω/σ if ξ = 0 (for large ω)

(xmax−ω)
−0.5/ξ if ξ < 0 (for ω close to xmax)

ωγ−0.5/ξ if ξ > 0 (for large ω).

(B17)

All results from the previous sections are summarised in Ta-

ble B1.
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Table B1. The asymptotic behaviour of the number of annual flood events 3, the expected damage from a single event EDi and the total

annual damage ED as well as the corresponding standard deviations SDDi and SDD , as functions of the 1-year event µ (with regard to a shift

of all events), the scale parameter σ and the protection level ω. The values µmax = u+ σ/ξ and xmax = µ− σ/ξ represent upper limits for

the parameters µ and ω in the case ξ > 0 and ξ < 0 respectively.

Varying parameter

1-year event µ Scale σ Protection height ω

ξ = 0: ∼ eµ/σ ∼ 1 ∼ e−ω/σ

3 ξ < 0: ∼ µ−1/ξ
∼ 1

ω→xmax
∼ (xmax−ω)

−1/ξ

ξ > 0:
µ→µmax
∼ (µmax−µ)

−1/ξ
∼ 1 ∼ ω−1/ξ

ξ = 0: ∼ 1 ∼ σ γ ∼ ωγ

EDi ξ < 0: ∼ µγ ∼ σ γ
ω→xmax
∼ 1

ξ > 0:
µ→µmax
∼ 1 ∼ σ γ ∼ ωγ

ξ = 0: ∼ eµ/σ ∼ σ γ ∼ ωγ e−ω/σ

ED ξ < 0: ∼ µγ−1/ξ
∼ σ γ

ω→xmax
∼ (xmax−ω)

−1/ξ

ξ > 0:
µ→µmax
∼ (µmax−µ)

−1/ξ
∼ σ γ ∼ ωγ−1/ξ

ξ = 0: ∼ 1 ∼ σ γ ∼ ωγ−1

SDDi ξ < 0: ∼ µγ ∼ σ γ
ω→xmax
∼ xmax−ω

ξ > 0:
µ→µmax
∼ µmax−µ ∼ σ γ ∼ ωγ

ξ = 0: ∼ e0.5µ/σ
∼ σ γ ∼ ωγ e−0.5ω/σ

SDD ξ < 0: ∼ µγ−0.5/ξ
∼ σ γ

ω→xmax
∼ (xmax−ω)

−0.5/ξ

ξ > 0:
µ→µmax
∼ (µmax−µ)

−0.5/ξ
∼ σ γ ∼ ωγ−0.5/ξ
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