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Various kinds of typed attributed graphs are used to represent states of systems
from a broad range of domains. For dynamic systems, established formalisms such
as graph transformations provide a formal model for defining state sequences. We
consider the extended case where time elapses between states and introduce a
logic to reason about these sequences. With this logic we express properties on the
structure and attributes of states as well as on the temporal occurrence of states that
are related by their inner structure, which no formal logic over graphs accomplishes
concisely so far. Firstly, we introduce graphs with history by equipping every graph
element with the timestamp of its creation and, if applicable, its deletion. Secondly,
we define a logic on graphs by integrating the temporal operator until into the
well-established logic of nested graph conditions. Thirdly, we prove that our logic
is equally expressive to nested graph conditions by providing a suitable reduction.
Finally, the implementation of this reduction allows for the tool-based analysis of
metric temporal properties for state sequences.
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1 Introduction

Various kinds of typed attributed graphs are used to represent states of systems
from a broad range of domains. Also, dynamic systems can be described using
graph transformation formalisms in which the possible behavior is defined by a set
of rules and their application.

For certain domains, verification of this behavior with respect to a specification
is of paramount importance and can ideally be done prior to execution using tech-
niques such as static analysis, theorem proving, or model checking. However, the
usage of highly expressive rule-patterns typically limits these techniques. Also,
such techniques are ineffective for systems where the rules are (partially) unknown
or change over the lifespan of the system. Runtime monitoring is an alternative anal-
ysis approach that verifies at runtime a single state sequence against a specification.
It is independent from the expressiveness, the number, and the availability of the
systems’ rules and can be applied using highly expressive specification formalisms.

In our running example, we discuss an instance of a dynamic system where state
changes are governed by unknown rules. States are represented by typed attributed
graphs and state changes over time by a sequence comprising such graphs. In
particular, we consider a hospital information system where smart devices are used
to perform a treatment at a given moment or periodically measure and report the
value of a vital sign. The data produced by these devices and the actions of the
medical staff are to be logged and monitored at runtime for violations of medical
guidelines. For this purpose we require a logic for (a) expressing state properties,
which check the data and structure of a single system state, and for (b) expressing
sequence properties, which relate state properties at different timepoints to check
the timely reachability of a certain state.

As a first contribution we define with Metric Temporal Graph Logic (MTGL) such a
logic for the specification of admissible graph sequences, which allows the usage
of MTGL for runtime monitoring. In MTGL we express state properties on the
attribute data and graph structure of a single system state, using the well-estab-
lished logic of nested graph conditions [5] (called graph conditions subsequently).
Graph conditions are as expressive as first-order logic on graphs [5, 11] and are
commonly used for expressing state properties such as in application conditions of
rules in graph transformation systems. Moreover, we build upon Metric Temporal
Logic (MTL) [7] to express sequence properties such as invariants and the non-
violation of deadlines. As shown in chapter 3, the direct combination of MTL and
graph conditions is insufficient. As a second contribution we show that conditions
of MTGL can be translated into graph conditions using attribute constraints to
encode metric temporal requirements.
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1 Introduction

There are several related approaches for specification and verification of sequence
properties involving time, either using graphs or relations. A visual notation for the
specification of such properties over typed attributed graphs has been introduced
in [6] but their approach lacks a definition of logical operators and an imple-
mentation. The Metric First-Order Temporal Logic (MFOTL) [2] expresses sequence
properties by relying on the description of a system state by a set of relations, which
are then adapted during the execution. This logic is supported by the state-of-the-
art tool MonPoly. MFOTL is sufficiently expressive to state relevant properties in
a broad range of applications. Nonetheless, we believe that, for graph-based sys-
tems, using MTGL to determine a metric temporal specification is less error-prone
and potentially more efficient than using MFOTL. Other runtime monitoring tools
match the expressiveness of MFOTL. However, either they are not based on a logic,
or they do not support real-time, i.e., they do not consider the occurrence time of
changes, which is required for the dynamic systems discussed in this paper (cf. [1]
for a feature overview of other runtime monitoring tools).

The paper is structured as follows. Chapter 2 iterates on required technical pre-
liminaries. Chapter 3 introduces our running example and formulates our problem
statement. Chapter 4 shows how our approach consolidates a sequence of typed
attributed graphs into a compact representation called graph with history. Chapter 5

defines MTGL and introduces the reduction of its conditions to graph conditions.
Chapter 6 discusses the tool support for our approach. We conclude in chapter 7

with a summary and remarks on future work.
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2 Preliminaries

In this section we recall the basic concepts of typed attributed graphs and nested
graph conditions as well as shortly discuss MTL allowing for the formulation of
metric temporal properties on timed state sequences.

2.1 Typed Attributed Graphs and Nested Graph Conditions

We rely in the subsequent sections and in our running example on the notion
of finite symbolic graphs [9], which encode typed attributed graphs, to represent
systems’ states and to express properties on these states. Symbolic graphs are an
adaptation of E-Graphs [4] where a graph does not contain data nodes (i.e.,
elements that represent actual values) but instead node and edge attributes are
connected to variables, which thereby replace the data nodes. Then, such a (sorted)
variable x that is part of a symbolic graph can appear in additional attribute
constraints that are also contained in the graph such as x = 5, x ≤ 5, and x =

“aabb”.
As customary, we are only using graphs that are typed over a type graph TG.

This typing is given by means of a typing morphism type : G → TG. Thereby, a type
graph provides a basic restriction of all typed attributed graphs to an admitted
subset of graphs.

On the one hand, instance graphs that are used in the nested graph conditions
introduced below (and called in the following graph conditions or GC) are allowed
to make use of non-trivial attribute constraints such as x ≤ 5 to enable their
matching to various instance graphs G where the variable xG, to which x is matched,
has some unique value c satisfying the instantiated constraint c ≤ 5. On the other
hand, instance graphs that represent a concrete systems’ state are assumed to have
a set of attribute constraints that limit the number of possible valuations to one for
the variables connected to these attributes, i.e., if G is such an instance graph, α is
a node or edge of G, att is an attribute of α, and x is the variable of att, then we
require constraints implying that x = c for some concrete value c.

Using monomorphisms (called monos subsequently) between these symbolic
graphs, we state the existence and nonexistence of graph patterns in a given sym-
bolic graph, which is called host graph. These patterns are stated using graph
conditions [5], which are expressively equivalent to first-order logic on graphs [3]
as shown in [5, 11].

Definition 1 (Graph Conditions ΦGC). For each graph G we inductively define the set
of all graph conditions ΦGC

G as follows:

• If S = {φ1, . . . , φn} is a finite subset of ΦGC
G , then ∧S ∈ ΦGC

G .
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2.2 Metric Temporal Logic

• If φ ∈ ΦGC
G , then ¬φ ∈ ΦGC

G .

• If a : G ↪−→ H and φ ∈ ΦGC
H , then ∃(a, φ) ∈ ΦGC

G .

Note that for stating graph conditions we also use infix notation as well as derive the
following further operators: true is ∧∅, false is ¬true, ∨S is ¬ ∧ {¬φ | φ ∈ S}, φ1 ⇒ φ2

is ¬φ1 ∨ φ2, and ∀(a, φ) is ¬∃(a,¬φ).

Intuitively, a graph condition is satisfied if the positive but not the negative
patterns given by the graph condition can be found in the given host graph.

Definition 2 (Satisfaction of Graph Conditions). A mono m : G ↪−→ GHost satisfies a
graph condition ψ ∈ ΦGC

G , written m |= ψ, if one of three cases applies:
• ψ = ∧S and m |= φ for each φ ∈ S.

• ψ = ¬φ and not m |= φ.

• ψ = ∃(a : G ↪−→ G′, φ) and there exists q : G′ ↪−→ GHost

such that q ◦ a = m and q |= φ (as depicted on the right).

G
=

G′

GHost

a

m q

A host graph GHost satisfies a graph condition ψ over the empty graph if the unique initial
morphism iGHost : ∅ ↪−→ GHost satisfies ψ.

2.2 Metric Temporal Logic

The standard temporal logic for expressing properties that need to be satisfied
within a certain time interval, is Metric Temporal Logic (MTL) [7, 10]. In the fol-
lowing we recall shortly the syntax and semantics of MTL providing the foundation
for the definition of Metric Temporal Graph Conditions in chapter 5.

The set of all MTL formulas is defined using a set AP of atomic propositions,
Boolean operators, and the metric until operator U as follows:

φ ::= ap | ¬φ | φ ∧ φ | φ UI φ

where I is an interval over R+

0 .
MTL formulas are satisfied by timed state sequences π, which are of the form

(s1, δ1), (s2, δ2), . . . with states si ∈ S and durations δi ∈ R+, at timepoints t. The
state si (for i ∈ N+) in a timed state sequence at timepoint t is denoted by π(t)
and is obtained by requiring ∑i−1

j=1 δj ≤ t < ∑i
j=1 δj. Moreover, a labeling function

L : S→ 2AP determines the atomic propositions that are satisfied for any state in S.
Then, an MTL formula φ is satisfied for a timepoint t ∈ R+

0 , written (π, t) |= φ, if
one of the following cases applies:

• φ = ap, ap ∈ AP, and ap ∈ L(π(t)).

• φ = ¬φ′ and not (π, t) |= φ′.

• φ = φ1 ∧ φ2, (π, t) |= φ1, and (π, t) |= φ2.

11



2 Preliminaries

• φ = φ1 UI φ2 and there is some t′ ∈ I such that (π, t + t′) |= φ2 and for every
t′′ ∈ [0, t′) it holds that (π, t + t′′) |= φ1.

Further operators such as true, eventually, and globally can be derived as in [10].
Intuitively, the formula φ1 UI φ2 is satisfied by a timed state sequence π at an

observation timepoint t if φ2 is eventually satisfied at some timepoint from the
interval I relative to t and when, additionally, the condition φ1 is satisfied at all
points in time between t and strictly before φ1 is satisfied.

12



3 Running Example and Problem
Statement

Throughout the remainder of this paper, we refer to the following property P from
the medical domain.

P: If a patient P has undergone a dental procedure Pr, then a pump Pu must
be attached to that patient. Also, this pump Pu must, in the next two hours,
administer a dosage of antibiotics (action A). Until this action is taken, no
second pump Pu′ should be attached to the patient.

This property is based on a medical guideline [13] and has been adjusted to reflect
a setting where smart devices such as a pump are used to support the treatment.
We now analyze property P to demonstrate the limitations of existing techniques
in the formulation of such sequence properties.

As a first step we define the type graph TG from Fig. 3.1 and formalize two
state properties occurring in P as φ1 and φ2 also shown in Fig. 3.1 based on this
type graph. The graph condition φ1 expresses that “a dental procedure has been
performed on a patient” and the graph condition φ2 expresses that “a procedure
has been performed on a patient to which a pump is attached with an action for
administering antibiotics”.

Procedure

type : string
Patient Pump

Action

type : string

on to byfor
TG:

Pr:Procedure

type = dental
P:Patient

:on∃ , trueφ1:

Pr:Procedure

type = dental
P:Patient Pu:Pump A:Action

type = antibiotics
:to :by:on∃ , trueφ2:

Figure 3.1: The type graph TG (top) for our running example as well as the graph
conditions φ1 (middle) and φ2 (bottom) that represent state properties occurring
in the sequence property P

As a second step we instantiate MTL by providing an interpretation for states,
atomic propositions, and the labeling function L as follows. The states are given
by all typed attributed graphs, the atomic propositions are given by all graph
conditions from ΦGC

∅ , and the labeling function L uses the satisfaction relation of
graph conditions: L(G) = {φ ∈ ΦGC

∅ | G |= φ}. Using this interpretation we can
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3 Running Example and Problem Statement

now use MTL over graph conditions to state sequence properties using metric
temporal operators. Considering the property P from above we can use the until
operator to state the MTL formula φ1 → true UI φ2. However, a fundamental
problem of this interpretation of MTL is that the graph conditions do not expose
the matched elements (the patient P in our example), i.e., different patients may be
used for the satisfaction of φ1 and φ2. A similar combination of graph conditions
and PTCTL with the same limitations was introduced in [8].

Problem statement: A more sophisticated logic such as MTGL introduced in
chapter 5 is required to suitably define metric temporal specifications.

14



4 Timed Graph Sequences and Graphs
with History

In the domain of runtime monitoring the sequence of states is automatically gen-
erated from a system that usually behaves according to unknown rules. In the
following we abstract from the actual mechanism that generates a sequence of
graphs to be analyzed.

4.1 Timed Graph Sequences

To include the concept of time, we equip all steps between graphs G and G′ in the
state sequences with the lifespan where G remains unchanged. Note that MTL
considers infinite timed state sequences whereas we are concerned with the runtime
monitoring perspective, in which only the past states of sequences are given in the
form of finite timed state sequences.

Definition 3 (Timed Graph Sequence (TGS)). We inductively define the set of all timed
graph sequences (TGS) Π as follows:

• If π = ∅ is the word containing only the empty graph, then π ∈ Π.

• If π · G ∈ Π is a TGS ending with a graph G, l : IG ↪−→ G, r : IG ↪−→ G′

are inclusions but at least one of them is no isomorphism (for an interface graph
IG), and δ ∈ R+ is the time duration where the graph G remains unchanged, then
π · G · (δ · l · r) · G′ ∈ Π is also a TGS.

For a TGS G · (δ · l · r) · G′ ∈ Π, the graphs G and G′ correspond to the states s1

and s2, respectively, of a timed state sequence (s1, δ1), (s2, δ2), . . . (defined for MTL
in Sec. 2.2) and the duration δ in the TGS corresponds to the duration δ1 of the
timed state sequence. The inclusions l : IG ↪−→ G and r : IG ↪−→ G′ are used in TGS
to identify the nodes and edges that are preserved from G to G′, i.e., G− l(IG) are
the nodes and edges that are present in G but are deleted from G′ and G′ − r(IG)

are the nodes and edges that do not exist in G but are created in G′. Furthermore,
we require that at least one of the morphisms l or r is no isomorphism implying
that G− l(IG) or G′ − r(IG) is not empty because, during the monitoring process,
we want to capture only those states of a system as new graphs in a TGS where
some changes over time occurred.

An example for a TGS is given in Fig. 4.1 where the top part shows a TGS
π represented by five graphs G0 = ∅, . . . , G4 showing the monitored states in
five different points in time, namely 0, 5, 10, 13, and 15. The durations where the
respective graphs Gi remain unchanged are denoted by δi for i ∈ {0, 1, 2, 3}.

15



4 Timed Graph Sequences and Graphs with History

4.2 Graphs with History

To capture changes to a current graph over time, which is given by a TGS π as
defined above, we introduce graphs with history. For this purpose we assume that
the used type graph TG contains for all nodes and edges the attributes cts and dts
of sort real to capture the total timepoint at which an element was created and (if
applicable) deleted, respectively.

Definition 4 (Graph with History (GH)). If TG is a type graph where each node and each
edge has attributes cts denoting the timestamp of creation and dts denoting the timestamp
of deletion, then TG is a history type graph. If GH is a graph typed over a history type
graph, then GH is a graph with history (GH).

For consistency, we ensure that all considered GH satisfy (a) that there is precisely
one cts attribute for every graph node and edge, (b) that there is at most one dts
attribute for every graph node and edge, (c) that for an edge e the value of the cts
attributes of the source and target nodes of e are less equal to the cts attribute of
e, and (d) that for an edge e the value of the dts attributes of the source and target
nodes of e are greater equal to the dts attribute of e. Note that these consistency
requirements are not automatically guaranteed by the formalisms of E-Graphs

or symbolic graphs. Moreover, we denote the set of all creation timestamps and
deletion timestamps occurring in a graph with history GH by cts(GH) and dts(GH),
respectively.

4.3 Operation Fold

We now define the operation fold, which recursively converts a (finite) TGS π into
the corresponding graph with history GH.

Definition 5 (Map TGS to GH (Operation fold)). We define operation fold as follows:

• If π = ∅ is a word containing only the empty graph, then fold(π) = ∅.

• If π = π′ · G · (δ · l · r) · G′ is a TGS, G′H = fold(π′ · G) is the GH obtained from
the translation of the TGS π′ · G using the operation fold, and t = max({0} ∪
cts(G′H) ∪ dts(G′H)) is the maximal timestamp where a node or edge from G′H was
created or deleted, then fold(π) is constructed from G′H by adding the attributes
dts(x) = t + δ to each node or edge x ∈ G− l(IG) in G′H , by adding the nodes and
edges from G′ − r(IG) to G′H, and by adding the attributes cts(x) = t + δ to each
node or edge x ∈ G′ − r(IG) in G′H.

Note that we obtain the history type graph used for the result of the operation
fold from the type graph used for the graphs occurring in the TGS π by adding
the attributes cts and dts to all nodes and edges (assuming that such attributes are
not contained before). Furthermore, in the recursive case in the definition above we
encode the removal of nodes and edges, which are deleted in the TGS since they

16



4.3 Operation Fold

G2 G3 G4G1G0

P:Patient∅ Pr:Procedure

type = dental

P:Patient

Pu:Pump

e1:on

e2:to

Pr:Procedure

type = dental

P:Patient

Pu:Pump

A:Action

type = antibiotics

e1:on

e2:to

e3:by e4:for

Pr:Procedure

type = dental

P:Patient

Pu:Pump

A:Action

type = antibiotics

e1:on

e2:to

e4:for

Pr:Procedure

cts = 10
type = dental

A:Action

cts = 13
type = antibiotics

Pu:Pump

cts = 10
P:Patient

cts = 5

e4:for
cts = 13

e1:on
cts = 10

e2:to
cts = 10

e3:by
cts = 13
dts = 15

GH:

π: δ1 = 5 δ2 = 3 δ3 = 2δ0 = 5

Figure 4.1: Mapping of a TGS π to the corresponding graph with history GH using

the operation fold. The arrows
δi⇒ between states of the TGS describe changes

Gi · (δi, li, ri) ·Gi+1 where the inclusions li and ri are implicitly given by the usage
of the same names in all graphs. The dashed arrows from the states of the TGS
to the GH visualize that the changes of the currently monitored system state are
integrated into the GH

are contained in G− l(IG), by adding a deletion timestamp to them in the GH and
we encode the creation of nodes and edges, which are created in the TGS since they
are contained in G′ − r(IG), by first adding these nodes and edges to the GH and
then by adding to them a creation timestamp.

Example 1 (Map TGS to GH). We translate the finite TGS π from the top part of Fig. 4.1
into the graph with history GH shown in the bottom part of Fig. 4.1 using the operation
fold as follows. Every TGS starts with an empty graph. Thus, as the first step, we translate
the empty graph into the empty GH. The second state of the TGS given by G1, which
includes the Patient node P, is monitored and added to the TGS after 5 timeunits have
elapsed. We translate this TGS state into the GH by adding P to the empty GH and by,
additionally, equipping this node with the creation timestamp cts = 5. After another 5
timeunits have elapsed, an additional Procedure node Pr, a Pump node Pu, and edges e1,
e2 between the existing Patient node P and the new Procedure node Pr resp. the new Pump
node Pu are monitored. These changes are again translated into the GH by adding the
Procedure node Pr, the Pump node Pu, and the edges e1, e2 to the current version of GH

as well as by additionally equipping them with the creation timestamps cts = 10. In the
similar manner the Action node A together with the edges e3 and e4 (see G3 in Fig. 4.1)
are added to the GH with the creation timestamps cts = 13. Finally, after 2 timeunits in
addition, we have monitored that the edge e3 is deleted. To reflect this in the GH, we add to
the edge e3 in GH the additional deletion timestamp dts = 15.
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5 Metric Temporal Graph Logic

We build upon graph conditions [5] and MTL [7, 10] to introduce in this section
Metric Temporal Graph Logic (MTGL) by defining its syntax and semantics.

5.1 Syntax

To define the syntax of MTGL we introduce Metric Temporal Graph Conditions
(MTGC), which feature the operators known from graph conditions and addition-
ally include the until operator from MTL. In the following definition of MTGC we
extend the binding of graph elements used by the graph condition operator ∃ to
the until operator as we motivated in chapter 3.

Definition 6 (Metric Temporal Graph Conditions (MTGC)). We inductively define
the set of metric temporal graph conditions (MTGC) ΦMTGC

G over a graph G as follows:

• If S = {φ1, . . . , φn} ∈ ΦMTGC
G , then ∧S ∈ ΦMTGC

G .

• If φ ∈ ΦMTGC
G , then ¬φ ∈ ΦMTGC

G .

• If a : G ↪−→ H and φ ∈ ΦMTGC
H , then ∃(a, φ) ∈ ΦMTGC

G .

• If φ1, φ2 ∈ ΦMTGC
G and I is an interval over R+

0 , then φ1 UI φ2 ∈ ΦMTGC
G .

Various additional operators can be defined along the usual ways as for MTL
and graph conditions. In our running example (see Fig. 5.1) we use the forall-
new operator in the form of ∀N(a : G ↪−→ H, φ) to match the pattern H into the
considered GH as soon as possible, i.e., precisely at the minimal timepoint, at which
all its elements are created in the GH. Note that this operator can be encoded by
the MTGC ¬((¬∃(a : G ↪−→ H,¬φ)) U[0,∞) ∃(a : G ↪−→ H,¬φ)).

Consider the formalization of the property P from chapter 3 using the MTGC in
Fig. 5.1. In this figure and also in Fig. 5.2 we omit nodes in subconditions (such as
Pr) if no new edges or attributes are attached to them. Moreover, in subconditions
we omit edges (such as e1) if no new attributes are attached to them and attributes
(such as type of Pr) in general. Also note that we established the desired binding of
graph elements in this example as follows: the nodes Pr, P, and Pu (together with
the edges e1, e2 and the type attribute of Pr) are shared among the two subconditions
of the until operator. This implies that the Pump node that must be matched by
the right subcondition of the until operator is the previously bound Pump node
Pu. Similarly, the Patient node that may be matched by the left subcondition of the
until operator is the previously bound Patient node P. Hence, with the introduced
concept of binding we have solved the problem stated in chapter 3.

18



5.2 Semantics

Pr:Procedure

type = dental
P:Patient

e1:on∀N ,

P:Patient Pu:Pump
e2:to∃ ,

P:Patient Pu′:Pump
e3:to¬∃ , true

Pu:Pump A′:Action

type = antibiotics
e4:byU[0,120] ∃ , true

ψ:

Figure 5.1: The property P from our running example expressed by the MTGC ψ

5.2 Semantics

We now define the semantics of MTGL by introducing the satisfaction relation,
which explains when an MTGC is satisfied by a GH. This satisfaction relation
handles the MTGL operators similarly to their handling for graph conditions and
MTL. For the satisfaction of an MTGC of the form ∃(a : G ↪−→ G′, φ), where the ∃
operator is inherited from graph conditions, it is still required that the pattern that
is found so far (given by some mono m : G ↪−→ GH) in the graph with history GH can
be extended to a larger pattern (given by some mono m′ : G′ ↪−→ GH). Additionally,
we have to check that all matched elements are already created (because the GH also
contains the elements created with higher cts values) but not yet deleted (because
the GH also contains the elements deleted at earlier dts values). For the satisfaction
of an MTGC of the form φ1 UI φ2, where the until operator is inherited from MTL,
it is still required that φ2 must be satisfied at some timepoint t′ in the interval I
relative to the current observation timepoint t and that φ1 is continuously satisfied
(by a possibly varying match for each timepoint) for all timepoints preceding t′.

Definition 7 (Satisfaction of MTGC for a Graph with History). An MTGC ψ ∈
ΦMTGC

G is satisfied by a mono m : G ↪−→ GH, where GH is a graph with history, and an
observation timepoint t ∈ R+

0 , written (m, t) |= ψ, if one of the following cases applies:

• ψ = ∧{φ1, . . . , φn} and (m, t) |= φi (for all 1 ≤ i ≤ n).

• ψ = ¬φ and not (m, t) |= φ.

• ψ = ∃(a : G ↪−→ G′, φ) and there is some q : G′ ↪−→ GH such that q ◦ a = m,
(q, t) |= φ, and max({0} ∪ cts(q(G′))) ≤ t < min({∞} ∪ dts(q(G′))).

• ψ = φ1 UI φ2 and there is some t′ ∈ I such that (m, t + t′) |= φ2 and for every
t′′ ∈ [0, t′) it holds that (m, t + t′′) |= φ1.

A graph with history GH satisfies an MTGC ψ over the empty graph if the unique initial
morphism iGH : ∅ ↪−→ GH satisfies ψ for the observation timepoint 0.

Considering our running example we can easily see that the MTGC given in
Fig. 5.1 is satisfied by the GH given in Fig. 4.1. Firstly, the ∀N operator matches

19



5 Metric Temporal Graph Logic

the nodes Pr, P and the edge e1 changing thereby the observation timepoint to
t = 10, which is the maximal creation timestamp of these three elements. Then, the
∃ operator matches the node Pu together with the edge e2 and keeps the current
observation timepoint at t = 10. Finally, the until operator matches subsequently
the node A′ and the edge e3 at the observation timepoint t = 15 and the remainder
true is trivially satisfied for the observation timepoint t = 15. In addition, as also
required by the until operator, for every timepoint in [10, 15) it is not possible to
match a second Pump node Pu′ that is connected to P.

As already discussed in chapter 4, MTL considers an infinite timed state se-
quence whereas MTGC focuses on runtime monitoring, in which only past states
are considered, hence its satisfaction is determined for finite timed state sequences.
Consequently, an MTGC that reasons on states at future timepoints may have
different results compared to infinite semantics such as defined for MTL. Such
a semantics definition could increase the efficiency of runtime monitoring but is
left as future work. In the following, we assume the considered sequences to be
not arbitrarily truncated, such that all expected reactions to specific conditions (as
formulated, for example, in P) can be found in the monitored sequence.

5.3 Operation Reduce

We now present the operation reduce for reducing an MTGC to the corresponding
graph condition. It encodes in the resulting graph condition all parts of the satis-
faction relation of MTGL that are not covered by the satisfaction relation for graph
conditions. In particular, the operation reduce removes all occurrences of the until
operator and encodes the check that the elements that matched by the ∃ operator
have all been created as well as that none of them has yet been deleted.

Definition 8 (Reduce MTGC into GC (Operation reduce)). The operation reduce
takes 3 arguments: a graph with history GH that has been obtained by application of the
fold operation to a TGS π, an observation timepoint t ∈ R+

0 , and an MTGC ψ over the
empty graph ∅. GH and all graphs contained in ψ are typed over the history type graph TG.

The operation reduce returns a pair (G′H, ψ′) of a typed attributed graph G′H (which is
a slight modification of GH) and a graph condition ψ′ ∈ ΦGC

∅ over the empty graph ∅. The
graph G′H and all graphs contained in ψ′ are typed over an adapted type graph TG′ also
introduced below.

In the subsequently given procedure, additional elements added to graphs are fresh (w.r.t.
the existing ones) and pairwise distinct.

1. (Construction of adapted type graph TG′)
We adapt the original type graph TG to TG′ by adding a node Encoding with at-
tributes num : int and var : real.

2. (Construction of reduced graph condition ψ′)
We obtain ψ′ from ψ in multiple steps.
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5.3 Operation Reduce

a) We add the attributes cts = xc,α and dts = xd,α to all nodes and edges α

contained in graphs in ψ.

b) We wrap ψ into an existential quantification ∃(i∅ : ∅ ↪−→ ∅, ψ).

c) For all subconditions of ψ of the form ∃(m : G ↪−→ G′, φ) we add an Encoding
node with attributes num = n and var = xn to G′ where n is fresh in
each case. We also add for every other node and edge α in G′ the attribute
constraints le(xc,ff , xn) and or(eq(xd,ff ,−1), lt(xn, xd,ff )). Also, the added nodes
and attribute constraints are additionally inserted into all graphs occurring in φ.
Moreover, the node that is added to the target graph of the outermost morphism
must use the variable xouter for the var attribute. Finally, we add the constraint
eq(xouter, t) to this graph.

d) We replace all subconditions of ψ of the form φ1 UI φ2 over a graph G by
∃(m1 : G ↪−→ G′, φ′2 ∧ ∀(m2 : G′ ↪−→ G′′, φ′1)). The graphs G′ and G′′

are obtained from G by adding nodes and attribute constraints as described
subsequently (i.e., G ⊂ G′ ⊂ G′′ and m1, m2 are inclusions). The conditions
φ1 and φ2 inherit the additions to G′ and to G′′ as before, respectively, resulting
in the conditions φ′1 and φ′2.

• Due to the previous step, there is an Encoding node with the attribute
var = xn in G that was not added to a graph of an enclosing subcondition
of ψ.

• We add an Encoding node with attributes num = n and var = yn to G
to obtain G′ where n is fresh in each case. We also add to G the attribute
constraints ge(yn, add(xn, i1)) and le(yn, add(xn, i2)) for the interval I =
[i1, i2] (and similarly for left or right open intervals also omitting the second
constraint when i2 = ∞).

• We add an Encoding node with attributes num = m and var = ym to G′

to obtain G′′ where m is fresh in each case. We also add to G′ the attribute
constraints le(xn, ym) and lt(ym, yn).

e) Again, we consider all subconditions of ψ of the form ∃(m : G ↪−→ G′, φ) where
there are Encoding nodes v1 and v2 with attributes var = zn and var = xm

in G and G′, respectively, that were not added to a graph of an enclosing
subcondition of ψ and where xm is no yn from 2d. We then add the attribute
constraint eq(zn, xm) to the graph G′ and all graphs contained in φ.

3. (Construction of adapted graph with history G′H)
We obtain G′H by adding elements to GH as follows:

a) We add the attribute dts = −1 to all nodes/edges without that attribute.

b) We insert all Encoding nodes contained in graphs in ψ′.

For our running example, Fig. 5.2 visualizes the outcome of the application of
the reduce operation to the GH given in Fig. 4.1, the observation timepoint t = 10,
and the MTGC depicted in Fig. 5.1. However, to simplify the presentation we have
replaced the enclosing ∀N operator by the ∀ operator to avoid the substitution of
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5 Metric Temporal Graph Logic

the ∀N operator by its encoding mentioned above since this would result in an
MTGC of more than twice the size.

We now state that the operation reduce is sound w.r.t. the satisfaction relations
for MTGC and graph conditions where iGH : ∅ ↪−→ GH and iG′H

: ∅ ↪−→ G′H are
again the unique initial morphisms.
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5.3 Operation Reduce

v0:Encoding

num = 0
var = xouter

Θ0∃ ,

Pr:Procedure

cts = xc,Pr

dts = xd,Pr
type = dental

P:Patient

cts = xc,P

dts = xd,P

e1:on

cts = xc,e1

dts = xd,e1

v1:Encoding

num = 1
var = x1

Θ1∀ ,

P:Patient Pu:Pump

cts = xc,Pu

dts = xd,Pu

e2:to

cts = xc,e2

dts = xd,e2

v2:Encoding

num = 2
var = x2

Θ2∃ ,

v3:Encoding

num = 3
var = y3

Θ3∃ ,

Pu:Pump A′:Action

cts = xc,A′

dts = xd,A′

type = antibiotics

e3:by

cts = xc,e3

dts = xd,e3

v4:Encoding

num = 4
var = x4

Θ4∃ , true

v5:Encoding

num = 5
var = y5

Θ5∧∀ ,

P:Patient Pu′:Pump

cts = xc,Pu′

dts = xd,Pu′

e4:to

cts = xc,e4

dts = xd,e4

v6:Encoding

num = 6
var = x6

Θ6¬∃ , true

ψ′:

Θ0 = { eq(xouter, 10) }
Θ1 = Θ0 ∪ { eq(xouter, x1), le(xc,Pr, x1), or(eq(xd,Pr,−1), lt(x1, xd,Pr)),

le(xc,P, x1), or(eq(xd,P,−1), lt(x1, xd,P)),
le(xc,e1 , x1), or(eq(xd,e1 ,−1), lt(x1, xd,e1)) }

Θ2 = Θ1 ∪ { eq(x1, x2), le(xc,Pu, x2), or(eq(xd,Pu,−1), lt(x2, xd,Pu)),
le(xc,e2 , x2), or(eq(xd,e2 ,−1), lt(x2, xd,e2)) }

Θ3 = Θ2 ∪ { ge(y3, add(x2, 0)), le(y3, add(x2, 120))}
Θ4 = Θ3 ∪ { eq(y3, x4), le(xc,A′ , x4), or(eq(xd,A′ ,−1), lt(x4, xd,A′)),

le(xc,e3 , x4), or(eq(xd,e3 ,−1), lt(x4, xd,e3)) }
Θ5 = Θ3 ∪ { le(x2, y5), lt(y5, y3)}
Θ6 = Θ5 ∪ { eq(y5, x6), le(xc,Pu′ , x6), or(eq(xd,Pu′ ,−1), lt(x6, xd,Pu′)),

le(xc,e4 , x6), or(eq(xd,e4 ,−1), lt(x6, xd,e4)) }

Pr:Procedure
cts = 10
dts = −1
type = dental

A:Action
cts = 13
dts = −1
type = antibiotics

Pu:Pump
cts = 10
dts = −1

P:Patient
cts = 5
dts = −1

v0:Encoding
num = 0
var = xouter

v1:Encoding
num = 1
var = x1

v2:Encoding
num = 2
var = x2

v3:Encoding
num = 3
var = y3

v4:Encoding
num = 4
var = x4

v5:Encoding
num = 5
var = y5

v6:Encoding
num = 6
var = x6

e4:for
cts = 13

dts = −1

e1:on
cts = 10
dts = −1

e2:to
cts = 10
dts = −1

e3:by
cts = 13
dts = 15

G′H:

Figure 5.2: The graph condition ψ′ and the adapted graph G′H resulting from ap-
plying the operation reduce to the GH from Fig. 4.1, the timepoint t = 10, and
the property ψ from Fig. 5.1 (where the outermost ∀N has been simplified to ∀)
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5 Metric Temporal Graph Logic

Theorem 1 (Soundness of Operation reduce). If π is a TGS, GH = fold(π) is a
graph with history, ψ is an MTGC over the empty graph, t ∈ R+

0 is a timepoint, and
(G′H, ψ′) = reduce(GH, t, ψ), then (iGH , t) |= ψ iff iG′H

|= ψ′.

Idea. Throughout the proof we refer to items given in Def. 8.
(⇒): In the first step we establish a connection between the two satisfaction state-
ments that is then verified by structural induction on the condition ψ in the second
step.

The outermost existential quantification added in item 2b can be matched to G′H
because the required Encoding node is present in G′H due to item 3b and the used
match is unique due to the num attribute. The variable xouter is also restricted to the
value of t according to item 2c.

Hence, a satisfaction proof state (m, t, φ) of MTGC is connected to a satisfaction
proof state (m′, φ′) of GC as follows: the match m′ is an extension of m where
additionally some Encoding nodes with their attributes and variables are matched
(initially this is iG′H

, which is matching the Encoding node added in item 2c) and
the timestamp t is represented by the variable used in the most recently matched
Encoding node (initially this is xouter).
We now proceed by induction on the conditions φ omitting the trivial cases on
conjunction and negation.

• (∃ operator): We assume that (m, t) |= ∃(a : G1 ↪−→ G2, φ) and show that
m′ |= ∃(a′ : G′1 ↪−→ G′2, φ′) for the result obtained by application of the
operation reduce according to item 2c.

Due to the assumption and by Def. 7 there is some q : G2 ↪−→ GH such
that q ◦ a = m, (q, t) |= φ, and max({0} ∪ cts(q(G2))) ≤ t < min({∞} ∪
dts(q(G2))). This mono q can be used to extend m′ to a mono q′ : G′2 ↪−→
G′H. Here q′ matches a further Encoding node v that could not have been
matched before and that is unique due to the num attribute. The node v has
a variable xn for the var attribute. By the attribute constraint on xn we have
that xn is equal to the outer variable that encodes the current timepoint t
due to item 2e. Hence, xn encodes the timepoint that is also used for the
MTGL satisfaction statement (q, t) |= φ from above. Moreover, the attribute
constraints added for all nodes and edges, according to item 2c, encodes the
statement max({0} ∪ cts(q(G2))) ≤ t < min({∞} ∪ dts(q(G2))) from above.
The graph condition is able to make a statement on all dts attributes because
the dts attribute was added to all nodes and edges in item 2a and, additionally,
the graph condition can still be matched using q′ to G′H because GH has
been adapted in item 3a to also contain all dts attributes. The subconstraint
checking for −1 is then required to only consider the actually deleted nodes
and edges. Finally, the translated condition φ′ is then also satisfied by the
induction hypothesis.

• (until operator): We assume that (m, t) |= φ1 UI φ2 and show that m′ |=
∃(m1 : G ↪−→ G′, φ′2 ∧ ∀(m2 : G′ ↪−→ G′′, φ′1)) for the result obtained by applica-
tion of the operation reduce according to item 2d.
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5.3 Operation Reduce

Due to the assumption and by Def. 7 there is some t′ ∈ I such that (m, t +
t′) |= φ2 and for every t′′ ∈ [0, t′) it holds that (m, t + t′′) |= φ1. By item 2e
we can assume that the outer variable xo encodes the current timepoint t as
in the previous item. The existentially quantified t′ ∈ I is now covered by
the graph G′, in which we use the variable yn to encode the value of t′ and
the attribute constraints to restrict yn to the interval I. Then, (m, t + t′) |= φ2

implies that the match m′ can be extended to a match m′′, as required by
the existential quantification, because the variable yn along with its Encoding
node can be matched to G′H due to item 3b. The translated condition φ′2 is
then also satisfied by the induction hypothesis. Moreover, the universally
quantified t′′ is then represented by the variable ym in G′′, which is also
universally quantified. We assume that t′′ is fixed in that interval satisfying
(m, t + t′′) |= φ1. Hence, the match m′′ can be extended to a match m′′′ as
required by matching ym to the corresponding variable in G′H due to item 3b.
Also, the attribute constraints on ym given in item 2d are satisfied because
t′′ is taken from the interval [0, t′). The translated condition φ′1 is then also
satisfied by the induction hypothesis.

(⇐): The reverse reasoning applies for the if direction in all these steps. It is
important however to realize that the patterns obtained due to the encoding of the
operators ∃ and U must be matched entirely for the reverse direction to preserve
the correspondence with the MTGC satisfaction proof state.

By application of our theorem above we can deduce for our running example
that the property translated by the operation reduce is satisfied by the adapted GH
(both given in Fig. 5.2). For this purpose observe that the property from Fig. 5.1
(simplified as stated in Fig. 5.2) is satisfied by the GH from Fig. 4.1 for the timepoint
t = 10 since the unique match of the Procedure node Pr, the on edge e1, and the
Patient node P satisfies the remaining condition at timepoint t = 10 as discussed
before.
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6 Tool Support

We have extended the tool AutoGraph [12] to support MTGL for the analysis
of timed graph sequences and for the runtime monitoring of dynamic systems
generating such sequences. Firstly, following chapter 4 we have implemented the
operation fold consolidating a TGS to a GH. For this purpose we process a timed
sequence of modification events issued by the system (which characterize the
inclusion morphisms l and r from Def. 3) and construct from them the resulting GH.
Secondly, we have added the required syntactical support for MTGC (see Def. 6)
by adding the metric until operator to the syntax of graph conditions. Thirdly,
we have implemented the operation reduce translating a satisfaction statement on
an MTGC and a GH into the corresponding satisfaction statement on a graph
condition and a graph. The application to our running example from the medical
domain demonstrates the validity of our general approach but detailed analysis
regarding the performance using benchmarks from runtime monitoring is left as
future work.
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7 Conclusion and Future Work

TGS GH

MTGC GC
=

fold

reduce

Figure 7.1: Overview of our approach

We have defined MTGL to express state properties using graph conditions
and sequence properties using the until operator, which allows to maintain an
established binding of graph elements throughout the analysis of a timed sequence
of typed attributed graphs. We present how TGS and MTGC can be reduced to
GH and GC by the operations fold and reduce, respectively, as shown in Fig. 7.1.
Tool-support for MTGL is achieved by extending the tool AutoGraph.

We believe MTGL will prove advantageous in many future applications. We
plan to develop two more finite semantics, also for arbitrary truncated sequences:
the optimistic, where it guarantees that no violations are reported too early, and
the pessimistic, where it guarantees that violations are reported, when possible,
n timeunits before their definitive occurrence. Furthermore, we plan to compare
our approach w.r.t. efficiency to other runtime monitoring tools on standard bench-
marks, and identify subsets of MTGL that can be checked more efficiently (e.g.
incrementally). Regarding the analysis, we plan to study whether our reduction
could reduce other cases of checking MTGL to related GC counterparts such as
invariant checking. Finally, initial results indicate that the concept of binding used
in MTGL can be extended to allow for a more convenient resp. more compact
specification of sequence properties.
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