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Abstract. A considerable number of systems have recently been reported in which
Brownian yet non-Gaussian dynamics was observed. These are processes characterised
by a linear growth in time of the mean squared displacement, yet the probability
density function of the particle displacement is distinctly non-Gaussian, and often
of exponential (Laplace) shape. This apparently ubiquitous behaviour observed in
very different physical systems has been interpreted as resulting from diffusion in
inhomogeneous environments and mathematically represented through a variable,
stochastic diffusion coefficient. Indeed different models describing a fluctuating
diffusivity have been studied. Here we present a new view of the stochastic
basis describing time dependent random diffusivities within a broad spectrum of
distributions. Concretely, our study is based on the very generic class of the generalised
Gamma distribution. Two models for the particle spreading in such random diffusivity
settings are studied. The first belongs to the class of generalised grey Brownian
motion while the second follows from the idea of diffusing diffusivities. The two
processes exhibit significant characteristics which reproduce experimental results from
different biological and physical systems. We promote these two physical models for
the description of stochastic particle motion in complex environments.

1. Introduction

The systematic study of the diffusive motion of tracer particles in fluids dates back to

the 19th century, particularly referring to Robert Brown’s experiments observing the

erratic motion of granules extracted from pollen grains which were suspended in water

[1]. Since then numerous scientists contributed by improving the experiments [2, 3, 4]

as well as in defining the basis of the theory of diffusion [5, 6, 7, 8, 9]. In brief, Brownian
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Random diffusivity from stochastic equations 2

or standard diffusion processes are mainly characterised by two central features: (i) the

linear growth in time of the mean-squared displacement (MSD),

〈x2(t)〉 = 2Dt, (1)

where D is the diffusion coefficient, and (ii) the Gaussian probability density function

(PDF) for the particle displacement,

G(x, t|D) =
1√
4πDt

exp

(

− x2

4Dt

)

. (2)

Here and in the following we focus on a one-dimensional formulation of the model, a

generalisation to higher dimensions can be achieved component-wise.

Discoveries of deviations from the linear time dependence (1) have a long history.

Thus, Richardson already in 1926 reported his famed t-cubed law for the relative particle

diffusion in turbulence [10]. Scher and Montroll uncovered anomalous diffusion of the

power-law form

〈x2(t)〉 ≃ Dαt
α, (3)

with the anomalous diffusion exponent 0 < α < 1 and the generalised diffusion coefficient

Dα [11], for the motion of charge carriers in amorphous semiconductors [12]. With the

advance of modern microscopy techniques, in particular, superresolution microscopy, as

well as massive progress in supercomputing, anomalous diffusion of the type (3) has been

reported in numerous complex and biological systems [13, 14]. Thus, subdiffusion with

0 < α < 1 was observed for submicron tracers in the crowded cytoplasm of biological

cells [15, 16, 17, 18, 19] as well as in artificially crowded environments [20, 21, 22, 23].

Further reports of subdiffusion come from the motion of proteins embedded in the

membranes of living cells [24, 25, 26]. Subdiffusion is also seen in extensive simulations

studies, for instance, of lipid bilayer membranes [27, 28, 29, 30] and relative diffusion in

proteins [31]. Superdiffusion, due to active motion of molecular motors, was observed in

various biological cell types for both introduced and endogenous tracers [16, 17, 32, 33].

Most of the anomalous diffusion phenomena mentioned here belong to two main

classes of anomalous diffusion: (i) the class of continuous time random walk processes,

in which scale-free power-law waiting times in between motion events give rise to the law

(3) [12, 34], along with a stretched Gaussian displacement probability density G(x, t)

[11, 12, 34] as well as weak ergodicity breaking and ageing [35, 36]. We note that

similar effects of non-Gaussianity, weak non-ergodicity, and ageing also occur in spatially

heterogeneous diffusion processes [37, 38, 39, 40]. (ii) The second one is the class of

viscoelastic diffusion described by the generalised Langevin equation with power-law

friction kernel [41, 42] and of fractional Brownian motion [43]. These processes are both

fuelled by long-range, power-law correlated noise. Its distribution is Gaussian, so that

the displacement probability density G(x, t) is Gaussian, as well. Moreover, these are

ergodic processes [23, 42, 44, 45, 46].

Over the last few years a new class of diffusive processes has been reported,

namely, so-called Brownian yet non-Gaussian diffusion [47, 48]. This class identifies
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Random diffusivity from stochastic equations 3

a dynamics characterised by a linear growth (1) of the MSD combined with a non-

Gaussian probability density function for the particle displacement. The emergence of

a non-Gaussian distribution, despite the Brownian MSD scaling, suggests the presence

of an inhomogeneity that can be located both on the single tracer particle and on the

ensemble levels. The study of these processes is becoming increasingly relevant with

the growing number of complex systems discovered to exhibit such statistical features.

For instance, we mention soft matter and biological systems, in which the motion of

biological macromolecules, proteins and viruses along lipid tubes and through actin

networks [47, 48], as well as along membranes and inside colloidal suspension [49] and

colloidal nanoparticles adsorbed at fluid interfaces [50, 51, 52] are studied. We also

mention ecological processes, involving the characterisation of organism movement and

dispersal [53, 54], as well as processes, that are Brownian but non-Gaussian in certain

time windows of their dynamics. These concern the dynamics of disordered solids, such

as glasses and supercooled liquids [55, 56, 57] as well as interfacial dynamics [58, 59].

Also anomalous diffusion processes of the viscoelastic class that typically are expected

to exhibit Gaussian statistic of displacements, were reported to have non-Gaussian

displacements along with distinct distributions of diffusivity values. These concern the

motion of tracer particles in the cellular cytoplasm [60, 61, 62] and the motion of lipids

and proteins in protein-crowded model membranes [29].

Here we study two alternative stochastic approaches to non-Gaussian diffusion due

to random diffusivity parameters, namely, generalised grey Brownian motion (ggBM)

and diffusing diffusivities (DD). We analyse their exact behaviour and relate these

approaches to the idea of superstatistics. To prepare the discussion, section 2 presents a

primer on the approach of superstatistics and what has been done in the context of ggBM

and DD models. In section 3 we then study the ggBM model with a random diffusivity

distributed according to the generalised Gamma distribution. In particular, ggBM will

be shown to represent a stochastic description of the superstatistics approach and is

equivalent to the short time limit of the DD model. In section 4 we formulate a set of

stochastic equations for the dynamics within the DD framework, in which the diffusivity

statistic is governed by the generalised Gamma distribution. This is then incorporated

in the framework of the minimal model of DD in section 5. In section 5.4 we describe

the behaviour of the kurtosis of the two models, an important quantity for data analysis.

Section 6 introduces an analysis for an initial non-equilibrium setting for the random

diffusivity, relevant, for instance, for the description of single particle trajectories. To

transfer this concept to the ggBM approach we propose a non-equilibrium version of

ggBM. Finally our conclusions are reported in section 7. In the Appendices some

mathematical details are collected.
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Random diffusivity from stochastic equations 4

2. Pathways to Brownian yet non-Gaussian diffusion: superstatistics and

diffusing diffusivity, and generalised grey Brownian motion

When we talk about an ensemble of particles, we could imagine that non-Gaussian

statistic in this ensemble sense emerges due to the fact that different particles are

located in different environments with different transport characteristics, such as the

diffusion coefficient. If during the observation time each particle remains in its own

environment characterised by a given value D of the diffusivity, the ensemble of particles

shows a mixture of individual Gaussians, weighted by some distribution p(D) of local

diffusivities. This is the idea behind superstatistics, an approach promoted by Beck and

Cohen [63], see also [64]. As a result, the ensemble dynamics is still Brownian yet the

PDF of particle displacements will correspond to a sum or integral of single Gaussians

with specific value of D, weighted by the distribution p(D). For instance, an exponential

form for p(D) will produce an exponential shape of the ensemble displacement PDF,

sometimes called a Laplace distribution. We note that there also exist superstatistical

formulations on the basis of the stochastic Langevin equation, leading to Brownian yet

non-Gaussian behaviour [65]. A quite general superstatistical formulation in terms of

the gamma distribution was put forward by Hapca et al. [53].

More recently, similar concepts have been sought to describe non-Gaussian

viscoelastic subdiffusion. Thus, Lampo et al. [61] observed exponential distributions of

the generalised diffusivity Dα for the motion of submicron tracers in living bacteria and

eukaryotic cells. As a theoretical description they used a superstatistical formulation of

the stochastic equation for fractional Brownian motion [61]. Following the observation

of stretched Gaussian shapes of the displacement PDF in protein-crowded lipid bilayer

membranes [29], more general forms for the distribution of the generalised diffusion

coefficient were introduced, see, for instance, [66, 67]. Viscoelastic, non-Gaussian

diffusion was also described in terms of the generalised Langevin equation with

superstatistical distribution of the friction amplitude [68, 69].

Some other models instead introduce a fluctuating diffusivity, for instance to

describe segregation in solids [70] or to analyse data from diffusion processes assessed

by modern measurement techniques [71]. Brownian motion in fluctuating environments,

or governed by temperature or friction fluctuations has been studied in [72, 73, 74]

and models with intermittency between two values of the diffusivity are considered in

[75, 76]. Anomalous diffusion in a disordered system was also described in terms of a

superstatistical model based on a Langevin equation formulation, combining a Rayleigh-

shaped diffusivity distribution with deterministic power-law growth or decay of the mean

diffusivity [77].

A general framework for the description of diffusion in complex environment is

provided also by the class of stochastic processes identified as generalised grey Brownian

motion (ggBM) [78, 79, 80, 81, 82]. The basic idea of this approach is that the complexity

or heterogeneity of the medium is completely described by the random nature of a

specific parameter. Choosing this parameter to be the diffusivity leads to a stochastic
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Random diffusivity from stochastic equations 5

interpretation of the system that may be viewed as complementary to the superstatistics

concept and thus suitable for the description of the class of Brownian yet non-Gaussian

processes. We will define ggBM with a random diffusivity in more detail in the next

section 3, and in the following demonstrate that ggBM is equivalent to th short time

limit of the DD model.

Recently the idea of DD has received considerable attention. According to this

approach, in addition to the introduction of a population of diffusivities, each particle

during its motion is affected by a continuously changing diffusivity. Chubynsky and

Slater first introduced this model describing the dynamics of the diffusion coefficient by

a biased, stationary random walk with reflecting boundary conditions [83]. With this

assumption the diffusivity changes slowly step by step, in the short time limit giving

rise to normal diffusion with exponential displacement PDF.‡ In the long time regime

simulations showed a crossover to Gaussian diffusion with a single, effective diffusion

coefficient [83]. In a more recent work a direct test of the DD mechanism for diffusion

in inhomogeneous media is reported [86].

The DD concept was further studied by Jain and Sebastian [87, 88] and Chechkin

et al [67]. While Jain and Sebastian use a path integral approach, Chechkin et al invoke

the concept of subordination and an explicit exact solution for the PDF in Fourier space.

Despite the different mathematical approach, both models recover the linear trend of

the MSD and a distribution of displacements that at short times is exponential, while,

at long times, it crosses over to a Gaussian with effective diffusivity, in agreement with

the results in [83]. Tyagi and Cherayil [89] present a hybrid procedure between the two

approaches, finding that the modulation of white noise by any stochastic process, whose

time correlation function decays exponentially, is likely to have features similar to the

ones obtained in [67, 83, 87, 88]. As a recent result we also report the work by Lanoiselée

and Grebenkov in which the concept of DD is further investigated, for instance, with

respect to time averages and ergodicity breaking properties [90].

In this paper we present a detailed comparison between the concept of ggBM with

random diffusivity and the DD model. The main difference between the DD and ggBM

model is represented by the interaction between environment and particles. On the one

hand, in the DD model two different statistical levels are taken into account, one for

the motion of the environment and one for the motion of the particles. The relation

between these two gives rise to specific characteristics. Thus, at short times the slow

variability of the environment guarantees the superstatistical limit. In the long time

regime the diffusivity reaches a stationary average value leading the particles to develop

a Gaussian statistic. On the other hand, the ggBM model does not directly involve an

environment dynamics but only implies a dynamics in which the statistical features of

the environment continuously drives the particles in their motion, see below for more

details.

Concretely, for both ggBM and DD models a set of stochastic equations is

‡ This approach has some commonalities in spirit with the correlated continuous time random walk
model [84, 85].
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Random diffusivity from stochastic equations 6

introduced to generate a time dependent random diffusivity with a well defined

stationary distribution. Until now mainly exponential or Gamma distributions have

been considered for the random diffusivity. We here base the discussion on the

generalised Gamma distribution, which represents an even broader class of distributions

including the ones mentioned above, as particular cases. We define the generalised

Gamma distribution by

γgen
ν,η (D) =

η

Dν
⋆ Γ(ν/η)

Dν−1 exp

(

−
[

D

D⋆

]η)

, (4)

where D⋆ is a positive and dimensional constant and ν and η are positive constants.

This distribution encodes the nth order stationary moments

〈Dn〉stat = Dn
⋆

Γ([ν + n]/η)

Γ(ν/η)
. (5)

The choice of the generalised Gamma distribution is based on experimental evidence

demonstrating its role as a versatile description for generalised distributions in various

complex systems. Indeed, in the context of superstatistics the generalised Gamma

distribution was studied by Beck in [91]. Importantly, the generalised Gamma

distribution includes those cases labelled as Gamma or exponential distribution that

have already shown good agreement with several systems [53, 55, 56, 57]. Moreover it

comprises the cases of stretched and compressed exponential distributions which may

be useful for the interpretation of various systems [26, 53, 92, 93].

In the following we generalise the ggBM model from references [78, 79, 80, 81, 82]

to incorporate the generalised Gamma function (4). We then demonstrate how to

reformulate the Ornstein-Uhlenbeck picture of the DD minimal model [67] and the

closely related DD models [83, 87, 88] to include the distribution (4). With this extension

both models are considerably more flexible for the description of measured data.

Moreover, we will show that the ggBM model is a powerful stochastic representation of

the superstatistics approach, and that the ggBM model equals the short time limit of

the DD model. Finally, we consider non-equilibrium conditions in the DD model and

propose a non-equilibrium extension of the ggBM model to consider similar effects in the

stochastic setting of superstatistics. Such non-equilibrium initial conditions represent

an important extension of the random diffusivity models, especially for experimentally

relevant cases of single particle trajectory measurements.

3. Generalised grey Brownian motion with random diffusivity

GgBM is defined through the stochastic equation [78, 79, 80, 81, 82]

XggBM(t) =
√
2D ×W (t), (6)

for the particle trajectory XggBM(t), in which W (t) =
∫ t

0
ξ(t′)dt′ is standard Brownian

motion, the Wiener process defined as the integral over the white Gaussian noise ξ(t)

with zero mean. Moreover, D is a random diffusivity, here taken to be distributed

according to the generalised Gamma distribution (4). The idea is that different, but
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Random diffusivity from stochastic equations 7
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Figure 1. Top: Trajectories governed by the ggBM model for η = 1.3 and two different
parameters ν (see figure legend). Bottom: Time averaged MSD for the respective traces
shown in the top panel, with identical colour coding. The different trajectories exhibit
random diffusivity values and thus random slopes in the time averaged MSD plots.
Within each trajectory the value of D remains fixed.

physically identical particles move in disjointed environments, in which they experience

different diffusivities, the essential view of the superstatistics approach. Alternatively,

we could also think of physically different particles, with different diffusion coefficients,

moving in an identical environment. The latter could, for instance, correspond to an

ensemble of tracer beads with varying radius or different surface properties.

More mathematically speaking, ggBM is defined through the explicit construction

of the underlying probability space based on self-similar increments, and it can be

represented by the stochastic equation XggBM =
√
ΛXg, where Λ is an independent,

non-negative random variable, and Xg is a Gaussian process [78, 79, 80, 81, 82]. The

characterisation of this class has also been studied for the case when Xg is a standard

fractional Brownian motion (FBM) and Λ is distributed according to the quite general

class of M-Wright functions [81, 94]. We note that the definition (6) is similar to the

superstatistical Langevin equation models in [65, 77].

Figure 1 shows trajectories obtained from direct simulations of the scheme (6),

for which the diffusivity values D are chosen from the generalised Gamma distribution

(4). As a result we obtain a Brownian motion characterised by a random amplitude, as

demonstrated explicitly by the MSD plots for the same trajectories shown in the bottom

panel of figure 1. For the value ν = 1.5 (right panels) larger D values are observed, in

Page 7 of 33 AUTHOR SUBMITTED MANUSCRIPT - NJP-108164.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



Random diffusivity from stochastic equations 8

accordance with the shape of the distribution (4). The ggBM description is indeed close

to the superstatistical concept and fundamentally different from the time evolution of

the sample paths for the DD model, compare figure 7. However, at very short times

both processes look much alike, as the DD model at short times will be shown to reduce

to the ggBM model.

The particle displacement distribution can be recovered following Pagnini and

Paradisi [94]. If we define with Z1 and Z2 two real independent random variables whose

PDFs are p1(z1) and p2(z2) with −∞ ≤ z1 ≤ +∞ and 0 ≤ z2 ≤ +∞, respectively, and

with the random variable Z obtained by the product of Z1 and Zγ
2 , that is, Z = Z1Z

γ
2 ,

then, if we denote the PDF of Z with p(z), we find that

p(z) =

∫ ∞

0

p1

( z

λγ

)

p2(λ)
dλ

λγ
. (7)

In the present case we identify XggBM (t), W (t), and the random diffusivity D with

Z, Z1, and Z2, respectively. The PDF for the particle displacement encoded by equation

(6) and (7) is given by

fggBM(x, t) =

∫ ∞

0

1√
2πt

exp






−

(

x/
√
2D
)2

2t






pD(D)

dD√
2D

=

∫ ∞

0

1√
4πDt

exp

(

− x2

4Dt

)

pD(D)dD

=

∫ ∞

0

G(x, t|D)pD(D)dD, (8)

where G(x, t|D) is the Gaussian distribution (2) for given D. Such a representation of

the PDF corresponds to the one of the superstatistical approach, proving the similarity

of the two methods. The distribution pD(D) is defined in (4) and the integral in (8),

which can be solved exactly through different methods (Appendix A.1), provides the

result (A.6) in terms of a Fox H-function (see Appendix A.1, where also the series

expansion is given). The asymptotic behaviour of this result acquires the generalised

exponential shape

fggBM(x, t) ∼
(x2/[4D⋆t])

(2ν−η−1)/(2[η+1])

Γ(ν/η)
√
4πD⋆t

exp

(

−η + 1

η
η

1
η+1

[

x2

4D⋆t

]η/(η+1)
)

. (9)

In particular, the choice η = 1 leads us back to exponential distributions, with power-

law prefactor. Figure 2 demonstrates the agreement between the analytical result (9)

for the PDF and the result of stochastic simulations of the underlying ggBM process, for

different times and a fixed set of the parameters ν and η. In particular, we see that the

shape of the distribution remains invariant—as for the superstatistical approach—and

in contrast to the DD model analysed below.

The MSD follows immediately from the following transformations,

〈X2
ggBM(t)〉 =

∫ ∞

−∞
x2fggBM(x, t)dx
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Random diffusivity from stochastic equations 9

Figure 2. Short (a) and long (b) time behaviour of the PDF of the ggBM process for
the parameters η = 1.3 and ν = 0.5, as well as D⋆ = 1/2. Solid lines represent the
asymptotic behaviour (9), while symbols are obtained from stochastic simulations of
the ggBM process.
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η=1. 3, ν=0. 5
FIT ∼ 0. 41 t

Figure 3. Variance of the ggBM model (blue line) and linear fit (solid line). The
corresponding fit parameters are indicated in the figure legend. The value of D⋆ = 1/2.

=

∫ ∞

0

pD(D)

∫ ∞

−∞
x2G(x, t|D)dxdD

=

∫ ∞

0

pD(D)2DtdD = 2t

∫ ∞

0

DpD(D)dD

= 2〈D〉statt, (10)

where, according to (5), the effective diffusivity becomes

〈D〉stat = D⋆Γ([ν + 1]/η)/Γ(ν/η). (11)

Figure 3 demonstrates the linearity of the variance. The fitted parameters are consistent

with the model prediction, 〈D〉stat = 0.20 comparing to the values chosen in the

simulations.

By means of the ggBM approach and with the introduction of a generalised Gamma

distribution for the diffusivity we are able to reproduce a diffusive motion with a linear

scaling of the MSD and a PDF characterised by a stretched or compressed Gaussian

with a power-law prefactor. This is our first main result.
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Random diffusivity from stochastic equations 10

4. Diffusing diffusivity: stochastic equations for random diffusivity

We now consider the diffusion coefficient D(t) to be a random function of time, defined

by means of the auxiliary variable Y (t) through D(t) = Y 2(t), similarly to the DD

minimal model introduced earlier [67]. Our goal is to construct a stochastic equation

for the additional variable Y (t) such that the stationary PDF for its square is the

generalised Gamma distribution in (4). Thus, our present model is represented by the

following set of stochastic equations

dY = a(Y )dt+ σ × dW (t) (12a)

D(t) = Y 2(t), (12b)

where a(Y ) is a nonlinear function whose explicit shape is obtained below, σ is a constant

and W (t) is a Wiener process with variance 〈W 2
(t)〉 = t. The physical dimension of the

auxiliary variable is [Y ] = cm/sec1/2 and for the constant σ we have [σ] = cm/sec.

Our approach is based on the central idea that it is possible to establish a direct

relation between the PDFs of the two variables Y (t) and D(t). This allows us to

introduce a completely new dynamics for the auxiliary variable. Such a dynamics,

even though more complex, allows to reproduce a more general class of PDFs for the

random diffusivity and thus provides a significant extension of the DD model, which

will be our second main result.

To proceed we set p(Y, t) to represent the PDF of the process Y (t) described in

(12a). It fulfils the Fokker-Plank equation [9]

∂p(Y, t)

∂t
+

∂a(Y )p(Y, t)

∂Y
=

σ2

2

∂2p(Y, t)

∂Y 2
. (13)

Considering the stationary situation the corresponding time independent PDF pY (Y )

fulfils the equation

∂a(Y )pY (Y )

∂Y
=

σ2

2

∂2pY (Y )

∂Y 2
, (14)

from which we infer the relation

a(Y ) =
σ2

2pY (Y )

∂pY (Y )

∂Y
, (15)

directly relating the drift coefficient a(Y ) with the stationary distribution of Y (t) [95].

We then recall that, given two random variables Z1 and Z2 related by Z2 = g(Z1),

for appropriate functions g(z) we have [96]

pZ2(z2) = pZ1(g
−1(z2))

∣

∣

∣

∣

d

dz2
g−1(z2)

∣

∣

∣

∣

. (16)

This implies that the distributions of the variables Y (t) and D(t) are related via

pY (Y, t) = |Y |pD(Y 2, t). (17)

Based on this we construct a set of stochastic equations for the desired quantity

D(t). Starting from the chosen stationary distribution pD(D) of the random diffusivity

we define the stationary distribution pY (Y ) for the auxiliary variable Y (t) by means of
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Random diffusivity from stochastic equations 11

equation (17). Finally relation (15) allows us to recover the suitable coefficient a(Y ) in

equation (12a). Following the described scheme for the generalised Gamma distribution

(4) we obtain

pY (Y ) = |Y | η

Dν
⋆Γ(ν/η)

Y 2(ν−1) exp

(

−
[

Y√
D⋆

]2η
)

, (18)

and thus

∂pY (Y )

∂Y
(Y ) =

ηsgn(Y )

Dν
⋆Γ(ν/η)

Y 2(ν−1) exp

(

−
[

Y√
D⋆

]2η
)(

2ν − 1− 2η

[

Y√
D⋆

]2η
)

. (19)

This finally leads us to the desired drift coefficient

a(Y ) =
σ2

2Y

(

2ν − 1− 2η

[

Y√
D⋆

]2η
)

. (20)

The stochastic equations (12a) together with the explicit form (20) of the drift coefficient

for the diffusivity fluctuations provide a complete and generalised analogue of the DD

model, which is extremely flexible for the modelling of experimental data.

We notice that in the particular case of ν = 0.5 and η = 1 we recover the Ornstein-

Uhlenbeck model (diffusion in an harmonic potential) considered in the original minimal

DD model [67]. As already remarked in [67] in this setting the resulting stochastic

equation for D(t) is nothing else than the Heston model, that is widely used in financial

mathematics and specifies the time evolution of the stochastic volatility of a given asset

[90, 97, 98].

Equation (12a) can be readily solved numerically with initial conditions taken

randomly from the equilibrium distribution (18). Figures 4 and 5 show sample time

evolutions of the auxiliary variable Y and the diffusivity D = Y 2 for the DD process

based on the steady state generalised Gamma distribution, as obtained below. We note

that for the case ν = 0.5 in figure 4 the sample paths of the variable Y (t) frequently cross

the zero line, while for the case ν = 1.5 in figure 5 the zero line is avoided, corresponding

to the uni- and bi-modal shapes of the PDFs of the variable Y (t) evaluated in figure

6. The existence of a pole in the generalised Gamma distribution (4) at D = 0 for the

case ν = 0.5 thus creates a very different behaviour than for the case ν = 1.5 without

singularity. For the diffusivity variable D(t) in figures 4 and 5 the regions of Y (t) close

to the zero line lead to smaller D(t) values in the same regions. Finally, figures 4 and 5

demonstrate the exponential shape of the autocorrelation functions for both Y (t) and

D(t),

ACFY (t, t
′) = 〈(Y (t)− 〈Y 〉)(Y (t + t′)− 〈Y 〉)〉 (21)

and an analogous expression for D(t).

We know from previous studies of DD models that the correlation time of the

random diffusivity represents a key factor in the study of the particle dynamics. The
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Y
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0.5

0.0

0.5
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2.5

D
(t
)

Y

Figure 4. Top: Trajectories and bottom: autocorrelation functions (21), of the
auxiliary variable Y (t) and the random diffusivity D(t) in the DD model. The green
solid lines in the autocorrelation function plots represent exponential fits. We took
ν = 0.5 and η = 1.3.

correlation time τc is evaluated both by means of a two-parametric numerical fit to the

exponential function and through the integral

τc ∼
1

ACF(0)

∫ ∞

0

ACF(τ)dτ, (22)

which is exact for pure exponential autocorrelation functions. The results obtained by

the two methods are reported in figure 4 and 5 and they are in excellent agreement,

from which we conclude that the diffusivity autocorrelation is exponential to leading

order and thus the correlation time τc well defined.

It is interesting to notice that the auxiliary function Y (t) in the case of a bimodal

distribution possesses a non-zero correlation function in the stationary state. This is

due to the fact that despite a vanishing global mean of the PDF, depending on the

initial setting each trajectory is representative of only one side of the bimodal PDF.

5. A generalised minimal model for diffusing diffusivities

With the set of equations defined in section 4 we can consider the generalisation of the

DD minimal model described in [67], and obtain the process in position space, XDD(t).

Recalling the idea of introducing an analytic description for the dynamics of the random

diffusivity, we take that the motion of the particle is defined by the integral version of
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3.5

D
(t
)

Y

Figure 5. Top: Trajectories and bottom: autocorrelation functions (21), of the
auxiliary variable Y (t) and the random diffusivity D(t) in the DD model. The green
solid lines in the autocorrelation function plots represent exponential fits. We took
ν = 1.5 and η = 1.3.

p
p

p
p

Figure 6. PDFs of the auxiliary variable Y (t) and the random diffusivity D(t) for
two different sets of parameters, as indicated in the figure legends.

the overdamped Langevin equation,

XDD(t) =

∫ t

0

√

2D(t′)× ξ(t′)dt′, (23)

where ξ(t) is white Gaussian noise and D(t) is the random time dependent diffusivity

obtained in section 4. This dynamics based on the above results for the diffusivity

dynamics generalises the idea introduced in [67], where an Ornstein-Uhlenbeck process

was selected for the auxiliary variable. Figure 7 shows trajectories obtained from the
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Figure 7. Top: Trajectories of the DD model for two different sets of parameters
ν and η, as indicated in the figure legend and bottom: corresponding time averaged
MSDs. In contrast to the behaviour of the ggBM model shown in figure 1, the temporal
variation of the diffusivity D(t) is distinct.

stochastic equation (23) where the diffusivity was generated from (12a) with initial

conditions taken randomly from the stationary distribution. In ggBM each trajectory

has the same D value, while in the DD model the value of D changes as function of

time. In turn, individual trajectories of the DD model are quite similar.

Since the DD model is a direct generalisation of the minimal DD model we expect

a crossover to a Gaussian displacement PDF for times longer than the correlation time

τc. We thus carry on our analysis for the short and long time regimes separately, before

analysing the MSD and kurtosis of this DD process.

5.1. Short time regime

Since the dynamics of the environment is determined by the correlation time τc we

expect that on short time scales with t ≪ τc the diffusion coefficient is approximately

fixed for each particle and we thus suppose the validity of a superstatistical description

at short times (ST),

XST
DD ∼

√
2D

∫ t

0

ξ(t′)dt′ =
√
2D ×W (t). (24)

The existence of the superstatistical regime at t ≪ τc is consistent with the model
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Random diffusivity from stochastic equations 15

Figure 8. Short time (a) and long time (b) PDF of the DD model for η = 1.3 and
ν = 0.5. The solid lines represent the asymptotic behaviour (9) while the dashed lines
represent the Gaussian behaviour (26) expected at sufficiently long times.

considered in [67] and with the results reported in [89] concerning the modulation

of white noise by any stochastic process whose time correlation function decays

exponentially. The superstatistical approach allows us to estimate the short time

distribution of the particle displacement by means of

fST
DD(x, t) ∼

∫ ∞

0

pD(D)G(x, t|D)dD. (25)

This representation corresponds to the ggBM scenario established above, which means

that we can borrow its results in equations (A.6) and (9), considering that fST
DD(x, t) ∼

fggBM(x, t).

The expected behaviour (9) is confirmed by extensive numerical simulations.

Figures 8(a) and 9(a) show the short time PDFs for two different sets of the parameters ν

and η, and in both cases we observe excellent agreement with the asymptotic behaviour

(9).

Comparing figure 2 with figure 8(a) we notice that the ggBM model allows one to

describe a process that preserves the exact non-Gaussian PDF, which is exactly the same

PDF we obtain in the DD model in the short time regime. Both approaches describe the

same superstatistical frame but the DD model then crosses over to a Gaussian beyond

the correlation time τc, see below the discussion of the kurtosis. The establishment of

the relation between the DD model and the previously devised ggBM at short times is

our third main result.

5.2. Long time regime

At long times (LT), again taking our clue from [67] and from the general results in [89],

we expect that eventually a crossover to a Gaussian distribution is observed (as already

anticipated in figures 8 and 9). Above the correlation time, that is, for times t≫ τc we

thus look for a PDF given by

fLT
DD(x, t) ∼

1
√

4π〈D〉statt
exp

(

− x2

4〈D〉statt

)

, (26)
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Random diffusivity from stochastic equations 16

Figure 9. Short time PDF (a) and long time PDF (b) of the DD model for η = 1.3

and ν = 1.5. The solid lines represent the asymptotic behaviour in (9) while the dashed
lines represent the Gaussian behaviour in (26) at long times.

with the effective diffusivity (11). The numerical results reported in figures 8(b) and

9(b) prove the validity of this behaviour. At sufficient long times the particles have

explored all the diffusivity space and a Gaussian behaviour with an effective diffusivity

emerges. This leads to a standard Brownian diffusive behaviour. We stress again that

the transition from a non-Gaussian to a Gaussian profile depends on the value of the

correlation time τc of the diffusivity process.

5.3. Mean squared displacement

For the DD model we found a crossover of the PDF of the spreading particles. An initial

non-Gaussian behaviour is slowly replaced by a Gaussian one. The superstatistical

behaviour of the DD approach at short times is equivalent to the ggBM model and is

characterised by the non-Gaussianity. Nevertheless, as expected from previous studies

[67], the MSD does not change in the course of time and is the same at short and long

time regimes. Direct calculation indeed produces the invariant form

〈X2
DD(t)〉 = 2〈D〉statt. (27)

This continuity of the MSD is demonstrated in figure 10, together with a linear fit

proving the validity of the linear trend.

5.4. Kurtosis

In what follows the second and fourth moments of the non-Gaussian PDF identified in

equations (8) and (25) are studied in terms of the kurtosis that represents one of the

first checks for non-Gaussianity. We recall the second order moment calculated in (10)

and in a similar way we obtain the fourth order moment

〈X4
ggBM(t)〉 = 〈X4

DD(t)〉ST = 12〈D2〉statt2, (28)

where 〈D2〉stat is the second moment of the diffusivity in the stationary state. By means

of results (10) and (28) and recalling the definition of the diffusivity moments in equation
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Figure 10. Variance of the DD model. The solid green line represents a linear fit
and the corresponding slope is reported in the plot. It is consistent with the expected
value 0.40 according to equation (11).
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Figure 11. Kurtosis of the DD process (green) and ggBM (blue) for 10,000
realisations. For the indicated value of η and ν equation (29) yields KggBM ≈ 7.74.

(5), the kurtosis K = 〈x4(t)〉/〈x2(t)〉2 is given by

KggBM = KST
DD = 4t2D2

∗
3Γ([ν + 2]/η)

Γ(ν/η)
× 1

4t2D2
∗

(

Γ(ν/η)

Γ([ν + 1]/η)

)2

= 3
Γ([ν + 2]/η)Γ(ν/η)

Γ([ν + 1]/η)2
> 3, (29)

for ggBM and the short-time DD process. The non-Gaussian PDF represents a

leptokurtic behaviour as can be observed in figure 11, showing the kurtosis of the DD and

ggBM models. The value for the kurtosis at short times is in agreement with the value

reported in (29). At long times the DD kurtosis approaches the value 3 characteristic

of the Gaussian distribution, while the ggBM one keeps fluctuating around the same

initial value.

6. Non-equilibrium initial conditions

The results discussed above consider equilibrium initial conditions for the diffusivity

fluctuations. In particular, results (10) and (27) for the particle MSD exhibit the

invariant form 〈X2(t)〉 = 2〈D〉statt in both cases. Such equilibrium initial conditions
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Random diffusivity from stochastic equations 18

will in general not be fulfilled for particles that are initially seeded in a non-equilibrium

environment. For instance, in single particle tracking a tracer bead can be introduced

into the system at t = 0, or similar in computer simulations. After this disturbance

the environment equilibrates again. To accommodate for such a case we here study a

minimal model for the case of non-equilibrium initial conditions, which leads to another

main result of this work. As we are going to see, this non-equilibrium scenario gives

rise to differences in the characteristics of the two studied models. In particular, we

observe an initial ballistic behaviour. The long time behaviour, of course, does not

show differences since in this range the diffusivity reaches its stationary state and we

can again consider the results obtained in the previous sections for the long time limit.

We illustrate the role of non-equilibrium conditions by taking a specific, and in

fact the simplest, set of parameters, ν = 0.5 and η = 1. This defines the stochastic

dynamical equation in (12a) as

D(t) = Y 2(t) (30a)

dY = − σ2

D⋆
Y dt+ σdW (t), (30b)

that corresponds to the well known dynamics of the Ornstein-Uhlenbeck process for the

study in [67] with the correlation time τc = D⋆/σ
2. We start considering the related

Fokker-Planck equation

∂

∂t
p(Y, t) =

σ2

D⋆

∂

∂Y
Y p(Y, t) +

σ2

2

∂2

∂Y 2
p(Y, t). (31)

We can solve this equation with a non equilibrium condition, for instance, p(Y, 0) =

δ(Y − Y0), using the method of characteristics in Fourier space. We readily derive the

general solution

p(Y, t|Y0) =
(

πD⋆[1− exp(−2tσ2/D⋆)]
)−1/2

exp

(

−(Y − Y0 exp(−tσ2/D⋆))
2

D⋆(1− exp(−2tσ2/D⋆))

)

. (32)

Recalling relation (16) for the diffusivity PDF we then obtain

pD(D, t|D0 = Y 2
0 ) =

1

2
√
D

[

p(
√
D, t) + p(−

√
D, t)

]

= (4πD⋆D[1− e( − 2tσ2/D⋆)])
−1/2

×
{

exp

(

−(
√
D −

√
D0 exp(−tσ2/D⋆))

2

D⋆(1− exp(−2tσ2/D⋆))

)

+exp

(

−(−
√
D −

√
D0 exp(−tσ2/D⋆))

2

D⋆(1− exp(−2tσ2/D⋆))

)}

. (33)

We point out that in the limit of long times this result provides exactly the stationary

distribution described in (4) with the specific set of parameters defined above. This is

also verified by the trend of the average value

〈D(t)〉 = 1

2

(

D⋆(1− e−2tσ2/D⋆) + 2D0e
−2tσ2/D⋆

)

, (34)

in agreement with result (4).
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In contrast to the previous analysis, we observe an explicit dependence on time

of pD(D, t), which makes the calculations more involved. Thus, we select an initial

condition for the diffusivity, D0 = 0, which is convenient for the study of the particles

displacement distribution. This leads to a reduction in (33), namely,

p(D, t|D0 = 0) = (πD⋆D(1−exp(−2tσ2/D⋆)))
−1/2 exp

(

D

D⋆(1− exp(−2tσ2/D⋆))

)

.(35)

We now study the two models in this particular case of a non-equilibrium initial condition

for the diffusivity.

6.1. Diffusing diffusivities with non-equilibrium initial diffusivity condition

The dynamics for the diffusivity encoded in equations (30a) and (30b) when choosing

the specific set of parameters ν = 0.5 and η = 1 is the same as described in [67] when

d = n = 1. Thus, in this paragraph, we extend the description of the minimal DD model

studied in [67] to the case of non-equilibrium initial conditions for the diffusivity. In

order to proceed with the same notation we introduce dimensionless units for relations

(30a) and (30b) as well as for the overdamped Langevin equation describing the particle

motion [67], such that the full set of stochastic equations reads

XDD =

∫ t

0

√

2D(t′)ξ(t′)dt′

D(t) = Y 2(t)

dY = −Y dt+ dW (t). (36)

A subordination approach can then be used to obtain the distribution of the particle

displacement [67], namely,

fDD(x, t) =

∫ ∞

0

T (τ, t)G(x, τ)dτ, (37)

where G(x, τ) is the Gaussian (2) and T (τ, t) represents the probability density function

of the process τ(t) =
∫ t

0
Y 2(t′)dt′. Starting from the subordination formula (37) we

obtain the relation

f̂DD(k, t) = T̃ (s = k2, t) (38)

where with the symbols ·̂ and ·̃ we indicate the Fourier and Laplace transforms,

respectively. For the particular initial condition D0 = 0, which is equivalent to y0 = 0,

the solution is known [99, 100],

T̃ (s, t) = exp

(

t

2

)

/

(

1√
1 + 2s

sinh(t
√
1 + 2s) + cosh(t

√
1 + 2s)

)1/2

. (39)

This latter quantity is directly related to the MSD of the particles through [67]

〈X2
DD(t)〉 = −2

∂T̃ (s, t)

∂s

∣

∣

∣

∣

∣

s=0

. (40)
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Random diffusivity from stochastic equations 20

We readily obtain the closed form result

〈X2
DD(t)〉 = t− 1

2
(1− e−2t) ∼

{

t2, t≪ 1

t, t≫ 1
. (41)

The resulting dynamics is thus no longer Brownian at all times. In contrast, at times

shorter than the correlation time (in the dimensionless units used here τc = 1) we

obtain a ballistic scaling of the MSD. This behaviour reflects the fact that the diffusivity

equilibration in this case with D0 = 0 leads to an initial acceleration.

Starting from equations (38) and (39) we consider approximations of the PDF for

short and long times which, since we are in dimensionless units, correspond to t≪ 1 and

t≫ 1 respectively. In the short time limit, the Fourier transform of the PDF becomes

f̂ST
DD(k, t) ∼

(1 + t + t2/2)1/2

(1 + t + t2/2 + k2t2)1/2
∼ 1

t

(

k2 +
1

t2

)−1/2

. (42)

Note that this expression is normalised, f̂DD(k = 0, t) = 1. After taking the inverse

Fourier transform we find

fST
DD(x, t) ∼

1

πt

∫ ∞

0

cos(kx)

(k2 + 1/t2)1/2
dk

=
1

πt
K0

( |x|
t

)

. (43)

Re-establishing dimensional units, this result becomes

fST
DD(x, t) ∼

1

πσt
K0

( |x|
σt

)

. (44)

Here Kν(z) is the modified Bessel function of second type. The asymptotic behaviour

of this distribution for |x| → ∞ is the Laplace distribution

fST
DD(x, t) ∼

1
√

2πσt|x|
exp

(

−|x|
σt

)

. (45)

In the long time limit equations (38) and (39) yield

f̂LT
DD(k, t) ∼

21/2 exp(t[1−
√
1 + 2k2]/2)

(1 + 1/
√
1 + 2k2)1/2

, (46)

that again is normalised. If we focus on the tails of the distribution in the limit k ≪ 1

we obtain the Gaussian

f̂LT
DD(k, t) ∼ exp(−k2t/2) (47)

in Fourier space, corresponding to the Gaussian

fLT
DD(x, t) ∼

1√
2πt

exp

(

−x
2

2t

)

(48)

in direct space. Restoring dimensional units and recalling that 〈D〉stat = D⋆/2,

eventually provides

fLT
DD(x, t) ∼

1√
2πD⋆t

exp

(

− x2

2D⋆t

)

=
1

√

4π〈D〉statt
exp

(

− x2

4〈D〉statt

)

, (49)
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Random diffusivity from stochastic equations 21

Figure 12. PDFs of the DD (left) and ggBM (right) models with non-equilibrium
initial condition D0 = 0 of the diffusivity. Top: short time behaviour. Bottom: long
time behaviour. For the DD model, the dash-dotted lines represent the asymptotic
behaviour (45) at short times, while the dashed lines are Gaussian fits. For the ggBM
model the solid lines represent the analytical result (52).

where in the last step we identified the equilibrium value 〈D〉stat of the diffusivity. From

the approximations (45) and (49) we readily recover the two limiting scaling laws for

the variance in equation (41).

Figure 12 nicely corroborates these findings, comparing the non-equilibrium DD

model results for the PDF obtained above with results from stochastic simulations. The

crossover behaviour of the associated MSD is displayed in figure 13, again showing very

good agreement with the theory.

6.2. Non-equilibrium generalised grey Brownian motion

The ggBM model discussed in section 3 is based on the static distribution pD(D) of

the diffusivity. In order to explore non-equilibrium effects as discussed above for the

DD model also within the superstatistical approach, we here propose a non-equilibrium

generalisation of the ggBM model. Thus, we generalise the standard ggBM definition

(6) and introduce a variability of D in time, according to the stochastic equation

XggBM(t) =
√

2D(t)×W (t). (50)

Physically, this new concept may be interpreted as fluctuations of the disjointed
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Figure 13. MSD of the DD model (green) and ggBM (blue). On the left D⋆ = 1

and D0 = 0 while on the right we have D⋆ = 4 and two different values of D0,
D0 = 〈D〉stat = D⋆/2 and D0 = 0.04. The first value generates a linear trend of
the variance for both models, as we saw for the equilibrium case. In the second case,
where D0 ≪ D⋆, we observe three regimes. Nice agreement with the analytical results
is observed.

environments experienced by the different particles or to temporal changes of the particle

size, for instance, due to agglomeration-separation dynamics.

Based on the definition (50) it is then straightforward to take the dynamics of D(t)

to be the same as the one considered for the DD model. This guarantees that the

ensemble properties of this generalised process (50) are exactly the same as the ones of

the standard ggBM model studied in section 3. In particular, the dependence on time

of the diffusivity does not affect the validity of equation (7), so in order to estimate the

PDF of the particle displacement of the ggBM model, we consider the distribution (35)

in the calculation of the integral

fggBM(x, t|D0) =

∫ ∞

0

pD(D, t|D0)G(x, t|D)dD, (51)

which may be defined in general as a dynamic superstatistics because of the dependence

of pD(D, t) on t. We obtain an explicit solution by means of the Mellin transform

following the same procedure as described in Appendix A.2,

fggBM(x, t|D0 = 0) = (π2D⋆t(1− exp(−2tσ2/D⋆)))
−1/2

×K0

(

|x|
√

D⋆t(1− exp(−2tσ2/D⋆))

)

, (52)

where Kν(z) is the modified Bessel function of second type. The asymptotic behaviour

for |x| → ∞ is given by the exponential

fggBM(x, t|D0 = 0) ∼ 1
√

2π|x|
√

D⋆t(1− e−2tσ2/D⋆)
exp

(

− |x|
√

D⋆t(1− e−2tσ2/D⋆)

)

. (53)

However, in comparison with the result (9) in the equilibrium situation we now observe
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a different time scaling in the exponent. For short times we see that

fST
ggBM(x, t|D0 = 0) ∼ 1

√√
2πσt|x|

exp

(

− |x|√
2σt

)

, (54)

while at long times

fLT
ggBM(x, t|D0 = 0) ∼ 1

√

2π|x|
√
D⋆t

exp

(

− |x|√
D⋆t

)

. (55)

Comparing the short time PDF in (54) with the DD model obtained in (45) we notice

that they show a difference in the time scaling of a factor
√
2 which is exactly what we

observe in figure 12.

Starting from equation (51) the MSD can be written as

〈X2
ggBM(t)〉 = 〈(

√

2D(t)W (t))2〉 = 2〈D(t)〉t
=
[

D⋆(1− e−2tσ2/D⋆) + 2D0e
−2tσ2/D⋆

]

t. (56)

Note that this result is valid for any initial conditions D0, not only for the case D0 = 0.

As already suggested above, the scaling of the variance is no longer linear at all times.

According to the relation between the parameters it is possible to observe the different

scaling behaviours

〈X2
ggBM(t)〉 =











2D0t, σ2t≪ D0

2D0t+ 2σ2t2, D0 ≪ σ2t≪ D⋆

D⋆t σ2t≫ D⋆

, 0 ≤ D0 ≪ D⋆, (57)

〈X2
ggBM(t)〉 =

{

2D0t− 4σ2(D0/D⋆)t
2 σ2t≪ D⋆

D⋆t σ2t≫ D⋆
elsewhere. (58)

Thus when D0 ≪ D⋆ we observe three regimes for the MSD. When D0 = 0 or when

the relation D0 ≪ D⋆ does not hold we directly observe an initial ballistic behaviour

followed by the stationary linear trend. This behaviour is nicely corroborated in figure

13.

7. Conclusions

A growing range of systems is being revealed which exhibit Brownian yet non-Gaussian

diffusion dynamics. Often, an exponential (Laplace) shape of the displacement PDF is

observed, however, also stretched Gaussian shapes have been reported. The comparison

of diffusion processes recorded by new experimental techniques suggests that the

complexity and inhomogeneity of the medium, interpreted as the cause of non-Gaussian

behaviour, may influence the spreading of particles in specific fashion and at different

levels. In particular, experiments have demonstrated that a non-Gaussian dynamic may

persist throughout the observation window and that there are systems that, instead,

at long times, exhibit a crossover to Gaussian diffusion. In this article we introduced

an analytic approach to generate a random and time-dependent diffusivity with specific
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features and we proposed two possible models for the spreading dynamics of particles

in complex systems: one belonging to the class of generalised grey Brownian motion

(ggBM) and the other supporting the idea of diffusing diffusivities (DD).

We saw that the two models have in common the idea that the non-Gaussianity of

the PDF is a direct consequence of an inhomogeneity of the environment, represented by

a population of diffusivities. The same PDF for the random diffusivity was introduced

for both models. We defined an operative set of dynamic stochastic equations to study

random diffusivity effects within the broad class of generalised Gamma distributions.

This includes the Gamma distribution, or the exponential PDF which produces the

Laplace distribution for the particle displacements.

We observed that the main difference between the ggBM and the DD model is

the description of the particle dynamics in the long time regime, corresponding to

different physical scenarios for the environment. GgBM does not consider an active

dynamics of the environment, and the characteristic that mainly influences the particle

motion is the randomness of the medium. This means that the statistical features of

the medium completely drive the particles in their entire motion. In contrast the DD

model supports the idea of diffusing diffusivities considering a dynamics also for the

environment. In this way the particles evolve experiencing both a continuous variability

in time and a stochasticity in the ensemble. The first model delineates a specific non-

Gaussian dynamics for the entire diffusion process, while the second allows to describe

a transition from a non-Gaussian to a Gaussian diffusion. In fact, it was shown that

the short time non-Gaussian dynamics is the same in the two models, whereas at longer

times the ggBM model retains the diffusivity distribution and the DD model leads to

an effective value for the diffusivity.

We here also studied the influence of non-equilibrium initial conditions for the

diffusivity dynamics and found two main effects. First, the non-equilibrium case breaks

the equivalence of the DD and the ggBM models at short times and, second, it causes

changes in the temporal evolution of the MSD. In this case the ggBM model, which

we showed to represent a stochastic interpretation of superstatistical Brownian motion,

describes what we may call a dynamical superstatistics that leads to the presence of

different time scaling regimes in the process. The DD model, which we investigated

in this case via a subordination approach, at short times can no longer be described

through a superstatistic approximation, since the subordination results in that regime

diverge from the behaviour of ggBM. Furthermore we observed different time scaling

regimes for the DD model, as well. Nevertheless, we note that for both models we never

obtained an anomalous time scaling for the MSD, only a crossover between ballistic

and linear (Brownian or Fickean) behaviour. In the long time regime we obtained a

description of the two models which is in agreement with the one for the equilibrium

case, as it should be.

It will be interesting to generalise the present findings to anomalous dynamics with

stochastic diffusivity by implementing different types of noise. Maintaining the same

population of diffusivities the results obtained for the PDF of the particle displacement
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will not be affected, yet the MSD scaling will become anomalous.
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Appendix A. Computation of the superstatistical integral

In this Appendix we provide different methods to solve the integral representing the

non-Gaussian PDF of the two models discussed in this work,

P̄ (x, t) =

∫ ∞

0

pD(D)G(x, t|D)dD, (A.1)

where G(x, t|D) represents a Gaussian distribution and pD(D) is the generalised Gamma

distribution (4).

A.1. Computation via Fox H-function

Recalling equation (A.1) we have

P̄ (x, t) =

∫ ∞

0

η

Dν
⋆Γ(ν/η)

Dν−1e−(D/D⋆)η
1√
4πDt

e−
x2

4DtdD

=
η

Dν
⋆Γ(ν/η)

√
4πt

∫ ∞

0

Dν−3/2e−Dη

e−λD⋆/DdD, (A.2)

where we set λ = x2/4D⋆t. Changing the variable of integration to y = (D/D⋆)
η we get

P̄ (x, t) =
η

Γ(ν/η)
√
4πD⋆t

∫ ∞

0

y
ν−3/2

η e−ye−λy−1/η 1

η
y

1
η
−1dy

=
1

Γ(ν/η)
√
4πD⋆t

∫ ∞

0

y−1−(1/2−ν)/ηe−y−λy−1/η

dy. (A.3)

With the identification

e−z = H1,0
0,1

[

z

∣

∣

∣

∣

∣ (0, 1)

]

(A.4)

with the Fox H-function and exploiting some (very convenient) properties of the H-

function [101] we then obtain

P̄ (x, t) =
1

Γ(ν/η)
√
4πD⋆t

H2,0
0,2

[

λ

∣

∣

∣

∣

∣ ((ν − 1/2)/η, 1/η)(0, 1)

]

. (A.5)

The Fox function is defined as a generalised Mellin-Barnes integral and has very

convenient properties under integral transformations. The Fox function comprises a
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large range of special functions, including Mejer’s G-function, hypergeometric functions,

or Bessel functions [102]. In the notation used here the vertical line separates the

argument from the function’s parameters, and the horizontal line denotes the lack of

upper parameters [102].

Recalling that λ = x2/4D⋆t, we finally obtain

P̄ (x, t) =
1

Γ(ν/η)
√
4πD⋆t

H2,0
0,2

[

x2

4D⋆t

∣

∣

∣

∣

∣ ((ν − 1/2)/η, 1/η)(0, 1)

]

=
1

Γ(ν/η)
√
4πD⋆t

(

x2

4D⋆t

)ν−1/2

×H2,0
0,2

[

x2

4D⋆t

∣

∣

∣

∣

∣ (0, 1/η)(−ν + 1/2, 1)

]

. (A.6)

The series expansion of this function reads [102]

H2,0
0,2

[

z

∣

∣

∣

∣

∣ (0, 1/η)(−ν + 1/2, 1)

]

=

∞
∑

n=0

(−1)n
n!

Γ(1/2− ν − ηn)ηzηn

+

∞
∑

n=0

(−1)n
n!

Γ

(

ν − 1/2− n

η

)

z1/2−ν+n. (A.7)

The asymptotic behaviour is then obtained in the form [102]

fST
DD(x, t) ∼

1

Γ(ν/η)
√
4πD⋆t

(

x2

4D⋆t

)
2ν−η−1
2(η+1)

exp

(

−η + 1

η
η

1
η+1

(

x2

4D⋆t

)η/(η+1)
)

, (A.8)

for |x| → ∞.

A.2. Computation via Mellin transform

It is possible to rearrange the integral in equation (A.1) as a convolution integral,

P̄ (x, t) =

∫ ∞

0

pD(D)
exp(− (x/

√
t)2

4D
)√

4πt
√
D

dD

=
2√
4t

∫ ∞

0

√
DpD((

√
D)2)

exp(− (x/
√
D)2

4
)√

π

d
√
D√
D

=
1√
4t

∫ ∞

0

2ξpD(ξ
2)M1/2

(

x̄

ξ

)

dξ

ξ
, (A.9)

where we defined x̄ = x/t1/2 and ξ = D1/2, and M1/2 denotes the M-Wright function

with parameter β = 1/2 [78]. Considering the convolution formula for the Mellin

transform
∫ ∞

0

f(ξ)g

(

x

ξ

)

dξ

ξ

M←→ fM(s)gM(s), (A.10)

and remembering the property

xβf(axh)
M←→ h−1a−(s+β)/hfM

(

s+ β

h

)

, (A.11)
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we compute the Mellin transform of the obtained integral in equation (A.9), recovering

√
4tP̄ (x̄) =

∫ ∞

0

2ξpD(ξ
2)M1/2

(

x̄

ξ

)

dξ

ξ

M←→ pMD

(

s+ 1

2

)

MM
1/2(s). (A.12)

The Mellin transforms for the M-Wright function [78] and the generalised Gamma

distribution [102] are known and given by

Mβ(x)
M←→ Γ(s)

Γ(1 + (s− 1)/β)
,

γgen
(ν,η)(x)

M←→ Ds−1
⋆

Γ((ν + s− 1)/η)

Γ(ν/η)
. (A.13)

We can thus rewrite equation (A.12) in the form

pMD

(

s+ 1

2

)

MM
1/2(s) = D

s−1
2

⋆

Γ
(

ν+(s+1)/2−1
η

)

Γ
(

ν
η

)

Γ(s)

Γ
(

1 + 1
2
(s− 1)

) (A.14)

=
2D

s−1
2

⋆

Γ
(

ν
η

)

Γ
(

ν−1/2+s/2
η

)

Γ(s− 1)

Γ
(

s−1
2

)

=
2D

s−1
2

⋆

Γ
(

ν
η

)

Γ
(

ν−1/2+s/2
η

)

Γ ((s− 1)/2 + 1/2)

21−(s−1)
√
π

=
1

2
√
D⋆πΓ

(

ν
η

)

(

1

4D⋆

)−s/2

Γ

(

ν − 1/2

η
+

s/2

η

)

Γ
(s

2

)

. (A.15)

Now we notice that the Mellin transform of the H-function is [102]

Hm,n
p,q

[

ax

∣

∣

∣

∣

∣

(ap, Ap)

(bq, Bq)

]

M←→ a−s

(

∏m
j=1 Γ(bj +Bjs)

)(

∏n
j=1 Γ(1− aj − Ajs)

)

(

∏q
j=m+1 Γ(1− bj −Bjs)

)(

∏p
j=n+1 Γ(aj + Ajs)

) .(A.16)

Thus, recalling also the property of the Mellin transform in equation (A.11) we obtain

that

√
4tP̄ (x̄) =

1

Γ (ν/η)
√
πD⋆

H2,0
0,2

[

x̄2

4D⋆

∣

∣

∣

∣

∣ (ν−1/2
η

, 1
η
)(0, 1)

]

, (A.17)

and finally

P̄ (x, t) =
1

Γ (ν/η)
√
4πD⋆t

H2,0
0,2

[

x2

4D⋆t

∣

∣

∣

∣

∣ (ν−1/2
η

, 1
η
)(0, 1)

]

. (A.18)

The result here recovered is consistent with equation (A.6).
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A.3. Asymptotic trend via Laplace method

Starting again from equation (A.1) it is also possible to calculate directly the asymptotic

behaviour through the Laplace method. We introduce the new variable y = D⋆/D in

equation (A.1),

P̄ (x, t) =
η

Dν
⋆Γ(ν/η)

√
4πt

∫ ∞

0

Dν−3/2e−(D/D⋆)ηe−λD⋆/DdD

=
η

Γ(ν/η)
√
4πD⋆t

∫ ∞

0

y−ν−1/2e−y−η−λydy (A.19)

Now the integral looks like a Laplace integral of the form

I(λ) =

∫ ∞

0

f(y)e−λydy. (A.20)

In order to apply the Laplace method we need f(0) 6= 0 which is not our case since

f(0) = 0 together with all its derivatives. Thus, to evaluate the asymptotics, we define

the maximum of the function,

φ(y) = −λy − y−η, (A.21)

which is located at ym = (η/λ)1/η+1. Introducing of the new variable z̄ = zη
1

η+1 the

integral becomes

I(λ) = λ
2ν−1
2(η+1)

∫ ∞

0

z̄
2ν−1
2(η+1) exp

[

−λ
η

η+1 (z̄−η + z̄)
]

dz̄

= λ
2ν−1
2(η+1)

∫ ∞

0

z̄
2ν−1
2(η+1) eλ̄f(z̄)dz̄, (A.22)

where we defined f(z̄) = −z̄− z̄−η and λ̄ = λη/(η+1). Now the standard Laplace method

can be applied considering that the function f(z̄) reaches its maximum at z̄m = η1/(η+1),

such that

I(λ) = λ
2ν−1
2(η+1) z̄

2ν+1
2(η+1)
m eλ̄f(z̄m)

√

2π

λ̄|f ′′(z̄m)|

=

√

2π

η + 1
η

2ν+η+1

2(η+1)2 λ
2ν−η−1
2(η+1) exp

[

−η + 1

η
η

1
η+1λ

η
η+1

]

. (A.23)

This finally leads to

P̄ (x, t) ≃ η
2ν+η+1

2(η+1)2
+1

Γ(ν/η)
√
4πD⋆t

√

2π

η + 1

(

x2

4D⋆t

)
2ν−η−1
2(η+1)

exp

[

−η + 1

η
η

1
η+1

(

x2

4D⋆t

)
η

η+1

]

,(A.24)

for |x| → ∞. This result is, up to a numerical prefactor, identical to the asymptotic

behaviour obtained in (A.1).
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