
Mathematisch-Naturwissenschaftliche Fakultät

M. A. Sunyer | Y. Hundecha | D. Lawrence | H. Madsen | P. Willems 
M. Martinkova | K. Vormoor | G. Bürger | M. Hanel
J. Kriau i nien  | A. Loukas | M. Osuch | I. Yücel

Inter-comparison of statistical
downscaling methods for projection
of extreme precipitation in Europe

Postprint archived at the Institutional Repository of the Potsdam University in:
Postprints der Universität Potsdam
Mathematisch-Naturwissenschaftliche Reihe ; 512
ISSN 1866-8372
https://nbn-resolving.org/urn:nbn:de:kobv:517-opus4-408920
DOI https://doi.org/10.25932/publishup-40892

Suggested citation referring to the original publication:
Hydrology and Earth System Sciences 19 (2015), pp. 1827-1847 
DOI https://doi.org/10.5194/hess-19-1827-2015
ISSN (print) 1027-5606
ISSN (online) 1607-7938





Hydrol. Earth Syst. Sci., 19, 1827–1847, 2015

www.hydrol-earth-syst-sci.net/19/1827/2015/

doi:10.5194/hess-19-1827-2015

© Author(s) 2015. CC Attribution 3.0 License.

Inter-comparison of statistical downscaling methods for projection

of extreme precipitation in Europe

M. A. Sunyer1, Y. Hundecha2, D. Lawrence3, H. Madsen4, P. Willems5,6, M. Martinkova7, K. Vormoor8, G. Bürger8,
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Abstract. Information on extreme precipitation for future

climate is needed to assess the changes in the frequency and

intensity of flooding. The primary source of information in

climate change impact studies is climate model projections.

However, due to the coarse resolution and biases of these

models, they cannot be directly used in hydrological mod-

els. Hence, statistical downscaling is necessary to address

climate change impacts at the catchment scale.

This study compares eight statistical downscaling meth-

ods (SDMs) often used in climate change impact studies.

Four methods are based on change factors (CFs), three are

bias correction (BC) methods, and one is a perfect prognosis

method. The eight methods are used to downscale precipita-

tion output from 15 regional climate models (RCMs) from

the ENSEMBLES project for 11 catchments in Europe. The

overall results point to an increase in extreme precipitation in

most catchments in both winter and summer. For individual

catchments, the downscaled time series tend to agree on the

direction of the change but differ in the magnitude. Differ-

ences between the SDMs vary between the catchments and

depend on the season analysed. Similarly, general conclu-

sions cannot be drawn regarding the differences between CFs

and BC methods. The performance of the BC methods during

the control period also depends on the catchment, but in most

cases they represent an improvement compared to RCM out-

puts. Analysis of the variance in the ensemble of RCMs and

SDMs indicates that at least 30 % and up to approximately

half of the total variance is derived from the SDMs. This

study illustrates the large variability in the expected changes

in extreme precipitation and highlights the need for consider-

ing an ensemble of both SDMs and climate models. Recom-

mendations are provided for the selection of the most suitable

SDMs to include in the analysis.

Published by Copernicus Publications on behalf of the European Geosciences Union.



1828 M. A. Sunyer et al.: Inter-comparison of statistical downscaling methods

1 Introduction

Both the frequency and intensity of extreme precipitation are

expected to increase under climate change conditions in Eu-

rope (Christensen and Christensen, 2003; IPCC, 2012). Sev-

eral climate studies have focused on assessing these changes

(e.g. Fowler and Ekström, 2009; Frei et al., 2006; Kendon

et al., 2008) and their consequences in relation to the risk of

flooding (Christensen and Christensen, 2003; IPCC, 2012;

Leander et al., 2008; Vansteenkiste et al., 2013). The main

steps often followed in these studies comprise the selection

of one or several global climate models (GCMs), regional

climate models (RCMs) and/or statistical downscaling meth-

ods (SDMs). In climate change impact studies, hydrologi-

cal models are then used to estimate changes in hydrological

variables.

GCMs are the most comprehensive and widely used mod-

els for simulating the response of the global climate system

to changes in greenhouse gas emissions. However, their spa-

tial resolution (approximately 150 km) is often too coarse for

addressing climate change impacts at the local scale, and

variables such as precipitation are often biased. RCMs are

climate models that cover a specific region (e.g. Europe)

and use GCMs as boundary condition. RCMs have a higher

spatial resolution (often approximately 25 km, but the new

EURO-CORDEX simulations (Jacob et al., 2013) have a res-

olution of approximately 11 km) than GCMs, which makes

them more adequate for assessing changes at the local scale.

Nonetheless, RCMs often inherit the biases from the GCMs

and their spatial resolution might still be too coarse for some

impact studies (Maraun et al., 2010). Hence, further statis-

tical downscaling is often needed to obtain bias-corrected

projections at the local scale (Fowler et al., 2007). Statisti-

cal downscaling is based on defining a relationship between

the large-scale outputs of the RCMs (or GCMs) and the

local-scale variables required in impact studies (Fowler et al.,

2007; Wilby et al., 2004).

In recent years, a relatively large number of RCM outputs

have been made available, but there is no consensus on the

best way to assess their performance (Knutti et al., 2010).

There are several challenges in evaluating RCMs. For ex-

ample, a RCM might perform well for some variables in

some regions but not for other variables. Moreover, even if

a climate model performs well under present climate condi-

tions it might not perform equally well under future condi-

tions (Knutti, 2010). For these reasons, it is generally recom-

mended to use a multi-model ensemble of RCMs (or GCMs)

instead of using a single model (Knutti et al., 2010; van der

Linden and Mitchell, 2009; Tebaldi and Knutti, 2007).

Similarly, a large number of SDMs have been suggested

in the literature, but there is no consensus on the best SDM.

Fowler et al. (2007) and Maraun et al. (2010) provided com-

prehensive reviews of the methods suggested in the literature

and their suitability for different applications. As in the case

of climate models, the validation of SDMs is challenging.

Only a few recent studies address this issue (e.g. Maraun et

al., 2013; Räisänen and Räty, 2013; Teutschbein and Seibert,

2013; Vrac et al., 2007).

In order to account for the uncertainties in climate change

impact studies and due to the lack of consensus on the best

climate model and SDM, a number of studies consider mul-

tiple climate models and SDMs. For example regarding ex-

treme events, Bürger et al. (2012, 2013) used eight SDMs to

downscale six GCMs forced with three emission scenarios,

Sunyer et al. (2012) used five SDMs to downscale four RCMs

driven by two GCMs, Hanel et al. (2013) used four SDMs

and 15 RCMs, and Kidmose et al. (2013) used two SDMs

and nine RCMs. Bürger et al. (2012, 2013) assessed the per-

formance and variance arising from the SDMs and GCMs.

They concluded that the main influence on the overall results

for different extreme indices (including both precipitation

and temperature indices) was the downscaling method used

followed by the climate model selected. In their study, the

main source of variance depended on the index considered,

but overall the climate models had more influence on pre-

cipitation than on temperature indices. Sunyer et al. (2012)

and Hanel et al. (2013) showed that the variation in the re-

sults arising from the use of several SDMs is larger in the

case of extreme events (extreme precipitation in the case of

Sunyer et al., 2012, and droughts in the case of Hanel et al.,

2013). Kidmose et al. (2013) found that in the case of ex-

treme groundwater levels in Denmark the variance arising

from the RCMs was larger than that from the SDMs, but in

this case only two SDMs were considered.

Some studies also consider hydrological models in the

chain of uncertainties. For example, Wilby and Harris (2006)

used two SDMs, four GCMs, and two emission scenarios

combined with two hydrological model structures and two

sets of hydrological model parameters. They concluded that

the main sources of variation in the case of low flows are

associated with the SDMs and GCMs used. Lawrence and

Haddeland (2011) compared two SDMs, six RCMs driven

by two GCMs, and two emission scenarios and used multi-

ple parameter sets for the hydrological impact model. They

found that for rainfall dominated catchments, the uncertainty

arising from the hydrological parameters was more signifi-

cant than other sources. In snowmelt dominated catchments,

however, climate scenarios and SDMs were the main source

of uncertainty. Wetterhall et al. (2012) assessed the variabil-

ity in extreme discharge using three SDMs, sixteen RCMs,

one hydrological model, and a set of model parameters. The

performance of the SDMs was evaluated and a best method

was found, but it was not possible to reject the hypothesis

that all SDMs perform equally well. Wetterhall et al. (2012)

also concluded that more complex SDMs performed bet-

ter than simple methods. A similar conclusion was reached

by Räty et al. (2014) and Teutschbein and Seibert (2013).

These two studies mainly focused on the validation of SDMs.

Teutschbein and Seibert (2013) considered six SDMs and 11

RCMs for five Swedish catchments, while Räty et al. (2014)

Hydrol. Earth Syst. Sci., 19, 1827–1847, 2015 www.hydrol-earth-syst-sci.net/19/1827/2015/
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Table 1. Summary of the main characteristics of the catchments. The column with the label extremes indicates the season where most

precipitation extremes occurred. The catchments are sorted from north to south, with the most northern catchment in the top row.

Name River, country Area

[km2]

Median

altitude

[m]

Data used for

calculation of catchment

precipitation

Mean

annual

precipitation

[mm yr−1]

Extremes Observation

period

NO2 Nordelva, Norway 207 349 1× 1 km grid

(Tveito et al., 2005)

2437 Winter 1957–2010

NO1 Atna, Norway 463 1204 1× 1 km grid

(Tveito et al., 2005)

852 Summer 1957–2010

DK Aarhus Å, Denmark 119 65 10× 10 km grid (DMI, 2012) 868 Summer 1989–2010

LT Merkys,

Lithuania

4416 109 1 station 658 Summer 1961–1990

BE Grote Nete,

Belgium

383 32 6 stations 828 Summer 1986–2003

DE Mulde,

Germany

6171 414 43 stations 937 Summer 1951–2003

CZ2 Upper Metuje,

Czech Republic

67 588 1× 1 km grid (Šercl, 2008) 788 Summer 1980–2007

CZ1 Jizera,

Czech Republic

2180 365 10 stations 860 Summer 1951–2003

PL Nysa Kłodzka,

Poland

1083 316 2 stations 589 Summer 1965–2000

TR Gocbeylidere,

Turkey

609 153 1 station 850 Autumn 1960–1990

CY Yermasoyia,

Cyprus

157 575 2 stations 640 Winter 1986–1997

considered nine SDMs and six RCMs and considered two

regions, northern and southern Europe.

The main focus of this study is to assess and compare

the changes in extreme precipitation obtained using a range

of SDMs and RCMs in 11 European catchments. For this

purpose, precipitation outputs from 15 RCMs driven by six

GCMs from the ENSEMBLES project (van der Linden and

Mitchell, 2009) are downscaled using eight SDMs based on

different underlying assumptions. Four SDMs are change

factor (CF) methods, three are bias correction (BC) meth-

ods and one is a perfect prognosis method. Some previous

studies have compared the results from CF and BC methods

(e.g. Hanel et al., 2013; Ho et al., 2012; Räisänen and Räty,

2013) for mean temperature and mean precipitation for spe-

cific catchments. Here we focus on changes in extreme pre-

cipitation in a range of catchments over Europe with different

climates. A key objective of this study is to assess whether it

is possible to identify general advantages and deficiencies of

the different SDMs when applied to the different catchments,

and hence outline recommended uses of SDMs. In addition,

this study also focuses on whether there are common trends

in projected changes in extreme precipitation over Europe

and what the main sources of variation in the changes in ex-

treme precipitation are.

The results presented here are based on a coordinated ef-

fort carried out as part of the COST Action FloodFreq (Eu-

ropean Procedures for Flood Frequency Estimation, www.

cost-floodfreq.eu). The outputs from this study have also

been used as inputs to hydrological impact modelling in or-

der to assess the changes in extreme discharge and flood fre-

quency in the 11 catchments (Hundecha et al., 2015).

The next section describes the case study catchments and

the data used, followed by the methodology section. Sec-

tion 4 presents and discusses the results, and Sect. 5 sum-

marises the findings and conclusions of the study.

2 Case study catchments and data

2.1 Observations

Figure 1 shows the location of the 11 catchments studied

and the main properties of each catchment are summarised

in Table 1. The two most northern catchments are the Nor-

wegian catchments Nordelva at Krinsvatn (NO2) and Atna

at Atnasjø (NO1), and the most southern catchment is Yer-

masoyia (CY) in Cyprus. The size of the catchments varies

from the 6171 km2 of Mulde (DE) in Germany to the 67 km2

of Upper Metuje (CZ2) in the Czech Republic. Different pre-

cipitation patterns are represented in the catchments. The

mean precipitation ranges between 2437 mm yr−1 in NO2 to

589 mm yr−1 in Nysa Kłodzka in Poland (PL). The season

with more extreme precipitation events is summer for most of

the catchments: NO1, DE, Aarhus in Denmark (DK), Merkys

in Lithuania (LT), Grote Nete in Belgium (BE), and Jizera in

the Czech Republic (CZ1). In NO2 and CY, winter is the sea-

son where most extremes occur, while in the Turkish catch-

www.hydrol-earth-syst-sci.net/19/1827/2015/ Hydrol. Earth Syst. Sci., 19, 1827–1847, 2015
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Figure 1. Location of the 11 catchments studied.

ment Omerli (TR) it is autumn. The season which is most

subject to extremes is estimated from the extreme value se-

ries obtained considering the 1-year threshold level and the

whole time series (see Sect. 3.2 for more details on how ex-

treme precipitation is defined).

The observational data used are daily catchment precipi-

tation, since the data were to be further used in catchment-

based hydrological modelling in separate work (Hundecha et

al., 2015). Different methods have been used to obtain areal

precipitation time series. The catchments NO2, NO1, DK,

and CZ2 use gridded data (derived from station data) to ob-

tain areal average daily values for the catchment, while the

remaining ones use station data to construct areal values. The

cut-off value (threshold for dry days) for the observational

data differs somewhat between the catchments. These catch-

ment specific thresholds were not applied to the RCMs as

they are not considered relevant for the analysis of extreme

precipitation. Nonetheless, some of the SDMs use thresholds

to define dry and wet days (see Sect. 3).

2.2 Regional climate models

The climate model data used in this study is an ensemble

of 15 RCMs from the ENSEMBLES project (van der Lin-

den and Mitchell, 2009). These 15 simulations are based on

11 RCMs driven by six different GCMs. Table 2 shows the

combinations of RCMs–GCMs used. The spatial resolution

of all the models is 0.22◦ (approximately 25 km). For all the

models, daily precipitation time series are available for the

time period 1951–2100. In this study, we consider the time

period 1961–1990 and 2071–2100 as the control and future

time periods, respectively. It must be noted that six RCMs

do not have data available for the year 2100. The future pe-

riod used for these models is 2071–2099; this is not expected

to have an influence on the results of this study. For each

catchment, daily precipitation has been extracted from the

15 RCMs for the two periods using the nearest neighbour in-

terpolation to the catchment centroid. It must be noted that to

simplify the calculations, the same control period is used for

all the catchments. Therefore, in some catchments, the time

period with observations (see Table 1) and the control period

used from the RCMs do not fully overlap.

3 Methodology

3.1 Statistical downscaling methods

Eight SDMs are used to obtain downscaled RCM projec-

tions at the catchment scale. These methods are based on the

idea that it is possible to define a relationship between the

large-scale variables (RCM outputs) and local-scale variables

(catchment precipitation). Wilby and Wigely (1997) and

Fowler et al. (2007) classified SDMs based on the relation-

ship used to link large and local scale. They consider three

groups: regression methods, weather type approaches, and

stochastic weather generators. Rummukainen (1997) classi-

fied SDMs based on the information used from the large-

scale variables and defined two groups: perfect prognosis

(PP) and model output statistics (MOS). Maraun et al. (2010)

integrate both Rummukainen (1997) and Wilby and Wigely

(1997) classifications and consider three groups: PP, MOS,

and weather generators. According to this last classification,

seven of the eight methods used here are MOS methods, and

one method is a PP method.

Here we further classify the seven MOS methods into CF

methods and BC methods. Four of the MOS methods consid-

ered are CF methods and three are BC methods. CF methods

estimate the change from control to future period projected

by the RCM in one or several statistics and apply this change

to the observations. These methods are based on the idea that

RCMs represent the change from the control to the future

climate better than the absolute values of the variables. The

BC methods define a transfer function for the RCM outputs

for the control period to match certain statistical properties of

the observations. This transfer function is then used to correct

the RCM outputs for the future period. CF methods preserve

the temporal structure in the observed time series while BC

methods preserve the temporal structure in the RCM outputs.

It must be noted that both approaches are based on the as-

sumption that the bias for the future period is identical to the

bias for the control period, which may not be the case. Sunyer

et al. (2014) showed that the precipitation bias of the RCMs

depends on the precipitation intensity and might change in

the future.

The following subsections briefly describe the eight

SDMs. In the results section we refer to the SDMs as ei-

ther CF or BC methods. For simplicity, the perfect progno-

sis method is grouped with the BC methods even though it

does not strictly correct the RCMs. It is included with the

BC methods because it defines a transfer function between

Hydrol. Earth Syst. Sci., 19, 1827–1847, 2015 www.hydrol-earth-syst-sci.net/19/1827/2015/
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Table 2. Matrix of RCM–GCM combinations used in this study and source of the RCMs.

RCM\GCM ECHAM5 BCM HadCM3-Q3 HadCM3-Q16 HadCM3-Q0 ARPEGE Institute

RM5.1 X National Centre for Meteorologi-

cal Research in France

RACMO2 X Royal Netherlands Meteorologi-

cal Institute

RCA X X X Swedish Meteorological and Hy-

drological Institute

REMO X Max Planck Institute for Meteo-

rology

RCA3 X Community Climate Change

Consortium for Ireland

CLM X Swiss Federal Institute of Tech-

nology

HadRM3Q0 X UK Met Office

HadRM3Q3 X UK Met Office

HadRM3Q16 X UK Met Office

HIRHAM5 X X X Danish Meteorological Institute

(DMI)

RegCM3 X International Centre for Theoret-

ical Physics

the RCM for the control period and the observations and then

applies this to the RCM output for the future period.

A common terminology is used for describing the meth-

ods: P Obs and P Fut refer to the observed precipitation and

the downscaled precipitation for the future period, respec-

tively, and P RCMCon and P RCMFut refer to the precipitation

output from the RCMs for the control and future time pe-

riod, respectively. Similarly, ECDFObs and ECDFFut refer to

the empirical cumulative distribution function (ECDF) for

the observed precipitation and for the downscaled precipi-

tation for the future while ECDFRCMCon and ECDFRCMFut

refer to the ECDF estimated from the RCMs for control and

future time period, respectively. The methods used here have

been implemented as suggested in the literature, i.e. no har-

monisation has been applied to enable, for example, a com-

mon method for accounting for seasonality or the definition

of wet days. This is due to this study’s focus on the inter-

comparison of approaches in the way they are applied by the

partners of FloodFreq COST Action, which was designed for

the exchange and compilation of ideas and knowledge across

participating countries. Table 3 summarises the main advan-

tages and disadvantages of each method.

3.1.1 Bias correction of mean

The bias correction of mean (BCM) is a simple method based

on removing systematic errors in mean daily precipitation.

It has been used in several hydrological applications (e.g.

Hanel et al., 2013; Leander and Buishand, 2007; Leander et

al., 2008). Here the method proposed by Leander and Buis-

hand (2007) is used. This is based on the transformation

P Fut
y,j = ajP

RCMFut
y,j , (1)

where y is the year, j is the day of the year, and aj is the

transformation parameter. aj is estimated in two steps. First,

for all the years a subset of 61 days centred on day j is cre-

ated for P Obs
.,j and P RCMCon

.,j . Then, aj is estimated as the

mean of P Obs
.,j divided by the mean of P RCMCon

.,j .

3.1.2 Bias correction of mean and variance

The bias correction of mean and variance (BCMV) method

is an extension of the BCM method. It corrects the RCM

outputs considering systematic errors in both the mean and

the variance. This method has been applied in several studies

(e.g. Hanel et al., 2013; Leander and Buishand, 2007; Lean-

der et al., 2008). The method suggested by Leander and Buis-

hand (2007) is followed here, which is based on the transfor-

mation

P Fut
y,j = aj

(
P RCMFut

y,j

)bj

, (2)

where aj is estimated as described above for BCM, and

bj is estimated by equating the coefficient of variation of

(ajP
RCMCon
.,j )bj and P Obs

.,j . bj is found by iteration since it

is not possible to solve this equation in closed form.

3.1.3 Bias correction quantile mapping

Bias correction based on quantile mapping (BCQM) has been

widely used to correct RCM outputs over Europe (e.g. Dosio

and Paruolo, 2011; Gudmundsson et al., 2012; Piani et al.,

www.hydrol-earth-syst-sci.net/19/1827/2015/ Hydrol. Earth Syst. Sci., 19, 1827–1847, 2015
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Table 3. Summary of the advantages and disadvantages of each statistical downscaling method. The name of the institution that undertook

the downscaling work in this study is included in the first column. The advantages and/or disadvantages which are specific to the way the

methods were applied in this application are stated.

SD method Advantages Disadvantages

Bias correction

of mean, BCM

(T. G. Masaryk Water Research Institute, Faculty

of Environmental Sciences)

Easy to apply and little computer time

required.

Preserves the sequences of dry/wet

days from the RCM.

It accounts for different corrections in

different time windows.

It only corrects the mean precipitation

of the RCM.

Bias correction

of mean and variance, BCMV

(T. G. Masaryk Water Research Institute, Faculty

of Environmental Sciences)

Same as bias correction of mean.

It allows for distinct corrections be-

tween mean and variance.

The non-linear transformation may

lead to unexpectedly large precipita-

tion amounts.

The autocorrelation from the RCM is

not corrected, but it is affected by the

bias correction approach.

Bias correction

quantile mapping, BCQM

(NVE – Norwegian Water Resources and Energy

Directorate)

Easy to apply and little computer time

required.

Preserves the sequences of dry/wet

days from the RCM.

Distinction between corrections in

mean and extreme precipitation.

The frequency of precipitation is cor-

rected.

No theoretical distribution is assumed.

The correction of the upper tail is based

on relatively few values (empirical dis-

tribution based).

In this application, the same correction

is applied for all seasons.

The autocorrelation from the RCM is

not corrected, but it is affected by the

bias correction approach.

Expanded downscaling, XDS (University of

Potsdam)

Generates realistic weather consistent

with large-scale atmospheric patterns.

Able to employ full range of predictor

variables.

It preserves co-variability between the

predictands.

High demand for climate model accu-

racy; systematic biases can cause large

errors.

Requires large computation time and

data preparation.

No fully objective way of selecting the

predictors.

Change factor

of mean, CFM

(DHI, Technical University of Denmarn (DTU))

Easy to apply and little computer time

required.

It accounts for different changes in dif-

ferent months.

It only accounts for changes in mean

precipitation.

Does not account for changes in the

length of dry/wet spells.

Change factor

of mean and variance, CFMV (DHI, DTU)

Same as change factor of mean.

Distinction between changes in mean

and variance.

Does not account for changes in the

length of dry/wet spells.

The autocorrelation of precipitation

may be disturbed.

The non-linear transformation may

lead to unexpectedly large precipita-

tion amounts.

Change factor

quantile mapping, CFQM

(DTU)

Same as change factor of mean.

Distinction between changes in mean

and extreme precipitation.

No theoretical distribution is assumed.

Does not account for changes in the

length of dry/wet spells.

The changes in the tails are based on

relatively few values.

The autocorrelation of precipitation

may be disturbed.

Change factor

quantile perturbation, CFQP (KU Leuven)

Same as change factor quantile map-

ping.

Changes in the frequency of precipita-

tion are accounted for.

The changes in the tails are based on

relatively few values.

The autocorrelation of precipitation

may be disturbed (in this application,

this is checked).

Hydrol. Earth Syst. Sci., 19, 1827–1847, 2015 www.hydrol-earth-syst-sci.net/19/1827/2015/
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2010). The non-parametric empirical quantile method sug-

gested in Gudmundsson et al. (2012) is followed here. It is

based on the concept that there exists a transformation h,

such that

P Obs
= h

(
P RCMCon

)
= ECDFObs−1

(
ECDFRCMCon

(
P RCMCon

))
. (3)

First, all the probabilities in ECDFObs and ECDFRCMCon are

estimated at a fixed interval of 0.01. Then, h is estimated

as the relative difference between the two ECDFs in each

interval. Interpolation between the fixed intervals is based on

a monotonic tricubic spline interpolation. A threshold for the

correction of the number of wet days is estimated from the

empirical probability of non-zero values in P Obs. All RCM

values below this threshold are set to zero. The precipitation

values for the full annual daily series are corrected without

subsampling by season or month, as suggested by Piani et

al., 2010. The method was implemented in R using the qmap

package (Gudmundsson, 2014).

3.1.4 Expanded downscaling

Expanded Downscaling (XDS) is a perfect prognosis tech-

nique which maps large-scale atmospheric fields to local sta-

tion data. XDS was originally introduced for weather fore-

casting purposes, but it has been recently used in climate

change studies (e.g. Bürger and Chen, 2005; Bürger et al.,

2013; Dobler et al., 2012). The XDS approach is based on

defining a multivariate linear regression between predictors

y (multivariate fields of atmospheric variables) and predic-

tands x (local-scale variables, i.e. catchment precipitation),

extended by the side condition that the local co-variability

between the variables (and stations) is preserved:

XDS= argmin
Q
‖xQ− y‖ , subject to Q′x′xQ= y′y, (4)

where XDS is the least-square solution of the matrix Q

which is found among those that preserve the local covari-

ance (Q′x′xQ= y′y). By this approach, the estimation of

extremes is supposed to be improved compared to regular

linear regression models. See Bürger et al. (2009) for a de-

tailed description of this method.

The XDS model is first trained on RCM atmospheric

fields driven by the European Centre for Medium-Range

Weather Forecasts (ECMWF) ERA-40 reanalysis (Uppala et

al., 2005) and local-scale observations with at least 10 years

of data. Then, RCM outputs for the control and future periods

are used to generate time series at the local scale. Generally

XDS allows for exploring a range of large-scale variables as

predictors. Large-scale reanalyses, however, are generally in

better agreement with local observations than an RCM simu-

lation driven by those reanalyses, simply because the simula-

tion likely differs from the actual weather realisation which

is used for XDS calibration. This has the consequence that

a perfect prognosis approach is no longer perfect. A second

data assimilation based on the RCM–ERA-40 runs (in ad-

dition to the data assimilation which has already been done

for the ERA-40 reanalysis) would overcome this problem to

some degree. However, such runs are not available for the

RCMs accessible from the ENSEMBLES archive. For this

study, the predictors were therefore chosen rather conserva-

tively, with predictor variables being limited to large-scale

total and convective precipitation. The result is a set of pre-

dictors that is, moreover, unique across all catchments. The

XDS source code and documentation can be downloaded

from http://xds.googlecode.com.

3.1.5 Change factor of mean

The change factor of mean (CFM) is a simple method which

has been widely applied in hydrological applications (Hanel

et al., 2013; Prudhomme et al., 2002; Sunyer et al., 2012). It

is based on applying the change in mean precipitation pro-

jected by the RCMs to the observed data. The method de-

scribed in Sunyer et al. (2012) is followed here. Similarly to

BCM, this method is based on the transformation

P Fut
m,t = amP Obs

m,t , (5)

where m refers to the month and t to each time step in the

observations; am is the relative change in the precipitation

mean for month m. am is estimated as the mean of P RCMFut
m,.

divided by the mean of P RCMCon
m,. .

3.1.6 Change factor of mean and variance

The change factor of mean and variance (CFMV) is an ex-

tension of CFM. It has been applied in several studies (e.g.

Hanel et al., 2013; Räisänen and Räty, 2013; Sunyer et al.,

2012). CFMV modifies the observed time series using the

change in both the mean and variance. The method described

in Sunyer et al. (2012) is followed here. Similar to BCMV,

the method is based on the transformation

P Fut
m,t = am

(
P Obs

m,t

)bm

, (6)

where am is estimated as described for CFM; bm is esti-

mated by equating the coefficient of variation of the time

series (amP Obs
m,. )bm and the coefficient of variation estimated

for the future period. As in BCMV, this is solved by iteration.

The coefficient of variation for the future period is calculated

from the relative change in the mean and variance projected

by the RCMs.

3.1.7 Change factor quantile mapping

The change factor quantile mapping (CFQM) is based on us-

ing the relative change in the ECDF projected by the RCMs

to modify the observed data. It has been applied in several

climate change studies (e.g. Boé et al., 2007; Olsson et al.,

2009).
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This method uses the ECDF of wet days estimated for each

month m for the observations, and the RCM output for the

control and future periods. The probability intervals consid-

ered are 0.001 for quantiles lower than 0.9 and 0.0005 for

higher quantiles (linear interpolation between intensities is

applied to obtain the precipitation intensity for all the quan-

tiles). Wet days are defined as days with precipitation higher

than 1 mm. The perturbation of the observed time series is

carried out in three steps. First, for each wet day in each

month m, ECDFObs
m is used to estimate the probability of the

precipitation intensity. Second, the relative change in the in-

tensity for this probability is estimated from ECDFRCMFut
m

and ECDFRCMCon
m . This change is then multiplied to the ob-

served precipitation intensity to obtain the intensity for the

future period. Dry days in the observations are not modified.

3.1.8 Change factor quantile perturbation

The change factor quantile perturbation (CFQP) is similar to

CFQM but it also accounts for changes in the number of wet

days. Quantile perturbation methods can be performed either

in a non-parametric way (Ntegeka et al., 2014; Vansteenkiste

et al., 2014; Taye et al., 2011; Willems and Vrac, 2011) or in

a parametric way based on distribution calibration (Willems,

2013; Rana et al., 2014). The version used here is the non-

parametric one that was applied by Willems and Vrac (2011).

The observations are perturbed using a two-step approach.

First, the number of wet days (days with precipitation higher

than 0.1 mm d−1) is changed for each month. The relative

change in the frequency of wet days is estimated from the

RCM output. If the frequency increases, dry days are ran-

domly selected and replaced by random wet day intensities

from the time series. Otherwise, wet days are randomly re-

placed by zero precipitation. In the second step, the wet day

intensities are perturbed in a similar way as in the CFQM

method. The empirical probability of each intensity is esti-

mated, and the relative change in the intensity for each prob-

ability is then calculated (linear interpolation is applied when

different probabilities are obtained for the control and future

period) and used to perturb the observations.

These two steps are repeated 10 times. The repetition that

leads to the results closest to the mean monthly precipitation

value of all the repetitions is selected; see Willems and Vrac

(2011) for more details on this method, including checks of

the coefficient of variation, skewness, and autocorrelation for

the results.

It must be noted that in the case of BCQM, CFQM, and

CFQP, the use of empirical quantiles may lead to large fluc-

tuations representing a lack of robustness in the values of the

CF (or CFs in the case of BCQM) for the highest quantiles.

This is due to the fact that the highest quantiles are estimated

using a limited number of values.

3.2 Extreme precipitation index

The outputs from all the SDMs are analysed using an ex-

treme precipitation index (EPI). This is defined as the average

change in extreme precipitation higher than a defined return

period. In this study, the return period is set equal to 1 and

5 years. EPI is estimated separately for each SDM, RCM,

catchment, threshold return period, season, and temporal ag-

gregation. Four seasons are considered: winter (December to

February), spring (March to May), summer (June to August),

and autumn (September to November). Additionally, the in-

dex is estimated considering the whole time series, i.e. with-

out dividing in seasons. The temporal aggregations consid-

ered are 1, 2, 5, 10, and 30 days. These are estimated using a

moving average from the daily time series.

The first step in the calculation of EPI is the extraction of

the extreme value series from the precipitation time series

using a peak-over-threshold (POT) approach. Peaks are ex-

tracted by using the 1- and 5-year threshold return periods.

For example, with a 30-year record, the thirty most extreme

and six most extreme events are included in the extreme se-

ries for the 1- and 5-year threshold levels, respectively. An

independence criterion based on the inter-event time is ap-

plied to make sure that extreme values are independent, i.e.

only values separated by more than 1t days are considered.

1t is set equal to the temporal aggregation, i.e. for an aggre-

gation time of 1 day, events must be separated by more than

1 day. EPI is then estimated as

EPI=
POT2

POT1

, (7)

where POT1 and POT2 are the averages of the selected POT

values for reference and scenario, respectively. EPI takes the

value of 1 if no change is estimated from reference to sce-

nario and greater (less) than 1 if the average extreme precip-

itation is higher (lower) in the scenario time series.

In the results section, EPI is used to compare the changes

in the downscaled time series from control to future. Addi-

tionally, three further comparisons are carried out. In total

EPI is calculated for four different cases:

1. comparison of the downscaled time series for the con-

trol and future periods;

2. comparison of the RCM outputs for control and future

periods; this allows us to compare the changes estimated

from the downscaled precipitation, estimated in Eq. (1),

to the changes projected by the RCMs;

3. for the four BC methods: comparison of the observa-

tions and the bias-corrected RCMs for the control pe-

riod; the value of the index for this comparison is a mea-

sure of the error of the BC methods in bias correcting

the RCM outputs for extreme precipitation;
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4. comparison of the observations and RCM outputs for

the control period; this comparison evaluates the perfor-

mance of the RCMs in simulating extreme precipitation,

and allows us to assess whether the error in the bias-

corrected time series, estimated in Eq. (3), is smaller

than in the RCMs.

3.3 Variance decomposition

The variability in the EPI values found when comparing the

downscaled time series for control and future arises mainly

from three sources: GCMs, RCMs, and SDMs. A variance

decomposition approach is used to address the influence of

each of these sources on the total variance for each catch-

ment, return level, season, and temporal aggregation. The

approach described in Déqué et al. (2007, 2012) is followed

here.

The total variance of EPI, V , can be split into the different

contributions as

V = R+G+ S+RG+RS+GS+RGS, (8)

where R, G, and S are the individual parts of the variance ex-

plained by the RCMs, GCMs, and SDMs, respectively; RG,

RS, and GS are the variance due to the interaction of RCM–

GCM, RCM–SDM, and GCM–SDM, respectively; and RGS

is the variance due to the interaction of all three sources. The

part of the total variance explained by the RCMs, V (R) is

V (R)= R+RG+RS+RGS. (9)

The part of the total variance due to the GCMs, V (G), and

SDMs, V (S), can be obtained in a similar way. The variances

in Eqs. (8) and (9) can be estimated as:

R =
1

11

11∑
i=1

(
EPIi..−EPI...

)2
, (10)

RG=
1

11

1

6

11∑
i=1

6∑
j=1

(
EPIij.−EPIi..−EPI.j.+EPI...

)2
, (11)

RGS=
1

11

1

6

1

8

11∑
i=1

6∑
j=1

8∑
k=1

(
EPIijk −EPIij.−EPIi.k −EPI.jk

+ EPIi..+EPI.j.+EPI..k −EPI...
)2

, (12)

where EPIijk is value of the index for RCM i, GCM j , and

SDM k, EPI represents the average of EPI with respect to the

subscripts that are replaced by a dot. The rest of the terms in

Eq. (9) are estimated in a similar way as shown in Eqs. (10)

and (11). For more details see Déqué et al. (2007, 2012). Note

that the observation errors in this approach are neglected in

comparison with the other error sources.

As in Déqué et al. (2007), not all the terms in Eq. (11)

can be estimated. This is because not all the combinations of

RCM–GCMs are available (see Table 2). Déqué et al. (2007)

suggested a simple method to reconstruct the missing data in

the matrix of RCM–GCMs. This is based on minimising the

full interaction term RGS. However, this approach cannot be

directly used here. This is because for the combinations of

RCM i and GCM j that are not available there is no infor-

mation on any of these SDM k values. Hence, in some cases

it is not possible to estimate EPIij , which is needed to min-

imise the full interaction term RGS. For this reason, a slight

modification is made to the approach suggested by Déqué et

al. (2007). The approach followed here consists of two steps:

(i) for all the combinations of i and j missing, EPIij is esti-

mated by minimising RG; and (ii) the values of EPIijk miss-

ing are estimated by minimising RGS.

A large number of gaps must be filled using this procedure.

Two simple verifications have been carried out to check that

the results are not largely affected by the matrix reconstruc-

tion approach. The first verification procedure is a simple

comparison of the results from the variance decomposition

described above with a variance decomposition approach,

which considers only two sources of variance (climate mod-

els and SDMs). In the approach considering only these two

sources, matrix reconstruction is not needed because all the

elements in the matrix are known. The second verification

procedure is similar to the verification carried out in Déqué

et al. (2007). The two verification approaches and their re-

sults are described in Appendix A.

The results from the first verification procedure show that

the conclusion as to which is the most important source of

variance is nearly the same when considering two or three

sources for all catchments. Conversely, the results from the

second verification show that the reconstruction approach

can influence the results. From the results of the first veri-

fication, we decide to analyse the variance explained by the

GCMs and RCMs separately (i.e. considering three sources

of variance) because, in our opinion, it adds value to separate

the influence of the GCMs and RCMs. Nonetheless, we ac-

knowledge that the results must be treated with caution due

to the uncertainty added in the matrix reconstruction proce-

dure.

4 Results and discussion

This section is divided into two main parts. The first part

analyses the results of all SDMs. The second part focuses on

the performance of the three BC methods and perfect prog-

nosis method. All the results are shown for winter and sum-

mer as these are the two seasons where most of the extremes

occur under present conditions. However, it should be noted

that in some catchments changes in other seasons might also

be important due to their influence on floods; see examples

in Hundecha et al. (2015).
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Figure 2. EPI estimated from the comparison of the downscaled time series for control and future period for 1-year (light grey boxes) and

5-year levels (dark grey boxes). The boxes indicate the 25, 50, and 75th percentiles and the whiskers the 5 and 95th percentiles. The circles

show the median of all the values of EPI estimated from the comparison of the RCM outputs for the control and future periods. All the results

are for a temporal aggregation of 1 day.

4.1 Comparison of the downscaled time series for the

control and future periods

This subsection analyses the results of the eight SDMs driven

by all RCMs. A summary of the results obtained for all the

catchments is first presented followed by a more detailed

analysis of the differences between the SDMs for three se-

lected catchments.

4.2 Extreme precipitation index and variance

decomposition for all catchments

Figure 2 summarises the results of all the SDMs and RCMs

for all the catchments for winter and summer for a tempo-

ral aggregation of 1 day. Additionally, it compares the results

of the SDMs with the changes between the control and fu-

ture periods projected by the RCMs. For the catchment CY

for some SDMs, two special situations are encountered. For

the methods BCM and BCMV for both winter and summer

periods, due to the few rainy days in some of the RCM simu-

lations, some of the parameters take unrealistic values which

lead to unrealistic values of EPI. Similarly, it is not possible

to estimate the CFs used in the case of CFM, CFMV, and

CFQM in the summer period. The results of these methods

are, therefore, not included in the analysis for CY. For the

other catchments such problems with the SDMs were not en-

countered and all results are included in the analysis.

For winter, extreme precipitation is expected to increase

in all catchments (the median of EPI is greater than 1) except

in CY. The median of EPI is similar for all catchments ex-

cept for the two most northern catchments (NO1 and NO2)

and the most southern catchment (CY). The EPI values range

between 1.11 and 1.2 for the 1-year threshold, and 1.14 and

1.22 for the 5-year threshold. For this season, a similar vari-

ability is found for all catchments, except for CY, where the

variability is slightly larger than in the other catchments. For

summer, the median is also greater than 1 for all the catch-

ments except for the two most southern catchments (CY and

TR). These two catchments also have a larger variability. In

general, there are larger differences between and within the

catchments in summer than in winter.

In most catchments, and for both threshold (1 and 5 years),

larger changes are expected for winter. Only in the case of

NO2, the changes obtained for summer are larger than in

winter. In the catchment in LT, CZ1, and CZ2, larger changes

are obtained for winter for the 1-year level and for summer

for the 5-year level. In both seasons and in most catchments,

larger changes and variability are obtained for the 5-year

level.

Comparing the changes obtained from the SDMs with the

mean changes projected by the RCMs (see Fig. 2), there is a

general tendency that slightly smaller changes are estimated

from the uncorrected RCM projections. However, there are

some significant differences. For example, for NO2 in win-

ter and the 5-year level, the uncorrected RCM projections

point to a decrease of extreme precipitation but the SDMs

point to an increase. The opposite situation is obtained for

CY for the same season and 1 level. For this catchment (CY)

in summer, there is also a rather large difference between

the changes estimated from the uncorrected RCM projec-

tions and the SDMs. The largest difference between the un-

corrected RCMs and downscaled results is obtained in CY.

The maximum difference is obtained in summer for the 5-

year level where the downscaled values lead to a change 20 %

higher than the uncorrected RCMs. Excluding CY, the aver-

age difference of the change between the downscaled and un-

corrected series is small. For example, for the 1-year level the

average difference is 0.013 for winter and 0.022 for summer.

The smallest difference in both seasons is obtained for the

Danish catchment for which the difference is 0.003 in win-

ter and 0.009 in summer. These overall results show that, in

general, the SDMs do not modify the change projected by the

uncorrected RCMs significantly. Nonetheless, in some cases

the use of some downscaling methods might modify the mag-
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Figure 3. In the top row, total variance decomposed in variance

from GCMs, RCMs, SDMs, and all the interaction terms (darkest

to lighter grey colours). In the bottom row, percentage of the total

variance explained by GCMs, RCMs, and SDMs (darkest to lighter

grey colours). All the results are shown for 1- and 5-year levels in

the left and right column of each catchment, respectively. All the

results are for a temporal aggregation of 1 day.

nitude of the change projected by the uncorrected RCMs. The

influence of the SDM used with respect to the difference be-

tween the change projected by the uncorrected RCMs and

the downscaled data is analysed in more detail in the next

section.

Figure 2 does not differentiate between the variability due

to the use of different SDMs and different RCM–GCM sim-

ulations. The variance decomposition approach is used to as-

sess each of the sources of variance individually. Figure 3

shows the total variance decomposed in the variance arising

from the GCMs, RCMs, SDMs, and the interaction terms for

all catchments for the 1- and 5-year levels and temporal ag-

gregation of 1 day. For CY the results for the summer are

not shown and results for the winter do not include BCM and

BCMV because EPI could not be calculated for a large num-

ber of cases (due to the few rainy days in some of the RCM

simulations).

As shown in Fig. 2, the variance for the 5-year level is

higher for all catchments and seasons than the variance for

the 1-year level. In summer, the variance tends to increase

from north to south for the 5-year level, and to some extent

also for the 1-year level. This trend is not observed in winter.

The larger variance in the southern catchments for the 5-year

level may be partially caused by larger sampling variance

(smaller number of extreme events). Figure 3 shows that in

most cases the variance due to the RCM–GCM simulations is

larger than the variance from the SDMs. However, the inter-

action term is in both seasons and in most catchments similar

or larger than the individual sources of variance.

Figure 3 also shows the fractional percentage explained

by V (G), V (R), and V (S), such that the three terms sum

to 100 %. The scaling of the percentages to obtain a to-

tal of 100 % is needed because some interaction terms are

included in several factors. As already mentioned, the per-

centage explained by the RCM–GCM simulations is in most

cases larger than the percentage explained by the SDMs. The

only exception is TR for summer and PL for winter for the 1-

year level. However, in all cases, the percentage explained by

the SDMs is at least 30 % of the total variance, which is con-

siderable. Similar results are obtained for winter and sum-

mer for the 1- and 5-year levels. For both seasons and return

levels, there are no clear spatial patterns in the percentages.

These results are in agreement with the results obtained by

Räty et al. (2014). They carried out a similar variance decom-

position to study the variance arising from climate models

and SDMs over northern and southern Europe. For northern

Europe, they found that for the 70th and higher precipitation

percentiles, the climate models are the main source of vari-

ance and the variance arising from the SDMs is at least 20 %

and the interaction term accounts for approximately 20 %.

For southern Europe, the contribution of the SDMs is also at

least 20 %, but the variance arising from the interaction term

is higher (it ranges between 20 and 50 % for all percentiles).

In addition, and also in agreement with the results shown

here, Kidmose et al. (2013) found that for extreme groundwa-

ter levels in a Danish catchment the variance arising from the

ensemble of climate models is higher than the variance aris-

ing from the SDMs, although only two downscaling meth-

ods were considered. They also highlighted the importance

of natural variability, which in their case was higher than the

variability related to climate models and downscaling meth-

ods. The results for Norway (NO2 and NO1) are also in

agreement with the results found by Lawrence and Hadde-

land (2011). The influence of the SDMs in winter is larger

in the snow dominated catchment, NO1, than in the rainfall

dominated catchment, NO2.

In all cases the percentage of the variance explained by the

RCMs is larger than the percentage explained by the GCMs.

For both return levels, in winter the average percentage ex-

plained by the GCMs is approximately 20 %, while in sum-

mer it is approximately 15 %. The smaller percentage for the

GCMs in the summer is due to the larger relative influence of

both the RCMs and SDMs. This is likely due to the fact that

in Europe, extreme precipitation from convective storms oc-

curs more frequently during summer (e.g. Lenderink, 2010;

Hofstra et al., 2009), and this has a larger influence on the

outputs from the RCMs and SDMs due to their higher spa-

tial resolution. Several studies have shown that the errors of

the RCMs are larger in the representation of daily extreme

precipitation in summer over Europe (e.g. Frei et al., 2006;

Fowler and Ekström, 2009).

The results of the variance decomposition obtained for ag-

gregation levels larger than 1 day (not shown) point towards

a smaller total variance. For these temporal aggregations, the
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main source of variation is also the RCM–GCMs, although

the percentage explained by SDMs is slightly larger than for

the 1-day aggregation. The decrease in total variance and

in the percentage explained by RCM–GCMs mainly reflects

that the model outputs being more similar for larger temporal

aggregations. The results from the variance decomposition

highlight the need for considering both a range of SDMs and

an ensemble of RCMs driven by different GCMs for assess-

ing the uncertainty in the projection of changes in extreme

precipitation.

4.3 Extreme precipitation index for three selected

catchments

The previous section summarises the main results regarding

the expected changes in extreme precipitation when consid-

ering all the RCMs and SDMs. This section focuses on the

differences between the SDMs. For this purpose, three catch-

ments have been selected: NO2, DE, and TR (distributed

north to south and with different precipitation patterns). Fig-

ure 4 shows the median, 25th, and 75th quantile of EPI for

each SDM for the three catchments for the 1-year level and a

temporal aggregation of 1 day.

In NO2, for both seasons, the SDMs based on BC show

a lower EPI than the methods based on CFs. In winter, all

the CF methods point towards an increase in extreme precip-

itation, although some of the BC methods show a decrease

for some RCMs. In summer, all methods point to an increase

except XDS, which produces a small EPI and a large variabil-

ity. There are several factors which may contribute to these

differences. As this region is projected to generally have an

increase in winter precipitation, use of change factor meth-

ods that do not correct for changes in the number of wet days

will automatically produce higher values for extreme precip-

itation in winter. If this precipitation increase is, however,

also associated with a change in storm patterns, such that the

increase simply reflects an increase in wet days rather than

wet day extremes, then this difference would be reflected in

the results for the BC methods.

In DE, all the SDMs lead to similar median values except

the BCMV in winter and CFM in summer. The differences

between BCMV and the other two BC methods are due to

some RCMs leading to very large changes when they are

downscaled with BCMV, e.g. for RCA–ECHAM5, the val-

ues of EPI are 1.18 for BCM, 1.16 for BCQM, and 1.63

for BCMV. This large value of EPI is caused by unexpect-

edly large precipitation intensities obtained from the non-

linear transformation in BCMV, which is one of the dis-

advantages of this method (see Table 3). For the BCMV

method two events of 55 and 60 mm d−1 are obtained while

the largest events for the two other BC methods are below

40 mm d−1 (for the control period all the events are lower

than 30 mm d−1).

CFM leads to the lowest value of EPI obtained in summer.

This is also the case for all the other catchments considered in
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Figure 4. EPI for each SDM for NO2, DE, and TR for winter (top)

and summer (bottom). The markers indicate the median and the

lines represent the range covered by the 25th and 75th percentiles.

All results are for the 1-year level and temporal aggregation of

1 day. Note the different scales used in the y axis for winter and

for summer.

this study except for NO2 and Yermasoyia in Cyprus (results

not shown). It indicates that mean precipitation is likely to in-

crease less than the more extreme precipitation intensities. In

addition, it illustrates that the CFM method is not suitable for

regions where the expected changes in extreme precipitation

are different than the changes in mean precipitation.

In TR, the results of the SDMs vary more than in DE and

NO2. For this catchment, CFM leads to the lowest EPI in

both seasons, which indicates a lower increase in mean pre-

cipitation than in extreme precipitation, as in DE. In summer,

all SDMs point to a decrease of extreme precipitation except

BCM and BCMV, which do not show a change in extreme

precipitation. These two methods show the largest variability

for both winter and summer. The high variability for these

two methods is due to the same issue identified in CY, i.e.

only a few rainy days in the RCM simulations, the annual

percentage of rainy days ranges between 12 and 28 %.

For all catchments and both seasons, very similar results

are obtained for CFQM and CFQP. This is expected since

the main difference between the two methods is the treat-

ment of wet day frequency. This is expected to have a minor

impact, except for TR in the summer, where there are only

very few rainy days during the summer period. This implies

that in some cases all the rainy days are included in the selec-

tion of extreme events. Hence, the change in the number of

wet days may have an effect on the changes in extreme pre-

cipitation. Similar results to those illustrated in Fig. 4 were

also obtained for the 5-year level (results not shown).
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The results for the three catchments show that there is not a

clear tendency in the differences between CF and BC meth-

ods. In addition, there is no evidence that methods that are

based on the same statistics for the correction (e.g. BCM

and CFM or BCMV and CFMV) will lead to similar results.

Hence, it is not possible to generalize the results with respect

to the use of SDM. This result contrasts with the findings

in Hanel et al. (2013) for low flows in the Czech Repub-

lic. They found that, in general, the SDMs which account

for changes in variance (such as BCMV and CFMV) led to

larger changes in runoff. In addition, they also found larger

changes in runoff for BC than for CF methods.

The EPI estimated using the uncorrected RCMs can be

used as a reference to assess whether the downscaled data

preserves the changes projected by the RCMs and the differ-

ences depending on the SDM. In the case of NO2, the EPI es-

timated using the uncorrected RCMs lies in between the val-

ues from the BC and CF methods. The downscaling method

that shows the closest agreement with the changes projected

by the RCMs is BCQM. Overall for the three catchments and

both seasons this method is the one that shows values of EPI

closest to the ones estimated from the uncorrected RCMs.

This points towards the suitability of this method to down-

scale extreme precipitation as it corrects the properties of

interest for representing extreme precipitation. On the other

hand, EPI obtained from CFM tend to produce the largest

deviations from the EPI of the uncorrected RCMs (except

in the case of TR in summer), which again shows that this

method is not suitable for projecting changes in extreme pre-

cipitation. In addition, problems of producing unrealistic ex-

treme precipitation values with some of the methods, such as

BCM and BCMV in TR in summer, XDS in TR in winter and

NO2 in summer are clearly seen when comparing their EPI

values with those obtained from the uncorrected RCMs. The

above examples illustrate that some SDMs are better suited

for downscaling extreme precipitation and some SDMs are

less robust with respect to downscaling various precipitation

patterns.

Figure 5 analyses the eight SDMs for the three catchments

for two temporal aggregations: 1 and 30 days. In general, the

variability in EPI in the RCM ensemble decreases with in-

creasing temporal aggregation, except for a few cases, e.g.

XDS for NO2 and BCM for DE in summer. There is no gen-

eral indication that EPI either increases or decreases with in-

creasing temporal aggregation.

In NO2, EPI is larger for a temporal aggregation of 30

days for BCM, BCMV, and BCQM, and it is lower for the

CF methods and XDS for summer. In winter, EPI for BCM,

BCMV, and BCQM is also slightly larger for a temporal ag-

gregation of 30 days (in the case of BCM and BCMV, this

means a smaller reduction of extreme precipitation). In DE,

most methods show a lower EPI for 30 days except CFM

in summer and CFM, CFMV, and XDS in winter. Similarly,

in TR all the methods show lower EPI for 30 days except

for CFM, XDS, and CFQM in summer. For all catchments,
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Figure 5. EPI for each SDM for NO2, DE, and TR for winter (top)

and summer (bottom). The markers indicate the median and the

lines represent the range covered by the 25th and 75th percentiles.

The results are shown for 1-day (filled markers) and 30-day (hollow

markers) temporal aggregation. The same symbols are used for the

different downscaling methods as in Fig. 4. Note the different scales

used in the y axis for winter and for summer.

the results of the SDMs at 30 days temporal aggregation are

more similar than for 1-day aggregation.

In most cases, EPI at 1 and 30 days are not considerably

different and show the same signal (except in the case of TR

for BCM and BCMV for both seasons and BCQM in win-

ter). As for the 1-day aggregation, the results with temporal

aggregation of 30 days do not allow for general conclusions

with respect to the use of SDM.

4.4 Comparison of observations and bias-corrected

RCMs for the control period

The previous section focuses on the analysis of the expected

changes in extreme precipitation. This section uses EPI to

compare the results from the BC methods for the control pe-

riod and the observations. This allows us to evaluate how

well the different BC methods correct extreme precipitation

from the RCMs. As in the previous section, a summary of

the results found for all the catchments is first presented, fol-

lowed by a more detailed analysis of the results found for

each BC method for three of the catchments. It must be noted

that this comparison of the results for the control period does

not provide a validation of the downscaling methods. The

data used to downscale the RCMs for the control period is

the same as the data used for the calibration of these meth-

ods. Nonetheless, it should be noted that the validation of

downscaling methods is crucial and relevant for assessing

how well we can estimate changes in extreme precipitation.

However, the validation of SDMs is challenging as it requires

either observational data that have different properties that

enable one to assess whether the downscaling methods can be
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Figure 6. EPI estimated from the comparison of the observations and the downscaled time series by all BC methods for the control period for

1-year (light grey boxes) and 5-year levels (dark grey boxes). The boxes indicate the 25, 50, and 75th percentiles and the whiskers the 5 and

95th percentiles. The circles show the median of all the values of EPI estimated from the comparison of the observations and the uncorrected

RCM outputs for the control period. All the results are for a temporal aggregation of 1 day.

used to project climate changes (e.g. Refsgaard et al., 2014;

Teutschbein and Seibert, 2013) or, alternatively, the use of

pseudo-realities (e.g. Räisänen and Räty, 2013; Vrac et al.,

2007; Maraun et al., 2015). If the observational data do not

show pronounced changes in extremes, then the results of

the validation analyses are questionable with respect to the

suitability of the methods for use in climate change analyses.

There is, thus, a clear need for further research on validation

methods for SDMs; it will not be addressed in this paper.

For BE, CY, CZ2, DK, and PL, the control period con-

sidered for the RCMs does not fully overlap with the obser-

vation period. In the case of DK, for example, there is only

an overlap of 2 years. The use of different periods assumes

that the statistics are stationary between the periods. How-

ever, some of the disagreements between the observations

and bias-corrected results may well be due to non-stationary

statistics between the two periods.

4.5 Extreme precipitation index for all catchments

Figure 6 shows EPI estimated using the observations and the

bias-corrected RCM. In this figure (and the rest of the figures

in this section), a value of 1 indicates that there is no dif-

ference between the extreme value statistics from the obser-

vations and the bias-corrected RCM. A value greater (less)

than 1 indicates that the bias-corrected RCM overestimates

(underestimates) extreme precipitation. It must be noted that

for the catchments LT and TR there is a perfect overlap be-

tween the time period of the observations and RCMs, while

for the other catchments the observation period includes the

RCM period or there is only a partial overlap between the

time period of the observations and RCMs (see Table 1 for

details).

For extreme winter precipitation there is no clear tendency

across catchments for under- or overestimation with the bias-

corrected data. The catchments that have the largest underes-

timation are for the most northern and southern catchments

(NO2, NO1, DK, and CY), whereas LT, BE, and PL have

the largest overestimation. For extreme summer precipita-

tion, there is a pronounced underestimation for a number

of catchments. The three most northern catchments (NO2,

NO1, and DK) show the lowest mean bias based on the me-

dian values for all downscaled projections. The most south-

ern catchment (CY) has the largest underestimation of ex-

treme summer precipitation. Both the median and variance

of EPI depend on the catchment and the season. For exam-

ple, the bias-corrected data for LT, BE, and PL tend to over-

estimate extreme precipitation in winter, but underestimate

this in summer. CZ1 in winter and NO2 in summer are the

catchments that lead to the median closest to 1. The largest

variability is found for PL in winter and TR and CY in sum-

mer.

The comparison of the error in the RCMs before and af-

ter bias correction shows that, in general, the error after

bias correction is smaller than before bias correction. This

shows that the BC methods improve the representation of

extremes. However, in a few cases the error of the RCMs

before bias correction is smaller than after bias correction.

This is because some of the RCMs result in large errors af-

ter bias correction. For example, for BE in winter with the

HadRM3Q3–HadCM3Q3 model, values of 1.18 for BCM,

1.37 for BCMV, 1.24 for BCQM, and 1.23 for XDS are ob-

tained, while a value of 0.98 is obtained from the uncor-

rected data. In fact, the average over all the RCMs shows

that none of the downscaling methods improves the results

of the uncorrected RCMs for this catchment. A similar re-

sult is obtained for the DE catchment. In the summer period,

the results after bias correction for all the downscaling meth-

ods in the LT catchment show larger differences compared

to the observations than the uncorrected RCMs. In both sea-

sons, these results (error of the RCMs before bias correction

is smaller than after bias correction) are obtained for catch-

ments where the RCMs have the lowest error in representing

observed extreme precipitation (i.e. EPI closer to 1). This in-
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Figure 7. EPI for each BC method for NO2, DE, and TR for win-

ter (top) and summer (bottom). The markers indicate the median

and the lines represent the range covered by the 25th and 75th per-

centiles. All the results are for the 1-year level and temporal ag-

gregation of 1 day. Note the different scales used in the y axis for

winter and for summer.

dicates that if the agreement between the observations and

RCMs is high, the downscaling methods considered in this

study are not able to improve it. The next section describes

in more detail the difference between EPI of the uncorrected

RCMs and the downscaled series for each BC method.

4.6 Extreme precipitation index for each bias

correction method for three selected catchments

Figure 7 shows the results of the three BC methods and XDS

for NO2, DE, and TR for the 1-year level and 1-day tem-

poral aggregation. The performance of each method varies

depending on the season and catchment. For example, BCM

overestimates extremes in NO2 in winter and TR in summer

and underestimates them in NO2 in summer and TR in win-

ter. In DE, BCM performs equally as well as BCMV. This

illustrates that simple BC methods can, in some cases, per-

form similarly or better than more advanced methods. In the

catchments considered in this study, there is no clear rela-

tionship between the performance of the BC methods and

the precipitation regime for the catchments.

In winter, the errors obtained for DE are smaller than in

the other two catchments. EPI ranges from an underestima-

tion of 4 % (EPI equal to 0.96) for BCM and BCMV, to an

overestimation of approximately 6 % for BCQM and XDS.

For this catchment and both seasons, BCM and BCMV lead

to better results than BCQM and XDS. In summer, the errors

in NO2 are smaller than in the other two catchments. For this

catchment and this season, XDS is the method that leads to

the smallest error and variability.

The largest errors and variability in the results are found

for the TR catchment in both seasons. For this catchment

and in the winter period, the median of all methods under-

estimate extremes except XDS, while in summer BCM and

BCMV overestimate extremes and the other two methods un-

derestimate. A very large variability is obtained for BCM and

BCMV in summer (the 25th and 75th percentiles range from

0.4 to 1.5).

Comparison of the results of the SDMs with EPI obtained

from the uncorrected RCMs shows that in the case of NO2

all the SDMs clearly agree better with the observations. But

for the other two catchments, the results depend on the down-

scaling method. In DE, BCM and BCMV lead to better re-

sults than the other two methods for both seasons. In the

TR catchment, BCQM leads to the best result in winter but

not in summer, where BCMV produces the best result. Even

though the results depend on the catchment analysed, BCM

is the method that leads to the least improvements in most

cases compared to the results of the uncorrected RCM. This

is in agreement with the main conclusion from the valida-

tion study carried out by Teutschbein and Seibert (2013).

They concluded that the linear bias correction (equivalent to

the BCM method used here) together with the delta-change

method (equivalent to the CFM used here) are less reli-

able than other more complex methods. Similarly, the cross-

validation study carried out by Räty et al. (2014) showed that

the linear BC method tends to perform more poorly than the

other more complex BC methods, especially for high per-

centiles (between 75th and 97th percentile) in southern Eu-

rope and between the 50th and 70th percentile in northern

Europe. Nonetheless, it should be noted that even if in some

cases it is possible to identify a method that performs better

than others, it might not be possible to reject the hypothesis

that all SDMs perform equally well (Wetterhall et al., 2012).

This points towards the advantage of using an ensemble of

SDMs to represent the uncertainty related to the statistical

downscaling.

The results from Figure 7 indicate that the BC methods

do not in all cases improve the time series from the RCMs.

This must be tested for each application. Figure 8 shows the

error of each BC method for two temporal aggregations, 1

and 30 days, for the 1-year level. In general, the performance

of the BC methods for the winter period improves for large

temporal aggregation (except for XDS in TR). However, in

summer this is not the case. For this season, the difference

between the results for 1- and 30-day aggregations depends

on the catchment and the method. In NO2, the results for 1

day are better than for 30 days for BCQM and XDS, although

the reverse is true for TR. In DE, the results for 1 day are

better than for 30 days for all the methods except XDS.

As shown in Fig. 7, TR has the largest variability for 30

days followed by NO2 for both seasons. The results for DE

appear to be the least dependent on the temporal aggregation.
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Figure 8. EPI for each BC method for NO2, DE, and TR for win-

ter (top) and summer (bottom). The markers indicate the median

and the lines represent the range covered by the 25th and 75th per-

centiles. The results are shown for 1-day (filled markers) and 30-

day (hollow markers) temporal aggregation. All the results are for

1-year threshold. The same symbols are used for the different down-

scaling methods as in Fig. 7. Note the different scales used in the y

axis for winter and for summer.

This may be the result of spatially averaging the observa-

tions from 43 stations to derive the catchment precipitation.

For such a large basin (6171 km2; see Table 1), this may si-

multaneously lead to temporally averaged precipitation val-

ues from the gauged nested sub-catchments. In all cases, the

variability for 30 days is smaller than for 1 day, indicating

that the RCMs lead to more similar results for large temporal

aggregations.

5 Summary and conclusions

This study analyses the expected changes in extreme precip-

itation in 11 European catchments. It focuses on the variabil-

ity in the changes arising from the use of different SDMs

as well as different RCM–GCM simulations. Fifteen RCMs

driven by six GCMs are downscaled using eight statistical

downscaling methods. The statistical downscaling methods

rely on different assumptions and different RCM outputs.

The outputs from all the statistical downscaling methods are

analysed using an extreme precipitation index.

Extreme precipitation is expected to increase in most

catchments in both winter and summer. A decrease in ex-

treme precipitation is only expected for both winter and sum-

mer in CY and for summer in TR. In most catchments, larger

changes are expected in winter than in summer. Additionally,

in all cases, larger increases and larger variability in the re-

sults are obtained for the higher return level, 5 years.

In most catchments and for both winter and summer, the

RCM–GCM projections are the main source of variability in

the results when compared to the differences between SDMs,

although variability due to the SDMs explains at least 30 %

of the total variance in all cases. Additionally, in all cases,

the RCMs represent a larger percentage of the total variabil-

ity than the GCMs, especially in summer. For this season,

the total variance tends to be higher for the most southern

catchments.

In general, the eight statistical downscaling methods agree

on the direction of the change but not the magnitude of the

change. It is not possible to draw general conclusions re-

garding differences between the downscaling methods, as the

differences depend on the physical geographical character-

istics of the catchment and the season analysed. For exam-

ple, for NO2 the BC methods lead to lower changes than

the change factor methods, but this is not the case for the

other catchments. A common result for all catchments except

NO2 and CY is that the CFM method leads to the smallest in-

crease of extreme precipitation in summer. This indicates that

this method is not suitable for regions where the expected

changes in extreme precipitation differ from the changes in

mean precipitation. The changes obtained for different tem-

poral aggregations also depend on the physical geographi-

cal characteristics of the catchment and season analysed, i.e.

there is no general tendency for an increase or decrease in the

index with increasing temporal aggregation.

Overall, the BC methods improve the representation of ex-

treme precipitation, as compared with the uncorrected RCM

outputs. However, the bias-corrected time series tend to un-

derestimate extreme precipitation. The magnitude of the er-

rors depends on the catchment and season analysed. For ex-

ample, the results of the BCM are worse than the other meth-

ods for the NO2 but not for the other catchments. There is no

clear relationship between the performance of the BC meth-

ods and the precipitation regime of the catchment. There is

also no clear indication of an increase or decrease in the error

with increasing temporal aggregation.

The results from the statistical downscaling methods have

been compared with the extreme precipitation obtained from

the uncorrected RCMs. Although the results depend on the

catchment and season as in the other comparisons discussed

before, some overall conclusions can be extracted from this

comparison. Regarding the comparison of the change in ex-

treme precipitation projected by the uncorrected RCMs and

the downscaled series, the SDM that showed the smallest

differences relative to the RCM projections is the BCQM

method, while the method that led to the largest differences

is the CFM method. These differences between the methods

are more pronounced for the summer period. From the com-

parison of the SDMs and the uncorrected RCMs in repre-

senting the current period it was found that in general the

BCM method fails in more cases than the other SDMs in im-

proving the representation of extreme precipitation from the

uncorrected RCMs.

From the results of all these comparisons, it is possible to

draw some general recommendations when selecting SDMs

from the ones considered here for downscaling extreme pre-
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cipitation. Downscaling methods that do not explicitly cor-

rect or take into account changes in extreme precipitation

may lead to different climate change signals than the ones

projected by the RCMs and should not be used. In this study,

this occurs mainly with CFM. In addition, some methods fail

to correct the errors in the RCMs in representing extreme

precipitation. In this study, this occurred in more cases when

using BCM than with the other methods. Finally, in catch-

ments with long dry periods the BCM, BCMV, CFM, CFMV,

and CFQM methods produce unrealistic results and should

not be used (or should be configured differently than done in

this study with respect to describing the seasonal patterns).

BCMV may also lead to unrealistic results in other catch-

ments as seen in the case of DE. The ability of the downscal-

ing methods to improve the representation of extreme pre-

cipitation from the RCMs and to preserve the climate change

signal should be assessed for each case study in order to se-

lect the most suitable SDMs.

This study illustrates that there is a large variability in

the changes estimated from different statistical downscaling

methods and RCMs. It also shows that the differences be-

tween the methods and the performance of the BC meth-

ods depend on the catchment studied. Hence, for a specific

case study, the selection of a suitable statistical downscaling

method may depend on the physical geographical character-

istics of the catchment. However, we recommend the use of

a set of statistical downscaling methods as well as an ensem-

ble of climate model projections. The selection of statisti-

cal downscaling methods should include: methods that are

able to project changes in extreme precipitation if they are

expected to be different from other precipitation properties;

methods based on different underlying assumptions, for ex-

ample BC and CF methods; and methods that use different

outputs from the RCMs as, for example, XDS, CF or BC

methods including mean and variance of precipitation, and

methods including a range of quantiles.
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Table A1. Percentage of the total variance explained by the GCM–

RCM simulations (G+R) and one SDMs (S) considering two and

three sources of variance. The contribution of the GCMs and RCMs

is two shown in brackets

Winter Summer

No. sources G+R S G+R S

NO2 2 68 32 51 49

3 69 (29+ 40) 31 52 (14+ 38) 48

NO1 2 51 49 60 40

3 51 (13+ 38) 49 61 (13+ 48) 39

DK 2 60 40 65 35

3 62 (22+ 40) 38 67 (26+ 41) 33

LT 2 59 41 60 40

3 57 (20+ 37) 43 57 (10+ 47) 43

BE 2 69 31 51 49

3 71 (30+ 41) 29 52 (15+ 37) 48

DE 2 49 51 62 38

3 51 (18+ 33) 49 61 (16+ 45) 39

CZ2 2 54 46 61 39

3 55 (15+ 41) 45 57 (14+ 43) 43

CZ1 2 60 40 64 36

3 58 (24+ 34) 42 59 (19+ 40) 41

PL 2 51 49 55 45

3 48 (21+ 28) 52 50 (19+ 30) 50

TR 2 57 43 46 54

3 55 (19+ 35) 45 42 (19+ 23) 58

CY 2 55 45

3 55 (21+ 34) 45

Appendix A: Verification of matrix reconstruction

approach

A1 Comparison of results using two and three sources

of variance

This verification approach assesses the influence of the ma-

trix reconstruction procedure on the percentage of the total

variance explained by climate models (influence of GCM–

RCM simulations) and SDMs. For this purpose, the variance

decomposition approach has been applied considering two

sources of uncertainty: SDMs and climate models (the 15

RCM–GCM simulations). In the case of two sources of vari-

ance, there is no need to reconstruct the matrix.

Table A1 shows the percentage explained by the cli-

mate models and SDMs estimated considering two and three

sources of variance. The percentages for CY are not shown

for summer because EPI could not be calculated for a large

number of cases, and the percentages for winter do not in-

clude the results from BCM and BCMV. The percentage

Table A2. Average RMSE from the comparison of the reconstructed

and original values and the comparison with other combinations of

GCM–RCM.

RCM\GCM Original EPIR EPIG

RCA–ECHAM5 0.47 0.60 0.61

HIRHAM–BCM 2.49 1.46 2.45

explained by the GCM–RCM simulations and the SDMs is

similar when considering two or three sources of variances.

Additionally, the conclusion on which is the most important

source of variance is the same for all catchments except for

DE and PL in winter. For these two catchments, the per-

centage explained by the GCM–RCM simulations is approx-

imately 50 %.

A2 Comparison of reconstructed and original values

A similar verification approach as the one carried out in

Déqué et al. (2007) has also been used. It consists in remov-

ing the data for one combination of RCM–GCM and using

the matrix reconstruction approach to estimate its values for

all SDMs. The reconstructed values are then compared with

the original values and also with two other combinations of

RCM–GCMs (one using the same RCM and one using the

same GCM). This test is applied to two RCM–GCM simula-

tions: RCA–ECHAM5 and HIRHAM–BCM.

The reconstructed vector for these combinations is re-

ferred to as EPIRG. In the case of RCA–ECHAM5, EPIRG is

compared with the vectors found for (i) the original EPI val-

ues found for RCA–ECHAM5, (ii) the combination RCA–

BCM (EPIR in Table A2), (iii) and the combination REMO–

ECHAM5 (EPIG in Table A2). In the case of HIRHAM–

ARPEGE, EPIRG is compared with the original values, with

HIRHAM–ARPEGE (EPIR) and RCA–BCM (EPIG). Ta-

ble A2 shows the average of the RMSE obtained for all the

catchments, T-year levels, seasons, and temporal aggrega-

tions.

Table A2 shows that in the case of RCA–ECHAM5, the

difference between the reconstructed and the original values

is smaller than the difference between the reconstructed val-

ues and the other two RCM–GCM combinations. However,

in the case of HIRHAM–BCM, the difference between the

reconstructed and the original values is higher than the dif-

ference between the reconstructed and the other two RCM–

GCM combinations.

This results show that in some cases the reconstructed val-

ues can differ more from the original values than they dif-

fer from other models. Hence, the variances estimated in the

variance decomposition approach are likely to be affected by

the reconstructed values.
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