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This is to my beloved children Timo and Lucy.

If you ever have the idea to read this you should know that the only reason to do this is

that you are really interested in numerical cognition.
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Publication overview
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Reike, D., & Schwarz, W. (2016). One model fits all: Explaining many aspects of

number comparison within a single coherent model – A random walk account.

Journal of Experimental Psychology: Learning, Memory, and Cognition, 42, 1957-

1971. DOI: 10.1037/xlm0000287

Reike, D., & Schwarz, W. (2017). Exploring the origin of the number size con-

gruency effect: Sensitivity or response bias? Attention, Perception, & Psy-

chophysics, 79, 383-388. DOI: 10.3758/s13414-016-1267-4

Schwarz, W., & Reike, D. (2017). Local probability effects of repeating irrel-

evant attributes. Attention, Perception, & Psychophysics, 79, 230-242. DOI:
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Chapter 1

Introduction:

Specific aspects of number processing

One two three

A little fool I want to be

Two three four

You can give me more

Five six seven

I don’t want to wait for heaven

Nine ten eleven

–

Going back to seven

Seven eight nine

Kann denn das noch sein?

Blank & Meier (Yellow)
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Symbols represent the most amount of information in a compressed way. They

are used in many different situations as powerful tools for communication and to

solve a variety of problems. As humans, we know at least two different types of

symbols. Many symbols consist of features that are directly accessible. They have

a selfexplanatory character, like a pictogram of a crossed mobile. The meaning of

other symbols has to be learned and without this learning process we are unable

to understand these types of symbols. One example of such a symbol is a digit.

Digits represent many features of quantities, and after learning these features, we

connect them to the digits. Subsequently, we are able to easily understand and

use digits as numbers.

Humans have a considerable ability to recognize and respond in relation to

any kind of quantitative information. We encounter quantities in many different

forms and with various intentions. For example, we communicate temperature or

an amount of fluid as numerical values. Similarly, if we buy pieces of anything we

have to count, we pay a price that reflects a quantity. It seems easy and uncompli-

cated to manage this large diversity of numerical information and we use the same

symbols for all these different forms and usages – digits.

One approach to investigate number processing is to consider number com-

parison, which is an important aspect of it. It seems that comparing quantities

is a fundamental cognitive skill of considerable survival value for animals and hu-

mans. However, all creatures have to decide several behavioral matters each day

and many of these decisions are in principle based on quantity comparison. For

example, for animals it is very important to know how many members belong to a

potentially hostile pack in comparison to their own pack. When the foreign pack is

smaller, maybe it is worth fighting; if it is larger, then it could be better to flee. This

is a very drastic example to demonstrate the evolutionary advantage for creatures

that have the ability to count and compare numbers.
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In fact, groups of lions adjust their agnostic behaviour depending on the amount

of their own number in comparison to the number of a foreign group. McComb,

Packer, and Pusey (1994) reported that defending lionesses were more likely to

approach roaring playbacks of one foreign lioness than of a group of three. In

addition, they approach a group of three more cautiously. Furthermore, the smaller

their own group, the more careful the group was when approaching the playback. If

several members of the own group were absent, then they were tempted to recruit

extra companions by roaring. They did so more likely the smaller the own and the

larger the foreign group was.

Is this observed performance unique, or do other animals show comparable

performance in comparing quantities? Indeed, it seems that several species have

the ability to recognize quantities and use them for their decisions. For exam-

ple, pigeons have the ability to compare two small quantities (Brannon, Wusthoff,

Gallistel, & Gibbon, 2001), even if one of the two quantities remains after a numer-

ical subtraction and should be compared to a constant quantity. Pigeons are also

able to use symbols for quantities. Xia, Emmerton, Siemann, and Delius (2001)

reported that trained pigeons responded to numerosities by choosing the related

symbol. Another species that shows an ability to compare quantities, is monkeys.

Nieder, Freedman, and Miller (2002) reported that monkeys realize and indicate

whether two successively presented quantities of items contain the same quantity.

Monkeys have the ability to detect ordinal disparity of numerosities (Brannon & Ter-

race, 1998), and they can be trained to use symbols to name the number of items

in a display (Livingstone, Srihasam, & Morocz, 2010; Matsuzawa, 1985). Pigeons

and monkeys are not the only animals that have these numerical skills. Parrots

can label numerosities (Pepperberg, 1987). Chicks show human-like behavior in

relation to numbers (Rugani, Vallortigara, Priftis, & Regolin, 2015). Finally, crows

(Ditz, & Nieder, 2016), squirrels (Hassmann, 1952) and even fish (Agrillo, Dadda,

Serena, & Bisazza, 2008) can compare quantities as well.
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Figure 1. Example stimuli of dot comparison as used with infants. The upper two panels
represent stimuli for the habituation period with two dots. The bottom panel shows a test
stimulus with three dots. (Adopted from Starkey & Cooper, 1980)

Given that broad account of numerical cognition in animals, it is not surpris-

ing that similar results can be found for humans. Specifically, do human infants

show reliable performance in numerical cognition too? Starkey and Cooper (1980)

reported the ability of 6-month-old babies to distinguish small quantities. In the ha-

bituation period, they bored infants when presenting a display series with the same

numbers of dots. They observed for how long the babies stared at these dots. Fi-

nally, a different number of dots were presented (see Figure 1). The babies stared

longer on three dots as on two dots in the habituation period (for recent review

and extensions see, e.g., Mou & vanMarle, 2014; Starkey & McCandliss, 2014).

This was interpreted to show that the babies were surprised of the unexpected

quantity, and, therefore, they inspected it longer. The babies could distinguish two

and three, but not four and six dotes. The same result occurs when different stim-

uli materials were used such as some animals instead of dots (Strauss & Curtis,

1981). In addition, very young babies (in the first week of their lives) are able to

discriminate between two and three dots (Antell & Keating, 1983). Furthermore,

children in the kindergarten and in school show considerable ability to compare

two numerosities or numbers (e.g., Holloway & Ansari, 2009; Mussolin, Mejias, &

Noël, 2010; Sekuler & Mierkiewicz, 1977). Number comparison as a main topic of

this thesis will be considered in more detail below.
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In addition, Wynn (1992) reported that five-month-old infants have the ability to

understand simple arithmetic procedures. To test the innate understanding of addi-

tion, babies had to observe how two dolls were separately placed behind a screen.

Then, the screen was removed and the babies were confronted with one of two sit-

uations. Meanwhile, the time was measured to see how long the infants watched

the yielded dolls. In one condition, the expected result of two dolls was presented;

in the other condition, only one doll was presented. To test the understanding of

subtraction, a similar procedure was used. Two dolls were seen in the beginning,

and then they were covered by a screen. The babies observed the removing of one

doll. The infants stared longer at one doll in the addition task and at two dolls in the

subtraction task. This was interpreted to mean that the infants were surprised (or

irritated) in these conditions and therefore have a basic understanding of simple

arithmetic even at very young ages.

What are the numerical and mathematical skills of children in school? Children

show different skills from the first grade on, for example digit naming, number com-

parison, dot enumeration, number line estimation, addition and subtraction (e.g.,

Moore & Ashcraft, 2015). Over schooldays, children continue to develop these

skills. However, children show considerable performance in numerical tasks. To

consider adults’ numerical cognition, different aspects (and effects) will be pre-

sented separately.

Number Comparison

Numerical distance effect. Moyer and Landauer (1967) reported first that the

time required to decide which of two presented digits is numerically larger de-

creases with increasing numerical distance of these two digits, the numerical dis-

tance effect. In addition, the error rate decreases with increasing numerical dis-

tance. Although the response time is faster in digit comparison than in comparing
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numerosities, the basic pattern (including the numerical distance effect) in digit

comparison is similar to comparing numerosities (e.g., Buckley & Gillman, 1974;

Ratcliff, Thompson, & McKoon, 2015 ). The numerical distance effect was demon-

strated in different notations, for example in Japanese scripts Kanji and Kana

(Takahashi & Green, 1983) or in Hebrew (Razpurker-Apfeld & Koriat, 2006).

Is this effect limited to a strict number comparison tasks? Schwarz and Eiselt

(2012) reported a numerical distance effect also in a visual search task. The par-

ticipants had to indicate whether there was a 5 within presented digits. The tar-

getdistractors were presented in a condition numerically close (3,4,6,7) to the 5 or

far (1,2,8,9). Participants solved the task faster and were less error-prone in the

numerically far condition.

Magnitude effect. Very similar to the numerical distance effect is the magnitude

effect. This is the time required to indicate the numerically larger number out of two

increases with increasing numerical magnitude by constant numerical distances

(e.g., Buckley & Gillman, 1974; Moyer & Landauer, 1967). In addition, the error

rate decreases with increasing numerical magnitude.

The magnitude effect leads to the strong assumption that perceiving numbers is

similar to perceiving physical properties due to the Weber–Fechner law. To decide

whether two objects differ in a physical property, a minimum difference is needed

between these two objects related to this property. Furthermore, this minimal dif-

ference for discrimination depends on the actual value of the physical property of

both objects. Specifically, the larger one of the actual values of the physical prop-

erty is the larger the difference between both objects has to be. For example,

consider a minimum difference in length to distinguish two given lines. Next, if the

smaller line length is doubled, then the larger line length (and thereby the minimum

difference) has to be doubled also to be able to decide that these longer lines have

different lengths rather than being similar (Festinger, 1943).
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To consider this in relation to the perception of numbers, it is useful to take into

account their mental representation. Can the manner of the mental representation

of numbers provide us with an explanation for the magnitude effect and for the

numerical distance effect? To answer this question, it is necessary to consider

what we already know about mental number representation.

The mental number line

Spatial-numerical association. At school, children learn a number line. Usu-

ally, numbers are sorted from smallest to largest left to right on this line. Dehaene,

Bossini, and Giraux (1993) let participants indicate by pressing a button whether

numbers were odd or even. Participants solved this task with the left hand faster for

small digits than for large digits and with the right hand faster for large digits than

for small digits, which was termed the spatial-numerical association of response

code (SNARC) effect. This was often seen as evidence for an internalized rep-

resentation of the number line – a mental number line. The usage of this mental

number line seems flexible and adaptable to the presented range (Dehaene et al.,

1993). Within a range from 0 to 5, the 5 is located on the right side and within a

range from 4 to 9 the 5 is located on the left side. In addition, the SNARC effect

can be extended to multi-digit numbers (Nuerk, Moeller, Klein, Willmes, & Fischer,

2011) and does not depend on specific effectors (Schwarz & Keus, 2004; Schwarz

& Müller, 2006). Furthermore, the SNARC effect occurs also in other tasks. For

example, in a simple detection experiment, the spatial attention shifts to the left

after small and to the right after large numbers (Fischer, Castel, Dodd, & Pratt,

2003).

Linear vs. logarithmic. The specific nature of the mental representation of num-

bers is broadly discussed in the literature. Specially, for the scale of the mental

number line, mostly two types of relations from numbers to the mental represen-
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tation were suggested – a linear and a logarithmic number line, as illustrated in

Figure 2.

1 2 3 4 5 6 7 8 9

linear number line

1 2 3 4 5 6 7 8 9

logarithmic number line

Figure 2. Illustration of linear and logarithmic number lines. The upper line shows a
linear relation of numbers whereas the lower line shows a logarithmic relation. The linear
number line demonstrates that the perceived difference between two neighboring numbers
is equal for all pairs. In the logarithmic number line the perceived difference between two
neighboring numbers decreases with increasing magnitude.

In a number naming task, Whalen, Gallistel, and Gelman (1999) let participants

press as many key presses as the magnitudes value presented. Humans showed

the same result as animals. The variance of the answers increases with increasing

magnitude. This supports the view of a logarithmic internal representation of the

mental number line. Therefore, the perception of numbers is likely to be compara-

ble to the perception of physical features, due to the Weber–Fechner Law. Huber,

Moeller, and Nuerk (2014) reported that the scale of the mental number line seems

to be flexible for adults who adapted it to the specific task. Children did not show

this flexibility.

Is the numerical relation between numbers and space the only relation con-

cerning the perception of magnitudes? Bonato, Zorzi and Umiltà (2012) presented

empirical evidence also for a relation between space and time – a mental time line.

However, this suggests that there may be a more complex magnitude representa-

tion system.
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A theory of magnitude

Walsh (2003) proposed a model that integrates different aspects and variants

of magnitude. He suggested shared cognitive processes to perceive space, time

and quantity. Henik, Leibovich, Naparstek, Diesendruck, and Rubinsten (2012)

suggested a direct relation from this analogous representation of magnitude to the

numerical core system. For example, the SNARC effect supports the view that

there is a cognitive inference between space and numbers. Are there inferences

between other dimensions, specifically between different quantity features?

The number-size congruency effect. In a study by Besner and Coltheart

(1979), participants had to decide which of two presented digits with different physi-

cal sizes was numerically larger. The participants were faster and less afflicted with

errors in conditions with congruent numerical magnitude and physical sizes (e.g.,

2 – 8) than in incongruent conditions (e.g., 2 – 8), the number-size congruency

effect. Henik and Tzelgov (1982) reported the same effect for the reversed task of

deciding which of two presented digits was physically larger. The number-size con-

gruency effect occurs also in other notation systems (Razpurker-Apfeld & Koriat,

2006) and different tasks like visual search (Sobel, Puri, & Faulkenberry, 2016).

Presently, it is unclear which processing stage is involved in the cognitive process

of deciding whether the physical size or the magnitude is responsible for the inter-

action of physical size and the magnitude in response performance. Schwarz and

Heinze (1998) reported in an event-related potential study that lateralized readi-

ness potentials are shifted in time depending on the inference of numerical and

physical size. In a number-size congruity task participants showed a stronger ac-

tivation in their dorsolateral prefrontal cortex and the anterior cingulate cortex in

incongruent trials than in congruent trials (Kaufmann et al., 2005). What else do

we know about the brain in relation to the number processing and representation

beyond the number-size congruity effect?
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Numbers and the brain

1 2 3 4 5
presented numerosity

0
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Figure 3. Illustration of response rates of numerosity specific neurons. Approximated
normalized response rates of neurons, which are specific to 1, 2, 3, 4 or 5 (from left to
right) as a function of the presented numerosity. Every neuron reaches the 100 per cent
response rate if the specific numerosity is presented. The response rate is declining the
further the presented numerosity is to the specific numerosity. (Adopted from Nieder, 2002)

Dehaene, Piazza, Pinel, and Cohen (2003) proposed three parietal circuits for

number processing. The horizontal segment of intraparietal sulcus is needed for

quantity processing, the angular gyrus is needed for verbal processes in numeric

relations and the posterior superior parietal lobule regulates spacial and non-

spacial attention. In addition, a meta analysis from Arsalidou and Taylor (2011)

suggests that in more complex tasks several different brain areas are involved, for

instance frontal and prefrontal regions for arithmetic processing. However, they

also reported that the inferior and superior parietal lobules are needed for numeri-

cal tasks. Kaufmann et al. (2005) showed a stronger activation in bilateral parietal

areas, including the intraparietal sulcus, for smaller numerical distances (see also

Dehaene, 2006). Furthermore, the parietal cortex is involved in number processing

while solving different number tasks (Piazza & Eger, 2016). The inferior parietal
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sulcus is used even for the processing of numerical symbols as digits (Holloway,

Battista, Vogel, & Ansari, 2013).

Nieder (2002) demonstrated the existence of numerosity specific neurons. The

response rate of selective neurons depends on the quantity presented. It is the

strongest response rate at the preferred quantity and the larger numerical distance

from this preferred quantity is the lower the response rate. As illustrated in Fig-

ure 3, the response rate of number sensitive neurons will be more imprecise with

increasing numerical magnitude.

Number representation

In light of the above, three main conclusions will be suggested about number

representation. First, numbers are represented in a noisy manner and these rep-

resentations are sorted according to numeric value. Probably, the representations

are noisier with increasing numerical magnitude, as illustrated in Figure 3. There-

fore, number perception is analogous to the perception of physical properties due

to the Weber–Fechner Law. Second, the number processing system shares parts

with the general processing of magnitude. Third, we use strategic spatial infor-

mation to understand numbers. Specifically, we sort numbers from left to right in

increasing order. The spatial location probably helps to distinguish smaller from

larger numbers.

Following these main conclusions, this thesis elaborates on three main ques-

tions. First, what kind of mental process is the number comparison process to

produce effects reported above (e.g., the numerical distance effect) with the use

of noisy representations of numbers? Second, does the interaction of numerical

magnitude and physical size affect the actual perception, or does it affect the re-

sponse part of the cognitive process? Third, can we use the mental representation

of numbers and related effects (e.g., the SNARC effect) as tools to investigate other
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relations? This thesis will answer these questions in more detail in three chapters,

but they are summarized below.

Explaining many aspects of number comparison within

one coherent model

Random walk and diffusion models are broadly discussed as process models

in relation to decision tasks. Specifically, in two choice tasks where participants

have to give one of two possible answers, random walk and diffusion models have

been increasingly applied. For example, Ratcliff and Smith (2004) successfully

fitted diffusion models to a signal detection task, a lexical decision task, and a

recognition memory task. Ratcliff, Smith, Brown, and McKoon (2016) reviewed the

broad application possibilities of random walk and diffusions models. In addition,

activities of neurons in the superior colliculus were described within the framework

of diffusion models (Ratcliff, Cherian, & Segraves, 2003). These fire rates were

linked to the response times of eye movements of monkeys in a distance related

two choice tasks. Gold and Shadlen (2007) trained monkeys to perform a motion

detection task, which was also a two choice task, with eye movement as response.

They explained neuronal activity (e.g., in the lateral intraparietal area) within the

framework of random walk models.

Poltrock (1989) first used a random walk model as a framework to explain re-

sponse times and error rates within a digit comparison task. He explained basic

findings in numerical cognition like the numerical distance effect. Smith and Me-

whort (1998) validated the usability of random walk models in number comparison

tasks and extend further explanations as speed accuracy effects within the frame-

work of random walk models. Schwarz and Ischebeck (2003) used a diffusion

model that coalesced numerical magnitude and physical size. They described re-
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sponse times and error rates quantitatively for a numerical and a physical size task

within the framework of their coalescence model.

Random walk models provide a coherent chronometric framework, based on a

dynamic, process-orientated view. In the second chapter of this thesis, a random

walk model with parsimonious usage of meaningful interpretable parameters is

used to account for open questions in relation to numerical comparison and the

usability of random walk models for numerical comparison tasks.

It will be shown that random walk models account quantitatively for the full ma-

trix of response times and error rates in a complete paired digit comparison design.

Response time variance is quantitatively explained even for the full matrix of digit

pairs. Furthermore, error response times are investigated in detail. The mean er-

ror response time of a given digit pair (e.g., 2–8) is faster than the mean correct

response time of the complementary digit pair (e.g., 8–2) and random walk models

can account for it. Specifically, different from standard assumptions often made

in random walk models, this account requires that the distributions of step sizes

of the induced random walks are asymmetric. Random walk models predict a nu-

merical distance effect even for error response times and this effect clearly occurs

in the observed data. Furthermore, the presented model provides a well-defined

framework to investigate the nature and scale (e.g., linear vs. logarithmic) of the

mapping of numerical magnitude onto its internal representation. In comparison

of the fits of proposed models with linear and logarithmic mapping, the logarithmic

mapping is suggested to be prioritized.

Finally, a novel oculomotor effect is reported, namely the saccadic overschoot

effect. The participants responded by saccadic eye movements and the amplitude

of these saccadic responses decreases with numerical distance. However, it will

be discussed how the model used can help to interpret complex findings (e.g., con-

flicting speed vs. accuracy trends) in applied studies that use number comparison

as a well-established diagnostic tool.
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Exploring the origin of

the number-size congruency effect

As discussed above, the number-size congruency effect describes an interac-

tion between numerical and physical size in tasks that involve numerical or physical

size comparisons. Specifically, participants can solve such tasks faster in congru-

ent conditions (e.g., 2 – 8) than in incongruent conditions (e.g., 2 – 8). An as-yet-

open question is, whether the benefit in congruent conditions is related to a better

perception than in incongruent conditions? Alternatively, the number-size congru-

ency effect mediated response biases due to number or respectively physical size.

The signal detection theory is a perfect tool to distinguish between these two

alternatives. It describes two parameters, namely sensitivity and response bias

(Macmillan & Creelman, 2005). Changes in the sensitivity relate to the actual task

performance due to real differences in perception processes whereas changes in

the response bias simply reflect strategic implications as higher preparation of an

anticipated answer.

In Chapter 3, the signal detection theory is applied to a task that required par-

ticipants to judge the physical size of digits. The results clearly demonstrate that

the number-size congruency effect cannot be reduced to mere response bias ef-

fects and that genuine sensitivity gains for congruent number-size pairings than

contributes to the number-size congruency effect.

Local probability effects of

repeating irrelevant attributes

Stimuli with different attributes are often used in research experiments. These

attributes, while logically and statistically independent, often produce mental con-

flicts within these attributes or in relation to the performed answers. For example,
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Simon (1969) reported that responses in the direction of an irrelevant location per-

formed faster than responses to the opposite site of the location, known as the

Simon-effect. This effect directly relates to the effect that responses are faster

given to smaller (larger) numbers on the left (right) hand than on the right (left)

hand (the SNARC effect; Dehaene, Bossini, & Giraux, 1993).

Bertelson (1961) showed that the trial-by-trial repetition probability of a stimulus

could be varied without altering the global (i.e., overall) probability of the stimulus

to occur. In a two choice design he varied the response repetition independently

from the global probability of stimuli occurrence. Responses in actual response

repetitions showed a gain in performance in relation to response changes in high

repetition conditions as compared to low repetition conditions.

Chapter 4 presents a research design that was not used with conflict tasks be-

fore. In a Simon and a SNARC task, the local transition probability of irrelevant

attributes (location, magnitude) varied while local transition probability of relevant

attributes (color, parity) and the global probability occurrence of each stimuli were

kept constant. Participants are quite sensitive and able to recognize the underlying

local transition probability of irrelevant attributes. They show a performance gain

for actual repetitions of the irrelevant attribute in relation to changes of the irrele-

vant attribute in high repetition conditions compared to low repetition conditions.

One interpretation of these findings is that information about the irrelevant attribute

(location or magnitude) in the previous trial is used much as an informative precue,

so that participants can prepare early processing stages in the current trial, with

the corresponding benefits and costs typical of standard cueing studies.
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Chapter 2

One model fits all: Explaining many

aspects of number comparison within

a single coherent model – A random

walk account

This chapter has been published as: Reike, D., & Schwarz, W. (2016). One model fits all:
Explaining many aspects of number comparison within a single coherent model – A random walk
account. Journal of Experimental Psychology: Learning, Memory, and Cognition, 42, 1957-1971.
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Abstract

The time required to determine the larger of two digits decreases with their nu-

merical distance, and, for a given distance, increases with their magnitude (Moyer

& Landauer, 1967). One detailed quantitative framework to account for these ef-

fects is provided by random walk models. These chronometric models describe

how number-related noisy partial evidence is accumulated over time; they assume

that the drift rate of this stochastic process varies lawfully with the numerical mag-

nitude of the digits presented. In a complete paired number comparison design we

obtained saccadic choice responses of 43 participants, and analyzed mean sac-

cadic latency, error rate, and the standard deviation of saccadic latency for each of

the 72 digit pairs; we also obtained mean error latency for each numerical distance.

Using only a small set of meaningfully interpretable parameters, we describe a

variant of random walk models that accounts in considerable quantitative detail for

many facets of our data, including previously untested aspects of latency standard

deviation and error latencies. However, different from standard assumptions of-

ten made in random walk models, this account required that the distributions of

step sizes of the induced random walks are asymmetric. We discuss how our find-

ings can help in interpreting complex findings (e.g., conflicting speed vs. accuracy

trends) in applied studies which use number comparison as a well-established di-

agnostic tool. Finally, we also describe a novel effect in number comparison, the

decrease of saccadic response amplitude with numerical distance, and suggest an

interpretation using the conceptual framework of random walk models.
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Introduction

Comparing quantities is a fundamental cognitive skill of considerable survival

value for animals and humans. Correspondingly, symbols to signal quantities in

the abstract played a fundamental role in human cultural evolution, and humans

are extremely efficient in comparing symbolic information representing distinct nu-

merical magnitudes. Digit comparison involves “symbolic” information because the

relevant dimension – the abstract numerical magnitude – cannot be directly inferred

from the graphical form of the digits as such; rather, we have to rely on previously

learned internal representations from which numerical information is retrieved.

In a classical study investigating the nature of these representations and re-

trieval processes Moyer and Landauer (1967) demonstrated that the time to

choose the numerically larger out of two simultaneously presented digits system-

atically decreases with their numerical difference (the numerical distance effect;

for further details, see, e.g., Dehaene, 1992, 2011; for general background, see

Dehaene & Brannon, 2011; Nieder, 2005). The numerical distance effect is little

influenced by extensive practice (e.g., Poltrock, 1989; Steinborn, Bratzke, Rolke

et al., 2010), it has repeatedly been demonstrated with different number notation

systems (e.g., Holloway, Batista, Vogel, & Ansari, 2013; Razpurker-Apfeld & Ko-

riat, 2006; Takahashi & Green, 1983), it is observed in humans from early age on

(e.g., Girelli, Lucangeli, & Butterworth, 2000; Holloway & Ansari, 2009; Landerl

and Kölle, 2009; Moore & Ashcraft, 2015; Mussolin, Mejias & Noël, 2010; Sekuler

& Mierkiewicz, 1978; Soltész, Szücs, Dékány et al., 2007), shows up consistently

in different behavioral (e.g., Fischer & Miller, 2008; Fernandez, Rahona, Hervas,

et al., 2011; Milosavljevic, Madsen, Koch, & Rangel, 2011; Song & Nakayama,

2008; Ganor-Stern & Goldman, 2015) and electrophysiological (e.g., Nieder, 2005;

Schwarz & Heinze, 1998; Soltész et al., 2007; Cassey, Heathcote & Brown, 2014)

indices, and has been demonstrated in numerous studies on animal cognition (e.g.,

Livingstone, Srihasam, & Morocz, 2010; Matsuzawa, 1985).
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According to a prominent model originally proposed by Moyer and Landauer

(1967; for summaries and elaborations, see Dehaene, 2011; Gallistel & Gelman,

1992, 2005; Nieder, 2005) symbolic information about numerical magnitudes is

converted into percept–like analog representations which are then in turn com-

pared to each other, much like the comparison of sensory representations of stimuli

which differ along some extensive physical dimension. This analog representation

is thought to be quickly accessible, fuzzy, and preverbal, and is often assumed to

form a necessary developmental stage preceding the built–up of slower but exact

verbal, propositional algorithms which form the basis of our abstract (e.g., alge-

braic) computational cognitive skills (e.g., Gallistel & Gelman, 1992, 2005; Hyde,

Khanum, & Spelke, 2014; Norris, McGeown, Guerrini, & Castronovo, 2015; Starr,

Libertus, & Brannon, 2013).

Convergent evidence supporting the concept of an analog representation of

numerical magnitude comes from experimental, comparative, physiological, and

developmental psychology (for detailed reviews, see Dehaene & Brannon, 2011;

Nieder, 2005; Shettleworth, 2010, ch. 10). For example, one line of evidence

consistent with the concept of an analog magnitude representation derives from

Stroop-type interference experiments in which digits are presented in varying phys-

ical (font) sizes. Replicating and extending Besner & Coltheart (1979), many

studies observed systematic number-size congruency effects, with both number

and size as response-relevant dimensions (e.g., Henik & Tzelgov, 1982; Risko,

Maloney & Fugelsang, 2013; Schwarz & Ischebeck, 2003), and these effects

have well-documented neurophysiological correlates (e.g., Cohen-Kadosh, Cohen-

Kadosh, Linden, Gevers, Berger, & Henik, 2007; Schwarz & Heinze, 1998). Simi-

larly, the concept of a percept-like representation of numerical magnitude is often

seen as consistent with related distance-dependent congruity effects observed in

elementary perceptual tasks such as temporal order judgments (Schwarz & Eiselt,

2009), number naming in a flanker task (Ischebeck, 2003), or visual search (God-
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win, Hout, & Menneer, 2014; Schwarz & Eiselt, 2012). Finally, like representations

of sensory magnitudes, number comparison latencies exhibit a Weber-law signa-

ture: for a given numerical distance, the greater the numerical value of the smaller

digit, the longer it takes to judge their order (the magnitude effect; Dehaene, 2003;

Gallistel & Gelman, 2005; Nieder, 2005). In its strong version Weber’s law predicts

that latencies and error rates depend only on the ratio of the two digits involved.

Note that the numerical distance effect is more general in the sense that Weber’s

law implies the distance effect but not conversely. Specifically, latency and error

rate may well decrease monotonically with numerical distance, yet not in a manner

conforming to Weber’s law.

Random walk models of number comparison

Given this broad and multi–disciplinary interest in number comparison, surpris-

ingly few attempts exist which seek to model quantitatively different aspects of rep-

resentative number comparison data on the basis of a single coherent conceptual

framework. Random walk and diffusion models (for general background, see Link,

1992; Luce, 1986, ch.s 8-9; Ratcliff & Smith, 2004) have considerable biological

validity because they successfully account, at the single-cell level, for known neural

correlates of two-choice decisions (e.g., Gold & Shadlen, 2007; Ratcliff, Cherian, &

Segraves, 2003; Schall, 2001), and are often seen as a natural and parsimonious

framework to incorporate the concept of analog magnitude representations.

The basic idea behind random walk models of number comparison (Figure 1) is

that each of a pair of digits activates internal analog representations retrieved from

memory. These representations provide noisy partial information about each digit

which is contrasted in each processing step by means of a differencing rule, and

this differential evidence is then accumulated over time. The running total (starting

at x = 0) at any moment is an analog quantity representing and summarizing the

total information retrieved from memory by the participant so far. An overt decision
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Figure 1. Random walk model of number comparison. Starting at x = 0, noisy partial
evidence about the two digits (i, j) is accumulated until for the first time the upper response
barrier at x = a > 0 or the lower response barrier at x = −b < 0 is reached. In the first
case (upper sample path) the answer given is “left digit (i) larger”, in the second case
(lower sample path) “right digit (j) larger”. A skew (double exponential) density gij(x),
illustrating the case i < j, is indicated from which the individual step sizes are drawn. The
mean µij of this density depends on the two digits presented; in the logarithmic model
µij = k · [ln(i) − ln(j)], in the linear model µij = k · (i − j).

is reached when the cumulated differential evidence reaches for the first time an

upper response barrier at a > 0 (“left digit larger”) or a lower barrier at −b < 0

(“right digit larger”). Thus, the barriers represent the critical amount of differential

evidence required by the participant for the particular response with which they are

associated. For a given digit pair (i, j) response latencies depend on (the barriers

and) the retrieval rates (the drifts µi, µj) associated with each of the digits; the

net drift rate µij of the accumulation process is then given by the difference of the

individual drifts, µij = µi−µj. That is, the net drift rate µij is the mean of the density

gij(x) associated with the steps of the random walk. For explicit analytic results for

random walk models, see, e.g., Link (1975), Luce (1986, ch. 8), Schwarz (1990,

1991), or Townsend & Ashby (1983, ch. 10).

A number of studies has produced converging evidence suggesting that ran-

dom walk or diffusion models (i.e., the continuous-time counterparts of discrete-

time random walk models which result when increasingly smaller steps are made
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at an increasingly higher speed; cf., Darling & Siegert, 1953; Feller, 1971; Luce,

1986; Smith, 1990) provide a coherent conceptual framework that is potentially

able to account for basic results from a variety of important paradigms used in

number comparison. Following early qualitative suggestions (Buckley & Gillman,

1974), Poltrock (1989) was the first to account for mean response time (RT) and

error rates in a number comparison task quantitatively on the basis of a random

walk model. Specifically, he showed that the effects of varying the emphasis on

speed vs. accuracy are well accounted for by variations of the response barriers.

In contrast, the digit-specific drift rates µi remained largely invariant across the

speed conditions, and were an increasing, concave function of the numerical mag-

nitude i. Smith and Mewhort (1998) confirmed and extended these findings by

fitting a random walk model to RTs in a closely related paradigm in which partic-

ipants judged single digits ( ̸= 5) to be smaller or larger than the standard of 5.

Schwarz and Stein (1998) used a diffusion model to account in quantitative detail

for the time-dependent pre-sampling effects of presenting one of the two digits with

a short temporal head start. Schwarz and Ischebeck (2003) used the same model

to explain why and to which degree numerical magnitude and (font) size effects

interact when the digits are compared with respect to number vs. with respect to

font size. Using the single-digit paradigm of Smith and Mewhort (1998), the diffu-

sion model also successfully explained, on a distributional level, the interaction of

numerical distance effects with target (a digit > 5) prevalence in a go-nogo task

(Schwarz, 2001). Sigman and Dehaene (2005; also see Kamienkowski, Pash-

ler, Dehaene, & Sigman, 2011) applied a single-barrier diffusion model in a study

which employed a dual task paradigm (cf., Pashler & Johnston, 1998) involving a

number comparison task as one component. On the basis of their diffusion model

they accounted in considerable detail for task-2 processing delays arising at a cen-

tral bottleneck stage, with number comparison both as the first or second task,

varying numerical distance, notation, and response complexity as further factors.
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A number of evidence accrual and accumulator models which are closely related

to the basic random walk model have also been shown to account for a variety of

systematic effects in number-related tasks (see, for example, Gallistel & Gelman,

2005; Whalen, Gallistel, & Gelman, 1999). Naturally, other important model ar-

chitectures have also been proposed in the context of number comparison. For

example, detailed simulation studies of complex computational models (e.g., Chen

& Verguts, 2010; Moeller, Huber, Nuerk & Willmes, 2011; Verguts, Fias, & Stevens,

2005) have demonstrated unsupervised number-related learning effects in network

units. These effects mimic several aspects in the processing of symbolic vs. non-

symbolic stimuli, and can potentially help to differentiate spatial vs. non-spatial

representations, or numerical vs. non-numerical order processing (e.g., Verguts &

van Opstal, 2014) .

Open questions about random walk models of number comparison

Notwithstanding these encouraging results, the random walk accounts re-

viewed above have left open a number of important and potentially informative

aspects of number comparison, reviewed in more detail below. This seems quite

remarkable as random walk models provide a coherent chronometric framework,

based on a dynamic, process-oriented point of view. Therefore, an important fea-

ture of these models is usually seen in their ability to address different aspects

of number comparison data based on only a small set of elementary processing

assumptions. We next discuss five of these aspects which we address in our study.

First, random walk models predict error rates but there is a clear lack of findings

showing that these models account quantitatively for the full matrix of error rates

obtained in a complete paired number comparison design. For example, in his

extensive study Poltrock (1989, eq. 5) tested certain approximately linear overall

relations between transformed error rates and mean overall RT for all pairs involv-

ing the digits from 2 to 9. From his regression analyses he concluded that the
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random walk model accounted quite well for the major effects on error rate in his

data. However, Luce (1986, p. 346) analyzed in detail overall linear regression

techniques for random walk models (as also used by Poltrock, 1989) and warned

that the conclusions suggested by these analyses “can be grossly misleading”. To

illustrate Luce’s point, we substituted the parameter estimates given in Poltrock’s

Table 7 into his eq. (6) to obtain probability predictions for each individual digit

pair separately. When these predictions are evaluated by a conventional χ2−test

for the individual binomial proportions (Poltrock, 1989, Table 6), the deviations are

highly significant, χ2(df = 41) ≈ 9081. Thus, although Poltrock’s random walk

model reproduces several features of the data such as the distance effect and

the speed-accuracy trade–off quite well, its account of the individual error rates is

not satisfactory (also see Poltrock, 1989, pp. 151-152). It is at present unclear if

this lack of fit reflects a genuine, systematic inadequacy of the basic random walk

model.

Second, the coherent chronometric framework provided by the random walk

model allows in principle for prediction not only of mean RTs and error rates but

also of RT variances, which provide a distinctive noise signature that reflects and

ideally reveals basic aspects of the underlying processing mode (e.g., Whalen et

al., 1999; Cordes, Gallistel, Gelman, & Latham, 2007). Variance predictions re-

quire no new assumptions to be added to the basic model: the variance of the de-

cision times Dij for a given digit pair (i, j) is completely defined by the processing

assumptions summarized in Figure 1. Thus, using the standard additive decompo-

sition RTij = Dij +M, the only new parameter needed (assuming independence of

decision and motor times) is the variance of the non-decision component, M. De-

spite this fact, no systematic attempt has so far been made to test whether random

walk models can explain RT variance in number comparison tasks.

Third, a similar observation holds for error latencies as well. An attractive aspect

of random walk models is their ability to predict mean RTs conditional on a correct
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vs. incorrect response. For example, are errors in number comparison faster than

correct responses? Or, is there a numerical distance effect for mean RT of incorrect

responses as well, and if so does the random walk correctly account for it?

Most previous random walk accounts of number comparison either ignored the

latency of errors altogether (e.g., Schwarz, 2001; Sigman & Dehaene, 2005, p.

347), or focused exclusively on overall RT, lumping together mean correct and

error RT (e.g., Poltrock, 1989, eq. 5). The only related study which addressed the

comparison of mean correct vs. error latency is that of Smith and Mewhort (1998)

whose findings remained inconclusive. Their random walk model (p. 150) assumes

normal (i.e., symmetric) step size densities and also symmetric boundaries (i.e.,

a = b); it predicts (cf., their eq.s 2–4) that error and correct RTs have the same

distribution. In line with this prediction, these authors found (their Experiment 2;

p. 155) that for a given digit mean error and correct RT did not differ. Because

the pattern for error and correct RTs was similar, they did not model or analyze

error latencies any further. In contrast, in their otherwise similar Experiment 1,

errors tended to be faster than correct RTs (p. 152; their Table 2). Thus it is an

open question whether error and correct latencies differ, and also whether error

latencies in number comparison show a numerical distance effect.

More generally, random walk models for paired comparison designs typically

assume or imply that the step size densities for complementary digit pairs (i, j)

and (j, i) are mirror-images of each other: gij(x) = gji(−x). As reviewed in the

Appendix, if in addition the step size densities gij(x) themselves are symmetric

(such as the normal density; e.g., Smith & Mewhort, 1998, p. 150, or Poltrock,

1989, p. 138) then the mirror-image property implies (even when a ̸= b) that incor-

rect responses to any given pair are on average as fast as correct responses to its

complementary pair (note that these two cases lead to the same overt response).

Averaging across both pairs (as is routinely done in computing the numerical dis-

tance effect), correct responses and errors are then predicted to be equally fast.
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As an alternative to symmetric step size densities in the present study we con-

sider the skew double exponential distribution (for background on this distribution

in the context of perceptual decision making, see Foley & Schwarz, 1998; Schwarz

& Miller, 2014) which is shown in Figure 1, and described formally in the Appendix.

Critically, under the usual mirror-image property gij(x) = gji(−x) this skew distribu-

tion does not predict errors for a given digit pair to be on average as fast as correct

responses to its complementary pair. To see why, consider Figure 1 which refers

to a case in which the left digit is smaller than the right digit (i.e., i < j). Negative

steps are then directed towards the lower barrier at −b which is associated with

the response “right digit larger”, and the random walk will on average tend to this

correct barrier, i.e., µij < 0. Intuitively, a step size density gij(x) with positive skew

as shown in Figure 1 permits especially large isolated steps into the direction of

its long (here: the positive) tail, leading to shorter mean first passage times across

the (incorrect) barrier to which this long tail points. Thus, a skew step size density

gij(x) as in Figure 1 could explain from first principles why incorrect responses to

a pair (i, j) are on average faster (Figure 1) or slower (i.e., when the elongated

tail points towards the correct response barrier) than correct responses (j, i). For

a more comprehensive and conclusive evaluation of random walk models of num-

ber comparison it would thus be important to know if the predictions implied by

symmetric step size densities hold. If they do not hold then it would be equally

important to know if this reflects a genuine failure of the random walk model in

Figure 1 per se (necessitating additional modifications, such as, e.g., starting point

variability across trials; see Brown & Heathcote, 2008; Donkin, Brown, Heathcote,

& Wagenmakers, 2011; Ester, Ho, Brown, & Serences, 2014; Ratcliff & Rouder,

1998; Ratcliff & Smith, 2004) or else if skew (e.g., double exponential) distributions

are able to provide a more adequate and complete account of the data.

Fourth, there has been an extensive debate (e.g., Cordes et al., 2007; De-

haene, 2003, 2011; Huber, Moeller & Nuerk, 2014; Nieder, 2005) about the na-
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ture and scale (e.g., linear vs. logarithmic) of the mapping of numerical magni-

tude onto its internal representation, and how the functional form of this mapping

relates to the Weber-law signature of numerical comparison latencies. Random

walk models as in Figure 1 provide a well-defined framework which gives a clear

operational meaning to these conceptual distinctions. Specifically, in the context

of random walk models a crucial aspect is the manner in which the mean size of

each step in the accumulation process (i.e., the net drift rate) depends on the digits

presented. Most extant applications of random walk models of number compari-

son have treated and estimated these drift rates as free, unconstrained parame-

ters, and have not specifically addressed or compared different functional forms

of number-to-drift mappings. In the present study we aimed to compare linear vs.

logarithmic number-to-drift mappings within the conceptual framework of random

walk models, which also provides a theoretical basis to explore the open question

of analogous Weber-law signatures for error rates and the variability of latency.

Finally, as random walk models focus on decision processes, we intended to

minimize the contribution of non-decisional processing stages, M. For example,

using manual responses Poltrock (1989, Tables 1 and 4) obtained a mean non-

decisional component of µM = 378 ms for mean RTs of about 420 ms. According

to this estimate, with button press responses non-decisional processing stages

make up about 90 per cent of total RT (for similar results using manual responses,

see Sigman & Dehaene, 2005; Smith & Mewhort, 1998). In contrast, our partic-

ipants indicated their decisions by horizontal saccades which are well-known to

be faster and less variable than manual responses (e.g., Khalid & Ansorge, 2013,

Figures 5 and 6); for example, in their number comparison study Milosavljevic et

al. (2011) estimate that when their participants just exceeded the level of chance

performance then their saccades had onset latencies of only about 230 ms. Thus,

while saccadic responses do not eliminate the need to program and execute an

overt motor response, they serve to reduce the contribution of the motor compo-
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nent (e.g., its mean and variance) relative to the decision component. In addition,

measuring saccadic eye movements enabled us to investigate if other aspects of

the response beyond its accuracy and latency (e.g., saccadic amplitude) are sys-

tematically related to numerical distance as well (e.g., Fischer & Miller, 2008; Song

& Nakayama, 2008; Ganor-Stern & Goldman, 2015).

Conclusions regarding the issues reviewed above can have potentially rele-

vant implications for applied studies which use number comparison as a well-

established diagnostic tool in currently active research areas (e.g., Norris et al.,

2015). For example, as described in more detail in our General Discussion, in

some of these studies, speed and accuracy measures work in opposite directions

when different groups of participants (e.g., young vs. elderly adults) are compared.

If random walk models do provide an adequate framework to account for various

aspects of number comparison then they would seem ideally suited to disentangle

opposing speed and accuracy trends, and therefore could help to interpret complex

findings.

Thus, the aim of the present study was to address the five topics reviewed

above in a complete paired number comparison design with saccadic responses,

using a random walk framework (Figure 1) with a minimum of parameters. More

specifically, within this framework we wanted to predict mean correct saccadic on-

set latency (SL) as well as error rates and SL standard deviations on the level of the

72 individual digit pairs. Also, we aimed at testing if (as predicted by random walk

models) error responses, too, show a numerical distance effect, and to compare

systematically mean correct to mean error SL of complementary digit pairs. These

comparisons test the strong predictions made by random walk models with sym-

metric (e.g., normal) step size densities, and evaluate the plausibility of accounts

based on skew step size densities. Finally, using the framework of random walk

models we aimed at comparing different mappings (linear vs. logarithmic) of nu-

merical magnitudes onto their internal representations which govern the drift rates

of the evidence accumulation process.
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Method

Participants. Forty-three University Potsdam students, aged 18-33, with nor-

mal or corrected-to-normal vision participated in one session of approximately one

hour. They either received a payment of ¤8 or course credit for their participation.

Stimuli and apparatus. The stimuli consisted of all 72 ordered digit pairs (i, j),

1 ≤ i, j ≤ 9. Each display consisted of two different digits side by side to the

left and to the right of a centered fixation cross on a 75-Hz, 1028 × 768 pixel

(px) VGA color monitor; the display timing was synchronized with the video refresh

cycle. The horizontal distance between the centers of the digits was 30 px (from

the viewing distance of the participants of 114 cm, 1 deg = 65 px). The digits were

presented in dark blue against a gray background in Verdana font using 24 px

font height. The participants responded with saccades to two permanently visible

square boxes (50 × 50 px), with their centers 256 px to the left and 256 px to the

right of the fixation cross. In the center of both square boxes was a red dot with a

diameter of 6 px.

The SMI Iview-X was used to track the left eye, using a sampling rate of 240 Hz.

To detect the on- and offsets of saccades, a saccadic velocity peak threshold of 75

deg/sec was used. A chin- and headrest was used throughout the experiment.

Procedure. In each of four blocks all 72 ordered digit pairs were presented once

in random order. The task was to indicate, as quickly as possible, the larger digit.

The required response was a saccade to the center point of the square box into

the direction of the larger digit. Each trial started with the presentation of a fixation

cross. After a random delay of 700-800 ms the two digits were presented. A blank

screen was presented after 2000 ms for 500 ms, before the next trial started.

Preliminary Data Reduction. For a trial to be valid the central cross had to be

fixated at least from the presentation of the digits until the onset of the response

saccade. In addition, the horizontal distance between the fixation cross and the
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response saccade’s landing point was required to be within 128 px and 512 px, and

its latency (time from the onset of the digits to the onset of the saccade) between

120 ms and 900 ms. Invalid trials not meeting these criteria were excluded from all

further analyses. There were six per cent invalid trials in the whole data set of 43 ×

288 = 12384 trials (four per cent due to technical tracking problems, one per cent

due to a failure to fixate the central cross, and one per cent due to SL outliers).

For each participant and each digit pair mean correct SL, error rate, standard

deviation (SD) of correct SLs, and mean amplitude of the response saccades were

computed from all valid trials. Saccadic response amplitude was defined as the

horizontal distance between the fixation cross and the landing point of a response

saccade.

Results

Numerical Distance Effect. Numerical distance had a main effect on SL

(F(7, 294) = 74.26, MSE = 248.59, p < .001, η2 = .64); the linear trend showed

that mean SL decreased by 8.5 ms per distance unit on average across partici-

pants (t(42) = -13.48, p < .001, η2 = .68). Similarly, the SD of SL decreased with

numerical distance (F(7, 294) = 26.91, MSE = 165.48, p < .001, η2 = .39), on aver-

age by 4.4 ms per distance unit (t(42) = -4.86, p < .001, η2 = .22). Mean error rates

for each numerical distance were subjected to a logistic regression. At numerical

distance 1 the error odds were .04 (corresponding to an error rate of 3.85 per cent),

they decreased by a factor of .63 per distance unit (t(6) = -3.89, p < .01, η2 = .52).

Random Walk Model: Test of symmetry prediction. As reviewed in the Intro-

duction, a basic prediction of random walk models with symmetric step size densi-

ties is that mean SL for error responses to a given digit pair (i, j) should be equal to

the mean SL for correct responses to its complementary digit pair, (j, i). To test this

fundamental property, we compared each individual error SL with the correspond-
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Figure 2. We computed for each individual error saccadic latency (SL) for a given digit
pair (i, j) the mean correct SL of the complementary digit pair (j, i) of the same participant.
Error SLs (ordinate) were plotted against their associated complementary mean correct
SLs (abscissa) for different numerical distances (d). Upper left panel (d=1): 127 of 182
(69.7 per cent, p < .001, η2 = 0.88), upper right panel (d=2): 53 of 79 (67.1 per cent, p <
.01, η2 = 0.76), lower left panel (d=3): 19 of 24 (79.2 per cent, p < .01, η2 = 0.71), and lower
right panel (d=4): 9 of 11 (81.8 per cent, p = .065, η2 = 0.58) data points fall below the main
diagonals, indicating systematically faster error responses at each numerical distance; all
comparisons by sign tests.

ing mean correct SL of its complementary pair; we emphasize that all 307 individ-

ual comparisons were carried out within a given participant, without pooling data

across subjects. For example, if a participant made an error in response to digit

pair (7, 8), we compared this error SL to the mean correct SL of this participant for

the pair (8, 7). Overall, 214 of 307 (69.7 per cent) incorrect responses were faster

than their complementary mean correct responses, a rate that differs substantially

from 50 per cent (p < .001, sign test, η2 = .93). In some paradigms, error re-
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sponses switch from being faster than correct responses to being slower than cor-

rect responses, when the decisions are made more difficult (see, e.g., Luce, 1986;

Ratcliff & Rouder, 1998). Therefore, we tested the symmetry prediction separately

at different levels of task difficulty (i.e., at different numerical distances). As shown

in Figure 2, these tests revealed that incorrect responses were faster than their

complementary mean correct responses for each individual distance tested, and

not just for particularly easy comparisons. To further investigate the consistency

of the effect shown in Figure 2, we also compared for each participant separately

how many of his/her individual error SLs were faster/slower than the corresponding

mean correct SL of the complementary digit pair. Only 6 of 41 participants (2 par-

ticipants committed no error at all) produced more incorrect responses that were

slower (rather than faster) than the mean SL of correct responses to the comple-

mentary digit pair (p < .001, sign test, η2 = .87). These results confirm that the

main finding of faster errors to (i, j) compared to correct responses to (j, i) shown

in Figure 2 holds consistently across participants, and cannot simply be attributed

to a few observers contributing disproportionately many errors. Taken together,

these analyses provide strong evidence that at all numerical distances incorrect

responses to a pair (i, j) are consistently faster than correct responses to the com-

plementary pair, (j, i). This robust finding is inconsistent with the predictions of

any random walk model that assumes a symmetric step size density. Therefore,

we next tested if a random walk model with a skewed (double exponential) step

size density can account more adequately for our findings.

Random Walk with asymmetric step size densities: The double exponential model

To fit the random walk model with double exponential step sizes, we first eval-

uated its ability to account for the averaged data across participants; fits of the

model to the data of each participant individually will be compared to the fit of the

averaged data when we evaluate the model’s account of error latencies. Thus, we

defined an objective function f that compared for each digit pair observed mean
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correct SLs and mean error rates of all 72 digit pairs with the corresponding predic-

tion of the model; a formal description of f is given in the Appendix. Specifically, for

each digit pair, correct SL and error rate were first averaged over all participants.

Next, we divided the difference between predicted and observed mean SL by its

standard error (s.e.), and squared this quantity to obtain an approximate χ2(1).

Similarly, the difference between each observed and predicted error rate was eval-

uated by a χ2(1) component in the standard manner. The two approximate χ2(1)

values were then summed, and aggregated across all 72 digit pairs; the objec-

tive function f was then numerically minimized in its four arguments: a, b, k, µM .

As reviewed in the Introduction (Figure 1) and in the Appendix, here a and b are

the response barriers of the random walk process, and the scale parameter k de-

scribes how the individual drift rates µi, µj of the two digits map onto the net drift

rate of the random walk process. In the version of the model that we first fitted to

our data set, we assumed a logarithmic mapping, µij = k · [ln(i) − ln(j)]. Finally,

µM represents the mean non-decisional SL component.

The best fit of the double exponential model is shown in Figure 3. The response

barriers were a = 13.69 for responses to the left and b = 14.06 for responses

to the right (cf., Figure 1). From the best-fitting scale parameter k = 0.907 we

computed the net drift rate µij for each digit pair (i, j). For example, for the digit pair

(i = 6, j = 8) the net drift rate µij = k · [ln(i)−ln(j)] = 0.907 · [ln(6)−ln(8)] = −0.26;

the density with this drift rate is shown in Figure 1 and in Figure 7 in the Appendix.

The non-decision component µM means that on average 347 ms of the SL was

not involved in the decision process. Thus, with only four parameters we predicted

SLs and error rates for all 72 digit pairs, a total of 144 data points.

Figure 3 illustrates that the model accounted quite well for SLs (left panel) and

error rates (middle panel). As indicated by error bars in the left panel of Figure

3, most SL predictions fall within the 95 per cent confidence interval (CI) of mean

observed SL. The root mean squared deviation (11.6 ms) between predicted and
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Figure 3. Mean correct saccadic latencies (SL), mean error rates, and mean standard
deviation for all 72 digits pairs. Each sub-panel shows data and prediction for a given left
digit (leftmost ordinate) and all eight right digits (abscissa). The inner ordinate for each sub-
panel is: SL (ms) for left panel, error rate (per cent) for middle panel, standard deviation
(ms) for right panel. Points show the data and solid lines show the model predictions. Error
bars represent ±2 standard errors (Loftus & Masson, 1994).

observed SLs for the 72 digit pairs corresponded closely to the estimated standard

error (11.2 ms) of the observed SLs across the participants. A similar finding held

for the error rates: as indicated in the middle panel of Figure 3, most predicted

error rates fall within the 95 per cent CI of mean observed error rate.
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One important aspect of any model of number comparison is its ability to pro-

vide a coherent account of different aspects of the comparison process. To further

validate the model, we tested it with a dependent variable that was not itself in-

volved in the parameter estimation: the standard deviation (SD) of the SL. The

way in which the variability of SLs varies across the digit pairs provides a distinc-

tive noise signature reflecting basic aspects of the underlying process. Variance

predictions require no new assumptions to be added to the model (Schwarz, 1991):

the variance of the decision times (D) is completely defined by the basic random

walk process. In the random walk model SL consists of a decision component and

a non-decision component (SL = D + M). As a first approximation, we assumed

that D and M were independent, so that the variance of SL was the sum of the

variances of the decision and the non-decision component (σ2
SL = σ2

D + σ2
M ). Thus,

to predict the SDs only one additional model parameter (σ2
M ) was needed.

For any given digit pair, the observed variances were first averaged across all

participants. Next, using a least-square criterion, we estimated the variance of the

non-decision component, yielding σ2
M = 662. To obtain the predicted SD for each

digit pair we computed σ2
D from the model (Schwarz, 1991) with the best-fitting

parameters (a = 13.69, b = 14.06, k = 0.907), which had been estimated using only

the mean SLs and the error rates. As indicated by error bars in the right panel

of Figure 3, the SD predictions are quite close to the observed data, with most

predictions falling within the 95 per cent CI of mean observed SD. Regarding these

predictions, we stress that the empirical SDs of SL had not been used in any way

to find the original model parameters from which the predictions in the right panel

of Figure 3 were then generated.

Number-to-drift mapping. As noted in the Introduction, another attractive fea-

ture of random walk models is that they permit testing different assumptions about

how the internal representation of the individual digits map onto the net drift rate

of the induced random walk process. In the model fit described above we used
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a logarithmic mapping of individual digit representation onto the net drift rate,

µij = k · [ln(i) − ln(j)]. The best fit resulted in f(a, b, k, µM) = 181 for 144 inde-

pendent data points, which formally corresponds to a p-value of 2.0 per cent, and

indicates that the logarithmic model is roughly in line with the χ2(df = 144) distribu-

tion with an expectation of 144 and an SD of 17. To explore alternative mappings

of individual drifts onto net drift rates, we also minimized the objective function

using a linear mapping, µij = k · (i − j), under otherwise identical assumptions.

However, when compared to the logarithmic model shown in Figure 3, the linear

number-to-drift mapping resulted in a much poorer model fit, f(a, b, k, µM) = 416,

which formally corresponds to p < .001 and indicates much larger discrepancies

between data and model predictions than would be expected if the linear model

were correct. Overall, this comparison suggests that the logarithmic model repre-

sents a more adequate description of how individual digit drifts map onto the net

drift rate.

How reliable and powerful are these random walk model comparisons between

the logarithmic and the linear number-to-drift mapping? The large difference ob-

tained for the best fits to our data under both models suggests that our design and

procedure had some power to identify the more adequate model, but it remains

unclear to which degree this may be attributable to random variation across hypo-

thetical replications. To investigate this aspect more systematically we simulated all

288 individual trials of all 43 participants ten thousand times under the logarithmic

and ten thousand times under the linear random walk model with double expo-

nential steps on the basis of the parameter values (including σM = 66) reported

above. Between-participant variability was added by drawing the model parame-

ters for each participant separately from a normal distribution with mean equal to

the values reported above, and a standard deviation of 20 per cent of that mean.

For each individual simulation we then fitted both models to the simulated data,

using the objective function described above and more formally in the Appendix.
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When the data were generated using the logarithmic model the linear model fitted

better in only 9 (of 10000) cases, and with data generated from the linear model the

logarithmic model fitted better in only 14 (of 10000) cases. These results clearly

suggest that our experimental design and model fitting procedure had considerable

power to discriminate at least between relatively broad model alternatives such as

random walk models based on a logarithmic vs. linear number-to-drift mapping.
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Figure 4. Weber-law signatures in number comparison. In all four panels, the smaller
number of a digit pair is plotted on the abscissa; the curve parameter refers to a numerical
distance of 1 (circles) or 4 (crosses). Top left panel: symbols show mean saccadic latency
(SL) (ordinate in ms); the solid lines are the linear regression of mean SL on the smaller
digit for each distance separately, the dashed lines show the corresponding predictions of
the double exponential random walk model. Top right panel: same as top left panel, for the
standard deviation of SL (ordinate in ms). Lower left panel: same as top left panel, for error
rate (ordinate in per cent). Lower right panel: symbols show saccadic amplitude (ordinate
in px), the solid lines are the linear regression of saccadic amplitude on the smaller digit
for each distance separately.

The conclusions reached above are further supported by an analysis of the

magnitude, or Weber-law, effect which is closely related to the logarithmic model.

We first investigated for all three dependent variables (mean and SD of SL, and

error rate) separately the presence and nature of the empirical magnitude effect.
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Figure 4 illustrates for small (d = 1) and large (d = 4) numerical distance pairs

that all three variables exhibit highly systematic Weber-law signatures in which for

a given numerical distance mean SL, error rate, and the SD of SL all increase

with numerical magnitude. We next asked whether the double exponential random

walk model with logarithmic mapping quantitatively accounts for all effects simul-

taneously, using the single set of parameter estimates described above. Figure 4

indicates that the magnitude effect for all three dependent variables individually is

well captured by the double exponential random walk model.

Table 1. Digit pairs with common ratios.

pairs involved mean SL (s.e.) SD of SL (s.e.)
359 (9), 359 (9) 56 (5), 59 (5)

(1,4), (2,8) F(1,42)=0.01 F(1,42)=0.40

p=.93, η2<0.01 p=.53, η2=0.01

363 (11), 363 (11), 364 (10) 64 (6), 57 (4), 58 (5)

(1,3), (2,6), (3,9) F(2,84)=0.01 F(2,84)=0.95

p=.98, η2<0.01 p=.39, η2=0.02

370(12), 372(10), 364(10), 373(11) 61(4), 59(4), 61(5), 60(5)

(1,2), (2,4), (3,6), (4,8) F(3,126)=0.73 F(3,126)=0.02

p=.54, η2=0.02 p=.99, η2<0.01

368 (11), 368 (11), 398 (9) 72 (6), 71 (5), 71 (5)

(2,3), (4,6), (6,9) F(2,84)=3.25 F(2,84)=0.02

p=.04, η2<0.07 p=.98, η2<0.01

402 (12), 413 (11) 73 (6), 93 (7)

(3,4), (6,8) F(1,42)=2.56 F(1,42)=8.80

p=.12, η2=0.06 p=.01, η2=0.17

Note. Comparison of means and standard deviations (SD) of saccadic latency (SL) for digit
pairs having common ratios. Numbers in brackets indicate the standard error (s.e.) of the
mean or SD. Results averaged across complementary pairs such as (1, 2) and (2, 1).
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A strong related prediction of the logarithmic mapping model is that equal digit

ratios should produce equal performance, whereas the linear mapping model pre-

dicts that equal digit differences produce equal performance. For example, the

net drift rate µij = k · ln(i/j) (and thus performance) should be the same for the

equal-ratio pairs (2,1), (4,2), (6,3), and (8,4), and similar predictions can be tested

involving several other digit pairs. Table 1 shows results for comparisons involving

all equal-ratio pairs, aggregated across complementary pairs, to increase statistical

power. These results show that, as predicted by the logarithmic mapping model,

pairs characterized by equal ratios produced means and (with one exception) SDs

of SL which do not differ significantly for a given ratio.1 We emphasize that the p

values in Table 1 cannot be used to measure the strength of the support for the

Weber model but simply indicate if the data differ from the Weber-law predictions

by more than can be accounted for on the basis of random error alone.

Mean SL of incorrect responses. Do error responses show a numerical dis-

tance effect? As reviewed in the Introduction, evidence on this point is scant and

ambiguous. According to the double exponential random walk model errors reflect

a noisy process of weighing up partial evidence that is characterized by a small

signal-to-noise ratio, and it predicts that there should be a numerical distance ef-

fect for incorrect responses as well. As a further validity test we compared this

prediction to our data and analyzed mean error SL as a function of numerical dis-

tance, |i − j|.

Overall, errors were infrequent: a rate of 2.6 per cent (307 trials) across all digit

pairs and participants. Numerical distances larger than 4 contributed altogether

only 11 responses (3.6 per cent of all error responses). Therefore, only numerical

distances from 1 to 4 were used for further analysis; the means from these 296

error SLs are shown in Figure 5. Mean error SL decreased on average by 25.0 ms
1Too few errors were observed for the pairs involved to test the corresponding model prediction

for error rate as well.
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per distance unit (t(294) = -2.87, p < .01, η2 = .11), indicating a robust numerical

distance effect for error SLs.

To further validate this finding, we also considered error SL as a function of

numerical distance for each participant individually. We computed the individual

regression slope of mean error SL against numerical distance for each participant

(a total of 33) who committed errors at least at two different distances. A negative

regression slope was obtained for 28 of 33 participants (p < .001, sign test, η2 =

.84), again suggesting that mean SL decreases with numerical distance, even if

the response given was incorrect.

These results represent clear evidence for a numerical distance effect on error

SLs, as predicted by random walk models. We next considered to which degree

the double exponential random walk model accounts quantitatively for individual

error SLs. More specifically, we analyzed error SL as an additional dependent

variable, and tried to predict it with that model, using parameters that were first

estimated exclusively from mean correct SL and error rate, i.e., without using in

any way empirical error SLs.

To this end, we first fitted, in the same way as was done with the means across

participants, the double exponential random walk model for each participant indi-

vidually to estimate his/her individual model parameters. For most participants, the

fit of the objective function f was quite good, as judged by small or moderate val-

ues of the statistic fmin. The medians of the parameters from these 43 individual

model fits are: a = 13.15, b = 14.90, k = 1.055 and µM = 327. These median

parameters are all remarkably close to the parameters as obtained from the model

fit to the means across all participants. Next, predicted error SLs of a given par-

ticipant were computed for each digit pair for which that participant had made at

least one error (altogether 296 predicted error SLs). Predicted error SLs were then

subjected to a regression analysis, in the same way as was reported above for

the observed error SLs. Predicted error SL decreased on average by 28.0 ms per
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Figure 5. Error saccadic latencies (SL) as a function of numerical distance. Ordinate:
error SL (ms). Abscissa: numerical distance, |i − j|. Data points show mean observed
error SL, error bars show ±2 standard errors, and solid line shows mean predicted error
SL.

distance unit (t(294) = -5.55, p < .001), a slope that corresponds closely to that

(25.0 ms) obtained from the corresponding regression analysis of the observed

error SLs. Finally, we also compared predicted and observed error SLs directly.

In this analysis, the root mean squared deviation between predicted and observed

error SLs equaled 6.4 ms; deviations of this magnitude fall well within ±2 s.e. of the

observed error SLs averaged for each numerical distance, as illustrated in Figure

5.

Saccadic Overshoot: A new measure of the numerical distance effect. Does

numerical distance also affect other aspects of the response, beyond its correct-

ness and latency? Several findings in the literature suggest that numerical distance

may influence specific aspects of motor behavior. For example, the force of manual

responses increases with increasing numerical distance (Fischer & Miller, 2008,

Exp. 1), and response trajectories of manual pointing responses are more bent

as numerical distance decreases (Song & Nakayama, 2008; Ganor-Stern & Gold-
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man, 2015). To investigate this aspect for eye movements we analyzed saccadic

response amplitude as a function of numerical distance. As shown in Figure 6,

saccadic amplitude decreased systematically with increasing numerical distance

(F(7, 294) = 8.37, MSE = 127.85, p < .001, η2 = .17); on average by 1.5 px per

distance unit (t(42) = -4.57, p < .001, η2 = .20). This means that on average, as nu-

merical distance decreased participants responded with “overshooting” saccades

showing more eccentric landing positions. To further validate this finding, we also

analyzed the magnitude effect for saccadic amplitude. Figure 4 (lower right panel)

illustrates for pairs with numerical distances of d = 1 and d = 4 that, for a given

numerical distance, saccadic amplitude systematically increases with numerical

magnitude.
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Figure 6. Mean saccadic response amplitude as a function of numerical distance. Ordi-
nate: saccadic response amplitude (px). Abscissa: numerical distance. Data points show
mean saccadic response amplitude, error bars show ±1 standard error (Loftus & Masson,
1994).

Given that saccadic response amplitude was defined in absolute coordinates,

i.e., by the distance of the landing point relative to the fixation cross (screen cen-

ter), this finding might possibly reflect systematic distance-related saccade start-
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ing point differences. Specifically, participants might start their saccades slightly

more eccentrically with smaller distances, but then execute saccades of similar

amplitude. Thus, we analyzed an alternative relative measure of the response am-

plitude, namely the horizontal distance between the actual starting point (rather

than the fixation cross) and the landing point of a saccade. With this alternative

measure, we confirmed the basic amplitude findings reported above. Specifically,

horizontal distance decreased with numerical distance (F(7, 294) = 9.82, MSE =

133.05, p < .001, η2 = .19); on average by 1.6 px per distance unit (t(42) = -5.13,

p < .001, η2 = .24). We conclude that the new finding of the saccadic overshoot

effect does not simply reflect distance-related saccade start point differences, and

occurs similarly for both measures of response amplitude.

Is this saccadic overshoot effect mediated by SL? As reported above, partici-

pants need more time to respond to digit pairs with small numerical distances, and

this might in turn allow for a more effective preparation, leading to more eccentric

saccades. For example, in a double step task Becker and Jürgens (1979) observed

increasing saccadic amplitudes with increasing preparation time. Similarly, Thura,

Cos, Trung, and Cisek (2014; Figure 5c) report that the saccadic amplitudes of

macaque monkeys performing a visual choice task systematically increased with

the time they needed to reach a decision, as predicted by their urgency gating

account. On the other hand, if the overshoot effect is not mediated by SL, then

saccadic amplitude should not be influenced systematically by differences in SL.

Therefore, we compared the saccadic amplitude effect for faster vs. slower SLs.

Specifically, for each participant and each digit pair separately, saccadic ampli-

tudes were median-splitted into fast vs. slow responses.

In a repeated-measures ANOVA with the factors numerical distance (1 - 8) and

SL (slow vs. fast) only numerical distance had an effect on saccadic amplitude

(F(7, 294) = 4.22, MSE = 407.85, p < .001, η2 = .09). Neither slow vs. fast SL

(F(1, 42) = .79, MSE = 876.54, p = .38, η2 = .02) nor the interaction (F(7, 294) =
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1.34, MSE = 297.52, p = .23, η2 = .03) showed any effect on saccadic amplitude.

Thus, the saccadic overshoot effect is observed similarly for slow vs. fast responses

to a given digit pair. Possible explanations of this effect in terms of the random walk

model will be examined in the General Discussion.

General Discussion

As reviewed in the Introduction, random walk and diffusion models have in pre-

vious studies quite successfully, and in considerable quantitative detail, accounted

for results from many different experimental paradigms used in numerical cogni-

tion, including number-size congruency effects (Schwarz & Ischebeck, 2003), dual-

tasks involving number comparison (Sigman & Dehaene, 2005; Kamienkowski

et al., 2011), SOA-dependent effects of delaying one digit in a comparison pair

(Schwarz & Stein, 1998), the speed-accuracy trade-off in numerical comparison

(Poltrock, 1989), or single-digit comparison to a fixed numerical standard (Smith

& Mewhort, 1998; Schwarz, 2001). A starting point of the present work was to

ask if, under which assumptions, and to which degree, random walk models can

also account for various more detailed facets of paired number comparison perfor-

mance in humans. Specifically, in addition to standard measures such as the mean

latency of correct responses, we focused on such aspects as error rates, latency

variance, and the effect of numerical distance on the latency of error responses. To

minimize non-decisional contributions to overall latency we used eye movements

as responses (e.g., Khalid & Ansorge, 2013; Milosavljevic et al., 2011), and aimed

at an account at the level of all 72 individual pairs made up of the digits 1–9.

When humans compare numbers, a standard assumption is that they convert

the numerical magnitudes into an internal mental analog representation, followed

by a comparison process much like that studied in psychophysics using extensive

physical attributes, such as luminance or sound pressure. As Chen and Verguts
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(2010) observed, the exact nature of this internal representation, sometimes sup-

posed to be quasi-spatial in nature, “has remained elusive, however”. Random

walk models as in Figure 1 provide one means of making more specific, in a quan-

titative form, the notion and meaning of these representations. Informed by stud-

ies of basic neuronal mechanisms of magnitude coding (e.g., Nieder, 2005) these

models assume that humans retrieve noisy representations of the difference of the

numbers presented, and accumulate this fuzzy partial evidence until one of two

evidence boundaries is reached for the first time. Although in principle all of the

various facets of number comparison listed above can be addressed within this

conceptual framework, surprisingly few attempts exist to account quantitatively for

each of them simultaneously. The present study attempted to fill in this gap, and

has led to several noteworthy conclusions.

First, random walk models provide a coherent conceptual framework to account

for a considerable variety of aspects characterizing numerical comparison. This

account is remarkably parsimonious, based on a minimal number of meaningful

parameters, and relying mostly on the dynamic assumptions inherent to the basic

processing model (Figure 1). Specifically, with only four individually interpretable

parameters (a, b, k, and M ) the model accounts well for the mean correct latency

and the error rate of all 72 individual digit pairs, and adding a fifth parameter (σM )

provides a good account of the variability of the latencies, again on the single-pair

level (Figure 3). In addition, we present strong evidence that the latency of incor-

rect responses also exhibits a numerical distance effect (Figure 5), as predicted by

random walk models. Note that according to alternative processing models (e.g.,

fast-guess models, cf. Luce, 1986, ch. 7; for application in number comparison,

see Dehaene, 1996, pp. 61ff.; Schwarz & Ischebeck, 2000) errors arise as a strate-

gic ex ante selection – a risky bet – of one specific response to maximize speed,

and are thus essentially unrelated to the digit pair actually presented (for a discus-

sion of how neural network models might possibly account for errors, see Verguts
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et al., 2005, pp. 77-78). It is noteworthy that in order to account for the effect

of numerical distance on the latency of errors the random walk model relies ex-

clusively on its structural assumptions, without adding any new assumptions, new

mechanisms, or new parameters.

A second and related conclusion is that this remarkable ability to account quan-

titatively for many detailed aspects of number comparison is not simply a universal

characteristic of the broad class of evidence accrual models (cf., Luce, 1986, ch.

8) in general, rather it requires more specific assumptions about the step size den-

sities involved, and also about the mapping of numerical magnitude onto the drift

rates driving the evidence accumulation process. All extant evidence accumulation

models for paired numerical comparison designs assume that – in a stochastic

sense – the accumulation process for, say, the digit pair (8, 3) tends towards the

upper response barrier in the same manner as it tends towards the lower response

barrier for the complementary digit pair, (3, 8). Within this widely accepted model

frame, if the step size densities themselves are symmetric (e.g., normal; Poltrock,

1989; Sigman & Dehaene, 2005; Smith & Mewhort, 1998) then the model predicts

that mean correct latency for (8, 3) and mean error latency for (3, 8) are necessar-

ily the same, even when the response barriers are different. Our results (Figure

2) show conclusively that this fundamental prediction is systematically violated, so

that the adequacy of the model shown in Figure 1 (assuming fixed parameters

across trials) relies on assuming a skewed step size density. More specifically, the

longer tail of this density must point towards the incorrect response barrier, leading

to fast first passages across this boundary. Alternatively, mixture (e.g., fast-guess)

models (Luce, 1986, ch. 7), or random walk, diffusion, or linear ballistic accumula-

tor models assuming variability of, e.g., the starting point across trials (e.g., Brown

& Heathcote, 2008; Donkin et al., 2011; Ester et al., 2014; Ratcliff & Rouder, 1998;

Ratcliff & Smith, 2004;) are also able to predict faster error than correct responses

by introducing additional free model parameters (e.g., sZ and η in Ratcliff & Smith,

2004).
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Similarly, random walk models of numerical comparison differ in their specific

assumptions about how numerical magnitudes map onto those noisy internal rep-

resentations whose aggregation defines the evidence accrual process. Therefore,

they provide a well-defined conceptual framework to compare meaningfully the way

in which numerical magnitudes are internally transformed and then aggregated.

Our comparison of a linear vs. logarithmic number-to-drift mapping produced a

much better account of our findings with the latter transformation, which is in line

with several earlier related theoretical arguments and empirical findings (for de-

tailed discussion, see Dehaene, 2003, 2011; Cordes et al., 2007; Nieder, 2005).

Specifically, the logarithmic mapping accounts well for the Weber-law signature

that we observed not only for mean SL, but also for hitherto untested aspects of

numerical comparison such as the SD of SL and error rate (Figure 4).

Our participants responded by saccadic eye movements which in simple two-

choice tasks are well-known to be faster and less variable than manual responses

(e.g., Khalid and Ansorge, 2013, Figures 5 and 6). In addition, saccadic responses

provide the opportunity to study not only latency but also other aspects of the re-

sponse, such as, e.g., its amplitude. As a new form of a numerical distance effect

we observed a systematically increasing saccadic response amplitude as the nu-

merical distance between the two digits decreased (Figure 6); for a given distance

this effect was more pronounced for larger magnitudes (Weber-law signature; bot-

tom right panel of Figure 4). Can this new finding be interpreted in a coherent way

within the present framework of random walk models?

One suggestion is provided by findings first reported by Mattes, Ulrich, and

Miller (1997; for related findings, see Miller & Schröter, 2002). In their go-nogo

RT study participants were provided with a visual advance cue indicating the go

probability (0.1, 0.2, 0.4, 0.6, 0.8, or 1.0) for the current trial. As expected, mean

RT decreased with the signaled go probability. However, Mattes et al. in addition

measured and analyzed the peak force output of the manual responses (RF) and
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observed that RF systematically increased with decreasing signaled go probability.

That is, RF was highest when the cued go probability was lowest, so that the

slowest responses were associated with the highest amplitude. Clearly, this pattern

of an inverse relation between go probability (and thus speed) and the amplitude

of manual responses observed by Mattes et al. corresponds quite closely to the

inverse relation that we observed between numerical distance (and thus speed)

and the amplitude of saccadic responses. A further parallel to our results is Mattes

et al.’s finding that within any given cued go probability condition the correlation

between speed and amplitude was close to zero, much as we found no difference

in the saccadic amplitudes of slow vs. fast responses within a given numerical

distance.

Relating the Mattes et al. (1997) account in terms of differential motor prepara-

tion to the conceptual framework of random walk models, one way to explain our

findings, then, starts from noticing that when the numerical difference is small, the

induced accumulation process is characterized by a small drift rate. Correspond-

ingly, for digit pairs with a small numerical difference the process will on average

spend a larger amount of time in close vicinity to the evidence boundary the cross-

ing of which triggers the final motor command. Therefore, numerical distance and

response amplitude will be inversely related if the motor command “primed” by a

random walk closely approaching a response barrier is cumulatively prepared to a

degree that increases with the duration (“dwell time”) of walk positions that are al-

ready quite close to the boundary (for related models of covert motor preparation,

see Servant, White, Montagnini, & Burle, 2015; Thura et al., 2014). As a simple

illustration of our account in terms of cumulative covert motor preparation, for the

best-fitting parameter values reported above we simulated the random walk model

with double exponential step sizes, and compared the dwell time during which the

random walk stayed less than c units away from the response barrier. For example,

for the pairs (1, 9) and (8, 9) the mean “close-to-boundary” dwell times (using c = 2)
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were, 1.0 and 4.2 ms respectively, with other values of c producing similar relations

of dwell times. Considering the dwell times as a measure of cumulative motor

preparation (leading to larger response amplitudes), these values are qualitatively

consistent with our findings (Figure 6). Clearly, this tentative account requires more

rigorous experimental tests; however, it does suggest a qualitative explanation that

fits in well with the random walk concept of stochastic evidence accumulation.

We believe that our findings can have useful implications for studies in which

number comparison represents a well-established diagnostic tool to address rele-

vant open research topics which are currently actively investigated. For example,

in a study designed to look at age effects on number comparison Norris et al.

(2015) observed that older adults (mean age 65 years) were consistently slower

than younger adults (mean age 20 years); at the same time, older adults were also

considerably more accurate. An important question, then, is: how much slower

would the older adults have been, had they operated at an accuracy level com-

parable to that of the younger adults? The random walk model presented here

can profitably be exploited in these contexts, and is ideally suited to help address

important questions of this type. Specifically, it would be highly informative to ana-

lyze on the basis of the model described here if the speed advantage observed for

younger adults could be attributed to a large degree, or even completely, simply to

the use of stricter (i.e., larger) response barriers with increasing age.

In conclusion, if combined with suitable specific assumptions (skew step size

density, logarithmic number-to-drift mapping), random walk models provide a re-

markably parsimonious (only four parameters) yet accurate account of many as-

pects involved in numerical comparison. In many research contexts using number

comparison tasks, their meaningful, interpretable parameters offer a more coher-

ent, detailed, and process-oriented interpretation of results than seems available

on the basis of standard statistical analyses.
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Appendix: Basic model assumptions and properties

Mirror-symmetric random walk models

A basic symmetry assumption made by extant stochastic accumulation models

of number comparison (e.g., Kamienkowski et al., 2011; Link 1990, 1992; Poltrock

1989; Schwarz, 2001; Schwarz & Stein, 1998, Sigman & Dehaene, 2005; Smith

& Mewhort, 1998) is that the random walks induced by complementary digit pairs

(i, j) and (j, i) are mirror-symmetric, that is, that their step sizes densities are re-

lated by

gji(x) = gij(−x) (1)

Note that even if (1) holds gij(x) and gji(x) may individually still be asymmetrical.

One account leading to (1) is the differencing model which assumes a digit-

specific density, say hi (with mean µi), which describes the part of the step induced

by digit i, and similarly a density hj for the digit j. Loosely speaking, for the pair

(i, j) the density hi describes the (stochastic) pull of digit i towards “its” (i.e., upper)

barrier a, and hj the pull exerted by digit j towards “its” (i.e., lower) barrier −b; the

overall step size is the resulting net force, i.e., the difference of these antagonistic

forces. This gives for the step size density (e.g., Feller, 1971, ch. V)

gij(x) =
∫ ∞

−∞
hi(x + s) · hj(s) ds

which in turn implies (1). Several other processing assumptions equally lead to the

basic mirror-symmetry representation (1) (see Link, 1975, 1992; Luce, 1986).

As is well known (e.g., Luce, 1986, ch. 8.3.3.; Schwarz, 1990, 1991; Townsend

& Ashby, 1983, ch. 10), if in addition to condition (1) the (two-sided) Laplace trans-

form of gij(x) is symmetrical (as is, e.g., the case if the gij are normal distributions),

then (1) implies that error latencies to (i, j) are on average equal to mean correct
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RT to the complementary pair (j, i), even when a ̸= b. Note that the numerical

distance effect is typically computed as an average across complementary digit

pairs, so that for a given distance mean correct and error RT are then predicted

to be equally fast for random walk models obeying (1) if the step size densities

gij(x) have symmetrical Laplace transforms. On the other hand, if the condition

(1) holds but the step size densities gij(x) have asymmetrical Laplace transforms

then mean correct RT for (i, j) and mean error RT for (j, i) will usually differ. In the

next section, we describe one specific random walk model with this property. We

emphasize that faster error than correct responses can also be predicted by mix-

ture (e.g., fast-guess) models (Luce, 1986, ch. 7), or by random walk, diffusion, or

linear ballistic accumulator models assuming variability of, e.g., the starting point

across trials (e.g., Brown & Heathcote, 2008; Donkin et al., 2011; Ester et al., 2014;

Ratcliff & Rouder, 1998; Ratcliff & Smith, 2004).

The double exponential random walk model

The double exponential model shown in Figure 1 assumes that for i < j the step

size density associated with the pair (i, j) has a double exponential distribution

(Figures 1 and 7, see Kotz & Nadarajah, 2000; for background on this model in

the context of perceptual decision making, see Foley & Schwarz, 1998; Schwarz &

Miller, 2014), with associated cumulative distribution function

Gij(x) = exp
[
−e−(x+γ−µij)

]
(2)

where µij is the net drift rate of the induced walk, and γ = 0.5772 . . . is the Euler-

Mascheroni constant. That is, the mean of the step size random variable (rv) Xij

with the distribution function Gij is equal to µij, and its standard deviation is equal

to π/
√

6 ≈ 1.28.

A characteristic feature of the double exponential step size density gij = G
′
ij,

shown in Figure 7 (left), is its positive skew, leading to the asymmetric shape (Fig-
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Figure 7. Left panel: skew double exponential step size density gij(x), corresponding to
the pair (i = 6, j = 8), giving (using our estimate of k = 0.907) a mean step size equal
to µij = k · ln(i/j) = −0.261. Right panel: The asymmetric two-sided Laplace transform
mij(θ) of the step size density gij(x), shown in the left panel. The two tangents to mij(θ)
indicate the unequal (in absolute value) slopes at the two points where mij(θ) = 1. This
ratio of absolute slopes (here equal to 1.18) in turn determines the relation of mean correct
RT for (i, j) to mean error RT for (j, i).

ure 7, right) of its two-sided Laplace transform,

mij(θ) = E[exp(−θXij)] = Γ(1 + θ) · exp[−θ(µij − γ)] (3)

where Γ is the Gamma function. As mentioned above, it is the asymmetry of mij

which implies that mean correct RT for (i, j) will not be equal to mean error RT for

(j, i). If the left digit is smaller than the right digit (i.e., i < j) then negative steps

are directed towards the lower barrier at −b associated with the correct response

“right digit larger” (cf., Figure 1), and the random walk will on average tend to the

lower response barrier, i.e., µij < 0. Specifically, in this case, the positive skew of

gij(x) implies that mean correct RT to (i, j) will be slower than mean error RT for

(j, i). Conversely, the step size densities gji(x) for the complementary digit pairs
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(j, i), j > i are given by the relation eq. (1), also leading on average to slower

correct responses to (j, i) as compared to mean error RT for (i, j).

Number-to-drift mapping: Linear vs. logarithmic

The basic random walk model also provides a well-defined conceptual frame-

work within which to compare meaningfully different assumptions about the map-

ping of numerical magnitude onto its internal representation. Specifically, we com-

pared two conceptualizations of how numerical magnitude influences the net drift

rate µij of the double exponential random walk model: a linear and logarithmic

model. In the linear model for each digit i

µi = c + k · i (4)

whereas in the logarithmic model

µi = c + k · ln(i) (5)

Interpreting the component drift rate µi as the mean pull of the left digit i towards

“its” barrier a, and similarly the component drift rate µj as the mean pull exerted by

the right digit j towards “its” barrier −b, the resulting net drift µij is the difference of

these antagonistic mean forces, i.e.,

µij = µi − µj =


k · (i − j) linear

k · [ln(i) − ln(j)] = k · ln
(

i
j

)
logarithmic

(6)

i.e., the constant c cancels in both models (4, 5).

In effect, then, both the linear and the logarithmic model versions require a total

of only four parameters to predict all (correct and error) mean RT and all error

rates of 72 digit pairs: the scale parameter k, the response barriers a and −b, and

the mean non-decisional latency component, µM . In addition, predictions of the
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variance of the decision time require no new parameters at all because they follow

from (2), and known general variance results concerning random walk models (see

Schwarz, 1991); the only additional parameter required is the variance of the non-

decisional latency component, σ2
M .

Definition of objective function

The objective function f producing, for the model in Figure 1 with double expo-

nential step sizes (eq. A.2) and logarithmic number-to-drift mapping (eq.s A.5/6),

the fit shown in Figure 3 compares observed mean correct SLs and mean error

rates of all 72 digit pairs (i, j) with the corresponding model prediction. Denote

as SLo
ij, SLp

ij, respectively, the observed and predicted mean saccadic latencies to

digit pair (i, j), where s.e.SL
ij is the estimated standard error of SLo

ij. Similarly de-

note as ERo
ij and ERp

ij, respectively, the observed and predicted mean error rate,

where s.e.ER
ij is the estimated standard error of ERo

ij. The predicted values are a

function of the four model parameters a, b, k, and µM . As explained in the text, the

objective function was then

f(a, b, k, µM) =
9∑

i=1

9∑
j=1,j ̸=i

(SLo
ij − SLp

ij

s.e.SL
ij

)2

+
(

ERo
ij − ERp

ij

s.e.ER
ij

)2


Given the model has only four parameters, we evaluated and compared the points

in the parameter space using a grid search with adjustable step sizes; this was

then checked by Mathematica’s (9.0.1, Wolfram Research) NMinimize function.
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Chapter 3

Exploring the origin of the number

size congruency effect:

Sensitivity or response bias?

This chapter has been published as: Reike, D., & Schwarz, W. (2017). Exploring the origin
of the number size congruency effect: Sensitivity or response bias? Attention, Perception, & Psy-
chophysics, 79, 383-388.
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Abstract

Physical size modulates the efficiency of digit comparison, depending on

whether the relation of numerical magnitude and physical size is congruent or in-

congruent (Besner & Coltheart, 1979), the number-size congruency effect (NSCE).

In addition, Henik and Tzelgov (1982) first reported a NSCE for the reverse task of

comparing the physical size of digits such that the numerical magnitude of digits

modulated the time required to compare their physical sizes. Does the NSCE in

physical comparisons simply reflect a number-mediated bias mechanism related

to making decisions and selecting responses about the digit’s sizes? Alternatively,

or in addition, the NSCE might indicate a true increase in the ability to discrim-

inate small and large font sizes when these sizes are congruent with the digit’s

symbolic numerical meaning, over and above response bias effects. We present

a new research design that permits us to apply signal detection theory to a task

that required observers to judge the physical size of digits. Our results clearly

demonstrate that the NSCE cannot be reduced to mere response bias effects, and

that genuine sensitivity gains for congruent number-size pairings contribute to the

NSCE.
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Introduction

Numbers and numerical information play a central role in how humans repre-

sent, communicate, and respond to quantity-related aspects of their environments.

Correspondingly, a considerable amount of research has addressed many cogni-

tive, neuronal, developmental, and clinical aspects of how we process quantitative

information (for general review, see Dehaene, 2011; Nieder, 2005).

According to one influential model of number comparison (Moyer & Landauer,

1967; for recent formulations and review, see Ditz & Nieder, 2016; Ganor-Stern &

Goldman, 2015; Gilmore, Attridge, & Inglis, 2011; Inglis & Gilmore, 2014; Mal-

oney, Risko, Presto, et al., 2010; Nuerk, Moeller, Klein, et al., 2011; Reike &

Schwarz, 2016; Sigman & Dehaene, 2005), digits are automatically converted into

percept-like analog representations that are then in turn compared with each other,

much like sensory representations of physical attributes such as brightness or ori-

entation. One line of evidence consistent with this model derives from conflict

paradigms in which the to-be-compared digits are presented with varying physical

(i.e., font) sizes. According to the analog representation model, the digit’s (task-

irrelevant) physical size should modulate the efficiency of the comparison process,

depending on whether the relation of numerical magnitude and physical size is

congruent (as in 8 – 2) or incongruent (e.g., 8 – 2). This number-size congruency

effect (NSCE) has indeed first been reported by Besner and Coltheart (1979), and

has since then often been confirmed and extended (e.g., Algom, Dekel & Pansky,

1996; Cohen Kadosh, Cohen Kadosh, Linden, et al., 2007; Fitousi, 2014; Girelli,

Lucangeli, & Butterworth, 2000; Henik & Tzelgov, 1982; Kaufmann, Koppelstaetter,

Delazer, et al., 2005; Pansky & Algom, 1999; Schwarz & Heinze, 1998; Schwarz

& Ischebeck, 2003; Szűcs & Soltész, 2007; Takahashi & Green, 1983; Tzelgov,

Meyer, & Henik, 1992). Henik and Tzelgov (1982) first studied the reverse task

of comparing the physical size of digits, independent of their numerical meaning.
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Contrary to strictly serial models in which the physical features of the digit (includ-

ing its size) are fully identified before the digit’s numerical magnitude is accessed

they observed reliable NSCEs such that the (logically task-irrelevant) numerical

value of the digits modulated the time required to compare their physical sizes (for

recent related studies, see Arend & Henik, 2015; Cantlon, Platt, & Branno, 2009;

Faulkenberry, Cruise, Lavro, & Shaki, 2016; Gabay, Leibovich, Henik, & Gronau,

2013; Goldfarb & Treisman, 2010; Pina, Castillo, Cohen Kadosh, & Fuentes, 2015;

Reber, Christensen, & Meier, 2014; Risko, Maloney, & Fugelsang, 2013; Santens

& Verguts, 2011; Sobel, Puri, & Faulkenberry, 2016).

An as-yet-open question, addressed in the present experiment, is that the

NSCE in physical comparisons might simply reflect a number-mediated bias mech-

anism related to making decisions and selecting responses about the digit’s sizes

(e.g., Risko et al., 2013; Schwarz & Heinze, 1998; Sobel et al., 2016). Expressed

in the terminology of signal detection theory (SDT; Macmillan & Creelman, 2005)

one interpretation of the NSCE is that the digit’s numerical magnitude may induce

a number-related response bias because observers implicitly tend to associate nu-

merical magnitude with physical size. In this view, congruent pairings of physical

size and numerical magnitude do not actually enhance the sensitivity of the size

discrimination process but more simply benefit from a tendency to respond more

readily “larger” (“smaller”) with numerically large (small) digits. Alternatively, the

NSCE might more adequately be interpreted as reflecting a genuine sensitivity

benefit tied to the numerical meaning of the digits presented (for example, Sobel,

Puri, Faulkenberry, & Dague, 2017, Exp. 3 report that numerical information can

influence but probably not guide visual search). In this interpretation, the NSCE re-

flects a true increase in the ability to discriminate small and large font sizes when

these sizes are congruent with the digit’s symbolic numerical meaning – over and

above mere response tendencies.
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With respect to these alternatives, it is unfortunate that most extant research

designs exploring the NSCE are based on the analysis of response time. Chrono-

metric measures often help to investigate the onset and time course of the NSCE

but they also tend to make it difficult to distinguish between bias and sensitivity

accounts (e.g., Luce, 1986, ch.s 3-4; Matt & Dzhafarov, 2014). Therefore, in the

present study we developed a new research design to apply SDT to a task in

which observers judged the physical size of digits. Specifically, single digits were

presented in either of two global sizes (sets S(mall) and L(arge)); between these

sets digits differed massively in size. In addition, within each size set digit exem-

plars could have a slightly smaller (S−, L−) or larger (S+, L+) font size (for details,

see Methods and Figure 1), and the task of the observer was to classify the digit

shown as being a smaller or a larger exemplar within its size set. In this design,

the difference between “global” font size (S vs. L) is large (and was made even

more obvious by using different colors to indicate the different size sets) but not

task-relevant, whereas the task-relevant feature (the “local” size within each set)

requires a more difficult discrimination of minute size differences.

S−

8
S+

8
L−

8
L+

8
Figure 1. Sizes of digit stimuli as used in the present experiment. For example, the digit
8 was shown in four different physical sizes. The two left panels illustrate the small size
set (S); the two right panels illustrate the large size set (L). Both size sets consist of two
slightly different sizes: smaller (−) and larger (+) exemplars. Digits from one size set were
presented in dark blue and from the other size set in brown. The two left digits (S−, S+)
represent incongruent conditions because the global physical size (small, S) does not cor-
respond to the numerical magnitude (large, >5). Similarly, the two right digits (L−, L+)
represent congruent conditions because the global physical size (large, L) corresponds to
the numerical magnitude (large, >5).
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The aim of the present study was to analyze results from this size identification

design within the framework of SDT. In particular, we aimed to extract, and to

compare, separate bias and sensitivity measures for congruent and incongruent

pairings of numerical magnitude and (global) physical size to further clarify the

origin and nature of the NSCE.

Method

Participants. 36 University of Potsdam students, aged 18-39, with normal or

corrected-to-normal vision participated in one session of approximately one hour.

They received a payment of ¤8 or course credit for their participation.

Stimuli and apparatus. The stimuli consisted of the digits 1 – 9, excluding 5.

Each trial display consisted of a single digit presented against a gray background

in Verdana font on a 75-Hz, 1028 × 768 px VGA color monitor. As shown in Figure

1, we divided the stimuli into two sets: a small size set (S), and a large size set

(L). The mean font size for the small size set was 30 pixel (px; 1 deg = 65 px at

the viewing distance of approximately 114 cm); for the large size set it was 52.5

px. Therefore, the mean size distance of the fonts of these sets was 22.5 px.

Within both size sets the digits were presented in two slightly different physical

sizes: smaller (−) and larger (+) exemplars. Within the small size set the digits

were presented in a font size of 28 px (S−) or 32 px (S+), whereas within the

large size set they were presented with font sizes of 50 px (L−) or 55 px (L+),

making the within-set size differences (S: 4 px; L: 5 px) much smaller than the

mean between-set difference (22.5 px). In addition, the digits from one size set

were presented in dark blue and from the other size set in brown (counterbalanced

between subjects) in order to avoid any uncertainty about the size set (S or L) to

which the digit presented belonged (as variations of the color-to-size mapping had

no significant main or interaction effect, this factor is ignored in the sequel).
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Procedure. In each of ten blocks, all eight digits were presented twice in each

of the four sizes in random order. Each trial started with the presentation of a

fixation cross; after a delay of 500 ms the digit was presented until a response

was given. The task was to indicate by button press whether the presented digit

was a physically smaller (−) or a larger (+) exemplar within its size set. Following

the response, the participants received visual feedback about the correct answer

and the response they had given. A blank screen was presented after 1000 ms for

500 ms, before the next trial started. After each block, the overall error rate was

computed for this block separately for each size set (S and L). In the first block, the

error rate had to be between 15 per cent and 30 per cent, in block two until block

four between 10 per cent and 35 per cent, and after the fourth block between 5 per

cent and 40 per cent. If the error rate of one size set did not meet these criteria

then the font size of the larger (+) exemplars of this set was changed one px in the

required direction. For example, if the error rate for the digits in the small size set

(S) in the first block was below 15 per cent then the size of the larger exemplars

of the small digits (S+) was reduced from 32 px to 31 px. Required size changes

were applied after each block.

Preliminary Data Reduction. Only blocks in which the error rates for both size

sets were within the targeted accuracy range were included in the analyses. The

first block was considered practice and was always excluded. According to the

block inclusion rules described, on average 5.5 (SD=1.4) blocks for each partici-

pant were included in the analysis; including all blocks, except block 1, produced

the same pattern of in-/significant results. In the present design, a digit presented

in any trial is characterized by three independent attributes: its membership in

the physical size set L or S, its numerical magnitude (<5 vs. >5), and by being

a smaller (S−, L−) or larger (L+, S+) exemplar within its size set. Only the last

attribute is response relevant; the first two attributes are logically and statistically

independent of each other, and of the correct response. Congruency was defined
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by the correspondence of the two response-irrelevant attributes physical size and

numerical magnitude, so that digits <5 in the set S and digits >5 in the set L were

congruent, whereas digits >5 in the set S and digits <5 in the set L were incon-

gruent. Thus, for each participant the sensitivity index d′ and the response bias

index ln β (Macmillan & Creelman, 2005) were computed separately for two × two

conditions, physically small or large (defined by set S vs. L) × numerically small or

large (defined by magnitude <5 vs. >5).

Results

Sensitivity index d′. Values of d′ for each participant were subjected to a 2-

factorial ANOVA with the two within-subject factors physical size set (2: S/L) and

numerical magnitude (2: <5/>5).

As intended, the required discrimination of sizes within each set was not an

easy task, yielding an overall d′ of 1.42 (s.e. 0.09) (corresponding to 74.4 % correct

responses, relative to a chance level of 50 %).

Neither physical size set nor numerical magnitude had a main effect on d′. Cen-

tral to our study, the interaction between physical size set and numerical magnitude

was significant (Figure 2, left panel), F(1, 35) = 9.82, MSE = 0.15, p < .01, η2 =

.22. Differences in d′ were found within each size set separately: for physically

small digits the difference between numerically small (d′ = 1.54) and numerically

large digits (d′ = 1.40) was significant, t(35) = -1.78, p < .05, η2 = .18. Similarly,

for physically large digits the d′ difference between numerically small digits (d′ =

1.24) and numerically large digits (d′ = 1.50) was significant, t(35) = 3.06, p < .01,

η2 = .43. Thus, the congruency effect found did not depend on just one specific

physical size set, as shown in Figure 2.

In order to validate and further investigate these findings we also considered the

congruency effect (defined as the d′ difference between congruent and incongruent
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conditions) for each participant separately. On average, d′ was 0.21 (s.e. 0.07)

larger for congruent than for incongruent conditions; the participants answered

correctly in 76.1 per cent of all congruent, and in 72.8 per cent of all incongruent

trials. Overall, 25 of 36 participants (69%) showed a positive difference between

the d′s of congruent vs. incongruent conditions, with the mean positive differences

(0.40) being larger than the mean negative differences (-0.23), W+ = 515, W− =

151, p < .01, η2 = .11, Wilcoxon signed-rank test.
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Figure 2. Sensitivity index d′ and response bias index ln β for each combination of
physical size (set S vs. L) and numerical magnitude (<5 vs. >5). Left panel: Circles show
the mean sensitivity index d′ (ordinate) for numerically small (<5; solid line) and large (>5;
dashed line) digits as a function of size set ((S)mall / (L)arge; abscissa). Each condition is
illustrated by one smaller (−) and one larger (+) digit exemplar. Right panel: Circles show
the mean response bias index ln β (ordinate) for numerically small (solid line) and large
(dashed line) digits as a function of size set (abscissa). Error bars represent ±1 SE (Loftus
& Masson, 1994).

Response bias index ln β. Values of ln β (positive values indicating a tendency

to respond “smaller”) for each participant were subjected to a repeated-measures

ANOVA with the same factors as used for d′.

As expected under our balanced design, the grand mean of ln β was close to

zero (0.02; s.e. 0.09), indicating that our participants had no overall bias towards

using one of the two responses. Only the factor size set exerted a systematic main
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effect on ln β. Participants tended to classify the digits as being smaller (−) if they

belonged to the small size set (S), and as being larger (+) if they belonged to the

large size set (L), F(1, 35) = 7.83, MSE = .10, p < .01, η2 = .18. As shown in Figure

2 (right panel), the mean response bias index was +0.17 for digits belonging to size

set S, and −0.13 for digits belonging to size set L. Numerical magnitude had no

main effect on ln β. Finally, differences in ln β between congruent and incongruent

trials were quite small in both size sets, as reflected in the nonsignificant interaction

of physical size and numerical magnitude, F(1, 35) = .18, MSE = .10, p = .67, η2 =

.01.

Discussion

As reviewed in the Introduction, judgments about the physical size of digits

are faster and less error-prone when physical size and numerical magnitude are

congruent rather than incongruent (Henik & Tzelgov, 1982; for recent review, see

Arend & Henik, 2015; Fitousi, 2014). Does this well-established performance ben-

efit reflect a genuine enhancement of sensitivity, that is, an increase in the ability

to discriminate small and large font sizes when numerical magnitude and physical

size are congruent? Or is it more adequately attributed to a number-mediated re-

sponse bias mechanism, for example, a tendency to respond more readily “larger”

with numerically large, and more readily “smaller” with numerically small digits?

The present results strongly suggest that, in a general sense, response bi-

ases indeed systematically influence the way in which observers judge the physi-

cal size of digits. Specifically, as shown in Figure 2 (right panel), digits in the size

set S are more readily classified as “smaller”, and digits in the size set L more

readily as “larger”, even though smaller (S−, L−) and larger (S+, L+) exemplars

were equally frequent in both size sets. If such biases selectively favor congruent

number-size pairings and if “more readily” in the SDT sense translates into faster
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responses (e.g., Luce, 1986, ch. 7), then the standard finding of shorter response

times for congruent number-size pairings could be attributed to similar response

bias mechanisms.

However, our results clearly demonstrate that the NSCE cannot simply be re-

duced to bias effects, and that genuine sensitivity gains for congruent number-

size pairings contribute to the NSCE over and above mere response tendencies1.

Specifically, as shown in Figure 2 (left panel), S− vs. S+ digits in the size set

S are discriminated with higher sensitivity when they are numerically small than

when they are numerically large. Conversely, L− vs. L+ digits in the size set L are

discriminated with higher sensitivity when they are numerically large than when

they are numerically small. Note that in our design within either size set S and L

separately, each numerical magnitude was presented as a smaller and larger ex-

emplar equally often; therefore, the differential sensitivity effects obtained cannot

be attributed to overall response biases. Consider, for example, the simple biased

response strategy of classifying numerically small digits more readily as “smaller”,

and numerically large digits more readily as “larger”. In our design, this biased

strategy would not produce the differential sensitivity effect shown in the left panel

of Figure 2 because numerically small and large digits were presented equally of-

ten as small and large exemplars in both size sets. Also, our results provide no

evidence for this specific form of number-related response bias (Figure 2, right

panel). As discussed above, a related type of simple biased response strategy is

to classify digits in size set S more readily as “smaller”, and digits in size set L

more readily as “larger”. Again, this biased strategy (which is more prominent in

our data; see Figure 2, right panel) would not produce the differential sensitivity

effect observed because smaller and larger exemplars were presented equally of-

ten within both size sets. The same conclusion applies to any biased response
1Note that in the context of signal detection theory partitioning the total congruency effect into

an inhibitory and a facilitatory component (as in RT studies involving a neutral condition; Henik &
Tzelgov, 1982) requires a more elaborate SDT design (MacMillan & Creelman, 2005, ch. 5).
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strategy based on some form of combination of numerical magnitude (<5 vs. >5)

and physical size (S vs. L).

The present results suggest that the to-be-judged physical sizes of the digits

(S− vs. S+, and L− vs. L+) are internally represented in a noisy format that is

modifiable by numerical magnitude. This claim is consistent with the general the-

ory of magnitude (ATOM) positing that there is a common cortical metric underlying

several quantity-related attributes, such as space, time, and number (e.g., Bonato,

Zorzi, & Umiltà, 2012; Cohen Kadosh, Lammertyn, & Izard, 2008; Eiselt & Nieder,

2012; Henik, Leibovich, Naparstek, et al., 2012; Leon & Shadlen, 2003; Schwarz

& Eiselt, 2009; Walsh, 2003; Winter, Marghetis, & Matlock, 2015). For example,

in their coalescence diffusion model Schwarz and Ischebeck (2003) proposed that

information from task-irrelevant attributes (e.g., numerical magnitude, and physical

font size S vs. L) often cannot be completely ignored. In their model, task-irrelevant

information effectively combines with (and thereby modifies) information from task-

relevant stimulus attributes to form an amalgam representation reflecting both, rel-

evant and irrelevant stimulus aspects. On the face of it, our findings could be seen

as being more compatible with an interaction at an early representational rather

than at a late decision stage (e.g., Risko et al., 2013; Schwarz & Heinze, 1998; So-

bel et al., 2016; Szűcs & Soltész, 2007); however, it should be stressed that SDT

models per se are mute with respect to chronometric aspects. More generally, our

findings clearly fit in with, and further extend, previous results from a variety of

perceptual tasks (e.g., Casarotti, Michielin, Zorzi, & Umiltà, 2007; Corbett, Oriet, &

Rensink, 2006; Fischer, Castel, Dodd, & Pratt, 2003; Godwin, Hout, & Menneer,

2015; Nieder, 2005; Schwarz & Eiselt, 2009, 2012; Sobel et al., 2016) suggesting

that symbolic numerical meaning is extracted at an early processing stage from

visual displays containing digits, and under favorable (i.e., congruent) conditions,

may enhance perceptual sensitivity, even in basic psychophysical tasks involving

judgments about physical size.
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Local probability effects of repeating

irrelevant attributes

This chapter has been published as: Schwarz, W., & Reike, D. (2017). Local probability effects
of repeating irrelevant attributes. Attention, Perception, & Psychophysics, 79, 230-242.
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Abstract

We present two experiments in which participants classify stimuli having two po-

tentially conflicting attributes, one of which is response-relevant whereas the other

(“irrelevant”) attribute is logically and statistically independent of the response. We

introduce a novel design not used with filtering tasks before in which the main fac-

tor is the local (i.e., one-step) transition probability π (= 0.25, 0.50, 0.75) that the

irrelevant attribute is repeated from one trial to the next. Experiment 1 involved

a visual Simon task in which the color of the stimulus is relevant and its location

is irrelevant. Experiment 2 used a semantic classification task in which the par-

ity of a digit presented is relevant and its numerical magnitude is irrelevant. The

results of both experiments demonstrate that participants in the π = 0.75 group

responded faster when the irrelevant attribute is in fact repeated rather than alter-

nated; in contrast, participants in the π = 0.25 group responded faster (Experiment

1) or equally fast (Experiment 2) when the irrelevant attribute is alternated rather

than repeated. These expectancy-related effects cannot be attributed to spurious

design contingencies as the irrelevant attribute was independent of the relevant

attribute (and thus of the response), of the congruency status, and also of their

alternation/repetition. One interpretation of our findings is that information about

the irrelevant attribute in the previous trial is used much as an informative central

precue, so that participants can prepare early processing stages in the current trial,

with the corresponding benefits and costs typical of standard cueing studies.
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Introduction

Among the most widely used experimental designs in human information pro-

cessing are filtering tasks in which the stimuli presented to the observers for clas-

sification vary on two dimensions, or attributes, one of which is response-relevant,

and one is not (e.g., Kahneman & Treisman, 1984; Pashler, 1998). Often, these at-

tributes are independent, both logically and statistically, but are related by other, po-

tentially conflicting aspects, in which case the generic term “conflict task” is some-

times used (e.g., Jimenéz & Méndez, 2013; Miller 1991; Schwarz & Ischebeck,

2003). These aspects may be defined by the relation of the irrelevant attribute to

the relevant attribute (e.g., Stroop, 1935; Eriksen & Eriksen, 1974) or to the re-

sponses (e.g., spatial correspondence; Simon & Berbaum, 1990). Thus, standard

designs such as the Stroop, the Simon, or the flanker task are all specific cases of

conflict tasks, although this formal analogy should not conceal the several system-

atic differences that exist between them (for detailed review, see, e.g., Kornblum

& Stevens, 2002; Pratte, Rouder, Morey, & Feng, 2010). In many conditions typ-

ical of conflict tasks the irrelevant stimulus attribute, even if uninformative about

the relevant attribute and the response, nevertheless systematically influences the

participant’s performance, such that congruent irrelevant attributes lead to faster

and more accurate responses than incongruent ones. Thus, speaking of attributes

as “irrelevant” does not imply that they do not influence the way in which a stimulus

is processed – it merely indicates that from knowledge about these attributes alone

the correct response cannot be deduced at a better than chance level.

Effects of repeating irrelevant attributes

Early accounts of filtering and conflict tasks tended to focus on factors related

to the specific conditions prevailing within any given trial (for reviews, see, e.g.,

Lu & Proctor, 1995; MacLeod, 1991; Pashler, 1998). However, subsequent re-

search has documented systematic sequential effects in many of these tasks. An
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extensive literature addresses sequential effects in conflict paradigms defined by

the congruency status (i.e., congruent vs. incongruent) of the previous trial; a ba-

sic finding is that congruency effects tend to be reduced following incongruent

as compared to congruent trials (e.g., Botvinick, Braver, Barch, Carter,& Cohen,

2001; Duthoo, Abrahamse, Braem, Boehler, & Notebaert, 2014; Gratton, Coles,

& Donchin, 1992; Jimenéz & Méndez, 2013; Mayr, Awh, & Laurey, 2003; Pfister,

Schröder, & Kunde, 2013; Puccioni & Vallesi 2012).

In contrast, the present study addresses effects related to whether the irrelevant

attribute of the previous trial is repeated or alternated. Extant findings regarding

these repetition effects present a mixed picture, with several differences between

paradigms and conditions. For example, using a standard Simon task Notebaert,

Soetens, and Melis (2001; for related studies and reviews, see, e.g., Hommel,

2011; Notebaert & Soetens, 2003; Wühr & Ansorge, 2005; Zeischka, Deroost,

Maetens, & Soetens, 2010) studied the effect of repeating the color (relevant at-

tribute) and/or the location (irrelevant attribute) of the visual stimulus. They found

(Experiments 1 and 2) that repeating the location had no main effect on RT but

interacted with repeating the relevant attribute (and thus the response) such that

RT was shorter when both attributes were repeated or both alternated (for sim-

ilar findings, see Kleinsorge, 1999; Schwarz & Ischebeck, 2000). Furthermore,

for response-to-signal intervals (RSIs) typical of standard conflict paradigms (1000

ms) repeating vs. alternating the irrelevant location did not influence the size of the

Simon effect, whereas for very short RSIs (50 ms) a Simon effect was observed

for location alternations but not for repetitions.

Related results on repeating irrelevant attributes were obtained by Kornblum

and Stevens (2002, Experiment 4) in a four-choice task in which central letters (rel-

evant attribute) were flanked either by response-incongruent arrows, or by incon-

gruent letters that were targets on other trials. Repeating irrelevant arrow flankers

had neither a main nor any interaction effect. However, repeating irrelevant flanking
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letters reduced RT by 26 ms relative to alternating them, but even then there was

no interaction between repeating the relevant and repeating the irrelevant attribute,

in contrast to the study of Notebaert et al. (2001) using the Simon task.

Finally, effects of repeating irrelevant attributes have also been observed in

non-spatial filtering tasks (Frings, Rothermund, & Wentura, 2007; Rothermund,

Wentura, & De Houwer, 2005), for example, in semantic classification, such as nu-

merical comparison (Dehaene, 1996; Pashler & Baylis, 1991; Pfister et al., 2013;

Schwarz & Ischebeck, 2000; Tan & Dixon, 2011). For example, in Schwarz and

Ischebeck (2000) participants classified numbers (presented as digits or number

words; the irrelevant attribute) as smaller or larger than 5 (relevant attribute). Al-

though uninformative about the response, repeating the logically irrelevant notation

(arabic vs. verbal) produced a partial repetition benefit, even when the number itself

was not repeated (for related partial repetition effects in digit naming, see Marcel

& Forrin, 1974; Meuter & Allport, 1999).

Local repetition probability

The present study further investigates these sequential effects of repeating ir-

relevant stimulus attributes reviewed above by a technique that has not previously

been used in the context of filtering and conflict tasks, namely by systematically

varying the local, i.e., trial-to-trial repetition probability of the response-irrelevant

attribute. In a classical paper, Bertelson (1961) first showed that local stimulus

transition probabilities may be varied without altering the global (i.e., overall) proba-

bilities of the stimulus alternatives involved. Specifically, he considered two-choice

designs in which according to a first-order two-state Markov chain in each trial the

local probability of repeating the previous stimulus was equal to 0 < π < 1 while

the global probability of each stimulus was held constant at 0.50. As seems natu-

ral, Bertelson (1961) used stimuli that varied only in one (thus, response-relevant)

attribute, namely, the location at which they were presented. For RSIs typical of

conflict tasks (500 ms), he found (his Table 4, group TL) that relative to a control
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group (π = 0.50) observers in a π = 0.75 group responded faster to stimulus rep-

etitions and slower to stimulus alternations, whereas an exactly complementary

pattern was observed in a π = 0.25 group. Bertelson (1961) concluded that with

sufficiently long RSIs his observers selectively prepared for the locally more likely

stimulus alternative, even when for all three groups both stimuli were presented

equally often. Subsequent research has confirmed and extended these basic find-

ings, for example, to designs with more than two stimuli (Kornblum, 1968), to se-

quential trial dependencies of higher order (e.g., Jentzsch & Leuthold, 2005), and

to analyses of event-related brain potentials (e.g., Leuthold & Sommer, 1993); for

detailed reviews, see, for example, Jimenéz and Méndez (2013), Jones, Curran,

Mozer, & Wilder (2015), or Soetens (1998). Notwithstanding these confirmations

and extensions, a central aspect of these studies in the present context remains

that all of them focused on the local repetition probability of the attribute that was

actually response-relevant.

The main question, then, addressed by the present experiments is: Do Ber-

telson’s (1961) conclusions regarding the local repetition probability of response-

relevant attributes extend to response-irrelevant attributes as well? Specifically,

adaptations to local repetition probabilities are often thought to reflect expectan-

cies (for recent reviews, see Jimenéz & Méndez, 2013; Jones et al., 2015) en-

abling the participants to selectively prepare for more likely decisions or responses.

Given that by definition irrelevant attributes per se provide no basis to anticipate

the forthcoming response, one plausible view is that variations of the local rep-

etition probability of irrelevant attributes will have no additional differential effect,

over and above the well-documented basic effects of repeating irrelevant attributes

reviewed above, all of which were obtained for π = 0.50. According to this view,

repeating, for example, the irrelevant location in a Simon task would still show the

effects (e.g., Notebaert et al., 2001) reviewed above, but these effects would not

in turn be further modified by varying the local probability π of repeating the irrel-
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evant location. Consistent with this view, note that repeating the relevant attribute

necessarily implies repeating the response as well; in contrast, repetitions of the

irrelevant attribute are by definition unrelated to the response. Therefore, to the

degree that the selective preparatory effects of local probability first observed for

relevant attributes by Bertelson (1961) mainly reflect response-related expectan-

cies it is quite conceivable that these effects will not extend to variations of the local

repetition probability π of attributes which are response-irrelevant.

On the other hand, at least some evidence suggests that variations of the lo-

cal repetition probability of response-relevant attributes might have some effect.

First, an extensive literature, referred to above, has clearly established that repeat-

ing irrelevant attributes per se does have reliable and systematic effects, under a

wide range of well-understood conditions. Therefore, selectively adapting to the lo-

cal probability of such repetitions might potentially enhance the efficiency of those

processing mechanisms underlying such effects. For example, in the context of

a standard Simon task, varying the local repetition probability of the irrelevant at-

tribute does provide probabilistic information about the stimulus location in the next

trial, not unlike in principle to informative central location precues (see, e.g., Jon-

gen & Smulders, 2007; Lu & Proctor, 1995).

Second, recent research on the sequential congruency effect (for recent re-

view, see Duthoo et al., 2014; Hommel, 2011; Pfister et al., 2013; Puccioni &

Vallesi, 2012) supports the view that the local repetition probability of higher-order

attributes which are unrelated to the response per se can have systematic effects,

too. For example, Jimenéz and Méndez (2013) studied the sequential congruency

effect in a Stroop task by varying the local repetition probability of a trial to be con-

gruent or incongruent, without altering the overall probability (0.50) of congruent

vs. incongruent trials (for a related study using explicit cues indicating the congru-

ency status of the next trial, see Wühr & Kunde, 2008). In their Experiment 2A

the congruency status (i.e., congruent vs. incongruent) of the previous trial was
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repeated with a local probability of π = 0.70. Compared to a neutral π = 0.50 condi-

tion (their Experiment 1), this led to an increase of the congruency effect following

congruent trials, and to a decrease of the congruency effect following incongruent

trials. Jimenéz and Méndez (2013) account for this effect by assuming that par-

ticipants form expectancies on the basis of learned design contingencies. Thus,

following a congruent n − 1 trial, participants tend to expect another congruent trial

which further decreases their congruent trial n RT and increases their incongru-

ent trial n RT, producing an overall increase of the congruency effect in trial n. In

contrast, following an incongruent n − 1 trial, participants tend to expect another

incongruent trial which decreases their incongruent trial n RT and increases their

congruent trial n RT, thus producing a decrease of the congruency effect in trial

n. As expected, complementary results were observed for a π = 0.30 condition

(Experiment 2B) which led to a reduction (an increase) of the congruency effect

following a congruent (an incongruent) n − 1 trial.

The present experiments

The detailed findings just reviewed directly relate to the issues addressed in

the present study, and several critical features should be noted in relation to the

experiments reported below. First, the RSI of 0 ms, chosen by Jimenéz and Mén-

dez (2013) to minimize the effect of expectancies, is untypical of standard conflict

tasks; at present it is an open question whether local repetition probability influ-

ences RT at larger RSIs (but see Jimenéz & Méndez, 2014). Furthermore, note

that the specific property whose local repetition probability was varied in the study

of Jimenéz and Méndez (2013) was not the irrelevant attribute (i.e., the word mean-

ing) as such but rather the congruency status of the trial. To study the effect (if any)

of the local repetition probability of response-irrelevant attributes a filtering task de-

sign is required in which the irrelevant attribute is locally (from one trial to the next)

repeated with a given probability π, independent of the response-relevant attribute,

and also independent of the congruency status of the trial. In the absence of extant
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studies with these design features, it is an open question whether variations of the

local repetition probability of response-irrelevant attributes have any specific differ-

ential effects beyond repetition per se at all, and if so whether these effects are

similar to those for response-relevant attributes. The present experiments sought

to fill in this gap, using two representative and well-investigated paradigms.

In our Experiment 1 we used a standard Simon task, in which the relevant at-

tribute is color, and the irrelevant attribute is location. Our Experiment 2 addressed

the same issues in the context of semantic classification, and exploited the well-

documented SNARC effect (spatial-numerical association of response codes; De-

haene, Bossini, & Giraux, 1993; Dehaene, 2011; Fias & Fischer, 2005) in which

participants indicate the parity (relevant attribute) of single digits by manual re-

sponses (for saccadic and pedal responses, see Schwarz & Keus, 2004; Schwarz

& Müller, 2006), the irrelevant attribute in this case is whether the digit is numeri-

cally small (<5) or large (>5).

For an unambiguous attribution of the effects of varying the local probability

of the response-irrelevant attribute it is of central importance to use stimulus se-

quences which meet several crucial boundary conditions (for a set of systematic

studies of contingency learning effects in this context, see Schmidt, 2013; Schmidt

& Besner, 2008; Schmidt, Crump, Cheesman, & Besner, 2007; Schmidt & De

Houwer, 2012a, b; Schmidt, De Houwer, & Besner, 2010). In particular, we gen-

erated stimulus sequences in which overall both levels of the relevant attribute

(and thus both responses) were presented equally often, the same was true of

the levels of the irrelevant attribute, and also for congruent vs. incongruent trials.

Furthermore, in our design repeating vs. alternating the irrelevant attribute was

independent of repeating vs. alternating the relevant attribute (and thus the re-

sponse), and also independent of whether the trial was congruent or not. Finally,

in all conditions, the relevant attribute was repeated with a probability of 0.50; the

same was true of the congruency status (e.g., Jimenéz & Méndez, 2013).
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Experiment 1

Experiment 1 was a visual Simon task, with color as the relevant and location

as the irrelevant attribute. The factor of central importance, varied between partic-

ipants, was the probability π (= 0.25, 0.50, 0.75) that the irrelevant attribute (i.e.,

location) was repeated from one trial to the next.

Method

Participants. Thirty-six University of Potsdam students, aged 18-33, with nor-

mal or corrected-to-normal vision participated in one session of approximately one

hour. They either received a payment of ¤8 or course credit for their participation.

Stimuli and apparatus. The stimuli were circular color (red/green) patches (1.2

deg diameter) presented against a gray background 4 deg to the right or left of a

centered fixation cross on a 75 Hz, 1028 × 768 pixel VGA monitor. Participants

responded by pressing buttons on custom-built response boxes with the index fin-

gers of their left or right hand; the response boxes were fixed on a table 25 cm to

the left and right of the midline.

Procedure. Twelve participants were randomly assigned to each group defined

by the probability π (= 0.25, 0.50, 0.75) that the location was repeated from one trial

to the next. Following one practice block, in each of ten blocks (comprising three

warm-up trials, followed by 72 regular trials) each of the four combinations of color

and location was shown 18 times, so that each color and each location occurred 36

times. Color (and thus the response) was repeated/alternated 36 times, the same

was true of congruency status. For the π = 0.25 (0.50, 0.75) group, location was

repeated in 18 (36, 54) of the 72 trials in each block. Sequences were generated

such that location repetitions were independent of both color and color repetitions,

and also of congruency status and congruency status repetitions.

The task was to indicate, as quickly as possible, the color of the stimulus by a

button press. Six participants in each group worked under each of both color-to-
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response mappings (this variable had no main or interaction effect, and is ignored

in the following). Each trial started with the presentation of a central fixation cross.

After a delay of 500 ms the stimulus was presented until a button was pressed; the

next trial then started 1000 ms after the response.

All effects were tested at a significance level of α < .05. For a trial to enter into

the analysis of mean RT the response had to be correct, and be preceded by a

correct response (exclusion rate of 8.4 per cent); also, RTs outside the range of

150 ms to 900 ms were excluded (a rate of 0.9 per cent).

Results

Mean RT. We analyzed mean RT by a 3 × 2 × 2 × 2 mixed-model Anova in

which the repetition probability of the irrelevant location was a between-subjects

factor (3: 0.25, 0.50, 0.75); three binary within-subject factors were defined by

whether or not in the trial considered the irrelevant attribute (location) was repeated

(2), the relevant attribute (color, and thus the response) was repeated (2), and

whether the trial was congruent or incongruent (2).

Overall, response (i.e., color) repetitions (379 ms) were faster than alternations

(402 ms; F(1,33) = 37.90, MSE = 1045, η2=0.54, p < .001; Figure 1, right panel),

and congruent trials (382 ms) led to shorter RTs than incongruent trials (399 ms,

Simon effect; F(1,33) = 40.11, MSE = 541, η2=0.55, p < .001; Figure 2). In contrast,

repeating (390 ms) vs. alternating (391 ms) the irrelevant location had no main

effect on RT (F(1,33) = .28, MSE = 519, η2=0.01, p < .598), confirming the previous

findings reviewed in the Introduction.

The most relevant finding in the present context is the interaction of the local

repetition probability π for the irrelevant location with its actual repetition or alter-

nation in a given trial (F(2,33) = 6.94, MSE = 519, η2=0.30, p < .003), shown in

the left panel of Figure 1. For the π = 0.25 group repeating the location increased

mean RT by 8 ms, relative to alternating the location. In contrast, for the π = 0.75

group repeating the location decreased mean RT by 15 ms. For the π = 0.50 group
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repeating (375 ms) or alternating (372 ms) the location had no reliable effect (t(11)

= 1.09, η2=0.10, p = .30). The group factor defined by the three levels of π neither

modified the response repetition main effect (Figure 1, right panel; F(2,33) = 2.43,

MSE = 1045, η2=0.13, p < .104) nor the Simon main effect (Figure 2; F(2,33) =

0.66, MSE = 541, η2=0.04, p < .523).
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Figure 1. Both panels: mean RT (ordinate in ms) for three groups with local probability of
location repetition equal to π = 0.25, 0.50, 0.75 (abscissa). Left: mean RT for location rep-
etition (dots, solid lines) vs. location alternation (squares, dotted lines) trials. Right: mean
RT for color (thus, response) repetition (dots, solid lines) vs. color alternation (squares,
dotted lines) trials. Error bars show ± 1 s.e.m. (Loftus & Massey, 1994).

Only two further interaction effects were significant, both confirming effects re-

viewed in the Introduction, and none of which involved the group factor for the levels

of π. First, the congruency effect is larger (22 ms) when the location is alternated

compared to when it is repeated (13 ms; F(1,33) = 8.92, MSE = 142, η2=0.21, p <

.005). Second, when the location is repeated, color (and thus response) repetitions

are 55 ms faster; this turns into an advantage for color (and response) alternations

of 8 ms when the location alternates (F(1,33) = 279.73, MSE = 244, η2=0.89, p
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< .001). In contrast, we found no significant three-way interaction of the location

repetition probability π with the location’s actual repetition or alternation in a given

trial, and congruency (F(2,33) = 0.11, MSE = 142, η2=0.00, p = .90).
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Figure 2. Mean RT (ordinate in ms) for three groups with local probability of location
repetition equal to π = 0.25, 0.50, 0.75 (abscissa). Dots and solid lines indicate congruent,
squares and dotted lines incongruent trials. Error bars show ± 1 s.e.m. (Loftus & Massey,
1994).

Error rates. The overall error rate (in per cent) was 4.3. The results of the

Anova of error rates mostly conform to those for RT, such that long RTs go with

high error rates. Specifically, fewer errors were made in congruent (3.7) than in

incongruent (5.0) trials (F(1,33) = 4.78, MSE = 21.50, η2=0.13, p < .036). Of central

importance is the interaction of the irrelevant repetition probability π with repeating

vs. alternating the irrelevant location (F(2,33) = 8.98, MSE = 7.26, η2=0.35, p <

.001). This interaction reflects that participants in the π = 0.25 group produced

more errors when the irrelevant attribute (location) was repeated (5.4) than when it
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alternated (4.2), whereas for the π = 0.75 group this pattern was exactly reversed

(3.7 for repeated vs. 5.8 for alternated locations). As was the case for RT, the π

= 0.50 group showed no reliable error rate effect for repeating (3.3) vs. alternating

(3.8) the location.

Only two further interaction effects were significant, none involving the group

factor. First, when the color is repated then incongruent trials lead to more errors

(5.7) than congruent ones (3.4). However, when the color alternates, the error

rates in incongruent (4.3) and congruent trials (4.1) are nearly equal, resulting in an

interaction of relevant (i.e., color) repetition with congruency (F(1,33) = 10.67, MSE

= 7.52, η2=0.24, p < .003). Second, confirming the analogous effect for mean RTs,

when the location is repeated, fewer errors (2.2) are made when color is repeated,

too, than when color alternates (6.0). Conversely, when the location alternates,

more errors are made for color repetitions (6.8) than for color alternations (2.4),

producing a highly reliable interaction (F(1,33) = 42.91, MSE = 28.55, η2=0.57, p

< .001).

Discussion

The results of Experiment 1 provide a first demonstration that variations of the

local transition probability π of repeating response-irrelevant attributes (location)

can have reliable and consistent effects on performance in a standard filtering task.

That is, the present results indicate that location is not irrelevant in the sense that

expectations about the location of the forthcoming stimulus based on the first-order

transition probabilities have no systematic effects on performance (for a discussion

of the conditions under which these expectations become explicit, see, e.g., Blais,

Harris, Guerrero, & Bunge, 2012; Bugg, Diede, Cohen-Shikora, & Selmeczy, 2015;

Schmidt et al., 2007). Specifically, participants in the group with a high local prob-

ability of repeating the irrelevant location responded faster and more accurately in

trials in which the location is in fact repeated, and a converse pattern was observed

in the group for which π was low.
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Given that this effect in turn neither modified the response repetition benefit nor

the congruency effect, one plausible interpretation, then, is that the local repetition

probability for location speeds up an early orienting stage, much like informative

central location cues do (e.g., Girardi, Antonucci, & Nico, 2013, 2015). More specif-

ically, the participants in groups π = 0.25 and 0.75 might interpret the location of

the current stimulus as a (mostly) valid cue for the stimulus location in the next trial,

and benefit from a corresponding attentional orientation whenever the stimulus in

fact occurs at the more likely location. Reviewing precueing effects in the Simon

task, Lu and Proctor (1995) concluded that “precues influence the magnitude of

the Simon effect only when an expectancy for a particular response is created ...

but not by an expectancy for the particular location in which the target stimulus will

occur” (p. 187, italics added). Similarly, Wühr & Kunde (2008) observed that in a

Simon task participants cannot make use of reliable cues about the congruency of

a forthcoming stimulus to change the attentional weights of processing channels

for different stimulus dimensions, which is in line with Jimenéz and Méndez (2013,

p. 281) who conclude that although “the manipulated contingencies had been ef-

fective in changing participants’ expectancies concerning the congruency of the

next trial, the effects of congruency remained relatively immune to such contingen-

cies”. Thus, our own findings and the interpretation given fit in well with related

standard findings from the Simon task that valid central location precuing leads to

an overall speed benefit, but does not modify the size of the Simon effect.

To assess the generality of our findings, it would be important to extend the

basic design used in Experiment 1 in several ways. First, given the findings sum-

marized in the Introduction regarding partial repetition benefits in semantic clas-

sification, it seems natural to ask if the effects of the local repetition probability

for irrelevant attributes extend beyond simple sensorimotor (e.g., Simon) tasks.

More specifically, while the effects observed in Experiment 1 could possibly reflect

shifts of spatial attention to the location predicted by the preceding trial, analogous
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effects with non-spatial predictability would presumably require a more general ex-

planation.

Second, note that the standard Simon task used in Experiment 1 involves only

four different stimuli which means that repeating both the relevant and the irrelevant

attribute implies an exact replica of the previous trial, which potentially provides a

repetition benefit specific to identical repetitions (see, e.g., Hommel, 2011; Pashler

& Baylis, 1991; Schwarz & Ischebeck, 2000).

It is, therefore, conceivable that our findings regarding the critical interaction of

the local repetition probability π for the irrelevant location with its actual repetition

or alternation in a given trial (left panel of Figure 1) reflects an effect that is closely

tied to identical repetitions1. To test this conjecture, we run an additional analy-

sis in which all trials were removed in which the stimulus presented was identical

(i.e., in location and color) to the stimulus in the preceding trial. In the design of

Experiment 1 repeating the relevant attribute color and repeating the irrelevant at-

tribute location were always independent events: in all three π = 0.25/0.50/0.75

groups, there was an equal proportion (i.e., 0.50) of relevant repetitions and rele-

vant alternations both within irrelevant repetitions and within irrelevant alternations.

Therefore, the exclusion of identical repetitions maintained the same trial composi-

tion between the three π−groups. Note that excluding identical repetitions does not

affect at all the RT means for alternations of the irrelevant attribute, which by defi-

nition cannot be identical repetitions. Rather, it only excludes half of all those trials

in which the irrelevant attribute is repeated, namely, that half in which the relevant

attribute (and thus the response) is also repeated, leaving for irrelevant repetitions

only the other half in which the relevant attribute (and thus the response) alter-

nates. As described above, there is a robust interaction of repeating the relevant

and the irrelevant attribute such that repeating both, or alternating both, leads to

clearly faster RTs than in the two mixed cases. As a result, whereas mean RTs for
1We thank an anonymous reviewer who suggested this additional analysis.
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alternations of the irrelevant attribute remain by definition unchanged by excluding

identical repetitions, mean RTs for repetitions of the irrelevant attribute are clearly

longer (about 30 ms) after the exclusion of identical repetitions. The crucial finding,

however, is that this effect is essentially the same across all three π−groups, thus

producing very nearly the same interaction contrast (F(2,33) = 11.51, MSE = 165,

η2=0.41, p < .0002) of the local repetition probability π for the irrelevant location

with its actual repetition or alternation in a given trial as in the original analysis

including identical repetitions. Specifically, after excluding identical repetitions the

RT advantage of alternations over repetitions of the irrelevant location was max-

imal (38 ms) for π = 0.25 (where such alternations are expected), decreased to

33 ms for π = 0.50, and was minimal (5 ms) for π = 0.75. Clearly, this analysis

suggests that the interaction of π with the actual location repetition or alternation

in a given trial found in Experiment 1 cannot be attributed to a processing benefit

specific to identical repetitions. Clearly, this conclusion could be further strength-

ened by using a richer design involving a categorically defined irrelevant attribute

such that this attribute can be repeated with non-identical stimuli, even when the

relevant attribute (i.e., the response) is repeated, too.

Experiment 2

In Experiment 2 participants classified digits (1-9, excluding 5) according to

their parity (relevant dimension), indicating their decision by manual responses

(index finger of the left or right hand). Under standard conditions the difference of

right-hand RT minus left-hand RT decreases with the numerical magnitude of the

digit (the so-called SNARC effect; Dehaene et al., 1993; for review, see Dehaene,

2011; Fias & Fischer, 2005; Schwarz & Keus, 2004). That is, ignoring potential

main effects of magnitude and hand, participants respond (relatively) faster to small

digits (<5) with their left hand, and to large digits (>5) with their right hand, even
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though numerical magnitude per se is a response-irrelevant attribute. A common

interpretation is that the size of the SNARC effect reflects the correspondence (or

lack thereof) of the internal representation of numerical magnitude in the format of

a left-to-right mental number line (Restle, 1970) with the spatial response layout.

The aim of Experiment 2 was to evaluate if the findings of Experiment 1 extend to a

non-spatial semantic (i.e., parity) classification task, using a design in which even

for repetitions of the relevant attribute (i.e., parity) the irrelevant attribute (i.e., digit

smaller vs. larger than 5) could be repeated without identical stimulus repetitions

(e.g., a 7 followed by a 9).

Method

Participants. Thirty-six University of Potsdam students, aged 18-31, with nor-

mal or corrected-to-normal vision participated in one session of approximately one

hour. They either received a payment of ¤8 or course credit for their participation.

Stimuli and apparatus. The stimuli were the digits (Verdana font, height 1.1

deg) 1–9 (excluding 5) presented at fixation; all other technical aspects were iden-

tical to Experiment 1.

Procedure. Twelve participants were randomly assigned to each group defined

by the probability π (= 0.25, 0.50, 0.75) that the irrelevant numerical magnitude

was repeated from one trial to the next. Following one practice block, in each of

twelve blocks (comprising three warm-up trials, followed by 64 regular trials) each

of the eight digits was shown eight times. Each of the four parity × magnitude

combinations occurred 16 times, so that odd and even digits, and small and large

digits occurred 32 times. In congruent trials either a small (<5) digit required a

left-hand response or a large (>5) digit required a right-hand response; the other

digit-response combinations are incongruent. Parity (and thus the response) was

repeated/alternated 32 times, the same was true of congruency status. For the

π = 0.25 (0.50, 0.75) group, numerical magnitude (<5 vs. >5) was repeated in
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16 (32, 48) of the 64 trials in each block. Sequences were generated such that

magnitude repetitions were independent of both parity and parity repetitions, and

also of congruency status and congruency status repetitions. There were no trials

in which the same digit as in the previous trial was presented.

The task was to indicate, as quickly as possible, the parity of the digit by a

button press. Six participants in each group worked under each of both parity-to-

response mappings (this variable had no main or interaction effect, and is ignored

in the following). Each trial started with the presentation of a central fixation cross

which after a delay of 500 ms was replaced with a response-terminated digit; the

next trial then started after 1000 ms.

All effects were tested at a significance level of α < .05. For a trial to enter into

the analysis of mean RT the response had to be correct, and be preceded by a

correct response (exclusion rate of 8.8 per cent); also, RTs outside the range of

150 ms to 900 ms were excluded (a rate of 1.7 per cent).

Results

Mean RT. We analyzed mean RT by a 3 × 2 × 2 × 2 mixed-model Anova

in which the repetition probability of the irrelevant numerical magnitude was a

between-subjects factor (3: 0.25, 0.50, 0.75); three binary within-subject factors

were defined by whether or not in the trial considered the irrelevant attribute (mag-

nitude: digit <5 vs. digit >5) was repeated (2), the relevant attribute (parity) was

repeated (2), and whether the trial was congruent or incongruent (2).

As shown in Figure 3, response (i.e., parity) repetitions (474 ms) were faster

than alternations (484 ms; F(1,33) = 6.17, MSE = 6845, η2=0.16, p < .018; right

panel), and congruent (472 ms) trials led to shorter RTs than incongruent (486

ms) trials (SNARC effect; F(1,33) = 13.90, MSE = 905, η2=0.30, p < .001; Figure

4). In contrast to Experiment 1, repeating (477 ms) vs. alternating (482 ms) the

irrelevant attribute (magnitude) also had a small but reliable main effect, F(1,33) =

20.24, MSE = 88, η2=0.38, p < .001 (Figure 3, left panel).
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Figure 3. Both panels: mean RT (ordinate in ms) for three groups with local probability
of magnitude repetition equal to π = 0.25, 0.50, 0.75 (abscissa). Left: mean RT for mag-
nitude repetition (dots, solid lines) vs. magnitude alternation (squares, dotted lines) trials.
Right: mean RT for parity (thus, response) repetition (dots, solid lines) vs. parity alternation
(squares, dotted lines) trials. Error bars show ± 1 s.e.m. (Loftus & Massey, 1994).

Critically, the interaction of the local magnitude repetition probability π with actu-

ally repeating vs. alternating magnitude was significant (F(2,33) = 7.34, MSE = 88,

η2=0.31, p < .002). Due to the main effect of magnitude repetition, the exact nature

of this interaction takes a slightly different form than in Experiment 1, as shown in

the left panel of Figure 3. For the control group (π = 0.50), repeating numerical

magnitude decreased mean RT by 5 ms, relative to alternating it, a small but sys-

tematic magnitude repetition baseline effect (t(11)=2.26, η2=0.32, p < 0.045). For

the π = 0.75 group, this effect of repeating irrelevant magnitude is further increased

by 5 ms to 10 ms (t(11)=4.76, η2=0.70, p < 0.01), and for π = 0.25 it is decreased

by the same amount, so that for this group repetitions and alternations of magni-

tude produced exactly the same mean RT (t(11)=0.05, η2=0.00, p < 0.96). The

group factor defined by the three levels of π neither modified the response repeti-
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tion effect (Figure 3, right panel; F(2,33) = 0.04, MSE = 1110, η2=0.00, p < .958)

nor the SNARC effect Figure 4; F(2,33) = 1.83, MSE = 905, η2=0.10, p < .176).

The only other significant interaction was that when magnitude is repeated, parity

(and thus response) repetitions are 15 ms faster; this response repetition benefit

reduces to 5 ms when the numerical magnitude alternates (F(1,33) = 16.28, MSE

= 130, η2=0.33, p < .001).
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Figure 4. Mean RT (ordinate in ms) for three groups with local probability of location
repetition equal to π = 0.25, 0.50, 0.75 (abscissa). Dots and solid lines indicate congruent,
squares and dotted lines incongruent trials. Error bars show ± 1 s.e.m. (Loftus & Massey,
1994).

Error rates. The overall error rate (in per cent) was 4.6. Fewer errors were

made when magnitude was repeated (4.3) vs. alternated (5.0; F(1,33) = 4.90,

MSE = 1.37, η2=0.13, p < .034), when parity was repeated (4.0) vs. alternated

(5.2; F(1,33) = 5.21, MSE = 18.59, η2=0.14, p < .029), and in congruent (3.5) vs.
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incongruent (5.7) trials (F(1,33) = 11.31, MSE = 30.84, η2=0.48, p < .002). The

only significant interaction shows that fewer errors were made when magnitude

and parity were both repeated or both alternated (4.2), compared to repeating one

and alternating the other attribute (5.1; F(1,33) = 9.91, MSE = 5.13, η2=0.23, p

< .003). Given that none of the main or interaction effects involving the irrelevant

repetition probability π was significant we conclude that the RT findings regarding

π cannot be attributed to speed-accuracy trade-offs.

Discussion

The results of Experiment 2 confirm for a semantic classification task that vari-

ations of the local probability π of repeating a response-irrelevant attribute (nu-

merical magnitude) can have systematic and reliable effects on performance in a

standard non-spatial conflict task. A notable difference to the Simon task (Exper-

iment 1) is that in Experiment 2 repeating the irrelevant attribute per se reduced

both RT and error rate. The combined pattern of both Experiments regarding this

main effect thus closely parallels the mixed previous findings, reviewed in the In-

troduction, with no irrelevant location repetition main effects in visual Simon tasks

(cf., Notebaert at al., 2001) but irrelevant flanker repetition main effects in letter

classification tasks (cf., Kornblum et al., 2002).

The main effect of magnitude repetition indicates that across all levels of π re-

peating similar numerical magnitudes from one trial to the next provides a genuine

benefit which suggests one potential interpretation of the funnel interaction (rather

than cross-over, as in Experiment 1, left panel of Figure 1) of magnitude repetition

probability π with actually repeating vs. alternating magnitude. According to this

interpretation, this interaction represents the additive combination of two separate

components. One component reflects a genuine magnitude repetition effect that

is independent of expectancies; it therefore arises even for the π = 0.50 control

group for which the stimulus sequence is completely unpredictable, admitting no

expectancies above chance level. In contrast, the second component reflects ex-
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pectancies based on learned trial contingencies, as were observed in Experiment

1. Specifically, participants in the π = 0.75 group tend to expect magnitude rep-

etitions: this leads to a benefit, on top of the genuine component, if magnitude

is in fact repeated but to a cost if magnitude alternates. Participants in the π =

0.25 group tend to expect magnitude alternations, with an ensuing benefit if in fact

magnitude alternates; however, if contrary to those expectancies magnitude is re-

peated the cost of the expectancy mismatch is reckoned up against the benefit

from the genuine component.

General Discussion

An extensive body of research has established that repeating irrelevant but po-

tentially conflicting stimulus attributes across trials can have reliable effects, under

a wide range of well-understood boundary conditions (cf., Kornblum & Stevens,

2002; Puccioni and Vallesi 2012; Zeischka et al., 2010). To this research on se-

quential effects in filtering paradigms the present study adds as a new form of

manipulation the local trial-to-trial transition probability π of repeating a stimulus at-

tribute that is logically and statistically irrelevant (i.e., unpredictive of the response

required) yet potentially conflicting.

Local repetition probability (Bertelson, 1961; for reviews, see Jones et al.,

2015; Soetens, 1998) has been extensively investigated before in connection with

response-relevant attributes, but not in the context of response-irrelevant attributes

in filtering paradigms. Because irrelevant local repetition probability was manipu-

lated, events in the current trial provide a probabilistic basis to form expectancies

about, for example, the location (Experiment 1) or the magnitude (Experiment 2) of

the forthcoming stimulus. Our results show that these expectancies derived from

learned design contingencies can influence how fast (Experiments 1 and 2) and

accurate (Experiment 1) responses in the forthcoming trial are. Specifically, rela-
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tive to the π = 0.50 control groups working with unpredictive stimulus sequences,

in both experiments participants in the π = 0.75 groups responded faster when

the irrelevant attribute was in fact repeated, and a complementary pattern was ob-

served for groups with π = 0.25. On the other hand, neither the reliable RT benefit

associated with repeating the relevant attribute (and thus the response) nor the RT

congruency main effects observed in both experiments were differentially modified

by variations of π. Note that our results cannot be accounted for by some form

of statistical association between the relevant and the irrelevant attribute, nor by

an association of events in the present trial with the response or the congruency-

status of the previous trial.

For the Simon task (Experiment 1), a natural interpretation is that the irrele-

vant attribute of the current trial acts much as a (mostly) valid centrally-presented

spatial cue for the next trial. Probabilistic knowledge about the location at which

a critical stimulus will appear has well-documented facilitatory effects in valid tri-

als, and detrimental effects in invalid trials (e.g., Foley & Schwarz, 1998; Girardi,

Antonucci, & Nico, 2013, 2015; Gould, Wolfgang, & Smith, 2007). This view is

consistent with previous findings that location precues in Simon tasks produce the

usual cost/benefit pattern but do not differentially influence the magnitude of the

Simon effect (e.g., Lu & Proctor, 1995; Wühr & Kunde, 2008). Our interpretation

also fits in, for example, with the attention-shift account of spatial correspondence

effects (for recent review, see Duthoo et al., 2014; Puccioni and Vallesi 2012; Zeis-

chka et al., 2010) according to which shifts of spatial attention contribute to the

Simon effect as a key factor.

On this interpretation, why should irrelevant numerical magnitude in Experiment

2 also lead to corresponding effects of irrelevant repetition probability? Accord-

ing to a standard interpretation of number-related congruency effects one format

in which we represent numbers is topologically akin to the spatial stimulus lay-

out in a Simon task, the fundamental difference being, of course, that location in
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the parity task corresponds to the internal location of a number along an ordered

quasi-spatial representation (the “mental number line”; Restle, 1970). In this in-

terpretation, expectancy effects regarding sub-intervals of the mental number line

may facilitate the identification of the to-be-presented number (e.g., Schwarz & Is-

chebeck, 2000; Tan & Dixon, 2011), and thus of its parity, not unlike a valid spatial

location cue in a Simon task. Considerable support for this view is, for example,

provided by the work of Nieder (e.g., 2005, 2011) who explored basic neuronal

mechanisms of numerical magnitude coding. Recording from cells in the intrapari-

etal sulcus and the prefrontal cortex of rhesus monkeys, he identified a numerical

distance-dependent gradient of neuronal activation, yielding well-defined neuronal

numerosity-tuning functions for single cells. If this distance-dependent mechanism

is transiently facilitated by residual activation from the previous trial, then repeating

digits of similar magnitude in subsequent trials might facilitate an initial orientation

response along the mental number line.

More generally, expectancy effects as induced by local repetition probability of-

fer a promising approach to further explore how stimulus attributes are processed

which by themselves are uniformative about the required response but (in typi-

cal filtering paradigms) do induce reliable response repetition and/or congruency

effects. Two aspects of this approach seem especially relevant in the present con-

text. The first is that changes of the global probability of stimulus attributes imply

changes of its local first-order transition probabilities, too, whereas the converse

is not true (cf., Kornblum, 1968; Miller, 1998). For example, if in a Simon task as

used in Experiment 1 in any trial the stimulus is independently presented in the

left location with probability 0.80 (0.50), then 100 trials will on average contain 68

(50) first-order location repetitions. This confound makes it difficult to attribute the

effects of varying the global probability of irrelevant attributes either to cumulative

overall learning effects (due simply to more frequent presentations of one location;

cf., Kabata & Matsumoto, 2012; Miller, 1988, 1998) or to more local, expectancy-
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related sequential effects. In contrast, the local repetition probability π of irrelevant

stimulus attributes can be manipulated without altering the global (overall) proba-

bility of that attribute. Second, it is difficult to attribute the local repetition effects

of two-valued relevant attributes in two-choice paradigms (such as color in Exper-

iment 1, or parity in Experiment 2) to chronometrically early (stimulus-related) or

late (response-related) processing stages, as repetitions of the relevant attribute

and of the associated response are perfectly confounded in such designs. In con-

trast, the local repetition effects of irrelevant attributes obtained in the present study

are independent both of the relevant stimulus attribute (and thus the response) and

of congruity status, and also of whether or not these attributes have been repeated

from the previous trial or not. Conflict paradigms are by definition based on manip-

ulating the relation of relevant and irrelevant stimulus attributes; given that the vari-

ation of the local repetition probability of irrelevant attributes avoids the confounds

mentioned above, the general design behind the present experiments allows for

cleaner conclusions about how expectancy effects modulate the adaptation to in-

consistent or contradictory information.

In conclusion, the present experiments demonstrate systematic and reliable

effects due to variations of the local trial-to-trial repetition probability of response-

irrelevant attributes (location, numerical magnitude) in a spatial (Simon) and in a

semantic (SNARC) filtering task. These effects influence performance in ways

comparable to central probabilistic location (Experiment 1) or magnitude (Experi-

ment 2) cues: they exhibit the cost-benefit pattern typically associated with such

cues, but do not in turn differentially modify other main (response repetition and

congruency) effects. More generally, the design used in our experiments provides

a novel approach to explore how trial-to-trial expectancies regarding response-

irrelevant attributes influence the nature and limits of cognitive control in filtering

tasks.
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Chapter 5

General discussion: Noisy numbers

Cos I’d rather be in this noise

celebrate in this noise colder

It means so much to me

Dixon & Busbee (Archive)
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The aim of this thesis is to illuminate the processes behind numerical cogni-

tion. How do we use the mental representations of numbers, and how are they

influenced? The Chapters 2, 3, and 4 described in considerable detail a process

model for number comparison, the influence of numerical representations on the

perception of physical values and how we use our mental representation of num-

bers strategically in number-related tasks. Finally, the results will be discussed

further due to mental number representations.

Between number representation and response

It is not obvious how any kind of mental number representation in a number

comparison task leads to response effects like the numerical distance effect, which

was first described by Moyer and Landauer (1967). Surprisingly, it was not found

a quantitatively and easily interpretable process model in the literature whose ac-

countability for response performance was shown in complete paired digit compar-

isons, explaining many aspects of response time, error rate, variance of response

time and error response time. This thesis fills this gap and presents a process

model with a parsimonious set of interpretable parameters. Further, aspects like

error response times, which were usually neglected, were considered.

In number-related studies, error response times were not included in the anal-

yses. Although response time models were proposed, which have in principle the

property to account for error response times, they were not tested. For exam-

ple, Brown and Heathcote (2008) suggested a ballistic model for response times.

In this model, error responses were based on a random variable. Nevertheless,

they should not been completely unsystematic. In contrast, the model proposed in

Chapter 2 predicts error responses in a very systematic manner (e.g., a numerical

distance effect for error responses). These predictions were explicitly tested and

confirmed. The results suggest that error responses cannot be reduced to pure
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coincidence or not task-related explanations as attention. Rather, it appears to be

more inherent in the decision process that sometimes an error has to occur while

solving the task in an efficient manner.

The proposed random walk model is based on the assumption of noisy but

sorted according to numeric value mental representations of magnitudes (e.g.,

Nieder, 2005). It describes how these representations are processed. In addition,

different scales of number representations were tested. In contrast to a simple lin-

ear scale, a logarithmic scale was suggested, in which all decisions depend only

on the ratio of the two presented digits. One could argue that at least a third model

is missed, a linear scale model but variability increasing also linear with increasing

magnitude. As illustrated in Figure 1, in the sense of task difficulty at number com-

parison it is not possible to discriminate this model from a logarithmic scale model

(e.g., Dehaene, 2007). Remarkably, both models produce performance predictions

for number comparison tasks that only depended on the ratio of the two compared

numbers – the perceived distance.

Cohen and Quinlan (2016) reported computational random walk models to ac-

count for aspects of number comparison and fit them to the distribution of response

times. Surprisingly, although these models used more parameters than the dou-

ble exponential model reported in Chapter 2 (and explained less data points), the

computational random walk models were successfully fitted only with an additional

assumption of an uncertainty for the encoding process of each presented number.

In addition, they prioritized the simple linear scale model. Possibly, these differ-

ent results in contrast to the results reported in this thesis can be explained with

the quite different task Cohen and Quinlan (2016) used, a same/different task that

contained only eight digit pairs. The random walk model proposed in Chapter 2

showed a considerable fit to the observed data with a complete digit pair compar-

ison (72 pairs) without additional assumptions about the encoding process. How-

ever, the non-decision component is much larger than the decision component of
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1 2 89
perceived numerosity

logarithmic scaled magnitude

1 2 8 9
perceived numerosity

linear scaled magnitude 
 with increasing variance

Figure 1. Noisy number representations of perceived magnitude. Both panels show per-
ceptual distributions for 1, 2, 8 and 9. The gray areas illustrate the equality of neighbored
numbers. In the left panel, the represented numerical distance between the numbers de-
creases with increasing magnitude and the variance is unchanged, namely a logarithmic
scale. In the right panel, the represented numerical distance is unchanged for neighbored
numbers but the variance increases with increasing magnitude, namely a linear scale (with
increasing variance). In both panels the overlap of neighbored magnitudes increases with
increasing magnitude.

the whole process. It seems worthwhile to examine this component in more detail.

It should be possible to integrate two additional parameters to account for manip-

ulations in the encoding process (e.g., adding different visual noise to the stimuli)

and in the actual response process (e.g., different effectors: hand vs. foot). There-

fore, with this extended model it should be possible to estimate the ratio between

the encoding and the actual response part of the non-decision component.

Can the random walk model be more generalized or used for performance pre-

dictions in other tasks? Moeller, Huber, Nuerk, and Willmes (2011) used a com-

putational model to investigate two-digit number processing. They prioritize the

strictly decomposed model to explain observed data in a two-digit number com-

parison task. The present random walk model as a quantitative model should be

extended to two-digit number processing to validate or refuse this finding. Schwarz
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and Eiselt (2012) reported a numerical distance effect in visual search. Godwin,

Hout, and Menneer (2014) suggested that these effect depends more on visual

similarity than on numerical similarity of the presented digits. Schwarz and Miller

(2016) proposed a general quantitative process model (GSDT) to account for usual

data in visual search. The present random walk model could be integrated in the

GSDT model to investigate in more detail the mental number processing in visual

search.

The random walk model is a helpful tool to investigate questions in relation

to number comparison tasks in more detail with provable predictions. For exam-

ple, Sekuler and Mierkiewicz (1977) showed a decreasing numerical distance ef-

fect from childhood to adolescence. Norris, McGeown, Guerrini, and Castronovo

(2015) reported weaker performance of elderly participants compared to younger

participants. Overall, both (children and the elderly) responded slower in number

comparison tasks than young adults. In terms of the random walk model, three

main hypotheses can be described. First, differences between different groups ac-

counted for real differences in the ability to compare numbers. Second, different

groups are more or less accurate. Third, these groups are distinct in other task

process components beyond the actual decision process. It can be assumed that

children differ in contrast to young adults in the ability to compare numbers. The

elderly may not differ in this ability and their slower responses depend on aging

processes beyond cognitive numerical skills.

The dependence of physical size and mental number

representation

The physical size of numbers influences the performance in numerical judgment

tasks, the number-size congruency effect (Besner & Coltheart, 1979). In addition,

numerical magnitude influences the performance in physical size judgment tasks
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(Henik & Tzelgov, 1982). If physical size and numerical magnitude are congruent,

then it seems to be easier to solve these tasks. Until present, it is unclear and

debated where this effect originated. Walsh (2003, 2015) proposed a theory of

magnitude (ATOM), which can account for the number-size congruency effect and

implicit suggests an explanation. Physical size and numerical magnitude partially

used the same representation systems and processing stages. Henik, Leibovich,

Naparstek, Diesendruck, and Rubinsten (2012) extant this theory with a numerical

core system that includes all numerosity processing.

The results reported in Chapter 3 are in line with the view that physical size and

numerical magnitude share common representation systems. It can be suggested

as an early processing stage associated with the actual perception rather then a

late processing stage associated with the response process. In contrast, Sobel,

Puri, Faulkenberry, and Dague (2017) investigated the number-size congruency

effect in a visual search task and reported that physical size, but not numerical

magnitude, guides the visual search. They concluded that physical size and nu-

merical magnitude are integrated in a late processing stage. However, Chapter

3 described sensitivity gain in congruent conditions that suggests the integration

of physical size and numerical magnitude cannot be very late. In terms of GSDT

(Schwarz & Miller, 2016), visual search items are sorted by a guidance process,

which is followed by a serial item inspection. It can be assumed that physical size

and numerical magnitude are integrated at the individual item inspection, which

does not necessarily have to be a late stage. For future research, to investigate

this in more detail, a process model is needed that integrates physical size and

numerical magnitude.

Schwarz and Ischebeck (2003) proposed a coalesce model. They integrated

physical size and numerical magnitude in a diffusion model that can account for

the number-size congruency effect. A similar procedure can be used to integrate

physical size in the random walk model described in Chapter 2. This extended
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model can be used as a process model to investigate the interaction of physical

size and numerical magnitude in considerable detail, also in the original two digit

task and in a complete digit pair design.

Physical size is not the only dimension that interacts with numerical magnitude.

For example, Hartmann and Mast (2017) reported that loudness influences the

perception of numerical magnitude and in the opposite direction numerical mag-

nitude influences the perception of loudness. The experimental design described

in Chapter 3 can be easily adapted to loudness. Presumably, the sensitivity gain

in congruent condition accounts for the loudness–number association rather than

simple numerical mediated response biases.

Strategic use of numerical representations

Participants are sensitive to response repetition probabilities independent of

over all stimuli occurrence probabilities (Bertelson, 1961). In conflict tasks, partici-

pants are also sensible to repetition probability of congruent stimuli (e.g., Jimenéz

& Méndez, 2013). In addition, the sensitivity to detect overall occurrence prob-

ability of (in)congruent stimuli operates fast due to an implicit learning process.

Resulting expectations do not necessarily need explicit cues (e.g., Bugg, Diede,

Cohen-Shikora, & Selmeczy, 2015).

A specific numerical conflict task describes a response speed gain for small

(large) numbers for left (right) responses in contrast to right (left) responses, the

spatial numerical association response code (SNARC) effect (Dehaene, Bossini,

& Giraux, 1993). Participants had to judge the parity of digits and the numerical

magnitude was actually irrelevant. The SNARC effect depends on congruency

of preceding trials, indicating that number–spatial associations can be accessed

quickly and quite flexibly (e.g., Pfister, Schroeder, & Kunde, 2013).
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Chapter 4 described an experimental design that is suitable to varying the rep-

etition probability of (irrelevant) stimuli attributes independent of overall stimuli oc-

currence probability. This design is applied to a Simon task and, more importantly

for this thesis, to a SNARC task. In a Simon task, participants are able to use

explicit cues successfully (Posner, 1980; for a recent study see: e.g., Girardi, An-

tonucci, & Nico, 2013). One explanation is a spatial attention shift in the more

expected direction of the next stimuli.

The results reported in Chapter 4 suggest that participants are able to use in-

formation from preceding trials as a kind of cue for the actual trial (similar to explicit

cues). Similar to the Simon task, in the SNARC task participants used the informa-

tion of the numerical magnitude of the preceding trial. What is the main difference

between the Simon task and the SNARC task? In the Simon task, participants

perform real spatial shifts of attention whereas in the SNARC task they perform

mental (spatial) shifts of attention. Digits can also cause real spatial shifts of at-

tention (Fischer, Castel, Dodd, & Pratt, 2003) but it seems that these numerically

initiated shifts of attention are not completely automatic (Fattorini, Pinto, Roton-

daro, & Doricchi, 2015). However, it is not necessary to use a mental spatial or-

ganization to explain the results reported in Chapter 4. Alternatively, a presented

number does not exclusively activate the related mental representation. Instead,

close number representations are co-activated (see Nieder, 2005). If participants

develop expectations about the numerical magnitude in the next trial using the in-

formation of the preceding trial, then they could possibly preactivate the expected

range of mental number representations. This procedure does not necessarily re-

quire a spatial component. Additionally, according to ATOM (Walsh, 2003, 2015) it

should be possible to manipulate this preactivation with physical size, for example.

It can be assumed that the described effects in Chapter 4 are more general

and not exclusive to conflict tasks. In a visual search task, it was easy to detect

target location probability resulting in related performance gains (e.g., Kabata, &
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Matsumoto, 2012). The experimental design described in Chapter 4 can easily

adapt to visual search tasks. For example, the task could be to find one landolt

ring between closed circles. The ring can be opened to the left or to the right,

indicating the left respectively the right answer. In addition, the actual irrelevant

position of the landolt ring in the display can be left or right in the display. Now,

the repetition probability of this position can be varied independent from overall

occurrence probability of left and right opened rings and from overall occurrence

probability of left and right positions. It is assumable that then occur similar effects

as in conflict tasks reported in Chapter 4. In that case, the strategic use of mental

number representation would be reflective of a more general strategic process.

Digits are noisier than expected

If a computer were to solve a number comparison task we would not expect any

errors. In addition, most effects described in this thesis (e.g., the numerical dis-

tance effect or the magnitude effect) would not occur. The computational number

“representation” is very exact and actually not sorted according to numeric value.

In contrast, mental number representation seems not to be very exact. The per-

ception of quantities is noisy even though it is sorted according to numeric value.

This seems also true if we had to deal with digits. The explanations for most ex-

perimental results in this thesis are based on the same basic assumptions. First,

that numbers are mentally represented in a noisy manner. Second, that these

representations are sorted in a size relation. Alternative assumptions can not ex-

plain the results in adequate detail. For example, Cohen (2009) proposed that

response times in a same/different task depended on physical rather than on nu-

merical similarity. The task used includes only eight digit pairs. The experimental

design reported in Chapter 2 includes 72 digit pairs, and many aspects of number

comparison are explained with the random walk model based on noisy represen-
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tations of digits. Ratcliff, Thompson, and McKoon (2015) successfully fitted a diffu-

sion model to numerosity and number discrimination tasks. This diffusion model is

based on noisy number representation too. Third, interactions with other numerical

values, like physical size and strategic uses of numerical representations, are not

explained to a satisfying extent without noisy number representations. Therefore,

digits activate these representations that can be seen as parts of the meaning of

digits.

The variety of presented tasks and reported (numeric) performance in this the-

sis is in line with the view that we possess a basic ability to understand numbers,

known as the number sense (Dehaene, 2011). We use that sense very easily and

adapt it to the required task. In addition, we develop a system to communicate

number related information.

Symbols represent a great deal of information in a very compact way. Some

symbols include more information than formally can be seen implicit in their visual

structure. Digits are quite meaningless without related mental representations. It

seems that they activate a complex representation system which give us a sense to

deal with them. We use special kinds of symbols — digits — to express numerical

information in a very compact and compressed manner.
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