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Abstract

We do magnetohydrodynamic (MHD) simulations of local box models of turbulent Inter-

stellar Medium (ISM) and analyse the process of amplification and saturation of mean

magnetic fields with methods of mean field dynamo theory. It is shown that the process

of saturation of mean fields can be partially described by the prolonged diffusion time

scales in presence of the dynamically significant magnetic fields. However, the outward

wind also plays an essential role in the saturation in higher SN rate case. Algebraic

expressions for the back reaction of the magnetic field onto the turbulent transport co-

efficients are derived, which allow a complete description of the nonlinear dynamo. We

also present the effects of dynamically significant mean fields on the ISM configuration

and pressure distribution. We further add the cosmic ray component in the simulations

and investigate the kinematic growth of mean fields with a dynamo perspective.





Zusammenfassung

Wir führen magnetohydrodynamische (MHD) Simulationen des turbulenten interstel-

laren Mediums (ISM) in lokalen Boxen durch und analysieren darin den Prozess der

Verstärkung und Saturation der mittleren Magnetfelder mit Methoden der Dynamoth-

eorie mittlerer Felder. Es wird gezeigt, dass der Prozess der Saturation mittlerer Felder

teilweise durch eine verl ängerte Diffusionzeit in Gegenwart dynamisch signifikanter Mag-

netfelder erklärt werden kann. Für höhere Supernovae-Raten spielt auch der nach außen

treibende Wind eine essenzielle Rolle für die Saturation. Aus den Simulationen konnten

algebraische Formeln für die Rückwirkung des Magnetfeldes auf die turbulenten Trans-

portkoeffizienten abgeleitet werden, die eine vollständige Beschreibung des nichtlinearen

Dynamos erlauben. Wir präsentieren zudem den Einfluß signifikanter mittlerer Mag-

netfelder auf die ISM-Konfiguration und Druckverteilung. Wir fügen der Simulation

außerdem kosmische Strahlung als Komponente hinzu und untersuchen das kinematis-

che Wachstum mittlerer Felder aus einer Dynamo-Perspektive.
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Chapter 1

Introduction

1.1 Cosmic Magnetic Fields

Discovery of the existence of magnetic fields in the sunspots [Hale, 1908] has a cardinal

relevance to the area of cosmic magnetic fields. Since then, the ubiquity of magnetic field

in astronomical objects such as stars, galaxies, protostellar jets, etc. has been supported

by an extensive amount of observational data.

Several observations from astrophysics and geology have enabled us to map a detailed

spaciotemporal behavior of magnetic field in the celestial objects and in the earth itself

[Hathaway, 2010; Love, 2008]. The Solar magnetic field, for instance, evolves in a periodic

way, with time period of 22 years (Figure 1.1) and it could be as strong as 3 kG locally.

While the Earth’s magnetic field is relatively static and dipolar in geometry (although

there is ample evidence of temporally irregular flips in its the polarity, that have occurred

in the past) and has the average strength of ∼ 0.5 G at the surface of the Earth.

Reason for the magnetization of most of the astronomical bodies is usually attributed to

the induction effect generated by the motions of electrically conducting plasma [Moffatt,

1978], which can be promisingly encapsulated in a so-called ‘dynamo mechanism’, a

mechanism that converts kinetic energy into magnetic energy [Krause & Rädler, 2013].

Due to its wide range of applicability from stars to the whole galaxies, ‘dynamo theory’

is considered as one of the most useful tools to explain the peculiarities of observed

magnetic fields in these celestial bodies [Rüdiger & Hollerbach, 2006]. However, with

the advancement in available computational resources, it is possible to investigate the

1
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Figure 1.1: Panel-top: Sunspot area (measured in the units of, equal area latitude
stripes) as a function of time and latitude. Panel-bottom: Total sunspot area (measured
in the units of, visible solar disc area) as a function of time. [Adopted from, Hathaway,

2010].

question of existence of magnetic fields in these objects, to some extent, relying on the

first principles [e.g. Glatzmaiers & Roberts, 1995; Ossendrijver, 2003]. While extending

this philosophy to explain the galactic magnetic fields (which also is the main focus of

this analysis), one is confronted with a number of open questions, which are sequentially

discussed in the following sections.

1.2 Galactic Magnetic Fields

1.2.1 Radio Synchrotron Observations

Unlike for the stellar and geomagnetic fields, confirmation of galactic magnetic fields is

relatively recent. In fact, only over the course last few decades have observations of the

polarized radio synchrotron emission been established as an efficient tool in mapping
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the galactic magnetic field, both in strength and geometry [Beck et al., 1996]. A brief

summary of this method is as follows:

Supernova shock waves and protostellar jet flows accelerate the charged particles to the

relativistic velocities, which are referred to as the cosmic rays (CR). An ensemble of CR

electrons gyrating around the galactic magnetic field lines (due to Lorentz force) emit the

highly polarized beam of synchrotron radiation in the direction of gyration. Frequency

of the synchrotron radiation depends simply upon energy of the gyrating CR particle

and strength of magnetic field. The synchrotron radiation we receive from galactic

CR belong to the radio range of electromagnetic spectrum [Fermi, 1949; Kiepenheuer,

1950] and are linearly polarized. Its theoretically expected degree of polarization would

approximately be 74% if the magnetic fields were purely regular [Beck & Wielebinski,

2013], while the integrated fluctuating component of magnetic field within a particular

observed ‘pixel’ of the galaxy (plus the contribution of unpolarized thermal emission,

which may be dominant in the star forming regions) amounts to a certain departure from

expected degree of polarization (74%). Hence this departure is used as a measure of the

comparative contribution of regular and turbulent magnetic field. It should, however, be

mentioned here that the theoretical estimate of the degree of polarization relies upon the

approximation of isotropy of fluctuating magnetic field and any anisotropy in it could

systematically lead to the overestimation of regular magnetic field. Anisotropy arising

form the galactic differential rotation, for example, could lead to additional polarization

of ∼ 10% [e.g. Stepanov et al., 2014].

The estimation of total (regular + turbulent) field strength is usually obtained by em-

ploying an assumption of equipartition between CR energy and magnetic energy. This

assumption makes total intensity of synchrotron radiation a quantitative measure of total

field strength [e.g. Arbutina et al., 2012]. It must also be mentioned that the assumption

of equipartition may lead to the over/underestimated value of total magnetic fields in

several scenarios. If for instance, the CR energy losses are prevalent (e.g. in presence of

strong magnetic fields) the equipartition assumption, instead of its true value actually

provides a lower limit of the total field strength [Beck & Wielebinski, 2013; Yoast-Hull

et al., 2015]. The equipartition argument should hence rather be treated as a first order

estimate of the total field strength. Nonetheless, recent γ-ray observations seem to sup-

port the validity of the equipartition argument in few cases such as Large Magellanic

Cloud, Milky Way, M 82, etc. [Lacki & Beck, 2013; Mao et al., 2012].
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To map the topology of regular galactic magnetic field, however, it is indispensable to

disentangle its line of sight and perpendicular component, which is achieved as follows.

Firstly, to infer the direction of a perpendicular field component (perpendicular to the

line of sight) a distinguishing property of the galactic synchrotron radiation is employed,

that is, a significantly high degree of plane polarization, wherein the electric field vec-

tors of the radiation stay perpendicular to background magnetic field. By employing

this phenomenon, it is in-principle possible to infer the direction of a perpendicular

component (with the ambiguity of 180o). This plane of polarization further gets rotated

as the radiation passes through galactic ISM, due to the Faraday effect. The Faraday

rotation angle, under certain justifiable approximations, remains directly proportional

to the squared of wavelength of radiation and to the strength of a line of sight field

component (which is embedded in a so-called rotation measure, RM) [e.g. Sofue et al.,

1986; Sokoloff et al., 1998]. Positive and negative values of RM, thus imply a line of sight

field component, which is directed towards the telescope and away from it, respectively.

A multi-wavelength analysis of RM, along with the independent estimates of total field

strength yield the strength of a perpendicular field component as well.

By performing such analysis over a wide range of radio frequencies one can separately

map the line of sight and perpendicular components of regular galactic magnetic field.

However, the reliability of these results within the far galactic halos (which emit low

radio frequency radiation) has to be weighted against the increasing contribution of

unpolarized emission and CR loss processes, which makes it utmost necessary to carry

out the high resolution imaging of a low radio frequency data [e.g. Van Haarlem et al.,

2013]. A few observational findings about galactic magnetic fields are discussed in the

following sections.

1.2.2 Face-On Galaxies

As of now, it is a well established observational fact that in most of the disc galaxies

regular magnetic field has a spiral structure (with the strength of µG) that roughly

follows optical gas arms. This spiral pattern extends over tens of kpc [e.g. Beck, 2009].

Even the galaxies that lack regular structure of optical gas arms seem to posses a fairly

coherent magnetic spiral structure, exceeding well over few tens of kpc [e.g. Chyży &

Buta, 2008]. In spite of the regular structure, a general decoupling between galactic
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magnetic fields and gas flows exists, or in other words, a finite pitch angle between a gas

flow direction (which is approximately circular) and magnetic field vectors. Remarkably

large values of pitch angles (8o - 40o) have so far been reported in many face-on spirals

[e.g. Fletcher et al., 2011; Tabatabaei et al., 2008].

Figure 1.2, as a typical example, shows a polarized synchrotron intensity map for a

nearby face-on spiral galaxy NGC 4736, in which all the aforementioned characteristics

of regular galactic magnetic fields are clearly represented. For instance, magnetic spiral

arms extend well over a 10 kpc range, with a strength of the total and regular fields of

approximately 17µG and 10µG, respectively (at 8.6 GHz). Even the average value of

pitch angles is fairly large, ∼ 350 [Chyży & Buta, 2008]. In the recent statistical analysis

of the magnetic field data in spiral galaxies [Van Eck et al., 2015], pitch angles are shown

to systematically scale with the SN rate, so that a linear correlation exists with a very

small error of ∼ 2%, moreover there also is a clear direct scaling between pitch angles

and total gas surface density. Although the size of the data sample they have used for

this analysis is not statistically significant, it revels some of the interesting features of

the galactic parameters and their mutual correlations.

Figure 1.2: Polarized intensity contour map at 8.46 GHz for NGC 4736 face-on
galaxy, with observed magnetic field vectors overlaid on the optical image for same

galaxy. [Adopted from, Chyży & Buta, 2008].



Chapter 1. Introduction 6

1.2.3 Edge-On Galaxies

Figure 1.3: Polarized radio intensity map of edge-on spiral galaxy NGC 4631 at
4.85 GHz, overlaid on a color-scale optical DSS image, contours represent the apparent

magnetic field orientation. [Adopted from, Mora & Krause, 2013].

Observations of radio synchrotron emissions from the galaxies seen edge-on suggest that

many galaxies posses a thick radio intensity halo encapsulating the disc. Brightness

of this radio halo decays with a distance from the galactic disc, which can be fitted

with an exponential curve [e.g. Beck, 2001; Dumke & Krause, 1998]. Consequently the

exponential scale-height of a radio halo becomes a measure for the vertical extent of total

magnetic field (by assuming equipartition between CR and magnetic energy), such that

the scale-height of total field is almost 4 times larger than the synchrotron scale-height 1.

Typical galactic radio halos can be best fitted with the superimposition two exponential

curves of scale-heights ∼ 350 pc and ∼ 1.8 kpc [e.g. Krause, 2014, 2015], which gives an

average scale-height of ∼ 8 kpc for the total magnetic fields in outer parts of the galaxies.

Similar to its vertical distribution, brightness of the radio halo in many spiral galaxies

exponentially decays in radially outward direction, with average scale-lengths of about

4 kpc (which gives the radial scale-lengths of 15 kpc for the total magnetic field) [Beck

& Wielebinski, 2013]. Total magnetic energy even exceeds the turbulent kinetic energy

1However, it must be mentioned that a vertical extent of the radio halos is also controlled by other
CR loss processes like inverse Compton, adiabatic losses, etc.
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as we go radially outwards. In certain cases [e.g. Beck, 2007] this turnover occurs only

at ∼ 2 kpc.

Polarized synchrotron observations of edge-ons also reveal a specific topology of regular

fields, which is characterized by the strong regular fields that remain parallel to the disc

near the galactic center and deflect in vertical direction in the radially outer parts of

the disc. As a result, typical ‘X-shaped’ geometry of the polarization vectors is observed

in the edge-on view of most spiral galaxies, even in those galaxies with a low star

formation rate. As a typical example, Figure 1.3 shows a radio polarization intensity

map of a nearby edge-on spiral galaxy NGC 4631, in which a thick radio halo and

the X shaped pattern is clearly seen. Overall geometry of the regular field, however,

is difficult to interpret in a side view, due to inability to disentangle the radial field

from the toroidal field but a plausible reason for the observed X shape probably lies

in the advective transport of total field due to fast galactic outflows emerging from

the disk. Estimated velocities of such outflows in many nearby galaxies, scale roughly

as a direct function of SN rate and average strength of the total field [e.g. Krause,

2012]. Implications of the strong outward winds on magnetic field evolution can be

understood via numerical simulations, which have been discussed further in this thesis,

but to formulate the question properly (Section 1.3), a few observational findings of

galactic magnetic fields (which are also explored in further chapters) are summarized

below.

1. Galactic magnetic fields show a long range regularity both in radial and vertical

directions.

2. Face-on observations show significantly large values pitch angles; even beyond the

regular optical arms.

3. Strengths and the vertical scale-heights of the regular galactic fields are seemingly

uncorrelated with SN rate.

4. Large ratios of turbulent to regular magnetic fields exist in the galaxies and scale

inversely with respect to star formation rate [Chyży & Buta, 2008].
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1.3 Overview and Objectives of Numerical Models

On the length scales larger than the mean free path of galactic ISM, it can be described

as a vastly inhomogeneous turbulent fluid, one of the important drivers of which is

ongoing stellar evolution that leads to the SN explosions on the time scale of ∼ Myr

and releasing energy of the order of ∼ 1051 erg into ISM per explosion. Overpressured

bubbles of hot ISM gas created during the SN explosions rapidly expand until the SN

remnant merges in the surrounding ISM by releasing its thermal and kinetic energy

(i.e. until its velocity matches that of the surroundings). Radiative cooling time of such

hot gas usually exceeds the turbulent correlation time and, as a result, galactic ISM

evolves to a complex turbulent structure characterized by the distinct thermal phases,

which can be broadly classified into: i) the warm phase, which is strongly ionized by

various sources like UV, x-ray, cosmic rays, shock waves, etc., ii) the hot phase, which is

created mainly as a result of random SN explosions, and iii) the cold molecular phase,

which is generated as a result of cooling down of interacting SN shock fronts [Shukurov,

2004]. Another important feature of galactic ISM is the vertical stratification arising as

a result of non-uniformly vertically distributed SN explosions (these depend upon the

distribution of underlying stellar population). This, along with the gravity, leads to a

particular vertical arrangement of ISM phases such that the occupancy fraction of lighter

hot gas in the galactic disc is lower than in the outer halo, as opposed to the denser

phases, which mostly occupy the galactic disc. So, using the first principles, galactic

ISM can be viewed as the electrically conducting turbulent fluid and origin of galactic

magnetic field as a Magnetohydrodynamical problem.

While explaining the long range regularity of galactic spirals it is natural to attribute

its origin to the galactic flow pattern (a passive kinematic winding up of ‘frozen in’

primordial fields due to the galactic differential rotation). However, the existence of

large pitch angles makes this argument less compelling. The large values of turbulent

diffusivity (1026 cm2 s−1), on the other hand, could in principle prevent the strong wind-

ing up of azimuthal component, but would also lead to the decay of non-axisymmetric

magnetic field within ∼ 1.5 Gyr [Rohde et al., 1998; Shukurov, 1998]. Both of these

arguments support the possibility of the existence of a dynamical process governing the

field generation. Initial attempts to formulate the mechanism were based upon the mean

field theory via a so-called αΩ dynamo model. Qualitatively speaking, αΩ-dynamo is a
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mechanism through which weak ‘seed’ fields are amplified to large scale regular fields by

deriving the energy from the rotational kinetic energy of the system via helical turbu-

lence. This amplification continues until the magnetic fields become strong enough to

affect the structure of turbulence. Before elaborating this point; some general technical

details of the formulation are discussed.

In mean field dynamo theory, the flow variables (velocity and magnetic field) are split

as a sum of their mean and fluctuating/turbulent component. Evolution of the mean

magnetic field is then studied for mean flow (velocity) and ‘the turbulent electromotive

force’ (EMF), E = (u′ × b′) (mean value of the crossproduct of the fluctuating velocity

u′ and fluctuating magnetic field b′). With the first order smoothing approximation,

E turns out to be a linear functional of the mean field and its derivatives, with α and

η as the multiplying factors. α and η are referred to as the dynamo coefficients for

obvious reasons and are interpreted as the ‘helicity’ and ‘diffusivity’ of the turbulence,

respectively [see e.g. Krause & Rädler, 2013; Moffatt, 1978].

In order to visualize how this mechanism works for galaxies, one needs to take into

account the underlying gas dynamics, which is traced by probing the Doppler shifts of

stellar spectra. Rotation curves of most of the galaxies (rotational velocity as a function

of galactic radial distance) thus measured correspond to the rigid rotation in the radially

inner parts of galaxies (below ∼ 5 kpc), while they are flat (indicating the differential

rotation) in outer parts, introducing radial shear. Considering its geometry, a disc galaxy

can be easily described with a cylindrical coordinate system, with origin placed at the

galactic center. Background flow velocity, therefore, has an azimuthal component of

rotation. Moreover, there also is a turbulence driven by supernova explosions, which

gives rise to hot bubbles of ISM gas, expanding and rising up in the galactic halos. If

the initial field were plane parallel, upward rising bubbles would carry the frozen in

field along with them producing field loops. Furthermore, such rising bubbles would

experience the Coriolis force making these loops twisted. The extent to which the loops

will be twisted is encapsulated in the helicity of the turbulent bubble, which is denoted

by the quantity α. On the other hand, any radial field component is spirally wound up

along with differentially rotating disc, denoted by the Ω effect. Successive rising and

twisting of field lines provides a robust mechanism to produce the toroidal (azimuthal)

field from the poloidal (radial + vertical) and vice versa. If there were no sufficient α

effect; spirally wound up field lines would lead to the negligible pitch angles, contrary
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to what is observed in real galaxies. This mechanism is well depicted in Figure 1.4.

Thus, this mechanism in principle explains the field amplification process against the

diffusive losses along with appropriate values of pitch angles [e.g. Kleeorin et al., 2002;

Stix, 1975; Zeldovich et al., 1983]. However, the used values of dynamo coefficients

so far relied upon the phenomenological estimates based on the assumed properties of

background turbulence, which does not necessarily provide a quantitative description

of ISM turbulence. In order to figure out whether this simplistic mechanism describes

an actual physical process that would lead to the production of galactic magnetic field,

it is necessary to perform the direct MHD simulations of galactic ISM, starting from

the first principles along with a realistic source of turbulence driving (usual sources

include: SN explosions, jets, instabilities, etc.). The results of such simulations are then

need to be analyzed in a context of αΩ-dynamo. Based upon the different mechanisms

of turbulence driving, there have been a number of successful attempts of modeling a

realistic galactic ISM, for instance Gressel [2010], much similar to Gent et al. [2012],

have performed such realistic MHD simulations of a local 3D patch of a spiral galaxy,

in which random SN explosions were used to drive the turbulence. Another example is

Hanasz et al. [2009], in which SN explosions inject CR energy into the system. All of

these models successfully capture the initial fast amplification phase of magnetic field

when they are sufficiently smaller than the background turbulent kinetic energy.

In order to adequately examine the properties of galactic magnetic fields and its back-

reaction on the ISM properties, one needs to perform such simulations in the regime

where total magnetic fields would be sufficiently stronger to reflect the realistic scenario

discussed previously (desirably as strong as the turbulent kinetic energy). Phenomeno-

logical considerations suggest a general suppression of background turbulence under the

influence of dynamically significant mean magnetic fields [Krause & Rädler, 2013]. He-

licity and turbulent diffusivity, as a result, should become the inverse functions of mean

field itself. Dynamo models based on these hypotheses also have a fast growing solution

initially, that saturates when magnetic energy reaches to equipartition with respect to

the turbulent kinetic energy [Brandenburg & Sandin, 2004; Elstner et al., 2008; Shukurov

et al., 2006]. However, there are a number of problems associated with such models.

The first one of them is related to the mathematical description for the suppression of

dynamo coefficients, which is usually derived using the order of magnitude estimates

based on the phenomenological description. The second problem arises due to assumed
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Figure 1.4: Panel-left : Spiral winding of poloidal field component to toroidal by the
virtue of differential rotation (Ω effect). Panel-right : Helical twisting of toroidal field
component to toroidal due to turbulent helicity (α effect). [Adopted from, Ruzmaikin

et al., 2013]

suppression of poloidal field component along with the spiral winding amplification of

toroidal component in the differentially rotating flow, a scenario which invariably leads

to unrealistically small values of pitch angles.

Composition of realistic galactic ISM, however, involves more complexities than that. As

has been mentioned before, the empirical estimates based on the observational findings

suggest the existence of fast outward galactic wind in many edge-on spirals, the magni-

tude of which scales directly with respect to SN rate [Krause, 2012]. Such fast outward

winds supposedly have a key roll in the saturation of magnetic fields via the advective

transport of small scale current helicity, while preserving the helicity and thereby the

value of pitch angle.

A self consistent verification of these processes can only be provided via the magne-

tohydrodynamic simulations of galactic ISM along with the realistic physical effects

important for the dynamo amplification, such as a realistic mechanism for turbulence
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driving, a vertical stratification of mass density (which provides a vertical pressure gradi-

ent) and the differential rotation. In the present investigation, it is attempted to provide

a rigorous explanation for aforementioned problem by comparing the results of realistic

simulations with the analytical formulation.

We also present preliminary results of the models involving the cosmic ray component,

which in the reality primarily contain the relativistic protons and electrons. Observed

energies of these cosmic rays range from ∼ 1 GeV to ∼ 1011 GeV [e.g. Duric, 1988, 1999;

Shapiro et al., 1991], thus making them one of the nonnegligible dynamical ingredi-

ents of the galactic ISM. SN shocks are thought to have a key roll in energizing the

charged particles (produced via stellar processes) to such high magnitudes [e.g. Fermi,

1949, 1954]. The observed spectrum of cosmic rays is fairly smooth with a spectral

index of ∼ −2.7, which advocates the ‘diffusive shock acceleration of SN remnants’ as

a plausible mechanism of producing the cosmic rays, as suggested by Bell [1978]. Since

the cosmic rays are charged particles, their confinement to the large SN remnants is

usually attributed to the observed strong magnetic fields frozen within the shock fronts

[Bell, 2004]. As the magnetic fields are closely coupled to the thermal plasma, cos-

mic rays are also correlated to thermal background [e.g. Hanasz & Lesch, 2000]. It is

therefore attempted here to explore the possible implications of cosmic rays to the large

scale galactic dynamo mechanism [e.g. Boulares & Cox, 1990]. Previous investigations

and discussions about the topic involved Parker’s idea [Parker, 1992] of the enhanced

galactic dynamo action due to additional buoyant support associated with cosmic ray

component. More recently, Hanasz et al. [2009] have also demonstrated the initial fast

amplification of magnetic fields via direct MHD simulations. It is therefore interesting

to analytically verify this process, mainly because of the ability of the analytical ap-

proach to provide a self-consistent parametrization of background turbulence. Details

of the implementation are provided in the relevant chapters, but the general idea of the

mechanism involves the commonly used hydrodynamic approach for CR propagation (in

which CR component is treated as an adiabatic fluid that gets injected in ISM via SN

explosions and propagates along the magnetic field lines). We do not have much data

yet to exclusively point out the differences between thermal SN driven turbulence and

CR driven turbulence. Nevertheless, it is attempted here to verify the field amplification

as a mean field process.



Chapter 2

Modelling the Interstellar

Medium

Our primary aim is to understand the dynamo process in the galactic ISM; with a re-

alistic mechanism of turbulence driving, which supposedly is a plausible reason for the

existence of large scale galactic magnetic fields [Beck, 2007]. General background and

astrophysical relevance of this conundrum has been adequately formulated in the intro-

duction part of this thesis (Chapter 1). In this chapter we continue with the description

of the numerical model. A number of physical effects have been incorporated here, such

as SN explosions (with clustering), radiative heating and cooling, resistive and diffusive

processes, vertical density stratification, differential rotation and the shear, etc. A reason

behind implementation of all these effects is primarily to construct the most realistic

numerical model of galactic ISM, which includes the necessary helical turbulence for

galactic dynamo to function. Numerical descriptions of these effects are mainly adopted

from theory and previous simulations by Gent et al. [2012]; Gressel et al. [2008], etc. To

complement this model, we have further included the CR component, which is largely

adopted from Hanasz et al. [2009] and Girichidis et al. [2014]. Numerical treatment for

CR is discussed in the last part of this chapter. Having said that, we have excluded a

number of other physical effects such as photo-ionization, chemical networks, etc. This

is largely because we want to study the dependence of ISM properties on the main

drivers of galactic turbulence and it is important to tackle this problem in a bottom-up

approach. Implementation of these omitted effects is of course necessary to make the

13
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model more realistic. However, as we see in the further chapters, SN explosions and

differential rotation are sufficient prerequisites for a functional galactic dynamo.

2.1 Model Equations

As a computational domain we choose local patch of a typical spiral galaxy (Milky Way

like) and express it with a Cartesian coordinate system such that x̂, ŷ and ẑ represent

the unit vectors in radial, azimuthal and vertical directions respectively. Dimensions of

the box are −0.4 kpc to 0.4 kpc in radial (x) direction, 0 kpc to 0.8 kpc in azimuthal (y)

direction and −2.133 kpc to −2.133 kpc in a vertical (z) direction (mid-plane is located

at z = 0 kpc). This domain is resolved in 96×96×512 grid cells (grid scale is ∼ 8.33 pc).

Within this domain, we solve the set of non-ideal MHD equations using NIRVNA MHD

code by Ziegler [2008], which solves these equations in the form of flux conservation laws,

using a third order Runge-Kutta formulation along with central Godunov discretization

scheme for 3D conservation laws. The following set of MHD equations (Equation 2.1) is

solved for four unknowns: density ρ, velocity u, total energy e and magnetic field B, in

a co-rotating frame of reference (where all symbols have their usual physical meanings):
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∂ρ

∂t
+∇ · (ρu) = 0 ,

∂ (ρu)

∂t
+∇ · (ρuu + p? −BB) = −2ρ Ω ẑ × u + 2ρ Ω2qx x̂

+ρg ẑ +∇ · τ ,

∂e

∂t
+∇ · ((e+ p?) u− (u ·B) B) = +2ρ Ω2qx x̂ · u + ρg ẑ · u

+∇ · (τu + ηB× (∇×B))

+∇ · κ∇T− ρ2Λ (T)

+ΓSN + ρ Γ (z) ,

∂B

∂t
−∇× (u×B− η∇×B) = 0 .

(2.1)

Here τ denotes the viscous stress tensor

τ = ν̃

(
∇u + (∇u)> − 2 (∇ · u)

3

)
,

with the dynamical viscosity ν̃. We scale ν̃ with local mass density and define the con-

stant kinematic viscosity coefficient ν = 5× 1024 cm2 s−1, leading to the constant mag-

netic Prandtl number Pm = ν/η = 2.5 (for the magnetic diffusivity η = 0.02 cm2 s−1).

Theoretical estimate suggests that the typical value Pm in galactic ISM ranges up to 1011

[Brandenburg & Subramanian, 2005]. For numerical scheme, however, we are restricted

to choose the values closer to unity. The reason for this is the need to resolve both ν

and η on the numerical grid (otherwise the value of Pm is intrinsically decided by the

numerical scheme; based on the value of numerical diffusivity). With the same token;

we also define the isotropic thermal conductivity κ as a function of local mass density

such that κ = κ0ρ/ρ0, yielding the values of Prandtl number Pr = ν/κρcp ' 4. Where

the constant κ0 is 4×108. This scaling also leads to a constant value of Prandtl number

Pr = ν/κρcp ' 4.
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Ω denotes the angular velocity of the box with a shearing parameter q, defined as:

q =
d ln Ω

d lnR
, (2.2)

which corresponds to the flat rotation curve of a typical spiral galaxy, Ω = Ω0R
−1

(R being radial separation) for q = −1. As an input parameter, we choose Ω0 =

100 km s−1 kpc−1 as initial condition (equivalent of the angular velocity at radial distance

∼ 2.2 kpc in the Milky Way). A reason to use such fast rotation velocity (unlike Ω0 =

25 km s−1 kpc−1 consistent with the solar circle) is mainly to get the amplification of

magnetic energy, Em in a reasonable physical time. Gressel et al. [2008] points out

that, for a similar model set up, Ω0 > 25 km s−1 kpc−1 is a necessary condition for

a galactic dynamo to function. Authors further argue that the exponential growth

time of Em is about ∼ 102 Myr for Ω = 100 km s−1 kpc−1. So to achieve sufficiently

strong magnetic fields within a reasonable computational time we resort to relatively

fast rotation velocities.

With the used value of Ω (100 km s−1 kpc−1) we yield the value of Reynold’s number

Re ' 4000 and magnetic Reynold’s number Rm ' 10000 in all models.

Λ (T) is a radiative cooling term, the value of which is prescribed for the particular range

of temperature.

Term, ΓSN indicates the rate at which SN energy is injected into ISM. Whereas Γ (z)

represents ambient heating by background stellar population.

Term g(z) indicates the vertical profile of acceleration due to gravity, contributed mainly

by the stellar population in the central disc.

p? is a sum of thermal (p) and magnetic (B2/2µ0) pressure components

p? = p +
B2

2µ0
.

Thermal pressure p is calculated using thermal energy density ε, with the assumption

of adiabatic equation of state, p = (γ − 1) ε, where γ = 5/3 and thermal energy density

ε is
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ε = e− ρu2

2
− B2

2µ0
.

2.2 Boundary Conditions

Consistent with the differentially rotating disc galaxies, we use so-called ‘shearing peri-

odic boundary conditions’ in radial direction (x). That is, the values of all variables at

inner x boundary are the same as their values at the periodic points on outer x bound-

aries, except that they are shifted in azimuthal (y) direction to account for the differential

shear and corresponding shift derived from the used values of Ω and q. Implementa-

tion of shearing periodic boundary conditions is mainly adapted from Gressel & Ziegler

[2007]. Also, we use the periodic boundary conditions for azimuthal (y) boundaries.

Used condition of periodicity in radial and azimuthal directions ensures the conserva-

tion of vertical (z) component of magnetic flux subject to the solenoidal constraint on

magnetic field. At the vertical boundaries (z), we use the outflow boundary conditions

such that the component of velocity directed outside of domain is chosen by assuming

its zero vertical gradient and the component of velocity that is directed inside the box

is set to zero. Such outflow boundary conditions prohibit any inflow of the material.

Boundary conditions for other fluid variables (mass density, total energy, pressure, radial

and azimuthal velocity components, magnetic field components and temperature) are

simply set by using zero vertical gradient.

2.3 Physical Effects

To model the realistic ISM turbulence, one needs to incorporate several physical effects

that actuate on a variety of length scales. Observational evidences suggest that ISM

has turbulent structure with multiple thermal phases including cold dense clouds, warm

ionized regime and diffuse hot gas [see e.g. Kulkarni & Heiles, 1988; Spitzer Jr, 1990].

Such complex structure of ISM is maintained mainly via SN energy input (and stellar

wind component) which can be visualized thusly. Energy inputs from these sources (SN

and stellar wind) heat up and partially ionize the interstellar HI regions (through the

secondary processes like low-energy CR and soft X rays, radiations from OB stars, etc.).
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These regions further cool down radiatively; while segregating ISM in different phases.

All of these physical processes are included using the simple self-consistent models as

described in the following sections.

2.3.1 Radiative Cooling

ISM gas cools down via distinctive mechanisms in different ISM phases. For instance, the

partially ionized hot HI gas cools down while radiating away the excessive energy through

the collisional processes (between the free electrons and hot ISM gas). Whereas cooling

of the neutral ISM component is mainly contributed by the excitation of fine structure

levels of neutral gas (due to impact of free electrons). Hence the cooling efficiency of a

particular ISM gas filament becomes a sensitive function of ISM composition [Dalgarno

& McCray, 1972].

To incorporate the aforementioned mechanism we use a simple model of piecewise radia-

tive cooling [e.g. Korpi et al., 1999], in which the cooling efficiency of a particular ISM

component is treated as a function of temperature itself and cooling law is expressed as

Λ(T) = ΛiT
βi , (2.3)

where parameters Λi represent the cooling efficiency of ISM gas belonging to tempera-

ture range Ti < T < Ti+1. Numerical values of these parameters are listed in Table 2.1.

The cooling curve for T < 6102 K has been adopted from Sánchez-Salcedo et al. [2002],

while for the temperatures higher than 105, Λi and βi are taken from Sarazin & White III

[1987]. Figure 2.1 shows the resultant radiative cooling efficiency as a function of tem-

perature, along with the corresponding equilibrium pressure curve for ISM gas (shown

in inset).

This implementation includes:

1.) a thermally unstable phase between the range of 141 K < T < 6102 K in a sense that

a gas cloud within this temperature range (due to the inverse dependence of pressure

with respect to density), once starts to cool down, continues to cool down until it reaches

the next thermally stable temperature range and vice versa.
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2) a thermally bistable transition temperature range between 6102 K < T < 2.11×106 K,

in which the SN explosions mainly take place.

Table 2.1: Radiative cooling parameters

Ti Λi βi
K erg s−1 g−2 cm−3 K−βi

10 3.420× 1016 2.12
141 9.100× 1018 1.00
313 1.110× 1020 0.56
6102 1.064× 1010 3.21
105 1.147× 1027 −0.20

2.88× 105 2.290× 1042 −3.00
4.73× 105 3.800× 1026 −0.22
2.11× 106 1.445× 1044 −3.00
3.98× 106 1.513× 1022 0.33
2.00× 107 8.706× 1020 0.50

Figure 2.1: Radiative cooling efficiency Λ as a function of temperature, along with the
nomenclature for different thermal phases described in Chapter 4. Values of relevant
parameters are listed in Table 2.1. Inset : Equilibrium pressure curve consistent with
the used cooling function. A temperature range prone to the thermal instability is

bounded by two isothermal lines (blue and red dashed lines).

2.3.2 Diffuse Heating

Diffuse heating of ISM (Γ in Equation 2.1) due to background stellar population (and

dust component) contributes significantly to overall ISM energy budget (see Table. 3

and 4 from Abbott [1982]). Primary sources of the diffuse heating are:
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1. Heating of HI regions due to background flux of photoelectrons, which originate

from the dust grains ionized by the radiations from background OB stars popula-

tion [Abbott, 1982]. Its contribution to the effective luminosity of the Milky Way

disc is about 10−25 erg s−1 cm−3 or ∼ 3 × 1038 erg s−1 kpc−2 (for 100 pc height).

These estimates are empirically obtained by de Jong [1977]; De Jong [1980] using

observational data.

2. Heating of the cold and warm neutral ISM (CNM, WNM) caused by the photo-

electrons ejected from FUV irradiated dust grains and PAHs [see e.g. Allamandola

et al., 1985; Wolfire et al., 1995]. Contribution of this effect to the Milky Way

luminosity is ∼ 10−25 erg s−1 cm−3 as estimated by Draine [1978].

To include the enlisted effects; we use combined, height dependent description for the

diffuse heating mechanism given by Joung & Mac Low [2006], as

Γ (z) = Γ0 ×

 e
− z2

2z0Hγ if |z| < z0

e
z0

2Hγ

(
e
z
Hγ + 10−5

)
otherwise

(2.4)

for the present model, the characteristic length scales Hγ and z0 are of 300 pc and

60 pc respectively and the mid-plane heating rate Γ0 = 0.015 erg s−1. These estimates

are based upon stellar distribution in the Milky Way. Vertical profile of resultant Γ is

shown in Figure 2.2.

2.3.3 Supernova Explosions

In our models, SN explosions are simulated as the spontaneous, localized expulsions of

energy, 1051 erg/explosion for SN type I and 1.14 × 1051 erg/explosion for SN type II.

14% extra energy attributed to SN type II amounts to the wind contribution of massive

stars, the distribution of which is roughly equivalent to the distribution of SN type II 1,

[Ferriere, 2001]. SN energy is either injected fully in the form of thermal energy or divided

into the CR and thermal energy with a predefined fraction. Numerical implementation

of SN explosions is mainly adopted from Gressel [2010].

1Although in reality, contribution of the stellar wind component is not as sudden as SN explosions
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Figure 2.2: Vertical profiles of various physical parameters normalized with their
mid-plane values. Black-solid line indicates vertical profile of the diffused heating term
normalized with Γ0 = 0.015 erg s−1. Blue-dotted line indicates the initial vertical profile
of −1× temperature normalized with T0 ' 6003 K. Red-dashed line indicates the
initial vertical profile of density normalized with n0 = 0.6 cm−3 Green-dot-dashed line

indicates the initial vertical pressure profile normalized with P0 ' 8.29× 10−21 Pa.

SN energy injections are shaped as a 3D Gaussians of half width l = 20 pc in each

direction. The shell size l is chosen in such a way that it does not reduce the numerical

time step (due to steep gradients) whilst keeping the effect of ghost remnant (due to the

periodicity of boundary conditions) as small as possible. SN explosion sites are chosen

randomly with an exponential distribution in z direction and a uniform distribution in

x − y plane. Scale-heights for the vertical distribution of SN explosions are 325 pc and

90 pc for SN type I and SN type II respectively. It has been reported by Gressel [2010]

that a static vertical distribution of SN explosions either sets up the large scale oscillation

mode of mid-plane mass density or splits up the central disc if the SN are distributed

around the center of mass. By scaling vertical distribution of SN with vertical profile of

mass density, however, this problem is tacitly avoided. We furthermore mimic, although

very crudely, the spacial clustering effect for SN type II by choosing the probable position

of a next SN explosion with a condition that the mass density at that location should

be higher than average mass density of the corresponding x− y plane. The subsequent

clustering effect allowed by this condition reproduces the observed fraction of clustered

and separate SN events [e.g. Ferriere, 2001]. SN explosion rate σ is chosen as the input

parameter, which we express in the units of averaged SN rate in the Milky Way. For SN
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type I, the reference rate of SN explosions σI is 4 kpc−2 Myr−1 and for SN type II, σII

is 30 kpc−2 Myr−1.

2.3.4 Gravity

We have excluded the effect of self gravity since it is numerically expensive 2. We instead

use the vertical profile of acceleration due to gravity obtained by Kuijken & Gilmore

[1989]. Which can be expressed as:

g (z) =
−a1 z√
z2 + z0

2
− a2 z , (2.5)

with a1 = 1.42 × 10−3 kpc Myr−2, a2 = 5.49 × 10−4 Myr−2 and z0 = 180 pc. Values

of these parameters correspond to those in the vicinity of the solar circle and are con-

tributed by i) the central disc mass, ii) a spheroidal ISM bulge and iii) the dark matter

distribution. In this approach, we tacitly omit the radial component of gravitational

attraction, which is a reasonable approximation in the limits of a small vertical extent

[see section 7 of Kuijken & Gilmore, 1989].

2.4 Initial Conditions

Initial velocity in our model has only a ‘y’ component, representing the background

shear flow in a co-rotating frame of reference, such that for the shear parameter q = −1,

uy = Ωx, (that is uy = ±40 km s−1 at x = ±0.4 kpc).

Initial value of local magnetic field B is chosen differently for different models and

mentioned in the description of each model.

2 If the density of cold component becomes sufficiently high to fulfill the Jean’s Instability Criteria
over the scales of interest, it would not be realistic to exclude the self gravity. However, we later notice
that this is not the case.
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2.4.1 Density, Pressure, Temperature and Total Energy

Initial vertical profiles of pressure and mass density are calculated by assuming the

initial hydrostatic balance between the gravitation pull and vertical pressure gradient.

Condition of hydrostatic balance can be expressed as;

dρ

dz
=

(
ρg (z)− ∂p

∂z

)(
∂p

∂z

)−1

. (2.6)

Equation 2.6 gives an implicit dependency of ρ on g (z).

Explicit dependencies p(z) and p(ρ) appear from the equation of state and the rate of

ambient heating respectively, which can be expressed as

∂p

∂ρ
=

(
1− β−1

) p

ρ
.

∂p

∂z
=

p

βΓz

dΓz

dz
. (2.7)

By solving Equation 2.6 and Equation 2.7 together, using the second order Runge-

Kutta method (subject to the boundary condition that mid-plane mass density ρ0 =

1 × 10−24 g cm−3 and mid-plane pressure p0 = 1 × 10−14Pa are chosen as the input

parameters), we finally get the vertical profiles of ρ and p as shown in Figure 2.2.

Initial vertical profile of temperature Teq (z) is derived from the balance between radia-

tive cooling and ambient heating (that is by solving Equation 2.8 iteratively).

ρΛ (z) Tβi = Γ (z) . (2.8)

Initial value of total energy e is then simply calculated from the relation

e =
P

γ − 1
+
ρu2

2
+

B2

2µ0
. (2.9)
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2.5 Including Cosmic Rays

We use the hydrodynamical treatment for the ensemble of CR particles. Basic imple-

mentation of which is mainly adapted from Girichidis et al. [2014]; Hanasz et al. [2009];

Snodin et al. [2006], etc. The physical reasoning behind this assumption is based on the

following empirical argumentation.

CRs in ISM are (mostly) relativistic charged particles, which are thought to have accel-

erated due to the expanding SN remnants [e.g. Bell, 1978; Blandford & Ostriker, 1978].

According to basic electrodynamics, a single charged particle traveling in background

magnetic field would ‘gyrate’ around that field line (subject to the Lorentz force). The

‘Gyroradius’ for such a particle depends upon the energy of that particle and on the

background magnetic field strength, whereas the velocity component parallel to the field

line does not get affected at all. Within this scenario, an ensemble of such charged

particles can safely be considered as a separate fluid that diffuses along the magnetic

field lines. However, this consideration is only valid on the length scales, which are

sufficiently larger than the largest Gyroradius within that ensemble.

Now we consider a marginally relativistic CR particle with a component of momentum

perpendicular to the field line p⊥ ' 1.5× 103 GeV. For the values of galactic magnetic

field, ∼ 1µG, Gyroradius of this particle becomes Rg = |p⊥/(q B)| ≈ 0.01 pc (q, here is

an electric charge on CR particle). This Rg is well below our grid resolution (∼ 8.33 pc)

and satisfies the aforementioned condition. Hence CR (energy density) can be adequately

modeled with the hydrodynamical ‘diffusion-advection’ equation [e.g. Snodin et al., 2006]

as

∂ec
∂t

+∇ · (ecu + Fc) = −pc∇ · u +Qc , (2.10)

where ec is the CR energy density. Term pc represents the CR pressure, which is cal-

culated by assuming an adiabatic equation of state, pc = (γc − 1) ec, where γc = 14/9.

The system is closed by letting the CR pressure act on flow through the second equation

of Equation 2.1 (Navier-Stroke’s equation), such that the total pressure term p? should

include an additional CR pressure term;
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p? = p +
B2

2µ0
+ pc .

CR energy is injected into the ISM as a predefined fraction of SN energy (on the same

length scales as of injections). Term Qc in Equation 2.10 represents the rate at which

the CR energy is injected.

Term ∇ · Fc in Equation 2.10 represents an anisotropic diffusion of CR energy den-

sity (different rate of diffusion along and perpendicular to magnetic field). The usual

approach to ensure the field aligned nature of diffusion is to represent the cosmic ray

diffusion flux as

Fc = −Kij∇jec , (2.11)

with anisotropic diffusion tensor defined as

Kij = K⊥δij +
(
K‖ −K⊥

)
B̂iB̂j (2.12)

where B̂i and B̂j are the i’th and j’th components of unit vector in the direction of

local magnetic field, B̂ = B/ |B|. While K‖ and K⊥ are the cosmic ray diffusion co-

efficients (chosen as the input parameters), parallel and perpendicular to the magnetic

field respectively. Castellina & Donato [2013] give a theoretical estimate for K‖, which

is approximately 1028 cm2 s−1 and the ratio K‖/Kperp ≈ 100. For our simulations, how-

ever, these values of diffusion coefficients put a serious restriction on the time step and

we are forced to use the smaller values K‖ = 3 × 1027 cm2 s−1 and K‖/K⊥ = 100. We

also use the non-Fickian scheme to evolve the CR diffusion flux, unlike Equation 2.11

(reasons described in Appendix A). A common way to incorporate this description is to

express the evolution of diffusive flux via the ‘Telegraph equation’ [Snodin et al., 2006],

which represents a non-fickian treatment for CR diffusion flux as

∂Fci
∂t

=
1

T
(−Kij∇jec −Fci) , (2.13)
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where Fci is the i’th component of CR diffusion flux and T is the finite correlation

time which limits the propagation speed of diffusing CR blobs within finite values. This

non-Fickian diffusion equation leads to an oscillating solution, as the value of ‘Strouhal

number’ St =
√
K‖T /h approaches 1. With the typical length scales h ∼ 1 kpc, we

get a Strouhal number of the order of 10−2, which is well within the Fickian limit

on a large scale and corresponding solution matches significantly with the solution of

diffusion equation (Appendix B). For numerical reasons we still include an isotropic

Fickian diffusion term with the diffusion coefficient of 0.1K⊥.

Ffick = −Kfick∇ec (2.14)

For CR models, Equation 2.10 and Equation 2.13 are solved along with Equation 2.1,

while using the modified value of total pressure (Equation 2.11).



Chapter 3

Global Evolution of ISM

In this chapter, the results of direct numerical simulations (DNS) without CR component

are compiled and SN explosions here are simulated such that they expel only thermal

energy into ISM. These models are therefore referred, as ‘thermal SN models’ hereafter

(as opposed to ‘CR models’ discussed in Chapter 6, in which SN explosions expel either

only CR energy or CR + thermal energy).

3.1 Overview of Studied Models

Based on different seed field configurations, the following three types of models have

been simulated:

1. Initial field with only a vertical (z) component of strength 0.001µG, either with

or without the net vertical flux.

2. Strong initial field (0.1µG) with only a vertical component and with either zero

or nonzero net vertical flux.

3. Weak initial field with radial and azimuthal components of strength 0.001µG (and

without flux).

In the models with net vertical flux (type 1 and 2) the initial magnetic field has only a

constant vertical (z) component passing through the central disc, while for the models

without flux the initial vertical component of magnetic field is a sinusoidal function of

27
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x coordinate. In the models of type 3, in contrast, initial magnetic field has only x and

y components (with the strengths of 0.5 nG and 1 nG, respectively) with their vertical

profiles leading to a constant value of plasma β ∼ 107 throughout the domain.

For the first type of models with net vertical flux (and initial field strength of nG)

we further vary the rate of SN explosions while keeping the other parameters constant.

Although in reality, the SN explosion rate is probably linked with ISM mass density in the

vicinity of the explosion site. So, by artificially keeping the other parameters unchanged,

we should be able to analyze the evolution of ISM as a function of turbulence driving

mechanism (SN explosions).

A motive behind using the different seed field configurations is primarily to see whether

the traces of the initial field configuration are eventually erased in the evolution and

whether the magnetic field evolution after all depends upon its initial configuration.

Another reason to use the strong vertical flux for the initial field is to invoke the pos-

sibility of the existence of Magnetorotational instability (MRI), [e.g. Balbus & Hawley,

1991; Hawley et al., 1995], which supposedly is one of the main sources of ISM turbu-

lence in the outer parts of galaxies, but might be suppressed in the inner disc, where

SN induced turbulence is prevalent [e.g. Dziourkevitch et al., 2004; Sellwood & Balbus,

1999]. Resolution we use here coincides with the length scale of fastest growing MRI

mode. MRI turbulence is therefore expected to influence the dynamo action in the outer

halo of the low SN rate models and recover the observed large scale-heights of regular

fields. Nomenclature and corresponding input parameters of the aforementioned models

are listed in Table 3.1.

3.2 General Evolution of Thermal SN Models

Starting from initial condition with the temperature ranging between 5000 K and 105.5 K

(initial distribution of temperature is uniform over the xy plane and its vertical profile is

shown in Figure 2.2), ISM in all models quickly splits into a steady multiphase structure

within first ∼ 50 Myr of evolution (Chapter 4) and achieves a quasi-stationary state

characterized by:

1. A steady state of total thermal energy Eth scaling roughly with respect to the SN

rate as Eth ∼ σ0.5±0.05
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Table 3.1: Nomenclature for all thermal SN models with vertical Bz and horizontal
(in x − y plane) Bh seed field components. SN rates (σ) are expressed in the units of

σ0 =
(
σI
−1 + σII

−1)−1. Time tK indicates the time up to which the kinematic growth
phase lasts. The total runtime for simulations is given in the last column.

Name SN rate Bh Bz fz tK Time
σ0 µG µG µG kpc2 Gyr Gyr

F 1.00 0.0 0.001 0.00064 0.9 1.5
H 0.50 0.0 0.001 0.00064 1.0 1.8
Q 0.25 0.0 0.001 0.00064 1.2 1.5

QZ 0.25 0.0 0.001 0.0 2.1 2.5

AR 0.25 0.001 0.0 0.0 1.5 1.9

QS 0.25 0.0 0.1 0.064 0.9 1.6
QSZ 0.25 0.0 0.1 0.0 1.1 1.2

2. A steady state of turbulent kinetic energy Ek, which approximately depends upon

the SN rate as ∼ σ0.8±0.03 (Table 3.4).

3. A stationary vertical profile of mean mass density (average defined on the x − y

plane).

Quantitative aspects the stationary state are described in the following subsections.

Figure 3.1: Evolution of thermal energy Eth (green-dashed line), kinetic energy Ek

(red-dotted line) and magnetic energy Em (black-solid line) for models Q, H and F
(from left to right).
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3.2.1 Kinematic and Dynamical Phase

After the fast exponential growth for initial 50 Myr, total magnetic energy in all models

grows exponentially with roughly the same folding time of ∼ 100 Myr, irrespective of SN

rate. For the models with higher initial seed field strength (QS and QSZ), on the other

hand, this exponential growth time is about 200 Myr (for reasons which will become

clear in Chapter 5). This amplification takes place for almost a Gyr until it slows down

for model Q and H, while it saturates for model F. Physical time at which this transition

occurs is different for different SN rates, for instance in models Q and H this growth slows

down after ∼ 1.2 and ∼ 1.0 Gyr respectively, whereas for model F such transition occurs

just after ∼ 0.9 Gyr. Amplification and saturation of Em is clearly seen in Figure 3.1 for

model Q, H and F, and Figure 3.2 represents the same for the remaining models. Total

magnetic energies corresponding to this transition scale directly with SN rate (roughly as

σ0.6), as shown in Table 3.4. Hereafter we refer to the initial exponential growth phase

of magnetic energy (∼ 1 Gyr) as the kinematic phase, as opposed to the dynamical

phase afterwards. It should be noted that although Em reaches to equipartition later in

the dynamical phase of model Q, the ratio of total magnetic to total turbulent kinetic

energy (Em/Ek) at the beginning of dynamical phase is less than unity for all SN rates

(0.25, 0.14 and 0.10 for models Q, H and F respectively). It is also interesting to note

that the growth rate of Em during the dynamical phase is an inverse function of SN

rate (it is zero in model F) 1. Such distinctive behavior of Em in the dynamical phases

of different SN rate models is explained in the context of αΩ dynamo in Chapter 5.

Though the overall turbulence structure for all models remains approximately similar

throughout the evolution, the multiphase distribution of ISM is significantly affected

during the dynamical phase, mainly because of the additional magnetic pressure, which

does not distribute uniformly amongst all ISM phases (see Chapter 4). Evolution of

these various parameters during the kinematic and dynamical phases is discussed in the

following subsections.

1for models QS, QSZ, QZ and AR, the ratio Em/Ek at the end of the kinematic phase is just same
as that of model Q, so are the values of Ek and Eth.
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Figure 3.2: Time evolution of total magnetic energy for models QS (black-solid line),
QSZ (blue-dotted line), QZ (red-dashed line), AR (green-dot-dashed line). Thermal

and turbulent kinetic energies are same as those for model Q.

3.2.2 Mean Density

The initial Gaussian vertical profile (with a full width half maximum of 325 pc) of mean

density evolves, due to the turbulent kinetic pressure component caused by the SN ex-

plosions, to an almost steady vertical profile within the first 50 Myr. This profile is com-

prised of three visually distinct parts, namely a thin central disc (inside |z| < 0.2 kpc),

an intermediate thick disc (inside |z| < 0.8 kpc) and upper halo part (|z| > 0.8 kpc) for

all SN rates. The resulting profiles are therefore best fitted with a superposition of three

exponential functions such that

ρ(z) '
2∑
i=0

ρi exp

(
−| z |
ri

)
. (3.1)

Where the parameters ri’s correspond roughly with the scale-heights of aforementioned

three distinct parts, values of the fitting parameters (ρi and ri) depend slightly on

the SN rate, as represented in Table 3.2. These values remain approximately constant

throughout the evolution, however, density of the central disc part (ρ0) decays slightly

during the dynamical phase and the corresponding scale-heights r0 remain constant.

As far as the SN rate dependence is concerned, it is evident from Table 3.2 that the

scale-heights r0 stay nearly independent of the SN rate, but the average mid-plane

density ρ0 decreases slightly. In contrast, scale-heights for an intermediate disc and
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outer halo (r1 and r2) become broader with respect to SN rate, roughly proportional to

σ0.4, concordantly with increased kinetic pressure with respect to the SN rate.

Table 3.2: Amplitudes and scale-heights of the ρ(z) profiles (ρi and ri) for all SN
rates with there corresponding error bars.

Model ρ0 r0 ρ1 r1 ρ2 r2

[ cm−3] [ kpc] [ cm−3] [ kpc] [ cm−3] [ kpc]

Q 0.6± 0.1 0.11± 0.04 0.1± 0.03 0.25± 0.04 0.01± 0.002 0.7± 0.3
H 0.5± 0.1 0.12± 0.05 0.1± 0.05 0.35± 0.08 0.01± 0.003 0.9± 0.3
F 0.3± 0.1 0.12± 0.05 0.1± 0.05 0.42± 0.1 0.01± 0.005 1.2± 0.5

Note: Fitting parameters for models QS, QSZ, QZ and AR are nearly the same as those of model Q.

3.2.3 Mean and Turbulent Magnetic Fields

The local magnetic field B can be split as a sum of its mean, B(z) and fluctuating

turbulent components b′. Where the mean magnetic field profile is simply defined as

B(z) =
1

LxLy

∫
B dx dy , (3.2)

Lx and Ly are the x and y dimensions of the computational domain (0.8 kpc) (expression

for the total magnetic field thus becomes B = B(z) + b′). Subject to the solenoidal

constraint along with periodic (and shearing periodic) boundary condition on y and (x)

boundaries, z component of mean field remains unchanged throughout the evolution.

The radial Bx(z) and azimuthal By(z) mean field components evolve exponentially such

that the absolute values of Bx(z) stay about 4-5 times smaller than By(z), but with

the opposite signs during the late phases of evolution (largest values of pitch angles are

about 10o to 18o). Hence, to avoid the redundancy, we only describe the evolution of

azimuthal By component hereafter. Mean and turbulent magnetic fields (starting from

the seed field strengths of 1 nG) also evolve exponentially with a growth time of 200 Myr

for almost a Gyr and with slow growth rates afterwards (it saturates for model F), as

shown in Figure 3.3. Vertical profiles of mean fields in models Q, H and F go through

multiple sign and parity changes as they evolve. Eventually a symmetric configuration

(S mode) arises in all models except model QS, where the initially strong antisymmetric
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seed field is preserved. For instance, Figure 3.4 and Figure 3.5 show the vertical profiles

of mean field at different times. It is to be noted that the temporal fluctuations in the

evolution curve of Em (Figure 3.1) are associated with the parity changes (A mode to

S mode or vice versa) in the corresponding mean field profiles. Consistent with this

note, a slowly growing intermediate phase in the Em evolution curve for model QZ (red-

dotted line in Figure 3.2, between 0.5 to 2 Gyr), simply linked to the slowly growing,

temporarily sustained A mode of By(z).

The final S mode achieved in model F is a stationary one, unlike models Q and H, where

the absolute magnitudes of By(z) profiles keep increasing with a small growth rate, even

in the dynamical phases. At the beginning of the dynamical phase, values of By(z = 0)

are 1.5, 1.2 and 0.9µG for models Q, H and F respectively. However, until the end of

evolution, these mid-plane values still grow up to ∼ 3 and 2µG for models Q and H.

The best fit for the final symmetric profile of By(z) is expressed by the superposition of

two exponential functions as

By(z) '
1∑
i=0

Bi exp

(
−| z |
hi

)
, (3.3)

with two distinctive scale-heights, h0 and h1. Values of the fitting parameters Bi and hi

for models Q, H and F are documented in Table 3.3, from which we see a general increase

of hi with respect to SN rate as h0 ∼ σ0.4 and h1 ∼ σ0.8. Even for the models with a

strong initial field (i.e. QS and QSZ) halo scale-heights h1 are same as those of model

Q (and also QZ and AR), indicating the absence of MRI modes in outer halo parts.

Recent radio observations of nearby edge-on spiral galaxies [Krause, 2011] also reveal a

double exponential scaling for magnetic fields with distinctive inner disc plus extended

outer radio halo. Typical scale-heights (of the regular fields) in the inner discs of their

observed sample galaxies are roughly consistent with our simulations (h0), however, for

the outer halo part we only get half of the observed scale-heights h1. By using the larger

vertical extent for our simulation box, we might be able to recover the observed large

scale fields in the halo.

Similar to B, the turbulent component b′ also has the exponential growth time of ∼

200 Myr during the initial kinematic phase (that slows down later during the dynamical



Chapter 3. Global Evolution of ISM. 34

Table 3.3: Fitting coefficients (Bi and hi) for the RMS magnetic field B(z). Alfvén
velocities at z = 0 listed in the last column.

B0 h0 B1 h1 v′A(z=0)
[µG] [ kpc] [µG] [ kpc] [ km s−1]

Q 2.8 0.48± 0.08 0.32 1.5± 0.2 10± 0.5
H 2.6 0.58± 0.11 0.44 2.7± 0.3 14± 0.5
F 2.3 0.85± 0.10 0.40 4.0± 0.4 18± 0.5

Notes: Scale-heights for the RMS (B(z)) and mean field profiles (B) are roughly the same, consistent
with a constant ratio of mean to turbulent field component throughout the domain. Alfvén velocities in
the mid-plane scale roughly with respect SN rate as v′A ∼ σ0.4.

phase), as shown in Figure 3.3 [red-dotted line]. Final vertical profiles of b′ also fit best

with Equation 3.3 and have the same scale-heights as those of the mean field B.

Figure 3.3: Evolution of mean magnetic field
∣∣B∣∣ ( black-solid line) and turbulent

magnetic field |b′| for models Q, H and F (from left to right).

The fact, that the scale-heights of b′(z) and By do not differ, suggests that turbulent

field component is most probably generated via a mechanism of field-line tangling. In

this mechanism, large scale mean field lines (B) are tangled up due to background

turbulence u′ 2. In a more systematic way, turbulent field generation can be expressed as

b′ = Bu′lc/ηc, where ηc is the diffusion coefficient corresponding to the Ohmic dissipation

and lc is the resistive length scale.

Scale dependent correlation between the radio synchrotron and far infrared emission

observed in the spiral galaxies is usually different in the arm and inter-arm regions.

2In the most simple scenario, a field line tangling term can be expressed as ∇ × (u′ × B), unlike a
small scale turbulent dynamo term ∇× (u′ × b′).
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Figure 3.4: Evolution of By(z) profiles for model Q, H and F (from left to right).
Intermediate phase reversals and parity changes are clearly visible along with the final

S modes. Mid-plane field strengths seem to scale as an inverse function of SN rate.

(a)

(b)

Figure 3.5: Same as Figure 3.4, but for models QS, QSZ, QZ, AR.
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Figure 3.6: Evolution of the relative strengths of mean to turbulent magnetic fields∣∣B∣∣ / |b′|, for model Q (black-solid line), H (blue-dotted line) and F (red-dashed line).

A constant value of
∣∣B∣∣ / |b′| during the kinematic phase scales with a SN rate as σ−0.3

(similar to the observations by Chyży [2008]).

This can be interpreted as the correlation between the strength of turbulent field and

SN rate [e.g. Beck & Wielebinski, 2013]. Relative strength of the regular and turbulent

fields can be expressed in terms of a ratio
∣∣B∣∣ / |b′|. For all simulated models, this

ratio decreases for initial ∼ 100 Myr,
∣∣B∣∣ / |b′| and remains approximately unchanged

throughout the kinematic growth phase. Further in the dynamical phase, it increases

linearly, as shown in Figure 3.6. Inverse dependence of this ratio with respect to SN rate

is roughly consistent with observed strong ordered fields in the inter-arm regions with

low SN rates [e.g. in NGC6946 Tabatabaei et al., 2013]. During the kinematic phase

the ratio scales with the SN rate roughly as

∣∣B∣∣
|b′|

= 0.27σ−0.3±0.07 , (3.4)

which matches with observations by Chyży [2008].

3.2.4 Field-Density Distribution

The importance of magnetic field in the dynamics of ISM can be inferred from the

correlation of total field B with gas density ρ. A power law correlation |B| ∝ ρa naturally
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arises from the conservation of mass and magnetic flux inside the ISM blob and the

exponent a depends upon the mechanism of field amplification and also on the geometry

of underlying regular field. For example, a = 1/2 implies the isothermal compressional

amplification of the field with an equipartition between kinetic and magnetic energies.

Equivalently a = 2/3 represents the field amplification due to the isotropic compression

of ISM gas. Also B remaining independent of ρ is symptomatic of the ISM compression

along the field lines (see Tritsis et al. [2015] for details). Interestingly, the observed

density dependent nature of exponent a in dense ISM clouds [e.g. Crutcher et al., 2010]

implies the influence of magnetic field on the star formation via ambipolar diffusion

of magnetic flux out of the ISM clouds, which, however, is beyond the scope of this

work. Although, in order to be able to distinguish the amplification mechanism on

various scales, it may be worthwhile to study such correlations in the numerical models

presented in this subsection.

A scatter plot of the total field versus density is shown in Figure 3.7 (for model Q). The

varying behavior between the inner disk |z| < 0.5 kpc) and outer halo (|z| > 0.5 kpc)

suggests the presence of different amplification mechanisms. To put this argument in

a quantitative manner, we first consider a B − ρ distribution in the inner disc part of

model Q, during the initial kinematic phase (Figure 3.7 Panel lower-left). The exponent

‘a’ for this region is approximately 0.5 (with a slight dependence on SN rate), indicating

the dominant compressional amplification in approximately isothermal manner. This

distribution further splits into two, as the dynamical phase approaches such that, for

the (relatively) dense ISM (with n > 0.01 cm−3), value of a reduces to 0.3 (flattened),

and for the lighter ISM, a approaches to ∼ 1 (steepened). Flattening of the distribution

(within the dense disc) can be explained as follows: During the dynamical phase, strong

mean field component backreacts on the turbulence (and thereby reduces the values

of dynamo coefficients) and the field amplification takes place predominantly due to

the passive winding of the field lines in the shearing flow, as opposed to the dominant

isothermal compressional mechanism during initial kinematic phase. This distinction

straightforwardly leads to the flattening B − ρ distribution, indicating an approximate

independence of B and ρ, as is seen in Figure 3.7 [Panel upper-left]. Flattening can

also be reasoned on the basis of the increasing contribution of the regular component

to local magnetic field that remains nearly independent of ρ. This flattening, however,

as compared to model Q, is not so significant in the inner disc of model F (a ∼ 0.45 for



Chapter 3. Global Evolution of ISM. 38

model F and ∼ 0.3 for Q, see Figure 3.9). A possible reason for the SN rate dependence

probably lies in the different saturation processes, which are elaborated in Chapter 5 in

the context of dynamo quenching.

Figure 3.7: Distribution of total magnetic field |B| with respect to density ρ during
the kinematic as well as in the dynamical phase for model Q.

Now we consider the lighter ISM part (n < 0.01 cm−3) of the inner disc (|z| < 0.5 kpc),

which comprises of a comparatively steeper tail of B − ρ distribution during the dy-

namical phase. The exponent of distribution , a for this region, is 1 for model Q. This

signifies the transverse compressional amplification of the field, which is frozen longi-

tudinally inside the elongated ISM blobs [e.g. sections 2.1.1 and 2.1.3 of Tritsis et al.,

2015]. There is no significant impact of the SN rate on the B − ρ distribution in this

region (see; Figure 3.7, Figure 3.8 and Figure 3.8).

The upper halo part (|z| > 0.5 kpc), possesses a comparatively steeper B−ρ distribution

during the kinematic phase, for which the exponent a ranges between ∼ 0.8 to 0.6

(changes with respect to SN rate). This is generally indicative of a special case a = 2/3,

which implies the amplification of B due to the spherical isotropic collapse of ISM clouds,
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whereas the departure from isotropic collapse changes the value of a, such that a < 2/3

indicates the faster contraction along the field lines as compared to the transverse and

vice versa. These distributions also get flatter (a ∼ 0.5) during the dynamical phase,

probably for the same reasons described for the inner disc part.

Figure 3.8: Same as Figure 3.7, but for model H.

3.2.5 Alfvén Velocities

To characterize the dynamical relevance of magnetic field in the different phases of ISM,

it is helpful to compare the Alfvén and the corresponding turbulent velocities. For that

we first describe the evolution of root mean squared (RMS) magnetic field profiles, which

can be defined as

B(z) =
1

LxLy

(∫
(B ·B) dx dy

)1/2

. (3.5)
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Figure 3.9: Same as Figure 3.7, but for model F.

During the dynamical phase, B(z) profiles also evolve to a S mode, having a best fit

defined by Equation 3.3, and the fitting parameters Bi and hi have similar values as

By(z) (consistent with a roughly constant ratio of mean over turbulent field strength

throughout the domain). These profiles get wider with increasing SN rate and mid-plane

RMS field strengths go as large as 2 to 3µG for all models.

Using the vertical profile of B, mean value of Alfveń velocity can be estimated as follows

v′A(z) =
B(z)√
ρ(z)

. (3.6)

During the dynamical phase, v′A(z) profiles attain an inverted bell shape for all SN rates,

with its mid-plane values roughly scaling with respect to SN rate as v′A ∼ σ0.4, while in

the outer halo part, v′A remains nearly a constant for all SN rates (e.g. Table 3.3).

Formal definition of the Alfveń velocity, on the other hand, takes the local statistical

correlations into account, such that
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vA(z) =
1

LxLy

∫
|B|
√
µ0ρ

dx dy , (3.7)

which is an integral of local Alfveń speed over the x − y plane. Similar to v′A(z),

vA(z) profiles also evolve to an inverted bell shaped function with their mid-plane values

scaling roughly with respect to SN rate as σ0.4 and remain approximately constant above

z = 1 kpc (indicating the reduced mid-plane density, Table 3.2). At the end of kinematic

phase, amplitudes of vA in the halo region become as high as 28± 5 km s−1.

The straightforward relation between vA and v′A can therefore be simply expressed as

v′2A = v2
A +

ṽ2
Aρ̃

ρ
, (3.8)

where an over-bar represents the average over x − y plane and a ‘tilde’ represents the

fluctuations of a corresponding quantity from its mean value. The term ṽ2
Aρ̃/ρ represents

a first order statistical correlation between the local Alfvén velocities, vA and mass

density ρ.

Figure 3.10: Typical Alfvén velocity profiles for models Q, H and F (shown for model
H), vA(z) (black-solid lines) and v′A (red-dotted lines), both during the dynamical phase.

During the initial kinematic phase, vA(z) and v′A(z) differ by approximately 25% in the

outer halo part (|z| > 1 kpc), with vA < v′A, but have, approximately same magnitudes

in the inner disc. Later during the dynamical phase, vA(z) and v′A(z) match with a good
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accuracy in the inner disc (difference is < 3%), while in the outer halo, this difference is

as large as ∼ 15% (with vA < v′A). This comparison is well represented in Figure 3.10.

Considering this scenario in combination with Equation 3.8, we further argue that during

the dynamical phase, statistical correlation between the local Alfvén velocity and a mass

density vanishes in the inner disc, although a negligible correlation exists in the outer

parts of the box.

3.2.6 Velocities

Similar to the local magnetic fields, the velocity field u can also be split as a sum of the

mean (u(z)) and a fluctuating part (u′). The mean velocity is defined as

u(z) =
1

LxLy

∫
udx dy . (3.9)

As a consequence of additional kinetic pressure component in the simulations, we get

a nonzero vertical component of mean velocity uz, (Similar to previous simulations by

Gressel et al. [2008]) and the other components remain negligible. Reason for the in-

significant contribution of the radial and azimuthal velocities is the lack of radial or

azimuthal gradients of the random SN explosions. Whereas, the origin of vertical wind

component can be understood with an idea of galactic fountain mechanism, which can

be generally described as follows. SN shocks produce a vertical flow of ISM gas (directed

outwards) within the inner disc, which later, due to the compressional cooling, get con-

densed to form the high density cold clouds. Such heavy clouds accelerate downwards

in the gravitational field and fall back onto the disc. This mechanism, on an average,

produces approximately linear ‘z’ profile of u, during the initial kinematic phase. Am-

plitude of the mean velocity, as a consequence, scales directly with respect to SN rate,

which in these simulations turns out as u(z) ∼ σ0.4.

Later during the dynamical phase, u(z) profiles become less steeper in the inner disc

parts (|z| < 0.8 kpc) of models Q and H, while remaining nearly unchanged in model

F. This ‘flattening’ can be understood via a SN dependence of the distribution of mass

density as follows: ISM gas in the mid-plane is well distributed over a wide density

range of almost three orders of magnitude during the kinematic phases of all models (e.g.

0.02 cm−3 < n < 5 cm−3, for model Q), except for the high density tail (n > 1 cm−3),
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(a) (b)

Figure 3.11: Distribution of ISM density at z = 0 kpc (black-solid lines), at z =
0.5 kpc (red-dashed line) and at z = 1.0 kpc (green-dot dashed line), plotted for all SN
rates, during the kinematic [Panel a] phase and during the dynamical phase [Panel b].

the extension of which scales inversely with SN rate, as shown in Figure 3.11 [Panel a],

(black-solid lines). However, the high density part of these distributions vanishes in the

dynamical phase, as a consequence of additional magnetic pressure in the cold dense

ISM clouds (described in Chapter 4). Whereas the density distributions at the higher

altitudes (z = 0.5 kpc) shift toward higher density side, with inverse dependence on the

SN rate. This still allows a drastic ISM mixing for model F than in models Q and H

(as represented in Figure 3.11 [Panel b]). Finally, the widths of these distributions (at

z = 0 kpc) narrow down to ∼ 2 orders of magnitude, 2.5 for model H, and 3 orders for

model F (as the magnetic field does not reach to the dynamically relevant strengths).

Lack of the wide range of ISM density, in accordance with a galactic fountain mechanism

(described before), reduces the outward wind, predominantly for model Q and, quite less

so, for model F. Consequence of such flattening to the dynamo mechanism is elaborated

in Chapter 5.

Turbulent velocities in all these models attain the steady vertical profiles within first

50 Myr of evolution, which are inverted bell shaped within the inner disc (|z| < 0.8 kpc)

and linearly decaying in the outer halo part (|z| > 0.8 kpc). The maximum of u′(z) is

situated at z = ±0.8 kpc, which scales (approximately) with the SN rate as ∼ σ0.4. While

for the mid-plane values; we find a much steeper scaling law u′(0) ∼ σ1 (Table 3.4). The

functional form of u′(z) remains approximately constant throughout kinematic phase,

while during the dynamical phase, the maximums of u′(z) profile shift to z = ±1 kpc,

(but follow the same SN scaling law) as shown in, Figure 3.12. Though the approximate

shape of u′(z) and vA(z) are the same (during the dynamical phase), absolute values of

u′ generally remain larger than vA for all SN rates (this inequality varies significantly
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Table 3.4: Values of ISM parameters at time ‘t’ listed in the second column. For
models Q, H, F and QS t represents the end of kinematic phase. Magnetic energies in

models Q and H are still evolving. z values are in kpc

t vA(z=0.8) B(z=0) u′(z=0.8) u′(z=0) Em Ekin

[ Gyr ] [ km s−1] [µG] [ km s−1] [ km s−1] [ erg] [ erg]

x y ×1050 ×1050

F 0.9 30.0 0.12 1.0 41.2 25.9± 4.2 10.5± 4.5 119± 18.5
H 1.0 26.1 0.10 1.8 31.5 11.8± 1.8 7.8± 1.2 69.5± 6.5

Q 1.2 37.3 0.15 2.0 24.2 6.4± 1.0 6.6± 1.6 33.0± 3
QZ 2.5 20.8 0.10 1.5 29.1 7.0± 2.0 10.5± 2.5 40± 4

QS 1.6 28.1 0.15 2.0 22.2 6.1± 0.8 9.5± 4.5 36± 6
QSZ 1.2 21.1 0.10 1.5 26.0 6.4± 1.4 2.1± 0.5 33± 3

AR 1.9 18.2 0.10 1.7 28.8 6.6± 1.6 2± 0.6 32.5± 4.5
Notes: Values of Bx and By are absolute values. Estimated errors in the components of vA are ±5 km s−1.

within the different ISM thermal phases, as explained in Chapter 4).

Figure 3.12: Typical vertical profiles of u′, during the initial kinematic phase (black-
solid lines) and during the dynamical phase (red-dashed line), for models Q, H and F,

from left to right.



Chapter 4

ISM Phases

In this chapter we discuss the distribution of ISM in multiple thermal phases and the

effects of additional magnetic pressure component on it. In these simulations we were

able to replicate some of the observed peculiarities of ISM, although it would be desirable

to perform these using a finer resolution; along with the anisotropic heat conduction

and the chemical networks, especially to capture the dynamics of cold dense ISM phase.

However, our main motivation has been to understand the saturation process of galactic

magnetic fields and its implications on the ISM composition. We, therefore evolve

these models for longer physical times until the magnetic field amplifies to equipartition

strengths and in order for these models to be numerically less expensive, we stick to the

relatively coarser resolution. Observationally speaking the roll of magnetic fields on the

scale-lengths of dense clouds is not very well understood. It appears that magnetic flux

reduces the density contrast in the dense ISM clouds [e.g. Balsara et al., 2001]. Magnetic

fields could therefore slow down the rate of core collapse due to magnetic pressure [Tritsis

et al., 2015] and may affect the mass distribution and turbulence spectrum of ISM but

possibly have a minimal impact on the star formation process itself (considering the fact

that the core formation time is much larger than the collapse time itself [e.g. Elmegreen

& Scalo, 2004]). Magnetic fields could furthermore affect the field amplification itself

via the back-reaction on turbulence, which is discussed in Chapter 5.

45



Chapter 4. ISM Phases 46

4.1 Classification of ISM Phases

For this analysis we divide the ISM in five temperature phases [similar to Hill et al.,

2012], nomenclature for these is listed in Table 4.1. Our initial ISM model consists of

40% warm and 60% of transition component, that later splits into a quasi-stationary

multiphase structure within initial ∼ 20 to 50 Myr and remains almost stationary during

the kinematic phase. Transformation to the multiphase structure occurs as a result of

the radiative cooling and ambient heating due to SN explosions, which gives rise to a

power law correlation between the local density and temperature, ρ ∼ T−a, with an

exponent a that decreases with SN rate (a = 1.3, 1.1 and 0.9 for models Q, H and F

respectively). A qualitative representation of the steady multi-phase structure is shown

in Figure 4.1, [Panel bottom-left] which shows the density contrast in the mid-plane

(as high as ∼ 30) that is correlated to the temperature (shown in the adjacent panel).

Whereas rest of the panels represent the distributions of other ISM parameters within

these phases.

The stationary multiphase state also corresponds to the steady volume and mass filling

fractions (VFF and MFF) for all ISM phases which are achieved within 20 to ∼ 50 Myr

depending upon the temperature. Figure 4.2 represents the time variation of the volume

and mass filling fractions of these phases for all SN rates. Values of these fractions

generally match with the high resolution simulations which are focused specifically on

the study of ISM properties [e.g. Breitschwerdt et al., 2012; Joung & Mac Low, 2006]

except for the cold phase, in which we get comparatively smaller VFF and MFF values.

This could, however, be attributed to our coarser resolution.

Table 4.1: Nomenclature of the ISM thermal components and corresponding average
pressures in the mid-plane for model Q. Last 2 columns indicate the percentage VFF

and MFF of ISM components for the same model.

T ρT Pth Pk VFF MFF
K cm−3 10−14 Pa 10−14 Pa % %

Cold 0− 200 10 2 4 0.02 3
Cool 200− 5000 1 5 1.5 1.9 28

Warm 5000− 104.4 0.1 6 1.5 20 62
Transition 104.4 − 105.5 5× 10−3 10 15 55 6.5

Hot > 105.5 5× 10−5 100 50 23 0.25

During the kinematic phase; mid-plane averages of total pressure in cold, cool and
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Figure 4.1: Horizontal (xy plane, at z = 0) and vertical (xz plane, at y = 0.4 kpc)
cross sections of the simulation domain, during the dynamical phase. Color-code repre-
sents the strengths of corresponding ISM parameter. Panels from left to right represent
number density, temperature, turbulent magnetic field, turbulent velocity and thermal

pressure.

warm thermal components are approximately equal. The transition and hot compo-

nents, however, remain thermally over pressured. In Table 4.1 we have listed a typical

average pressure composition in the mid-plane of model Q, in the kinematic phase. This

mid-plane pressure composition differs only slightly for model H and F, such that the

contribution of Pth in hot and transition ISM slightly decrease as we go from model Q

to F 1.

Vertical structure of the model is supported via the balance between the gradient of

1However, the average pressure composition in the mid-plane is quite different than in the entire box.
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(a)

(b)

Figure 4.2: (a) Evolution of the volume filling fractions of ISM components for,
models Q, H and F, from left to right. (b) Same as [Panel-a] but for the evolution of

total mass of all ISM components for all SN rates.

total pressure, (Ptot ≡ Pk + Pth + Pm) and gravitational pull. The resultant vertical

profiles of average ISM mass density can be expressed as a sum of three different ex-

ponential functions, roughly signifying its visually distinctive parts. Namely; central

thin disc, intermediate thick disc and upper halo (Equation 3.1). Scale-heights of these

exponentials stay approximately constant throughout the evolution but scale roughly as

a direct function of SN rate as indicated in Table 3.2. The situation is quite different

for each thermal component separately. Vertical profiles of mass density in different

thermal components (ρT (z)), for instance, have distinctive scale-heights, that depend

upon the SN rate as well as on the magnetic field strength. We find that the z profiles

of ρT (except for the cold component) can be split into only two visually identifiable
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parts; the middle disc and the broad upper halo. We therefore, chose to fit it with a

superposition of two exponential functions with different scale-heights as;

ρT (z) '
1∑
i=0

ρi exp

(
−| z |
ri

)
. (4.1)

Where r0 and r1 roughly correspond to the exponential scale-heights within the disc

and in the outer halo, which we further find to have a dependence upon the dynamically

significant mean field strengths. Dependence of ri on the SN rate and magnetic field

strength, is mentioned in the description of each thermal component. For the cold

component, however, ρT (z) profiles are best fitted with the Gaussian function.

Similar to the volume filling fractions, kinetic and thermal energies of all ISM compo-

nents also remain approximately invariant during the kinematic phase and the kinetic

energy is contributed mostly by the transition component. Whereas the hot and warm

ISM components dominantly contribute to the thermal energy. In order to get a quanti-

tative feeling of the dynamical importance of magnetic energy (in each component), we

have listed the ratios of Em/Eth and Em/Ekin at the end of kinematic phase for each

thermal component in Table C.1. The distribution of these ratios within the various

ISM components is different for the inner disk (|z| < 0.5 kpc) and in the outer halo

(|z| > 0.5 kpc). For instance, in the inner disc part, most of the magnetic energy lies

within the warm component, whereas if we consider the total box, the ratio Em/Ekin is

dominated by the dense cold component.

In the following sections we have analyzed the composition of different ISM components

separately for all SN rates. Models QS, QSZ, QZ, and AR are not separately mentioned,

since they have the same composition as model Q.

4.2 Cold Component

High density ISM fragments are generated due to the interacting SN shock fronts, which

mostly belong to the transition temperature range. These fragments further cool down

due to the radiative cooling in assistance with the thermal instability, to form the dense

cold component. This component is situated within the vertical range of ∼ 100 pc in the
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Table 4.2: Composition of the pressure for all ISM components (at z = 0), at the
end of kinematic phase. All pressures are expressed in the units of 10−14 Pa. t is the
e-folding time for the kinematic amplification of Em within the corresponding thermal

component.

Cold Cool Warm Transition Hot

model Q

Pth 2 5 6 10 100
Pkin 4 1.5 1.5 15 50
Pmag 1 0.8 1 0.5 0.1
t [ Myr] 45 45 80 120 110

model H

Pth 2 4 6 6 80
Pkin 7 2.5 2.5 10 40
Pmag 3 1.5 1.5 0.8 0.3
t [ Myr] 60 75 95 130 100

model F

Pth 2 4 6 4.5 50
Pkin 14 4.5 4.5 7 20
Pmag 0.2 1.0 2.5 1.0 0.1
t [ Myr] 70 80 80 90 100

form of elongated clouds with average lengths of 20, 30 and 50 pc for models Q, H and F

respectively. Average temperature of these clouds ranges from 80 to 150 K (depending

upon σ), we further find an approximate scaling between the thermal pressure and mass

density, such that Pth ∼ ργ , with the effective γ of 0.35 for model Q, and 0.65 for model

F. γ of 0.65 for model F (with parameter set equivalent to the Milky Way) is comparable

to the observations of interstellar CI structures by Jenkins & Tripp [2011] (and also with

the simulations by Hill et al. [2012]). We, therefore identify them as the dense molecular

clouds of the cold neutral medium (CNM). Although it must be mentioned that; we do

not get a highly dense phase with the temperature less than 50 K.

VFF for the cold component increases from 0 to 0.01% within first 50 Myr and stays

nearly constant during the kinematic phase (which is much smaller than some previous

high resolution simulations which were focused on the analysis of ISM properties [e.g.

Breitschwerdt et al., 2012; Hill et al., 2012]. A reason for this probably lies the relatively

coarser resolution we have used. Vertical profile of the average density for this component

is approximated via a Gaussian profile, for which ‘the full width half maximums’ seem

to scale directly with SN rate, these are 70 pc, 102 pc and 160 pc for model Q, H and

F, respectively. Turbulent velocities of this component are approximately 2, 3.5 and

7 km s−1 for Q,H and F respectively, which are comparable to observations as discussed in
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Sellwood & Balbus [1999], however the cold molecular clouds with average temperatures

< 50K are not formed here.

Total magnetic energy corresponding to the cold component, (that is the local magnetic

energy density integrated over the volume of cold gas) rises rapidly for initial few 100 Myr

(with approximate exponential growth time of 45, 60 and 70 Myr for models Q, H and

F respectively) and stays constant during rest of the kinematic phase. Corresponding

ratios of magnetic to the turbulent kinetic energies are listed in Table C.1. As models

evolve to the dynamical phase cold ISM component is vanished for all SN rates due

the additional magnetic pressure. In order to verify whether the loss of cold phase is

because of the additional magnetic pressure and not associated with the overall mass

loss from the box, we point at the sustained occupancy faction of cold component in

model QZ, in which the overall mass loss occurs at a same rate as model Q. But the

dynamical phase in QZ is achieved only after t ' 2.3 Gyr (as opposed to t ' 1.2 Gyr

for model Q). However, unlike model Q; the cold component in model QZ, survives

until 2.3 Gyr (Figure 4.4, [Top panel], and inset showing a rate of relative mass loss).

Another argument to refute the hypothesis that ‘the magnetic pressure is responsible

for the destruction of clouds’ would be to suggest that: not the overall mass; but the

average density (of all ISM components combined) in the thin inner disc (|z| < 90 pc,

where the cold component is mainly formed), itself reduces to the values so small that

the interacting shock fronts could no longer produce a sufficient density contrast to

form the cold phase (via radiative cooling). However, we again compare the average

densities (of all ISM components combined) in the central discs of models Q and QZ in

Figure 4.4, [Central panel]. From this figure we infer that the rate at which the central

density decays is same for models Q and QZ, while the cold component vanishes at

different times, at which the ratio of magnetic to kinetic energy (βtot) in the central disc

(|z| < 90 pc), is same; as shown in Figure 4.4 [Bottom panel].

Also for model QS, the SN and overall mass loss rates are same as model Q, but the

ratio Em/Ek within the cold component, is only ∼ 0.2 for model QS (Table C.2) even

in the dynamical phase (for model Q, Em/Ek ∼ 1, at the end of kinematic phase

Table C.1). Subsequently we see the preservation of cold component until the end of

evolution (1.6 Gyr) (Figure 4.3), again indicating that the loss of cold component, in

models Q, H and F is associated with the increased magnetic pressure.
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Figure 4.3: Evolution of volume filling fractions of ISM components in models QS,
QSZ, QZ and AR.

4.3 Cool Component

The cool component is a thermally unstable phase (as established by the cooling curve

we have used) that is situated within the range −400 to +400 pc also in the form of

elongated clouds. Average lengths of these clouds are ∼ 100 pc. Cool component builds

up within the first 100 Myr (also due to the radiative cooling of dense SN shock fronts)

and keeps its VFF constant during the kinematic phase (VFF ∼ 1.5%). The average

density corresponding to this component is about 0.6 cm−3 and the turbulent velocities

are about 8, 10 and 15 km s−1 for models Q, H and F respectively. Average density of

cool component has the exponential scale-heights; r0, of 50± 5 pc, and r1 = 140± 10 pc,

for model Q. We moreover find these scale-heights to be directly proportional with SN
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rate as r0 ∼ σ0.4 and r1 ∼ σ0.4. Later in the dynamical phase VFF slowly decays by

almost 20 - 30%, and scale-heights r0 and r1 become wider by about 70% and 40%

respectively (for all SN rates). Whereas the average u′ and ρ remain constant (even

during the dynamical phase). Magnetic energy within this component amplifies initially

with e-folding times of ∼ 70 Myr and saturates eventually during the dynamical phase

for all SN rates.

4.4 Warm Component

The warm component is present in the form of shredded clumps of average size, l '

150 pc within the inner disc. This size, l, increases with height, such that above z =

1 kpc; l ' 400 pc. VFF of the warm component also goes to a quasi-stationary value of

∼ 60% in ∼ 50 Myr. Vertical scale-heights of ρT for the warm component, scale with σ

with the same scaling law; that is r0, r1 ∼ σ0.4 (r0 = 100 pc and r1 = 320 pc for the

model Q). This scaling law preserves later in the dynamical phase as well, however, the

exact values of r0 and r1, are increased by 20 to ∼ 30%, (r0 = 120 pc and r1 = 420 pc

for the model Q) consistent with the slight increase in mass during dynamical phase

(Figure 4.2). If we consider only the central disc of |z| < 0.5 kpc, the ratio of total

magnetic to turbulent kinetic energy within warm component; is the highest one, but if

we consider the total box, the cool component also holds a comparable ratio of Em/Ek

(Table C.1). Other parameters, such as; average cloud size and VFF are also affected

during the dynamical phase as explained below. Average size of the warm cloud in

the mid-plane increases to ∼ 250 pc during the dynamical phase, crudely suggesting a

transformation towards more uniform ISM in the mid-plane along with loss of dense cold

ISM. Since the formation of cold and cool components is hindered during the dynamical

phase as a consequence of increased magnetic pressure, the radiatively cooled transition

ISM aggregates mostly into the warm component, and the corresponding volume filling

fraction rises slowly, until the overall mass loss from the box starts to appear (overall

mass loss rates are approximately 240, 455 and 1000M�Myr−1 for model Q, H and F

respectively).
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4.5 Transition Component

Starting from the initial 60% occupancy, VFF of the transition component saturates to

∼ 45 to 50% within first 100 to 200 Myr (and corresponding MFF values are 5%, 10%,

and 20% for model Q, H and F, respectively). This transformation occurs due to the

balance between ambient heating by SN explosions and the radiative cooling of dense

ISM clumps formed at the SN shock fronts. Transition component occurs mostly in the

form of large clouds within the vertical range of |z| < 1 kpc. Average length scale of these

clouds is l ' 50 pc, which is apparently independent of SN rate (l approximately equals

to the scale-height of a SN explosion remnants). Above z = 1 kpc, transition component

exists only in the form of large super bubbles of the average length l ' 200 pc and with

the average density of ∼ 0.001 cm−3 (these remain roughly constant throughout the

evolution). Average scale-heights of this component (r0 and r1) scale as σ0.4 during the

kinematic phase (r0 = 120 pc and r1 = 600 pc for the model Q). Later in the dynamical

phase; inner scale-heights, r0 increase by about 60% while r1 remain roughly constant

(r0 = 200 pc and r1 = 600 pc for the model Q).

4.6 Hot Component

The hot component is formed as a result of ambient heating of the transition gas and is

mainly situated in the outer halo part. VFF of this component saturates to ∼ 30% in

first 100 Myr of evolution. In the vertical range of approximately 0.8 kpc < |z| < 1.2 kpc,

this component is present mainly in the form of large bubbles (with an average size of ∼

250 pc and with the average density of 10−3 cm−3) while above this height (|z| > 1.2 kpc)

it exists in the diffused continuous form (with the average density of ∼ 10−4 cm−3). In

the inner disc (|z| < 0.8 kpc) the hot component is scarcely present, but primarily in

the form of elongated clouds of average width of ∼ 50 pc (which is also equivalent to

the average size of the SN remnants) and with average density of ∼ 10−2 cm−3, which

is slightly higher than the hot halo. Resulting vertical distribution of the density of

this component in the halo, is therefore very broad compared to the distribution within

the disc, such that the scale-heights of the average density profile are r0 ' 50 pc and

r1 = 1 kpc. Both r0 and r1 scale with the SN rate as ∼ σ0.4 throughout the evolution

but the exact value of r0 is approximately doubled during the dynamical phase while
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r1 remains unchanged (for all SN rates). Compared to the other components, total

pressure within the hot component is about an order of magnitude larger; which is

mostly contributed by the thermal pressure (see for example Table 4.2). Whereas the

ratio of Em to Ek, during the dynamical phase is smallest for this component. Average

turbulent velocities, on the other hand, are highest for this component and remain

nearly unchanged during the dynamical phase (u′ ∼ 80 km s−1) as there is no significant

impact of the magnetic pressure, which is reflected into the values of corresponding

Alfvén velocities ∼ 15 km s−1 that are much smaller than the turbulent velocities.
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Figure 4.4: Blue lines indicate the evolution of model QZ, and the red lines signify
the same for model Q; Upper panel : Time evolution of the volume filling fraction of the
cold component in the models Q and QZ, and the inset shows the relative mass loss
for these models versus time. Central panel : Time evolution of the average density in
the central disks (|z| < 90 pc) of the models Q and QZ, shown in solid lines and dotted
lines indicate the same for mid-plane (at z = 0). Bottom panel : Time evolution of the
total relative field strengths (βtot = Em/Ek) in the central discs of the models Q and
QZ. Cold component in the model Q vanishes completely at t = 1.6 Gyr, as opposed to

model QZ for which t = 2.3 Gyr, corresponding βtot for both models is ∼ 0.1.



Chapter 5

Saturation of Galactic Dynamo

5.1 Introduction

In previous chapters we have discussed the overall evolution ISM magnetic energy and

the dynamics of interstellar gas in various thermal phases, for the different rates of SN

driving. General effects of the dynamically significant magnetic fields on ISM parameters

have also been elaborated in Chapter 4. Outcomes of these simulations are generally

consistent with the typical findings of the observations of nearby spiral galaxies on a

∼ kpc scale. Following is a brief summary of the main results of these simulations.

1. Starting from the seed magnetic fields of ∼ nG strength, total magnetic energy

for all SN rate models, amplifies exponentially, with a typical e-folding time of

100 Myr (roughly independent of the SN rate).

2. After the initial kinematic phase of constant growth, the magnetic energy in all

SN models, depending on the SN rate, either saturates or keeps growing with

comparatively slow growth rates.

3. Magnitude of total magnetic energy at which the kinematic amplification stops,

scales directly with the SN rate.

4. Large scale regular magnetic fields, of a few µG strengths are generated within a

∼ Gyr in SN rate models, with the average pitch angles of approximately 100, 120

and 180 for models Q, H and F, respectively.

57
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5. Fast outward winds are generated in all models within the initial few tens of Myr,

amplitudes of which depend directly on the rate of SN explosions. During the

dynamical phase, however, these amplitudes slowly decline within the inner disc

part of approximately |z| < 0.8 kpc depending on the relative strength of magnetic

field.

In this chapter we interpret above results in the context of the mean field dynamo. The

reason to do so is two fold. First one is to provide a self consistent justification for am-

plification and saturation of magnetic energy and the second one lies in the formulation

of a dynamo model itself; as follows. The mean field dynamo model describes the evo-

lution of mean magnetic field in terms of the mean turbulent electromotive force, which

can be interpreted as the function of the well defined physical properties of turbulent

motions (such as helicity, turbulent diffusion, turbulent velocity amplitude, etc.) and

thereby providing an effective means to estimate the importance of each physical effect

to the dynamo action, separately. A partially similar approach has already been used

by Gressel et al. [2008] to explain the initial kinematic growth phase of magnetic field.

Here we use a similar model in assistance with the so called quenching formulation to

understand the dynamical evolution of magnetic energy. In first few sections we discuss

the general concept and the formulation of dynamo theory and later we analyze the

results of DNS in comparison with 1D dynamo simulations.

5.2 Mean Field Dynamo Theory

Formal idea of the dynamo mechanism was first put forth by Parker [1955], which can

be described as follows. Considering the geometry of a disc galaxy, it is convenient to

use the cylindrical coordinate system, with its origin located at the galactic center, and

assume the galaxy as a differentially rotating disc of turbulent plasma, with its angular

velocity vector parallel to the z axis. Subject to the thin disc approximation for spiral

galaxies, it is possible to neglect all the gradients along radial and azimuthal directions

as compared to the verticals ones [e.g. Shukurov, 2004; Soward, 1978, 1992a,b]. It is

further possible to decompose the local magnetic field as a sum of its toroidal and

poloidal components. For axisymmetric magnetic fields, toroidal and poloidal parts

simply turn out to be azimuthal and radial + vertical components respectively. In such
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rotating turbulent plasma system any vertically convecting cloud of plasma stretches the

planar component (parallel to galactic disc) of the regular field passing through it, in

the vertical direction. This continues until the field diffuses away from the cloud (due to

the turbulent and macroscopic diffusivity). Such rising cloud rotates under the Coriolis

acceleration in the rotating frame of reference and twists the frozen in toroidal field lines

to form the poloidal ones. Poloidal field lines (non-axisymmetric; as a general case) on

the other hand, are spirally wound up in a differentially rotating flow and form a non-zero

toroidal component. High wave number toroidal component, thus formed, is prone to the

turbulent diffusion. So the extent to which the spiral winding would occur is decided

by the length scales of turbulent diffusivity. This process, if the diffusion is weaker

compared to rotation and vertical convection, systematically leads to the exponential

amplification of mean magnetic field.

This mechanism can be mathematically formulated with mean-field electrodynamics,

in which the flow variables (velocity, u and magnetic field B) are split as a sum of

their respective mean and fluctuating components. Mean part is defined by applying an

arbitrary averaging process that satisfies the Reynold’s averaging rules (which justifiably

hold for the situation in which there is a clear separation of small and large scales

Krause & Rädler [2013]). So the magnetic field and velocity can be written as B =

B + b′ and u = u + u′; implying that b′ = u′ = 0 (overbar indicates the average). In

the aforementioned scenario (also depicted in Figure 1.4) average was actually defined

over the azimuthal coordinate. By substituting the decompositions of B and u in the

induction equation (last equation from Equation 2.1) and further averaging, we get the

evolution equation for mean magnetic field, such that;

∂B

∂t
−∇×

(
u×B− η̃∇×B + E

)
= 0 , (5.1)

this equation is similar to the regular induction equation, except for an extra term

(∇× E). ‘E ’ here is referred as the turbulent electromotive force (EMF) and expressed

as E = u′ × b′. Mathematically speaking, E is a first order statistical correlation between

the fluctuating magnetic field (b′) and turbulent velocity (u′). E is an averaged quantity

with a same definition of averaging that was used to define B (and u).
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Computation of turbulent EMF is a crucial step in the formulation of mean-field dynamo.

For that, it is necessary to compute the evolution of b′. Equation for b′ can simply be

written using Equation 5.1 and the induction equation as;

∂b′

∂t
−∇× (u× b′)−∇× (u′ × b′) +∇× E − η̃∇2b′ = −∇× (u′ ×B) . (5.2)

This equation implies that, b′ (and E) can be expressed as a sum of a linear, homogeneous

function of B and a function independent of B. A widely used SOCA approximation

(second order correlation approximation) allows to express E in terms of, mean magnetic

field [e.g. Krause & Rädler, 2013; Rädler, 2007], in this approach the terms higher than

second order in the Taylor expansion of the homogeneous part of E are omitted, and

within the sufficiently small turbulent correlation time interval τc; turbulent EMF is

expressed as;

E = αB− η∇×B . (5.3)

Tensorial quantities α and η are referred as the dynamo coefficients, which depend

solely on the statistical properties of turbulence. In order physically interpret these

parameters let us consider the evolution equation of B, after substituting Equation 5.3

in Equation 5.1, such that,

∂B

∂t
−∇×

(
u×B− (η + η̃)∇×B + αB

)
= 0 . (5.4)

The coefficient η in this equation appears in the form of a diffusion coefficient for mean

magnetic field. What it actually represents is the magnetic diffusivity due to the tur-

bulence. While α coefficient encapsulates the effect of the helical flows on the growth

of B. Both of these interpretations become clearer in a simple case of isotropic and

homogeneous turbulence, within the high conductivity limit, where α and η reduce to

the following simple forms;

αdiag = −τc
3

u′ · (∇× u′) ,

ηdiag =
τc
3

u′2 , (5.5)

where the product u′ · (∇× u′) is actually the kinetic vorticity of turbulent motions.
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Validity of these estimates (Equation 5.5), however, is rather restricted to the aforemen-

tioned special case. Nevertheless it provides a self consistent way to analyze the effect

of the turbulence properties on dynamo.

Using the data from from direct MHD simulations we derive the values of corresponding

dynamo coefficients and try to explain the evolution of magnetic energy in direct MHD

simulations in the context of mean field dynamo. In following section we describe the

method we use to compute the dynamo coefficients in DNS models.

5.3 Dynamo Coefficients

5.3.1 Test-Fields Method

To compute the evolution of the vertical profiles of the coefficients of dynamo tensors

α and η in DNS models, we use the test field method [Schrinner et al., 2005, 2007],

implemented by [Gressel, 2010]. We first decompose the flow variables into their mean

and turbulent parts with the average defined on x − y plane, leaving z as the only

independent coordinate. E in this scenario also becomes a function of z. The choice of

periodic boundary conditions in x and y directions along with the solenoidal constraint,

assures the conservation of Bz(z) throughout the evolution. Now by choosing the small

initial magnitude of Bz(z), we can furthermore neglect the α part of Ez and Averaging

over x−y plane also allows us to neglect diffusive part of Ez (since the it only involves the

x and y derivative terms, which are zero by the definition of averaging used here). We

can, therefore, drop the Ez component altogether and write Equation 5.3 in the matrix

form as;

 Ex
Ey

 =

αxx αxy

αyx αyy

 Bx

By

−
ηxx ηxy

ηyx ηyy

 ∂

∂z

 −By

Bx

 . (5.6)

Equation 5.6 is a system of two simultaneous equations with eight unknowns (the ele-

ments of dynamo tensors) and we have two known variables from DNS (x and y com-

ponents of mean magnetic field) which are insufficient to invert Equation 5.6. The

mean field formulation based on the SOCA approximation should, however, hold for
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arbitrary magnetic field. We can, therefore, evolve any predefined magnetic field vector

and invert Equation 5.6, to obtain the values of α and η coefficients, without the loss

of generality. Exploiting this freedom, we place four additional ‘test field’ profiles (B
ν
,

with ν ∈ [1, 2, 3]) in the computational domain and let them evolve passively along with

Equation 2.1. These predefined test field profiles are;

B
0

(z) = cos (k1z) x̂ , (5.7)

B
1

(z) = sin (k1z) x̂ , (5.8)

B
2

(z) = cos (k1z) ŷ , (5.9)

B
3

(z) = sin (k1z) ŷ . (5.10)

Fluctuations in each of these profiles are recorded as a function of time. Additionally

the components of E , corresponding to each test field, are calculated using the relation

Eνi = u′ ×Bν . ‘z’ profiles of the coefficients of α and η tensors are then easily obtained

as a function of time by inverting the tensorial equation Equation 5.6 for each SN rate.

Computed dynamo tensors α and η are antisymmetric for all models (such that αxy =

−αyx and ηxy = −ηyx). We, therefore, adopt a simplified notation such that, γ =

0.5 (αyx − αxy) and δ = 0.5 (ηxy − ηyx). Off- diagonal terms of the α tensor represent

the transport of mean magnetic field components in the vertical direction, due to the

gradient of turbulence intensity. The emergent antisymmetry in the α tensor, therefore

implies that the γ term can be interpreted as the rate of non-advective transport of

magnetic flux. This interpretation can be well understood in the special case of isotropic

and homogeneous turbulence within high conductivity limit, where γ simply reduces to

the function of the gradient of turbulent intensity; γ = −τc∇u′2/6. In the evolution

equation of the mean magnetic fields, term γ appears only in the form of a transport

term (that is (uz + γ)). DNS data reveals that γ(z) has a sign opposite of uz indicating

the fact that the diamagnetic pumping term acts in the downward direction, against the

outward wind. This is also reflected in the closure form of γ (γ = −τc∇u′2/6), since the

intensity of turbulence increases in the outward direction.

Vertical profiles of all dynamo coefficients (αxx, αyy, γ, ηxx, ηyy and δ) peak at z '

±1.2 kpc, and outside this range the profiles are fluctuating (average errors are of the

order of ∼ 20%). The profiles αxx/yy(z) and γ(z) coefficients are approximately linear

within the vertical range of |z| < 1.2 kpc, while they are inverted bell shaped for ηxx/yy



Chapter 5. Saturation of Galactic Dynamo 63

Table 5.1: Dynamo coefficients and outward wind velocities (at z = 1 kpc), during
the initial kinematic phase, along with their maximum errors. Amplitudes of α, η, γ,
and uz scale roughly with SN rate as ∼ σ0.4. This table is also appeared in Gressel

et al. [2013]

σ αxx αyy γ ηxx
[σ0] [ km s−1] [ km s−1] [ km s−1] [ kpc km s−1]

Q 0.25 3.5± 0.8 [4.0] 3.8± 0.9 [4.5] 9.7± 2 [7.6] 1.8± 0.5 [1.5]
H 0.50 4.6± 1.7 [5.3] 4.9± 2.0 [6.6] 12± 2 [9.5] 2.5± 0.8 [1.9]
F 1.00 6.1± 2.0 [7.0] 6.6± 3.0 [7.8] 15± 4 [13.5] 3.2± 1.5 [2.5]

σ ηyy ηxy ηyx uz

[σ0] [ kpc km s−1] [ kpc km s−1] [ kpc km s−1] [ km s−1]

Q 0.25 2.6± 0.6 [2.1] 0.3± 0.1 −0.2± 0.1 14.0± 2 [15]
H 0.50 3.3± 1.1 [2.7] 0.5± 0.2 −0.3± 0.2 17.5± 4 [18.5]
F 1.00 4.4± 1.6 [3.1] 0.5± 0.2 −0.4± 0.1 22.5± 4 [22]

Notes: Bracketed numbers are the values of dynamo coefficients at z = 1 kpc, obtained after fitting their
profiles with odd (or even) Legendre polynomials.

coefficients. All of these profiles remain roughly stationary during the initial kinematic

phases of all models but get flattened in the dynamical phase; while subsequently re-

ducing the values of peaks (discussed in Section 5.3.2). We have demonstrated this in

Figure 5.1, where the black-solid lines are the profiles of dynamo coefficients during the

initial kinematic phase, overplotted with their dynamical phase counterparts indicated

by orange-solid lines. These profiles have been averaged over ∼ 100 Myr (from initial

200 to 300 Myr) to remove the temporal fluctuations and also over five grid points in z

direction to get rid of the high wave number contribution. There is a general scaling

of dynamo coefficients with SN rate, which can be clearly seen in Figure 5.1. We have

documented the values of the peak amplitudes of dynamo coefficients (along with the

maximum errors) in Table 5.1, which indicates an approximately identical power law

scaling with respect to the SN rate for all dynamo coefficients such that α/γ/η ∼ σ0.4.

In order to get the better statistics, we have averaged these values (Table 5.1) for initial

200 Myr to 300 Myr. We also remark that these scaling laws are in agreement with the

previous simulations by Gressel et al. [2008].

5.3.2 Dynamically Significant Fields

While discussing the qualitative picture of galactic dynamo process (first part of this

chapter), we explained the amplification of magnetic energy for the prescribed back-

ground turbulent flow and tacitly omitted the influence of amplified magnetic field on
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the flow. Simple considerations suggest that the back-reaction of magnetic field on tur-

bulence would inhibit the turbulent motions via the Lorentz force and subsequently lead

to the damping or the ‘quenching’ of dynamo coefficients. As a first approximation, it

is possible to encapsulate this back-reaction, by expressing the dynamo coefficients α, γ

and η as the inverse functions of the strength of mean magnetic field 1 relative to the

square-root of turbulent kinetic energy.

5.3.2.1 Magnetic Helicity

A simple justification for such quenching of α coefficients can be given via the τ approx-

imation [Kleeorin et al., 1995; Pouquet et al., 1976]. This, unlike the SOCA approach,

relies upon the exact computation of the turbulent EMF, governed by;

∂E
∂t

=
∂u′

∂t
× b′ + u′ × ∂b′

∂t
. (5.11)

and E is further obtained by integrating Equation 5.11, over time as,

E =

∫
∂u′

∂t
× b′dt + u′ ×

∫
∂b′

∂t
dt . (5.12)

Terms on the right hand side of Equation 5.12 indicate the magnetic and kinetic parts

of E respectively. The regular SOCA approach usually reduces to solving the second

term on right hand side of Equation 5.11 (that is, the kinematic term) and omitting

the time variation of u′. Therefore, within the realm of SOCA the kinetic term can

be expressed as αk B + η
(
∇×B

)
, where αk is the kinematic α, which under the high

conductivity limit (and under the assumption of isotropic and homogeneous turbulence)

can be written as αk = −τc (∇× u′) · u′/3, where τc is the turbulent correlation time.

In the presence of strong magnetic field, however, the magnetic part of Equation 5.12

(first term on the right hand side) is also taken into account. This additional term

encapsulates the variation of turbulent velocity due to the mean magnetic field. Hence,

it can further be written in the form of the ‘current helicity’, by employing the expression

1The diagonal components of α and η tensors, are hereafter referred as just α and η, unless mentioned
otherwise.
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for Lorentz force, as,

∫
∂u′

∂t
× b′dt =

∫ (
j×B

)
µ0ρ

× b′dt , (5.13)

where j is a fluctuating component of current density, which clearly cannot be neglected,

when B is strong enough to alter u′. µ0 and ρ are the permeability and local density of

ISM. Magnetic part of the EMF can therefore be expressed as;

EM =

∫ (
j×B

)
µ0ρ

× b′dt ,

Assuming isotropy and homogeneity of b′ along with high conductivity, above equation

reduces to;

EM =

(
τc

3µ0

∫
j · b′
ρ

dt

)
B ,

where τc is the typical correlation time. The coefficient τc(j · b′)/ (3ρµ0) is a well known

helicity effect, which notably has a sign opposite of αk. This term essentially provides

a magnetic back-reaction on the turbulence and is indicated by the notation αM . The

notation of α we use in the previous section thus indicates the total α or αk + αM .

An obvious question now arises is whether the computed profiles of α (from DNS)

also show the aforementioned quenching phenomena? In fact, we do see a substantial

flattening of α profiles in a vertical range of |z| < 1 kpc, during the dynamical phase.

This fact is clearly demonstrated in Figure 5.1 [Panel a], via the distinction between

black-solid lines and red- dotted lines, which represent the profiles of dynamo coefficients

during the kinematic and the dynamical phases; respectively. Such flattening could take

place via two plausible sources, first one would be the substantial negative feedback from

αM during the dynamical phase, and another one would be the quenching of αk itself;

due to the inhibition of u′ and/or ∇×u′. To figure out, which of these processes actually

led to the quenching phenomena we observe in the DNS data, we compute the vertical

profiles of αk and αM for all SN rate models Q, H and F. For that, we use following

approximate relations for α in the high conductivity limit and with assumed isotropy
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(a)

(b)

(c)

Figure 5.1: Vertical profiles of dynamo coefficients α (a), γ (b) and η (c), during
the kinematic phase (black-lines) and during the dynamical phase (orange-lines), for
models Q, H and F from left to right. Dotted lines indicate the best fit defined by the

linear combination of Legendre polynomials.
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and homogeneity of ISM turbulence we write, [similar to Pouquet et al., 1976],

αk = −τc
3

(∇× u′) · u′ , (5.14)

αM =
τc
3 ρ

(j · b′) . (5.15)

where τc is the correlation time 2 over which the high conductivity approximation is

valid. We estimate the values of τc, using the relation τc ' 3 η/u′2 ' 10 Myr (owing

to the approximation used in Equation 5.5). Since the fluctuating current term ‘j’ can

also be represented as j = ∇× b′/µ0, αM can simply be interpreted as the small scale

current helicity. Since the applicability of these approximations is in principle restricted

to the case of homogeneous and isotropic turbulence, to understand the quenching of

α we finally rely upon the DNS test fields data. Nevertheless, the computation of αM

provides a physical insight into the back-reaction of mean magnetic field on turbulent

helicity. After estimating the vertical profiles of αM and αk, for all SN rates it turns

out that during the kinematic phase the total α (derived from the test fields method)

is mostly contributed by the αk. Whereas in the dynamical phase αM (z) grows to the

values comparable to αk, but with the opposite sign. αk(z), however, stays relatively

unchanged. The profiles of total α, as a result, get substantially quenched. Hence the

quenching of α observed in DNS seems to be, mainly a result of the back-reaction of

small scale current helicity. In Figure 5.2, for example, we have shown the space-time

contour plots of αM [Panel-top], αk [Panel-center] and αyy [Panel-bottom], 3 for model

Q, where the aforementioned characteristics of αM , αk and α are clearly represented.

Similar contours for models H and F are included in Appendix D.

5.3.2.2 Turbulent Diffusivity Quenching

Similar to α coefficients the vertical profiles of turbulent diffusivity, η(z), are also flat-

tened during the dynamical phase, within the vertical range of −1 kpc < z < +1 kpc.

The distinction between its unquenched and quenched profiles is represented by black-

solid lines and red-dotted lines in Figure 5.1. Initial vertical profiles of η approximately

2Here it should be noted that the times τ involved in Equation 5.15 may not, as a general rule, be
exactly equal to the turbulent correlation time τc, its only a plausible assumption. These times may not
even be equal for α and η [Rädler & Rheinhardt, 2007].

3αyy is calculated via the test field method
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(a)

Figure 5.2: Panel-top: Time evolution of αM (z) profile for model Q Panel-top: Time
evolution of αk(z) profile for model Q. Panel-bottom: Time evolution of αyy(z) profile
for model Q. All contours have a same color scale defined by the color-bar on right side.
Typical magnitude of αM grows to the values comparable to the kinematic values of
αyy except for the opposite sign, while the αk remains unchanged. We therefore see a
subsequent dampening of αyy profiles during the dynamical phase (after ∼ 1.5 Gyr).

follow the estimates obtained using the SOCA (Equation 5.5) for all SN rates. In Fig-

ure 5.3 we have compared the z profiles of η obtained from DNS (red-solid lines) with

kinetic η profiles obtained from Equation 5.5 (black-dashed lines). Used value of the

correlation time τc is approximately 10 Myr (same as is used to calculate αM ). Rough

agreement between the both suggests the validity of SOCA during the kinematic phase.

Moreover the quenched profiles of η also follow the SOCA approximation except with

the slightly reduced values of τc (also shown in the upper panels of Figure 5.3).
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Figure 5.3: Vertical profiles of η coefficient (calculated via test fields method) are
shown in red-solid lines, overplotted with the corresponding SOCA estimates, τc u′2/3
given by Equation 5.5, shown in black-dashed lines, where the u′(z) profiles are extracted
from DNS data at the same time. Three panels in the Bottom represent the vertical
profiles during the kinematic phases of models Q, H and F; from left to right. Upper
three panels represent the same during dynamical phase. The correlation time τc turns
out to be ∼ 10 Myr for all SN rates during the kinematic phase and remains nearly
same in the dynamical phase, suggesting that the observed quenching of η takes place

mainly via the quenching of turbulence intensity u′2.

To quantitatively express the quenching of dynamo coefficients, we express them as a

function of relative strengths of mean field, which we define by the ratio β;

β =

(
B

2
x +B

2
y

)1/2

√
µ0ρ u′2

, (5.16)

that is; the square-root of the ratio of mean magnetic energy and kinetic energy. Value of

β approaching to one, corresponds to the situation of dynamically important mean fields.

Since the vertical profiles of the turbulent kinetic energy and mean magnetic energy are

approximately Gaussian in shape, β (z) also evolves to a same functional form during

the dynamical phase. Final values of β for models Q and H, in the mid-plane are 2 to

4 times greater than in the halo, and for the model F, the final β (z) profile is roughly

constant e.g. Figure 5.4.
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Figure 5.4: Vertical profiles of β during the dynamical phase, for model Q (black-
line), model H (red-line) and model F (green-line). Inner plot shows the vertical profiles

of equipartition fields (
√
µ0ρ u

′)

To derive the dependence of the dynamo coefficients on relative mean field strength,

we fit the DNS values of α, η and γ to the algebraic functions similar to Ivanova &

Ruzmaikin [1977]; Raedler et al. [1990], such that;

ξ(β) =
ξ0

1 + a βb
, (5.17)

with two free parameters a and b. The notation ξ(β) represents the dynamo coefficients

α, η or γ. To obtain the best fits for α(β) we consider the inner domain of approximately

|z| < 1.2 kpc, within which the profiles are roughly regular and linear. We then calculate

the slopes of these profiles and plot the maximum amplitudes, above and below the mid-

plane, (smoothed over ∼ 50 pc) as a function of corresponding β. The fitting parameters

for α are b = 2 (with maximum error of ∼ 10%), and a = 27 (with maximum error

of ∼ 40%), which are independent of SN rates. Large values of a in the context of

dynamical quenching would indicate the catastrophic quenching, if a scaled with the

magnetic Raynolds number Rm. By using the standard definition of Rm = L2Ω/η (η



Chapter 5. Saturation of Galactic Dynamo 71

here is the macroscopic diffusivity) we have Rm ' 10000 on the box scale (for L ' 4 kpc),

which is larger than the obtained values of a. If we define the Raynolds number based

on the turbulent length scales, that is, Rm ' u′l0/η and get Rm ' 75 − 200, which is

still larger than the value of a.

To obtain the β dependence of γ term we use the similar method, but here we consider

the inner domain of |z| < 0.5 kpc, since the γ profiles are concentrated only in the inner

disc part. Obtained fitting parameters are a = 10 (with maximum errors of 20%) and

b = 2 (with maximum error of 25%), these are also roughly independent of the SN rate.

Unlike the α and γ profiles, η(z) is roughly quadratic within the vertical range of |z| <

1 kpc. Hence to obtain the best fits, we restrict within that vertical range and plot the

maximum amplitudes of η(z) profiles as a function of β. Obtained values of best fitting

parameters are a = 6 (maximum error of 20%) and b = 1 (maximum error 10%), these

remain fairly independence of the SN rate.

The quenching relations for α, η and γ, for all SN rates can be summarized as, α =

αk
1+27β2 , η = ηk

1+6β and γ = γk
1+10β2 , where αk, ηk and γk are initial unquenched amplitudes

of the dynamo coefficients during the kinematic phase (β << 1), which depend only on

the SN rate. In Figure 5.5 we have shown these β dependencies for all SN rates. Using

the SN rate independence of the quenching functions, we further replace the kinematic

amplitudes (αk, ηk and γk) by SN scaling laws obtained in Table 5.1, and finally get;

α =
α0

1 + 27β2
(σ/σ0)0.4 ,

η =
η0

1 + 6β
(σ/σ0)0.4 ,

γ =
γ0

1 + 10β2
(σ/σ0)0.4 , (5.18)

α0, η0 and γ0 represent the kinematic amplitudes of dynamo coefficients, for the SN rate

σ = σ0, (that is, for model F).

5.3.3 Quenching of the Wind

Similar to the dynamo coefficients, the mean vertical wind profiles uz, also get affected

by the strong mean fields within the vertical range of |z| < 1 kpc. This difference can be
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Figure 5.5: Dependence of dynamo coefficients, α (black-lines), η (blue-lines), γ (red-
lines), and uz (orange-lines) on β, for models Q, H and F (from left to right), computed

at z = ±1 kpc. Estimated errors in these fits are ∼ 20% (Maximum).

seen in Figure 5.6, where the black-solid lines represent uz (z) profiles, in the kinematic

phase, while the dotted-red lines represent the same during the dynamical phase. To

obtain the dependence of uz as a function of β we consider roughly linear profiles within

the vertical range of approximately |z| < 1 kpc, and plot maximum amplitudes as the

functions of β. Resulting curves are then fitted with Equation 5.17, and the parameters

for the best fit turn out to be a = 1.5 (with maximum error of 30%) and b = 2 (with

maximum error of 10%), these are also almost independent of the SN rate. We further

replace the kinematic values of uz by the corresponding SN scaling law (Table 5.1) and

finally get;

uz =
u0

1 + 1.5β2
(σ/σ0)0.4 , (5.19)

where u0 is the unquenched amplitude of uz for σ = σ0. This behavior of uz is shown in

Figure 5.6 for all SN rates, where the plus (+) signs represent the average values of |uz|

at z = ±1 kpc for the corresponding β and the solid line indicates the best fit. It is to

be noted that the quenching of uz is significantly weaker compared to the other dynamo

coefficients (see the multipliers of β in Equation 5.18 and Equation 5.19).
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Figure 5.6: Same as Figure 5.1, but for the vertical wind, uz profiles.

5.4 1D Dynamo Model

In light of the prior discussion we argue that the amplification and saturation of Em seen

in DNS, is an outcome of αΩ dynamo process along with the quenching mechanism for

dynamo coefficients. To justify this argument, we write the one-dimensional αΩ dynamo

model equivalent to the DNS box model. For that we decompose the flow variables as a

sum of their mean and fluctuating (turbulent) component, the ‘mean’ here is defined as

average over the horizontal x − y planes, this choice leaves ‘z’ as the only independent

variable. The induction equation for the mean field in its component form can then be

written as;

∂Bx

∂t
=

∂

∂z

(
− (uz + γ) Bx − αyy By + ηyy

∂Bx

∂z

)
,

∂By

∂t
=

∂

∂z

(
− (uz + γ) By + αxxBx + ηxx

∂By

∂z

)
+ qΩBx ,

∂Bz

∂t
= 0 , (5.20)

the last equation arises from the solenoidity constraint. For the sake of simplicity we

have neglected the comparatively small contribution of off-diagonal η terms (these are

about 1-2 orders of magnitude smaller than the diagonal terms). Mean velocity field in
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this case; has only two components, one of which is a predefined azimuthal component

(xΩ), and the other one is the SN dependent outward winds (uz).

5.4.1 Evolution of 1D Model

The system of Equation 5.20 is solved by the finite difference method on a staggered

grid, over the range of |z| < 2.133 kpc. Which is resolved with 512 grid points (similar to

DNS). Initial and boundary conditions for this are as described below. Initial Bx(z) and

By(z) profiles are chosen directly from the DNS data to have a maximum similarity with

DNS. We moreover smooth this initial data over first 50 to 100 Myr to have a sufficiently

equal mix of vertical modes and to reduce the stochastic disturbances. Initial 50 Myr

are excluded to get rid of the impact of the large scale initial mode. We use the gradient

boundary conditions for B consistent with the DNS boundary conditions. Ω is set to

100 Gyr−1, similar to the prescribed rotation profile of the DNS models. Vertical profiles

of α, γ and η are computed during the evolution itself, using Equation 5.18, while their

initial unquenched amplitudes (α0, γ0 and η0) are extracted from the test fields data

(of model F). We average these profiles for initial 100 to 400 Myr of DNS evolution

(which is well within the unquenched regime, e.g. Figure 5.5), to remove the noise in

the outer halo data. Whereas, the high wave numbered noise corresponding to the inner

disc is removed by fitting these profiles with a linear combination of 15 odd (and even)

Legendre polynomials, Pn (z). Similarly uz(z) profiles are also computed during the

evolution by solving Equation 5.19 and the unquenched u0(z) profiles are obtained by

averaging the DNS values over initial 100 Myr to 400 Myr (of model F), these profiles

are best fitted with only linear function of z (first order Legendre Polynomial). Effect of

changing the SN rate is modeled with the scaling law σ0.4 embedded in Equation 5.18 and

Equation 5.19. Evolution of dynamo coefficients and the wind profiles clearly, depend

on the β(z), which is computed from Equation 5.16, during the evolution of 1D model.

Constant vertical profile of
√
ρu′ for the β computation is predefined for each SN rate,

which is also extracted from the DNS data (Figure 5.4 inset).
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5.5 Comparison of Mean Field and Direct Simulations

Using the 1D mean field dynamo model (with algebraically quenching of the dynamo

coefficients) we ware able to reproduce the results of 3D DNS with a remarkable simi-

larity, which we discuss in this section. For simplicity we choose the same notations- Q,

H and F for the mean field models as well (depending on the SN rate).

Total magnetic energy in all mean field models grows exponentially with an e-folding

time of ∼ 100 Myr, for almost a Gyr. After which it keeps growing only with negligible

growth rates for mean field models Q and H and saturates for F. This behavior is very

much similar to what we see in DNS. In Figure 5.7 we compare the evolution of total

magnetic energy, in DNS models (black-solid lines) with the mean field models (red-

dotted lines). We point out the remarkable agreement between these curves, during the

kinematic and dynamical phase. Similarly the vertical profiles of Bx and By also show

a significant agreement with DNS results, along with the intermediate field reversals

and parity changes (as shown in Figure 5.7 [Panel-left ]). The final ‘S’ modes of By(z)

in the dynamical phases of all 1D models have comparable scale-heights with DNS, in

the outer halo. While in the inner disc, the profiles of mean field dynamo solutions are

comparatively narrower, as shown in Figure 5.8 for all SN rates [also see Bendre et al.,

2015].

Apart from the ability to reproduce the DNS outcomes; the mean field dynamo formula-

tion also explains the reason for the distinctive behavior of magnetic field in the kinematic

and dynamical phases, as follows. During the initial kinematic phase, the transport term

in Equation 5.20, uz +γ, remains negligible in the inner disc (|z| < 1.1 kpc), for all mod-

els. This is because the wind and pumping profiles tend to cancel each other (e.g.

Figure 5.1 and Figure 5.6). Magnetic energy under such conditions amplifies exponen-

tially, similar to the solution of αΩ dynamo and the growth time (normalized with the

diffusion time) depends upon the dynamo number (Section 5.6).

Later during the dynamical phase, the profiles of uz and γ quench with different rates

and the residual transport term (uz + γ) starts contributing to the evolution. Since the

actual contribution of this term to the dynamo depends on the rate of SN explosions we

see the different dynamical behaviors in different SN models. This term encapsulates the

residual advective transfer of the magnetic flux and has a crucial roll in the saturation
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(a)

(b)

(c)

Figure 5.7: Left panels show the comparison between space-time profiles of B̄y, ob-
tained from direct numerical simulations (Panel down) and from the mean field simula-
tions (Panel up). Right panels show the comparison between evolution of β2 (relative
mean field energy) obtained from direct numerical simulations (black-solid lines) and
from the mean field simulations (red-dotted lines). Computed for model Q (Panel a),

model H (Panel b) and model F (Panel c).
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of dynamo. The non-vanishing growth of mean magnetic energy during the dynamical

phases of model Q and H, exists simply due to the simultaneous quenching α and η that

preserves the dynamo number but leads to the slowly growing solution because of the

elongated diffusion time scale (Section 5.6). The transport term in this case has only a

negligible roll. Whereas for model F, this term becomes significantly larger, already for

the comparatively smaller β values. This strong advection of magnetic flux out of the

dynamo active region leads to the saturation of magnetic energy in model F. To prove

that the non-vanishing transport term is solely responsible for the saturation, we switch

it off in 1D model and get the sustained growth rate of magnetic energy even in the

dynamical phase of model F.

Pointing out further similarities in the mean field and direct simulations, we note that

the pitch angles of mean magnetic field as seen in the 1D models also match with the

DNS results. Which is to say that the significant values of pitch angles are seen only in

model F, where the saturation occurs due to the presence of outward wind. While the

mere quenching of α and η (similar to model Q and H) leads to the strong reduction of

pitch angles during the dynamical phase, which is contrary to the observations [Van Eck

et al., 2015].

Figure 5.8: Vertical profiles of By, during the dynamical phase, from DNS (left-panel),
and from the mean-field simulations (right-panel).
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5.6 Analytical Assessment

As far as the global results are concerned, we have pointed out the qualitative similarities

between direct and mean field simulations. In this section we analytically justify the

kinematic amplification of Em in terms of dynamo number. We further prove that the

sustained growth of Em during the dynamical phase (of models Q and H) is a consequence

of the prolonged turbulent diffusion time td, corresponding to the quenched dynamo

coefficients. But before doing that, we will first briefly discuss the αΩ approximation

and point out that our mean field models, during the kinematic phase, can be sufficiently

described as αΩ dynamo.

5.6.1 Alpha-Omega Approximation

Dynamo equations (Equation 5.4), with certain justifiable prerequisites, are analyti-

cally solvable and are referred to, as the αΩ dynamo. Conditions under which the αΩ

approximation is valid, are as follows,

1) Non-diffusive transport of the magnetic flux should be negligible compared to con-

tribution of α and diffusion term. This condition is certainly satisfied for our models

during the initial kinematic phase, where uz and γ cancel each other within a vertical

range |z| < 1 kpc (as represented in Figure 5.1 [Panel c] and Figure 5.6).

2) The gradient of turbulent η should be negligible compared to the gradient of mean

fields (so that it can be taken out of the derivative term ∇ × η∇ × B). This is also

approximately valid within |z| < 1 kpc of our mean field models, considering the scale-

heights of η(z) profiles (∼ 1 kpc), which are comparatively larger than the mean field

scale heights (few 100 pc). (as represented in Figure 5.1 [Panel b] and Figure 3.4).

3) The differential rotation term should be the dominant one, so that the helical contri-

bution to the mean poloidal field (∂(αxxBx)/∂z) can be safely omitted.

Using these constraints in Equation 5.20; we further normalize the coordinate z using

a typical vertical length scale H and time t with the diffusion time scale td = H2/η

(t = t′ td and z = z′H) and write;
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∂Bx

∂t′
= −Cα′

∂αBy

∂z′
+
∂2Bx

∂z′2

∂By

∂t′
= −CΩBx +

∂2By

∂z′2

, (5.21)

where α is normalized by its kinematic amplitude α0 and the expressions for dynamo

parameters are Cα = αH/η and CΩ = H2 qΩ/η. With an assumption of the separability

of variables; above system allows the solutions in the form of expansion of free-decay

modes (Bj
i), particularly;

Bj ' exp
(
A t′
) ∞∑
i=0

ciBj
i , (5.22)

where the index j represents the vector coordinate {x, y}, and Bi represents a set of

eigenvectors of the solution space of Equation 5.21, in the absence of helical and ro-

tational terms (Cα and CΩ respectively). Perturbation analysis of the system [e.g.

Shukurov, 2004; Shukurov & Sokoloff, 2007], using the basis formed by Bi, further rev-

els that the growth rate ‘A’ of the dominant mode; can be approximated by a function

of dynamo number D = CαCΩ, as;

A ' 1

td

(√
D −

√
Dc

)
. (5.23)

Constant Dc is the critical dynamo number, such that; for D < Dc, αΩ dynamo does

not have a growing solution. Similar expression for ‘A’ can also be derived via a so called

no-z approximation by Mestel & Subramanian [1991]; Subramanian & Mestel [1993]. We

use this solution to explain the kinematic growth of mean field in the next subsection.

5.6.2 The Case of ‘Zero’D Model

The time at which the kinematic phase ends; can be derived by employing the conditions

of the validity of αΩ dynamo and it proceeds as follows. Using the definition of dynamo

number we can write;
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D = CαCΩ =
αH3 qΩ

η2
. (5.24)

Using the quenching laws for α and η, we express Equation 5.24 as a function of β and

SN rate, as;

D = D0

(
σ

σ0

)0.4 (1 + 6β)2

1 + 27β2
, (5.25)

where D0 = α0H
3 qΩ/η0

2, is the unquenched initial amplitude of dynamo number. By

assuming uz ' γ (consistent with the initial kinematic phase) the approximate solution

for αΩ dynamo (Equation 5.22) [e.g. Shukurov, 2004] can be expressed as;

B(t) = B0 exp

(
t

td

(√
D −

√
Dc

))
, (5.26)

here we have neglected the ‘space part’ of the argument, hence we refer it as a zero-D

solution. The physical time t in Equation 5.26 is expressed in the units of diffusion time

td = H2/η = (σ/σ0)0.4H2 (1 + 6β)/η0. Now by using Equation 5.25 in Equation 5.26

along with the definition of diffusion time and quenching laws (Equation 5.18), we can

write,

B(t) = B0 exp

(
η0 t

H2

(√
D0 (σ/σ0)−0.4

(1 + 27β2)
−

√
Dc (σ/σ0)−0.8

(1 + 6β)2

))
. (5.27)

This relation gives an approximate evolution equation of the mean fields in αΩ dynamo;

with algebraically quenching coefficients.

Now, to plot the time evolution of β2 from Equation 5.27, we choose the value of B0

such that the ratio B(t)/B0 at t = 0 coincides with the initial value of β in DNS. To

have a justifiable comparison with DNS; the values for other parameters (H and η0) are

also chosen form DNS data, which are, H ' 1 kpc (thickness of the inner disc and the
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approximate range over which the transport term is nearly zero) and η0 ' 2 kpc km s−1

(which is the unquenched turbulent diffusivity in model F averaged over the vertical

range H). Values for the critical dynamo number Dc is derived numerically by evolving

our 1D model.

In Figure 5.9 we have plotted the evolution of β2 using the zero-D solution. It shows the

exponential amplification of β2 for almost a Gyr with the growth time of ∼ 100 Myr,

for all SN rates. This matches with the kinematic growth of mean field models (and

DNS). During the dynamical phase, the prescribed quenching relation (for α and η) does

not quench the dynamo number D, below the critical dynamo number Dc for any SN

rate. Magnetic energy, therefore, keeps growing with the reduced growth rate even in

the dynamical phase of model F and the damped values of α and η in the dynamical

phase account for the slow amplification of β2. Or in the other words the dynamical

amplification takes place in the units of prolonged diffusion times td = (σ/σ0)0.4H2 (1 +

6β)/η0. The analytical model Q (orange-solid line), however, roughly mimics the entire

evolution curve of β2 from DNS, indicating the minimal contribution of wind for the

low SN rate. The sustained growth of β2, for model F (in zero D case) proves that the

complete saturation of dynamo cannot achieved without the contribution of wind term

even if the α and η profiles are quenched according to Equation 5.18.

To obtain the analytical expression for the evolution of total magnetic energy Em we use

the relation between turbulent and mean magnetic field as a function of σ (Equation 3.4),

and write the total magnetic energy as a sum of magnetic energies from the mean and

turbulent field components. We finally get

Em(t) = E0

(
1 + 13.7σ0.6

)
exp

(
2 η0 t

H2

(√
D0 σ−0.4

(1 + 27β2)
−

√
Dc σ−0.8

(1 + 6β)2

))
. (5.28)

This relation is valid in the kinematic phases of all models, that is; where the Equa-

tion 3.4 is valid. By substituting the appropriate values of β, t and E0 we get the SN

scaling law for magnetic energy at the end of kinematic phase (Em ∼ 1+13.7σ0.6). This

scaling relation roughly estimates the final kinematic values of Em in DNS, which are

listed in Table 3.4.
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Figure 5.9: Evolution of β2 using the analytical approximation Equation 5.27 where
the ratio of D0/Dc = 3.5 and the initial values of β are chosen from the DNS data.

5.6.3 Disc and Halo Distinctions

As Figure 5.7 [Panel-right ] indicate, the magnetic energy (from mean fields) does not

exceed the turbulent kinetic energy until 2.5 Gyr for any SN rate. While the DNS results

suggest that; within the inner disc of z < 0.5 kpc it is possible to get the β values larger

than ‘1’ for the model Q (see e.g. Table C.1). In order to explain this, we again plot the

time evolution of β2 (for all SN rates) using the zero-D solution Equation 5.27; restricted

to the inner disc part (using H = 0.5 kpc), as shown in Figure 5.10 [Panel b]. It should

be noted that the final values of β, with this restriction exceed unity for models Q and

H. Also they amplify with a faster growth rate (e-folding time ∼ 70 Myr) during the

kinematic phases of all SN rate models.

To check the consistency of this hypothesis, we evolve the 1D dynamo equations (Equa-

tion 5.20) using all parameters restricted to the inner disc. That is; we use the trun-

cated profiles of α0, η0, γ0 and u0 only within |z| < 0.5 kpc. We also use the initial

profiles of mean fields, Bx(z) and By(z), extracted from the DNS but restricted within

|z| < 0.5 kpc. The final values of β2; we get in these settings are 1.2, 0.35 and 0.03
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(a)

(b)

Figure 5.10: (a) Comparison of the evolution of β2 (calculated within the inner disc
of |z| < 0.5 kpc) from DNS (solid lines) and mean field simulations (dashed lines),
(calculated using the truncated profiles of dynamo coefficients for |z| < 0.5 kpc). (b)

Same as Figure 5.9 but for H = 0.5 kpc.

for model Q, H and F respectively (after 2.5, 1.8 and 1.2 Gyr), which are very similar

to the results of DNS in the inner disc. Figure 5.10 [Panel a] compares the outcome

of truncated 1D simulations and DNS restricted to the same vertical range, we find a

remarkable agreement between these two. Faster growth rates of β2 for DNS and trun-

cated 1-D models; during the initial kinematic phase (∼ 70 Myr) is also consistent with

the analytical model discussed earlier (Figure 5.10 [panel b]). It is also to be noted that

the dynamical phases of models H and F are inconsistent with the results of analytical

zero-D model, since we have neglected the contribution of wind for the analytical model.
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5.7 The Effect of Net Vertical Flux

The growth rate of Em in the DNS model QS (with a strong initial vertical flux) is

∼ 200 Myr, until it goes to the dynamical phase and evolves with a slower growth rate.

The associated profile of By is antisymmetric with respect to the mid-plane. Model

QSZ (with zero net vertical flux) also shows a similar evolution globally, with a growth

rate of 200 Myr during the kinematic phase. Except the geometry of the final By(z)

profile which is symmetric with respect to the mid-plane. This distinction occurs due

to the ‘vertical flux preserving boundaries’. Using z profiles of the dynamo coefficients

and initial mean magnetic fields from the DNS, we simulate the 1D dynamo models

(Equation 5.20) equivalent to the models QS and QSZ. In these simulations We find that

the overall evolution of magnetic energy is same as that of the DNS and the initially

slow growth rate of Em is a result of large initial values of β. The final asymmetric

mode of the mean fields in model QS; turns out to be a consequence of a strong initial

‘A’ mode that gets preserved throughout the evolution.



Chapter 6

General Evolution of Cosmic Ray

Models

6.1 Introduction

In this chapter we discuss the general evolution of the models including the cosmic ray

component. Our main motivation here is to explore the effect of cosmic rays on large

scale galactic dynamo. The idea of cosmic ray driven dynamo was first discussed by

[Parker, 1992]. This predicts, the possibility of enhanced dynamo action by the virtue

of additional cosmic ray buoyant instability. Based on a conventional dynamo formu-

lation; Parker suggested a simple model for the flux loss through the gaseous disc due

to buoyancy; by substituting the additional transport terms; −Bi/td. These terms are

supposed to encapsulate the non advective flux transport, which lead to the fast dynamo

action in the characteristic field mixing times ∼ 30 Myr. Hanasz & Lesch [2000] indi-

rectly verified the fast dynamo action via the numerical simulations of rising magnetic

flux tubes and found e-folding times of mean field of the order of ∼ 100 Myr. [Girichidis

et al., 2014; Hanasz et al., 2004, 2009] quite recently demonstrated the fast amplification

of regular magnetic fields via the direct MHD simulation of global galactic ISM includ-

ing cosmic ray driven turbulence, along with the differential shear (but excluding the

viscous term). Using the similar hydrodynamical approach for cosmic ray propagation

(explained in Chapter 2), we advance our thermal SN models discussed in preceding

chapters. Cosmic rays energy in these models is injected as a predefined fraction of

85



Chapter 6. General Evolution of Cosmic Ray Models 86

SN energy. Moreover, by implementing the test fields formulation we also determine

the associated dynamo coefficients and discuss the amplification in terms of dynamo

mechanism (in next chapter).

6.2 Overview of Studied Models

Dimensions and resolution of the computational domain for cosmic rays models are same

as for the thermal SN models described in previous chapters (that is 0.8 kpc× 0.8 kpc×

4.266 kpc resolved in 96× 96× 512 grids). Moreover the initial profiles of mass density,

thermal pressure and the rotation are also the same as used in the thermal SN models.

Initial magnetic field configuration is chosen in such a way that, Bx = −10−4 µG in

the central disc and decaying outwards with a vertical scale-height of ∼ 325 pc, By =

10−3 µG at z = 0 kpc and also decaying outwards with a same scale-height, and constant

Bz = 10−3 µG with a constant net vertical flux of 0.0064µG kpc2 (where Bx, By and Bz

are x, y and z components of total magnetic field respectively). Used non-zero value of

Bz ensures the initial non-zero diffusion of cosmic rays in the vertical direction, which in

turn avoids the unphysical initial rise of total cosmic ray energy density inside the box.

Used values of the parallel and perpendicular cosmic ray diffusion coefficients (K‖ and

K⊥) are 3 × 1027 cm2 s and 3 × 1025 cm2/s respectively. In addition to this, we further

include a weak isotropic Fickian diffusion coefficient ensure the diffusion of the grid scale

structures [e.g. section 2.2 of Snodin et al., 2006]. Coefficient of the Fickian diffusion,

Kfick used here is an order of magnitude smaller than K⊥. We note that the magnitudes

of coefficients K‖ and K⊥ are at least an order of magnitude smaller than the estimated

values of Bohm’s diffusion coefficients for µG field strengths. A reason to do so, is to

get a reasonable computational time step. As a consequence of which; we get a large

contribution of total cosmic ray energy throughout the evolution. This possibly affects

the distribution of ISM into thermal components. We, therefore, refrain from analyzing

the ISM properties in various ISM thermal components and just focus on the evolution

of the magnetic energy and the dynamo aspects of the simulations which are possibly

least affected by the choice of K‖ and K⊥. Nomenclature and description of CR models

is given in Table 6.1
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Table 6.1: Description of the cosmic ray models with SN rate of 10%σ0, 10% of SN
energy per explosion is injected in the ISM as cosmic ray energy and rest in the form of
thermal energy (Eth). All models include a small isotropic Fickian diffusion coefficient

Kfick = 3× 1024 cm2 s−1.

Name K‖ K⊥ Ecr Eth
cm2s−1 cm2s−1 erg erg

L_CR 3× 1027 3× 1025 1050 0
L_CR_TE 3× 1027 3× 1025 1050 9× 1050

6.2.1 General Evolution

Starting from the initial total cosmic ray energy Ecr ' 6.5 × 1052 erg, both models

evolve to a quasi-stationary state of Ecr and Ekin within first ∼ 100 Myr. The value of

Ecr corresponding to this stationary state is ∼ 3 times larger for the model involving

thermal energy injection L_CR_TE (this probably is the adiabatic rise, pc∇ · u). This

quasi-stationary states for both cosmic ray models also corresponds to;

1) A multiphase ISM structure, with steady volume filling fractions of all temperature

components.

2) Stationary states of total turbulent kinetic Ekin and thermal energy Eth (Both of

these energy contributions are larger in model L_CR_TH since the total energy being

injected in the box per Myr is 10 times larger than L_CR).

3) Steady vertical profiles of average mass density are reached within first 100 Myr.

The initial vertical profile of averaged density is Gaussian with a scale-height of 325 pc,

which evolves to the function best fitted with Equation 6.1 within first 100 Myr and

remains nearly steady throughout the evolution. Unlike the purely thermal SN models

discussed earlier (Q, H, F, etc.), the vertical profiles of average mass density for both

cosmic ray models show a visibly distinctive central disc, with a Gaussian functional form

within the inner part, |z| < 0.5 kpc (this is due to the comparatively larger contribution

of dense cold component in CR models, as a result of low energy injection). Within the

outer halo however ρ(z) is exponential for both models, with the scale-heights broader

than that of the thermal SN models.

ρ = ρ0 exp
((

z
0.25

)2)
+
∑2

i=0 ρi exp
(
−| z |
ri

)
. (6.1)
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Table 6.2: Fitting parameters ρi and ri of ρ(z), using the function Equation 6.1.
Where r0 represents the Gaussian scale-height of central disc and r1 and r2 are the

exponential scale-heights of outer halo.

Name ρ0 r0 ρ1 r1 ρ2 r2

cm−3 kpc cm−3 kpc cm−3 kpc

L_CR 0.2 0.25 0.1 0.32 0.008 1
L_CR_TE 0.1 0.25 0.08 0.4 0.01 1.8

Gaussian scale-heights of inner disk, r0 do not seem to vary very much with the inclusion

of cosmic rays. Exponential scale-heights in the outer disc r1 and r2, however, are almost

25% and 80% broader respectively for the combined model L_CR_TE. Since the total mass

in both cosmic ray models is same, the broadening of r1 and r2 amounts to the smaller

value of average mid-plane density ∼ ρ0 in model L_CR_TE than model L_CR. In Table 6.2

we have listed these fitting coefficients for reference.

After this initial phase of ∼ 100 Myr total magnetic energy Em grows exponentially

with the e-folding times of ∼ 60 Myr and ∼ 70 Myr for models L_CR and L_CR_TH

respectively (which is comparatively faster than the purely thermal SN models with e-

folding times of ∼ 100 Myr). Both of these models have been evolved up to ∼ 600 Myr.

The maximum value of ratio Em/Ekin approached until that time is approximately 10−3

(in both models). The dynamical effects of magnetic field, therefore, are minimal and

we restrict the discussion of the cosmic ray models; only to the kinematic phase. In

Figure 6.1 we have shown the time evolution of different energies in both cosmic ray

models, which clearly represents the aforementioned properties.

6.2.2 Magnetic Fields

Total magnetic field here is again represented as a sum of mean and turbulent magnetic

fields. We also define the average on x − y plane. Looking at the overall evolution of

mean field, B, we find that the radial component Bx stays 3 to 5 times smaller than its

azimuthal component By, and has a same functional form except for the opposite sign.

So in order to avoid the further confusion we describe only By component hereafter.

Starting from the weak initial, By(z) (and Bx(z)), in both cosmic ray models evolve

to a vertically symmetric, double peaked quadrupolar mode, within first ∼ 100 Myr.

This time also maps to the slow initial growth phase of magnetic energy as seen from

Figure 6.1. Maximums of these profiles appear at ∼ ±0.2 kpc. The overall functional
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Figure 6.1: Evolution of CR energy (blue-dotted lines), thermal energy (black-solid
lines), turbulent kinetic energy (red-dashed lines) and magnetic energies (orange-dot-

dashed lines) for both cosmic ray models.

form the quadrupolar mode, stays unchanged throughout the evolution, however, the

magnitude of mean field grows exponentially with approximate e-folding time of 130 Myr

for both cosmic ray models. We evolve these models for ∼ 600 Myr up to which the peak

values of By grow to ∼ 0.06µG in both models; as shown in Figure 6.2.

Although the functional form of By(z) is approximately similar for L_CR and L_CR_TE,

central peaks in By profile of model L_CR seem to be narrower and more concentrated

in the disk; compared L_CR_TE, as shown in Figure 6.2. The exponential scale-heights

of By(z) in the inner range 0.2 kpc < |z| < 0.8 kpc are about 0.25 kpc and 0.15 kpc

for models L_CR_TE and L_CR respectively. Whereas in the outer range |z| > 0.8 kpc

exponential scale-heights are approximately 0.35 and 0.18 kpc respectively. Broader

profile of By is presumably an outcome of the inadequate advection of mean field in

purely CR model L_CR, due to a comparatively slower outward wind in the central disk

(described in Section 6.2.3).

The symmetric quadrupolar poloidal component predicted in the CR models is possibly

present in the disk galaxies, which is also reflected in the X-shaped fields seen in various
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Figure 6.2: Vertical profiles of mean azimuthal magnetic fields after 600 Myr, for both
CR models.

observations of edge-on spirals [e.g. Beck, 2015; Mora & Krause, 2013]. Whereas, the

double peaked structure has not been explicitly seen in the nearby galaxies. It is how-

ever premature to compare these scale-heights directly to the observed values, since the

models are still in the kinematic growth phase.

Similar to the mean fields (By(z)), the turbulent fields, b′y(z), also evolve to a double

peaked profile, after about 100 Myr and further amplify exponentially with an e-folding

time of ∼ 130 Myr, while preserving the overall shape of b′y(z). Peak values of these are

situated at about 0.2 kpc, with a magnitude of 0.04µG as shown in Figure 6.3, for both

CR models. Exponential scale-heights of turbulent field in the outer halo |z| > 0.8 kpc

are about 0.75 and 1 kpc for models L_CR and L_CR_TE respectively. Broader scale-height

in the outer halo of model L_CR_TE can again be attributed to the efficient advective

and (/or) diffusive transfer.

Relative strength of mean magnetic field with respect to the turbulent component is

expressed by a ratio,
∣∣B̄∣∣ / |b′|. Starting from initially larger value (contributed mostly

by the seed field) this ratio sharply decays to constant, within first ∼ 150 Myr, and stays

unchanged throughout the evolution for both models. However, the effect of mean field



Chapter 6. General Evolution of Cosmic Ray Models 91

Figure 6.3: Vertical profiles of azimuthal components of turbulent magnetic fields
after 600 Myr, for both CR models.

(a) (b)

Figure 6.4: (a) Typical vertical profiles of the ratio of mean to turbulent magnetic

field strengths. (b) Evolution of
∣∣B̄∣∣ / |b′| for both CR models.

on this ratio is unclear since we have not run these simulations during the dynamical

phase. Figure 6.4 [Panel a] represents the vertical distribution of
∣∣B̄∣∣ / |b′| from 150

to 600 Myr, which closely resembles to the shapes of mean field distributions shown in

Figure 6.2 in the central part |z| < 0.8 kpc, hinting that the generation of turbulent field

is probably taking place via the mechanism of field line tangling. If we consider the

inner disc part of |z| < 0.5 kpc, constant values of
∣∣B̄∣∣ / |b′| reach to ∼ 1.03 and ∼ 0.63

for models L_CR and L_CR_TE respectively, which we have depicted in Figure 6.4 [Panel
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b]. While in the outer halo part, the turbulent component generally dominates and the

value of
∣∣B̄∣∣ / |b′| drops down to only 0.2, for both cosmic ray models. The constant

value of this ratio in the inner disc of model L_CR_TE roughly follows the scaling law

obtained for thermal SN models (∼ σ−0.3) it is however elevated in purely CR model

L_CR probably due to the less total energy injection per SN explosion.

6.2.3 ISM Velocities

ISM velocities u; are expressed as a sum of mean, u, and fluctuating u′ parts. Since the

distribution of SN is uniform over the x−y planes, we do not see any radial or azimuthal

component of mean velocity, and the only surviving component is vertical wind, uz,

which achieves a stationary vertical profile within first 100 Myr. Another large scale

velocity component is the azimuthal one, which arises due to preset differential shear,

mean of this component cancels out in the box frame of reference. Unlike the purely

thermal SN models (Q, H, F, etc.), uz(z) profiles here are roughly linear only within the

inner disc (|z| < 0.8 kpc) and quadratic in the outer halo, as shown in Figure 6.5 [Panel

left ] for both cosmic ray models, this hints to the possibility of cosmic ray pressure being

a driver of wind in addition to the galactic fountain mechanism, and may even be the

dominant factor in outer halo.

Amplitudes of the linear segment of uz(z) (within approximately |z| < 1. kpc) in model

L_CR_TE is ∼ ±5 km s−1, at ∼ ±0.8 kpc, which follows the SN scaling law obtained in

Chapter 3 (section 3.2.6), corresponding to the SN rate of L_CR_TE (0.1σ0). Whereas,

the quadratic flaring of uz(z) in the outer halo (above z = 1. kpc) is presumably due

to the comparatively larger gradient of CR energy. Similarly for model L_CR; there also

exists a quadratically growing wind in the halo part (since a same magnitude of cosmic

ray energy is being injected), whereas for the inner disc uz(z) is relatively flatter, due

to the absence of thermal energy input. In Figure 6.5 [Panel left ] we have compared the

uz(z) profiles of both cosmic ray models, and overplotted (red-dotted line) is the scaled

down wind profile of model F for the SN rate of 0.1σ0.

Turbulent velocity component u′(z), evolves to a quasi stationary state within first

100 Myr, in both cosmic ray models. Radial and azimuthal components of steady u′(z)

profiles are roughly inverted bell shaped within |z| < 1.8 ± 0.2 kpc, and a very steep

quadratic functions above this range (in order to eliminate the boundary effect as a
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(a)

(b)

Figure 6.5: (a) Vertical profiles of outward wind for model L CR(blue-dashed line)
and L CR TE (black-solid line), red-dotted line represents the vertical wind profile of
the thermal SN model with equivalent SN rate as CR models, obtained by using the
SN scaling law discussed in Section 3.2.6 (ūz ∼ σ0.4). (b) Typical vertical profiles of
turbulent velocity components for model L CR (black-solid line) and L CR TE (red-

dotted line).

plausible reason for the steep outer curves; larger box simulations need to be performed

to include the outer radio halo), as shown in Figure 6.5. Maximum amplitudes of the

inverted bell part range up to ∼ 5 km s−1 and ∼ 8 km s−1 for models L_CR and L_CR_TE,

while the very outer steep curves go up to ∼ 15 km s−1. While the vertical (z) com-

ponents are the liner functions of z ranging from ∼ 1 to 2 km s−1 in the mid-plane to

∼ 15 km s−1 at the outer boundaries. Mid-plane values of u′ in model L_CR_TE are

∼ 2.5 km s−1, which are consistent with the SN scaling law for u′ obtained in Chapter 3,

corresponding to the SN rate of 0.1σ0, while in the outer halo part these are about 50%
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smaller than the scaling estimates for 0.1σ0, again implying the fact that the additional

cosmic ray pressure affects prominently in halo part and suppresses the velocity fluctu-

ations. This is generally true for model L_CR, except the mid-plane values of u′ are only

about 1 km s−1, probably due to the absence of thermal energy injections.

6.2.4 Alfvén Velocity

Using the definition of Alfvén velocities, expressed by Equation 3.6, we calculate, vA(z)

and v′A(z) profiles for both cosmic ray models. Similar to models Q, H and F, etc., these

profiles are also inverted bell shaped within the inner disc (|z| < 0.8 kpc) and decreasing

or constant in the halo (|z| > 0.8 kpc), with maximum strengths of 2 km s−1 in the halo.

These are much smaller than the wind velocities. Since the magnetic field has not yet

reached to the equipartition strength vA is still evolving and presumably doesn’t have

any dynamical impact on ISM on large scale.



Chapter 7

Cosmic Ray Dynamo

7.1 Introduction

In the preceding chapters we have described the several different properties of ISM

in purely thermal SN models and in the models involving cosmic ray injections. We

also showed that in the model with CR and CR + thermal energy, large scale dynamo

effectively works and magnetic amplifies with the fast exponential folding time of 60 to

∼ 70 Myr. However we have not yet analyzed the ISM distribution and the effect of CR

pressure on it, we plan to do that in the future. It also interests us to understand this

growth as a mean field dynamo. For that we simulate an equivalent 1D dynamo model,

similar to the one we have presented in Chapter 5. Dynamo description allows us to

indirectly determine the effect of cosmic rays on the underlying turbulence properties.

7.2 Dynamo Coefficients

Using the test fields method described in Chapter 5, we compute the vertical profiles

of dynamo coefficients, α and η for both cosmic ray models, as a function of time. It

turns out that after the initial mixing phase of ∼ 100 Myr, these profiles reach to a

quasi-stationary state, which remain so; for the entire evolution. Also we do not see

any effect of magnetic fields on these profiles, since the maximum value of mean mag-

netic field energy relative to the turbulent kinetic energy (β) at the end of evolution

reaches only to ∼ 0.05 (in both cosmic ray models). In Figure 7.1 and Figure 7.2 we
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have compared the vertical profiles of dynamo coefficients for both cosmic ray models,

which clearly shows that α(z) and η(z) magnitudes in purely cosmic ray model (L_CR)

are about 50% weaker than that of model L_CR_TE. Unlike the purely thermal SN mod-

els (Q, H, F, etc.). The off-diagonal terms of α tensors in both CR models do not

contribute as an isotropic diamagnetic pumping term, and the terms αxy and αyx are

therefore interpreted as the differential rates of the flux transport for components B̄x

and B̄y respectively. Furthermore the off-diagonal elements of α tensor do not cancel out

outward wind component as they do in the kinematic phases of the thermal SN models;

leaving sufficiently large residual transport terms. Another important distinction in the

CR models is the non-negligible contribution of the off-diagonal η terms; for instance

the ratio ηxx/ηxy ∼ 2 in CR models as opposed to ∼ 15 in purely thermal SN models.

These distinctions systematically lead to the double peaked structure of mean field as

discussed in the next section.

Using the SN scaling laws for dynamo coefficients (obtained in Table 5.1 for purely ther-

mal SN models) we can estimate the values of α and η for model with SN rate of 0.1σ0,

with purely thermal SN explosions, and check whether these match with the numerical

values obtained from the DNS. However it turns out that these estimates are 4 to 8

times smaller than the test field results listed in Table 7.1 for both CR models, high-

lighting the distinction between the CR and thermal SN turbulence. Another approach

to estimate the numerical values of dynamo coefficients is the SOCA approximation, un-

der the assumption of isotropic and homogeneous turbulence in high conductivity limit

Equation 5.5. The profiles of turbulent intensity and turbulent diffusivity obtained from

the DNS along with the SOCA estimates gives the turbulent correlation time τc for η;

∼ 35 Myr, which is much prolonged compared to the thermal SN models (∼ 10 Myr) and

the understanding of its effect on the ISM structure warrants, a detailed analysis turbu-

lence properties in different ISM phases, which is beyond the scope of current analysis.

It is however to be noted here that, there is an emergent anisotropy in the distribution

of turbulent intensity, leading to the asymmetric α tensors; which imply for CR models

that the SOCA estimate is only approximately valid.
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(a)

(b)

Figure 7.1: Vertical profiles of the α coefficients for both cosmic ray models averaged
for 100 to 200 Myr. Top panels represent model L CR TE and bottom panels represent

the model L CR. Panel a : αxx(z) and αyy(z), Panel b : αxy(z) and αyx(z)

7.3 Outline of the Mean Field Model

To understand the underlying dynamo mechanism involved in the amplification of Em,

we use 1D mean field dynamo model, with the horizontal averages defined on x − y

planes. This model is similar to the one used in Chapter 5 (Equation 5.20), the difference

however arises from the emergent asymmetric nature of α tensor (|αxy| 6= |αyx|), and non-

negligible off-diagonal η tensor. But we have still neglected the microscopic diffusivity
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(a)

(b)

Figure 7.2: Vertical profiles of the η coefficients for both cosmic ray models averaged
for 100 to 200 Myr. Bottom panels represent model L CR TE and top panels represent

the model L CR. Panel a ηxx(z) and ηyy(z) Panel b ηxy(z) and ηyx(z)

η̃, since it is more than an order of magnitude smaller than the turbulent diffusivity. We

finally get the following set of equations,

∂B̄x
∂t

=
∂

∂z

(
− (ūz + αyx) B̄x − αyy B̄y + ηyy

∂B̄x
∂z
− ηyx

∂B̄y
∂z

)
,

∂B̄y
∂t

=
∂

∂z

(
− (ūz − αxy) B̄y + αxx B̄x + ηxx

∂B̄y
∂z
− ηxy

∂B̄x
∂z

)
+ qΩB̄x . (7.1)
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Table 7.1: Dynamo coefficients for both cosmic ray models, at z = 1 kpc, Averaged
over 200 Myr.

αxx αyy αxy αyx
[ km s−1] [ km s−1] [ km s−1] [ km s−1]

L_CR 0.3± [0.08] 0.5± [0.15] 0.5± [0.20] 0.0± [0.10]
L_CR_TE 0.6± [0.15] 0.8± [0.20] 1.0± [0.30] 0.5± [0.20]

ηxx ηyy ηxy ηyx
[ kpc km s−1] [ kpc km s−1] [ kpc km s−1] [ kpc km s−1]

L_CR 0.2± [0.03] 0.2± [0.04] 0.06± [0.01] 0.04± [0.01]
L_CR_TE 0.3± [0.03] 0.4± [0.08] 0.10± [0.03] 0.07± [0.02]

Notes: Bracketed numbers indicate the maximum errors.

Similar to the thermal SN models, we evolve Equation 7.1, using the finite difference

approach on a staggered grid of resolution n = 512. Initial conditions for B̄x(z) and

B̄y(z) are chosen from the DNS magnetic field data; averaged over 70 to 90 Myr ( over

the x− y plane). This choice is justified since the growth of magnetic energy starts only

after ∼ 80 Myr. Steady vertical profiles of the dynamo coefficients are also obtained

by averaging DNS data over 70 to 90 Myr. To reduce the high wave number noise in

their z profiles, we α(z) (and η(z)) with 15 odd (and even) Legendre polynomials. z

profiles of the outward wind, ūz(z) are also taken from DNS results and fitted with 15

odd Legendre polynomials.

Since the maximum values of β achieved in both cosmic ray models (until 600 Myr) are

only ∼ 0.01, we ware not able to derive the magnetic quenching relations for the dynamo

coefficients. In the 1D models however, we can presume the validity of Equation 5.18

and Equation 5.18; even for the CR models, allowing us to predict the field strengths

corresponding to the dynamical phases of equivalent models.

7.4 Comparison of Mean Field and Direct Simulations

To avoid the complication; we refer 1D equivalents of DNS cosmic ray models also by the

names L_CR and L_CR_TE. Comparison between these two is discussed in this section.

Apart from initial mixing phase of approximately 80 Myr, we ware able to reproduce

entire evolution curve of the mean field magnetic energy using 1D dynamo models,

and the results match remarkably. This fact is well represented in Figure 7.3, where
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Figure 7.3: Evolution of the relative strength of mean magnetic fields (β2) calculated
from DNS models (solid lines) and from 1D models (dashed lines) for both cosmic ray
models. Red lines indicate the evolution of β2 in model L CR whereas green lines
indicate the same for model L CR TE. Dotted horizontal lines at β2 = 1 and 100,
signify the equipartition energy for corresponding models. β2 in L CR TE is multiplied

by 100.

solid lines show time evolution of the mean field magnetic energy (normalized with the

kinetic energy) in DNS cosmic ray models, and dashed lines represent the same for

equivalent 1D models. To avoid the clutter we have multiplied the energy in model

L_CR_TE (green lines) by 100; the dashed horizontal lines at log[β2] = 0 and 2 therefore

represent the equipartition in corresponding model. Initial drop of the magnetic energy

seen in DNS models corresponds to the time it takes for vertical profiles of cosmic

ray energy and outward wind to become roughly stationary in time. So; as far as we

are concerned about the stationary growth of magnetic energy, this initial phase can

be omitted (with a simple dynamo perspective). For the mean field models therefore,

we have used the α and η profiles averaged over the linear part of Em, consequently

initial drop of magnetic energy is absent in 1D models. We also see a relatively fast

growth rates of mean magnetic energy, compared to the thermal SN models, which can

be attributed to the turbulent diffusion time (td) and associated parameters as follows.

Firstly the amplitudes of dynamo coefficients for CR models are smaller than their

expected values from SN scaling laws. The outward wind profiles, on the other hand,

are stronger than their expected amplitudes. As a result, the transport term in cosmic

ray models is non-zero, already in the kinematic phase. Characteristic vertical length

scale, H, over which the off-diagonal α terms cancels the outward wind, is only about
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∼ 0.30 kpc, this is significantly smaller than the analogous length scale in purely thermal

SN models (∼ 1 kpc see Section 5.6.2). This length scale signifies the domain over

which αΩ dynamo approximation is valid, as described in Section 5.6.1. The turbulent

diffusion time (H2/η) for both cosmic ray models, however is still relatively longer than

the thermal SN models and the unquenched values of dynamo number D0 are higher

leading to the the faster growth of mean field in both cosmic ray models. We support

this hypothesis with the analytical 0D model discussed in Section 5.6.2. By substituting

the appropriate values of H and dynamo coefficients in Equation 5.27 we recover the

faster initial growth in CR models Figure 7.4 (Panel left). Whereas, with reducing the

turbulent diffusion time (for H ∼ 1 kpc) we find that the growth time again falls down

to 100 Myr, same as thermal SN models Q, H and F. We further crosscheck this, by

replacing u(z) profiles in 1D models by approximated linear profiles that match αxy(z)

in the inner 1 kpc scale (equivalent to thermal SN models) and recover the slow growth

rates of ∼ 100 Myr as expected (Figure 7.4, Panel right.)

1D dynamo model also explains entire time evolution of the vertical profiles of mean

field. For example in Figure 7.10 and Figure 7.5 we compare the space-time contours

B̄x and B̄y calculated via DNS and 1D models. The qualitative structures of B̄x and

B̄y, as shown in the aforementioned figures, are well reproduced in 1D model, along

with the initial split of symmetric S mode to the double peaked structure, at around

200 Myr. To have a more quantitative comparison we plot the final vertical profiles of B̄x

and B̄y, using the DNS models and 1D models, and compare the corresponding scale-

heights and amplitudes, which are remarkably similar in both approaches, as shown in

Figure 7.6 as well as Figure 7.9. Reason for the double peaked symmetric structure

of the mean field (unlike the thermal SN models), as a first approximation, can be

assigned to the following qualitative differences; in the profiles of dynamo coefficients of

CR and thermal SN models: (i) Unequal absolute values of the off-diagonal elements of

α tensors, leading to the anisotropic non-advective transport of magnetic flux. (ii) non-

negligibly contributing off-diagonal terms of η tensor, indicating the transverse diffusive

transport of magnetic flux 1. (iii) Non-linear (approximately quadratic) outer profiles of

uz(z), leading to the enhanced advection in the outer halo. To figure out which one (or a

combination) of these three factors lead to the double peaked geometry of mean fields, we

run 1D dynamo model in the different regimes of parameter space. This exercise reviles

1in the special case of isotropic and homogeneous turbulence in high conductivity limit, coefficients
ηxy and ηyx simply reduce to u′x u′y τc/3 [Choudhuri, 1998]
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(a)

(b)

Figure 7.4: Panel a: Time evolution of the relative strength of total magnetic energy
(β2), calculated analytically. Black solid lines indicate the model with the vertical scale-
length H = 0.25 kpc, whereas the dashed orange lines correspond to the scale-length
of H = 1 kpc. Exponential growth times in these models are ∼ 70 Myr and 100 Myr
respectively. Panel b : Same as Panel a but calculated with one-D dynamo model, by

varying the vertical wind profiles.
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(a) (b)

Figure 7.5: Space-time diagrams of B̄y calculated from DNS (Panel down) and via
1D simulations (Panel up) for, (a) model L CR (b) model L CR TE color code here
indicates the strength of mean azimuthal magnetic field normalized with the square-root

of magnetic energy.

that the S modes of B̄y appear only when the outward wind is linear in z (matching

with its DNS profile in the inner part; as shown in Figure 7.8) and off-diagonal terms of

η are zero. Asymmetric contribution of the diamagnetic term (αxy/yx) has a very little

impact on final geometry of the mean field and even on its growth rate. This implies

that the double peaked structure is a combined outcome of excessive wind in outer halo

and anisotropic diffusive transport of magnetic flux. Parameters space analysis of 1D

model is briefly summarized in Table 7.2 (in the last two columns we have listed the

final geometry of the mean field) and the S modes of B̄y corresponding to case 3 and 4

in aforementioned table are shown in Figure 7.7.

(a) (b)

Figure 7.6: Vertical profiles of B̄y calculated for model L CR (Panel up) and model
L CR TE (Panel down) calculated via (a) Direct numerical simulations (b) 1D dynamo

simulations.

If the same quenching laws (Equation 5.18 and Equation 5.19) for dynamo coefficients

and wind are to be assumed for the CR models, growth rates of Em in both CR models

drop significantly after∼ 1 Gyr, as shown in Figure 7.3. A reason for this, is a strong non-

advective transport term (wind - pumping) in the dynamical phases of both CR models,
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Table 7.2: Final geometries of mean field in 1D dynamo model, for the different sets
of dynamo coefficients.

αxy ηxy By(z) By(z)
and and at at
αyx ηyx 600 Myr 3 Gyr

uz(z) = Linear

Case 1 αxy(z) DNS ηxy(z) DNS double peaked double peaked
αyx(z) = −αxy(z) ηyx(z) DNS same amplitudes different amplitudes

Case 2 αxy(z) DNS ηxy(z) DNS double peaked double peaked
αyx(z) DNS ηyx(z) DNS different amplitudes different amplitudes

Case 3 αxy(z) DNS ηxy(z) = 0 single peaked single peaked
αyx(z) = −αxy(z) ηyx(z) = 0 S mode S mode

Case 4 αxy(z) DNS ηxy(z) = 0 single peaked single peaked
αyx(z) DNS ηyx(z) = 0 S mode S mode

uz(z) = DNS

Case 5 αxy(z) DNS ηxy(z) DNS double peaked double peaked
αyx(z) = −αxy(z) ηyx(z) DNS same amplitudes different amplitudes

Case 6 αxy(z) DNS ηxy(z) DNS double peaked double peaked
αyx(z) DNS ηyx(z) DNS different amplitudes different amplitudes

Case 7 αxy(z) DNS ηxy(z) = 0 double peaked double peaked
αyx(z) = −αxy(z) ηyx(z) = 0 same amplitudes same amplitudes

Case 8 αxy(z) DNS ηxy(z) = 0 double peaked double peaked
αyx(z) DNS ηyx(z) = 0 different amplitudes same amplitudes

Notes: Final structures of mean field at 0.6 and 3 Gyr are described in last two columns, in the different
regions of dynamo parameter space. αxx/yy(z) (and ηxx/yy(z)) profiles are chosen from DNS data by
fitting it with odd (and even) Legendre polynomials. In first 4 cases, approximated linear profiles of
uz(z) are used, these profiles are shown in Figure 7.8. Whereas for the last 4 cases uz(z) are directly
taken from DNS. Final ’S’ modes appear only in case 3 and case 4.
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(a)

Figure 7.7: Vertical profiles of B̄y calculated for 1D model L CR (Panel left) and
1D model L CR TE (Panel right) at 600 Myr. Inset represents the same at 1 Gyr for
the corresponding model. uz(z) here is replaced with the approximated linear profiles
shown in Figure 7.8 and ηxy/yx(z) are neglected consistent with case 3 and 4 in Table 7.2

Figure 7.8: Black-solid lines: Vertical profiles of uz from DNS models. Orange-
dashed lines: Approximated linear profiles of wind for the parameter space analysis of

1D model. Panel left model L CR. Panel right model L CR TE.

which however is not sufficient to completely saturate the dynamo. If we furthermore

neglect the off-diagonal α terms altogether, mean field saturates after ∼ 1 Gyr. However,

to deeply investigate this scenario we need a sufficiently longer DNS runs (at least up

to 2 Gyr), for various SN rates, and with a larger vertical extent.
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(a) (b)

Figure 7.9: Vertical profiles of B̄x calculated for model L CR (Panel up) and model
L CR TE (Panel down) calculated via (a) Direct numerical simulations (b) 1D dynamo

simulations.

(a) (b)

Figure 7.10: Space-time diagrams of B̄x calculated from DNS (Panel down) and via
1D simulations (Panel up) for, (a) model L CR (b) model L CR TE color code here
indicates the strength of mean azimuthal magnetic field normalized with the square-root

of magnetic energy.



Chapter 8

Summary and Outlook

In this thesis, we have presented new results of the simulations of stratified galactic

ISM along with differential shear and turbulence driven by SN explosions that expel

thermal energy and/or cosmic ray energy into ISM. With the simulations including

purely thermal SN explosions, we have been able to illustrate the amplification and

saturation process of magnetic energy in the context of mean field dynamo mechanism,

for varying SN explosion rates. Firstly, we were able to demonstrate that magnetic fields

can be amplified up to the equipartition strength with respect to turbulent kinetic energy

(with a fast exponential growth time of 100 Myr) within ∼ 1 Gyr and may not completely

saturate in the dynamical phase. For instance; in models with lower SN rates (model Q

and H with 25% and 50% of SN rates respectively; compared to the average SN rate of

the Milky Way) magnetic energy continues to amplify, albeit with a declined growth rate

(growth time exceeds ∼ 1 Gyr), even in the presence of dynamically significant field. For

model F with a parameter set consistent with the Milky Way, it appears that magnetic

energy amplifies only up to one fifth of the equipartition value and saturates thereafter.

Similarly, starting from initial ∼ 1 nG values, the regular component of magnetic field

evolved to symmetric ‘S’ mode with a few µG peak strengths and exponential scale-

heights of ∼ 1 kpc in outer halo, which are notably consistent with the Synchrotron

observations [e.g. Krause, 2012, 2014]. However, the values of pitch angles of magnetic

field seen in models Q and H (∼ 100) are smaller than the observed values. In model F,

on the other hand (∼ 180), it is fairly consistent with observations [e.g. Fletcher et al.,

2011; Van Eck et al., 2015], mainly in the outer halo region. Unlike previous simulations,

our main focus here has been to trace down the origin of different dynamical phase
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behaviors of magnetic fields seen at different SN rates and to study its implications on

the properties of ISM for different SN rates. We have therefore analyzed the turbulence

properties as well as the distribution of ISM in various thermal phases and demonstrated

that, these are generally consistent with observations (e.g. observations discussed in

Sellwood & Balbus [1999] and Jenkins & Tripp [2011]). However, it must be mentioned

that the term ‘ISM phases’ used here is somewhat more restricted than in the sense

that it is in the context of observations, primarily because we have distinguished these

phases solely on the basis of temperature and not on explicit chemical composition.

Detailed understanding of the morphological features of ISM therefore warrants higher

resolution simulations-preferably along with the implementation of chemical networks.

Nonetheless, we found these to be in approximate agreement with a few previous high

resolution simulations, which are specifically focused on the analysis of ISM properties

[e.g. Breitschwerdt et al., 2012; Hill et al., 2012]. This study furthermore revealed that

dynamically significant magnetic field backreacts on the ISM and changes its distribution

in various thermal phases. It also affects the properties of ISM turbulence such as

turbulent velocity, correlation length scales and volume filling fraction of the dense cold

ISM phase. As one of our main results, we have been able to demonstrate that in

the dynamical phase dynamo coefficients in all models quench an the inverse function

of the strength of magnetic energy relative to the turbulent kinetic energy. We have

explicitly shown, using the SOCA estimates, that suppression of dynamo coefficients

α is a direct consequence of backreaction of the magnetic helicity (Equation 5.15) to

the kinetic helicity. These coefficients may be indirectly estimated by combining the

observable galactic parameters (turbulent velocity, turbulent eddy scale, vertical length

scales, etc.). However, it must be noted that this combination may lead to different

estimates for the different mechanisms of dynamo saturation [e.g. Beck, 2015; Vishniac,

2005; Vishniac & Cho, 2001].

Notably, however, using a simple αΩ dynamo model along with algebraically quenching

dynamo coefficients and vertical wind (obtained from DNS data), we were also able to

reproduce the entire time evolution of vertical profiles of mean magnetic field components

in the kinematic and the dynamical phase. It promptly turned out that the sustained

growth of magnetic energy in the dynamical phases of low SN rate models Q and H

is consistent with the prolonged turbulent diffusion time scales for quenched dynamo

coefficients, which are insufficient to stop the growth of magnetic energy. Whereas,
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the dynamical saturation seen in model F is a result of outward advective transport of

magnetic flux due to wind. We moreover pointed out that observationally inconsistent

small values of pitch angles seen in the dynamical phases of models Q and H can be

attributed to the increasing contribution (due to quenching of dynamo coefficients) of

azimuthal winding-up in the amplification of By. However, this problem is resolved in

model F, in which the saturation is mainly caused by the excessive outward wind, without

having to suppress the dynamo coefficients to a significant degree (and pitch angle is ∼

18o). This result provides another approach to rectify a general discrepancy seen between

the observed magnitudes of pitch angles and the ones predicted by mean field models.

Although it must be mentioned that it is nontrivial to support it with observational

evidence in the form of correlation between pitch angles and the outflow velocities. The

systematic parameter space analysis of nonlinear dynamo presented by Chamandy &

Taylor [2015] complements our result. However, it should be pointed out that they have

excluded the quenching of turbulent diffusivity. We further note that this quenching

mechanism should be supplemented with constraints arising from the conservation of

magnetic helicity [e.g. Sur et al., 2007], which might even substantially contribute in

higher magnetic Reynolds number situations [Del Sordo et al., 2013]. This scenario

therefore needs to be further tested while including the high density ISM component in

numerical simulations, which might be crucial on the smaller length scales. Nevertheless,

the remarkable similarity between DNS results and the results of 1D dynamo model

justifies this model as a viable subgrid model in the global simulations of spiral galaxies.

Such ‘hybrid’ dynamo simulations [e.g. Gressel et al., 2013] could be useful in predicting

the observational consequences of large scale galactic magnetic fields.

In order to explore a further unknown aspect, namely the influence of cosmic rays on the

growth of magnetic field, we have separately incorporated the hydrodynamical cosmic

rays model along with the magnetic field aligned diffusion. SN explosions are simulated

either as localized injections of thermal energy or cosmic rays energy (or both). To verify

its effect on the turbulent transport properties, we have compared the outcomes of two

models, one including SN explosions containing thermal energy and another with SN

explosions including thermal + cosmic rays energy. However, we have not been able to

run the simulations up to the dynamical phase yet, which we plan to do in the future. In

both of these cases, magnetic energy grows exponentially with e-folding time of ∼ 70 Myr

[consistent with the simulations by Hanasz et al., 2004, 2009], while the corresponding
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mean magnetic field profiles grow to a double peaked symmetric mode. The distinctive

feature of cosmic ray models, however, is the enhanced outward wind in the outer halo

parts (above ∼ 1 kpc), which is excessive compared to its expected magnitude from the

SN rate dependencies obtained in purely thermal SN models (Q, H and F). This may be

due to additional CR pressure. Moreover, for model including thermal and cosmic rays

energy, the excess thermal part seemingly affects only in the inner part (|z| < 1 kpc).

To analyze the influence of anisotropic cosmic ray diffusion on the turbulent transport

processes, we calculate corresponding dynamo coefficients in these direct simulations as

well. Noticeably, in cosmic ray models, off-diagonal contribution of α term is nonnegli-

gible, as opposed to the purely thermal SN models. Another distinction in cosmic ray

and thermal SN models is the nonuniform contribution of the components of turbulent

intensity gradient leading to the anisotropic off-diagonal dynamo coefficient α (which

is more pronounced in purely cosmic rays model). Using these values of dynamo coef-

ficients in standard αΩ model, we were able to reproduce the evolution of Bx(z) and

By(z) profiles with a remarkable accuracy. The distinctive double peaked shape of mean

field profiles turns out to be a combined result of nonnegligible off-diagonal turbulent

diffusivity and enhanced wind profiles in the outer halo. We remark that in a more

realistic scenario, one should incorporate the energy dependence of cosmic rays diffusion

coefficients [e.g. Girichidis et al., 2014], preferably with a bigger box size, to include disc-

halo interaction. Observational consequences of this scenario (such as cosmic ray energy

spectrum, anisotropies in the high energy cosmic rays distribution, cosmic ray buoyancy,

etc. e.g. Blasi & Amato [2012]; Ptuskin [2012]; Strong et al. [2007]), however, can only

be inferred from the realistic global galactic simulations. Another unexplored aspect of

these simulations is the influence of cosmic rays on ISM properties and its distribution

in various thermal components, for which it is necessary to run these simulations up to

the dynamical phase and with high resolution.



Appendix A

Non-Fickian Flux Test

Diffusion tensor for the field aligned diffusion process is defined as,

Kij = K⊥δij +
(
K‖ −K⊥

)
B̂iB̂j , (A.1)

where B̂i and B̂j are unit vectors in the direction of i’th and j’th component of magnetic

field respectively. For the usual Fickian diffusion approach, gradient of a diffusive flux

involves a term (∇ ·Kij ∇ec). (∇ ·Kij), here represents the transport of CR energy

perpendicular to field lines (and has dimensions of velocity). As Equation A.1 indicates,

this transport term becomes infinite for the diverging gradients of a dyadic product B̂B̂.

To overcome this problem, we implement a non-Fickian approach, wherein the diffusion

flux is obtained via solving a telegraph equation (Equation 2.13), which converges to a

Fickian diffusive form for a low Strouhal number limit,

St =
(K‖T )

h
.

A problem of infinite propagation speed is circumvented here, by prescribing a finite

correlation time. This is demonstrated by solving a test problem described by Snodin

et al. [2006] as follows.
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We solve a system of equations Equation 2.1, along with Equation 2.10 (with a non-

fickian flux Equation 2.13), in a computational domain of x, y, z ∈ {−π : π}, subject to

the following initial conditions:

1. A prescribed magnetic field configuration, B = (sin(kx),−sin(ky), 0), with k = 1.

2. No initial velocity, u = 0, and no back-reaction of CR pressure on the flow (by

using γc = 1.0).

3. A constant value of ρ throughout the domain.

4. A Linear initial profile of ec, given by; ec = x+ π.

5. Non-Fickian correlation time, T = 0.1K−1
‖ k−2.

6. Ratio of parallel and perpendicular diffusion coefficients K‖/K⊥ ∼ 100.

We apply a constant gradient boundary condition for ec and Fci, in all directions. Since

there is no CR pressure back reacting on the flow, u, ρ, e and B remain constant; and

only ec evolves with a non-fickian diffusion flux Fc.

Used configuration of B has an x-point at (x, y) = (0, 0). Moreover an initial gradient of

ec is constant throughout the domain. This scenario under a normal diffusion approxi-

mation would lead to a diverging transport term (∇̇̂BB̂∇ec) at x-point. This problem

is tacitly avoided here via a consideration of the finite correlation time T . ec(z) thus

evolves to a symmetric profile within, time t = 4T = 40K−1
‖ k−2, as shown in a contour

plot Figure A.1
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Figure A.1: x − y contour of evolved ec, after t = 40K−1‖ k−2, in a background

magnetic field defined by B = (sin(kx),−sin(ky), 0). By prescribing a finite value for
a correlation time T , a Fickian singularity at (x, y) = (0, 0) is avoided, and for the
sufficiently small values of T the profile of ec approaches to the solution of diffusion
equation. Color code is normalized such that the color yellow indicates a minimum

value of ec and the red indicates maximum.



Appendix B

Implementation and Validation

Non-fickian CR flux (Equation 2.13) is defined on grid surfaces, as opposed to ec, which

is defined on the grid (as shown in Figure B.1, with a red dot for Fc and a blue one for

ec). Hence to calculate the ith component of a non-fickian flux, at a face centered point(
i− 1

2 , j, k
)
, is necessary to monotonically interpolate the components of ∇ec on that

point as follows.

(∇i ec)(i− 1
2
,j,k) =

ec (i,j,k) − ec (i−1,j,k)

∆x
, (B.1)

dl ec =

[(
ec (i,j+1,k) + ec (i−1,j+1,k)

)
−
(
ec (i,j,k) + ec (i−1,j,k)

)]
2 ∆y

,

dr ec =

[(
ec (i,j,k) + ec (i−1,j,k)

)
−
(
ec (i,j−1,k) + ec (i−1,j,k)

)]
2 ∆y

,

(∇j ec)(i− 1
2
,j,k) =

dl ec + dr ec
4

(1 + sign (dl ec dr ec)) , (B.2)
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Figure B.1: Staggered grid used in NIRVANA, ec is defined at a grid center (blue
dot), and Fc is defined on a face center (red dot)

du ec =

[(
ec (i,j,k+1) + ec (i−1,j,k+1)

)
−
(
ec (i,j,k) + ec (i−1,j,k)

)]
2 ∆y

,

dd ec =

[(
ec (i,j,k) + ec (i−1,j,k)

)
−
(
ec (i,j,k−1) + ec (i,j,k−1)

)]
2 ∆y

,

(∇k ec)(i− 1
2
,j,k) =

du ec + dd ec
4

(1 + sign (du ec dd ec)) , (B.3)

Magnetic field is also defined on the face centers, so the components of magnetic field

other than i, are averaged to get their values at
(
i− 1

2 , j, k
)

as;
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Bi
(i− 1

2
,j,k) = Bi

(i− 1
2
,j,k) , (B.4)

Bj
(i− 1

2
,j,k) =

Bj
(i,j+ 1

2
,k) + Bj

(i−1,j+ 1
2
,k) + Bj

(i,j− 1
2
,k) + Bj

(i−1,j− 1
2
,k)

4
, (B.5)

Bk
(i− 1

2
,j,k) =

Bk
(i,j,k+ 1

2) + Bk
(i−1,j,k+ 1

2) + Bk
(i,j,k− 1

2) + Bk
(i−1,j,k− 1

2)

4
. (B.6)

Absolute magnitude of magnetic field at point
(
i− 1

2 , j, k
)

is defined as;

mag =

√
Bi

(i− 1
2
,j,k)2

+ Bj
(i− 1

2
,j,k)2

+ Bk
(i− 1

2
,j,k)2

, (B.7)

and evolution of the ith component of flux Fc at point
(
i− 1

2 , j, k
)

is defined as;

Fc |i(i−
1
2
,j,k, t+1) = Fc |i(i−

1
2
,j,k, t)

− ∆t

T
K‖ (∇i ec)(i− 1

2
,j,k) −

∆t

T
Fc |i(i−

1
2
,j,k, t)

− ∆t

T
(
K‖ −K⊥

) Bi
(i− 1

2
,j,k) Bi

(i− 1
2
,j,k)

mag2
(∇i ec)(i− 1

2
,j,k)

− ∆t

T
(
K‖ −K⊥

) Bi
(i− 1

2
,j,k) Bj

(i− 1
2
,j,k)

mag2
(∇j ec)(i− 1

2
,j,k)

− ∆t

T
(
K‖ −K⊥

) Bi
(i− 1

2
,j,k) Bk

(i− 1
2
,j,k)

mag2
(∇k ec)(i− 1

2
,j,k) .(B.8)

This implementation is validated by analyzing behavior of a relative error in ec with

respect to grid size. For that, we solve Equation 2.10 and Equation 2.13 in a cubical

domain of x, y, z ∈ {−L : +L} (where, L = 0.8 kpc), with five different grid resolu-

tions (∆x = ∆y = ∆z = (25 pc, 16 pc 12.5 pc, 8.33 pc 6.25 pc)). Chosen values of the

remaining parameters are as follows;
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1. K‖ = 3.3× 10−3 kpc2 Myr−1, and K⊥ = 0.

2. Initial profile of ec is a 1D Gaussian (in the direction of z), and with a scale-length

of 0.1125L.

3. Constant initial profile of magnetic field in ‘z’ direction; B = (0, 0, 1)

4. Non-Fickian correlation time τ = 2× 10−4 L2K‖
−1.

We calculate the values of converged relative errors in ec, for each resolution, after time

t = 7 T , and find that they scale quadratically with respect to the grid size, as expected

(Figure B.2 (panel left)).

We furthermore compare the evolution of ec (for the grid resolution of 8.33 pc) with

a known analytical solution for the diffusion of a Gaussian function, and we find a

remarkable agreement between the both. In Figure B.2 (panel right) we have shown the

z profiles of ec (diamonds), over-plotted on the corresponding analytical solutions (solid

lines) at time t = 7 T (red color) and at t = 10T (blue color).

Figure B.2: panel left: Linear scaling of a square of the relative error in ec, with
respect to grid resolution (with a slope of 0.07 pc−1). panel right: z profiles of ec after
times t = 7 T (red color) and at t = 10T (blue color) over-plotted on the corresponding

analytical solutions (solid lines).



Appendix C

Additional Tables

Here we document the energy composition for all models in Table 3.1, within the inner

disc (|z| < 0.5 kpc) and in the outer halo (|z| > 0.5 kpc).

Table C.1: Energy composition for all ISM thermal components, in the thermal SN
models at the end of kinematic phase, averaged over a full box, and within the inner

disc.
Cold Cool Warm Transition Hot Total

model Q

Full Box
Em/Ekin 1.0 0.6 0.6 0.3 0.04 0.25
Em/Eth 2.0 0.2 2.5 0.3 0.01 0.11

Inner Disc
Em/Ekin 1.0 1.2 2.3 0.6 0.03 1.6
Em/Eth 2.0 0.8 1.0 0.6 0.01 0.8

model H

Full Box
Em/Ekin 0.5 0.4 0.3 0.06 0.06 0.14
Em/Eth 1.8 0.2 0.2 0.06 0.002 0.09

Inner Disc

Em/Ekin 0.5 1.0 1.2 0.5 0.03 0.8
Em/Eth 1.8 0.6 0.9 0.5 0.02 0.6

model F

Full Box
Em/Ekin 0.1 0.1 0.15 0.04 0.006 0.1
Em/Eth 0.7 0.02 0.02 0.01 0.001 0.05

Inner Disc
Em/Ekin 0.1 0.5 0.7 0.35 0.04 0.2
Em/Eth 0.7 0.7 0.8 0.3 0.02 0.2
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Table C.2: Energy composition for all ISM components, at time t, for the models
with and without net vertical flux
Cold Cool Warm Transition Hot

model QS [t = 1.1 Gyr]

Full Box
Em/Ekin 0.2 0.25 1.5 1.6 0.25
Em/Eth 0.3 0.07 0.6 1.2 0.06

Inner Disc
Em/Ekin 0.2 0.22 1.2 1.5 0.1
Em/Eth 0.3 0.06 0.5 1.1 0.04

model QSZ [t = 1.1 Gyr]

Full Box
Em/Ekin 0.8 0.3 0.5 0.4 0.06
Em/Eth 1.5 0.1 0.2 0.33 0.02

Inner Disc
Em/Ekin 0.8 0.3 0.4 0.25 0.03
Em/Eth 1.5 0.1 0.15 0.25 0.01

model QZ [t = 2.1 Gyr]

Full Box
Em/Ekin 1.5 0.29 0.31 0.13 0.03
Em/Eth 1.6 0.1 0.13 0.12 0.007

Inner Disc
Em/Ekin 1.5 0.1 0.2 0.05 0.002
Em/Eth 1.6 0.05 0.1 0.08 0.001

model AR [t = 1.5 Gyr]

Full Box
Em/Ekin 1.1 0.8 0.7 0.2 0.04
Em/Eth 2 0.25 0.25 0.17 0.06

Inner Disc
Em/Ekin 1.1 0.5 0.4 0.11 0.007
Em/Eth 2 0.15 0.17 0.12 0.05



Appendix D

Current Helicity

Here we include the space-time contour plots of αm and αk along with αyy calculated

from DNS, for models H and F.

(a)

Figure D.1: same as Figure 5.2 but for model H.
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(a)

Figure D.2: same as Figure 5.2 but for model F.
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physical Journal, 746, 79

Balbus, S. A. & Hawley, J. F. 1991, apj, 376, 214

Balsara, D., Crutcher, R., & Pouquet, A. 2001, The Astrophysical Journal, 557, 451

Beck, R. 2001, in The Astrophysics of Galactic Cosmic Rays (Springer), 243–260

Beck, R. 2007, Astronomy & Astrophysics, 470, 539

Beck, R. 2009, Astrophysics and Space Sciences Transactions, 5, 43

Beck, R. 2015, The Astronomy and Astrophysics Review, 24, 1

Beck, R., Brandenburg, A., Moss, D., Shukurov, A., & Sokoloff, D. 1996, Annual Review

of Astronomy and Astrophysics, 34, 155

Beck, R. & Wielebinski, R. 2013, in Planets, Stars and Stellar Systems (Springer), 641–

723

Bell, A. 1978, Monthly Notices of the Royal Astronomical Society, 182, 443

Bell, A. 2004, Monthly Notices of the Royal Astronomical Society, 353, 550

Bendre, A., Gressel, O., & Elstner, D. 2015, Astronomische Nachrichten, 336, 991

Blandford, R. D. & Ostriker, J. P. 1978, The Astrophysical Journal, 221, L29

Blasi, P. & Amato, E. 2012, Journal of Cosmology and Astroparticle Physics, 2012, 010

123



Boulares, A. & Cox, D. P. 1990, The Astrophysical Journal, 365, 544

Brandenburg, A. & Sandin, C. 2004, Astronomy & Astrophysics, 427, 13

Brandenburg, A. & Subramanian, K. 2005, Physics Reports, 417, 1

Breitschwerdt, D., de Avillez, M., Feige, J., & Dettbarn, C. 2012, Astronomische

Nachrichten, 333, 486

Castellina, A. & Donato, F. 2013, Planets, Stars and Stellar Systems: Volume 5: Galactic

Structure and Stellar Populations, 725

Chamandy, L. & Taylor, A. R. 2015, The Astrophysical Journal, 808, 28

Choudhuri, A. R. 1998, The physics of fluids and plasmas: an introduction for astro-

physicists (Cambridge University Press)
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Gressel, O., Elstner, D., Ziegler, U., & Rüdiger, G. 2008, Astronomy & Astrophysics,

486, L35

Gressel, O. & Ziegler, U. 2007, Computer physics communications, 176, 652

Hale, G. E. 1908, apj, 28, 315

Hanasz, M., Kowal, G., Otmianowska-Mazur, K., & Lesch, H. 2004, The Astrophysical

Journal Letters, 605, L33

Hanasz, M. & Lesch, H. 2000, The Astrophysical Journal, 543, 235
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