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Abstract

More than a billion people rely onwater from rivers sourced inHighMountainAsia (HMA), a significant
portion of which is derived from snow and glaciermelt. Rural communities are heavily dependent on the
consistency of runoff, and are highly vulnerable to shifts in their local environment brought on by climate
change. Despite this dependence, the impacts of climate change in HMA remain poorly constrained due
to poor process understanding, complex terrain, and insufficiently dense in-situ measurements.

HMA’s glaciers containmore frozenwater than any region outside of the poles. Their extensive retreat
is a highly visible and much studied marker of regional and global climate change. However, in many
catchments, snow and snowmelt represent a much larger fraction of the yearly water budget than glacial
meltwaters. Despite their importance, climate-related changes in HMA’s snow resources have not been
well studied.

Changes in the volume and distribution of snowpack have complex and extensive impacts on both
local and global climates. Eurasian snow cover has been shown to impact the strength and direction of
the Indian SummerMonsoon – which is responsible for much of the precipitation over the Indian Sub-
continent – by modulating earth-surface heating. Shifts in the timing of snowmelt have been shown to
limit the productivity of major rangelands, reduce streamflow, modify sediment transport, and impact
the spread of vector-borne diseases. However, a large-scale regional study of climate impacts on snow
resources had yet to be undertaken.

Passive Microwave (PM) remote sensing is a well-established empirical method of studying snow re-
sources over large areas. Since 1987, there have been consistent daily global PMmeasurements which can
be used to derive an estimate of snow depth, and hence snow-water equivalent (SWE) – the amount of
water stored in snowpack. The SWE estimation algorithms were originally developed for flat and even
terrain – such as the Russian and Canadian Arctic – and have rarely been used in complex terrain such as
HMA.

This dissertation first examines factors present in HMA that could impact the reliability of SWE esti-
mates. Forest cover, absolute snow depth, long-term average wind speeds, and hillslope angle were found
to be the strongest controls on SWEmeasurement reliability. While forest density and snowdepth are fac-
tors accounted for in modern SWE retrieval algorithms, wind speed and hillslope angle are not. Despite
uncertainty in absolute SWEmeasurements and differences in the magnitude of SWE retrievals between
sensors, single-instrument SWE time series were found to be internally consistent and suitable for trend
analysis.

Building on this finding, this dissertation tracks changes in SWE across HMA using a statistical de-
composition technique. An aggregate decrease in SWEwas found (10.6 mm/yr), despite large spatial and
seasonal heterogeneities. Winter SWE increased in almost half of HMA, despite general negative trends
throughout the rest of the year. The elevation distribution of these negative trends indicates that while
changes in SWE have likely impacted glaciers in the region, climate change impacts on these two pieces of
the cryosphere are somewhat distinct.

Following the discussion of relative changes in SWE, this dissertation explores changes in the timing of
the snowmelt season in HMA using a newly developed algorithm. The algorithm is shown to accurately
track the onset and end of the snowmelt season (70% within 5 days of a control dataset, 89% within 10).
Using a 29-year time series, changes in the onset, end, and duration of snowmelt are examined. While
nearly the entirety ofHMAhas experienced an earlier end to the snowmelt season, large regions ofHMA
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have seen a later start to the snowmelt season. Snowmelt periods have also decreased in almost all of
HMA, indicating that the snowmelt season is generally shortening and ending earlier across HMA.

By examining shifts in both the spatio-temporal distribution of SWE and the timing of the snowmelt

season across HMA, we provide a detailed accounting of changes in HMA’s snow resources. The overall

trend in HMA is towards less SWE storage and a shorter snowmelt season. However, long-term and

regional trends conceal distinct seasonal, temporal, and spatial heterogeneity, indicating that changes in

snow resources are strongly controlled by local climate and topography, and that inter-annual variability

plays a significant role in HMA’s snow regime.
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Zusammenfassung

Mehr als eineMilliardeMenschen ist vonWasser aus Flüssen, welche imHochgebirge Asiens (HA) ab-
hängig. Diese werden, sich im Wesentlichen durch Schmelzwasser von Schnee und Gletschern gespeist.
Gemeinden auf dem Land sind im hohem Maße auf die Beständigkeit des Wasserabflusses angewiesen,
und folglich stark betroffen für durch Klimawandel hervorgerufene Veränderungen der Umwelt auf re-
gionaler Ebene. Trotz dessen ist aufgrund mangelndem Prozessverständnisses, Terrainkomplexität und
flächenhaft beschränkten In-situ-Messungen das Verständnis über den Einfluss des Klimawandels auf das
HA begrenzt.

Die Gletscher des HA weisen mehr gefrorenes Wasser auf als alle anderen Regionen außerhalb des
Nord- und Südpols. Der extensive Gletscherrückzug ist ein deutlich sichtbarer und weitgehend erforsch-
ter Marker für den Klimawandel auf regionaler und globaler Ebene. In vielen Einzugsgebieten machen
jedoch Schnee und Schneeschmelzen einen sehr viel größeren Anteil des jährlichenWasserbudgets aus als
Gletscherschmelzwasser. Dennoch sind die klimaabhängigen Veränderungen auf Schneeressourcen im
HA nicht ausreichend untersucht.

Veränderungen des Volumens und der Verteilung der Schneemasse hat komplexe und weitreichende
Auswirkungen sowohl auf das regionale als auch auf das globale Klima. Es ist bekannt dass die eurasische
von Schnee bedeckte Fläche die Erdoberflächenerwärmung verändert und somit einen Einfluss auf die
Intensität und Ausrichtung des indischen Sommermonsuns hat, welcher wiederum die Hauptquelle für
die Niederschlagswässer über dem indischen Subkontinent darstellt. Zeitliche Verschiebung der Schnee-
schmelze schränkt die Produktivität vonWeidenländern ein, verringert dieAbflussmengen, verändert den
Sedimenttransport und beeinflusst die Ausbreitung von Vektorübertragenden Krankheiten. Trotz allem
wurden über Klimafolgen auf Schneeressourcen noch keine weiträumigen regionalen Studien durchge-
führt.

Passive Mikrowellenradiometer (PM) basierte Fernerkundung ist eine etablierte empirische Methode
zurUntersuchungvonSchneeressourcen inweit ausgedehntenGebieten. Seit 1987wurden täglich konsis-
tente PMMessungen auf globaler Ebene durchgeführt, die zur Abschätzung der Schneehöhe verwendet
werden können, und folglich denAnteil desWassers in der Schneemasse wiederspiegeln – das Schneewas-
ser Äquivalent (SWE). Algorithmen zur SWE Bestimmung wurden ursprünglich für flache und ebene
Terrains wie die russische und kanadische Arktis entwickelt, und somit nur selten für komplexe Terrains
wie das HA verwendet.

In dieser Studie werden Faktoren imHAuntersucht, welche die Zuverlässigkeit des SWEWerte beein-
flussen könnten. Bisher wurde angenommen, dass Waldbedeckung, absolute Schneehöhe, auf Langzeit
betrachtete Durchschnittswindgeschwindigkeiten undHangneigung die Hauptfaktoren darstellen, wel-
che die SWE Messungen beeinflussen. In modernen Algorithmen zur SWE Bestimmung werde jedoch
nur dieDichte derWaldbedeckung unddie Schneehöhe als beeinflussende Faktoren eingesetzt. TrotzUn-
sicherheiten in absoluten SWE Messungen und sensorabhängigen Unterschieden in der Magnitude der
Datenaufnahme, erwiesen sich SWEZeitreihen der jeweilig einzelnenMessinstrumente als intern konsis-
tent und adäquat für Trendanalysen.

Aufbauend auf diesen Ergebnissen werden in dieser Studie mit Hilfe von statistischen Dekomposi-
tionsverfahren die lokalen Veränderungen des SWE über dem gesamten HA untersucht. Trotz großer
räumlicher und saisonaler Heterogenität, wurde eine Gesamtverringerung des SWE (10,6 mm/yr) fest-
gestellt. Im Winter jedoch hat das SWE in etwa 50% des HAs trotz der negativen Trends im restlichen
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Verlauf des Jahres zugenommen. Die Höhenverteilung der negativen Trends deutet darauf hin, dass Ver-
änderungen im SWE sich nachweisbar auf die Gletscher in der Region auswirken. Die Auswirkung des
Klimawandels auf die beiden Teile der Kryosphere ist jedoch jeweils etwas unterschiedlich.

Wie aus der Diskussion über die relativen Veränderungen im SWE hervorgeht, wird in dieser Studie
mithilfe eines neuentwickelten Algorithmus der Veränderungen des zeitlichen Einsetzens der Schnee-
schmelzperiode imHAuntersucht.DerAlgorithmus zeigt eine hoheGenauigkeit inBezug auf das Einset-
zen und das Beenden der Schneeschmelze (70% innerhalb eines 5-tägigen Kontrolldatensatzes und 89%
innerhalb eines 10-tägigen). UmVeränderungen im Beginn, Ende und Dauer der Schneeschmelze zu un-
tersuchen wurde eine Zeitreihe, welche sich über 29 Jahre erstreckt, benutzt. Während im nahezu gesam-
ten Gebiet des HA das Ende Schneeschmelzsaison verfrüht einsetzt, so ist in der Hälfte des Gebietes der
Beginn dieser nach hinten verschoben.Die Schneeschmelzperioden haben im so gutwie gesamtenGebiet
des HA abgenommen, was darauf hindeutet dass sich diese über dem gesamtenHA generell verkürzt ha-
ben und frühzeitig beendet werden.

Durch die Untersuchung der räumlich-zeitlichen Verteilung des Schneevolumens und der Schnee-
schmelzperioden im gesamten HA konnten wir eine lückenlose Bilanz der Veränderungen der Schnee-
ressourcen imHA erstellen. Der allgemeine Trend zeigt eine geringere Speicherung des SWE und kürzere
Schneeschmelzperioden imgesamtenHA.Langfristige und regionaleTrends überdecken jedoch verschie-
dene saisonale, temporäre und räumliche Heterogenität, was wiederum zeigt dass Veränderungen der
Schneebedeckung stark von lokalem Klima und der Topographie abhängen, und dass jährliche Schwan-
kungen zu einem erheblichen Anteil zum Schneeregime des HA beitragen.
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Chapter 1

Introduction andMotivation

Motivation
HighMountain Asia (HMA) provides food, water, and livelihoods for more than a billion people across

a dozen countries. Both small and large communities are often highly dependent on the consistency of

their local and regional climates; many lack the resources to respond to changes in the environment –

especially to changes in their water resources.

Recent work has noted substantial changes in HMA’s climate system, including increased tempera-

tures (Vaughan et al., 2013), increased storm intensity (Singh et al., 2014; Yao et al., 2012; Bookhagen and

Burbank, 2010; Malik et al., 2016; Fu, 2003; Palazzi et al., 2013), changes in the Indian Summer Mon-

soon (ISM) (Gautam et al., 2009; Menon et al., 2013; Kitoh et al., 2013), intensification of the Winter

Westerly Disturbances (WWD) (Cannon et al., 2014, 2015), and substantial changes in glaciers through-

out the region (Bolch et al., 2012; Kääb et al., 2012, 2015; Gardner et al., 2013; Kapnick et al., 2014; Yao

et al., 2012; Scherler et al., 2011; Gardelle et al., 2012; Frey et al., 2014; Spiess et al., 2016). Many of these

changes remain poorly understood due to lack of in-situ or empirical observation data in many areas.

Satellite datasets, such as the Tropical Rainfall MeasuringMission (TRMM) (Huffman et al., 2007) and

theGravityRecovery andClimate Experiment (GRACE) (Tapley et al., 2004), andmodeling efforts, such

as High Asia Refined Analysis (HAR) (Maussion et al., 2014) and Asian Precipitation - Highly-Resolved

Observational Data Integration Towards Evaluation (APHRODITE) (Yatagai et al., 2012), rarely agree

on the magnitude and direction of changes in temperature and precipitation (Malik et al., 2016), and

have trouble correctly quantifying high-elevation precipitation (Li et al., 2017; Immerzeel et al., 2015).

Due to underdeveloped meteorological and hydrologic sensor networks in the region, quantification of

these changes is still difficult (Sorg et al., 2012; Bookhagen and Burbank, 2010). Poor understanding of

the interactions of major climate systems inHMA leads to disagreements in climate projections in global

and regional models (Vaughan et al., 2013; Kapnick et al., 2014). Despite these caveats, reliance on inter-

polated weather station data and large-scale climate models is still high, and studies leveraging empirical

data over large spatial scales are still scarce (Maussion et al., 2014; Kapnick et al., 2014).
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Shrinking glaciers are a highly visible signal of climate change in HMA’s cryosphere, and have been a

particular focus of the climate research community (e.g., Cuffey and Paterson, 2010; Bolch et al., 2012;

Kääb et al., 2012, 2015; Gardner et al., 2013; Immerzeel et al., 2010, 2013). Water stored in glaciers and

seasonal snowpack is the primary source of household, agricultural, and industrial water in many parts

of HMA – particularly for those communities situated at high elevations. Historically, water has been

slowly released from snow and glaciers throughout the spring and summer, providing year-round water

to both high-elevation and downstream communities. However, recent shifts in the climate regime of

HMA have reduced the reliability of the yearly hydrological cycle. Many regions have seen increases in

early season runoff alongside drastic decreases in late season runoff – particularly in those regions where

glaciers have substantially retreated or disappeared. The Intergovernmental Panel on Climate Change

(IPCC) forecasts that runoff inmajor river basins ofHMAwill increase through 2100 as glaciers continue

to melt, and then drop off as glaciers disappear (Vaughan et al., 2013). However, these large-scale changes

conceal regional, small-scale, and seasonal variation in climate change impacts which are already being felt

in the region.

HMA’s climate, and indeed the global climate, is strongly impacted by Eurasian snow cover (Bulygina

et al., 2011; Vaughan et al., 2013; Hahn and Shukla, 1976; Bamzai and Shukla, 1999; Barnett et al., 1989).

Changes in the distribution, timing, and volume of snow can modulate earth-surface heating and cool-

ing, which is one of the primary drivers of major atmospheric weather systems, such as the ISM. As the

ISM is the primary moisture source for much of the Indian Subcontinent, changes in the ISM are felt by

hundreds of millions of people. Shifts in snow volume and snowmelt timing can also have significant im-

pacts on the natural environment. For example, snowmelt changes can modify the timing of ephemeral

wetlands, which are essential for many migratory species (Bookhagen, 2017), reduce the productivity of

major rangelands by changing the length and timing of the growing season (Xu et al., 2009), and modify

sediment transport in rivers (Wulf et al., 2012; Valentin et al., 2008), which in turn impacts water quality

for human use (Palmer et al., 2008) and local fauna (Ficke et al., 2007).

Snow is the primary water reservoir for many communities in HMA, and provides more than 50% of

the water budgets of many catchments (Bookhagen and Burbank, 2010; Shrestha et al., 2015; Huss et al.,

2017). Snowpack is also highly responsive to warming climates, as it is present at low elevations and over

wide areas. Small increases in temperature can drastically alter the hydrologic budget of a catchment by

shifting precipitation events from snow to rain, which has been shown to reduce streamflow in snow-fed

catchments (Berghuijs et al., 2014), and increase flooding from rain-on-snow events (Sturm et al., 2017).

Snowmelt is particularly important in the summer months, when precipitation is low in many areas of

HMA.Without the seasonal buffering capacity of snow-water storage,many communities would face pe-

riodic droughts. Even small changes in the timing of snowmelt can have drastic impacts on the planting

and harvest seasons of important crops (Singh et al., 2011), growth patterns of grasses important for pas-
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toral communities (Xu et al., 2009), the spread of vector-borne diseases (Githeko et al., 2000; Patz et al.,

2005), and household food security (Lioubimtseva and Henebry, 2009; Singh et al., 2011). A shortening

of the snowmelt season has already been observed in Central Asia (Dietz et al., 2014), the Himalaya (Lau

et al., 2010; Panday et al., 2011), and the Upper Indus (Hasson et al., 2014).

Often, the communities that are most strongly impacted by climate change are those who are the least

able to adapt to rapid changes in their environment (Vaughan et al., 2013). The dearth of quantitative data

on climate changes and climate impacts in HMA severely limits the efficacy of local, regional, and global

adaptation and mitigation efforts; changes in the spatial and temporal distribution of snow – as well as

changes in the timing and length of the snowmelt season – are poorly constrained in HMA. The quan-

tification of these changes is essential for long-term regional water planning, climate modeling, weather

forecasting, and for contextualizing smaller-scale studies throughout HMA.

Objectives
This dissertation seeks to expand on methodologies for tracking snow dynamics from space, as well as to

quantify recent changes in the snow regime of HMA. Passive microwave remote sensing data was chosen

as the primary data source in this dissertation due to temporal and geographic extent of these data, which

allow for regional and long-term assessments of changes in snow. The three primary research questions

that this dissertation addresses are:

• What topographic, land-cover, and climate factors impact passive microwave snow-water equiva-

lent estimations in the complex topography of HMA?

• What are the spatio-temporal patterns of recent changes in the distribution of snow-water storage

across HMA?

• Have rising regional temperatures impacted the timing and duration of the snowmelt season in

HMA?

Thiswork has resulted in two published peer-reviewed journal articles and one additional article which

is in review at the time of this dissertation’s submission.

Outline
This dissertation beginswith a general introduction to passivemicrowave remote sensing theory and algo-

rithms (Chapter 2) and an overview of the geography and climate of the study area (Chapter 3). Chapters

4 through 6 then approach the individual research questions of this dissertation as independent studies
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published in peer-reviewed journals. Chapter 4 (research question 1) has been published under the ti-

tle “Assessing uncertainty and sensor biases in passive microwave data across High Mountain Asia” by T.

Smith and B. Bookhagen in the journal Remote Sensing of Environment

(http://doi.org/10.1016/j.rse.2016.03.037). Chapter 5 (research question 2) has been published under the

title “Changes in seasonal snow water equivalent distribution in HighMountain Asia (1987 to 2009)” byT.

Smith andB.Bookhagen in the journal ScienceAdvances (http://doi.org/10.1126/sciadv.1701550). Chap-

ter 6 (research question 3) has been published with the title “Spatio-temporal Patterns of High Mountain

Asia’s Snowmelt Season Identified with an Automated Snowmelt Detection Algorithm, 1987-2016” by T.

Smith, B. Bookhagen, and A. Rheinwalt in the journal The Cryosphere (https://doi.org/10.5194/tc-11-

2329-2017). Chapter 7 contextualizes this dissertation work in the wider context of ongoing studies in

HMA and provides concluding remarks.

http://doi.org/10.1016/j.rse.2016.03.037
http://doi.org/10.1126/sciadv.1701550
https://doi.org/10.5194/tc-11-2329-2017
https://doi.org/10.5194/tc-11-2329-2017


Chapter 2

Passive Microwave Remote Sensing

Passivemicrowave (PM) data have been consistently used to estimate snow-water equivalent (SWE) from

space since the launch of the Scanning Multichannel Microwave Radiometer (SMMR) satellite in 1978

(Chang et al., 1987; Derksen et al., 2004; Knowles et al., 2002). While the SMMRmission only collected

data every other day, it demonstrated that the water content of snowpack could be estimated from space.

It also demonstrated several important differences between PM and optical snow data retrieval. PM data

penetrates clouds, can collect data at night, and is highly sensitive to the water content of the snowpack.

This allows for consistent estimation of SWE, even in heavily cloud-covered areas, and is particularly im-

portant where winter cloud cover can be temporally and spatially extensive, such as in many parts of

HMA.

Passive Microwave Instruments
Several subsequent satellite missions have included PM sensors, including the Special SensorMicrowave/

Imager (SSMI, 1987-2009) (Wentz, 2013), Special Sensor Microwave Imager/Sounder (SSMIS, 2003-

present) (Sun and Weng, 2008), Advanced Microwave Scanning Radiometer – Earth Observing System

(AMSR-E, 2002-2011) (Ashcroft andWentz, 2013), AMSR2 (2012-present) (Imaoka et al., 2010), Tropi-

calRainfallMeasuringMission (TRMM, 1997-2015) (Huffman et al., 2007) and theGlobal Precipitation

Measurement CoreObservatory (GPM, 2014-present) (GPMScienceTeam, 2014). Each of these sensors,

by directly measuring the intensity of natural microwave radiation being emitted from the earth (Wentz,

1997), can be used to make estimates of snow depth and SWE at daily or sub-daily timesteps.

Special Sensor Microwave/Imager
The first SSMI sensor was launched aboard Defense Meteorological Satellite Program (DMSP) satel-

lite F08 in June 1987, and has subsequently been flown on five other DMSP satellites (1987-present)

(Hollinger et al., 1987; Wentz, 1997, 2013). SSMI collects data at four frequencies (19.35, 22.235, 37,

and 85.5 GHz), in both vertical and horizontal polarizations – excepting the 22.235 GHz channel which
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only collects vertically polarized data. TheDMSP satellites fly at an altitude of 860± 25 km,with an earth

incidence angle of 53.1◦ and a scan angle range of ± 51.2◦ (Wentz, 1997; Smith and Bookhagen, 2016).

This instrument setup allows data to be collected in a swath 1,400 km wide on the earth’s surface, with

sample spacing of 25 km for the 19.33, 22.235, and 37 GHz channels and 12.5 km for the 85.5 GHz chan-

nel. The SSMI series of satellites have overlapped in time, allowing for rigorous cross-calibration (Wentz,

2013). The SSMI sensor was not explicitly designed for snow measurement (Kelly et al., 2003); it lacks

a low frequency (∼10 GHz) channel, making estimating SWE in deep snow or in forested areas difficult.

However, SSMI represents the longest single-instrument PM time series, which makes it the most suit-

able of the PM sensors discussed here for long-term studies of snow character.

Special Sensor Microwave Imager/Sounder
The first DMSP to carry SSMIS (F16) was launched in October 2003, and has been followed by three

subsequent sensors (Smith and Bookhagen, 2016). The same frequency sensors are carried on the SSMIS

as on the SSMI, excepting the 85.5 GHz channel which was replaced by a new 91.655 GHz channel, at

both vertical and horizontal polarizations. SSMIS also includes several other channels which are not used

for measuring snow properties – namely channels between 50 and 60 GHz for measuring atmospheric

properties and 183.31 GHz channels for measuring tropospheric water (Sun andWeng, 2008). The scan

angle was increased to± 71.6◦, while maintaining the same earth incidence angle of 53.1◦. This increased

the nominal swath width to 1707 km. As with SSMI, SSMIS is missing a low frequency channel which

somewhat limits its utility for estimating SWE in forested or deep snow areas.

Several studies have focused on the inter-calibration of SSMI and SSMIS data, which were shown to

exhibit slight differences both between satellites (ie, SSMI F08 to SSMI F11) and between instruments

(ie, SSMI to SSMIS) (Cavalieri et al., 2012; Dai and Che, 2009; Dai et al., 2015). These satellite data re-

trieval differences, while slight, can have significant impacts on estimates of earth-surface environmental

parameters. Inter-calibration concerns are discussed separately in each Chapter of this thesis, as different

approaches to managing sensor biases are appropriate for different contexts.

AdvancedMicrowave Scanning Radiometer – Earth Observing System
AMSR-E was launched onMay 4th, 2002, onboard the Aqua satellite (Kelly et al., 2003). It collects data

at the 6.9, 10.65, 18.7, 23.8, 36.5, and 89.0 GHz channels, in both vertical and horizontal polarizations

(again excepting the 23.8 channel which is only collected in vertical polarization). Aqua flies at an alti-

tude of 705 km, allowing AMSR-E to collect data over a 1445 km swath (scan angle range ±61◦) at an

incidence angle of 55◦, with a slightly improved spatial resolution over the SSMI series of sensors (Kelly

et al., 2003). It ceased collecting data on October 4th, 2011. The near-polar orbit of AMSR-E allows it
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to sample nearly the entire earth twice each day (once at night and once during the day). The AMSR-E

sensor measures a low frequency channel (10.65 GHz) which allows for better characterization of deep

snow and snow in forested areas than the SSMI series of sensors.

AdvancedMicrowave Scanning Radiometer 2

AMSR2hasmeasured the same set of frequency bands asAMSR-E (and additionally the horizontally po-

larized 23.8 GHz channel), and is flown on the Japanese satellite GCOM-W1 (Imaoka et al., 2010). It also

measures an additional 7.3 GHz channel at both vertical and horizontal polarizations. The instrument

is otherwise almost identical to that flown on Aqua to maintain data continuity between the sensors. It

was launched onMay 18, 2012 and, at the time of the publication of this dissertation, is still in operation.

Global PrecipitationMeasurement

The GPM Core Observatory satellite was launched on February 27th, 2014 and is still in operation. It

collects PM data at the 10.65, 18.7, 23.8, 36.5, 89, 166, and 183.31 GHz channels, in both vertical and

horizontal polarization (excepting the 23.8 and 183.31 channels which are only collected in vertical polar-

ization). While earlier sensors (SSMI, SSMIS, AMSR-E, AMSR2) all fly in polar orbits, GPM flies in an

inclined, circular, non-sun-synchronous orbit (65◦ to the equator) at 407 km, providing a 904 km swath.

The different orbit reflects divergent mission design parameters for GPM, which is primarily a precipi-

tation mission. GPM has an earth incidence angle of 52.8◦, with a scan angle range of±70◦. While the

orbit parameters differ from those of the previous PMsensors, it still collects daily or pseudo-daily data for

the study area of this dissertation, although at a less consistent temporal resolution than the other sensors.

Tropical Rainfall Measurement Mission

The TRMM satellite, which flew from 1997 to 2015, was also not explicitly designed to measure earth-

surface parameters. However, it collected PM data at the 10.7, 19.4, 21.3, 37, and 85.5 GHz channels. As

TRMMflew at 402 km, it boasted a higher spatial resolution over its 878 km swathwidth. Unfortunately,

tests conducted during the compilation of Chapter 4 of this dissertation found that TRMM data – and

in particular the 37 GHz channel – is not reliable for SWE estimation.

Passive Microwave SnowMeasurement Theory
ThePMdata collected by the sensors listed in the previous Section can be used to estimate ground-surface

properties, including snow depth. PM radiation measured at the satellite is referred to as ‘brightness
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temperature’ (Tb). In general, the radiation observed at the satellite can be characterized as:

Tb = (RTsky + (1−R)Tsurf )e
−t + Tatm (2.1)

where t is the atmospheric transmissivity, R is the surface reflectivity, Tsky is the sky radiation, Tsurf

is the surface emission, and Tatm is the atmospheric component (Kelly, 2009). Both the sky and atmo-

spheric components are small and can generally be omitted, leaving Tb directly related to surface features

if atmospheric transmissivity is assumed to be close to one (Kelly, 2009). At long wavelengths (below

∼20GHz), microwave radiation is thought to penetrate snowpack with little scattering. At shorter wave-

lengths, snowpack acts as a volume scatterer which attenuates the passive microwave signal (Ulaby and

Stiles, 1980). Thus, the relationship between the attenuated and unattenuated PM signals can be used to

derive information about snowpack. However, several assumptions about the snowpack must be made

in order to estimate snow depth and snow-water content.

Physically, dry snow can be considered as ice suspended in an air matrix. In dry snow, the primary

mechanism of PM attenuation is volumetric scattering by the ice crystals which interact with microwave

radiation emitted from the earth’s surface, and thus cause some PM frequencies to be attenuated on their

path towards the PM sensor (Tedesco et al., 2015; Tedesco, 2015). Wet snow is better characterized as a

mixture of ice and liquid water (Tedesco, 2015). As the liquid water content of the snowpack increases,

it absorbs the PM radiation emitted from the earth’s surface, which means that the measured Tb at the

satellite is emitted from the top of the liquid water layer as opposed to from the earth’s surface (Fig. 2.1),

and the depth of the snowpack can no longer be estimated (Tedesco et al., 2015). The change from scat-

tering to absorption drastically increases the measured Tb at the PM sensor, and thus PM SWE estimates

are based on the assumption of dry snow.

Figure 2.1 – Scattering behavior of wet and dry snow. Wet snow absorbs the underlying PM signal and emits a
separate PM signal. Adapted from Tedesco et al. (2015).

The basic premise of PM SWE estimates is that the difference between a scattering (high frequency)

and non-scattering (low frequency) signal is correlated with the depth of the scattering medium – in this

case dry snow. Thus, as snow depth increases, so should the difference between the scattering and non-

scattering PM frequencies. However, depth is not the only factor that impacts the scattering character
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of snowpack, and it is often impossible to determine whether a change in observed Tb is due to changes

in snow depth or changes in the snowpack’s physical structure. Changes in snow density and snowpack

metamorphism are thus two of the largest sources of error in PM SWE estimation (Kelly et al., 2003).

Snow depth (number of snow grains along PM emission path), the size of the snow grains, and the

density of the snowpack (how much of the snowpack volume is air) are thought to be the most impor-

tant factors influencing high-frequency (∼37 GHz) measurements (Kelly et al., 2003). To a lesser extent,

sub-snow ground properties (e.g., surface roughness, surface temperature, and soil moisture) and snow

temperature can influence Tb measurements (Hoekstra and Delaney, 1974). However, these factors are

generally accounted for by using the difference between two PM frequencies for SWE estimation, and

should not have outsized impacts on SWE estimation in this dissertation.

Many models theoretically relating snow properties to electromagnetic properties (e.g., Tb) make as-

sumptions about snow grain homogeneity, snow-layer interfaces, and how spherical snow grains are in

a given snowpack (e.g., Chang et al., 1976, 1982; Tedesco and Kim, 2006). These assumptions can lead

to distinctly different interpretations of snowpack character between different models. Snow physical

character – layering, grain size, and density – can change throughout a single PM pixel (∼25 sq km) and

through time. Thus, while modeling approaches help provide a basis for satellite-based PM SWE estima-

tion, it is difficult to scale up these small-scale models to real world applications.

Throughout a snow season, the stratigraphy, density, and grain size of snow will change, with corre-

sponding changes in measured Tb (Armstrong et al., 1993; Josberger and Mognard, 2002; DeWalle and

Rango, 2008). Themagnitude and character of these changes will be highly spatially and temporally vari-

able, especially in the context of the complex topography ofHMA. InHMA, some of themost important

snowpack changes are compaction, the formation of depth hoar, and the formation of ice lenses. Com-

paction occurs naturally when new snow falls or as snow settles after deposition. Compaction can change

snowpack stratigraphy by creating interfaces between distinct snow layers and by increasing snowdensity.

Both compaction and stratigraphy have been shown to influence measured Tb at satellite sensors (e.g.,

Chang et al., 1987; Tedesco and Kim, 2006).

Depth hoar, or large, faceted snow crystals (Fig. 2.2), often forms throughout the snow season in the

presence of temperature gradients within the snowpack which cause water vapor to be deposited on cold

snow grains (Armstrong et al., 1993; Josberger and Mognard, 2002; Koenig and Forster, 2004; DeWalle

and Rango, 2008). As depth hoar can be several times the size of the typical snow crystal, its interaction

withPMradiation is substantially different and it canmodifymeasuredTb significantly (Armstrong et al.,

1993; Josberger and Mognard, 2002). Similarly, ice lenses – formed due to partial melt and refreezing of

the snowpack or rain-on-snow events – impact PMmeasurements by changing the size and shape of PM

scatterers in the snowpack and by acting as absorbers and reflectors rather than scatterers of PM radiation

(Rees et al., 2010; Montpetit et al., 2013).



10 Chapter 2. Passive Microwave Remote Sensing

Figure 2.2–Depth hoar as shownby visible light and scanning electronmicroscopy (courtesy Beltsville Agricultural
Research Center Electron and Confocal Microscopy Unit). Depth hoar crystals are significantly larger than typical
snow crystals, and thus their presence can substantially modify Tb measurements by satellite radiometers.

Each PM sensor collects data in both horizontal and vertical polarizations. Tb values at the two polar-

izations are oftendifferent, depending on the character of the snowpack (Rango et al., 1979;Mätzler, 1987,

1994; Foster et al., 2005). For the estimation of SWE, vertical polarization is generally used as it is slightly

less sensitive to snowpack stratigraphy, more sensitive to snow depth, and more directly related to the

upwelling radiation from the ground surface (Grody, 1991; Kelly et al., 2003). However, SWE estimates

based on horizontal and vertical polarizations are similar, as SWE estimation techniques use the relative

difference between two frequencies of the same polarization (Kelly et al., 2003). Snowmelt identification

often uses a combination of horizontal and vertical polarizations (e.g., Abdalati and Steffen, 1995) which

takes advantage of the depolarization of snow as it transitions to water, changes in the structure of the

snowpack, and the formation of horizontal water layers at or near the top of snowpack.

While the processes behind snowpackmetamorphism are understood theoretically and at a small scale

(e.g., Tsang et al., 1985, 2000; Armstrong et al., 1993; Tedesco andKim, 2006;Montpetit et al., 2013), scal-

ing these models tomatch the resolution of a single PMpixel (∼25 sq km) or applying them rigorously to

global SWE estimates is impractical. Despite these problems, PM SWE estimates remain one of the most

important sources of information on snowpack globally.

Utility of Passive Microwave Frequencies
Each sensor mentioned above carries a similar but unique set of frequencies. Each of these frequencies

serves a distinct purpose, and is known to interact with snowpack in different ways.
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The 6.93 GHz channel carried on AMSR-E and AMSR2 is used in some soil moisture algorithms

(Njoku et al., 2003; Wang andQu, 2009), but is known to be contaminated by radio frequencies, partic-

ularly in built-up and urban areas (Kelly, 2009) and is not used in modern SWE algorithms.

The ∼10 and ∼18 GHz channels are generally used as the un-attenuated signal in PM SWE algorithms.

While snowpack does cause some attenuation of the PM signal at these frequencies (Smith and Bookha-

gen, 2016; Kelly, 2009), for medium (5 - 100 cm) snow depths, they are assumed to be interference-free.

The attenuation of the ∼36 GHz channel is known to interact pseudo-linearly with the depth of the

snowpack (excepting caveats mentioned in the previous Section), and is thus used in SWE estimation

algorithms.

The ∼89 GHz channel is not sensitive to snow when SWE is greater than 20 mm. Its main utility is

in detecting shallow snow in conjunction with the ∼22 GHz channel which is sensitive to water vapor in

the atmosphere (Kelly, 2009). The higher frequency channels carried on GPM are used for weather and

precipitation characterization and are not used for SWE estimation.

Snow-Water Equivalent AlgorithmDevelopment

The initial algorithms for estimating SWE from PM data were developed by Chang et al. (1982, 1987),

and have been improved over the course of the last 30 years (e.g., Grody, 1991; Sturm et al., 1995; Kelly

et al., 2003; Kelly, 2009; Derksen, 2008; Armstrong and Brodzik, 2002; Takala et al., 2011; Tedesco and

Narvekar, 2010; Cordisco et al., 2006; Andreadis and Lettenmaier, 2012). The algorithms are based on

exploiting the difference between the brightness temperatures (Tb) at the ∼18 and ∼36 GHz channels of

each PM sensor, such as in the original Chang equation (Chang et al., 1987):

SnowDepth = 1.59 ∗ (Tb18H − Tb36H) (2.2)

More recent work has added contributions from the ∼10, ∼23, and ∼89 GHz channels available on more

recent sensors, such as AMSR-E, AMSR2, andGPM (Kelly et al., 2003; Kelly, 2009; Tedesco et al., 2015;

Smith and Bookhagen, 2016). These algorithms also account for the impacts of forest cover on PM data,

such as in the algorithm proposed for AMSR-E data (Kelly, 2009):

SnowDepth = ff(SDff ) + (1− ff)SDo (2.3)
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where ff is fractional forest cover,SDff is the snowdepth of the forested fraction, andSDo is the snow

depth of the non-forested fraction. The parameters SDff and SDo are calculated by:

SDff = p1 ∗ (Tb18V − Tb36V )/(1− fd ∗ 0.6) (2.4)

SDo = p1 ∗ (Tb10V − Tb36V ) + p2 ∗ (Tb10V − Tb18V ) (2.5)

where p1 and p2 are defined as 1/log10(Tb36V − Tb36H) and 1/log10(Tb18V − Tb18H), and fd is

forest density.

Some researchers have tuned theoriginal equationsproposedbyChang et al. (1982) to the conditions of

a specific region (e.g., Che et al., 2008; Mizukami and Perica, 2012), by correcting for topography (Savoie

et al., 2009), and by introducing forest cover corrections (Foster et al., 2005; Derksen, 2008). Despite

improvements over the original algorithms thatwere developed and calibrated onwide, flat, and dry snow

fields in Russia and Canada, SWE estimates remain unreliable in the absolute sense, particularly over

complex terrain (Smith and Bookhagen, 2016; Mätzler and Standley, 2000; Dozier and Warren, 1982;

Daly et al., 2012).

Topography has been shown to impact estimated SWE values (Dozier andWarren, 1982; Chang et al.,

1991;Mätzler and Standley, 2000) bymodifying the assumed satellite-to-ground path distance and angle,

as well as by introducing constructive and destructive interference in the PM frequencies. For example,

PM radiation emitted from two sides of a valley can interfere constructively or destructively depending on

the angle of both valley faces and the relative view angle of thePMsensor. Theproblem is compoundedby

the polarized nature of PMdata collections, where horizontally and vertically polarizations will modulate

the impacts of topography differently. As with any satellite data, topography facing towards the satellite

sensor will be preferentially sampled at the expense of topography facing away from the satellite.

Despite these caveats, PM data remains the only empirical method to estimate SWE over large areas of

complex and inhospitable terrain, such as in HMA (e.g., Chang et al., 1982, 1987, 1991; Kelly et al., 2003;

Kelly, 2009; Abdalati and Steffen, 1995; Hall et al., 2004; Drobot and Anderson, 2001; Joshi et al., 2001;

Takala et al., 2003, 2008, 2009; Apgar et al., 2007;Monahan andRamage, 2010; Tedesco, 2007; Liu et al.,

2005; Armstrong and Brodzik, 2001). The lack of a well-maintained and spatially diverse sensor network

in the region (Bookhagen and Burbank, 2010; Smith and Bookhagen, 2016; Sorg et al., 2012) – as well

as the political, topographic, and climatic complexities of ground-data collection – leave few options for

collecting spatially extensive and continuous SWE estimates in HMA.



Chapter 3

HighMountain Asia

Geographic Setting
The study area for this dissertation generally runs from 25-45N and 67.5-95E, and includes all or part of

Mongolia, Kazakhstan, Kyrgyzstan, Uzbekistan, Tajikistan, Afghanistan, Pakistan, India, Nepal, Bhutan,

Bangladesh, Myanmar, and China (Fig. 3.1A, inset). This area includes a diversity of climatic, topo-

graphic, and environmental zones; elevations run from nearly sea-level to over 8,000 m asl at the highest

peaks in the world. The study area also includes several major mountain ranges – the Himalaya, Hindu

Kush, Karakoram, Pamir, Tien Shan, and Kunlun Shan – which surround the Tibetan Plateau and are

collectively known as HighMountain Asia (HMA).

Together, these mountain ranges contain the headwaters for rivers serving more than a billion people.

The Syr Darya, Amu Darya, Indus, Tarim, Tibet, Yangtze, Salween, Tsangpo, and Ganges basins are

entirely or partially sourced in HMA (Fig. 3.1A). While the higher elevation parts of HMA are often

sparsely populated, the downstream areas of watersheds sourced in HMA play host to some of the most

densely populated regions of the world (Fig. 3.1B). Combined, the Indus, Ganges, and Tsangpo basins

provide water for more than 800 million people (Bolch et al., 2012), and the Yangtze provides water for

an additional 600 million people (Immerzeel et al., 2010).

HMAis themost heavily glaciated regionoutside of thepoles. The estimated 118,200 sqkmof glaciated

area has been rapidly losing mass over the past decades (Gardner et al., 2013). This mass loss has both im-

pacted local communities (Vaughan et al., 2013) andhas contributed to global sea-level rise (Gardner et al.,

2013). However, these changes have been spatially heterogeneous and are strongly impacted by local to-

pography and climate (Gardner et al., 2013; Gardelle et al., 2013; Kääb et al., 2012, 2015). The fate of

HMA’s glaciers remains hotly debated; in-situ data are sparse, and the role of differing climate and to-

pographic settings in glacier response to climate change remains poorly understood. However, glaciated

regions generally follow the very low temperature zones in the high-elevation areas in and bordering the

Tibetan Plateau (Fig. 3.2).
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Figure 3.1 – (A) Topographic map of High Mountain Asia (HMA) with major catchment boundaries (black) de-
rived from SRTM data (Jarvis et al., 2008). Major rivers scaled by discharge (blue) and glacier areas (white) from
the Randolph Glacier Inventory v5 (Arendt et al., 2015). Inset map shows political boundaries, as well as wind di-
rection of major weather systems (WWD:WinterWesterly Disturbances, ISM: Indian SummerMonsoon, EASM:
East Asian Summer Monsoon). (B) Population density (2015) of HMA, derived from the Gridded Population
of the World Version 4 (GPWv4) (CIESIN - Columbia University, 2016), with names of major mountain ranges.
High-elevation and highly glaciated areas provide water for some of the most densely populated regions on earth.
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Figure 3.2 – Long-term (2000-2014)modeled average annual air temperature (◦C) derived fromHighAsia Refined
Analysis (HAR) (Maussion et al., 2014). Thehigh-elevationTibetanPlateauhas average annual temperatures below
zero, with some especially cold regions maintaining average annual temperatures below -10◦C.

Major Climate Systems of HMA

HMA’s climate is controlled by threemajormoisture sources: theWinterWesterlyDisturbances (WWD),

Indian Summer Monsoon (ISM), and East Asian Summer Monsoon (EASM) (Fig. 3.1A, inset). The

interaction between these moisture sources and the complex topography of HMA creates a vast range

of precipitation regimes and microclimates across the study region (e.g., Cannon et al., 2014; Kääb et al.,

2012; Immerzeel and Bierkens, 2012; Immerzeel et al., 2015; Gardner et al., 2013; Kapnick et al., 2014;

Barnett et al., 2005; Dahe et al., 2006; Takala et al., 2011; Cannon et al., 2017).

The ISM is a tropical monsoon systemwhich generally extends from June to September (Kumar et al.,

1995; Goswami et al., 1999; Goswami andMohan, 2001; Menon et al., 2013), and is the result of periodic

northwardmigrations of the Intertropical Convergence Zone (e.g., Boos and Kuang, 2010;Molnar et al.,

2010) due to differential heating of Central Asia and the Indian Ocean. It is responsible for the majority

of precipitation from north-central India and Nepal through Pakistan and moves north-west along the

Himalayan Front (Bookhagen and Burbank, 2010). The primary moisture source of the ISM is the Bay

of Bengal.
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Figure 3.3 – (A) TRMM 3B43 (1998-2013, Huffman et al. (2007)) and (B) APHRODITE (1961-2007, Yatagai
et al. (2012)) total annaul rainfall distributions acrossHMAwithmajor catchment boundaries (black) derived from
SRTMdata (Jarvis et al., 2008). Clear precipitation gradients exist from the southeast moving along theHimalayan
Front to the northwest in both datasets, with slight differences in volume and distribution. Satellite (TRMM)
and interpolated station data (APHRODITE) produce similar precipitation patterns, but also maintain distinct
differences.
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TheEASMis a sub-tropicalmonsoon systemwithmultiple precipitationpeaks inMay andSeptember-

October (Yihui and Chan, 2005). It is primary over parts of Bhutan and the eastern Tibetan Plateau, and

brings moisture from the South China Sea onto the mainland, eventually depositing moisture on the

far eastern edge of the Tibetan Plateau (Yihui and Chan, 2005). The ISM and EASM, while separate

phenomena, interact strongly (Zhu et al., 1990). Both the ISM and the EASM are influenced by El Niño-

SouthernOscillation (ENSO), as well as other large-scale, global climate oscillations (Menon et al., 2013).

TheWWD are driven by a low-level jet stream which brings moisture from as far west as theMediter-

ranean and generally last fromDecember toMarch (Barlow et al., 2005; Palazzi et al., 2013; Cannon et al.,

2014). AsWWDmove east, they are impacted by significant topographic blocking and capture, resulting

in large-scale precipitation events. As these storms generally occur during cold months, they often result

in heavy snowfall, particularly at high elevations and along topographic channels such as major valleys

(Cannon et al., 2014; Lang and Barros, 2004).

Moisture in the southern and eastern regions of HMA is controlled by the interaction between the

ISM and the EASM, which together provide the majority of moisture along the southern and eastern

edges of the Tibetan Plateau (Barlow et al., 2005; Lang and Barros, 2004; Boos and Kuang, 2010). Inter-

annual and inter-decadal variation in both the EASM and the ISM are driven by a combination of sea

surface temperatures and snow cover across Eurasia and the Tibetan Plateau, which create temperature

gradients and partially control the timing, direction, and strength of the ISM (Kumar et al., 1995).

The northern and western regions of HMA are more strongly influenced by theWWD (Barlow et al.,

2005; Palazzi et al., 2013). While the WWD tend to carry less moisture than the ISM or the EASM, they

occur during colder months and deposit more snow than either of the southern monsoons (cf. Figure

3.4). An additional climate system known as the Siberian High impacts only a small portion of HMA in

the northern Tien Shan, where it serves as a blocking mechanism for the WWD (Sorg et al., 2012). The

interaction of local topographywith the interactions of theWWDand SiberianHigh creates distinct pre-

cipitation gradients in the Tien Shan, with decreasing precipitation from the northwest to southeast (cf.

Fig. 3.3) (Sorg et al., 2012).

Climate Change in HMA’s Cryosphere
HMA is already feeling the impacts of global warming, and will continue to face diverse climate change

impacts in the coming decades (Vaughan et al., 2013; Bolch et al., 2012; Gardner et al., 2013). These

changes will manifest as both changes to mean temperatures and precipitation levels, and changes in cli-

mate extreme events. Often, climate changes are enhanced by anthropogenic land cover changes (e.g.,

Charney, 1975; Charney et al., 1977). In general, HMAwill warm over the coming decades – and inmany

cases will warm faster than the global average (Vaughan et al., 2013).
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Figure 3.4 – TRMM 3B43 (1998-2013, Huffman et al. (2007)) seasonality in rainfall across High Mountain Asia
(HMA) with major catchment boundaries (black) derived from SRTM data (Jarvis et al., 2008). Percentage of
annual precipitation falling in (A)December-January-February (DJF) and (B) in June-July-August (JJA). A distinct
DJF/JJA divide exists where the western areas of HMA receive more DJF precipitation and eastern areas receive
more JJA precipitation.

Large-scale climate patterns – such as the ISM and WWD – have changed in strength and timing

(e.g., Cannon et al., 2014, 2016; Gautam et al., 2009; Menon et al., 2013; Kitoh et al., 2013; Fu, 2003;
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Ramanathan et al., 2005; Lau et al., 2010; Palazzi et al., 2013). For example, the ISM has increased in

strength since the 1950s due to increases in moisture availability (Menon et al., 2013; Kitoh et al., 2013)

and increased regional heat-trapping potential due to air pollution (Gautam et al., 2009; Ramanathan

et al., 2005). In addition to climate change, shifts in Southeast Asia’s landcover (i.e., deforestation, exten-

sive irrigation and agriculture, urbanization) have modified regional weather and climate patterns (Fu,

2003; Gautam et al., 2009; Bookhagen and Burbank, 2010). Large-scale changes in ENSO patterns due

to warming oceans have also impacted precipitation patterns in HMA (Bookhagen et al., 2005).

The WWD, while driven by very different atmospheric phenomena, have been increasing in strength

over the past decades (Cannon et al., 2014, 2015; Norris et al., 2016; Treydte et al., 2006). This has driven

both increases in mean regional precipitation and in the incidence of extreme storms. In the more north-

ern reaches of the WWD (Tien Shan Mountains), massive changes in regional landcover, such as the

introduction of cotton monoculture and subsequent infrastructural development in Central Asia in the

1960s, have had significant impacts on both water quality and regional weather patterns (Lioubimtseva

et al., 2005). The increase in regional dust due to the dessication of the Aral Sea over the past decades is

thought to have had significant influence on regional precipitation, and have had a compounding effect

on regional climate warming (Lioubimtseva et al., 2005).

Shifts in large-scale weather patterns, when combined with regional warming above the global average

(Vaughan et al., 2013), have strongly impacted HMA’s cryosphere. Many recent studies have focused on

changes inHMA’s glaciers, whose retreat is a highly visible indicator ofwarming temperatures. In general,

glaciers are retreating across HMA (e.g., Bolch et al., 2012; Kääb et al., 2012, 2015; Gardner et al., 2013)

at variable rates controlled by topography, black carbon and other pollution (Scherler et al., 2011), debris

cover (Scherler et al., 2011; Bolch et al., 2012; Racoviteanu et al., 2009), and precipitation regimes (Fujita,

2008; Kapnick et al., 2014). There exist, however, regions of glacier stability or even growth, such as the

Karakoram (Hewitt, 2005; Gardelle et al., 2013; Kapnick et al., 2014; Wang et al., 2017; Gardner et al.,

2013), Pamir (Gardelle et al., 2013), and Kunlun Shan (Shangguan et al., 2007; Gardner et al., 2013; Yao

et al., 2012; Kääb et al., 2015). Due to lack of in-situ data, estimates of glacier change remain sparse and

poorly constrained.

Warming spring temperatures, earlier snowmelt seasons, and an increasing lack of late-season water

availability have been observed in Central Asia (Dietz et al., 2014), in the Himalaya (Lau et al., 2010; Pan-

day et al., 2011) and in the Indus Basin (Hasson et al., 2014). Intensification of the snowmelt season has

been observed in both model (Lutz et al., 2014) and empirical (Dietz et al., 2014; Bookhagen and Bur-

bank, 2010; Stewart, 2009; Smith et al., 2017; Hasson et al., 2014) data. However, these changes are not

monolithic, and general climate trends in HMA hide both small- and large-scale spatial and temporal

variability in climate change impacts.
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Abstract
Snowfall comprises a significant percentage of the annual water budget inHighMountain Asia (HMA), but snow-

water equivalent (SWE) is poorly constrained due to lack of in-situ measurements and complex terrain that limits

the efficacy of modeling and observations. Over the past few decades, SWE has been estimated with passive mi-

crowave (PM) sensors with generally good results in wide, flat, terrain, and lower reliability in densely forested,

complex, or high-elevation areas.

In this study, we use raw swath data from five satellite sensors – the Special Sensor Microwave/Imager (SSMI)

and Special Sensor Microwave Imager/Sounder (SSMIS) (1987-2015, F08, F11, F13, F17), Advanced Microwave

Scanning Radiometer - Earth Observing System (AMSR-E, 2002-2011), AMSR2 (2012-2015), and the Global Pre-

cipitation Measurement (GPM, 2014-2015) – in order to understand the spatial and temporal structure of native

sensor, topographic, and land cover biases in SWE estimates in HMA. We develop a thorough understanding of

the uncertainties in our SWE estimates by examining the impacts of topographic parameters (aspect, relief, hills-

lope angle, and elevation), land cover, native sensor biases, and climate parameters (precipitation, temperature, and

wind speed). HMA, with its high seasonality, large topographic gradients and low relief at high elevations provides

an excellent context to examine a wide range of climatic, land-cover, and topographic settings to better constrain

SWE uncertainties and potential sensor bias.

Using a multi-parameter regression, we compare long-term SWE variability to forest fraction, maximal multi-

year snow depth, topographic parameters, and long-term average wind speed across both individual sensor time

series and a merged multi-sensor dataset. In regions where forest cover is extensive, it is the strongest control on

SWE variability. In those regions where forest density is low (<5%), maximal snow depth dominates the uncer-

tainty signal. In our regression across HMA, we find that forest fraction is the strongest control on SWE variabil-

†published as Taylor Smith and Bodo Bookhagen. "Assessing uncertainty and sensor biases in passive microwave data across High Mountain Asia."

Remote Sensing of Environment 181 (2016): 174-185. http://www.sciencedirect.com/science/article/pii/S0034425716301419

http://www.sciencedirect.com/science/article/pii/S0034425716301419
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ity (75.8%), followed by maximal multi-year snow depth (7.82%), 90th percentile 10-m wind speed of a 10-year

December-January-February (DJF) time series (5.64%), 25th percentile DJF 10-m wind speed (5.44%), and hills-

lope angle (5.24%). Elevation, relief, and terrain aspect show very low influence on SWE variability (<1%). We find

that the GPM sensor provides the most robust regression results, and can be reliably used to estimate SWE in our

study region.

While forest cover and elevation have been integrated into many SWE algorithms, wind speed and long-term

maximal snow depth have not. Our results show that wind redistribution of snow can have impacts on SWE,

especially over large, flat, areas. Using our regression results, we have developed an understanding of sensor-specific

SWE uncertainties and their spatial patterns. The uncertainty maps developed in this study provide a first-order

approximation of SWE-estimate reliability for much of HMA, and imply that high-fidelity SWE estimates can be

produced for many high-elevation areas.

Introduction
Tracking the accumulation andmelt of snow is essential for weather forecasting, climate modeling, and water man-

agement applications. Estimates of snowdepth (SD) and snow-water equivalent (SWE)provide additional informa-

tion on the volume of water stored and released from snowpack, which is critical for managing flood risk, irrigation

systems, and hydropower (Armstrong andBrodzik, 2002; Tedesco andNarvekar, 2010). Severalmethods have been

used to estimate SD and SWEover large areas, such asmodeling based on snow covered area (SCA) and a conversion

factor (Bookhagen and Burbank, 2010; Immerzeel et al., 2009), estimatingmelt volume by backward calculation of

snow clearance dates (Molotch and Margulis, 2008; Guan et al., 2013), direct measurements of SWE with in-situ

climate stations, and SWE estimation with passive microwave (PM) data (Chang et al., 1982, 1987; Clifford, 2010;

Daly et al., 2012; Pulliainen, 2006; Takala et al., 2009, 2011; Tedesco et al., 2015). SWE estimation with PM data is

the only method which can estimate SWE over large areas, across all terrain types, and provide high-temporal reso-

lution SWE estimates based on empirical relationships. High temporal-resolution data are imperative for accurately

guaging snowmelt and downstream runoff (Anderton et al., 2002; Dozier et al., 2008; Painter et al., 2009).

Beginning in 1978 with the ScanningMultichannelMicrowave Radiometer (SMMR) system, PMdata has been

used to measure snow parameters (Knowles et al., 2002; Chang et al., 1982). PM data has several significant advan-

tages over optical remote sensing data for the collection of snow data, including cloud penetration, night-time data

collection, and high sensitivity to water content in snowpack. For many snow-covered regions, winter storms can

drastically limit optical data collection due to cloud cover. The Special Sensor Microwave/Imager (SSMI) (Wentz,

2013), Special Sensor Microwave Imager/Sounder (SSMIS) (Sun and Weng, 2008), Advanced Microwave Scan-

ning Radiometer - Earth Observing System (AMSR-E) (Ashcroft andWentz, 2013), AMSR2 (Imaoka et al., 2010),

and Global Precipitation Measurement (GPM) (GPM Science Team, 2014) sensors each collect data at several mi-

crowave spectra, and can be used for the evaluation of snowpack at daily or greater resolution.

Several algorithms have been developed to estimate SD and SWE from PM data (e.g., Chang et al., 1987; Kelly

et al., 2003; Pulliainen, 2006; Kelly, 2009; Tedesco and Narvekar, 2010; Takala et al., 2011). The majority of these

algorithms exploit the difference between the brightness temperatures (Tb) at the ∼18 and ∼36 GHz channels.

However, more recent algorithms, such as those proposed byKelly (2009), also exploit the∼10,∼23, and∼89GHz
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channels available on AMSR-E/2 and GPM, which can better resolve shallow snow conditions and are less sensi-

tive to saturation of the PM signal at the ∼18 GHz band (Derksen, 2008). Improvements on SWE estimation have

also been made by tuning the original equations proposed by Chang et al. (1987) to specific regional conditions

(Mizukami and Perica, 2012), correcting for elevation (Savoie et al., 2009), and by introducing a forest cover cor-

rection (Foster et al., 2005). While these methods have improved upon SWE estimation, they remain unreliable in

complex topography (Tedesco et al., 2015).

Topographic relief can have strong impacts on sensed Tb values (Mätzler and Standley, 2000; Dozier and War-

ren, 1982). First, the path between the ground surface and the PM sensor is determined by the ground elevation,

which can introduce a height-dependent bias (Savoie et al., 2009). Second, complex terrain can interact construc-

tively, where the sensed Tb values are not only the PM radiation emitted by a flat surface, but the combination of

interacting microwave signals from hillslopes which face each other. Third, topography can shadow parts of the

satellite field of view, which preferentially samples those hillslopes which face the satellite. Last, land surface slope

changes the relative look angle of the satellite, which can preferentially enhance or degrade the microwave signal

from different areas of the same field of view, and modify the relative signal strengths of horizontally and vertically

polarized Tb data (Dozier and Warren, 1982). In addition to topographic impacts, forest cover can significantly

reduce the Tb difference term used by SWE algorithms (Chang et al., 1996; Foster et al., 2005). This is due to the at-

tenuation of microwave signals as they pass through dense vegetation, which can reduce SWE estimates by as much

as 50% (Brown, 1996; Vander Jagt et al., 2013).

While studies have examined the reliability of SWE data from several satellite platforms (i.e Imaoka et al., 2010;

Armstrong and Brodzik, 2001, 2002; Brown, 1996; Chang et al., 1996; Dai et al., 2015; Foster et al., 2005; Langlois

et al., 2011;Mizukami andPerica, 2012; Sun andWeng, 2008;Tedesco andNarvekar, 2010;Wang andTedesco, 2007;

Savoie et al., 2009;Dong et al., 2005), few large-scale analyses of SWEhave been undertaken inHighMountainAsia

(HMA), and none have examined the impacts of long-termmaximal snow depth and wind redistribution on SWE

variability.

As HMA lacks an extensive and reliable ground-weather station network, particularly at elevations above 3000

m, we do not rely on in-situ data to compare our satellite-based SWE estimates to those of any snow-monitoring

stations. Instead, we focus on understanding the utility and limitations of satellite-based PMdata – especially those

factors which may reduce the reliability of SWE estimates – by examining a multi-frequency time series of PM data

across a range of topographic, land cover, and climate settings.

Materials andMethods
In this study we use a multi-instrument time series of SSMI, SSMIS, AMSR-E, AMSR2, and GPM PM data from

2000-2015 in combination with topographic, land-cover, and climatic data.

Study Area
Our study area encompasses a wide range of climatic seasonality, elevation, topographic relief and hillslope angles.

It includes not only high relief and high complexity areas typical of many mountain ranges, but also large areas
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Figure 4.1–Topographicmap ofHighMountainAsia (HMA) based on SRTMV4.1 datawith political boundaries
(black) and major rivers (blue). Black dots indicate randomly-generated sample points (n=2500) encompassing a
wide range of land cover, topographic, and climate regimes. Red box indicates extent of Figure 4.3. For each sample
point, we have extracted amulti-instrument time series of PMdata, landscape characteristics (forest cover, hillslope
angle, elevation, aspect, relief), and climate data (rainfall, temperature, wind speed).

of low relief at high elevation (i.e., the Tibetan Plateau). Low but variable forest density across the study region,

in combination with the range of topographic characteristics, allows us to examine a range of factors which impact

SWE estimationwith PMdata. We randomly generated 5000 pointswithin our study area, and removed those close

to major bodies of water. From this subset, we choose 2500 sample points which cover a wide range of elevation,

relief, slope, and aspect settings (Fig. 4.1).

Topographic, Land Cover, and Climate Data
The 2000 Shuttle Radar Topography Mission V4.1 (SRTM) Digital Elevation Model (DEM) (∼90-m, void-filled)

was leveraged to provide elevation, hillslope angle, aspect, and 5-km radius relief (Jarvis et al., 2008) (Fig. 4.1). We

then apply an averaging filter over a 20-km radius to the hillslope, elevation, and relief surfaces to minimize spatial-

resolution differences and PM location uncertainties when comparing between 90-m and ∼25-km resolution data

(Fig. 4.2A,B).

High Asia Reanalysis (HAR) (2000-2014) provides 10-km resolution land-surface temperature at 2-m heights

(product t2) at both daily and 3-hourly temporal resolution over 98% of the study area for the period 2000 to
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Figure 4.2 – Topographic and climatic characteristics of High Mountain Asia: (A) 5-km radius relief and (B) hill-
slope angle (degree), derived from SRTM V4.1 and averaged over a 20-km radius (Jarvis et al., 2008); (C) 14-year
averaged December-January-February (DJF) median 10-m wind speed (m/s), derived fromHAR (Maussion et al.,
2014), and (D) forest density, derived fromMOD44B (2000-2010, DiMiceli et al. (2011)). Black dots indicate ran-
dom sample locations (cf. Figure 4.1).

2014 (Maussion et al., 2014). For those points which fall outside of the 10-km HAR domain, we use the 30-km

product instead. We use the hourly product to create average daily daytime and nighttime temperatures, as well as

bi-daily deviation values from the long-term average monthly temperatures. In addition to the HAR temperature

product, we leverage the 10-m surface wind speed dataset (product ws10) to assess the impact of high-wind areas on

SWE variability (Fig. 4.2C). We treat the HARwind product as a ‘static’ dataset in our analysis by using long-term

statistics derived from the 14-year time series of wind speed data, such as the long-termDecember-January-February

(DJF) median, 25th and 90th percentile wind speeds at each pixel. By using percentiles as proxies for long-term

trends in the climate data, we can more accurately compare trends in wind speed with trends in SWE and SWE

variability over the whole time series instead of on a daily or hourly basis.

TRMM product 3B42 V7 (1997-2014) provides daily rainfall estimates at 0.25◦ × 0.25◦ resolution (Huffman

et al., 2007). These data are used to isolate precipitation-free days andmulti-day periods from the larger time series,

with a sensed precipitation threshold of 0.1 mm/hr.
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Fractional forest cover is derived fromMODISMOD12Q1 yearly data (2001-2012), following the Boston Uni-

versity IGBP classification scheme (Hansen et al., 2003). Forest density is derived fromMODIS MOD44B global

forest density yearly data (2000-2010, DiMiceli et al. (2011)). BothMOD12Q1 andMOD44B area averaged over a

20-km radius (Fig. 4.2D).

The AMSR EASEgrid SWE product (L3 v2, 2002-2011) provides SWE estimates at 0.25◦ × 0.25◦ resolution

across our entire study area (Tedesco et al., 2004). The EASEgrid product at daily resolution is used to visually

compare the SWE estimation of a large-scale gridded products with the results of our point-level SWE analyses. We

also use the AMSR EASEgrid product to examine the distribution of snow depth throughout our study area. In

our analysis of SWE uncertainty, we use the 9-year daily resolution time series of SWEmeasurements to derive 95th

percentile SWE volume estimates for each grid cell. These estimates serve as proxies for tracking areas which see

frequent deep snow cover.

To identify time periods which should nominally have constant SWE (i.e., no changes in SWE), we choose those

periods where (1) the HAR temperature does not rise above 0◦C and (2) there is no sensed precipitation, as mea-

sured by TRMM. These periods are termed ‘clear days’ throughout this manuscript, and are used in sections 4.3

and 4.4 to examine native inter- and intra-sensor variability.

Passive Microwave Data
In this study we acquired ungridded, raw, swath data for SSMI and SSMIS (F08, F11, F13, F17, 1987-2015, Wentz

(2013); Sun and Weng (2008)), AMSR-E (2002-2010, Ashcroft and Wentz (2013)), AMSR2 (2012-2015, Imaoka

et al. (2010)), and GPM (2014-2015, GPM Science Team (2014)) satellites. The characteristics of each satellite are

listed in Table 4.1.

We examined the potential of the TRMMMicrowave Imager (TMI) instrument to measure SWE, but found

the results unreliable. In particular, the 36V channel experienced highly variable Tb fluctuations, making SWE

estimation with the TMI sensor problematic.

Swath Processing
We examine the raw, orbital PM data at each satellite’s respective native sensor resolution and do not resample the

data to an equally-spaced or consistent grid. By maintaining native resolution, we are able to increase our data

density by using multiple imperfectly-overlapping swaths (Fig. 4.3). Native resolution also improves direct, point-

by-point comparisons between horizontally and vertically polarized data points by avoiding any data resampling. In

this study, we use 30,865,102 individual data points across five satellites and 2500 random sample locations to exam-

ine long-term aggregate and inter-sensor differences in PM data. We also process a subset of 14,804,414 data points

which occur on ‘clear days’, or days which do not see temperatures above 0◦C and have no sensed precipitation.

To examine the swath data at 2500 randomly chosen point locations across the study area, we implement a

search algorithm to find the closest data point within each individual swath (maximum distance 0.1◦, approx. 10

km) throughout the entire measurement period of each satellite. To test the influence of the chosen search distance

on Tb values at any given point, we have examined whole time series Tb means and standard deviations against

the distance from the sampling center point (Fig. A1 in the Supplement). Across search distances, the means and
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Table 4.1 – Characteristics of PM sensors used, with native channel frequencies, spatial resolutions, processing al-
gorithms, orbit frequencies, and satellite angular properties.

Satellite Temporal
Coverage

Channels
(GHz)

Spatial Resolution (km2) Processing Lev-
el/Algorithm

SSMI Aug 1987 -
Apr 2009 (22
years)

19.35, 22, 36, 85 69x43, 60x40, 37x28, 16x14 FCDRV07

SSMI/S Jan 2008 -
Apr 2015 (7
years)

19.35, 22, 36, 92 69x43, 60x40, 37x28, 37x28 FCDRV07

AMSR-E May 2002 -
Oct 2011 (9
years)

6.93, 10.65, 18.7,
23.8, 36.5, 89

75x43, 51x29, 27x16, 27x16,
14x8, 6x4

L1B

AMSR2 Jul 2012 - Sep
2015 (3 years)

6.93, 7.3, 10.65,
18.7, 23.8, 36.5,
89

62x35, 62x35, 42x24,
22x14, 19x11, 12x7, 5x3

L1R

GPM Feb 2014 -
Jul 2015 (1.5
years)

10.65, 18.7,
23.8, 36.5, 89,
166, 183.31

32.2x19.4, 18.3x11.2, 15x9.2,
14.4x8.6, 7.3x4.4, 7.1x4.4,
7.2x4.4

L1B

Satellite Number of Orbits
(Descending/Ascending)

Average Ob-
servations per
Month

Earth Incidence
Angle (◦)

Scan Angle
Range (◦)

SSMI 176,460/176,460 1411 53.1 ±51.2
SSMI/S 41,896/41,896 901 53.1 ±71.6
AMSR-E 49,083/49,079 868 55 ±61
AMSR2 16,623/16,623 874 55 ±61
GPM 3,919/3,919 435 52.8 ±70

standard deviations do not change appreciably, indicating that while there may be some changes in the variability

signal we see within a subsetted dataset, these changes are due to the reduction in data density and not due to

variability in the satellite field of view over time.

In this way, we develop a time series of Tb values at each point location at native instrument spatial resolution

(Fig. 4.3). Using the time of each individual capture in conjunction with the latitude and longitude of the point

location, we derive the position of the sun relative to the horizon. In our analysis of SWE, we only use those points

where the sun is below the horizon. While this method is more computationally expensive than using only the

descending orbits of each satellite, it allows us to expand our dataset by including every data point which is captured

at night, regardless of which orbit it falls in. It also allows us to examine intra-day differences in measured Tb

through the daytime and nighttime subsets of the Tb time series.



28 Chapter 4. Uncertainty and Sensor Biases in Passive Microwave Data

Figure 4.3 – Characteristic example of raw PM data points and their ellipsoidal geographic extent in NW India (cf.
Figure 1). (A) Onemonth of data from the SSMI (yellow, n=42) and AMSR-E (black, n=188) satellites; (B) SSMIS
(purple, n=196) and GPM (turquoise, n=131). AMSR2 not shown, as the footprint size and density is comparable
to AMSR-E. We show 9-year 95th percentile SWE volume from the AMSR EASEgrid as a background image to
elucidate the 10-fold southwest-to-northeast SWE gradient in this area. Gray lines indicate international borders,
black lines show the 4-km elevation contour.

Finally, we implement a correction to the SSMI/S data, as proposed byDai et al. (2015), to normalize the SSMI/S

data received from the multiple satellites (F08, F11, F13, F17). In this way, we ensure that each satellite dataset is as

internally consistent as possible. We assume that the inter-calibration between AMSR-E and AMSR2 is of high

quality, and thus do not perform any additional inter-calibration for the AMSR sensors.

SWE Estimation

Although several SWE estimation algorithms have been proposed (e.g., Chang et al., 1987; Kelly et al., 2003; Pulli-

ainen, 2006; Kelly, 2009; Takala et al., 2011; Mizukami and Perica, 2012; Savoie et al., 2009; Tong et al., 2010), this

study chooses to use only two of these to examine SD and SWE. The first method is based on the Chang equation:

SD[cm] = 1.59[cm/K] ∗ (Tb18V − Tb36V )[K] (4.1)

This equation has seen wide use across the SSMI/S and AMSR-E platforms. To our knowledge, the Chang

equation has never been used with GPM data to estimate SWE. However, due to the similar spectral ranges carried

onboard AMSR-E/2 and GPM, we assume that the modified Chang equation, as proposed by Armstrong and

Brodzik (2001), will work equally well for the GPM platform.

We also use amore complex algorithm – as initially developed for the AMSR-E satellite (Kelly et al., 2003; Kelly,

2009; Tedesco and Narvekar, 2010) – that includes a measure of forest cover and density. Both forest fraction and

forest density have been shown to have strong impacts on SWE estimates, particularly in dense forests (DeWalle and
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Rango, 2008; Langlois et al., 2011). This more complex algorithm also uses the ∼10 GHz channel on AMSR-E/2

and GPM, and both the vertically and horizontally polarized ∼18 and ∼36 GHz channels

SD = ff(SDff ) + (1− ff)SDo (4.2)

where ff is fractional forest cover, SDff is the SD of the forested fraction, and SDo is the SD of the non-

forested fraction. SDff and SDo are derived with

SDff = p1 ∗ (Tb18V − Tb36V )/(1− fd ∗ 0.6) (4.3)

SDo = p1 ∗ (Tb10V − Tb36V ) + p2 ∗ (Tb10V − Tb18V ) (4.4)

where fd is forest density and p1 and p2 are 1/log10(Tb36V − Tb36H) and 1/log10(Tb18V − Tb18H),

respectively. While neither the MOD12Q1 nor MOD44B products cover our entire time period, we forward- and

back-estimate ff and fd by linear interpolation. This has a minimal impact on intra-sensor SWE estimation,

and, as forest densities are generally low across the study region, does not significantly impact our results. While

attenuation of themicrowave signal in forests is a large problem inmany parts of the world (e.g., Northern Canada,

Foster et al. (2005)), our study region is very sparsely forested (Fig. 4.2D).

While both algorithms (Equations 4.1 and 4.2-4.4) produce reasonable SWE estimates, previouswork has shown

that differences in the SSMIandAMSR-E retrieval algorithms can result in strongbias, and inparticular an elevation-

dependent bias (Daly et al., 2012). Wepresent results for several single-sensor SWE time series, acrossmultiple sensor

platforms. As can be seen in Figure 4.4, the temporal patterns of SWE are very similar across both algorithms, even

if the absolute values of SWE are different. These similarities are emphasized by the black lines in Figure 4.4, which

are smoothed by a 21-point Savitzky-Golay filter for display purposes (Savitzky and Golay, 1964). To simplify our

discussion of intra-sensor and inter-sensor SWE variabilities and the impacts of different topographic factors, we

choose to use the original Chang equation (Equation 6.1) for SWE estimation, along with a constant average snow

density of 0.24 g/cm3 conversion factor to transform SD into SWE (Takala et al., 2011).

Understanding Uncertainties in PMData
To examine possible sources of uncertainty and variance in our SWE estimates, we have divided both the SWE and

raw Tb data by time of day, position along the satellite scanline, and by several topographic parameters.

Time of Day

Previous studies (e.g., Chang et al., 1987, 1991; Armstrong and Brodzik, 2001) have noted that night time SWE

estimates are more reliable than those taken during the day, as liquid water in the snowpack drastically alters the

Tb gradient used for estimating SWE. However, most studies use only one of the descending or ascending orbits,

depending on the location of their study areas andhence the time of satellite overpass. We instead choose tomeasure

solar altitude on a point-by-point basis, to ensure that all of our measured Tb values occur when the sun is below
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Figure 4.4 – Characteristic time series extracted for (76.1932◦CE, 34.3335◦CN, cf. Figure 4.3, 2005-2009) in the
NW Himalaya for the AMSR-E platform. (A) SWE based on the Chang equation (Equation 6.1) (Chang et al.,
1982) in mm, data from SSMI and (B) from AMSR-E, (C) SWE based on Forest Fraction (AMSR-E) algorithm
(Equation 2.3) (Kelly et al., 2003), (D) SWE based on the AMSR-E EASEgrid product (Tedesco et al., 2004). Black
lines smoothed using a 21 data-point Savitzky-Golay filter (Savitzky and Golay, 1964), and used in (E) to calculate
residuals of Chang equation SSMI (solid line), AMSR-E algorithm (dashed line), and AMSR EASEgrid (dotted
line), with respect to the Chang equation AMSR-E SWE estimates as shown in panel (B). Time series shows gener-
ally strong agreement on the timing of SWE buildup and melt, but disagreements on SWE volume.
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the horizon. While 90+% of our points are derived from the descending orbits, we are also able to include some

additional points from the ascending orbits during short periods of the year.

Scanline Position

To examine the impact of satellite look angle on SWE and Tb values, we take the index position (position along the

scanline) of eachmeasured data point, and normalize it by the length of the scanline (number of captures). As each

satellite captures a different swath width, and thus number of points along a scanline, this allows us to normalize

our scanline positions across satellite platforms. We then subset our data into quartiles to investigate possible bias

derived from satellite look angle (i.e., Quartile 1 refers to the first 25% of the scanline, cf. Figure 4.5).

Figure 4.5 – Impacts of scanline position across the 10, 18, and 36V channels for AMSR-E data (76.1932◦CE,
34.3335◦CN, cf. Figure 4.3), divided into quartiles based on distance from satellite (black arrow indicates far to
close range). SWE amount (left axis) in black, with raw 10V (yellow), 18V (blue), and 36V (green) Tb values (right
axis). All channels show impact of SWEbuildup, with largest impacts on the 36V channel, particularly in the spring
melt periods.

As can be seen in Figure 4.5, Tb10V , Tb18V , and Tb36V remain relatively constant across all scanline positions.

While there are some differences between each quartile, these impacts are not consistent across the study area, and

shownodiscernible topographic pattern. Hence, while scanline position differences throughout a single-point time
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series may have minor impacts upon SWE variability, these impacts are not universal or constrained across many

points, and thus are not considered a major factor in influencing SWE variability.

Topography
Aswith forest cover, topographic parameters have long been known to impactTb and SWEmeasurements (Mätzler

and Standley, 2000; Armstrong and Brodzik, 2001; Mizukami and Perica, 2012; Dong et al., 2005). However, as

many SWE algorithms have been calibrated over wide, flat, and forested zones (e.g., Northern Canada, Siberia), the

relationship between topographic parameters and SWE estimation remains unconstrained.

Figure 4.6 – (A) Multi-year maximal SWE, proxied by 95th percentile SWE volume, and (B) 50th percentile SWE
volume, over the period 2000-2015, calculated from a merged dataset of daily values across all sensors. 5-km radius
topographic relief in background.

Across all instruments, we see that relief and 95th percentile SWE volume are spatially correlated (Fig. 4.6). It is

not clear whether this relationship stems from regional weather patterns, precipitation capture in complex terrain,

or constructive interference in the PM spectrum over complex terrain. However, it is clear that both SWE volume

and topographic parameters have impacts on SWE variability; examining whether these two impacts are manifesta-

tions of the same uncertainty in SWEmeasurements is outside the scope of this study.

Results

Linear Regressions
To explore the significance of several topographic and land cover indices on SWEvariability, we performed a series of

linear regressions on an aggregate and by-instrument basis. For each of our 2500 randomly chosen point locations,

we extracted raw PMmeasurements within a radius of∼10-km (0.1◦), and derivedmeasures of both bulk SWE and

clear-day SWE variability (defined as days where temperature does not rise above 0◦C and there is less than 0.1-mm

sensed precipitation) over the entire time series, which we then compare to the topographic parameters of each

point (Fig. 4.7, Tables 4.2 and 4.3). Additional Figures and Tables for other topographic indices are available in the

Supplement (Figs. A2-A6, Tables A1-A4).



3. Results 33

Figure 4.7 – Correlation between SWE variability (standard deviation, STD) and hillslope angle across all instru-
ments and all sample points show in Figure 4.1 (n=2500). (A) Aggregate total variability on y-axis and (B) clear-day
variability on the y-axis, with regression lines and p-values on each. Individual regression results available in Table
4.2.

When long-term variability in the SWE time series is compared to hillslope angle, we see significant (p <0.05)

results across all satellites (Table 4.2). When examining the entire time series, there is intrinsic variability in the

SWE signal when snow falls between measurements. To control for this, we examine the SWE signal variability

over only clear days. These results are also significant across all satellites, albeit with different regression slopes. This

implies that hillslope angle has a direct influence on the reliability or consistency of SWEmeasurements, albeit with

differences in regression coefficient related to PM instrument, the length of the sensed time series, and the temporal

coverage of the time series. However, it is not clear whether the increase in SWE variability at steeper hillslopes

in our study region is due solely to topographic impacts, or is also driven by regional weather patterns or other

confounding effects.

Linear regressions for other topographic and land cover variables can be found in the Supplement (Tables A1-

A4). No other topographic indices maintain an appreciable positive or negative relationship across multiple satel-

lites. We find, however, a significant correlation between clear-day SWE variation and long-term wind patterns, as

measured by HAR 10-m wind speed (Table 4.3).

For mean, median, 25th, 75th, and 90th percentile long-term DJF wind speeds, we see significant relationships,

where consistently low-wind areas (low 25th percentile wind speeds) exhibit higher variance in SWE estimates (ad-

ditional regression results available in the Supplement, Tables A1-A4). There are significant differences in the re-
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Table 4.2 – Slopes of regressions against hillslope angle (n=2500), including p-values, t-values, and 95%
confidence intervals (CI). Total individual points (all days/clear-day): All Satellites (30,865,102/14,804,414),
SSMI (2,224,350/1,586,970), SSMIS (4,089,875/2,786,589), AMSR-E (15,302,564/7,284,209), AMSR2
(6,660,429/2,678,470), GPM (2,587,848/468,176). Bold values indicate statistically significant results (p <0.05).

Metric All
Satellites

SSMI SSMI/S AMSR-E AMSR2 GPM

All-day Slope 0.168 0.491 0.359 0.17 0.45 0.322
All-day Slope p-values 0.00036 2.92e-109 4.5e-69 0.0261 4.63e-55 1.42e-28
All-day Slope t-values 3.57 23.4 18.1 2.23 16 11.2
All-day Slope CI 0.0905-

0.245
0.457-
0.526

0.327-
0.392

0.0443-
0.296

0.404-
0.296

0.274-
0.369

Clean-day Slope 0.311 0.141 0.463 6.64 0.458 0.109
Clean-day Slope p-values 5.43e-07 0.031 1.94e-108 9.83e-91 9.74e-75 1.42e-28
Clean-day Slope t-values 5.02 2.16 23.3 21.1 18.9 1.24
Clean-day Slope CI 0.209-

0.412
0.0334-
0.248

0.43-
0.495

6.12-7.16 0.418-7.16 -0.0352-
0.252

Table 4.3 – Slopes of regressions against 14-year 25th percentile 10-m DJF Wind Speed (n=2500), in-
cluding p-values, t-values, and 95% confidence intervals (CI). Total individual points (all days/clear-day):
All Satellites (30,865,102/14,804,414), SSMI (2,224,350/1,586,970), SSMIS (4,089,875/2,786,589), AMSR-E
(15,302,564/7,284,209), AMSR2 (6,660,429/2,678,470), GPM (2,587,848/468,176). Bold values indicate statis-
tically significant results (p <0.05).

Metric All
Satellites

SSMI SSMI/S AMSR-E AMSR2 GPM

All-day Slope -1.27 -0.28 -0.565 -1.37 -0.525 -1.11
All-day Slope p-values 1.57e-06 0.0327 2.03e-06 0.00146 0.00161 1.54e-11
All-day Slope t-values -4.81 -2.14 -4.76 -3.19 -3.16 -6.78
All-day Slope CI -1.71-

-0.838
-0.495-
-0.0643

-0.76-
-0.37

-2.08-
-0.662

-0.798-
-0.662

-1.38-
-0.842

Clean-day Slope -1.12 -1.57 -0.306 13.9 -0.693 -1.64
Clean-day Slope p-values 0.00143 7.29e-06 0.013 5.86e-100 3.64e-06 1.54e-11
Clean-day Slope t-values -3.19 -4.49 -2.48 22.2 -4.64 -2.86
Clean-day Slope CI -1.69-

-0.541
-2.14-
-0.995

-0.508-
-0.103

12.9-15 -0.939-15 -2.59-
-0.696

gression slopes across different satellite platforms, in both Tables 4.2 and 4.3. We attribute this to differences in

data capture time, data density, and the temporal range of the different satellite platforms. These differences indi-

cate that any blended or multi-instrument SWE product must account for these differences to generate an accurate

SWE estimate.
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Discussion

Multiple Regression
To determine the relative impacts of several variables on clear-day SWE variability, we set up a multiple regression,

with clear-day SWE standard deviation as the independent variable andmaximal SWE volume, forest fraction, hill-

slope angle, relief, elevation and both 25th and 90th percentile DJF wind speeds as dependent variables. In this

analysis, we use 95th percentile SWE volume, calculated over the entire time series, as a proxy formaximal SWE vol-

ume (Table 4.4). While SWE variation within a single PM footprint is likely to influence SWE variability, without

significant in-situ data these impacts are hard to quantify. In this regression, we assume that someof the in-footprint

variability is proxied by both topographic relief and by wind speeds, which could both impact the distribution of

SWE within a single PM pixel.

Table 4.4 – Coefficients of Multiple Regressions for GPM (n=2500), including p-values, t-values, 95% confidence
intervals (CI), and percentage of total variance. Bold values indicate statistically significant results (p <0.05).

Metric Coefficient p-value t-value Confidence Interval Percent
of Total

Forest Fraction 2.97 0.206 1.27 -1.63 - 7.57 75.8%
95th Percentile SWE 0.306 0 206 0.303 - 0.309 7.82%
90th Percentile Wind 0.22 2.13e-08 5.62 0.143 - 0.297 5.62%
25th Percentile Wind -0.213 0.000953 -3.31 -0.34 - -0.087 5.44%
Hillslope Angle 0.205 6.84e-23 9.95 0.165 - 0.246 5.24%
Relief -0.00236 9.93e-17 -8.36 -0.003 - -0.002 0.0603%
Elevation -0.00224 4.86e-317 -44.4 -0.002 - -0.002 0.0572%

We observe that forest fraction is the strongest control on SWE variability (Table 4.4). This is followed by long-

term 95th percentile SWE, 90th percentile DJF wind speed, 25th percentile DJF wind speed, hillslope angle, relief,

and elevation. Interestingly, terrain slope has a∼10 times greater effect upon SWE variability than terrain relief does

in our study area (Table 4.4).

In our study region, there are relatively few geographic areas with significant forest cover (cf. Figure 4.2D).

When amultiple regression is performed only on points with less than 5% forest fraction (themajority of our study

area), the coefficients of regression for each of the other variables are nearly identical, as can be seen in Table A6

of the Supplement. This implies that forest fraction has very little impact upon the relationship between SWE

variability and the other variables used in the multiple regression in HMA. We do not have enough sample points

with dense forest cover to provide statistically significant results for a similar regression analysis on only those points

with greater than 5% forest fraction.

While forest fraction is a factor controlled for in modern SWE estimation algorithms, wind speed, topographic

slope, and maximal SWE volume are not. These factors will all have impacts on SWE estimation, and can help ac-

count for someof the uncertainty noted in SWEestimation studies (e.g.,Mizukami andPerica, 2012;Dai et al., 2015;

Foster et al., 2005; Tedesco and Narvekar, 2010). In particular, the sensitivity of SWE variance to 95th percentile
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SWE implies that deep snow is still very difficult for PM SWE algorithms to estimate. Several studies have noted

that SWE estimation becomes far less reliable at depths greater than 200-mm (e.g Vuyovich et al., 2014; Clifford,

2010; Andreadis and Lettenmaier, 2006; Tong et al., 2010; Dong et al., 2005). While both the Tb10V and Tb18V

signals will be impacted by snow surface temperatures, several authors note that the Tb10V signal is less influenced

by deep snowpack than the Tb18V (e.g., Kelly, 2009; Derksen, 2008; Tedesco et al., 2015; Tong et al., 2010).

Figure 4.8 – (A) Landsat 8 Image (Oct 5, 2015, LC81450392015276LGN00), showing a point location in the west-
ern Himalaya (79.418247, 30.911184) surrounded by glaciers. (B1) Raw 10V (yellow), 18V (blue), and 37V (green)
signal; (B2) Chang equation SWE estimates, with AMSR-E data; (B3) AMSR-E algorithm SWE estimates; (B4)
AMSR EASEgrid SWE estimates. Illustrates how persistent snow cover can disrupt the 10V signal. SWE is also
likely significantly underestimated in locations such as this with glacial ice or deep snow cover.

This effect is particularly pronounced in regions where there is constant or nearly-constant snow cover (e.g.,

Figure 4.8). Throughout the year, and in particular during the winter months, all three channels (Tb10V , Tb18V ,

and Tb36V ) are impacted by snow buildup, even though the Tb10V and Tb18V channels are treated as a ‘bare-

soil’ signal by many algorithms (e.g., Chang et al., 1987; Kelly et al., 2003; Pulliainen, 2006; Kelly, 2009; Takala

et al., 2011; Mizukami and Perica, 2012; Savoie et al., 2009; Derksen, 2008). This snow signal is captured by both

the Chang equation (Fig. 4.8B2) and the AMSR-E SWE algorithm (Fig. 4.8B3), although it is unlikely that either

estimate properly captures themagnitude of SWE. It is likely that those areas which see constant or nearly-constant

snow cover develop larger snow crystals, which interfere more strongly with the Tb10V and Tb18V channels than

fresh or seasonal snow. However, without in-situ data, it is difficult to separate these two interacting impacts.

While some point locations in our dataset see constant snow cover (cf. Figure 4.8), this effect is also visible in

areas with seasonal snow cover (cf. Figure 4.5). Those points with constant deep snow cover are likely toweaken the

relationship between maximal SWE depth and SWE variability by lowering the possible range of SWE values. De-

spite the potential for SWE signal saturation at high snow depths, we still see a strong positive correlation between

95th percentile SWE and SWE variability.

Both 90th and 25th percentile DJF 10-m wind speeds show strong impacts in our multiple regression. We at-

tribute this effect – which is not consistent across all satellites – to wind-blown snow redistribution. Areas of

high wind are typically topographically complex, and see wind-blown snow redistribution mostly in the form of

avalanches which do not travel much further than the extent of a single PM pixel. These regions typically see more
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annual snow as well, which could confound the wind signal. However, low-wind areas, which correlate with large,

flat regions in our study area, could see snow redistribution over a very large area, especially if there are few wind-

breaks.

Spatial Distribution of Uncertainties
Based on our multiple-regression analysis, we have developed a map showing the distribution of SWE uncertainty

throughout our study area (Fig. 4.9). This is based on topographic parameters, HAR wind speed, land cover

(MOD12Q1), and long-term 95th percentile SWE estimates derived from daily AMSR-E EASEgrid SWEmeasure-

ments (2002-2011) (Tedesco et al., 2004), and does not include any uncertainties introduced by differing algorithms

or ‘instantaneous’ ground conditions, such as precipitation or snow recrystallization. We use the AMSR-E EASEg-

rid to generate our SWE volume proxy as it covers the whole study area with a continuous surface at a comparable

spatial resolution to the other input datasets.

Figure 4.9–Spatial distribution showing SWEuncertainties fromPMdata using (A) themulti-parameter estimated
using regression coefficients from theGPM satellite (one year of data, Table 4.4). (B) Percentage difference between
the uncertainty of the SSMIS satellite and the uncertainty of the GPM satellite (100% indicates equal uncertainty
in both satellites, lower values indicate SSMIS is better) and black arrow in the legend indicates direction from high
to low uncertainty. In general, the GPM satellite shows lower uncertainty across the entire study area. Additional
comparisons available in the Supplement (Figs. A10-A15).

As can be seen in Figure 4.9, SWE uncertainty is strongly correlated with complex topography, as has been pro-

posed in previous publications (Mizukami and Perica, 2012; Tedesco and Narvekar, 2010). However, the multiple

regression also implies that topographic complexity is not the only controlling variable. For example, the north-

central portions of the Tibetan Plateau, while topographically flat, see relatively high SWE variation due to the

combination of higher snowfall totals than the south-eastern areas of the Plateau and more wind-related snow re-

distribution. These estimates can provide a first-order assessment of SWEmeasurement reliability throughout the

world, and particularly in regions where ground-truth data are sparse. While a generalized uncertainty map com-

bining the results of all of the satellite time series would be desirable, the multiple regression results on a by-satellite

basis (available in the Supplement, Tables A5-16) indicate that there are important differences in regression coef-

ficients across satellites. When considered in aggregate, these differences dilute the uncertainty signatures of each
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individual satellite. As each satellite responds slightly differently to topographic, land cover, and climatic factors,

in both positive and negative directions, the aggregate regression encompasses a wider spread of uncertainties, and

thus shows the least significant correlations (see Supplement, Figures A10-A15 and Tables A5-A16). The different

responses of each satellite are likely due to differences in spatial, temporal, and spectral resolution and instrument

hardware.

Despite these differences in uncertainty, all five satellites are able to track the patterns of SWEover ourmulti-year

time series (cf. Figure 4.10). The largest differences between SWE amounts on an annual basis come when SWE

amounts are greatest – for example in 2007 and 2010 – andwhen the SWE time series does not encompass the entire

3-month DJF period – for example in 2002 (cf. Figure 4.10).

Figure 4.10– (A)AnnualDJFmean SWEamounts at a single point (cf. Figure 4.3), as sensed by SSMI (red), AMSR-
E (blue), SSMIS (green), AMSR2 (black), and GPM (magenta). (B) Annual DJF median SWE amounts with DJF
minima and maxima (Xs) and first and third quartiles (squares) for each. Illustrates that while each instrument
senses slightly different SWE amounts, the inter-annual patterns of SWE are consistent across the satellites.
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In our analysis, spectral resolution has the least influence on differences in SWE volume uncertainty across satel-

lite platforms, as we use only two bands (Tb18V and Tb36V ) in our calculations of SWE. These bands are present

across all satellites, albeit with slight differences in exact channel frequency (Table 4.1). These channel differences are

controlled for in the application of the Chang Equation (Equation 6.1), after Armstrong and Brodzik (2001). Dif-

ferences in the temporal range and resolution of each satellite dataset could influence our calculated uncertainties,

particularly due to differences in snow cover during multiple winter periods. For example, AMSR-E (2002-2011)

has several differentwinters of data, whileGPM (2014-2015) only has data from a single completewinter. However,

there is high variation in both the regression coefficients and p-values when the multiple regressions are performed

on a year-by-year basis. The coefficients tend to oscillate around amulti-year norm, indicating that while themulti-

year regressions provide the long-termmean coefficients, the highest significance uncertainty signal will come from

those data with a shorter observation period, such as GPM.

As the spatial resolutions of GPM and AMSR-E/2 are higher than those of SSMI/S (e.g., Figure 4.3), there is

less intrinsic terrain variability in a single GPM/AMSR pixel than in a single SSMI/S pixel. This implies that, all

other factors being equal, the SWE estimates fromGPM and AMSR-E/2 will be of a higher quality (cf. Figure 4.9,

and Figures A10-A15 in the Supplement). As these sensors also gather additional spectral frequencies, they are also

suitable for more complicated SWE algorithms, such as those shown in Equations 2.3-2.5.

Discussion of Additional SWEUncertainties
The above regressions have noted some possible topographic, land cover, and weather-related SWE measurement

uncertainty sources. However, there are several other possible uncertainty sources, which have been accounted for

to varying degrees in previous work.

The first possible source of uncertainty, which is difficult to control for, is inter- and intra-sensor biases. Some

studies, such as Dai et al. (2015), have identified SWE biases between the various satellites of the SSMI/S constella-

tion. Intercalibration ofmultiple satellites is challenging due to the dearth ofwide-scale and long-termSWEground

measurements. Additionally, the Tb18V channel present on all of the studied satellites is considered as a clean soil

signal from the snow-covered earth in the Chang equation. However, the influence of SWE buildup can be seen

clearly in this channel, for example in Figures 4.5 and 4.8. While modern algorithms also take advantage of the

Tb10V signal for deep-snow estimation (e.g., Kelly, 2009; Tedesco and Narvekar, 2010; Derksen, 2008), Figure 4.8

also shows SWE influence on that channel. Therefore, there will be inherent bias in any SWE estimation, especially

in deep-snow situations.

Previous work has also implicated high relief areas as low SWE confidence areas (Mätzler and Standley, 2000;

Tedesco and Narvekar, 2010). This is due to relief not only influencing the size of the satellite footprint through

shadowing, but also changing the relative satellite look angle and angle of incidence for polarization. Our results

indicate that topographic parameters do indeed influence SWE reliability, although it is not clear whether overshad-

owing, satellite look angle, polarization changes, or a secondary impact of topography such as precipitation capture

aremost responsible for changes in SWE reliability. Additionally, terrain slope has amuch larger impact upon SWE

variability than terrain relief does in our study area (Table 4.4).
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Conclusion
This study presents a multi-parameter uncertainty assessment of passive microwave (PM) snow-water equivalent

(SWE) estimation using the Special SensorMicrowave/Imager (SSMI), Special SensorMicrowave Imager/Sounder

(SSMIS), AdvancedMicrowave Scanning Radiometer - Earth Observing System (AMSR-E), AMSR2, and Global

Precipitation Measurement (GPM) satellites. We identify and assess a suite of possible uncertainty sources in the

raw PM data, as well as in the SWE estimations from multiple overlapping time series. We use these uncertainty

sources to develop a multi-parameter estimation of inherent unreliability in SWE estimates across HighMountain

Asia, including the Tibetan Plateau and theHimalaya. We find that forest fraction is the strongest control on SWE

variability, followed by long-termmaximal SWE volume, wind speed, and hillslope angle. Elevation, relief, and ter-

rain aspect show very low influence on SWE variability. While forest cover and topographic parameters have been

integrated into many SWE algorithms, wind speed and long-term maximal SWE volume have not. The results de-

rived here show that wind-redistribution of snow can have impacts on SWE, especially over large, flat, areas. The

uncertaintymap developed here provides a first-order approximation of SWE-estimate reliability formuch ofHigh

Asia, and implies that high-fidelity SWE estimates can be produced for a range of elevation zones and terrain types.

We find that each individual satellite shows differences in SWE variability, with the more modern sensors (GPM,

AMSR-E/2) providing the most robust SWE estimates, expressed in this analysis as low SWE variability.

Supporting Information
(see Appendix A).
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Abstract
Snowmeltwaters account for the majority of the yearly water budgets of many catchments inHighMountain Asia

(HMA). Here we examine trends in snow-water equivalents (SWE) using passive microwave data (1987-2009). We

find an overall decrease in SWE in HMA, despite regions of increased SWE in the Pamir, Kunlun Shan, Eastern

Himalaya and EasternTien Shan. While the average decline in annual SWE acrossHMA (contributing area: 2,641 x

103 sq km) is low (average: -0.3%), annual SWE losses conceal distinct seasonal and spatial heterogeneities across the

study region. For example, the Tien Shan has seen both strong increases in winter SWE and sharp declines in spring

and summer SWE. In the majority of catchments, the most negative SWE trends are found in mid-elevation zones,

which often correspond to the regions of highest snow-water storage and are somewhat distinct from glaciated

areas. Negative changes in SWE storage in thesemid-elevation zones have strong implications for downstreamwater

availability.

Introduction
The impacts of climate change on High Mountain Asia (HMA) have been the subject of intense debate over the

past decade (Bolch et al., 2012; Kääb et al., 2012; Kang et al., 2010; Immerzeel et al., 2010; Gardner et al., 2013;

Hewitt, 2005; Malik et al., 2016), and remain largely unconstrained due to the lack of in-situ observational data

in many areas, particularly those at high elevations (Bookhagen and Burbank, 2010). Large-scale satellite datasets,

such as theGlobal PrecipitationMeasurement (GPM) (GPMScience Team, 2014), Tropical RainfallMeasurement

Mission (TRMM) (Huffman et al., 2007), and the Gravity Recovery and Climate Experiment (GRACE) (Tapley

et al., 2004) missions, and modeling efforts, such as High Asia Refined Analysis (HAR) (Maussion et al., 2014)

and Asian Precipitation - Highly-Resolved Observational Data Integration Towards Evaluation (APHRODITE)

†published as Taylor Smith and Bodo Bookhagen. “Changes in seasonal snow water equivalent distribution in High Mountain Asia (1987 to 2009)”,

Science Advances 4: 1, (2018) http://doi.org/10.1126/sciadv.1701550

http://doi.org/10.1126/sciadv.1701550
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(Yatagai et al., 2012), show spatially and temporally heterogeneous trends in temperature and precipitation in the

region (Malik et al., 2016). Global and regional climate models also disagree on climate projections for much of

HMA, due to relatively poor understanding of the interactions between large-scale climate systems active in the re-

gion, such as the Indian SummerMonsoon (ISM), EastAsian SummerMonsoon (EASM), and theWinterWesterly

Disturbances (WWD) (Kapnick et al., 2014).

Climatic shifts in HMA have spatial, altitudinal, and temporal components and are not evenly felt across the

region. The total yearly precipitation in the ISM region (cf. Fig. 5.1, inset) has not changed significantly over

the past decades, but extensive changes in the spatial and intensity distributions of rainfall have been observed

(Malik et al., 2016; Bookhagen and Burbank, 2010; Singh et al., 2014; Yao et al., 2012). Similarly, the timing and

intensity of major precipitation events related to theWWDhas shifted over the past 30 years (Cannon et al., 2014).

As whether precipitation falls as rain or snow is determined by air temperature, changes in the timing of storm

events can have large impacts on the amount of snow that falls in HMA (Lutz et al., 2014) and downstream water

availability (Berghuijs et al., 2014). Consistent runoff is essential for year-round water provision for more than a

billion people who rely on water sourced in HMA (Vaughan et al., 2013).

Many studies have noted extensive glacial retreat acrossHMA(Bolch et al., 2012; Kääb et al., 2012;Gardner et al.,

2013; Scherler et al., 2011; Sorg et al., 2012), with a fewnotable exceptions, such as the so-calledKarakoramAnomaly

(Hewitt, 2005; Gardelle et al., 2012). Heterogeneity in glacier response to climate change has been attributed to

hypsometric andprecipitation variation (Hewitt, 2005), differences indebris cover (Scherler et al., 2011), snow-cover

shielding (Kapnick et al., 2014), and precipitation seasonality (Fujita, 2008; Fujita and Nuimura, 2011). Extensive

research has been focused on retreating glaciers as a symbol of regional climate change, even though the majority of

meltwater inmuch ofHMA is generated by snowmelt (Bookhagen andBurbank, 2010;Ghosh et al., 2012; Shrestha

et al., 2015; Wulf et al., 2016; Jeelani et al., 2012; Immerzeel et al., 2010). Due to large spatial heterogeneity in snow

cover, a regional assessment is difficult; very little in-situ data are available to constrain large uncertainties inmodeled

trends.

In this study, we leverage passive microwave (PM) data from the Special SensorMicrowave Imager (SSMI, 1987-

2009), spatially averaged from raw swath data following Smith and Bookhagen (Smith and Bookhagen, 2016), to

assess whether there have been any significant trends in snow-water equivalent (SWE) across HMA from October

1987 toOctober 2009. We consider a set of 6,680 grid cells with 0.25 decimal degree (dd) spatial resolution (approx.

4,175 x 103 sq km), with on average 8,340 measurements each (average of 1.03 measurements/day for 22 complete

October-to-October years), across 10 major catchments, with a special focus on the Syr Darya, Amu Darya, Tarim,

Indus, Ganges/Brahmaputra, and Tibetan Plateau catchments (Fig. 5.1). Together these catchments serve more

than a billion people, many of whom depend heavily on seasonal snowmelt. In some catchments, such as the Indus

and AmuDarya, nearly 50% of the yearly water budget is derived from snowmelt (Bookhagen and Burbank, 2010;

Shrestha et al., 2015). The SyrDarya, Tarim, andTibet catchments receivemore than two thirds of their yearlywater

budget as snow (Barnett et al., 2005; Huss et al., 2017). Across the study region, the majority of the snowpack is at

high elevations and is often poorly measured by sparse weather station coverage (e.g., Fig. 5.2). Our data provide
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Figure 5.1 – Study Area. (A) Topographic map of HighMountain Asia (HMA) with major catchment boundaries
(black) derived from SRTMdata (Jarvis et al., 2008), and names ofmajor mountain ranges. Inset map shows politi-
cal boundaries, as well as wind direction ofmajor weather systems (WWD:WinterWesterlyDisturbances, ISM: In-
dian Summer Monsoon, EASM: East Asian Summer Monsoon). (B) 22-year average December-January-February
(DJF) daily SWE volume across the study area, as derived from SSMI data. (C) DJF SWE standard deviation. Each
point represents a 0.25 x 0.25 decimal degree (dd) grid cell.
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information on SWE that may be poorly parameterized in regional and global models at a spatial scale that is not

available to in-situ studies.

Figure 5.2 – Asian Precipitation - Highly-Resolved Observational Data Integration Towards Evaluation
(APHRODITE) station density (Yatagai et al., 2012). Shown are average gridcell station densities over the past
47 years (1961-2007). Illustrates the low station density in the core ofHMA (Tibetan Plateau), and that the highest
elevations are severely under-represented. Note that these stations almost exclusively measure rainfall; there exist
very few snow-monitoring stations in HMA.

Our results are provided with the caveats that (1) the climatically-short study period limits attribution of the

trends, and (2) passive microwave SWE estimates are impacted by a wide range of uncertainties – particularly in

deep snow and complex terrain, and increasingly lack physical bases as snowdepths increase (Smith andBookhagen,

2016; Takala et al., 2011; Kelly, 2009). Our results therefore provide an assessment of relative changes in SWE over

the study period – and the spatial and temporal distribution of those changes – rather than concrete changes in

water storage in HMA.

Spatio-temporal Patterns in Regional Snow Cover
Average winter (December-January-February, DJF) SWE ranges from zero up to more than 140 mm in some high-

elevation areas. In particular, the Tien Shan, Pamir, and Hindu Kush see significant snow buildup above 2 km
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elevation (Fig. 5.1B). These high-SWE areas generally follow the track of the WWDs as they move northeast from

the Arabian Sea and deposit snow along high-elevation topographic breaks (Fig. 5.1A, inset). Southern HMA also

receives snow from the tail end of the ISM as it moves north and west towards the Indus. As each region of HMA

is impacted by different climatic systems – and the impacts of climate change are spatially diverse – trends in SWE

are not uniform. While annual trends (1987-2009) in SWE (cf. Fig. 5.3) are generally negative across HMA, there

are distinct seasonal and elevation heterogeneities.

Figure 5.3–Annual trends in SWEvolume (1987-2009), as derived fromSSMIdata, withmajor regionalwatersheds
(black outlines). Parts of the Tien Shan, the Kunlun Shan, and parts of the central and easternHimalaya see overall
positive SWE signals in the study period. All points shown are significant (p <0.05).

In general, SWE in HMA is decreasing across the period March-August (Fig. 5.4B,C), but some areas, partic-

ularly in the Pamir-Tien Shan region, exhibit a significant positive DJF trend over our study period (Fig. 5.4A).

A smaller geographic area, mainly in the Himalaya, Karakoram, and Kunlun Shan, shows increasing trends in fall

(September-October-November, SON) SWE (Fig. 5.4D).

DJF and SON SWE trends are generally negative from theHindu Kush in the northern Indus catchment, along

the Himalayan Front, and through the Tibetan Plateau. The exception to this is along the border between the

Indus and Ganges catchments (Gharwal), where positive SWE trends are observed. Increases in SON/DJF SWE

in this region are possibly linked to changes in the WWD, which has resulted in increased snowfall in parts of the
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Figure 5.4 – Seasonality in SWE Trends. Significant (p <0.05) (A) December-January-February (DJF), (B) March-
April-May (MAM), (C) June-July-August (JJA), and (D) September-October-November (SON) trends in SWE
volume (1987-2009), as derived from SSMI data, with major catchments (black outlines, cf. Fig. 5.1A). We limit
our analysis to regions where the seasonal average SWE is greater than 5 mm to remove spurious results in areas
with shallow or infrequent snow cover. MAMand JJA trends across HMA are overwhelmingly negative, excepting
a few isolated regions. DJF trends are more widely positive, and are also present in SON in the western Himalaya,
the Tien Shan and the Kunlun Shan.

Indus (Tahir et al., 2011; Cannon et al., 2014; Norris et al., 2016), and are strong enough to show positive annual

SWE trends in opposition to the general decrease in SWE in HMA (cf. Fig. 5.3).

The northwestern region of HMA, following the track of the WWD (cf. Fig. 5.1A, inset) through the Amu

Darya catchment towards the Tien Shan into the north-western Tarim has also seen increasing DJF SWE over the

study period, which is in line withmeasured increases in precipitation in the Pamir and parts of the Tien Shan (Sorg

et al., 2012; Aizen et al., 1997), and increased snow cover in western China (Dahe et al., 2006). This is particularly

true along the border between the Syr Darya and Tarim catchments in the Tien Shan, despite decreasing trends

in mean annual precipitation as measured by sparse in-situ climate stations (Sorg et al., 2012). These trends align

well with a proposed increase in the strength of the WWD over the past 30 years (Cannon et al., 2014, 2016), and

observed increases inDJFprecipitation innorthernPakistan (Pamir-Karakoram) (Archer andFowler, 2004;Treydte
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et al., 2006). The full extent of changes in SWE, and in particular the positive SWE trends at high elevations, had

not yet been observed outside of model data.

Spring (March-April-May,MAM)SWEtrends are distinctlynegative, exceptingwhere someof thehigh-elevation

regions of the Pamir-Karakoram (northern Indus and Amu Darya catchments) show positive SWE trends (Fig.

5.4B), which may be related to the positive regional DJF trends. The dramatic DJF-MAM trend reversal in the

Tien Shan could indicate that increasing spring temperatures have led to faster spring runoff despite increased win-

ter snowpack – a trend that has already been observed in snow cover, but not SWE, changes in Central Asia (Sorg

et al., 2012; Aizen et al., 1997; Smith et al., 2017). Higher air temperatures across HMA could also induce a shift

from snow to rain, which would also reduce SWE storage.

Trends in summer (June-July-August, JJA) SWE are negative across the study region, where enough SWE is

present to allow for trend analysis (Fig. 5.4C). This is in line with projections of increased temperatures in HMA

(Yao et al., 2012), which drive earlier melting of snow (Xu et al., 2017; Smith et al., 2017), and increase the ratio

of liquid precipitation to snowfall in much of the region (Lutz et al., 2014). The decline in summer SWE in the

Himalaya is consistentwith observed changes in the precipitation distribution of the ISM (Singh et al., 2014; Palazzi

et al., 2013) and melt rate enhancement from decreases in snow albedo due to aerosol contamination (Lau et al.,

2010).

When these trends are considered together, they imply an intensification of the yearly hydrological cycle, where

winter storms deposit more snow, particularly at high elevations, while warming summer temperatures cause rapid

melting. Under this scenario, late-spring to early-fall water storage will decrease, with potentially dire implications

for year-round water provision in many communities that rely directly on the slow melting of large snowfields for

dry-season water provision (Vaughan et al., 2013).

Aggregated Trends Across Elevations
While seasonal trend analysis provides valuable information on potential changes in local hydrologic budgets, it

does not account for whether these changes occur in low- or high-SWE areas, and what the elevation distribution

of these changes is. We aggregate SWE trend and distribution data on a catchment scale and segment it into a

succession of 5th-percentile elevation slices to illustrate the variation of trends across elevation zones (Fig. 5.5).

Catchment-aggregated trend statistics can be found in Tables B1-B5.

Across all catchments, there is a strong, non-linear, elevation-SWE relationship; the nature and magnitude of

these relationships – as well as each individual catchment’s glacier and SWE distribution – are distinct, and contex-

tualized by the unique topographic and climatic setting of each catchment. High-elevation DJF snow and glacier

coverage is nearly complete, although actual catchment hypsometries vary significantly (Figs. B1-B6). The highest

SWE-volume elevation slice in each catchment occurs below the maximal catchment elevation in the majority of

catchments (Fig. 5.5A).

In the northern, lower-elevation, regions of HMA (Amu Darya, Syr Darya, and Tarim catchments), positive

SWE changes are limited to DJF (Figs. B1-B3). In particular, the Syr Darya catchment has experienced strong in-

creases in high-elevationDJF SWE (Figs. 5.4A, B1), while also having some of the strongest negative trends inMAM

SWE (Table B3). The Tarim and Amu Darya catchments also see positive DJF trends – albeit with different eleva-
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Figure 5.5 – SWE Contribution and SWE trend synthesis: (A) Elevation distribution of SWE in each catchment,
where each point shows percentage of total-catchment SWE at each 5th percentile elevation bin. (B) Mean SWE
trend at each 5th percentile elevation bin. In the majority of catchments, maximum SWE occurs below the max-
imum catchment elevation, despite differences in catchment hypsometry. Each catchment is characterized by a
unique elevation-trend relationship. The Indus, Amu Darya, and Tibetan Plateau catchments see the most nega-
tive SWE trends at their mid-elevations. The Ganges in the central Himalaya sees the most negative trends at the
highest elevations.

tion distributions – and negative MAM-JJA trends. The Amu Darya and Tarim, however, see less negative MAM

SWE trends, implying more persistence of SWE into the spring melt season in these catchments than in the Syr

Darya. Across all three catchments, however, full-year SWE trends remain negative, excepting at the very lowest

parts of the AmuDarya (Fig.5.5, Table B1).

The central and southernHMAcatchments (Tibet, Indus, Ganges/Brahmaputra) storemuch less low-elevation

SWEthan thenorthern catchments. To simplify thediscussionof SWEtrends for these catchments, wehave focused

on elevations above 1,000m,where the vastmajority of snowfall occurs. All three catchments exhibit amid-elevation
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decrease in their SWE trends, wheremid-elevation trends are more negative than those at higher or lower elevations

(Fig. 5.5B). The only catchment out of the six examined in this study where the most negative SWE trends occur at

thehighest elevations is theGanges/Brahmaputra (Fig. 5.5B, yellow line). This is in linewith increased temperatures

in low-precipitation, high-elevation zones of theHimalaya (Bolch et al., 2012; Pepin et al., 2015). It is likely that the

decreasing SWE trends in this area at high elevations have also influenced glacial declines, which are some of the

fastest in HMA (Bolch et al., 2012).

Implications for Glaciers
Many recent studies (Bolch et al., 2012; Kääb et al., 2012, 2015; Gardner et al., 2013; Kapnick et al., 2014; Yao et al.,

2012; Scherler et al., 2011;Gardelle et al., 2012; Frey et al., 2014) have examined glaciers inHMAacross several spatial

scales. Glacier retreat rates are not uniform across HMA; some distinct regions of rapid decline, stability, and even

growth exist. Two regions where studies have shown stability or glacier growth are the Karakoram (Hewitt, 2005;

Gardelle et al., 2012;Wang et al., 2017) and theKunlun Shan (Gardner et al., 2013; Yao et al., 2012;Kääb et al., 2015).

Our data show positive trends in DJF, MAM, and SON SWE for parts or all of both regions, which indicates that

increases inwinter SWE storage could be partially responsible for glacier stability and growth in these regions. These

positive SWE regions generallymatch the increasedprecipitation regions foundbyYao et al. (Yao et al., 2012) and are

consistent with the proposed increase in the strength of theWWD (Cannon et al., 2014). Previous work has argued

that HMA’s glaciers are more strongly impacted by changes in precipitation seasonality than by changes in annual

precipitation (Fujita, 2008; Fujita and Nuimura, 2011; Kapnick et al., 2014). In the cold and dry Kunlun Shan,

glaciers are less sensitive to rising regional temperatures, and thus the trend towards wintertime SWE increases (Fig.

5.4A) could help explain some of the observed glacial thickening. As many glaciers are fed by avalanching as well as

direct snowfall (Scherler et al., 2011), changes in high-elevation precipitation are an important factor to account for

when estimating future glacier mass budgets.

Strongly negative summer SWE trends are found in the central Indus catchment (Jammu-Kashmir region), and

correspond with some of the most rapidly shrinking glaciers in the region (Kääb et al., 2012). These wasting rates

are confirmed in further studies that found that the western and central Himalaya have some of the highest glacier

wasting rates inHMA(Gardner et al., 2013; Yao et al., 2012). This implies amore intensemelt period in the summer,

potentially due to increased temperatures in the region (Vaughan et al., 2013). Monsoon-fed glaciers along the

Himalayan front could also be impacted by rising summer temperatures, which would favor rain over snowfall and

reduce glacier albedo by limiting the persistence of fresh snow.

Spatially and temporally variable glacier retreat rates were found for the central Tien Shan using a suite of or-

thorectified satellite images (Narama et al., 2010). Further work noted that while there was an overall decrease of

glacial mass in the Tien Shan, some high elevation glaciers, particularly those on the eastern inner edge of the Tien

Shan, have stable or slightly positive mass balances (Farinotti et al., 2015). This area agrees well with both positive

DJF SWE anomalies (cf. Fig. 5.4A) and overall positive SWE trends (cf. Fig. 5.3). However, Gardner et al. (Gardner

et al., 2013) using Ice, Cloud and land Elevation Satellite (ICESat) data, found overall negative trends for glaciers in

the Tien Shan. It is possible that the poor sampling frequency of ICESat led to an overestimation of glacier wast-

ing rates in the region, or that the increases in SWE observed in this study are not translated into glacier ice in the
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predominantly summer-accumulation Tien Shan glaciers, and thus do not have a strong impact upon glacier mass

balances in this region (Fujita and Nuimura, 2011).

Spatially diverse water storage trends across HMA have also been noted in GRACE data. For example, negative

gravity anomaly trends are smaller in the Tien Shan than in the Karakoram or Himalaya (Matsuo andHeki, 2010).

Positive storage anomalies were also found in the Pamir, Tien Shan, eastern Himalaya (Moiwo et al., 2011), and

eastern Kunlun Shan (Jacob et al., 2012). These gravity anomalies, which were attributed to changes in glaciers,

may also represent a change in seasonal snow-water storage patterns. Changes in seasonal water distribution have

also been observed in GRACE data; positive and negative seasonal water storage anomalies correlate well with the

positive and negative anomalies present in the SWEdata shown in this study. While the overall trend in theGRACE

data are negative, some areas have seasonally positive mass signatures.

Regional Impact
Climatemodels have trouble correctly estimating SWEbuildup in high-elevation areas due to a dearth of calibration

data, complex topography, and poormeasurement of snowfall and SWEwith current generation weather satellites,

which negatively impacts model parameterization and calibration (Kapnick et al., 2014). For example, in the Tien

Shan, only three stations exist above 3,000 m, and these stations fail to show significant correlations with reanal-

ysis data (Sorg et al., 2012) (Fig. 5.2). The data presented here indicate that there have been unmeasured changes

in HMA’s SWE distribution; these changes have important implications for both glaciers and downstream water

provision.

The aggregated data show aHMA-wide annual net loss in SWE (-10.60mm/yr (average: -0.3%) over 2,641 x 103

sq km, including only trends with p <0.05 and areas above 500 m asl) over the period 1987-2009 (Figs. 5.3, 5.5,

Table B1). While there have been positive changes in SWE in some areas of HMA, particularly in the winter and at

the highest elevations (cf. Figs. 5.3, 5.5, Table B2), these changes are outweighed by the net losses in the medium

and low-elevation zones of each catchment (Fig. 5.5B). Unfortunately, due to the poor performance of SWE algo-

rithms in complex terrain (Smith and Bookhagen, 2016; Takala et al., 2011), converting these changes into absolute

discharge or sea-level contributions is not feasible. While SWE data have been shown to be internally consistent

(Smith and Bookhagen, 2016), absolute SWE volume measurement is not precise (Tedesco and Narvekar, 2010).

However, significant observations about the areal and elevation distribution of SWE and relative SWE changes can

still be made from the data.

The highest SWE totals in many catchments occur below the maximum catchment elevation (Figs. 5.5,5.6).

This implies that while the negative SWE trends at the highest elevations are important, particularly for glaciers,

downstream meltwater discharge is more strongly impacted by SWE trends at the middle elevations of each catch-

ment. SWE trends in the mid-elevation zones of the Indus and Ganges – between 4,000 and 5,000 m asl – are

more negative than trends at lower and higher elevations (Fig. 5.5). As the mid-elevations are less heavily glaciated

than high-elevation zones (cf. Fig. 5.6), it is likely that changes in glaciers and snowfields will be somewhat distinct.

Figure 5.6 indicates that the impacts of SWE changes will be unevenly felt even in neighboring catchments, as the

majority of the SWE in the Indus is stored at significantly lower elevations than in the Ganges. SWE trends at the



4. Regional Impact 51

Figure 5.6 – (A) Ganges and (B) Indus catchments, showing catchment hypsometry (grey) (Jarvis et al., 2008),
percentage glaciated area (red) (Arendt et al., 2015), and catchment-wide normalized SWE distribution (blue). Red
lines indicate catchment elevation percentiles. Illustrates the differences in SWE distribution between catchments,
although both show SWE maxima below their elevation peaks. The altitude of SWE maxima are also minimally
overlapping with glacier areas, indicating that snow and glacier meltwaters are often distinct and are affected by
different climatic processes.



52 Chapter 5. Changes in seasonal snow-water equivalent distribution in HighMountain Asia

highest elevations are often less negative than lower-elevation trends, indicating that snow in colder, high-elevation

zones may be partially shielded from regional climate changes.

While the trend values presented here (cf. Figs. 5.3, 5.4, Tables B1-B5) are individually small, the changes in SWE

volume over each point represent gains and losses in SWE over a∼625 sq km area, meaning that each millimeter

of SWE change is equivalent to 6.25 x 108 liters of water. When statistically significant trends are aggregated at

a watershed scale, the annual changes in water resources range from -0.46 mm/yr (average: -0.14%) in the Amu

Darya to -2.9 mm/yr (average: -0.41%) in Tibet (Table B1). Although these trends are small in comparison to the

total volume of snowpack in HMA, they indicate that changes in HMA’s cryosphere are not confined to glaciers.

While changes in SWE are less likely to be felt inmonsoon-dominated areas, regionswhich rely heavily on snowmelt

– particularly during low-rainfall pre-monsoon months – will feel the effects of diminished snow-water storage.

This work provides a first step towards understanding changes in SWE in HMA and underlines the strength of

seasonal and regional variations in the hydrological regime. It also presents evidence that changes in glaciers and

snowfields are somewhat distinct due to differences in their elevation distributions. We also find that trends in

SWE are not linearly related to elevation, and are highly heterogeneous between catchments. As these changes will

affect household water availability, as well as hydropower and agricultural infrastructure, understanding the inter-

play between snow and glaciers in regional water budgets will continue to be important for the vast downstream

populations of HMA.

Methods

SWEData Processing
We generate a 0.25 decimal degree (dd) grid from 25-45N and 67.5-95E which encompasses a wide range of topo-

graphic and climatic settings, as well as several major mountain ranges, which allows us to track large-scale patterns

in SWE (Fig. 6.1). In this study, we acquiredungridded, raw, swathdata for SSMI (F08, F11, F13, 1987-2009) (Wentz,

2013). We then extract a time series at native sensor resolution for each of our sample points, as described in Smith

and Bookhagen (Smith and Bookhagen, 2016). In short, we aggregate all measurements within a 0.125 dd radius of

each point in the 0.25-dd grid, and then generate a spatially weighted mean value for each swath at that point. Our

time series is made up of on average 1.03 measurements/day over the study period. This process does not involve

regridding the raw swath data or resampling the data to daily or otherwise even time-steps, and thus preserves as

much of the raw, empirical signal as possible.

From this dataset we remove points adjacent tomajor water bodies, as water is known to interfere with PMSWE

estimation (Kelly, 2009). We also remove those pointswhich donot see frequent or extensive snowaccumulation, as

the seasonal decompositionmethods used in this study are not well-suited to sporadic and irregular time series. We

choose to examine only the SSMI dataset, as previous studies have noted differences in PM SWE retrievals between

instruments (Smith and Bookhagen, 2016). While this time series is climatically short, it is internally consistent and

is thus suitable for trend analysis.

We note that passive-microwave derived SWE measurements have large uncertainties – especially in mountain-

ous environments (Smith and Bookhagen, 2016; Chang et al., 1991; Clifford, 2010). These uncertainties are mainly
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due to forest cover, topographic complexity, and signal saturation in deep snowpack. The majority of our study

area is above the treeline, meaning we do not expect significant vegetation-induced uncertainties. Terrain complex-

ity can modify the assumed path between the PM sensor and the ground surface, and thus impact measured Tb

values (Mätzler and Standley, 2000; Smith and Bookhagen, 2016). However, terrain complexity, as modeled by

slope and relief, was shown to have a small impact on SWE uncertainty in the study region relative to the impacts

of forest density (Smith and Bookhagen, 2016). We examine here changes internal to single point locations which

will be impacted by the same set of terrain-related SWE uncertainties throughout the study period.

Passive microwave signal saturation in deep snow and over glaciers has been well documented (Takala et al.,

2011; Tedesco and Narvekar, 2010). This saturation occurs even in pixels where only some area exceeds the signal

saturation depth, as the estimated SWE for a PMpixel is sensitive to total snow depthwithin that pixel (Vander Jagt

et al., 2013). However, when glacier areas are removed from our analysis (defined here as any pixel with more than

25% glacier cover), the large-scale spatial patterns and elevation relationships are maintained (cf. Fig. B7). In this

study we do not attempt to create a well-calibrated SWE product for all of HMA, as the SWEmagnitudes are likely

influenced by signal saturation. We instead focus on examining changes internal to the SWE time series over our

study period in order to examine the spatial patterns of positive and negative relative SWE changes.

As the SWE data are drawn from a single continuous measurement record, each year of data is likely to be im-

pacted by similar measurement errors (i.e., saturation depths at a given point will be similar between years, terrain-

related SWE error will be consistent). Given this, analysis of SWE data can still yield valuable information on

changes in SWE internal to each location’s SWE distribution. Our trends thus provide valuable information on

the direction rather than themagnitude of SWE trends, and the spatial pattern of those trends. We thus present our

results with the caveat that our results are representative of relative differences in SWE trends between regions and

across large spatial scales.

Trend Analysis and Significance Testing
First, we remove shallow and infrequent snow-covered areas by applying a long-term average SWE threshold of

5 mm to each annual and seasonal analysis. The 5 mm limit is derived from previous studies, which have noted

that the detection of shallow snow below 5 cm depths is unreliable (Kelly et al., 2003; Kelly, 2009). We tested

using additional metrics to remove shallow SWE areas or misclassified snow cover areas, such as the Cross-Polarized

Gradient Ratio (Abdalati and Steffen, 1995; Smith et al., 2017), but found minimal changes in our results.

We then removed the seasonal signal of snow accumulation and melt from each individual point in this subset

dataset using Seasonal Trend Decomposition by Loess (STL) (Cleveland et al., 1990; Donner et al., 2012). This

procedure effectively removes the seasonal oscillations from our data, leaving only the ‘residual’, multi-year, SWE

signal at a given point location. To decompose the full-year signal, we resample our data to a daily timestep and

apply a 365 day decomposition window. To decompose the seasonal signals, we break our time series into seasonal

components, and decompose each season individually on a 90-92 day window, depending on the length of the

seasonal period. The Loess filter we use is adaptive, in that the full-year signal that is removed from the data varies

from year to year. A full description of the parameters used for the STL filter used in this study are available in the

Supplement.
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Wefirst test thede-seasoneddatausing aMann-Kendall (MK) test (Mann, 1945;Kendall, 1948)– anon-parametric

test often used for testing for trends in time series data – and only consider those areas which exhibit a statistically

significant (p<0.05) monotonically increasing or decreasing trend. We then perform a linear regression on the de-

seasoned data to examine changes in SWE over the study period (Figs. 5.3, 5.4). When these trends are compared to

straightforward linear regressions performed on the original dataset without detrending, the direction of the slope

is the same, but the magnitude of the slope varies slightly. The main difference is in the significance of the results,

where the seasonally detrended data are more statistically reliable. Similarly, if the linear regression is replaced with

a weighted regression where the weights are related to the inverse of the SWE amount, the large-scale trend patterns

are similar, albeit with different trend magnitudes (cf. Figs. B8-B10).

Elevation Analysis
Toexamine elevationdependence inbothour SWE trends and estimated SWEvolumes, we segment each catchment

into five-percentile zones, and use those elevation zones to subset our data. The total sum of each five-percentile

slice is compared to the catchment-wide total SWE in Figure 5.5A, and the average of all statistically significant

SWE trendswithin each elevation slice is plotted in Figure 5.5B. Catchment-wide trends thus reflect only statistically

significant data, and should be properly contextualized by examining the pixel-level data presented in Figures 5.3

and 5.4.

The hypsometries presented in Figure 5.6 (grey) are generated from the SRTMV4.1 (Jarvis et al., 2008) dataset

aggregated to 50m elevation bins. Glacier outlines from the RandolphGlacier Inventory V5.0 (Arendt et al., 2015)

are used to extract glacier elevation distributions from the SRTM V4.1. These elevations are then aggregated into

50 m elevation bins, and compared to the size of the same SRTM elevation bin to derive glacier coverage at each

elevation slice (Fig. 5.6, red polygon). Snow volumes, derived as in Figure 5.5, are normalized to the maximum

single-slice snow volume to provide a relative measure of SWE volume across each catchment’s elevation range (Fig.

5.6, blue line).

Supporting Information
(see Appendix B).
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Abstract
HighMountain Asia (HMA) – encompassing the Tibetan Plateau and surrounding mountain ranges – is the pri-

mary water source for much of Asia, serving more than a billion downstream users. Many catchments receive the

majority of their yearly water budget in the form of snow, which is poorly monitored by sparse in-situ weather

networks. Both the timing and volume of snowmelt play critical roles in downstream water provision, as many

applications – such as agriculture, drinking-water generation, and hydropower – rely on consistent and predictable

snowmelt runoff. Here, we examine passive microwave data across HMAwith five sensors (SSMI, SSMIS, AMSR-

E, AMSR2, and GPM) from 1987-2016 to track the timing of the snowmelt season – defined here as the time be-

tweenmaximumpassivemicrowave signal separation and snow clearance. We validated ourmethod against climate-

model surface temperatures, optical remote-sensing snow-cover data, and a manual control dataset (n=2100, 3

variables at 25 locations over 28 years); our algorithm is generally accurate within 3-5 days. Using the algorithm-

generated snowmelt dates, we examine the spatiotemporal patterns of the snowmelt season across HMA. The cli-

matically short (29 year) time series, alongwith complex inter-annual snowfall variations,makes determining trends

in snowmelt dates at a single point difficult. We instead identify trends in snowmelt timing by using hierarchical

clustering of the passivemicrowave data to determine trends in self-similar regions. Wemake the following four key

observations: (1) The end of the snowmelt season is trending almost universally earlier in HMA (negative trends).

Changes in the end of the snowmelt season are generally between 2 and 8 days/decade over the 29-year study period

(5 - 25 days total). The length of the snowmelt season is thus shrinking in many, though not all, regions of HMA.

Some areas exhibit later peak signal separation (positive trends), butwith a generally smallermagnitudes than trends

†published as Taylor Smith, Bodo Bookhagen, and Aljoscha Rheinwalt. “Spatio-temporal Patterns of High Mountain Asia’s Snowmelt Season Identified

with an Automated Snowmelt Detection Algorithm, 1987-2016”. The Cryosphere 11 (2017): 2329-2343, https://doi.org/10.5194/tc-11-2329-2017

https://doi.org/10.5194/tc-11-2329-2017
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in snowmelt end. (2) Areas with long snowmelt periods, such as the Tibetan Plateau, show the strongest compres-

sion of the snowmelt season (negative trends). These trends are apparent regardless of the time period over which

the regression is performed. (3) While trends averaged over three decades indicate generally earlier snowmelt sea-

sons, data from the last 14 years (2002-2016) exhibit positive trends in many regions, such as parts of the Pamir

and Kunlun Shan. Due to the short nature of the time series, it is not clear whether this change is a reversal in a

long-term trend or simply inter-annual variability. (4) Some regions with stable or growing glaciers – such as the

Karakoram and Kunlun Shan – see slightly later snowmelt seasons and longer snowmelt periods. It is likely that

changes in the snowmelt regime of HMA account for some of the observed heterogeneity in glacier response to cli-

mate change. While the decadal increases in regional temperature have in general led to earlier and shortened melt

seasons, changes in HMA’s crysophere have been spatially and temporally heterogeneous.

Introduction
More than a billion people across Asia rely directly or indirectly on water sourced from melting snow in High

Mountain Asia (HMA) (Bookhagen and Burbank, 2010; Bolch et al., 2012; Kääb et al., 2012; Kang et al., 2010;

Immerzeel et al., 2010; Gardner et al., 2013; Hewitt, 2005; Malik et al., 2016). Many catchments receive the major-

ity of their yearly water budget in the form of snow – particularly at high elevations (Barnett et al., 2005). Both

the volume of snowfall and the timing of snowmelt play crucial roles in the efficacy of water provision for down-

stream users, as many applications – such as agriculture and hydropower – rely on consistent and predictable water

availability. Many areas also rely on snowmelt to provide a water buffer late in the year when direct precipitation is

rare. Any changes in the onset, length, or intensity of the snowmelt season will impact the water security of both

high-elevation and downstream communities.

Passive microwave (PM) data has been used to estimate snow depth and snow-water equivalent (SWE) since the

launch of the ScanningMultichannelMicrowaveRadiometer (SMMR) in 1978. Consistent, pseudo-dailymeasure-

ments became available in 1987 with the launch of the Special Sensor Microwave/Imager (SSMI) series of sensors

(Wentz, 2013). PM data are highly sensitive to liquid water present in the snowpack, and is thus a valuable tool for

tracking the onset of snowmelt across large, inhospitable, and unmonitored regions. PM data also have the advan-

tage of functioning despite cloud cover, which is ubiquitous in much of HMA during both winter and the Indian

SummerMonsoon (ISM) season. Using satellite-derived PMmeasurements, several authors have tracked the onset,

duration, and spatial extent of snowmelt events using a range of approaches including the cross-polarized gradient

ratio (XPGR) (Abdalati and Steffen, 1995; Hall et al., 2004), the advanced horizontal range algorithm (Drobot

and Anderson, 2001), Gaussian edge detection (Joshi et al., 2001), channel differences (Takala et al., 2003), artifi-

cial neural networks (Takala et al., 2008, 2009), diurnal temperature brightness (Tb) variations (Apgar et al., 2007;

Monahan and Ramage, 2010; Tedesco, 2007), wavelet-based approaches (Liu et al., 2005), and median filtering of

raw PM data (Xiong et al., 2017).

In this study, we adapted a previously published algorithm (Abdalati and Steffen, 1995) that relied on the es-

tablishment of a single cutoff threshold for identifying melt phases in Greenland to the more complex and diverse

snow regimes of HMA. This algorithm was chosen due to (1) speed of calculation, (2) consistency across the large

study area, and (3) reliance on only night-time data, which is less influenced by sporadic daytime melt-refreeze cy-
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cles. While previous studies have successfully measured snowmelt in large and homogeneous environments such as

Greenland and Antarctica, we found these algorithms as originally formulated ineffective in the highly variable to-

pography and snow dynamics of HMA– particularly when a single passive microwave pixel can encompass several

terrain types which may melt at different speeds. Here we present an enhanced and generalized algorithm building

on previouswork to improve on snowmelt detection inHMA.We then apply this algorithm to PMdata from 1987-

2016, and use the derived snowmelt dates to examine spatio-temporal snowmelt patterns across the entire HMA

region.

Geographic Setting

HMA contains several mountain ranges – theHimalaya, Pamir, Karakoram,HinduKush, Tien Shan, and Kunlun

Shan– fromwhich flow several large rivers servingmore than adozen countries (Fig. 6.1). Manyof these catchments,

such as the Tibetan Plateau, Tarim, Syr Darya, Amu Darya, and Indus, rely on snowmelt for more than 50% of

their yearly water budget (Bookhagen and Burbank, 2010; Shrestha et al., 2015). Many communities – particularly

those at high elevations or those that depend on surface water for agriculture – are highly reliant on the timing

of snowmelt. An early snowmelt season can create a late-season ‘water gap’ when a dry spell is caused by snow

meltwaters disappearing before the start of the next rainy season. These water gaps can also negatively impact flora

and fauna which depend heavily on the timing of the appearance of ephemeral water bodies (Bookhagen, 2017).

The timing and volume of snowmelt thus has important implications for the environment, direct household water

use, agriculture, and hydropower.

Several interacting moisture sources, including the Winter Westerly Disturbances (WWD), Indian Summer

Monsoon (ISM), and EastAsian SummerMonsoon (EASM), are responsible for thewide range of snowfall regimes

across HMA (Fig. 6.1, inset). The interaction of these climatic regimes with the complex topography of HMA –

particularly the vast elevation gradients – creates a diverse set of snowfall regimes (Cannon et al., 2014; Kääb et al.,

2012; Immerzeel andBierkens, 2012;Gardner et al., 2013; Kapnick et al., 2014; Barnett et al., 2005;Dahe et al., 2006;

Takala et al., 2011; Cannon et al., 2017).

Materials andMethods

Datasets

We leverage a combined time series of SSMI (1987-2009), Special Sensor Microwave Imager/Sounder (SSMIS)

(2008-2016),AdvancedMicrowaveScanningRadiometer - EarthObservingSystem(AMSR-E, 2002-2011),AMSR2

(2012-2016), andGlobal PrecipitationMeasurement (GPM, 2014-2016) data, processed to 0.25 decimal degree (dd)

resolution by interpolating raw PM swath data at a series of point locations as described in Smith and Bookhagen

(2016) (see Supplementary Table S1 for a full dataset listing). In essence, we group all measurements within a 0.125◦

dd radius of each point on a 0.25◦ dd grid and generate a spatially weightedmean value for each swath at that point.

The dataset is comprised of 6,399 point locations, with on average 26,000 PM measurements each (long-term av-

erage of 2.4 measurements/day for 29 years, with more measurements during the 2002-2016 period).
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Figure 6.1 –Topographicmap of the study area acrossHighMountainAsia (HMA), withmajor catchment bound-
aries (black lines and labels in black font with white border) and major mountain ranges (white font). Inset map
showswinddirectionofmajorAsianweather systems (WWD:WinterWesterlyDisturbances, ISM: Indian Summer
Monsoon, EASM: East Asian Summer Monsoon) on top of political boundaries. Red star indicates the location
used for Figures 6.2 and 6.3.

PM measurements are converted to snow-water equivalent (SWE) using the Chang equation (Eq. 6.1) (Chang

et al., 1987), with modifications for non-SSMI platforms as proposed by Armstrong and Brodzik (2001), and a

constant snow density of 0.24 g/cm3 as proposed by Takala et al. (2011).

SD[cm] = 1.59[cm/K] ∗ (Tb18V − Tb36V )[K] (6.1)

Studies have noted that SWE estimates from the Chang equation have high uncertainties (e.g., Kelly et al., 2003;

Kelly, 2009; Tedesco and Narvekar, 2010; Daly et al., 2012), particularly in dense forests. However, as much of our

study area is non-forested – and we use SWE only as a rough estimate of snow volume – we choose to rely on the

simple Chang equation rather than a more complex algorithm for SWE estimation.

As control data,we analyzeModerateResolution ImagingSpectroradiometer (MODIS)percentage snow-covered

area (product MOD10C1 V6, 2001-2016, (Hall and Riggs, 2016)) and High Asia Refined Analysis (HAR) surface

temperature (tsk, 2000-2014, (Maussion et al., 2014)). While these datasets only cover a subset of our study period,

they are among the few independent control datasets available across the entire study area.
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Snowmelt Tracking Algorithm
The shift from dry snow, which can be physically characterized as snow crystals in an air background, to wet snow,

which replaces the air matrix with water, shifts the primary interaction between PM radiation and the snowpack

from volumetric (dry snow) to surface (wet snow) scattering. These scattering changes are reflected in the tempera-

ture brightness (Tb) data, and allow wet and dry snow to be differentiated, as the transition from dry to wet snow

drastically increases the measured Tb – particularly in the scattering (Tb37V ) channel. The XPGR, as originally

described by Abdalati and Steffen (1995), is defined as:

XPGR = (Tb19H − Tb37V )/(Tb19H + Tb37V ) (6.2)

This algorithm takes advantage of both the channel difference between the Tb19 and Tb37 GHz channels as

well as the depolarization effects of snowmelt, which increases the differences between the horizontally and verti-

cally polarized channels (Abdalati and Steffen, 1995). In the original application of the XPGR on the Greenland

Ice Sheet, a static value of -0.025 was shown to indicate the presence of liquid water in the snowpack, and hence

used to separate the year intomelting and non-melting phases (Abdalati and Steffen, 1995). We find that for thema-

jority of HMA, the -0.025 threshold is not effective in identifying the onset of snowmelt, as the XPGR-snowmelt

relationship is highly variable through time and space.

Wemodify the XPGRmethod here to trackmaximumpassivemicrowave signal separation – or the yearlymaxi-

mumXPGR, referred to from here on asMXPGR. As the context of seasonal snowmelt inHMA is quite different

from that of Greenland, and sufficiently long-term and spatially diverse in-situ snowmelt data are lacking, we use

the MXPGR as a proxy for snowmelt onset to track changes in the snowmelt season year-over-year. Thus, while

we do not use the classical literature definition of snowmelt – presence of liquid water in the snowpack –we track a

consistentmetric related to physical snowpack changes that can be broadly interpreted as the onset of the snowmelt

season.

However, theMXPGR is not effective for tracking the cessation of snowmelt. To track the end of snowmelt, we

leverage two additional datasets: (1) the raw Tb37V time series, which rapidly increases as snowpack thins, and (2)

a SWE time series calculated from theTb19 andTb37 GHz channels (Chang et al., 1987; Kelly et al., 2003; Tedesco

et al., 2015; Smith and Bookhagen, 2016).

We first use a simple peak-finding algorithm, which identifies peaks as points which are larger than their two

neighboring samples, to generate a list of potential peaks in the XPGR data. Next, we take the average XPGR

value within± 2 days of each peak to determine not only the simple yearly maximumXPGR, but the highest and

temporally widest peak in our XPGR data – termed here the MXPGR. We flag years which have multiple strong

and temporally distinct XPGRpeaks as unconstrained for snowmelt onset estimation, as the algorithm has trouble

consistently identifying the MXPGR in these cases.

To determine the end of the snowmelt season, we choose either the date of the yearly maximum Tb37V value,

which corresponds to the thinnest snowpack or to a ‘bare earth’ signal, or the first date where 4 out of 5 days have
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been within 2 cm of the yearly SWE minimum. We choose the yearly SWE minimum instead of zero as our SWE

threshold for snow clearance because some regions in HMA have a defined melt season but rarely reach zero SWE.

This also helps control for uncertainty in shallow SWEmeasurements, as detecting shallow snow (<5 cm) with PM

data is still difficult (Kelly et al., 2003; Armstrong and Brodzik, 2001). A full description of our melt detection

algorithm is available in the Supplement (Figs. C1-C4).

Manual Control Dataset Generation
Unfortunately, large-scale and several-decades long snowmelt onset and enddate records are not available forHMA.

Instead, we use HAR (Maussion et al., 2014) and MODIS (Hall and Riggs, 2016) data alongside a manually gen-

erated set of control dates for the snowmelt season, determined from the SWE, XPGR, and Tb37V signals by the

researchers. We visually identified major peaks (MXPGR), as well as the cessation of snowmelt, by inspection of

the time series. We chose a random sample of 25 point locations across our study area, and identify snowmelt dates

for each year of the time series (n=1400). We use the calculated length of the snowmelt period (days between the

MXPGR and the end of the snowmelt season) as an additional control variable (n=700).

Hierarchical Clustering
Hierarchical clustering is a method used to correlate time series data by intrinsic similarity (Corpet, 1988; Johnson,

1967; Jain et al., 1999; Murtagh and Contreras, 2012; Rheinwalt et al., 2015), which has been used extensively in

the environmental research community. We generate clusters from those time series which share themost temporal

overlap, or where the periodicity of Tb values have the largest coherence, regardless of their spatial correlation.

We choose the XPGR time series as our clustering variable, as the XPGR is the most sensitive to melt dynamics,

integrates multiple Tb frequencies, and is not sensitive to SWE calibration issues. To improve the robustness of

our clustering, we combine the disparate single-instrument PM time series into a single coherent time series which

leverages the full temporal extent of each dataset (1987-2016), using the following three steps: (1)We standardize the

PM signals of the suite of instruments used in this study to a single set of dates, artificially created at daily resolution

from the minimum andmaximum dates across all satellite datasets, by resampling all individual satellite time series

to a daily time step and dropping dates without data. (2)We homogenize the disparate PM time series based on the

overlapping portions of individual satellite time series, using linear regression. The results of these regressions can

be seen in Tables C2-C5, with an example regression at a single point shown in Figure 6.2. (3) In order to reduce

noise in our cluster analysis, we resample our merged XPGR time series to a 5-day temporal resolution (pentad).

Next, we normalize each merged pentad time series (1987-2016) to a Gaussian distribution, using a percentile

mapping approach (Rheinwalt, 2017). We then estimate the Pearson correlation coefficient to classify regions of

self-similarity in our XPGR time series (Rheinwalt, 2016). This method computes a Pearson correlation coefficient

between each time series, and based on the resulting correlation matrix, computes a set of linkages using the an-

gle between time series in vector space (Murtagh and Contreras, 2012). We use the maximum distance (complete

linkage) to split the linkage matrix, which is favorable because it ensures a minimum intra-cluster correlation. An

average linkage scheme was tested and produced heterogeneous cluster sizes with outliers. We choose our cluster

threshold from the hierarchical clustering dendrogram (Fig. C6), which maximizes cluster size while minimizing
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Figure 6.2 – (A) Sample time series showing SSMI (blue) and AMSR-E (green) Tb37V frequencies, with linearly
matchedmodified AMSR-ETb (red), 1987-2009. Data taken from 71.25E, 36.75N (cf. Fig. 6.1). (B) The same data
as panel A but for two seasons (2005-2007).

cluster internal diversity (Fig. C7). We emphasize that the correlation is based on the temporal co-evolution of the

time series, and is less sensitive to the relative magnitudes of peaks and troughs between data points. For an oscillat-

ing time series, themagnitude of the Pearson correlation coefficient is driven by the synchronization of peak timing,

especially in normalized time series. The combination of several sensors in this studymay impact themagnitudes of

the resultant time series, but will not have an outsized effect on the timing, and thus clustering, of our time series.

Results

Melt Algorithm Validation

3.1.1 Comparison withManual Control Dataset

The agreement betweenmanually clicked snowmelt dates and algorithm-derived snowmelt dates is generallywithin

3days, with 70%ormore ofMXGPRand snowmelt enddates fallingwithin 5days of the control dataset (Table 6.1).

We find the lowest standard deviation for the end of melt, which is to be expected given that the end of snowmelt is

determined by both snow clearance and the Tb37V signal, and thus is more tightly constrained than the MXPGR

date. The MXPGR date, while having a low average offset, has a high standard deviation as the algorithm some-

times has trouble correctly choosing theMXPGRwhen a snow season has several large storms, or several periods of

melting and refreezing (cf. Fig. 6.3). Thus, errors in identification ofMXGPRwill naturally have a higher standard

deviation due to the presence of more relatively large misclassification errors.

Diverse snow seasons are shown from an example location (71.25E, 36.75N), over six years of data (Fig. 6.3).

Despite clear inter-annual variations in the temporal distribution of SWE, there exists high correlation between
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Table 6.1 – Summary statistics comparing manual control dataset and algorithm dataset (n=2100, 28 snowmelt
seasons at 25 locations).

Variable Mean Offset
(days)

Mean
Absolute

Offset (days)

Standard
Deviation

RMSE Percentage of Algorithm
Dates Within 3/5/10
Days of Control Dates

MXPGR -0.23 5.51 16.71 16.71 68 / 80 / 90 %
Snowmelt End -1.3 5.0 9.74 9.82 49 / 70 / 89 %
Snowmelt Period -0.25 7.44 16.1 16.1 47 / 64 / 82 %

the algorithm-derived melt dates and our manually chosen melt dates. In the sample data, the first and third snow

seasons have multiple peaks which could possibly be related to the true onset of the snowmelt season, and these

years are flagged as unconstrained. The second and fourth years of data have a simple structure with a well-defined

peak and a pseudo-linear melt during the spring season. The fifth year of data has a strong late-season XPGR peak,

implying that there was significant snow buildup after an initial early season XPGR peak and melt phase. The last

year of data shows amismatch between the algorithm and control datasets, where it is difficult to determine the best

candidate for the MXPGR. The algorithm picks the wider XPGR peak (earlier in the season), while we chose the

thin but high peak later in the season as more closely following the end of snow buildup. Across all years of data

shown here, the snowmelt end date is well matched between the algorithm and manual datasets.

Figure 6.3 – Sample data from 71.25E, 36.75N (cf. Fig. 6.1) showing: (A) Snow-Water Equivalent (SWE) based on
the Chang algorithm (Chang et al., 1987), (B) Cross-Polarized Gradient Ratio (XPGR), and (C) vertically polarized
temperature brightness at 37 GHz (Tb37V ) measurements. MXPGR (dashed lines) and end of melt (solid lines)
are black for algorithm dates, and red for control dates. Lack of red lines indicates temporal overlap of algorithm
and control dates. Years with multiple distinct peaks (e.g., 2004, 2006) are flagged as unconstrained, and not used
for further analysis.
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3.1.2 Comparison withMODIS Snow Cover Data

The MODIS sensor onboard Terra (product MOD10C1 V006, (Hall and Riggs, 2016)) provides an additional

estimate of snow cover from an optical, instead of PM, instrument. While MODIS cannot provide accurate mea-

surements of fractional snow covered area (SCA) in the presence of clouds, it represents an independent control on

the snowmelt end date (Fig. 6.4). In Figure 6.4A, the MODIS snow-clearance date is defined as the first day when

five out of seven days have less than 5% SCA, and the data are cloud free. Only those dates where there is no cloud

cover within seven days of the end of the snowmelt season are used in Figure 6.4B, which illustrates the consistently

low SCA fraction at our algorithm-derived end of the snowmelt season.

Figure 6.4 – (A) Comparison of MODIS MOD10C1 (Hall and Riggs, 2016) and algorithm-derived end of the
snowmelt season days of year, with darker areas indicating high point densities. We find strong agreement between
the snowmelt end dates derived from both datasets (slope = 0.85, R2 = 0.58, n = 34,468), despite the presence of
outliers. (B)MODIS snow covered area fraction at the algorithm-derived end of the snowmelt season. This shows,
for example, that over all algorithm-determined snowmelt end dates, the median SCA was 1.27%, and that SCA is
below 5% in themajority of cases. Areas with snowmelt periods of less than 20 days are removed from this analysis.

While the agreement between algorithm andMODIS snowmelt end days is generally high (cf. Fig. 6.4A), there

remain significant outliers. It is likely that some larger outliers are due to poorly flagged clouds in the MODIS

dataset (cf. Fig. C1). We rely here on the MOD10C1 product, as other snow cover products such as NOAAGlobal

Multisensor Automated Snow and Ice Mapping System (Romanov, 2017) utilize a combination of optical and

passive microwave data, and thus do not represent a truly independent control dataset.
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3.1.3 Comparison with HAR Surface Temperature Data
HAR provides surface temperature at hourly intervals from 2000-2014 at 30 km spatial resolution over the entire

study area (Maussion et al., 2014). Using this data, we derive (1) the full-day average surface temperature, (2) the

average daytime surface temperature, and (3) the daily surface temperature range at eachMXPGR date (Fig. 6.5).

Figure 6.5 – (A) HAR full-day average surface temperature (red), daytime average surface temperature (blue), and
(B) daily surface temperature range (black) at the algorithm-derived MXPGR date (n = 31,583). Full-day and day-
time average temperatures show distinctly different distributions, with full-day temperatures averaging below 0◦C
and daytime temperatures above. This relationship, as well as the large daily temperature range, imply that the
algorithm-derivedMXPGRdates occur at or near the transition from sub-freezing to above-freezing temperatures.

While the relationship between surface temperature andMXPGR isn’t as clearly defined as the comparison be-

tweenMODIS SCA and snowmelt end, the highly variable surface temperature and positive daytime temperatures

at the MXPGR dates imply that the MXPGR is likely linked to melt-refreeze cycles, snowpack metamorphism, or

the presence of liquid water in the snowpack.

Application: Spatial Patterns of Snowmelt Period
We apply our algorithm on a pixel-by-pixel and year-by-year basis to identify the onset of the snowmelt season –

here proxied by theMXPGR – as well as the end of the snowmelt season. We also use the number of days between

the MXPGR and the end of the snowmelt season to calculate the snowmelt period for each year. The long-term

average snowmelt period is shown in Figure 6.6.

The length of the snowmelt season varies significantly across HMA (Fig. 6.7). Inmany low-elevation areas, such

as theGanges Plain, and low-SWE areas, such as the central TarimBasin, the snowmelt period is very short. Higher-
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Figure 6.6 – Average snowmelt period across HMA from 1987-2016. Snowmelt period ranges from less than a
month to several months, depending on geographic location, elevation, and local and regional climatic conditions.
Locations with long-term average snowmelt periods less than 20 days are removed. Topographic hillshade in back-
ground. Grey areas indicate water bodies, low-SWE areas, and short snowmelt period areas that are excluded from
the analysis.

elevation zones, and inparticular theTibetanPlateau, see snowmelt periods of severalmonths. While both elevation

and the amount of SWE impact snowmelt, these are not the sole determinants of the length of the snowmelt season

(Fig. 6.7). Each of the major catchments (cf. Fig. 6.1) has a unique MXPGR, snowmelt end date, and snowmelt-

period distribution, based on the various climate and topographic forcings present in each catchment.

Hierarchical Clusters
Cluster selection criteria can be seen in Figures S6-7. We choose our dendrogram cutoff (distance threshold in vector

space) based on a combination of the number of generated clusters, the internal variationwithin those clusters, and

the average resultant cluster size. In our case, we choose a distance cutoff of 1 radian from the complete linkage

matrix (minimum intra-cluster correlation 0.525), which results in 285 clusters (Fig. 6.8).

While the hierarchical clusters are not based on any explicit spatial relationships, many of the clusters fall into

spatially coherent groups. For example, the PamirKnot andTarimBasin both form large, coherent clusters based on

the similarity of their snowfall and snowmelt patterns. The large number of small clusters throughout theHimalaya

indicate that the region is not climatically uniform, and small-scale variations in topography and climate have strong

impacts on the snowmelt regime.
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Figure 6.7 – MXPGR (A,D), snowmelt end (B,E), and snowmelt period (C,F) for the entire study area, colored
by elevation (A-C) and snow depth (D-F) bins. Radial bin heights (radial distance from the center) indicate rel-
ative number of pixels at each day of year (i.e. area). While very short snowmelt periods show a distinct low-
elevation, low-SWE bias, in general melt onset and end dates are well distributed throughout elevation zones and
SWE amounts.

Discussion

Spatial Melt Patterns fromHierarchical Clustering
As can be seen in Figure 6.3, there exists significant inter-annual variation in the timing the snowmelt season. This is

particularly true of areas impacted by theWWD, which often have multiple snowfall events starting in winter and

lasting until spring (Cannon et al., 2014). As one yearmay receive a small late season storm, and thus see amaximum

in the spring, while the next year may receive a large summer storm, and thus peak in the summer, analyzing trends

at a single point in space is difficult.

Tomitigate the influenceof inter-annual variation indetermining long-term trends in the timingof the snowmelt

season, we group our data into self-similar clusters using hierarchical clustering. We do not filter our generated clus-

ters based on size or self-similarity, as we do not use our clusters to generate a single averaged or representative time

series for each cluster, as is often done in climate analyses. Due to inter-annual variations in SWE and the tim-

ing of the snowmelt season, fitting a linear regression through only 29 years of data does not provide statistically

significant results for the majority of HMA. Instead, we use our clusters to group sets of algorithmically-derived

snowmelt dates, and fit linear models on a cluster-by-cluster basis. By leveraging the snowmelt dates of a set of time
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Figure 6.8 –Hierarchical clusters (black outlines), as determined from the rank-order correlation coefficients of the
5-day resampled, merged, and linearly matched XPGR data (1987-2016). Colors indicate cluster-average internal
diversity (average Pearson’s correlation coefficient between members in the same cluster). Grey areas indicate water
bodies, low-SWE areas excluded from the analysis, or areas with irregular PM signals which fail to cluster.

series in parallel, we are able to identify statistically significant changes in the timing of the snowmelt season, as well

as changes in the length of the snowmelt period (Fig. 6.9). To reduce noise from low-SWE and very short snowmelt

period areas, we remove areas from the subsequent analyses with long-term average melt periods of less than 20

days. We also removeMXPGRdates that are flagged as unconstrained (when there are multiple candidate dates) to

limit the impact of unreliable data on our analysis.

MXPGR is trending earlier (negative trend) in HMA outside of a small band running from the Karakoram

through the interiorTibetanPlateau (Fig. 6.9A). In another snowmelt study leveraging SSMI andQuickSCATdata

in HMA, Xiong et al. (2017) find a similar distribution of positive and negative snowmelt onset trends. However,

a direct comparison with their results is difficult due to differences in the temporal and spatial resolution of source

data, filtering methods, and statistical treatment of SWE trends. Negative snowmelt onset trends have also been

previously observed in Central Asia (Lioubimtseva andHenebry, 2009; Dietz et al., 2014), theHimalaya (Lau et al.,

2010; Panday et al., 2011), and the Tibetan Plateau (Xu et al., 2017).

A complex pattern of regionally increasing and decreasing spring snow depth in the Tibetan Plateau has been

observed since the 1970s (Zhang et al., 2004; Che et al., 2008; Wang et al., 2013), which could help account for

the mixed MXPGR trends observed in the Tibetan Interior. High-elevation zones in the upper Indus catchment,

running from the Karakorum in a south-eastward direction, have seen increased precipitation over the past decades

due to increases in the strength of the WWD (Cannon et al., 2015; Norris et al., 2016; Treydte et al., 2006).
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Figure 6.9–Significant (p<0.05 ) trends in date of (A)MXPGR, (B) snowmelt end, and (C) snowmelt period, 1987-
2016 for the cluster areas (cf. Fig. 6.8). The MXPGR is generally moving earlier outside of the Tibetan Plateau-
Karakoram region, and moving slightly later in a high-elevation zone running from the Karakoram through the
Tibetan Plateau interior, as well as parts of the Himalaya. The end of the melt season is moving earlier in the vast
majority of HMA, at varying rates. Consequently, snowmelt period is also shrinking in much of HMA, with the
exception of small parts of the Pamir, Karakoram, and Tien Shan.
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Temperatures in HMA are increasing faster than the global average (Vaughan et al., 2013; Lau et al., 2010), and

are likely the primary driver of the almost universal earlier snowmelt end dates as seen in Figure 6.9B. Increased

temperatures have likely both reduced overall SWE amounts, by causing more precipitation to fall as rain, and

decreased SWE persistence into the spring and summer months. These changes have helped drive a 2-8 day/decade

earlier end to the snowmelt season (Fig. 6.9B).

The length of the snowmelt season is shortening in much of HMA, with the exception of small areas in the

Pamir, Tien Shan, and Karakoram regions (Fig. 6.9C). We attribute this to a combination of increased WWD

storm intensity, and increases in late season storms, which could help extend the snowmelt season slightly later into

the year (Cannon et al., 2016; Norris et al., 2015; Kapnick et al., 2014). In general, however, the snowmelt season

is shortening throughout HMA. Intensification of the spring runoff regime in HMA has been observed in both

model (Lutz et al., 2014) and empirical (Dietz et al., 2014; Bookhagen and Burbank, 2010; Stewart, 2009) data.

Temporal Heterogeneity in Snowmelt Trends
Not only are changes in the snowmelt regime spatially complex (e.g., Fig. 6.9), but they exhibit distinct temporal

heterogeneity as well.

Changes in MXPGR do not have a bias towards early or late onset snow regimes (Fig. 6.10A). The end of the

snowmelt season is almost universally negative (earlier), excepting a few isolated areas in the Kunlun Shan (cf. Fig.

6.9). The majority of locations show negative (shorter) trends in snowmelt period. Strong negative changes in

the snowmelt period are biased towards areas with long melt seasons (120 days or more). This implies that high-

elevation areas, such as theTibetanPlateau, andhigh-SWEareas, such as theKarakoram,will see a relatively stronger

compression in the length of the snowmelt season. While changes in the MXPGR date are partially responsible,

the main driver of shorter snowmelt periods is the earlier end of the snowmelt season across most of HMA.

Figure 6.10 – 29-year average (A) MXPGR, (B) snowmelt end, and (C) snowmelt period, colored by trend (1987-
2016), with radial bin heights (radial distance from the center) indicating relative number of pixels (i.e. area) at each
day of year. Black lines indicate zero trend. Data taken only from areas with statistically significant trends (p <0.05,
cf. Fig 6.9). Changes in snowmelt end date are positive in very few areas. Negative changes in snowmelt period
(shortening) are relatively larger in long snowmelt-period areas.

Several-decade long trends conceal short-term fluctuations in the snowmelt regimeofHMA.Toassess the impact

of the analysis timeframe on our regression results, we analyzed trends with window sizes ranging from four years



70 Chapter 6. Trends in HighMountain Asia’s Snowmelt Season

to 28 years, across all possible start-year and window-size combinations, averaged over the entire study area (Fig.

6.11).

Figure 6.11 – Impact of window length on measured trends in (A)MXPGR, (B) snowmelt end, and (C) snowmelt
period over the entire study area. Each dot represents trends over a single window size (4 to 28 year) and start
year (1988-2012) combination. Regressions are performed using the same clusters as shown in Figure 6.8. Only
statistically significant trends (p <0.05) are included in this analysis; gray dots indicate lack of significant trend.
Larger dots indicate positive or negative trends larger than 1 day per year. Trends in snowmelt period and snowmelt
end dates are generally negative regardless of which years the trend is assessed over, excepting short periods in the
late 1990s and 2000s. MXPGR dates are positive over short time periods starting in the late 1990s, and negative
over earlier time periods and longer time windows.



4. Discussion 71

Trends are universally negative for theMXPGR and the end of the snowmelt season, as well as for the snowmelt

period, between 1988 and 1995, regardless of the timeframe over which the regression is performed. While there

were some short positive trends in snowmelt end date (5-10 years) starting in the mid 1990s, trends in end dates

and snowmelt period are generally negative. Although long-term trends in MXPGR date (longer than 20 years)

are negative, recent trends (after 2002) are positive when considered at timeframes of 5-10 years. This implies that

while the three-decade trend in MXPGR dates has been negative, the trend has become more variable in the past

decade.

It is clear that decadal trends (cf. Fig. 6.9) are not consistent throughout the entire study period (cf. Fig. 6.11).

When trends in the first half (1988-2002) and second half (2002-2016) of the data are compared, distinct regional

patterns are apparent (Fig. 6.12).

The lack of statistically significant trends limits some interpretations, particularly with regards to changes in

the snowmelt period. Nowhere in HMA are MXPGR trends consistent in both analysis periods. While many

snowmelt end dates have remained negative in both time periods, trends in parts of the Pamir and Karakoram have

moved from negative to positive, and those in the Tien Shan have become less negative (cf. Fig. C8). A similar

story is apparent when MXPGR dates are considered, where the Tien Shan and parts of the Pamir have moved

from negative to positive trends. Unfortunately, due the the climatically short nature of the dataset, it is not clear

whether this change represents inter-annual variability or a reversal of a long-term trend.

Hydrologic Implications

The spatially and topographically complex changes in MXPGR, snowmelt end, and snowmelt period make inter-

pretation of downstream impacts difficult. The long-term trend in HMA of a shortened and earlier melt season

will impact downstream populations who rely on the consistent timing and volume of spring and summer runoff

(Archer and Fowler, 2004; Barnett et al., 2005). Already the impacts of precipitation intensification and shifts in

the snowmelt season have been felt in many regions (Barnett et al., 2005; Stewart, 2009). These trends are likely to

continue as temperatures rise acrossHMA, and eachmajor catchmentwill feel the impacts of a shortened snowmelt

season, regardless of changes in the start and end dates of melt.

Many regions rely on glaciers as their onlywater source between the end of snowmelt and the beginning ofmajor

precipitation systems (Bolch et al., 2012). This important water reserve is certain to be impacted by, and reflect

changes in, the snowmelt regime ofHMA, as the timing of precipitation has been shown to be an important factor

in the response of glaciers to climate change (Maussion et al., 2014; Wang et al., 2017). While many regions have

seen rapid glacier retreat (Bolch et al., 2012; Kääb et al., 2012, 2015; Scherler et al., 2011) there exist regions of glacier

stability and even growth, such as the Karakoram (Hewitt, 2005; Gardelle et al., 2012) and Kunlun Shan (Gardner

et al., 2013; Yao et al., 2012). Our results (cf. Fig. 6.9) show longer snowmelt periods in parts of the Pamir, later

snowmelt end dates in parts of theKarakoram andKunlun Shan, and relatively less negative trends in snowmelt end

in the Pamir when compared with the rest of HMA. These regions overlap with both the ‘Karakoram Anomaly’

and positive glacier mass balances in parts of the Kunlun Shan and Pamir, implying that changes in the timing of

the snowmelt season could be partially responsible for regional heterogeneity in glacier change.
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Figure 6.12– Impact of analysis period (1988-2002or 2002-2016) onmeasured trends in (A)MXPGR, (B) snowmelt
end, and (C) snowmelt period. Grey areas indicate lack of statistically significant (p <0.05) trends at one or both
analysis periods. Much of HMA lacks significant shorter-term trends inMXPGR and snowmelt period, highlight-
ing the complexities and inter-annual variation in the snowmelt season. While northern HMA has maintained a
negative trend in snowmelt end throughout both analysis timeframes, a large region running from the Pamir east
has had a reversed trend fromnegative topositive in the last decade. Regression results at both individual timeframes
are available in the Supplement (Fig. C8).

The majority of HMA, however, exhibits a three-decade long trend towards an earlier end of the snowmelt sea-

son. Earlier snow clearance increases the absorption of solar radiation, and thus stores more heat at high elevations



5. Conclusions 73

and generates a positive feedback (Willis et al., 2002). As seasonal snow is removed earlier from glacier regions,

glacier melt will accelerate. In general, glaciers in HMA are decreasing in volume and shrinking, which fits with

the observed long-term decrease in snowmelt end dates (cf. Figs. 6.9, 6.10, 6.11), despite clear spatial and temporal

heterogeneity in these trends (cf. Fig. 6.12).

Caveats of the Method
Our algorithm-derived snowmelt enddates and those derived from the independentMOD10C1product show close

alignment, indicating that the algorithm is well-suited to identifying the end of the snowmelt season (cf. Fig. 6.4).

The identification and interpretation of theMXPGR, however, is more difficult. While previous work has used the

XPGR to identify the presence of liquid water in snowpack, this relationship has not been confirmed with in-situ

data inHMA.While it is likely that XPGRpeaks are linked tomelt-refreeze cycles, liquid water, or other snowpack

metamorphism, these conclusions lack true in-situ controls. This uncertainty, combined with the periods of melt

and refreeze and late-season storms in much of HMA, make linkingMXPGR to the onset of the snowmelt season

difficult. The multiple peaks and troughs in the XPGR data also hamper the identification of a single strong peak

to classify as the MXPGR. Without rigorous measurements of surface air temperature or in-situ monitoring of

snowmelt, the efficacy of our algorithm for identifying snowmelt onset cannot be directly confirmed.

Despite these drawbacks,MXPGRdates are correlated with the day of year thatHAR temperatures first start to

increase andMODIS SCA ismaximal (Fig. C2), and provide a single consistent proxy for the onset of the snowmelt

season in this vast and largely unmonitored area. Furthermore, MXPGR is associated with days with a high tem-

perature range and on-average positive daytime surface temperatures (cf. Fig. 6.5). This implies that rising day-

time temperatures, in conjunction with solar radiation, are linked to MXPGR dates in our study area. However,

as we lack a direct control dataset for snowmelt onset, and there is a high degree of variance in the HAR surface

temperature-MXPGR relationship, MXPGR dates and trends therein should be considered as less reliable than

trends in snowmelt end dates.

Conclusions
This study presents a snowmelt tracking algorithm based on the cross-polarized gradient ratio, native passive mi-

crowave (PM) signal, and a rough estimate of snow-water equivalent (SWE). We do not rely on static thresholds

to classify the snowmelt season across our diverse study region, but instead rely on identifying the snowmelt sig-

nal from intrinsic properties of each individual time series. The algorithm leverages passive microwave data from

the Special Sensor Microwave/Imager (SSMI), Special Sensor Microwave Imager/Sounder (SSMIS), Advanced

Microwave Scanning Radiometer - Earth Observing System (AMSR-E), AMSR2, and Global Precipitation Mea-

surement (GPM) satellites (1987-2016) to track the characteristics of the snowmelt season across High Mountain

Asia (HMA). We examine large-scale spatial patterns in the snowmelt regime and identify trends in the timing of

snowmelt across HMA over the past three decades using hierarchical clustering.

We find the following four key points: (1) The snowmelt season is ending earlier in much of HMA (negative

trend), with magnitudes between 2 and 8 days/decade (5-25 days total over 29 years). The length of the snowmelt

season is shortening in themajority ofHMA, despite some regions of delayed snowmelt onset. (2)Negative changes
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to the end of the snowmelt season are felt most strongly in areas with long snowmelt seasons (as averaged over three

decades), such as the Tibetan Plateau and high-SWE areas in the Himalaya, Karakoram, and Tien Shan. (3) While

three-decade long trends indicate earlier end dates for the snowmelt season, recent (2002-2016) trends are positive

(later snowmelt end dates) in many regions of HMA. These changes could be due to inter-annual variability or

a reversal in the long-term trend. (4) Areas with slightly longer snowmelt seasons or later MXPGR dates overlap

with regions of positive glacier mass balance, such as the Pamir and Kunlun Shan. This implies that changes to

the snowmelt regime of HMA could help account for some of the observed regional glacier changes. In general,

however, regional warming has led to earlier and shortened melt seasons in much of HMA. These changes are

spatially and temporally complex, and will require further local and high-spatial resolution assessments to fully

understand changes in HMA’s cryosphere.

Code Availability
The code used in this study is available online at: https://github.com/UP-RS-ESP/SnowmeltTracking

Supporting Information
(see Appendix C).
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Discussion and Conclusions

The main goal of this dissertation was to identify and quantify recent changes in HMA’s cryosphere. This set

of studies was conducted across a large region spanning much of central and southern Asia, centered around the

Tibetan Plateau. As water sourced in this region is essential for the livelihoods of more than a billion people, un-

derstanding and quantifying changes in snow – the primary water source in many regions of HMA – is of utmost

importance. While there exist regional studies on glaciers (e.g., Bolch et al., 2012; Gardner et al., 2013; Kääb et al.,

2012, 2015) and smaller-scale studies on snow-cover (e.g., Archer and Fowler, 2004; Treydte et al., 2006), the full

extent of changes in HMA’s snow regime had not yet been well explored.

HMAcontains diverse topographic, environmental, and climatic zoneswhich create vastly different snowregimes.

Changes in HMA’s climate have impacts not only on nearby regions, but also affect global circulation patterns.

However, there remains a dearth of high-quality, consistent, and long-term climate records in the region. In many

cases, in-situ climate networks are out-dated, unreliable, or simply do not exist. Station and satellite climate data

often disagree, due to issues of scale, time of collection, and measurement accuracy (cf. Fig. 3.3). Collection of

ground data is also complicated by difficult terrain, complex political situations, and harsh climates. Recent work

has focused on using remotely sensed (e.g., Kääb et al., 2015; Chang andRango, 2000) andmodeled (e.g.,Maussion

et al., 2014; Yatagai et al., 2012) datasets to address these data gaps, but the empirical, large-scale and high-temporal

resolution studies on HMA’s cryosphere required to constrain snowmelt runoff are still lacking (Anderton et al.,

2002; Dozier et al., 2008).

Passivemicrowave SWE algorithmswere originally developed on flat and sparsely vegetated terrain (Chang et al.,

1982, 1987), and are less reliable over densely forested or complex terrain (Takala et al., 2011; Tedesco andNarvekar,

2010; Tedesco et al., 2015; Kelly et al., 2003; Kelly, 2009;Mätzler and Standley, 2000; Dozier andWarren, 1982). As

a first step, this dissertation examined what topographic, land-cover, and climatic factors influence PM SWE esti-

mate reliability inHMA.Using this improved understanding of the capabilities and limitations of SWE estimation

in HMA, changes in both the spatial and temporal distribution of SWE across HMAwere then explored. Lastly, a

novelmethod of tracking the onset and end of the snowmelt season using PMdatawas devised. Chapters 4 through

6 are comprised of three separate manuscripts which examine each of the three research questions of this disserta-

tion in detail. This Chapter contextualizes these studies in the broader literature on climate change in HMA, and

discusses the implications of changes in HMA’s cryosphere for regional hydrology.
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Limitations of Passive Microwave Data
The first study of this dissertation (Chapter 4) documents several important characteristics of PM sensors which

influence the estimation of SWE. As PM SWE estimates are influenced by a range of sensor, topographic, climate,

and land-cover characteristics, a thorough understanding of what conclusions can and cannot be drawn from PM

SWE data is an essential first step towards constraining changes in HMA’s snow regime.

Biases in SWE Estimates
Several authors have examined factors influencing PM SWE estimates (e.g., Dozier and Warren, 1982; Foster et al.,

2005; Tedesco and Narvekar, 2010; Mizukami and Perica, 2012; Derksen, 2008; Savoie et al., 2009; Mätzler and

Standley, 2000). While radiative transfer theory shows that PM data becomes unreliable in areas of deep snow

(SWE >150 mm) (e.g., Tedesco and Narvekar, 2010; Takala et al., 2011; Mizukami and Perica, 2012), the impacts of

most climatic and topographic metrics on SWE remained unconstrained. To assess the influence of these factors,

a method of isolating only those days where there was no sensed precipitation (derived from TRMM (Huffman

et al., 2007)) and air temperatures remained below zero (derived fromHAR (Maussion et al., 2014)) was developed

and used to assess how variable these nominally consistent SWEmeasurements were.

The parameters used to examine SWE consistency were long-term snow depth, forest cover, wind speed, slope,

elevation, relief and aspect. Previous work has identified problemswith SWE retrieval related to snow depth (Foster

et al., 2005; Rango et al., 1979) and forest cover (Derksen, 2008). Our results confirmed that these two factors show

the strongest correlation with SWE inconsistency. Deep snowwas shown to impact not only the∼18 GHz channel

used in the original SWE retrieval algorithm (Chang et al., 1987, 1991), but also the∼10GHz channel used explicitly

to help control for deep snowcover in more modern algorithms (Kelly et al., 2003; Kelly, 2009) (cf. Fig. 4.8). It is

likely that both depth-related attenuation (Mizukami and Perica, 2012) and the formation of depth hoar and ice

lenses during long periods of constant snow cover impact measurements at the ∼10 and ∼18 GHz channels.

Wind speed had never before been analyzed as a potential driver of variability in SWE measurements. For the

first time, we showed that both high (90th percentile) and low (25th percentile) wind speeds are correlated with

consistency of SWE measurements. We posit that high wind areas tend to be high-elevation and high-relief, and

that wind redistribution of SWE generally occurs within the extent of a single PM pixel (∼25 sq km). However,

as these areas also receive more SWE generally, it is difficult to distinguish the impacts of precipitation capture and

wind-redistribution. Conversely, low-wind areas (25th percentile) can see wind redistribution of SWE over a much

larger area. As these areas tend to be lower SWE, however, it is difficult to identify an exact causal relationship.

SWE modeling efforts, such as GlobSWE (Luojus et al., 2013) and HAR (Maussion et al., 2014), and empirical

retrievals such as using AMSR-E (Chang and Rango, 2000) offer SWE estimates in mountainous terrain only with

severe caveats. Previous work has shown that at very high elevations, such as those found on the Tibetan Plateau,

SWE estimates are influenced by the relatively thinner atmosphere (Savoie et al., 2009). We show in our study, how-

ever, that while hillslope angle has a small impact on SWE retrieval variability, elevation, aspect, and relief have very

little influence. Further, we note that one major influence on SWE retrievals globally – forest cover – is a relatively



2. Novel Methods for Tracking Snow-Water Equivalent and Snowmelt Changes 77

minor consideration in much of the study area due to the high-elevation terrain and sparse tree cover.

Differences between PM Sensors
Several satellites, both current and past, have flown with PM sensors. Each of these satellites has had a different

set of data collection goals, onboard sensors, and spatial resolutions. An important finding of Chapter 4 was that

while both the GPM and TRMMmissions collect the requisite PM frequencies to measure SWE, only GPM SWE

estimates can be considered alongside more specialized PM sensors, such as SSMI/S and AMSR-E/2 (Smith and

Bookhagen, 2016). The ∼36 GHz vertically polarized channel onboard TRMM displayed too much variability to

provide consistent and accurate SWE measurements. Chapter 4, however, showed that GPM data can be used to

estimate SWE.

Although each satellite dataset used in this dissertation carries a PM sensor with a different spectral resolution,

each sensor agrees on the timing and relative volume of SWE buildup and melt (cf. Figs. 4.4, 4.10). This implies

that even if SWE measurements are poorly correlated to in-situ snow depth measurements, as has been shown in

several studies (e.g., Mizukami and Perica, 2012; Dai et al., 2015; Foster et al., 2005; Tedesco and Narvekar, 2010),

trends in relative SWE and the general timing of the snow season are consistent throughout any given time series

and between any combination of sensors. This key finding forms one of the core building blocks for the rest of

our analyses, which exploit the consistency in SWE time series to look at changes in SWE intrinsic to given spatial

locations.

Novel Methods for Tracking SWE and Snowmelt Changes
This dissertation adapted three importantmethods fromneighboring disciplines to the context of tracking changes

in HMA’s cryosphere. While each of these methods has previously been used in related fields, this dissertation

presents several important adaptations and improvements that allowed long-term trends in snow to be examined

with PM data.

Seasonal Trend Decomposition
Seasonal Trend Decomposition (STL) is a method of decomposing a time series into trend, seasonal, and residual

components (Cleveland et al., 1990). In its original application, it was used to examine long-term trends in carbon

dioxide by removing yearly oscillations. It has since been used in several other natural science applications, such as in

tracking sea-level changes (Donner et al., 2012), monitoring forest health (Verbesselt et al., 2010), and in analyzing

temporal patterns in groundwater extraction (Shamsudduha et al., 2009).

It is used in this dissertation to isolate long-term changes in SWE storage from seasonal and inter-annual varia-

tion. In Chapter 5, both annual (cf. Fig. 5.3) and seasonal (cf. Fig. 5.4) SWE trends are examined. We find that

while both the detrended and original time series produce the same results in terms of the direction of slope, the

detrended data are more tightly constrained and offers a more statistically robust treatment of long-term changes
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in SWE without the influence of seasonality.

Snowmelt Tracking Algorithm
Several authors have developed algorithms for tracking snowmelt using PM data (e.g., Abdalati and Steffen, 1995;

Hall et al., 2004; Drobot and Anderson, 2001; Joshi et al., 2001; Takala et al., 2003, 2008, 2009; Apgar et al., 2007;

Monahan and Ramage, 2010; Tedesco, 2007; Liu et al., 2005). In Chapter 6, the method originally developed by

Abdalati and Steffen (1995), which leverages the combined impacts of channel and polarization differences between

the horizontally and vertically polarized ∼18 GHz and ∼37 GHz channels, was modified and applied to HMA. In

the original application, static thresholds were used to track snowmelt over large, homogeneous areas of Green-

land. Chapter 6 extends this method to use dynamic time series cutoffs, which allows the method to be applied

across diverse terrain without forcing pre-conceived melt thresholds onto the dataset. The algorithmwas shown to

effectively track snowmelt onset and end across a wide range of snow regimes and despite large inter-annual varia-

tion in SWE buildup and drawdown, even in the large, spatially heterogeneous context of HMA.

Hierarchical Clustering for Snowmelt Trend Detection
While the newly developed snowmelt tracking algorithm was found to be effective for identifying snowmelt onset

and end across HMA, there was simply too much seasonal variation between snowfall seasons to track long-term

trends on a point-by-point basis, as had been done in Chapter 5. To overcome the high inter-annual variability in

snowmelt seasons, a complex networks approach was leveraged to aggregate the snowmelt data.

Hierarchical clustering has been used extensively to group time series information by intrinsic self-similarity

(Corpet, 1988; Johnson, 1967; Jain et al., 1999; Murtagh and Contreras, 2012; Rheinwalt et al., 2015). In essence,

clusters of points are identifiedwhich share the same periodicity, regardless of the absolutemagnitude of their peaks

and troughs. This method leads to two important developments. First, the whole length of the PM data collec-

tion (1987-2016) can be used to derive clusters instead of only single-instrument time series. While the absolute

magnitudes of measured SWE between sensors are not always compatible (Smith and Bookhagen, 2016), the tight

temporal co-evolution of their time series allows multi-instrument time series to be effectively clustered with this

method. Second, assessing changes in snowmelt onset, end, and period within self-similar clusters reduced the in-

fluence of inter-annual and small-scale spatial variability on the detection of snowmelt trends. This method yielded

statistically significant results, albeit at reduced spatial resolution.

Recent Changes in HMA’s Cryosphere
The combination of the novel methods developed in Chapters 5 and 6 with long-term SWE data in HMA has

helped constrain the impacts of climate change on HMA’s cyrosphere.

Temperatures inHMAare increasing faster than the global average (Vaughan et al., 2013; Lau et al., 2010). Many

studies have examined glaciers as an indicator of regional warming in HMA (e.g., Bolch et al., 2012; Kääb et al.,

2012, 2015; Gardner et al., 2013). The mechanisms behind the spatial heterogeneity in glacier losses in HMA re-
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main poorly understood, although recent studies have implicated spatially divergent temperature and precipitation

trends as possible drivers of regional glacier differences, as well as changes in precipitation seasonality (Fujita, 2008;

Fujita and Nuimura, 2011; Kapnick et al., 2014). This dissertation explores poorly understood changes in HMA’s

snow regime which control the water security of many communities, and which have likely partially contributed to

regional heterogeneity in glacier change.

An overall decrease in SWE storage in HMA was found in Chapter 5, with an annual aggregate decline of 10.6

mm/yr over the entire study area. However, annual losses in SWE hide distinct seasonal and spatial differences,

where winter SWEhas increased in almost half ofHMA in contrast to general negative SWE trends throughout the

rest of the year. The mechanism behind these SWE changes is not well defined, but likely includes contributions

from aerosol contamination (Lau et al., 2010), changes in precipitation phase (Lutz et al., 2014), changes in the

strengths of theWWD (Cannon et al., 2014, 2015) and ISM (Singh et al., 2014; Palazzi et al., 2013), and increases in

regional temperatureswhich lead to bothmore atmosphericwater storage and decreased SWEpersistence (Vaughan

et al., 2013; Yao et al., 2012; Trenberth, 2011). The elevation distribution of these changes indicates that the impacts

of climate change on glaciers and snow will be related but distinct in HMA.

Following the exploration of SWE trends in Chapter 5, changes in the timing of the snowmelt season were ex-

plored in Chapter 6. In general, the end of the snowmelt season is occurring earlier across HMA, and the length

of the snowmelt season is shrinking; these changes are not biased towards early or late snowmelt-onset regions (cf.

Fig. 6.10). Warming temperatures increase the rate of snowmelt and can drive a precipitation shift from snow to

rain. Theonset of snowmelt, however, is occurring later in someparts ofHMA, indicating that snowmelt changes in

HMAare notmonolithic. There exist large temperature, elevation, andprecipitation gradientswhich drive regional

differences in the response of HMA’s cryosphere to regional warming. The diverse mountain ranges examined in

the study area have responded to climate change differently and must be contextualized individually.

Tien Shan
Studies disagree on the fate of glaciers in the Tien Shan (Sorg et al., 2012; Narama et al., 2010; Gardner et al., 2013;

Farinotti et al., 2015). Large-scale studies note only glacier mass loss in the Tien Shan (e.g., Gardner et al., 2013),

although Farinotti et al. (2015) found regions of both growing and retreating glaciers in the Tien Shan, with high

spatial heterogeneity. More glacier mass loss was noted in the western (outer) than the eastern (inner) regions of the

Tien Shan (Sorg et al., 2012), which agrees generally with the distributions of positive DJF SWE trends found in

the Tien Shan (cf. Fig. 5.4), and the increased strength of theWWD (Cannon et al., 2014, 2015). Large regional de-

creases inMarch-April-May (MAM) SWE, however, indicate that this increasedDecember-January-February (DJF)

SWE is not maintained into the spring. Recent work has also proposed that predominantly summer-accumulation

type glaciers, such as those in the Tien Shan, are more likely to lose mass under warming climates (Fujita, 2008;

Fujita and Nuimura, 2011), which could reconcile the increase in DJF SWE with regionally declining glaciers.

Changes in snowmelt onset, end, and period are distinctly negative, excepting a small area of larger snowmelt

periods in the north eastern Tien Shan. This result agrees well with previous observations which noted earlier

snowmelt throughout Central Asia (Dietz et al., 2014). It also confirms the strongly negative MAM SWE trends
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(cf. Fig. 5.4), which, when combined with the positive DJF SWE trends, indicate that the Tien Shan has experi-

enced earlier and stronger spring snowmelt.

Pamir, Karakoram, and Kunlun Shan
Recent studies have noted glacier stability or even mass increases in the Pamir (Gardelle et al., 2013), Karakoram

(Hewitt, 2005; Gardelle et al., 2012; Scherler et al., 2011; Kääb et al., 2015), and Kunlun Shan (Shangguan et al.,

2007;Ding et al., 2006;Kääb et al., 2015). Increasedwinter precipitationhas beenproposed as a possiblemechanism

behind these changes (Gardelle et al., 2012; Kapnick et al., 2014; Yao et al., 2012; Fujita, 2008; Fujita and Nuimura,

2011), but has not been confirmed with empirical data. This dissertation work indicates that changes in glaciers are

well matched with changes in the timing of snow buildup and melt in the Pamir-Karakoram-Kunlun Shan region.

Increasing precipitation (Sorg et al., 2012; Aizen et al., 1997; Archer and Fowler, 2004; Treydte et al., 2006) and

increased snow cover (Dahe et al., 2006; Che et al., 2008) had been previously observed in the Pamir-Karakoram-

Kunlun Shan area. This aligns well with our results (cf. Fig. 5.4) which indicate that winter SWE has increased in

the Pamir, Kunlun Shan, and parts of the Karakoram over the past decades. These areas have also seen increases in

MAMand September-October-November (SON) SWE, in opposition to the general trend towards losses in spring

and fall SWE in the rest of HMA. The Pamir and Kunlun Shan are two of the areas where slight increases in the

length of the snowmelt seasonwere observed (cf. Fig. 6.9), andwhere full-year SWE trends are positive (cf. Fig. 5.3).

When these factors are considered together, it is likely that increases in the strength of theWWDand in the strength

of late-season storms (Cannon et al., 2014, 2015; Kapnick et al., 2014) are responsible for some of the changes in the

SWE distribution. However, the Karakoram is the only region out of the three which sees slightly later snowmelt

onset, indicating that changes in SWE are not evenly felt across the study region, and that climate change impacts

are heterogeneous even among regions impacted by the same large-scale climate patterns.

Himalaya and Hindu Kush
While much of the Himalaya’s water budget is monsoon-driven, there exists a precipitation gradient moving west

along the front of the Himalaya, where the western reaches of the Himalaya-Hindu Kush region have a much

higher snowmelt and glacier contribution to their water budgets (Bookhagen and Burbank, 2010). Even in those

regionswhere rainfall is primary, seasonal snowmelt is an importantwater source formountain communities. These

communities rely heavily on the consistency of snowandglaciermelt tomeet dry-seasonwater needs (Vaughan et al.,

2013).

Glaciers in the Himalaya-Hindu Kush are generally retreating (Bolch et al., 2012; Gardner et al., 2013; Kääb

et al., 2012, 2015); in many cases, retreat is accelerating and small glaciers are disappearing (Armstrong et al., 2010).

The reasons behind these changes aremulti-faceted and poorly constrained, although debris cover, topography, and

precipitation regime are factors known to impact glacier stability.

Previous work has noted earlier snowmelt in the Himalaya (Lau et al., 2010; Panday et al., 2011); this is generally

confirmed in this dissertation. In parts of the eastern Himalaya, a slight increase full-year SWE is observed, despite
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negative trends in snowmelt onset, end, and period. This implies a slight increase in snow persistence in parts of the

eastern Himalaya and could be related to increased incursion of large storms into the dry Tibetan Plateau interior.

Trends in snowmelt end date and snowmelt period are distinctly negative across the entire region, excepting a few

isolated pixels in the central Himalaya.

This central Himalayan area along the border with the Indus and Ganges shows positive SON and DJF SWE

trends. This region receives moisture from both the ISM andWWD; precipitation at the end of the monsoon sea-

son could account for some of the increases in SON SWE, which remains through the winter. These positive SWE

trends are strong enough to show a positive trend at the yearly scale, in opposition to the general decrease in SWE

in HMA (cf. Fig. 5.3).

Tibetan Plateau
Despite slightly later snowmelt onset in parts of theTibetanPlateau (cf. Fig. 6.9), SWE trends in the central Tibetan

Plateau are negative at both annual (cf. Fig. 5.3) and seasonal (cf. Fig. 5.4) scales. The far eastern reaches of the

Tibetan Plateau, towards the headwaters of the Salween and the northeastern reaches of the Brahmaputra, show

both increases in yearly SWE and DJF/MAM/SON SWE. This confirms the results of Zhang et al. (2004) who

noted that the eastern Tibetan Plateau has seen increasing snow depths, and in particular, increasing spring snow

depths since the 1970s.

Empirical study of theTibetan Plateau’s cryosphere is difficult due to the general lack of ground-truth data above

5,000 m (Kang et al., 2010) and insufficiently dense in-situ climate monitoring networks (cf. Fig. 5.2). While the

general utility of remote sensing datasets for monitoring snow in Tibet has been explored (Che et al., 2008; Pu

et al., 2007; Kang et al., 2010; Zhang et al., 2004), relatively little work has explored changes in snow cover in the

region. Discussion of snow cover changes in Tibet is complicated by the vastly different areas considered as the

Tibetan Plateau between studies, of which some consider only the endorreic Tibetan Plateau catchment, while

others include areas as far away as the Tien Shan.

The general earlier snowmelt clearance and shorter snowmelt periods observed in this dissertation alignwell with

the decreases in glacier mass and permafrost stability seen in the Tibetan Plateau (Kang et al., 2010). Negative SWE

trends in the low-SWE central Tibetan Plateau are likely driven by increasing regional temperatures. Increases in

SWE along the eastern, northern, andwestern borders of the Tibetan Plateau are likely driven by slightly increasing

precipitation in the region (Kang et al., 2010; Zhang et al., 2004), coupled with generally low temperatures that

allow snow persistence despite increasing regional temperatures.

Implications of Changes in HMA’s Cryosphere
There exist clear regional differences in climate change impacts on HMA’s cryosphere. There also exist temporal

heterogeneities in snowmelt trends, where several-decade-long trends hide inter-annual and inter-decadal variations

(cf. Figs. 6.11-6.12). The heterogeneity in snowmelt trends over the past decade indicates that the snow regime of

HMAhas becomemore variable in recent years. In particular, large regions of theTien Shan, Pamir, andKarakoram



82 Chapter 7. Discussion and Conclusions

have seen reversals from negative to positive trends in snowmelt onset and end dates when the periods 1988-2002

and 2002-2016 are considered separately (cf. Figs. C8, 6.12). Poor treatment of SWE in climate models (Maussion

et al., 2014), and lack of in-situmeasurements (Sorg et al., 2012) limit analysis of snowpack over shorter timeframes.

More in-depth studies will be required to constrain whether this is a reversal in a long-term trend or simply inter-

annual variability impacting the climatically short time series examined in this dissertation.

Long-term trends acrossHMA, however, indicate a shift towards shorter and earlier snowmelt seasons. This has

already had, and will continue to have, strong impacts upon communities which rely on consistency in the volume

and timing of snowmelt for year-round water provision (Stewart, 2009; Archer and Fowler, 2004; Barnett et al.,

2005; Bolch et al., 2012). Earlier snowmelt will also drive changes in glaciers, as snow-free high-elevation areas are

able to store more heat from incoming solar radiation (Willis et al., 2002). The timing of snowfall and snowmelt

have previously been noted as an important constraint on glacial change (Maussion et al., 2014; Wang et al., 2017;

Kapnick et al., 2014; Fujita, 2008; Fujita andNuimura, 2011). As regional temperatures continue towarm, it is likely

that the changes in HMA’s cryosphere observed in this dissertation will accelerate, and will be strongly felt by both

high-elevation communities and those downstream who depend on water sourced in HMA.

Conclusions
The aim of this dissertation was to develop a coherent, empirically based, and spatially extensive picture of recent

changes inHMA’s cryosphere. To this end, the reliability of PM SWE estimates in the complex topography of HMA

was explored. This studywas undertakenusing a suite of five sensors in conjunctionwith climatic, topographic, and

land-cover datasets at a large spatial scale. The improved understanding of the capabilities of PM SWE estimates

was then used to develop two studies exploring changes inHMA’s cryosphere. The first study assessed recent spatio-

temporal patterns of SWE change across HMA. Following this, a novel algorithm to explore spatio-temporal changes

in the timing of the snowmelt season across HMA was developed. The following conclusions can be drawn from

these studies:

1. PM data are impacted by a wide range of topographic, land cover, and climatic factors. The two factors

which contribute the most to SWE variability in nominally constant-SWE times – forest cover and PM

signal attenuation in deep snow – are controlled for in modern SWE algorithms. Wind redistribution of

SWE contributes to SWE variance in HMA, and is poorly controlled for in the sparsely monitored HMA

region. Hillslope angle was the only topographic factor shown to have a significant impact on SWE estimate

reliability.

2. Each PM sensor measures slightly different frequencies, and thus provides slightly different SWE estimates.

While these estimates can diverge in magnitude, the timing of snow buildup and draw down are preserved

between sensors. Relative SWE magnitudes within single-sensor time series are also preserved, indicating

that while PMSWE estimates will not always agree with groundmeasurements, they represent an internally

consistent and temporally continuous measurement of SWE.
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3. Long-term annual SWE trends are negative inmuch ofHMA (cf. Fig. 5.3), although some regions – such as

the Pamir, Kunlun Shan, and easternTibetan Plateau – have seen increased SWE. The seasonal distribution

of SWE has also changed significantly over the past decades. The central Himalaya, Pamir, Tien Shan, and

KunlunShanhave seen increasedwinter SWE; spring SWE trends are only positive in thePamir, Karakoram,

and Kunlun Shan.

4. The onset, end, and length of the snowmelt season can be tracked using a dynamic, time-series-derived,

metric. The mean offset between the algorithm-derived onset and end dates and manually controlled dates

is within one day. The average absolute offset is within one week, with almost 90% of onset and end dates

within 10 days of the control dataset.

5. Snowmelt onset is split between positive changes from the Karakoram through the Tibetan Plateau, and

negative changes in the rest of HMA. Snowmelt end dates are almost universally negative, excepting a

high-elevation, low-temperature region along the Karakoram-Kunlun Shan. Only a few isolated regions

in the Pamir, Karakoram, and Tien Shan see longer snowmelt periods. These long-term trends conceal

inter-annual variability, where more recent (2002-2016) snowmelt trends are positive or less negative than

long-term trends in many regions.

6. The combined changes in seasonal SWE distribution and the timing of the snowmelt seasonwill impact the

environment and inhabitants of HMA. Glaciers have been shown to be retreating in much of HMA, with

a few notable exceptions. The spatial distribution of glacier changes agrees well with the changes in HMA’s

cyrosphere observed in this dissertation, implying that changes in SWE and snowmelt are a potential control

on glacier response to climate change. The combined changes in SWE and snowmelt will be felt by high-

elevation communities and downstream users who rely on the consistency of snowmelt volume and timing

for agriculture, livelihoods, and water provision.
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Appendix A

Appendix A - Supplementary Materials for
Chapter 4

Impact of Search Distance

Figure A1 – Raw (A-B) and aggregate (C-D) 18 GHz, vertically polarized, Temperature Brightness characteristics
(mean and standard deviations) using two search distances (0.1 decimal degree (dd) and 0.05 dd). Slight reductions
in variability are seen for some areas when a smaller search distance is used (whichwe attribute to lower variance in a
smaller dataset), but in general the two datasets are similar, indicating that search distance does not have an impact
upon our results.
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Individual Instrument Regressions vs Hillslope Angle

Figure A2 – Correlation between SSMI SWE variability (standard deviation, STD) and hillslope angle across all
sample points show in Figure 4.1 (n=2500). (A) Aggregate total variability on y-axis, and (B) clean-day variability
on the y-axis, with regression lines and p-values on each.

Figure A3 – Correlation between SSMIS SWE variability (standard deviation, STD) and hillslope angle across all
sample points show in Figure 4.1 (n=2500). (A) Aggregate total variability on y-axis, and (B) clean-day variability
on the y-axis, with regression lines and p-values on each.
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Figure A4 –Correlation betweenAMSR-E SWE variability (standard deviation, STD) and hillslope angle across all
sample points show in Figure 4.1 (n=2500). (A) Aggregate total variability on y-axis, and (B) clean-day variability
on the y-axis, with regression lines and p-values on each.

Figure A5 – Correlation between AMSR2 SWE variability (standard deviation, STD) and hillslope angle across all
sample points show in Figure 4.1 (n=2500). (A) Aggregate total variability on y-axis, and (B) clean-day variability
on the y-axis, with regression lines and p-values on each.
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Figure A6 – Correlation between GPM SWE variability (standard deviation, STD) and hillslope angle across all
sample points show in Figure 4.1 (n=2500). (A) Aggregate total variability on y-axis, and (B) clean-day variability
on the y-axis, with regression lines and p-values on each.
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Comparison of SWE Volume and Topographic Indices

Figure A7 – Correlation between 95th percentile SWE volume (A) and 50th percentile SWE volume (B) and 5-km
relief across all sample points show in Figure 4.1 (n=2500). Shows slight negative relationship below 1000-m of
relief, and then increasing variability.

Figure A8 – Correlation between 95th percentile SWE volume (A) and 50th percentile SWE volume (B) and eleva-
tion across all sample points show in Figure 4.1 (n=2500). Shows positive relationship in majority of points, with
high levels of noise, particularly below 4000-m.
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Figure A9–Correlation between 95th percentile SWE volume (A) and 50th percentile SWE volume (B) and terrain
aspect across all sample points show in Figure 4.1 (n=2500). Shows no significant trend.
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MultipleRegressions forAll Satellites, with Spatial Distribu-
tions

Figure A10 – Spatial distribution showing SWE uncertainties from PM data using GPM (Table A5, cf. Figure 9 in
manuscript).
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Figure A11 – Spatial distribution showing SWE uncertainties from PM data using AMSR-E (Table A7).

Figure A12 – Spatial distribution showing SWE uncertainties from PM data using AMSR2 (Table A9).
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Figure A13 – Spatial distribution showing SWE uncertainties from PM data using SSMI (Table A11).

Figure A14 – Spatial distribution showing SWE uncertainties from PM data using SSMIS (Table A13).
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Figure A15 – Spatial distribution showing SWE uncertainties from PM data using all satellites (Table A15).
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Results from Linear Regressions
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Results fromMultiple Regressions

Table A5 – Coefficients of Multiple Regressions for GPM (n=2500), including p-values, t-values, and 95% confi-
dence intervals (CI). Bold values indicate statistically significant results (p <0.05).

Metric Coefficient p-value t-value Confidence Interval Percent
of Total

95th Percentile SWE 0.306 0 206 0.303 - 0.309 7.82
Forest Fraction 2.97 0.206 1.27 -1.63 - 7.57 75.8
Hillslope Angle 0.205 6.84e-23 9.95 0.165 - 0.246 5.24
Relief -0.00236 9.93e-17 -8.36 -0.003 - -0.002 0.0603
Elevation -0.00224 4.86e-317 -44.4 -0.002 - -0.002 0.0572
25th Percentile Wind -0.213 0.000953 -3.31 -0.34 - -0.087 5.44
90th Percentile Wind 0.22 2.13e-08 5.62 0.143 - 0.297 5.62

Table A6 – Coefficients of Multiple Regressions for GPM, without Forest Fraction (n=2438), including p-values,
t-values, and 95% confidence intervals (CI). Bold values indicate statistically significant results (p <0.05).

Metric Coefficient p-value t-value Confidence Interval Percent
of Total

95th Percentile SWE 0.306 0 205 0.303 - 0.309 31.9
Hillslope Angle 0.21 2.22e-23 10.1 0.169 - 0.25 21.9
Relief -0.00238 1.11e-16 -8.35 -0.003 - -0.002 0.248
Elevation -0.00224 7.54e-313 -44.1 -0.002 - -0.002 0.233
25th Percentile Wind -0.219 0.000715 -3.39 -0.346 - -0.092 22.9
90th Percentile Wind 0.219 2.93e-08 5.56 0.142 - 0.297 22.9
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Table A7 – Coefficients of Multiple Regressions for AMSR-E (n=2500), including p-values, t-values, and 95%
confidence intervals (CI). Bold values indicate statistically significant results (p <0.05).

Metric Coefficient p-value t-value Confidence Interval Percent
of Total

95th Percentile SWE 0.318 0 116 0.313 - 0.324 7.07
Forest Fraction -3.66 0.823 -0.223 -35.9 - 28.5 81.4
Hillslope Angle -0.125 0.385 -0.868 -0.408 - 0.158 2.79
Relief 0.00164 0.404 0.834 -0.002 - 0.006 0.0365
Elevation 0.000723 0.0291 2.18 7.38e-05 - 0.001 0.0161
25th Percentile Wind -0.284 0.526 -0.634 -1.16 - 0.595 6.31
90th Percentile Wind -0.105 0.701 -0.384 -0.641 - 0.431 2.34

Table A8 – Coefficients of Multiple Regressions for AMSR-E, without Forest Fraction (n=2438), including p-
values, t-values, and 95% confidence intervals (CI). Bold values indicate statistically significant results (p <0.05).

Metric Coefficient p-value t-value Confidence Interval Percent
of Total

95th Percentile SWE 0.318 0 115 0.313 - 0.324 37.9
Hillslope Angle -0.125 0.392 -0.856 -0.413 - 0.162 15
Relief 0.00167 0.405 0.833 -0.002 - 0.006 0.199
Elevation 0.000727 0.0298 2.17 7.11e-05 - 0.001 0.0867
25th Percentile Wind -0.285 0.53 -0.629 -1.17 - 0.603 33.9
90th Percentile Wind -0.108 0.695 -0.391 -0.652 - 0.435 12.9
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Table A9 –Coefficients ofMultiple Regressions for AMSR2 (n=2500), including p-values, t-values, and 95% con-
fidence intervals (CI). Bold values indicate statistically significant results (p <0.05).

Metric Coefficient p-value t-value Confidence Interval Percent
of Total

95th Percentile SWE 0.308 0 340 0.306 - 0.309 4.1
Forest Fraction 7.05 2.67e-06 4.71 4.11 - 9.99 94
Hillslope Angle 0.0482 0.000262 3.66 0.022 - 0.074 0.642
Relief -

0.000376
0.0366 -2.09 -0.001 - -2.34e-05 0.00502

Elevation -
0.000194

2.89e-10 -6.33 0 - 0 0.00259

25th Percentile Wind -0.0837 0.0415 -2.04 -0.164 - -0.003 1.12
90th Percentile Wind 0.0108 0.665 0.433 -0.038 - 0.06 0.144

Table A10 – Coefficients of Multiple Regressions for AMSR2, without Forest Fraction (n=2438), including p-
values, t-values, and 95% confidence intervals (CI). Bold values indicate statistically significant results (p <0.05).

Metric Coefficient p-value t-value Confidence Interval Percent
of Total

95th Percentile SWE 0.308 0 338 0.306 - 0.309 66.4
Hillslope Angle 0.0488 0.000255 3.66 0.023 - 0.075 10.5
Relief -

0.000374
0.0396 -2.06 -0.001 - -1.78e-05 0.0808

Elevation -
0.000194

3.57e-10 -6.3 0 - 0 0.042

25th Percentile Wind -0.0909 0.0278 -2.2 -0.172 - -0.01 19.6
90th Percentile Wind 0.0157 0.534 0.621 -0.034 - 0.065 3.38
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Table A11 – Coefficients of Multiple Regressions for SSMI (n=2500), including p-values, t-values, and 95% confi-
dence intervals (CI). Bold values indicate statistically significant results (p <0.05).

Metric Coefficient p-value t-value Confidence Interval Percent
of Total

95th Percentile SWE 0.301 0 127 0.296 - 0.306 3.31
Forest Fraction 7.95 0.00689 2.7 2.19 - 13.7 87.5
Hillslope Angle 0.263 7.77e-24 10.2 0.212 - 0.314 2.89
Relief -0.00247 3.6e-12 -6.99 -0.003 - -0.002 0.0272
Elevation -

0.000646
1.65e-26 -10.8 -0.001 - -0.001 0.0071

25th Percentile Wind -0.478 3.3e-09 -5.94 -0.635 - -0.32 5.25
90th Percentile Wind 0.0964 0.0508 1.95 0 - 0.193 1.06

Table A12 – Coefficients of Multiple Regressions for SSMI, without Forest Fraction (n=2438), including p-values,
t-values, and 95% confidence intervals (CI). Bold values indicate statistically significant results (p <0.05).

Metric Coefficient p-value t-value Confidence Interval Percent
of Total

95th Percentile SWE 0.301 0 127 0.296 - 0.306 25.9
Hillslope Angle 0.266 8.95e-24 10.2 0.215 - 0.317 22.9
Relief -0.0025 3.55e-12 -6.99 -0.003 - -0.002 0.215
Elevation -

0.000644
6.07e-26 -10.7 -0.001 - -0.001 0.0554

25th Percentile Wind -0.491 1.64e-09 -6.05 -0.65 - -0.332 42.2
90th Percentile Wind 0.102 0.0407 2.05 0.004 - 0.2 8.78
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Table A13 – Coefficients of Multiple Regressions for SSMIS (n=2500), including p-values, t-values, and 95% con-
fidence intervals (CI). Bold values indicate statistically significant results (p <0.05).

Metric Coefficient p-value t-value Confidence Interval Percent
of Total

95th Percentile SWE 0.304 0 280 0.302 - 0.306 5.25
Forest Fraction 5.16 0.000107 3.88 2.55 - 7.76 89.1
Hillslope Angle 0.12 4.47e-24 10.2 0.097 - 0.143 2.07
Relief -0.00107 1.87e-11 -6.75 -0.00 1- -0.001 0.0186
Elevation -5.03e-

05
0.0613 -1.87 0 - 2.38e-06 0.000869

25th Percentile Wind -0.205 2.07e-08 -5.62 -0.277 - -0.134 3.55
90th Percentile Wind 0.00202 0.928 0.0904 -0.042 - 0.046 0.0348

Table A14–Coefficients ofMultipleRegressions for SSMIS, without Forest Fraction (n=2438), including p-values,
t-values, and 95% confidence intervals (CI). Bold values indicate statistically significant results (p <0.05).

Metric Coefficient p-value t-value Confidence Interval Percent
of Total

95th Percentile SWE 0.304 0 278 0.302 - 0.306 48.2
Hillslope Angle 0.119 2.04e-23 10.1 0.096 - 0.143 19
Relief -0.00106 6.19e-11 -6.57 -0.001 - -0.001 0.168
Elevation -4.49e-

05
0.0982 -1.65 -9.8e-05 - 8.31e-06 0.00712

25th Percentile Wind -0.206 2.52e-08 -5.59 -0.278 - -0.134 32.7
90th Percentile Wind -5.19e-06 1 -0.00023 -0.044 - 0.044 0.000824
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Table A15 – Coefficients of Multiple Regressions for a combined product of all satellites (n=2500), including p-
values, t-values, and 95% confidence intervals (CI). Bold values indicate statistically significant results (p <0.05).

Metric Coefficient p-value t-value Confidence Interval Percent
of Total

95th Percentile SWE 0.303 0 56.5 0.293 - 0.314 6.99
Forest Fraction 2.91 0.867 0.167 -31.3 - 37.1 67.1
Hillslope Angle -0.34 0.0267 -2.22 -0.641 - -0.039 7.84
Relief 0.00289 0.167 1.38 -0.001 - 0.007 0.0667
Elevation 0.00181 3.2e-07 5.13 0.001 - 0.003 0.0418
25th Percentile Wind -0.748 0.116 -1.57 -1.68 - 0.185 17.2
90th Percentile Wind 0.0315 0.913 0.109 -0.537 - 0.6 0.727

Table A16 – Coefficients of Multiple Regressions for a combined product of all satellites, without Forest Fraction
(n=2438), including p-values, t-values, and 95% confidence intervals (CI). Bold values indicate statistically signifi-
cant results (p <0.05).

Metric Coefficient p-value t-value Confidence Interval Percent
of Total

95th Percentile SWE 0.303 0 56.2 0.293 - 0.314 21.3
Hillslope Angle -0.345 0.0269 -2.21 -0.65 - -0.039 24.2
Relief 0.00297 0.161 1.4 -0.001 - 0.007 0.209
Elevation 0.00182 3.93e-07 5.09 0.001 - 0.003 0.128
25th Percentile Wind -0.745 0.121 -1.55 -1.69 - 0.197 52.3
90th Percentile Wind 0.0277 0.925 0.0941 -0.549 - 0.604 1.94
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Catchment-averaged SWE Trend Characteristics
To generate the following trend statistics, we aggregate all statistically-significant (p<0.05) trends above
500 m asl at either the whole-HMA or individual-catchment scale. We then calculate the minimum, av-
erage, maximum, and sum of trends, and report the total contributing area for these statistics. Percentage
change at each point is calculated by dividing 22-year SWE change by long-term average SWE. The mean
of these pixel-wise percent changes is then reported in the Tables below.

Table B1 – Full Year catchment-aggregated SWE Trends above 500 m asl. Data applicable only for statistically sig-
nificant trends.

Catchment Min Trend
(mm/yr)

Ave Trend
(mm/yr)

Max Trend
(mm/yr)

Trend Sum
(mm/yr)

Percentage
Change

Contributing
Area (sq km)

All HMA -0.020 -0.003 0.011 -10.599 -0.293% 2,641,250

Syr Darya -0.011 -0.003 0.005 -1.507 -0.368% 364,375

AmuDarya -0.016 -0.002 0.006 -0.459 -0.143% 163,125

Tarim -0.020 -0.002 0.007 -1.413 -0.256% 378,750

Tibet -0.009 -0.004 0.004 -2.874 -0.411% 473,750

Ganges -0.016 -0.002 0.011 -0.884 -0.301% 271,250

Indus -0.015 -0.004 0.005 -2.047 -0.342% 317,500



114 Appendix B. Appendix B - Supplementary Materials for Chapter 5

Table B2–DJF catchment-aggregated SWETrends above 500m asl. Data applicable only for statistically significant
trends.

Catchment Min Trend
(mm/yr)

Ave Trend
(mm/yr)

Max Trend
(mm/yr)

Trend Sum
(mm/yr)

Percentage
Change

Contributing
Area (sq km)

All HMA -0.147 -0.000 0.123 -1.253 -0.293% 2,201,875

Syr Darya -0.079 0.002 0.092 0.875 -0.584% 283,750

AmuDarya -0.108 0.013 0.064 3.003 0.235% 145,000

Tarim -0.147 0.001 0.088 0.546 -0.120% 443,125

Tibet -0.044 -0.005 0.068 -3.136 -0.473% 356,875

Ganges -0.122 -0.011 0.085 -4.835 -1.163% 271,250

Indus -0.109 -0.020 0.063 -6.238 -1.017% 195,000

Table B3 –MAM catchment-aggregated SWETrends above 500 m asl. Data applicable only for statistically signifi-
cant trends.

Catchment Min Trend
(mm/yr)

Ave Trend
(mm/yr)

Max Trend
(mm/yr)

Trend Sum
(mm/yr)

Percentage
Change

Contributing
Area (sq km)

All HMA -0.131 -0.022 0.037 -87.178 -2.332% 2,450,625

Syr Darya -0.103 -0.040 -0.008 -21.488 -4.106% 336,875

AmuDarya -0.114 -0.018 0.037 -3.247 -1.412% 111,250

Tarim -0.119 -0.021 0.028 -11.417 -2.482% 337,500

Tibet -0.045 -0.018 0.011 -13.730 -1.821% 470,625

Ganges -0.131 -0.025 0.034 -10.037 -2.582% 253,125

Indus -0.086 -0.019 0.030 -8.269 -1.385% 275,000
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Table B4 – JJA catchment-aggregated SWETrends above 500m asl. Data applicable only for statistically significant
trends.

Catchment Min Trend
(mm/yr)

Ave Trend
(mm/yr)

Max Trend
(mm/yr)

Trend Sum
(mm/yr)

Percentage
Change

Contributing
Area (sq km)

All HMA -0.094 -0.032 0.025 -36.789 -6.497% 719,375

Syr Darya -0.046 -0.028 -0.013 -0.532 -7.623% 11,875

AmuDarya -0.057 -0.023 0.025 -3.537 -3.689% 94,375

Tarim -0.081 -0.030 -0.006 -6.680 -5.256% 138,125

Tibet -0.063 -0.032 -0.006 -10.018 -8.593% 193,125

Ganges -0.046 -0.023 0.008 -1.711 -5.832% 45,625

Indus -0.094 -0.041 -0.006 -12.154 -6.576% 183,125

Table B5–SONcatchment-aggregated SWETrends above 500masl. Data applicable only for statistically significant
trends.

Catchment Min Trend
(mm/yr)

Ave Trend
(mm/yr)

Max Trend
(mm/yr)

Trend Sum
(mm/yr)

Percentage
Change

Contributing
Area (sq km)

All HMA -0.059 -0.009 0.057 -28.698 -1.328% 1,960,625

Syr Darya -0.023 -0.009 0.013 -1.641 -2.233% 116,875

AmuDarya -0.048 -0.014 0.014 -2.982 -2.118% 128,750

Tarim -0.038 -0.009 0.023 -3.926 -1.469% 262,500

Tibet -0.041 -0.016 0.028 -11.765 -1.723% 447,500

Ganges -0.045 0.001 0.057 0.206 -0.197% 208,750

Indus -0.059 -0.011 0.045 -3.759 -1.590% 222,500
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By-Catchment Seasonal Trends
All data reported in the Figures in this Section is drawn from statistically significant yearly or seasonal
trends (p<0.05).

Syr Darya Seasonal Trends

Figure B1 – (A) Catchment hypsometry (grey), percentage glaciated area (red), and percentage DJF snow covered
area (blue). Red lines indicate catchment elevation percentiles. (B) Seasonal and yearly SWE trends by 5th percentile
elevation slice, between the 5th and 99.5th percentiles.



117

AmuDarya Seasonal Trends

Figure B2 – (A) Catchment hypsometry (grey), percentage glaciated area (red), and percentage DJF snow covered
area (blue). Red lines indicate catchment elevation percentiles. (B) Seasonal and yearly SWE trends by 5th percentile
elevation slice, between the 5th and 99.5th percentiles.
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Tarim Seasonal Trends

Figure B3 – (A) Catchment hypsometry (grey), percentage glaciated area (red), and percentage DJF snow covered
area (blue). Red lines indicate catchment elevation percentiles. (B) Seasonal and yearly SWE trends by 5th percentile
elevation slice, between the 5th and 99.5th percentiles.
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Tibetan Plateau Seasonal Trends

Figure B4 – (A) Catchment hypsometry (grey), percentage glaciated area (red), and percentage DJF snow covered
area (blue). Red lines indicate catchment elevation percentiles. (B) Seasonal and yearly SWE trends by 5th percentile
elevation slice, between the 5th and 99.5th percentiles.
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Ganges Seasonal Trends

Figure B5 – (A) Catchment hypsometry (grey), percentage glaciated area (red), and percentage DJF snow covered
area (blue). Red lines indicate catchment elevation percentiles. (B) Seasonal and yearly SWE trends by 5th percentile
elevation slice, between the 5th and 99.5th percentiles.
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Indus Seasonal Trends

Figure B6 – (A) Catchment hypsometry (grey), percentage glaciated area (red), and percentage DJF snow covered
area (blue). Red lines indicate catchment elevation percentiles. (B) Seasonal and yearly SWE trends by 5th percentile
elevation slice, between the 5th and 99.5th percentiles.



122 Appendix B. Appendix B - Supplementary Materials for Chapter 5

Seasonal Trend Decomposition Coefficients
The code below describes the fitting parameters as implemented in this study, using the pyloess module
(https://github.com/lucidfrontier45/pyloess), modeled after the results of (Cleveland et al., 1990).

1 from p y l o e s s impo r t s t l
2

3 d e f n t _ c a l c ( f , n s ) :
4 ’ ’ ’ C a l c u a l t e t h e l e n g t h o f t h e t r e n d smoo th e r b a s e d on C l e v e l a n d e t a l . , 1 9 9 0 ’ ’ ’
5 nt = ( 1 . 5 * f ) / ( 1 − 1 . 5 * ( 1 / n s ) ) + 1 # F o r c e f r a c t i o n s t o be rounded up
6 i f i n t ( n t ) % 2 . == 1 :
7 r e t u r n i n t ( n t )
8 e l i f i n t ( n t ) % 2 . == 0 :
9 r e t u r n i n t ( n t ) + 1
10

11 d e f n l _ c a l c ( f ) :
12 ’ ’ ’ C a l c u a l t e t h e l e n g t h o f t h e low−p a s s f i l t e r b a s e d on C l e v e l a n d e t a l . , 1 9 9 0 ’ ’ ’
13 i f i n t ( f ) % 2 . == 1 :
14 r e t u r n i n t ( f )
15 e l i f i n t ( f ) % 2 . == 0 :
16 r e t u r n i n t ( f ) + 1
17

18 # f h e r e i s t h e p e r i o d o f t h e s e a s o n a l component ( 3 6 5 f o r y e a r l y , ~90 f o r s e a s o n a l )
19

20 ##### From p y l o e s s . py , l i n e ~480 , and C l e v e l a n d e t a l . ( 1 9 9 0 )
21 #np = f # p e r i o d o f s e a s o n a l component
22 ns = 7 # l e n g t h o f s e a s o n a l smoo the r
23 nt = n t _ c a l c ( f , n s ) # l e n g t h o f t r e n d smoo the r
24 n l = n l _ c a l c ( f ) # l e n g t h o f low−p a s s f i l t e r
25 i s d e g = 1 # Deg r e e o f l o c a l l y−f i t t e d p o l y n om i a l i n s e a s o n a l smoo th ing .
26 i t d e g = 1 # Deg r e e o f l o c a l l y−f i t t e d p o l y n om i a l i n t r e n d smoo th ing .
27 i l d e g = 1 # Deg r e e o f l o c a l l y−f i t t e d p o l y n om i a l i n low−p a s s smoo th ing .
28 ns jump = None # S k i p p i n g v a l u e f o r s e a s o n a l smoo th ing .
29 nt jump = 1 # S k i p p i n g v a l u e f o r t r e n d smoo th ing . I f None , nt jump= 0 . 1 * nt
30 nl jump = 1 # S k i p p i n g v a l u e f o r low−p a s s smoo th ing . I f None , n l jump= 0 . 1 * n l
31 r o b u s t = True # F l a g i n d i c a t i n g whe th e r r o b u s t f i t t i n g s h ou l d be p e r f o rmed .
32 n i = 1 # Number o f l o o p s f o r u pd a t i n g t h e s e a s o n a l and t r e n d component s .
33 no = 3 # Number o f i t e r a t i o n s o f r o b u s t f i t t i n g . The v a l u e o f no s hou l d
34 # be a n o n n e g a t i v e i n t e g e r . I f t h e d a t a a r e w e l l b eh a v ed w i t hou t
35 # o u t l i e r s , t h en r o b u s t n e s s i t e r a t i o n s a r e not ne eded . In t h i s c a s e
36 # s e t no=0 , and s e t n i =2 to 5 d ep end i n g on how much s e c u r i t y
37 # you want t h a t t h e s e a s o n a l−t r e n d l o o p i n g c o n v e r g e s .
38 # I f o u t l i e r s a r e p r e s e n t t h en no=3 i s a v e r y s e c u r e v a l u e u n l e s s
39 # t h e o u t l i e r s a r e r a d i c a l , i n which c a s e no=5 or e v en 10 might
40 # be b e t t e r . I f no>0 th en s e t n i t o 1 o r 2 .
41 # I f None , t h en no i s s e t t o 15 f o r r o b u s t f i t t i n g , t o 0 o t h e r w i s e .
42

43 r e s u l t = s t l ( t i m e s e r i e s , f , ns , nt , n l , i s d e g , i t d e g , i l d e g , ns jump , nt jump , nl jump , r obu s t , n i ,
no )
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Impact of Glaciers on Trend Patterns

Figure B7 – DJF SWE trends with (A) glaciated areas (RGI V5, (68)) removed and (B) with glaciated areas main-
tained. We remove any pixel that contains more than 25% glacier cover for this analysis. While many pixels are
removed, the large-scale spatial trends in the data are maintained, indicating that uncertainty over glaciers, while
potentially important, does not strongly impact the spatial pattern of SWE trends.
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Impacts of Measurement Uncertainty on Trend Values

Figure B8 – Full-year SWE trends using (A) a simple linear model or (B) 5%, (C) 10%, and (D) 20% uncertainty
weights based on SWE amount. While the large-scale patterns of SWE trends remain consistent, increasing uncer-
tainty modifies the relative strength of the trends throughout the study area, and decreases the number of statisti-
cally significant trends.
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Figure B9 –DJF SWE trends using (A) a simple linear model or (B) 5%, (C) 10%, and (D) 20% uncertainty weights
based on SWE amount. While the large-scale patterns of SWE trends remain consistent, increasing uncertainty
modifies the relative strength of the trends throughout the study area, and decreases the number of statistically
significant trends. In particular, the weighted regressions have larger trends by a factor of 2 as opposed to the simple
linear trend in DJF data.
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Figure B10 – Changes in (A) full-year and (B) DJF SWE trends when a 10% uncertainty margin is introduced (cf.
Figs. S09-S10). While some areas change their trend direction (from negative to positive or positive to negative), the
vast majority of points maintain the same trend direction in both cases. While the magnitudes of the trends may
change between the regressions, the direction and spatial distribution of trends remains consistent.
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By Catchment Average SWE (1987-2009)

Figure B11 – Syr Darya catchment-averaged SWE (1987-2009).

Figure B12 – AmuDarya catchment-averaged SWE (1987-2009).
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Figure B13 – Tarim catchment-averaged SWE (1987-2009).

Figure B14 – Tibetan Plateau catchment-averaged SWE (1987-2009).
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Figure B15 –Ganges catchment-averaged SWE (1987-2009).

Figure B16 – Indus catchment-averaged SWE (1987-2009).
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Properties of Passive Microwave Sensors

Table C1 – Characteristics of PM sensors. Temporal coverage, number of orbits, and processing algorithms.

Satellite Temporal Coverage Number of Orbits Used
(Descending/Ascending)

Processing Level/Al-
gorithm

SSMI (Wentz,

2013)

Aug 1987 - Apr 2009 (22
years)

176,460/176,460 FCDRV07

SSMI/S (Sun and
Weng, 2008)

Jan 2008 - Apr 2015 (7
years)

41,896/41,896 FCDRV07

AMSR-E
(Ashcroft and
Wentz, 2013)

May 2002 - Oct 2011 (9
years)

49,083/49,079 L1B

AMSR2 (Imaoka
et al., 2010)

Jul 2012 - Oct 2016 (4
years)

28,510/28,506 L1R

GPM (GPM Sci-
ence Team, 2014)

Feb 2014 - Oct 2016 (2.5
years)

7,359/7,359 L1B
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Flowchart of Melt Tracking Algorithm

Figure C1 – Flowchart illustrating the steps for the melt tracking algorithm. A full description of the algorithm
implementation is maintained on Github: https://github.com/UP-RS-ESP/SnowmeltTracking.
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Algorithm Theoretical Considerations

Figure C2 – (A) SWE, (B)MOD10C1 fractional snow-covered area, and (C) HAR daily average temperature. Melt
dates in red, with MXPGR as dashed lines and snowmelt end as solid lines. Some years do not have a defined
MXPGR date due to complex yearly SWE distributions. MXPGR dates generally correlate with the maximum
MODIS snow-covered area and the point where the yearly temperature curve minimizes. End dates correlate well
with MODIS snow clearance. Data taken from 71.25E, 36.75N.
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Figure C3 – HAR Average daily temperature vs Temperature Brightness (37V in green, 18H in red, 2000-2014).
Both channels show correlations with air temperature, but show a wide spread. This observation indicates that
there is no single Temperature Brightness threshold that can be used for snowmelt detection. Data taken from
71.25E, 36.75N.
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Figure C4–HAR temperaturemetrics vs Tb atMXPGR. Both 37V (blue) and 18H (red) channels show significant
spread. While there is a slight correlation between average daily temperature and Tb, average daytime temperature
is very poorly related to Tb. This implies that the night-time passive microwave data used to identifyMXPGR still
captures the impacts of above-zero daytime temperatures. Data taken from 71.25E, 36.75N.
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Standard Deviation in Snowmelt Period

Figure C5 – Standard deviation in snowmelt period, showing higher snowmelt period variance at high elevations
and in the orogen interior.
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Linear Matching Regression Parameters

Table C2 – Linear matching parameters and statistics - SSMI to AMSR.

SSMI-AMSR
37V intercept Mean -19.63360131

STD 35.83495628
Range 1081.194363

37V slope Mean 1.080532984
STD 0.144976002
Range 4.12275082

37V pval Mean 5.61E-08
STD 4.82E-06
Range 0.000413347

37V tval Mean 208.7706349
STD 75.80889139
Range 476.9591168

18H intercept Mean -21.99749485
STD 39.91555202
Range 1140.206255

18H slope Mean 1.095758046
STD 0.164415637
Range 4.199488203

18H pval Mean 1.30E-05
STD 0.000790001
Range 0.052541412

18H tval Mean 179.2705257
STD 76.37323937
Range 435.2829973
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Table C3 – Linear matching parameters and statistics - SSMI to SSMIS.

SSMI-SSMIS
37V intercept Mean -11.82749674

STD 26.99365273
Range 1003.134398

37V slope Mean 1.046288015
STD 0.112876411
Range 4.118598352

37V pval Mean 6.75E-15
STD 5.79E-13
Range 4.97E-11

37V tval Mean 144.7377425
STD 69.50580512
Range 393.2536574

18H intercept Mean -22.01065617
STD 25.4825934
Range 1003.973949

18H slope Mean 1.117712032
STD 0.115147016
Range 3.822440322

18H pval Mean 0.000122152
STD 0.010421198
Range 0.894333768

18H tval Mean 138.697067
STD 74.55722512
Range 396.2607783
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Table C4 – Linear matching parameters and statistics - SSMIS to AMSR2.

SSMIS-AMSR2
37V intercept Mean -27.90708304

STD 41.87667407
Range 995.3410873

37V slope Mean 1.113591021
STD 0.167733559
Range 3.989960318

37V pval Mean 2.24E-17
STD 1.92E-15
Range 1.65E-13

37V tval Mean 166.7653894
STD 62.51960823
Range 398.7550507

18H intercept Mean -32.35079224
STD 45.3924612
Range 1048.955192

18H slope Mean 1.134449236
STD 0.188178861
Range 3.882513428

18H pval Mean 3.07E-05
STD 0.001843432
Range 0.128179745

18H tval Mean 140.8474188
STD 63.12218532
Range 459.9962559
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Table C5 – Linear matching parameters and statistics - AMSR2 to GPM.

AMSR2-GPM
37V intercept Mean -4.109791938

STD 35.93862943
Range 936.9121798

37V slope Mean 1.020145353
STD 0.144607908
Range 3.781385974

37V pval Mean 2.72E-19
STD 2.19E-17
Range 1.87E-15

37V tval Mean 79.40991596
STD 27.93838517
Range 193.4060824

18H intercept Mean -3.172099946
STD 41.4648854
Range 989.3588298

18H slope Mean 0.99499014
STD 0.166546112
Range 3.592560572

18H pval Mean 3.14E-29
STD 2.69E-27
Range 2.31E-25

18H tval Mean 73.89142489
STD 29.09024642
Range 263.9399874
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Hierarchical Clustering Metrics

Figure C6 – Hierarchical clustering dendrogram. Clustering performed over Gaussian normalized XPGR values
for the entire length of the study period. Methods described in detail in the Manuscript.

Figure C7 –Metrics used to choose the hierarchical clustering distance threshold. Chosen threshold shown on each
chart in black.
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Impact of Analysis Timeframe

Figure C8 – Impact of analysis timeframe on (A, B) MXPGR, (C,D) snowmelt end, and (E,F) snowmelt period.
TheMXPGR and snowmelt end dates show a reversal of trend in many regions, from negative to positive.
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Appendix D - Abstract of van der Veen et al. (in
review)

Anthropogenic climate change has led to changes in seasonal and annual water storage and meltwater
amounts. Increased rates of glacial and snowmelt not only increase river discharge and flood potential,
but also the temporal heterogeneity in river discharge; areas downstreamof rivers draining highmountain
ranges are particularly vulnerable to changes in upstream hydrology. However, it, remains difficult to
attribute changes in surface runoff to changes in a particular source. Herewepresent a stable isotope study
of surfacewaters in thewesternHimalaya innorthwest India, aimed to improveunderstandingof seasonal
water sources and its climatological drivers. We present a new surface water δ2H, δ18O, and d-excess
dataset containing 135 samples from three separate river catchments (Sutlej, Beas and Alaknanda Rivers)
covering an altitudinal gradient from 457 to 4,417 m asl elevation. Additionally, two separate yearlong
isotope datasets with a weekly sampling interval were obtained (at Tabo in the Spiti/Sutlej catchment at
3,285 m asl with 36 samples and at Manali in the Beas catchment at 1,900 m asl with 41 samples).

We find that δ2H values of stream waters sampled in the post-monsoon season (September) in both
the Sutlej andAlaknanda elevation transects show a significant negative correlationwithmean catchment
elevation. Both the lower Sutlej (<4,000 m asl) and Alaknanda showed a lapse rate of -8.8hkm−1, while
the high elevation Spiti/Sutlej has a significantly higher lapse rate (-32.7hkm−1). Rayleigh distillation
processes caused by orographic uplift of Indian Summer Monsoonal (ISM) moisture mainly drive the
lapse rate in the lower Sutlej and Alaknanda. Deviations from the Rayleigh process predicted values in
the upper part of the catchments are interpreted to reflect higher input of winter westerly-derived precip-
itation and snow and glacial meltwater input affected by post-depositional processes such as sublimation.

In the seasonal time series of surface waters at 2 locations a 6-25% increase in d-excess during the peak
snowmelt season (March – June) was observed, coinciding with a decrease in remote- sensing derived
snow cover from>90% inwinter to <30% in summer, indicating a substantial input of snow and icemelt
into the surface waters of high-elevation catchments in spring. These results suggest that snowmelt in
high elevation catchments can significantly alter the surface water isotopic content, and can be used as a
tracer for snow and ice melt waters.

Ourmodern results show that a stable-isotopemonitoring system in combination with a remote sens-
ing data approach can be used to understand seasonal variability in water-source contribution in these
remote areas. More specifically, in the scope of global climate change, the timing and duration of snow-
and glacier melt could be monitored using d-excess values in surface waters, and contribute to a hydro-
logical budget in high- elevation Himalayan river catchments.
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