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ABSTRACT

Many users of cloud-based services are concerned about questions of data
privacy. At the same time, they want to benefit from smart data-driven ser-
vices, which require insight into a person’s individual behaviour. The modus
operandi of user modelling is that data is sent to a remote server where the
model is constructed and merged with other users” data. This thesis pro-
poses selective cloud computing, an alternative approach, in which the user
model is constructed on the client-side and only an abstracted generalised
version of the model is shared with the remote services.

In order to demonstrate the applicability of this approach, the thesis builds
an exemplary client-side user modelling technique. As this thesis is carried
out in the area of Geoinformatics and spatio-temporal data is particularly
sensitive, the application domain for this experiment is the analysis and
prediction of a user’s spatio-temporal behaviour.

The user modelling technique is grounded in an innovative conceptual
model, which builds upon spatial network theory combined with time-geo-
graphy. The spatio-temporal constraints of time-geography are applied to
the network structure in order to create individual spatio-temporal action
spaces. This concept is translated into a novel algorithmic user modelling
approach which is solely driven by the user’s own spatio-temporal traject-
ory data that is generated by the user’s smartphone.

While modern smartphones offer a rich variety of sensory data, this thesis
only makes use of spatio-temporal trajectory data, enriched by activity clas-
sification, as the input and foundation for the algorithmic model. The al-
gorithmic model consists of three basal components: locations (vertices),
trips (edges), and clusters (neighbourhoods).

After preprocessing the incoming trajectory data in order to identify loc-
ations, user feedback is used to train an artificial neural network to learn
temporal patterns for certain location types (e.g. work, home, bus stop, etc.).
This Artificial Neural Network (ANN) is used to automatically detect future
location types by their spatio-temporal patterns. The same is done in order to
predict the duration of stay at a certain location. Experiments revealed that
neural nets were the most successful statistical and machine learning tool
to detect those patterns. The location type identification algorithm reached
an accuracy of 87.69%, the duration prediction on binned data was less suc-
cessful and deviated by an average of 0.69 bins. A challenge for the location
type classification, as well as for the subsequent components, was the imbal-
ance of trips and connections as well as the low accuracy of the trajectory
data. The imbalance is grounded in the fact that most users exhibit strong
habitual patterns (e.g. home > work), while other patterns are rather rare by
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comparison. The accuracy problem derives from the energy-saving location
sampling mode, which creates less accurate results.

Those locations are then used to build a network that represents the user’s
spatio-temporal behaviour. An initial untrained ANN to predict movement
on the network only reached 46% average accuracy. Only lowering the num-
ber of included edges, focusing on more common trips, increased the per-
formance. In order to further improve the algorithm, the spatial trajectories
were introduced into the predictions. To overcome the accuracy problem,
trips between locations were clustered into so-called spatial corridors, which
were intersected with the user’s current trajectory. The resulting intersected
trips were ranked through a k-nearest-neighbour algorithm. This increased
the performance to 56%. In a final step, a combination of a network and spa-
tial clustering algorithm was built in order to create clusters, therein redu-
cing the variety of possible trips. By only predicting the destination cluster
instead of the exact location, it is possible to increase the performance to 75%
including all classes.

A final set of components shows in two exemplary ways how to deduce
additional inferences from the underlying spatio-temporal data. The first
example presents a novel concept for predicting the ‘potential memorisa-
tion index” for a certain location. The index is based on a cognitive model
which derives the index from the user’s activity data in that area. The second
example embeds each location in its urban fabric and thereby enriches its
cluster’s metadata by further describing the temporal-semantic activity in
an area (e.g. going to restaurants at noon).

The success of the client-side classification and prediction approach, des-
pite the challenges of inaccurate and imbalanced data, supports the claimed
benefits of the client-side modelling concept. Since modern data-driven ser-
vices at some point do need to receive user data, the thesis’ computational
model concludes with a concept for applying generalisation to semantic,
temporal, and spatial data before sharing it with the remote service in order
to comply with the overall goal to improve data privacy. In this context, the
potentials of ensemble training (in regards to ANNs) are discussed in order
to highlight the potential of only sharing the trained ANN instead of the raw
input data.

While the results of our evaluation support the assets of the proposed
framework, there are two important downsides of our approach compared to
server-side modelling. First, both of these server-side advantages are rooted
in the server’s access to multiple users’ data. This allows a remote service
to predict spatio-temporal behaviour that a user has not exhibited but an-
other user has. The same accounts for the imbalance in the user-specific
data, which represents the second downside. While minor classes will likely
be minor classes in a bigger dataset as well, for each class, there will still
be more variety than in the user-specific dataset. The author emphasises
that the approach presented in this work holds the potential to change the
privacy paradigm in modern data-driven services. Finding combinations of
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client- and server-side modelling could prove a promising new path for data-
driven innovation.

Beyond the technological perspective, throughout the thesis the author
also offers a critical view on the data- and technology-driven development of
this work. By introducing the client-side modelling with user-specific artifi-
cial neural networks, users generate their own algorithm. Those user-specific
algorithms are influenced less by generalised biases or developers’ preju-
dices. Therefore, the user develops a more diverse and individual perspect-
ive through his or her user model. This concept picks up the idea of critical
cartography, which questions the status quo of how space is perceived and
represented.

WISSENSCHAFTLICHE ZUSAMMENFASSUNG

Die Nutzung von modernen digitalen Diensten und Cloud-Services geht
haufig einher mit einer Besorgtheit um die Sicherheit der eigenen Privat-
sphére. Gleichzeitig zeigt sich, dass die Nutzung eben dieser Dienste nicht
riickldufig ist. Dieses Phanomen wird in der Wissenschaft auch als Privacy-
Paradox bezeichnet (Barnes, 2006). Viele digitale Dienste bauen einen Grof3-
teil ihrer Funktionalitdten auf NutzerInnendaten auf. Der Modus Operandi
bei diesen Diensten ist bisher, die Daten der NutzerInnen an einen Server zu
schicken, wo diese verarbeitet, analysiert und gespeichert werden. Die vor-
liegende Doktorarbeit schldgt ein alternatives Konzept vor: Selective Cloud
Computing. Kern dieses Konzeptes ist die Verlagerung der NutzerInnen-Mo-
dellierung auf die privaten Endgerdte, wodurch fiir weitere Services nur ein
abstrahiertes Daten- und NutzerInnenmodel mit den externen Diensten ge-
teilt wird.

Um dieses Konzept auf seine Machbarkeit und Performanz zu iiberprii-
fen wird im Rahmen dieser Arbeit ein beispielhafter Prozess fiir die nut-
zerInnenseitige Modellierung von raumzeitlichen Informationen entwickelt.
Da raumzeitliche Informationen mit zu den sensibelsten persénlichen Daten
gehoren, bietet die Verortung der vorliegende Arbeit im Bereich der Geo-
informatik fiir das Anwendungsfeld der Nutzerlnnen-Modellierung einen
passenden disziplindren Rahmen.

Die NutzerInnen-Modellierung fufit auf einem innovativen konzeptuel-
len Modell, welches Theorien zu rdumlichen Netzwerken und Hégerstrands
Theorie der Zeitgeographie miteinander kombiniert (Hagerstrand, 1970). Hier-
bei werden die von Hagerstrand entwickelten raumzeitlichen Einschrankun-
gen (Constraints) auf das Netzwerkmodel tibertragen, wodurch individuel-
le Aktionsrdume konstituiert werden. Dieses Model wird schliefilich in ein
algorithmisches Computermodel iibersetzt, dessen Operationen ausschlief3-
lich die Daten verarbeiten und nutzen, die auf den Smartphones der Nutze-
rInnen generiert werden.



Moderne Smartphones bieten fiir die Datengenerierung gute Vorausset-
zungen, da sie den Zugriff auf eine ganze Bandbreite an Sensoren und ande-
ren Datenquellen ermoglich. Die vorliegende Arbeit beschrankt sich dabei
jedoch auf die raumzeitlichen Informationen, welche {iber die Ortungsfunk-
tionen des Geréts produziert werden (Trajectories). Die Trajektorien werden
angereichert durch Aktivitatsklassifikationen (z.B. Laufen, Radfahren, etc.),
welche von der App, die diese Daten aufzeichnet, zugeordnet werden. Das
Computermodel basiert auf diesen Daten und gliedert diese in drei grundle-
gende Komponenten: 1) Orte (Knotenpunkte) 2) Trips (Kanten) und 3) Clus-
ter (Nachbarschaften).

Zu Beginn der algorithmischen Verarbeitung werden die eingehenden Da-
ten optimiert und analysiert, um in einem ersten Schritt geographische Orte
zu identifizieren. Um diese Orte nun mit semantischen Informationen an-
zureichern wird ein automatisierter Algorithmus iiber User-Feedback trai-
niert, welcher die Orts-Typen selbststindig erkennt (z.B. Zuhause, Arbeits-
platz, Haltestelle). Der Algorithmus basiert auf einem kiinstlichen neurona-
len Netz, welches versucht, Muster in den Daten zu erkennen. Die Entschei-
dung, neuronale Netze in diesem Prozess einzusetzen, ergab sich aus einer
Evaluation verschiedener Verfahren der statistischen Klassifizierung und des
maschinellen Lernens. Das Verfahren zur Erkennung der Orts-Typen erreich-
te unter Zuhilfenahme eines kiinstlichen neuronalen Netz eine Genauigkeit
von 87.69% und war damit das akkurateste. Eine weitere Einsatzmoglichkeit
solcher neuronalen Netze ist bei der Vorhersage von Aufenthaltsdauern an
bestimmten Orten, welche im Durschnitt 0.69 Klassen vom korrekten Ergeb-
nis abwich. Eine grofie Herausforderung fiir alle Module war sowohl die
Ungenauigkeit der Rohdaten, also auch die ungleichméfiige Verteilung der
Daten. Die Ungenauigkeit ist ein Resultat der Generierung der Positionsin-
formationen, welche zugunsten eines geringeren Energieverbrauchs der mo-
bilen Gerdte Ungenauigkeiten in Kauf nehmen muss. Die ungleichmafsige
Verteilung ergibt sich wiederum durch hiufig wiederkehrende Muster (z.B.
Fahrten zur Arbeit und nach Hause), welche im Vergleich zu anderen Akti-
vitaten vergleichsweise hdufig auftreten und die Datensédtze dominieren.

Die Orte, die in der ersten Phase identifiziert und klassifiziert wurden,
werden im nédchsten Schritt fiir die Konstruktion des eigentlichen raumli-
chen Netzwerks genutzt. Basierend auf den tiber einen bestimmten Zeitraum
gesammelten Daten der Nutzerlnnen und im Riickgriff auf Héagerstrands
Einschrankungsprinzip werden Vorhersagen tiber mogliche raumzeitliche
Verhaltensweisen im nutzerspezifischen Netzwerk gemacht. Hierzu werden
Methoden des maschinellen Lernens, in diesem Fall kiinstliche neuronale
Netze und Nachste-Nachbarn-Klassifikation (k-nearest-neighbour), mit Me-
thoden der Trajektorien-Analyse kombiniert. Die zugrundeliegenden Orts-
und Bewegungsinformationen werden unter Anwendung von Netzwerk-Nach-
barschafts-Methoden und klassischen rdaumlichen Gruppierungsmethoden
(Clustering) fiir die Optimierung der Algorithmen verfeinert. Die aus die-
sen Schritten resultierende Methodik erreichte eine Genauigkeit von 75%
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bei der Vorhersage iiber raumzeitliches Verhalten. Wenn man Vorhersagen
mit einbezieht, bei denen der korrekte Treffer auf Rang 2 und 3 der Néachs-
te-Nachbarn-Klassifikation liegt, erreichte die Methodik sogar eine Vorher-
sagen-Genauigkeit von 90%.

Um zu erproben, welche weiteren Schlussfolgerungen iiber die NutzerIn-
nen basierend auf den zugrundeliegenden Daten getroffen werden konnten,
werden abschliefiend zwei beispielhafte Methoden entwickelt und getestet:
zum einen werden die Trajektorien genutzt um vorherzusagen, wie gut eine
Nutzerln ein bestimmtes Gebiet kennt (Potential Memorisation Index). Zum
anderen werden zeitlich-semantische Muster fiir Orts-Cluster extrahiert und
darauf basierend berechnet, wann welche Aktivitdten und spezifischen Orte
innerhalb eines Clusters fiir die NutzerIn potenziell von Interesse sind.

Trotz der Herausforderungen, die mit den unausgeglichenen Datensét-
zen und teilweise fehlerhaften Daten einhergehen, spricht die dennoch ver-
gleichsweise hohe Prézision der nutzerseitigen Klassifizierungs- und Vorher-
sagemethoden fiir den in dieser Arbeit vorgestellten Ansatz der nutzerseiti-
gen Modellierung. In einem letzten Schritt kontextualisiert die vorliegende
Arbeit die erstellten Ansdtze in einem realweltlichen Anwendungsfall und
diskutiert den Austausch der generierten Daten mit einem datengestiitzten
Dienst. Hierzu wird das Konzept der Generalisierung genutzt, um im Sinne
des Schutzes der Privatsphére abstrahierte Daten mit einem Dienst zu teilen.

Obgleich der positiven Ergebnisse der Tests gibt es auch klare Nachteile
im Vergleich zur klassischen serverseitigen Modellierung, die unter Einbe-
zug mehrerer aggregierter NutzerInnenprofile stattfindet. Hierzu zdhlt zum
einen, dass unterreprédsentierte Klassen in den Daten schlechter identifiziert
werden konnen. Zum anderen ergibt sich der Nachteil, dass nur Verhaltens-
weisen erkannt werden konnen, die bereits zuvor von der Nutzerln selber
ausgeiibt wurden und somit in den Daten bereits enthalten sind. Im Ver-
gleich dazu besteht bei serverseitiger Modellierung auf der Basis zahlreicher
Personenprofile der Zugriff auf ein breiteres Spektrum an Verhaltensmus-
tern und somit die Moglichkeit, diese Muster mit dem der NutzerIn abzu-
gleichen, ohne dass dieses Verhalten bereits in ihren nutzerseitig generierten
Daten abgelegt ist. Nichtsdestotrotz zeigt die Arbeit, welches Potential die
nutzerseitige Modellierung bereithélt - nicht nur in Bezug auf den grofieren
Schutz der Privatsphdre der NutzerInnen, sondern ebenso in Hinsicht auf
den Einsatz von Methoden des verteilten Rechnens (distributed computing).
Die Kombination von beidem, nutzerInnen- und serverseitiger Modellierung,
konnte ein neuer und vielversprechender Pfad fiir datengetriebene Innovati-
on darstellen.

Neben der technologischen Perspektive werden die entwickelten Metho-
den einer kritischen Analyse unterzogen. Durch das Einbringen der nutzer-
seitigen Modellierung in Form von benutzerspezifischen kiinstlichen neuro-
nalen Netzen trainieren die NutzerInnen ihre eigenen Algorithmen auf ihren
mobilen Geriten. Diese spezifischen Algorithmen sind weniger stark von ge-
neralisierten Vorannahmen, Vorurteilen und moglichen Befangenheiten der
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EntwicklerInnen beeinflusst. Hierdurch haben NutzerInnen die Moglichkeit,
vielfdltigere und personlichere Perspektiven auf ihre Daten und ihr Verhal-
ten zu generieren. Dieses Konzept setzt Ideen der kritischen Kartographie
fort, in welcher der Status Quo der Wahrnehmung und Reprasentation des
Raumes hinterfragt werden.

ALLGEMEINVERSTANDLICHE ZUSAMMENFASSUNG

Moderne digitale Dienste basieren immer hdufiger auf tiefgehenden daten-
basierten Einblicken in das Verhalten ihrer NutzerInnen. Von personalisier-
ten Empfehlungen in Online-Shops bis hin zu sogenannten intelligenten per-
sonlichen Assistentlnnen. Letztere sammeln beispielsweise detaillierte Infor-
mationen iiber das gesamte speicherbare Verhalten ihrer NutzerInnen. Hier-
zu zédhlen unter anderem Bewegungsinformationen, welche dafiir genutzt
werden interessante Orte zu empfehlen, Navigationsfunktionen zu persona-
lisieren und orts- und kontextabhingig moglicherweise relevante Informa-
tionen anzuzeigen. Diesem Trend zum Datensammeln steht ein 6ffentlicher
Diskurs um die Privatsphdre der NutzerInnen gegeniiber. Dieser Diskurs
stellt allerdings nur eine Seite der Medaille dar. Denn Studien zeigen, dass
die meisten NutzerInnen - obgleich sie Datenschutz und Privatsphére wich-
tig finden — ihr digitales Verhalten nicht entsprechend anpassen. Dieses Pha-
nomen ist bekannt als Privatsphidren-Paradox (Barnes, 2006). Allerdings bie-
tet die Gesetzgebung der Bundesrepublik Deutschland eine gute Grundlage
dafiir, die Ausgestaltung dieser digitalen Dienste zu iiberdenken. Die ent-
sprechenden Gesetze zu Datensparsamkeit und Datenvermeidung sind da-
her auch leitgebend fiir diese Arbeit. Die vorliegende Dissertation beschaf-
tigt sich mit der Frage, ob der Datenaustausch solcher digitalen Dienste unter
Beibehaltung ihrer Funktionalititen zu Gunsten der Privatsphiire der NutzerInnen
umgestaltet werden konnen.

Der Modus Operandi in den meisten datengestiitzten Anwendungen sieht
vor, dass alle Daten der NutzerInnen an einen Server geleitet werden. Diese
Arbeit stellt diesem Modell eine Alternative gegeniiber, bei der die Daten
der NutzerInnen auf deren Gerdten gespeichert werden (z.B. einem Smart-
phone). Dort werden die Daten lokal verarbeitet und analysiert, bevor sie
letztendlich in einem abstrahierten Format mit einem Dienstleister geteilt
werden. Da raumliche Informationen {iiber z.B. Aufenthaltsorte zu den sen-
sibelsten Daten einer/s NutzerIn zdhlen, zeigt diese Arbeit exemplarisch
am Beispiel von Bewegungsinformationen wie solch ein Konzept umgesetzt
werden konnte, entwickelt entsprechende Algorithmen und testet diese auf
ihre Gebrauchstauglichkeit und Genauigkeit. Kern der entwickelten Algo-
rithmen sind automatisierte Verfahren zur Erkennung von Verhaltensmus-
tern. Hierzu gehort die Erkennung, um welchen Ortstyp es sich handelt
(z.B. Wohnort oder Arbeitsplatz) oder zum Beispiel die Vorhersage iiber die
Dauer eines Aufenthaltes an einem bestimmten Ort. Der komplexeste die-
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ser Algorithmus berechnet potentielle Ziele der NutzerInnen, wahrend sie
sich bewegen. All diese Berechnungen werden ausschliefdlich lokal auf Basis
der NutzerInnendaten durchgefiihrt, ohne die Einbindung externer Dienste.
Viele dieser Funktionen nutzen sogenannte Verfahren des maschinellen Ler-
nens, wie z.B. kiinstliche neuronale Netze. Diese modernen Verfahren sind
Alternativen zur klassischen Statistik und erlauben es, Muster in komple-
xen Daten zu erkennen. Wurde zum Beispiel das Ziel einer Reise mit grofser
Wahrscheinlichkeit vorhergesagt, konnen der /dem NutzerIn Empfehlungen
gemacht werden. Lediglich an dieser Stelle im Prozess miissen Daten mit ei-
nem externen Dienst geteilt werden. Um die Privatsphdre der NutzerInnen
dennoch zu wahren, wird nur ein abstrahiertes Model der NutzerIn geteilt
und nicht die zugrundeliegenden Rohdaten.

Die Arbeit stellt eine Alternative zum Modus Operandi von datengesttitz-
ten Systemen vor. Die Algorithmen wurden auf ihre Performanz und Ge-
nauigkeit getestet. Die vorliegende Dissertation zeigt somit das Potential
von selektivem Cloud-Computing und liefert einen Beitrag zum Diskurs um
Privatsphédre im Bereich digitaler Dienste.
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PREFACE

The first academic publication I wrote, back in 2008, was centred around
novel concepts for location-based application distribution (Meier and Hirt,
2008). The paper was written in the advent of the iPhone, before Apple’s
own App store was introduced. The paper described a technical and con-
ceptual framework for using Wireless Local Area Network (WiFi) fingerprint-
ing to distribute applications with a local relevance, like a public transport
Application (App) when one stands close to a bus stop. This method is
now integrated in most smartphones today. Since this first encounter with
Location-Based Applications (LBAs) I have repeatedly returned to the topic
of LBAs and Location-Based Services (LBSs). In 2012, while working for the
company IxDS I developed a prototyping framework for LBSs (Meier et al.,
2012). Later in 2013 I was employed as a research associate working for the
Interaction Design Lab (IDL), where I was part of a research conglomerate
exploring the opportunities of LBSs for tourists in the metropolitan area of
Berlin. The project resulted in several publications centred around Location
Recommendation (LR) (Meier, 2016; Meier et al., 2014b; Meier et al., 2014a).
Especially the latter project also led me to my final dissertation project. For
me, LBSs and LBAs were one of the first successfully adopted ubiquitous com-
puting applications for consumers, which attempted to adapt their compu-
tational behaviour to the location or rather context of the user. In so doing,
they combined real-world interactions with digital user experiences.

For those who have met me during my doctoral journey (or depending
on who you ask, the doctoral rollercoaster as a perhaps more suitable meta-
phor), the final focus of the thesis might come as a surprise. While contex-
tuality has remained an important factor, the focus shifted. I started out ex-
ploring the opportunities available through context- and location-based data
visualisations. I realised that in order to apply context models to visualisa-
tions that that would also require me to solve several rudimentary problems
of defining contexts and connecting the data space with the user’s real-world
space. This in turn led me deeper into the algorithmic modelling of contexts
and users. Due to my background in Human Computer Interaction (HCI)
this led me to the question of how to let people interact with their behavi-
oural models and how to help users regain control over their personal data
by controlling their modelled data.

This shift in focus of my doctoral thesis was in sync with my general re-
search focus. I started out with a strong focus on data-driven interfaces and
visualisations. The deeper I drilled into data-driven human computer inter-
faces, the more important algorithms became. This continued to the point
that, like an iceberg visible above water, the visual output came to represent
only a small percentage of the substantial algorithmic workings underneath.
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I believe this to be a trend in the design of interfaces, visualisations, and user
experiences in general. This represents a challenge to traditional design and
user experience designers as well as their education. In order to design
novel digital user experiences, we need to acquire a deep understanding of
the data-driven algorithmic processes underneath. In this sense, this thesis
presents a new approach for regaining control over our personal data by
exploring algorithmic techniques for user modelling.
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INTRODUCTION

Many modern digital services require us to reveal large amounts of per-
sonal information in order to use them. Our data are the foundation of
those services” algorithms. In this thesis an alternative approach is sugges-
ted, moving the sensitive information from the cloud onto the user’s device.
Instead of sharing a person’s data in its full extent, only an abstracted model
is shared. Therefore, several layers of client-side modelling and abstraction
are applied. This thesis takes the entirety of the underlying system into per-
spective, while it applies the developed framework to a specific use case in
order to demonstrate its feasibility and its applicability.

This first chapter begins with an introduction to the domain of recom-
mender systems, a popular domain for such personal data-driven algorithms.
This will serve as the application domain for the developed approach. This
chapter concludes with the research question and objectives of this thesis,
before outlining the structure of the remaining book.

1.1 MOTIVATION

Why do we share so much personal information with digital services? Or
rather: why do services collect so much personal information? We need to
share them because many services and their functionality are built on their
user’s data and heavily rely on that information. A common example are ser-
vices built on so-called recommender systems. Recommender systems are
nothing new. They have been around for over two decades. Tapestry was one
of the first recommender systems, designed to optimise the management of
emails (Goldberg et al., 1992). Since it was developed at the Xerox Palo Alto
Research Center in 1992 much has changed. The biggest change has been the
turn from manual recommendations to fully automated recommendations
based on the user’s behaviour (Sharma and Singh, 2016). An important
driver of this development was the fast diffusion of the world wide web. In
order to foster the discussion and innovation, the academic and business
community has intensified their research on data collection, behaviour ana-
lysis, user modelling, and the actual prediction or recommendation (Silveira
et al., 2001; Aggarwal, 2016; Bobadilla et al., 2013).

Most people who are using a smartphone or the world wide web are
exposed to such systems on a daily basis. Most common examples are shop-
ping websites like Amazon, which analyse the shopping behaviour of their
userbase in order to recommend related products of interest to their custom-
ers. With the rise of audio- and video-streaming services, which provide
their users with access to thousands of songs, TV-shows, and films (e.g. Net-
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flix, Amazon, Spotify, Last.fm, Audioscrobbler, and Apple’s iTunes), the need for
smarter recommendation services grew. Netflix did even start a competition
back in 2009, granting one million dollars to the team who was able to im-
prove their recommendation algorithm (Netflix, 2009). Even technologies
that on the surface appear to be ‘objective” information retrieval technolo-
gies, like for example most search engines, are optimizing their results to
their users’ preferences and previous browsing behaviour (Hannak et al.,
2013; Simpson, 2012).

The introduction of smartphones brought about the opportunity to collect
even more detailed behavioural information, especially spatial information.
This trend was also picked up by recommender services. Early examples
were working in small refined spatial areas and used such user data to re-
commend information on conferences (Chen et al., 2003). Today, many ap-
plications track their users’ spatial behaviour in order to optimise their user
experience. LBSs like for example Foursquare analyse their users’ behaviour.
On the one hand, this data is used to recommend locations® to their users,
and on the other hand, the data is used to provide businesses with insights
into their customers” behaviour, a service known as Foursquare Location In-
telligence (Foursquare, 2017a). In a similar manner, companies like Uber are
using the spatial behaviour of their users to optimise the experience and
efficiency of their transportation services (Belmonte, 2016).

The latest addition to this domain of applications are so-called intelligent
personal assistants (e.g. Siri by Apple, Google Now and Allo, Hound, Microsoft’s
Cortana, Amazon Alexa and Samsung’s Bixby). These applications try to gather
information about every aspect of a person’s life, as they aim to be ubiquit-
ous problem solvers. One issue they are attempting to solve is the question
of providing or rather recommending the right information at the right time
and within the right context. Therefore, the applications track the user’s
spatio-temporal behaviour (in addition to many other aspects). Companies
have accumulated extensive amounts of data on each user for the purpose
of creating highly detailed models of their users in order to be able to create
techniques of prediction, forecasting, and recommendation.

In parallel to these technological developments, we have seen a rising
discourse on privacy and the regaining of control over our digital selves
(Steinebach et al., 2015). Data has become a commodity — a commodity
that is being traded and used for profit. Data trading has become a process
that happens behind the scenes and usually without the user’s knowledge.
While some argue that the user’s profit is optimised services (e.g. better
search results), others argue that the users should be more closely integrated
into this process. In many cases, users lose the right over their own data as
soon as they register with a company. To empower users the European
Union (EU) has established a law that forces companies (located in the EU) to

1 In this thesis the word position refers to a spatial coordinate (x,y); the words location and
place refer to a semantically described entity like a restaurant or a park, which usually has a
position or a spatial area defined for providing spatial context.
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grant users access to (all) their personal data (upon request) (Ireland, 2003).
The German law has an even more strict idea of how personal data should be
handled by companies or any other type of organisation, which is specified
in two basic principles. The first principle is based on §3 of the Federal Data
Protection Act (Bundesdatenschutzgesetz), which holds the data collecting
party accountable for collecting only as much information as required for a
certain task. These principles are known as data-avoidance and data-austerity
(Datenvermeidung und Datensparsamkeit) (BM]JV, 2009). Furthermore, the
German Federal Constitutional Court has ruled that individuals have the
right to decide for themselves how to disclose and use their personal data.
In this context the concept was called informational self-determination (Inform-
ationelle Selbstbestimmung) (BVerfG, 1983).

Beyond the issue of rights over our data, personal data has also become a
liability. For one thing, leaks and hacks are exposing personal information
of users. For another thing, companies are able to use personal information
against their users. The company Uber, for example, was suspected of identi-
fying policemen and -women through their spatial behaviour and denying
them access to their service in order to avoid fines (Isaac, 2017). While people
might simply avoid such data-driven services, it has to be acknowledged
that many of those services are deeply interwoven into social interactions
and business activities. It has to be recognised that many of those tools and
services help in daily routines, which makes them so enticing.

This creates a discrepancy between the utility of the service for the user
and that user’s privacy. On the one hand, the user has a need or wish to
use a service, for example, to partake in social interactions that require them
to make use of certain digital tools and services. On the other hand, the
user may wish to share less information about himself or herself (Barkhuus
and Dey, 2003). While those privacy concerns have been acknowledged in
academic publications (e.g. Musumba and Nyongesa, 2013; Hong et al,,
2009; Barkhuus and Dey, 2003), it has not seen much attention in recent
years. Now, this divide has even made it onto the government’s agenda.
The ruling parties in Germany are discussing whether to change the data
protection act, specifically the aforementioned principle of data-austerity. The
reason for this change of mind is the pressure of the digital industry and the
fear of falling behind in digital innovations (Krempl, 2016b; Krempl, 2016a;
Briegleb, 2016; Borchers, 2016; Krempl, 2015). While we could change the
law and allow organisations and companies to gather more information on
individuals, the opposing position would be to ask the question of whether
we can make use of smart data-driven services while sharing less data
or rather only as much data as is really needed. On a technological and
research basis, this question opens a space of action, which this thesis will
further explore.

As smartphones become ever more powerful in regards to their processing
power and storage capacity, a concept has been proposed to present a par-
tial solution to the problem. Most current services perform their data storage
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and processing in the cloud. The company Set (Set, 2017) and tools like Geo-
paparazzi (Antonello, 2016) or research projects like Personis] (Gerber et al.,
2010) propose to store and process the data on the device instead. This solu-
tion builds upon this concept of client-side data storage and processing by
creating a data model on the client-side that allows to output datasets with
multiple granularities. This option would overcome the challenge of sharing
just enough data with a remote service by allowing the user to decide upon
the level of granularity, which is to be shared with a remote service. This
thesis explores this holistic and systematic alternative towards the modus
operandi in current digital data-driven services. The previously mentioned
LBSs, which makes use of spatio-temporal data was chosen as an applica-
tion domain. The domain of LBSs or rather (location) recommender systems
was not only chosen because this work is located in the research area of
Geoinformatics, but also because spatio-temporal data belongs to the most
sensitive information a user generates (Gambs et al., 2011). Spatio-temporal
behaviour does not only allow a company to calculate the user’s likes and
interests, but also provides insights into the real-world’s behaviour of the
user (where he or she lives, works, eats, etc.). Furthermore, spatio-temporal
behaviour represents a data-heavy and complex use case for such an altern-
ative approach and is, therefore, a good testbed for the evaluation of the
client-side approach.

1.2 THESIS OBJECTIVES

As introduced in the previous section, the focus of this thesis is a holistic per-
spective onto the client-side modelling of a user’s personal (spatio-temporal)
data in order to provide multi-granularity data-representations of the user’s
(spatio-temporal) behaviour. This behaviour can then be shared with a re-
mote service. This dissertation has a Geoinformatics perspective. Therefore,
it explores the potentials of Geoinformatics techniques and methods applied
to the development of a multi-granularity spatio-temporal client-side data
model. Furthermore, this work’s approach is centred upon extending ex-
isting Geoinformatics techniques with machine learning approaches. First,
individual spatio-temporal behaviour is analysed in order to build a user
model. This part makes use of techniques from the domain of spatial be-
haviour analysis, specifically mobility analysis as well as (spatial) network
analysis. Second, the dissertation creates a data representation of the model
in multiple granularities. The second part builds upon methods of general-
isation and clustering. In order to keep the models manageable and efficient,
the two phases described above further focus on the use case of the previ-
ously described intelligent personal assistants. To be more precise, the focus
lies on LBSs, which are further distilled to focus on the tasks of LR based
on contextual (space and time) information. This focus on personal spatio-
temporal data is also driven by the assessment, that such information is
especially sensitive, as it is prone to allow for the identification of individu-
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als based on their data. While human spatio-temporal activity encompasses
a whole range of categories, this thesis’ focus will primarily lie on urban
mobility, specifically intra-urban mobility.

To encompass the modelling approach, the overarching objective of this
thesis is to create a conceptual framework for the model that guides the
selection of methods and techniques. Beyond the theoretical and methodolo-
gical work, this thesis will also attempt to translate the acquired knowledge
into applicable techniques. The following three foci will set the objectives
for this thesis and will be the basis for the evaluation of the to be developed
concept to follow:

Client-Side:

The most central aspect is developing a privacy-centred alternative to
the status quo of user modelling in LBSs. Therefore, this thesis will ex-
plore the potentials of moving certain computations that involve sens-
itive user information onto the user’s device.

User Modelling:

The primary component to be moved onto the user’s device is the
modelling of their spatio-temporal behaviour. Those models should
meet the needs of LBSs and in the long run allow for the same user
experience that existing server-side modelling approaches deliver.

Multi-Granularity:

As modern digital services heavily rely on data, the client-side user
models need to be shared with the remote service. The sharing process
should reproduce the user- and privacy-centred approach of the overall
thesis. Therefore, this process entails only sharing a model of the user’s
activity and not the raw data. Moreover, this process ideally allows the
user to manipulate the granularity of the shared data.

1.3 DISCOURSE & CRITICAL PERSPECTIVES

The objectives above have a strong focus on the conceptual framework and
on its technological foundation and algorithmic implementation. Beyond
this technology-driven focus, the developed conceptual framework also con-
tributes to the previously discussed discourse on data privacy in modern
digital services. Most of the discourse on privacy is simply stating the fact
that there is a problem, or it is suggested to ban the services that create those
problems through laws and regulations. By contrast, this work plots an al-
ternative solution. The framework proposed in this thesis takes on a holistic
view and explores the interplay of requirements and technological solutions.
Thereby, the results should help foster the discussion concerning data pri-
vacy and data-driven services. This critical perspective is not only applied to
the modus operandi, but also to the proposed techniques and methods. It is
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variably applied then to the discussion of potential biases in data collection
as well as to the exploration of possibilities of artificial neural networks for
more personal and diverse classifications and predictions. These reflections
and critiques should enrich the otherwise technology-driven discussion.

1.4 THESIS STRUCTURE

Chapter 2 contextualises this thesis in its application domain and related
works. As a foundation for the subsequent chapters the technology
stack is introduced and discussed.

Chapter 3 delivers the theoretical foundation for the thesis and develops
the overarching conceptual framework, which will guide the following
chapters, by providing a theoretical underpinning as well as goals and
requirements.

Chapter 4 incorporates the conceptual model into the requirements of the
application domain, specifically focussing on the data exchange between
client and server.

Chapter 5 concludes the conceptual work by offering a critical, less techno-
logy-driven perspective onto the conceptual data modelling concept.

Chapter 6 focuses on the raw data and its analysis and processing. There-
fore, it introduces and analyses the technological infrastructure used
to gather the data. This is then followed by investigations of methods
and techniques for analysing the spatial data in accordance with the
conceptual framework developed in the previous chapter. The chapter
concludes with a personal spatio-temporal data model.

Chapter 7 pulls everything together and discusses the implementation of
the techniques in a real-world scenario.

Chapter 8 critically reflects upon the development and results of this thesis.
After an in-depth discussion of the LBS use case in the previous chapters,
the last chapter returns to the holistic view of the proposed approach
and connects the insights from the use case onto the overall approach.
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Technological Foundation (2)

Spatial data from Smartphones (2.2.1)

(spatial) Trajectories (spatial) Activity Recognition

Selective Cloud Computing (2.2.3)
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Figure 1: Thesis structure.
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2.1 APPLICATION DOMAIN

As introduced in the first chapter, the domain of LBSs and, to be more precise,
LR within LBAs on mobile devices, will serve as an application domain for the
privacy-preserving approach that will be developed. The focus of this thesis
is to develop a broader conceptual model as well as the modelling approach
to be used in such applications, not simply the development of such applic-
ations themselves. As the following sections will show, the development
of models and the algorithms that create them entails precise requirements.
The introduction to the application domain, therefore, serves as a construc-
tion of those requirements, which will be used in the sections and chapters
hereafter. The requirements will provide a more realistic environment for
the proof of concept of the client-side modelling approach, especially in re-
gards to the evaluation of the models and algorithms. Therefore, this section
will not go into depth in regards to LBSs, but will rather focus on the LR pro-
cess, specifically the spatio-temporal components. Overviews and reviews
of the LBS field, which also informed this thesis, are among others provided
by Zontar et al., 2012, Tiwari et al., 2011 and Lee et al., 2006 (more specific
overviews mentioned below).

2.1.1 Location Recommendation

The first chapter introduced recommender systems more generally. Mod-
ern recommender systems in the domain of LR make use of Information Re-
trieval (IR) techniques which “are generally divided in two types: algorithms
that utilize collaborative filtering and algorithms that utilize content based
filtering” (Savage et al., 2012, p. 45, see also Baudisch, 1999 and used in
applications like Levandoski et al., 2012; Kuo et al., 2009). Content-based fil-
tering analyses the properties of items and calculates the similarity between
items. If a user, for example, likes a place that is a certain type of restaurant,
the recommendation algorithm recommends similar restaurants. In addi-
tion, collaborative filtering includes the analysis of several users and their
behaviour to arrive at recommendations. The most common example is
the recommendation of locations based on commonly visited locations (e.g.
users who visited this location also visited those locations). Even though
the actual retrieval task is not the focus of this thesis, the data that is used
to build those queries is at the heart of this thesis. Therefore, a further in-
vestigation into those data requirements will remain necessary. Across the
literature a certain consensus exists, which categorises the data of the above-
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mentioned filtering approaches into three categories: personal, geographic,
and social (Yu and Chen, 2015, Mokbel et al., 2011; Liu, 2014; Zhang and
Chow, 2013).

Personal:

Personal filtering refers to approaches where traditional user profiles
or rather preferences are used to filter locations, for example demo-
graphic filtering (Bobadilla et al., 2013). Those approaches can be
combined with the latter two approaches to achieve hybrid filtering
approaches, for example comparing the behaviour of users that be-
long to the same demographic group. Personal profiles or interests
are acquired through questionnaires or by deducing them from visited
locations, like an interest in a certain category of restaurants that are
frequently visited.

Geographic:

Building upon Tobler’s first law of geography (Tobler, 1970), geographic
filtering approaches group locations based on their geographic rela-
tionships (e.g. distance, common region, etc.). Again, the geographic
filtering can be combined with other approaches, for example screen-
ing locations in a shared neighbourhood which are used by a similar
demographic group.

Social:

With the emergence of smartphones and their growing user groups,
Location-Based Social Networks (LBSN) became popular and introduced
new possibilities of filtering locations. Beyond comparing similarit-
ies like the two approaches above, social networks allow a filtering
algorithm to analyse the social graph of a user. Analysing the beha-
viour of friends and connections of a user delivers more insights for
new recommendations. An algorithm can, for example, analyse which
locations are popular among a network of friends (Li et al., 2008; Seo
and Ahn, 2013).

Like most modern LBSs this thesis follows a hybrid approach, combining
data from the three areas described above in order to develop a LR algorithm.
This will serve to “better the user experience [...] by inferring users’ prefer-
ences and considering time geography and similarity measurements auto-
matically.” (Savage et al., 2012, p. 37). The modelling of spatio-temporal
behaviour (geographic) will allow us to develop a personal model, which
can highlight the preferences of the user (personal). The model can then
in turn be used by the remote service to compare this personal model with
other users” models (social). Based on this process, we can define the first
set of requirements necessary to perform the IR tasks:
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Spatial Behaviour

At the core of all requirements lies the task of the (future) recommend-
ations of locations, built on behavioural predictions and information
retrieval. In regards to a user’s spatial behaviour, the system needs to
acquire information on the visited locations (time, position, additional
metadata derived from the locations). This will allow the algorithm to
calculate patterns and preferences based on visited locations. Further-
more, the resulting location dataset should help identify spatial areas
of interest (e.g. for finding similar areas). Ye et al. suggest in their
work that certain locations or areas show specific temporal patterns
(e.g. when people visit certain locations, unique visits vs. repetitive
visits, etc.) (Ye et al., 2011a). Aggarwal further illustrates the import-
ance of temporality:

“1. The rating of an item might evolve with time, as community attitudes

evolve and the interests of users change over time. User interests, likes,

dislikes, and fashions inevitably evolve with time. 2. The rating of

an item might be dependent on the specific time of day, day of week,

month, or season. For example, it makes little sense to recommend
winter clothing during the summer, or raincoats during the dry season”

(Aggarwal, 2016, p. 21).
Therefore, all aspects mentioned above are not only observed in re-

gards to their spatiality but also in regards to their temporality (Ye et
al., 2011b; Yuan et al., 2013).

Personal / Semantic preferences

The focus of this thesis is the spatial aspects of user modelling. There-
fore, personal characteristics are derived from the spatial behaviour
instead of from traditional approaches that utilise user semantics like
demographic information. Beyond the personal spatio-temporal beha-
viour, described above, one can use the resulting location and areal
data from the previous step to acquire additional meta information.
Location history, for example, can be used to gain semantic informa-
tion about those locations and thereby calculate semantic similarities
as well as derive patterns of the user’s behaviour (Levandoski et al.,
2012) (e.g. interest in a certain type of restaurant). In conclusion, the
proposed system should be able to acquire personal preferences for
further analysis from the spatial and temporal features identified in
the spatial behaviour of the user. Based on those preferences and the
spatio-temporal information, the system should, for example, be able
to “consider activities (i.e., temporal preferences) and different user
classes (i.e., Pattern Users, Normal Users, and Travelers) in the recom-
mendation process [...] [thereby] generating more precise and refined
recommendations to the users” (Leung et al., 2011, p. 305).
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Social (collaborative) Filtering

Collaborative filtering is a powerful IR technique for filtering vast
amounts of information and finding user-specific recommendations.
In order to do so, the system needs information on a common set of
parameters to compare users and find connections. Therefore, we need
to share the gathered information from the two previous steps with a
remote service, which has access to the aggregate of shared user pro-
files. As the focus of this thesis is to develop a privacy-preserving
approach, the data shared with the remote service should allow the
service to run collaborative filtering approaches while maintaining the
users’ privacy.

Based on the requirements outlined above, we could already build pull
recommendation approaches. Pull, in the sense that the user sends a query
request to the remote service and receives a result, the way most early LBAs
worked (Tiwari et al., 2011). A user is, for example, searching for a restaurant
and the service is combining filtering approaches to deliver a customised res-
ult. In contrast, newer approaches are often pushing information depending
on the context of the user. Push, in the sense that the system autonomously
decides when (and where) to display certain context-relevant information.
Those techniques make full use of the mobile capabilities of smartphones
and deliver a ubiquitous location and context-aware mobile service. To do
so, they need to be able to model the user’s context. In the following, the
requirements above are extended to allow for context-aware filtering. In or-
der to arrive at those extended requirements, the next section will explore
context models and context awareness.

2.1.2 Context

Before we can identify further requirements, which will allow us to model
and identify certain contextual aspects, we need to explore and define the
concept of what ‘context’ is. Early work on context-aware computing mostly
provided very broad definitions of context. One of the first notions of
context-awareness within this thesis” application domain goes back to Schilit
and Theimer’s article from 1994, in which they understand context to be
“the location of use, the collection of nearby people and objects, as well as
the changes to those objects over time” (Schilit and Theimer, 1994, p. 22) (see
also Schilit et al., 1994). Building upon Schilit’s definition, the term ‘identity”
is often used in reference to nearby locations and objects (e.g. Dey, 2001;
Zontar et al., 2012) highlighting their unique identification to be used in de-
fining the current context. As Dey has pointed out, “[o]ther definitions have
simply provided synonyms for context; for example, referring to context as
the environment or situation [...] [which] are extremely difficult to apply in
practice” (Dey, 2001, p. 6). Common important aspects highlighted in defin-
itions of context are: where, when as well as who and what is nearby (Schilit
and Theimer, 1994; Schilit et al., 1994; Pascoe, 1998; Dey, 2001; Zontar et

11
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al., 2012; Musumba and Nyongesa, 2013). Furthermore, environmental para-
meters extend the previous definition of context (e.g. temperature, humidity,
lighting, noise, etc.). In addition to those external parameters the user them-
selves (e.g. current activity), as well as the user’s device and its capabilities
are often taken into account as additional parameters e.g. “computing envir-
onment, such as available processors, devices accessible for user input and
output, network capacity, connectivity, and cost of computing” (Musumba
and Nyongesa, 2013, p. 2). While those aspects above define a whole context,
more application-specific definitions restrict those parameters to just those
entities that are relevant to the current task of the user, allowing the application
for example to provide context-relevant information.

Deducing from those definitions, this thesis defines context with reference
to two layers.? In the first general layer, context is a point in (geographic)
space and time, that refers to the where and when. In a second layer, ad-
ditional parameters are acquired to enrich the context definition, revealing
what is in the proximity of the user. Those parameters are of direct relevance
to the current task at hand: location recommendation. The parameters refer
to the previously outlined LR requirements, the locations (and their semantic
metadata) in direct proximity of the user, as well as areal descriptions (type
of area, e.g. the mix of location types), and are thus of primary relevance to
the context. In addition, the spatial relationships of the current position / area
must be considered. More relevant still, the user’s current actions are taken
into account and future actions are projected. As pointed out in the future
works section of this thesis, additional parameters would help with more
precise modelling of the context (e.g. weather information) but are excluded
from this first approach due to the extent of this thesis.

In order to deal with this contextual definition, this work forwards a four-
step process inspired by Chen et al. and their process of identifying activities
(Chen and Nugent, 2009):

1. Create a computational model that allows the application to reason
about the current context and its changes (to come).

2. Observe the user’s behaviour as well as changes in his or her environ-
ment.

3. Digest the observed information and process it through the modelling
algorithm.

4. Perform actions, deliver information or predictions based on pattern
recognition.

2 Other approaches to deal with the complexity of defining an application’s relevant context
have been done through numerous systematics, ontologies, and models (e.g. Baldauf et al.,
2007; Strang and Linnhoff-Popien, 2004; Musumba and Nyongesa, 2013; Hong et al., 2009;
Lee et al., 2006; Bobadilla et al., 2013; Chen et al., 2004).
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On the basis of this process we can extend the previous requirements
further:

Spatial Behaviour

The spatial context must be aggregated from the location history. In so
doing, the system acquires more information about the location’s spa-
tial environment (e.g. which locations are near a location that is being
visited by the user). In addition, again with a focus on spatio-temporal
behaviour, the mobility between locations needs to be taken into ac-
count (Randell et al., 1992) Changes in the context need to be con-
stantly observed in order to predict future events. This puts a stronger
emphasis on mobility and spatial relationships.

Personal / Semantic Preferences

On the one hand, semantic information can be derived from the loca-
tion history. On the other hand, this focus needs to shift towards areal
descriptions in order to take the user’s or a location’s spatial context
into account. This enables the service to compare contexts based on
their common semantics and to derive recommendations.

Social (collaborative) Filtering

In line with the previous requirements, the approach needs to be able
to share the resulting model with a remote service for Collaborative
Filtering (CF). Again, the premise is to enable CF while maintaining
the user’s privacy.

In conclusion, the user’s spatio-temporal behaviour needs to be analysed
with regards to its interactions with locations (visiting a location) and the
relationship between locations (mobility). It takes into account the context
of the user and his or her locations in regards to space and time in order to
create recommendations and predictions based on the user’s behaviour. To
do this, we need to model the users and their spatio-temporal behaviour as
well as their contexts. The following sections will lay the technical founda-
tions for the data that is required in order to create those models, concluding
with a section exploring actual modelling from a conceptual perspective.

2.2 TECHNOLOGICAL FOUNDATION

Before discussing the modelling itself, this section will describe the technolo-
gical foundation upon which the following sections and chapters will build.
As described in chapter 1, with the introduction and rapid diffusion of smart-
phones and their continuous development, they have become of increasing
interest for questions of data collection in the context of user modelling. In
what follows, two key developments will be detailed further as they are es-
sential to meeting the requirements outlined above. These requirements are

13
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fundamental for the development of the methods and techniques in chapter
6 as well as the implementation taken up in chapter 7. Of those two basal
technologies, the first is spatial data production on smartphones, which ful-
fils the requirement of being able to observe the user’s trajectories and their
location visits. The second, the comparison of client-side computing versus
cloud computing, serves the overall agenda of this thesis to create a privacy-
preserving approach by moving certain sensitive components from server-
side to the client-side.

2.2.1  Spatial Data from Smartphones

Today’s generation of smartphones was brought about by the introduction
of the iPhone in 2007. But before what is now referred to as a smartphone,
there was another generation of mobile handheld computers. The first of
these were introduced as Personal Digital Assistants (PDAs) in the mid-1990s
(Psion, Apple, IBM, Nokia, Palm). During the early 2000s, a whole variety of
handheld computers incorporating cellphone capabilities appeared on the
market, like HTC’c Mobile Digital Assistants (MDAs). Most of the smart-
phone’s early predecessors were not equipped with a GPS sensor and came
mostly without any network access features in the early years. Still, the
availability of those mobile computers sparked development and research on
mobile applications for the display of and interaction with spatial data. One
of the first of these devices, the Simon Communicator by IBM and BellSouth,
already included a static map (Sager, 2012). Over time miniaturisation and
other technological developments led to the integration of GPS sensors and
network connections. This resulted in the forerunners of today’s LBSs, at the
time known as wearable Geographic Information System (GIS) (Zipf et al., 2000;
Coors and Jasnoch, 1999). While the chips and sensor have become smaller,
more efficient, and less power consuming, the fundamentals of acquiring the
current location of the user haven’t changed much since the early PDAs. Most
locating technologies are built on the signal strength of external transmitters
and either triangulation or fingerprinting based on the information of the
transmitters’ locations and time difference (Roxin et al., 2007; Chen, 2012).
In the majority of cases, this is achieved through the Global System for Mo-
bile Communication (GSM) network towers or the GPS satellite network (Rao
and Minakakis, 2003). For short-range positioning, the same can be derived
from WiFi or Bluetooth dongle networks. Modern smartphones combine all
those systems in order to always provide a position quickly (e.g. Android
(Google, 2017)), which is sometimes referred to as Assisted GPS or Synthetic
GPS (See figure 2). Those alternative methods to GPS are of special interest
if the user is moving through an urban environment (urban canyons), or is
located indoors, where due to the building structure the GPS signal becomes
weak.

Each of the previously mentioned technologies has its advantages and
disadvantages. For our specific use case, two criteria are of further in-
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Figure 2: Exemplary assisted GPS workflow. (Adapted from Google, 2017).

terest: power consumption and accuracy. In order to model a user’s spatio-
temporal behaviour we need to constantly collect location information, thus
enabling the generation of trajectories for the user’s movements. Acquiring
constant location information would, for one, create too much data for a
mobile device to store. More importantly, the process would rapidly drain
the battery of the user’s handheld device. To overcome this, the location is
only acquired in intervals, with the time between intervals depending on the
user’s speed and mode of transport. A user walking slowly requires fewer
updates than a user sitting in a motorised vehicle. When users operate a
navigational application to find a certain location, they use the application
for several seconds or even minutes. This allows the application to refine
the position and increase accuracy. For constant location tracking, we can-
not afford to spend this much time on acquiring the location due to power
efficiency. As a result of this middleground solution, inaccuracy and errors
are introduced into the dataset. Errors and inaccuracy will vary as a result,
depending the kind of network available (Zandbergen, 2009). This problem
has to be taken into account in the spatial data preprocessing in chapter 3
when analysing the user’s spatial trajectory data.

Activity recognition is a recent development that generates more detailed
spatio-temporal information on a user and helps to further refine location
acquisition. The enrichment of trajectories through additional user data is
sometimes referred to as semantic trajectories (Hu et al., 2013). Within this
context, activities include for example walking, running, cycling, riding a
train, or travelling on an aircraft (Savage et al., 2012; Lau, 2012; Pennanen
and Kyrold, 2013). To recognise those activities, the smartphone analyses
data from many different sensors (e.g. barometer, compass, accelerometer,
GPS). Machine-learning algorithms interpret and analyse the resulting data-
sets, for example, by calculating speed and movement patterns and in turn
identify the underlying activities. While older research on personal activity
data was primarily reliant on GPS trajectories (Spek et al., 2009; Zheng et
al., 2008b), this new generation of activity data allows more in-depth ana-
lysis of an individual’s activity. This data cannot only be used for analyses.
It also allows the previously mentioned trajectory generation to fine-tune
the intervals at which a location is acquired. The application Moves, for ex-
ample, reduces the interval when a user is riding a train (ProtoGeo, 2016).

15
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Moves was one of the earliest applications deploying this technology while
also granting the user access to their data. While Apps like Moves are us-
ing their own machine learning algorithms, modern smartphone Operating
Systems (OSs) (Android 2.2+ (Android, 2017), iOS 7+ (Apple, 2017)) allows
developers to access activity classification directly from the system’s core
Application programmable Interfaces (APIs).

Trajectories and the location history are essential to the requirements out-
lined above. Therefore, spatial trajectories with activity classifications, ac-
quired from the technologies described in this section, will be the foundation
for the data analysis and modelling described in the following sections and
chapters.

2.2.2  Data Refinement through User Feedback

Creating models of real-world phenomena is difficult, not only because the
physical world is complex, but also because data collection of those phe-
nomena remains prone to error. GPS trajectories, for example, are often
inaccurate or not accurate enough, which doesn’t allow for an exact estim-
ation of where the user is at a certain moment in time. This is particularly
unfortunate if the systems try to map the user’s position against a dense set
of urban locations struggling to determine which location the user currently
perambulates through. In order to overcome those uncertainties in the data
and improve models and thereby deliver a better user experience, applica-
tions need feedback from their users. On a first level, one needs to differen-
tiate between push and pull feedback. Some applications (e.g. Foursquare)
have designed their user experience in such a way that users are invested in
telling the application where they are (push). In the case of Foursquare this
is achieved through a gamification approach. Pushed feedback on where a
user currently is, is often referred to as Checklns. In most other cases the
information is explicitly requested from the service (pull). In the domain of
LBS and intelligent personal assistants, three distinct pull feedback types can
be classified: improve, confirm and additional metadata.

Improve and Confirm:

Through improve- and confirm-feedback functionalities, the system
tries to increase its precision. In LBSs the most common feedback is
the confirmation of visited locations (see the examples from Foursquare
and Google in figure 3). The service tries to estimate the location with
the highest probability and requests feedback from the user if those cal-
culations are correct. If the system cannot arrive at a high probability
result, the system requests an improvement from the user. Therefore,
the system presents a list of possible locations for the user to choose
from (see an example from Moves in figure 3).

The same is sometimes done to improve the recommendation algorithm.
When the user is confronted with a new recommendation, the system
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Figure 4: From left to right: 1. Foursquare collecting additional metadata through
their users. 2. The same done by Google 3. Google Now acquiring user
confirmation on content recommendation.

asks the user to confirm if the presented information is helpful or not
(see the example by Google in figure 4). By collecting such user feed-
back, the errors and inaccuracies in the datasets can be reduced.

Additional Metadata:

In order to perform IR tasks through collaborative or item-based filter-
ing, a system needs common parameters within which items or users
can be compared. Similar to volunteer geographic information sys-
tems, LBSs try to improve their location parameters and create a more
homogeneous dataset by asking their users to complete the dataset and
fill in the gaps (see the example by Google and Foursquare in figure 4).

Within this thesis” conceptual framework, the user feedback will be used
for increasing the accuracy of the location history, as well as for improving
the performance of the models.

2.2.3 Client-side Computing vs. Cloud computing

Most LBSs are cloud-based services. The first systems that are comparable to
our modern cloud computing infrastructures were introduced in the 2000s
by research institutes (Sotomayor et al., 2008) and companies like Microsoft
(Hauger, 2010) and Amazon (Amazon, 2006). The main premise of cloud
computing applications today is to move the processing of intensive pro-
cedures and data from the client’s local machine to a network (or, today,
rather a internet-connected array of servers, which can perform tasks more
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efficiently). Tsai et al. have suggested a classification of cloud-based ser-
vices into four categories, which build upon one another (Tsai et al., 2010).
Starting with the foundation, the data centres (1) at the bottom, followed by
Infrastructure as a service (2), Platform as a service (3) and Software as a service (4).
As this thesis develops a modelling and data exchange approach that resides
between end-user and service, our focus lies on the last layer: Software as a
service (SaaS). The fundamental principle of SaaS is the client-server model,
which goes back to the 1960s (Rulifson, 1969), when work on the ARPANET,
the internet’s predecessor, started.

In recent years, the term ‘cloud” is more strongly associated with data
storage than its processing capabilities. Services like Google Drive, Dropbox,
or Apple’s iCloud, which shaped the term cloud in the public discourse, are
only one type of SaaS. This shifted perspective underlines the continuing
trend of data-driven services, which resonate with most SaaS. In this sense,
cloud-based systems allow their remote users to conveniently access tera-
bytes of data and run algorithms on top. With the diffusion of mobile
internet-connected devices, many Apps only serve as interfaces (client) to
those cloud-based services (server). While, the mobile device only holds
rudimentary functionality to interact with the cloud, the data and the actual
services (algorithms) reside on remote servers.

In regards to personal information, the context of this thesis, it is the
modus operandi in most Saa$S to send all data gathered from the user’s device
into the cloud. The information is stored on remote servers and can then be
used for analysis and calculations. While this thesis is exploring an altern-
ative technique in part, one has to acknowledge that there are advantages
concerning a user’s personal information in an infrastructure that is com-
pletely cloud-based (Kim, 2009):

From a user perspective:

The biggest advantage to users is the relocation of data onto remote
servers. Thereby, users can access the service when and where they
need to. Multi-device usage can easily be achieved through cloud-
based infrastructures, as all data is stored and modified on the server.
Therefore it is not required to sync local changes between devices. If a
device gets stolen or corrupted, a new device can easily be set up by
simply signing into the service and returning to the last state. As most
of data storage and processing is handled remotely, the user’s devices
need to be less powerful, saving cost on end-user hardware. Further
costs can be saved through flexible scaling of the required resources
on the service, as most cloud service providers only ask their clients to
pay for the resources they actually need.

From a business perspective:

Updates to the main service, which do not involve changes in the dis-
play of information, can be incorporated without the users needing to
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update their application (or rather incorporate updates automatically
without the user’s knowledge). The company running the service has
control over all their client’s data. Therefore, they can easily analyse
the data and for example build new algorithms or additional services
(e.g. the company Foursquare is using their users’ spatio-temporal data
to run their business engine Pilgrim, which they allow third parties to
access (Foursquare, 2017c)).

One of the biggest advantages of cloud-based services is the remote stor-
age of data, which is at the same time a big liability. The concerns regarding
personal information were introduced in the introduction (e.g. privacy and
data leaks). This does not only account for private individuals, it also ac-
counts for organisations and companies that switch to cloud-based services
and need to entrust third-parties with critical data and processes (Marston
et al., 2011). Some developers are suggesting a contrasting approach (see be-
low). As smartphones have become more capable, developers have started
performing some calculations directly on the device as well as storing certain
sensitive information on the device instead of sending everything to a re-
mote server. Such setups are often referred to as distributed computing setups.
In this specific case, the decision to selectively distribute components based
on privacy issues constitutes a new paradigm. Therefore, the term selective
cloud computing is introduced to describe this divide of processing respons-
ibilities between client and server. From a technical perspective, the concept
is in line with distributed computing systems. The proposed concept has a
stronger focus on providing a decisionmaking framework for determining
which computations are to be made on either the client- or server-side based
on privacy requirements. The reason we focus on this alternative is the re-
semblance of the underlying concept with the paradigm of data-austerity as
introduced in chapter 1. To further elaborate on the differences between
the two concepts, two traditional cloud approaches will be contrasted with
two selective cloud computing approaches, each trying to accomplish similar
tasks.

The first two applications that serve as an example in this context create
spatial trajectories from the user’s movements. One example is the cloud
approach that serves the App Nike Training Club (Nike, 2017), an applica-
tion developed by the company Nike. It allows its users to track their runs
and share them on a platform. The App creates spatial trajectories from the
smartphones location APIs and stores them locally until the run is completed.
As soon as a sufficient network connection is established, the run is being
synced with the server. The interesting aspect about the Nike App is the fact
that it also stores a local copy of the run on the device. While some features
of the app require you to sync your runs with the server, like sharing runs
on Nike’s website, most features could be achieved by only storing the runs
on the device. The second App is Geopaparazzi (Antonello, 2016), an open
source solution, which works completely without a cloud counterpart. The
trajectory creation works similarly to Nike’s App. Instead of uploading the
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personal data to a server, the users can decide for themselves how they want
to use the data. For example, they can share it via Email, upload to a file-
sharing service, or simply keep it on the device. A visual comparison of the
two approaches is presented in figure 5 and figure 6.

The second set of applications tries to model and thereby predict the be-
haviour of the user and use that information to build recommendations. On
the traditional cloud approach side, we use Foursquare (Foursquare, 2017a)
as an example. Foursquare is best known for its location directory and its
LR service. But underneath, Foursquare collects and analyses its users’ spa-
tial behaviour in order to build better recommendations and to provide loc-
ation owners with better insights into their customers’ habits. To do so,
Foursquare tracks its users, in particular their movement as well as their so-
called CheckIns (Users can check into a location when they physically visit
it). All this information is sent to the Foursquare servers, where it is stored
and used for modelling and predicting users” behaviours. In contrast, the
company Set (Set, 2017) does the same thing but on the user’s device. Using
Set’s techniques, developers can collect information on the user directly on
the device and, similar to Foursquare, generate predictions from the derived
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model, “all while providing better privacy” (Set, 2017). A visual comparison
of the two approaches is presented in figure 7 and figure 8.

2.2.4 Technology Stack

Building upon the previous two sections, the following one will define the
technology stack which is led by the requirements and serves as a foundation
for the next section (see figure 9).

The core input data for our data-driven analysis approaches are the spa-
tial trajectories generated through the methods described above. Those tra-
jectories are enhanced through the activity recognition data, allowing us to
categorise subsets of trajectories as certain activity classes. The precision of
the trajectories will be refined through user feedback. Following the concept
of selective cloud computing, the trajectories are stored on the user’s device.
The trajectories are then used to build a user model which is continuously
updated through new trajectory data, again on the user’s device. As men-
tioned in the first chapter, the overall concept is led by the fundamental idea
of the data-austerity concept (BMJV, 2009). Our goal is to only share inform-
ation with the remote service when it is necessary for performing a certain
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task, all other information on the user’s device should be kept private. To
this end, this thesis explores two conceptual and technical features. Firstly,
the trained model on the user’s device should be used to identify spatio-
temporal patterns instead of using a remote service. Those patterns can be
used to trigger the need for interactions with the remote service (e.g. the
user’s need for a location recommendation). Secondly, instead of sending
the whole of the user’s data to that remote service, only a generalised model
is transferred. This leads to the challenge of allowing the user to control the
granularity of the model that is shared with the remote service.

While this concept consists of numerous parts, as figure 9 indicates, this
thesis will focus on user modelling — the prediction as well as the gener-
alisation — in order to illustrate the overall feasibility and applicability of
such an approach. To serve this purpose, the following section will use the
technological foundation as well as the requirements of the previous sec-
tions to construct the conceptual modelling framework, which will guide
the consecutive chapters.

2.2.5 Related Work

The previous section already introduced two applications that make use of
approaches similar to the selective cloud computing approach. Before the
modelling is introduced, the following paragraphs will further position the
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work in this thesis within the context of relevant research projects and pub-
lications.

When discussing privacy-preserving techniques in data-driven services, a
particularly critical research field is that of anonymisation. Anonymisation,
or more precisely data anonymisation, is a broad research field which takes
up methods and techniques that either encrypt or modify information in or-
der to render the persons or entities generating the data anonymous. The
selective cloud computing approach was chosen over anonymisation for two
reasons. 1) The main component of anonymisation processes is located on
the server side, which requires the users to disclose their information in the
first place. It requires them to put all their trust in the remote service to
properly anonymise their data once it arrives. 2) A large body of research in
the domain of anonymisation investigates concepts for de-anonymising data.
A good overview of such techniques for spatial trajectories is found in the
paper by Gambs et al. (Gambs et al., 2014), in which they perform a test that
allows them to successfully identify 45% of users in a large-scale real dataset.
This leads them to conclude that “the mobility behavior of an individual is
far from being random [...] and tends to be unique thus acting as a signa-
ture of an individual” (Gambs et al.,, 2014, p. 19). This thesis strongly sup-
ports this statement. Otherwise the techniques for automated user-specific
classification and prediction would not work. Therefore, this thesis acknow-
ledges the importance of anonymisation while pointing out that it does not
solve the problem of protecting the user’s privacy. Accordingly, this thesis
explores the concept of sharing only certain aspects of information with a
remote service and moving the user modelling to the client side.

Similar approaches have for example been explored by Ceri et al., 2004;
Paireekreng and Wong, 2009; Gerber et al., 2010, whose publications also
inspired and influenced this work’s approach. Overall, one can say that
with the emergence of cloud-based services a strong focus on service-side
modelling was established. Therefore, the literature on recent client-side
modelling is not very rich. Gerber et al. point out that this server-side focus
leads to a “lack of framework[s]” (Gerber et al., 2010, p. 3), which makes the
development of client-side modelling approaches difficult.

While the main motivation for this thesis is to explore a privacy-preserving
approach, the aforementioned projects also see a big potential for client-side
modelling beyond privacy. For example, the

“[c]lient-side solutions can reveal as being more dynamic, more adaptive, and
protective for sensitive user data. They may be very effective for remembering
the local context or being aware of the local peculiarities of the interaction.

Also, a clear separation of concerns between the client and the server may lead
to interesting business opportunities and models.”

(Ceri et al., 2004, p. 1).
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But also here privacy remains a key concern. As Gerber et al. highlight:

“there is a tension between such personalisation and privacy; the user model
that drives personalisation is based upon the user’s personal information.
Moreover, there is evidence of considerable community concern about the
proper protection of such information.”

(Gerber et al., 2010, p. 1).

The three publications have chosen similar paths to establish their client-side

modelling approaches, upon which this thesis builds.
The oldest of the three projects by Ceri et al. (Ceri et al., 2004) builds

upon client-side generated UML-Guides and server-side generated WebML
content. In the example application, the team uses the approach in an e-
learning tool. The application mainly modifies the interfaces; more precisely
the system calculates more relevant content using the client-side model and
highlights the content accordingly. Even though the exact process is not
transparent, the team discusses the possibility of allowing the user to decide
which information should be shared with the remote service. While the
approach of keeping personal sensitive information on the client side and
creating an adaptive frontend is interesting, it creates a significant obstacle
in modern big data applications. While displaying a list of items in an e-
learning environment is a manageable feat, the transfer of a location dataset
of thousands if not millions of locations before deciding which to display
is simply unfeasible. Therefore, the data sharing discussed by the authors
needs further attention in order to customise the information query process
and only transfer relevant information from the server-side.

The second project by Paireekreng et al. (Paireekreng and Wong, 2009),
similar to the first project, also focuses on content personalisation. They
take a more dynamic approach to creating the user model compared to the
the static UML approach and instead discuss modern machine learning. But
Paireekreng et al.’s choice for the clustering of user data ends up being a
K-Means clustering, which is not very advanced in terms of machine learn-
ing. An important criterion for their choice at the time was the feasibility
of implementing the technique on a mobile device. In the eight years since
the publication of this paper, this aspect has clearly shifted. The approach
by which K-Means and the classification is implemented uses unsupervised
training in order to achieve a more dynamic user modelling. In regards to
the communication of the client- and server-side, the specifications are more
detailed than in the previous project by Ceri et al. (Ceri et al., 2004). As dis-
cussed in the context of the previous project, Paireekreng et al. (Paireekreng
and Wong, 2009) suggest that the user profile and related data would be
submitted to content providers for the next step of processing, in order to
obtain personalised content (Paireekreng and Wong, 2009, p. 98). Still many
aspects and details are left out.

The project Personis] builds on a similar premise but attempts to deliver a
more sophisticated implementation (Gerber et al., 2010). Personis] is based
upon PersonisAD, a framework for distributed context and user modelling
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(Assad et al., 2007). On the one hand, the aspect of distribution presents an
additional level of privacy assurance. Personis] is a third-party application
installed on a mobile device, it is building and handling the user model.
Other applications can then be granted access to Personis] and register to
receive events. Thereby, the user model is secure in Personis] and acts as
a gatekeeper to the user’s information. On the other hand, this concept
presents a big obstacle in regards to a real-world implementation. As the
authors of Personis] indicate, a two-way communication is only possible if
both Personis] and the other application are built under the same certificate.
The author of this thesis tested this approach across android and iOS, as-
certaining that communication between two applications is difficult if not
impossible. Therefore, even though this concept is very interesting, it was
not further explored in this thesis.

The overall concept in this thesis has been inspired and influenced by the
related work described above. In contrast to the existing work, this thesis
explores more dynamic approaches to user modelling. Beyond concepts,
this thesis presents algorithmic implementations of those concepts in order
to test and validate them through real-world datasets. As a foundation for
those algorithms, the next chapter introduces and discusses the modelling,
before becoming more precise in subsequent sections and chapters.



CONCEPTUAL MODEL

The previous chapter framed this thesis” focus by discussing related work
and introducing the exemplary application domain. Furthermore, the tech-
nology stack was put forth to serve as the foundation for further invest-
igations. Before the actual algorithms are explored, the following chapter
constructs a theoretical foundation, beginning with the discussion of the
modelling process, in order to guide the subsequent chapters.

3.1 MODELLING

“[...] In that Empire, the Art of Cartography attained such Perfection that the map
of a single Province occupied the entirety of a City, and the map of the Empire, the
entirety of a Province. In time, those Unconscionable Maps no longer satisfied, and the
Cartographers Guilds struck a Map of the Empire whose size was that of the Empire,
and which coincided point for point with it. The following Generations, who were not
so fond of the Study of Cartography as their Forebears had been, saw that that vast
Map was Useless, and not without some Pitilessness was it, that they delivered it up to
the Inclemencies of Sun and Winters. In the Deserts of the West, still today, there are
Tattered Ruins of that Map, inhabited by Animals and Beggars; in all the Land there is
no other Relic of the Disciplines of Geography.”

Borges, 1946, translated by Hurley, Andrew

“‘That’s another thing we,ve learned from your Nation,” said Mein Herr, ‘map-making.
But we,ve carried it much further than you. What do you consider the largest map that
would be really useful?’

‘About six inches to the mile.”

‘Only six inches!” exclaimed Mein Herr. “We very soon got to six yards to the mile.
Then we tried a hundred yards to the mile. And then came the grandest idea of all!l We
actually made a map of the country, on the scale of a mile to the mile!’

‘Have you used it much?’ I enquired.

‘It has never been spread out, yet,” said Mein Herr: "the farmers objected: they said it
would cover the whole country, and shut out the sunlight! So we now use the country
itself, as its own map, and I assure you it does nearly as well.””

Carroll, 1993, p. 393

The two examples above illustrate a paradox which is a recurring theme
in literature (Borges, 1946; Eco, 1963; Ende, 1973; Carroll, 1993). It describes
the endeavour of cartographers to create a representation of physical space
that is just as detailed and precise as the real world. In the most extreme
case, in Michael Ende’s ‘Momo’, the attempt of creating a life-size model
of planet earth consumes the actual planet earth until only the model itself
survives.
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Although fictitious, the illustrations from the short stories and novels men-
tioned above help us to understand an essential principle of maps3: abstrac-
tion and generalisation. The process of abstraction is developed as an effect of
the purpose of the map (e.g. hiking, car navigation, geological surveys, etc.).
The purpose helps the cartographer focus on certain elements and defines
the map’s level of abstraction and generalisation. The map, in this instance,
is a visual representation of a (conceptual) model of the physical world (see
for example the cartographic communication model by Heidmann, 2013 or
MacEachren, 2004). In the same way that a cartographer creates a conceptual
model of the physical world in order to create a map, this thesis explores the
modelling of an individual’s spatio-temporal behaviour. It does this through
abstraction into a (conceptual and computational) model, in order to provide
insights to a recommendation algorithm.

As the literary examples figuratively illustrate, creating a model that is
as exact and detailed as the real-world phenomenon is not only nearly im-
possible but also not helpful since “[...] [m]odels are approximations of the
real world” (Banks, 2010, p. 1). By conceptualising a real-world phenomenon
into a model and making it more abstract, we make it manageable. Through
the abstraction of the real world and the conceptualisation into systematics,
processes, etc., we gain the ability to utilise those models in order to, for
example, communicate, discuss, simulate, compare, or compute aspects of
the physical world (Banks, 2010). Depending on the task, models are of-
ten classified by their purpose in a development or research process these
encompass the conceptual, communicative, programmed and experimental
model (Banks, 2012; Banks, 2010; Balci, 1997). The latter two are at times
also referred to as the executable model. This thesis specifically focuses on
the conceptual model as the theoretical foundation and the programmed
and experimental model as a means to validate the conceptual model and
its implementation (see figure 10).

A model is built upon knowledge about the real-world phenomenon that
is to be modelled. When it comes to spatio-temporal behaviour, the major-
ity of current research focuses on the identification of patterns by using big
datasets aggregated from multiple users. Through the analysis of vast sets of
data across individuals, this big data approach aims to increase significance
and find common behavioural patterns (e.g. identifying areas and their us-
age (Liu et al., 2014; Rosler and Liebig, 2013) or similar communities across
city boundaries from LBSNs (Noulas et al., 2011a; Hannigan et al., 2013)).

By contrast, this thesis only works on one individual’s data to serve the
goal of user modelling on the client’s device (selective cloud computing). As
this data is quite large in and of itself due to the sensors and other input
channels, it will furthermore be called Personal Big Data. As defined in the
technology stack, the main input parameters are spatial positions and tra-

While the term ‘map’ defines a variety of concepts and artefacts, in this case, it is used as
MacEachran defined his prototypic map, on his abstractness continuum (MacEachren, 2004,
p- 161).
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jectories enriched through activity classification data. This thesis relies on
the concept of network theory as a fundamental concept for the modelling
approach built on those datasets. This theory will thus further be explored
in the next section.

3.2 URBAN NETWORK THEORY

“[...] Many different figures are exploring both the networking of space and the spatial-
ity of the network, identifying a series of key conditions: the everyday superimposition
of real and virtual space, the development of a mobile sense of place, the emergence of
popular virtual worlds, the rise of the network as a socio-spatial model, and the grow-
ing use of mapping and tracking technologies. These changes are not simply produced
by technology. On the contrary, the development and practices of technology (as well
as the conceptual shifts that these new technological practices produce) are thoroughly
imbricated in culture, society, and politics.”

Varnelis and Friedberg, 2008, p. 15
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Figure 13: Left: French wine exports (Minard, 1865), Right: Traveller network
between Dijon and Mulhouse (Minard, 1845).

Network theory is strongly connected to graph theory. Mathematical
graphs that consist of vertices and edges* (see figure 12). The vertices rep-
resent entities (e.g. a location, a person, a neuron, or a virtual or theoretical
entity), while the edges represent connections and relationships. Edges can
carry additional information (e.g. a weight or a classification). In certain net-
works, two vertices can be connected through multiple edges (e.g. a two-way
origin-destination dataset or edges of different classifications, see figure 12).
Networks as models for (interconnected) real-world phenomena are nothing
new and have become increasingly popular across academic disciplines. Ex-
plorations of networks have variously been seen from Latour’s sociological
actor-network theory (Latour, 2005; Latour, 2011) to neuroscience’s network
models of the human brain (Papo et al., 2014), just to name a few. As the
quote above introduced, network theory is also frequently used to model
spatial data (e.g. to model spatial or semantic relationships). One example
close to this thesis’ focus is the domain of transport and mobility. Its usage of
network models dates back to the mid 19th century. Such uses for example
spanned from a 1838 report by the Rail Way Commissioners Ireland, which
contained a graphic of the rail network with a quantitative visualisation of
the passenger flow, to a publication on migrations containing a flow map of
migrant movement in the United Kingdom by Ravenstein in 1885 (see fig-
ure 11). In a similar way, Minard used network visualisations in many of his
works (e.g. french wine export or travellers between Mulhouse and Dijon,
see figure 13). Minard even incorporated the temporality of networks in his
comparison of cotton and wool trade between 1858 and 1861 (see figure 14).

Since the 19th century, the process of developing network models has be-
come more data-driven and formalised. Building upon those early examples
from the domain of transport and mobility, cities have become a new focus
for applying network theory. An early work was published by Christopher
Alexander in 1965 in which he critically compared the structures of cities to
networks (Alexander, 1965). In his work, he constructed the networks manu-

4 Vertices are also often referred to as nodes, as well as edges are referred to as links.
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Figure 14: Cotton and wool imports to Europe (left 1858, right 1861) (Minard, 1862).

ally. 48 years later, Michael Batty published his book ‘The new Science for
Cities’, which built upon Alexander’s ideas (and many other thinkers since)
but made such ideas more applicable to 21st-century contexts. Batty high-
lights the many layers of cities, that can be modelled as networks: from the
physical road network to the social connections within a city (Batty, 2013).
In addition to networks, he extends the concept with flows, describing the
entities within the network. More importantly, he goes beyond theoretical
approaches and transfers the concepts into computational models, allowing
us to perform more complex analysis and simulations. Most of Batty’s net-
works are subsumed within what is referred to as spatial networks.

Spatial networks are networks in which every vertex has a position in
an n-dimensional coordinate system. Networks, in general, are not neces-
sarily spatial; in many networks the spatiality is created through compu-
tational processes, which translate abstract data properties into a (mostly
two-dimensional) spatial representation in which the inherent connections
are rendered as the edges of the network. Nonetheless, all of the aforemen-
tioned examples, from the domain of mobility, transportation, and urbanity,
are spatial networks in which the spatial coordinate system equals the geo-
graphic coordinate system. This means that on top of the general network
analysis we can perform spatial analysis on the network.

The same accounts for the data generated through the technical processes
outlined in chapter 2, which results in a set of locations (vertices) and traject-
ories between locations (edges).> Therefore, the topology of this thesis” data-

An alternative to the approach outlined above could be to include the road network as a
network with a higher granularity than our location and trajectory network - an approach
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Figure 15: Left: Degree of centrality (darker more central),
Right: Link Analysis.

set resembles a (spatial) network and has informed the decision to choose a
network approach as a basis of modelling the spatio-temporal behaviour in
this thesis. On the one hand, the role of each location within the network
is of importance. In network analysis, this is known as centrality, which
determines the relative importance of a vertex within the network. On the
other hand, the relationships between locations must be analysed. In net-
work analysis, this can be achieved through link analysis (see figure 15).
Most networks and their analysis represent one point in time. Therefore,
integrating temporal aspects into a network presents a challenge. As already
emphasised, temporality is important for the approach. As a first step to in-
corporate temporality, the vertices can be modelled for certain points in time
(e.g. time of day, the day of the week, season, etc.), allowing the system to
compare states and discover differences. These aspects can then be incorpor-
ated into recommendations and predictions. Realtime movement of the user
within the network is more complex, therefore, we have to go beyond tra-
ditional network approaches. In geography, a common concept for dealing
with such data is time geography. This concept was largely conceptualised
in the 1960s and 7o0s by the social geographer Torsten Hagerstrand (Héger-
strand, 1970) and investigates social dynamics in spatio-temporal contexts.
Spatio-temporal constraints are an essential component of time geography:

1. “’Authority constraints’ are those which limit the activities of the indi-
vidual because of [...] [their] biological construction and/or the tools
[...] [they] can command”

that is commonly used in techniques of space syntax, a framework for the analysis of urban
spaces using network theory. In defence of the higher abstracted network, it is argued that
in order to create a functional model, one should only include relevant properties in a model
and therefore abstract the model as much as possible. This is especially the case if that model
needs to be transferred to a computational model which is grounded on parametrisation and
strict rules. As the requirements of the approach developed within this thesis do not call for
exact routeing or details of higher granularity, the abstracted network of locations and their
trajectory connections fulfil those requirements.
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(Hagerstrand, 1970, p. 12).

2. “[Coupling constraints] define where, when, and for how long the in-
dividual has to join other individuals, tools, and materials in order to
produce, consume, and transact.”

(Hagerstrand, 1970, p. 14).

3. “[Coupling constraints describe] a time-space entity within which things
and events are under the control of a given individual.”

(Hagerstrand, 1970, p. 16).

The first constraint describes the mobility capabilities of an individual. By
having access to the past trajectories of a user, a model could allow the com-
putation of such user-specific constraints. The second and third constraints
describe (with two different perspectives) the duration of a spatial event,
which - similar to the first - could be predicted through the historic user
data.

This thesis forwards a novel approach for combining Hagerstrand’s model
with the previously introduced spatial network model. Héagerstrand accom-
panied his conceptual model with an abstract visualisation technique for
describing a person’s spatio-temporal trajectory and the influence of the
above-described constraints. Héagerstrand used a three-dimensional space,
in which x and y represent latitude and longitude and z represents time.
This type of visualisation is today best know as the space time cube (see e.g.
Bach et al., 2014; Kraak, 2003; Gatalsky et al., 2004; Kraak and Koussoulakou,
2005; Kraak, 2008). If a person is in a location L for a timespan T, their ac-
tion space® is described as a circle. The radius of the circle is defined by
the space that can be explored in time T, which is influenced by the spatial
constraints (e.g. mode of transport) (see figure 16, top left). In a further ab-
straction, Hagerstrand reduces the dimensions to time and space. In doing
this, he generates space-time prisms (see figure 16). In order to apply this
to a sequence of spatio-temporal events, Hagerstrand mainly describes two
types of events: 1) spending time T at location L and 2) travelling between a
location L1 and Lz. In the first case, the action space increases until %, after
which the space decreases. Therefore, the person needs to return to loca-
tion L (see figure 16, top right). In a similar matter, the radius in case 2 is
defined by the surplus of time during the trip between L1 and L2, increasing
the spatial reach beyond L2, before returning to L2 (see figure 16, bottom).

Hégerstrand’s prisms are abstract representations that help illustrate his
concept. In what follows, these representations will demonstrate how this
thesis combines time-geography with the network model described in the

Hégerstrand also describes the prisms a person moves within as ‘islands’. For this thesis the
term action space was chosen as it puts more emphasis on the possibilities it offers in terms
of movement and decisionmaking to the individual (for a definition of the term see Mayhew,
2009)
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Figure 16: From top left to bottom right: 1) space time cube with location L and a
radius for the individual constraint limited action space 2) one location
L with three prisms with varying timespan (T1, T2, T3) and varying
constraints 3) a trip between two locations (L1 and L2) 4) the same trip
with a bigger timespan and therefore bigger spatial prism.
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Figure 17: Transformation of isochrones from a purely spatial representation to a
spatio-temporal representation.
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Figure 18: Example isochrones for the city of London, taken from the Isoscope pro-
totype developed by Gortana et al. (Gortana et al., 2014).

previous section. While Hégerstrand is dealing with trips, similar to the
edges in the network, his trips are not based on actual geographic (street)
networks. As a means of bridging this gap, this thesis introduces a novel
approach for building Hagerstrand’s prisms from isochrones. Isochrones are
an established technique for visualising the action space of an individual
depending on their constraints (see e.g. (Street, 2006)). Each line in an
isochrone map connects points at which an event happens at the same time
(e.g. the arrival of a person who starts from a common origin point). If
applied to mobility, one can sample isochrones for varying timesteps, which
will result in a dataset describing Hagerstrand’s prisms or at least one half
of the prism (see figure 17).

Isochrone mobility maps are usually built on the basis of road network
data, making use of routing algorithms that use historic traffic data in or-
der to calculate the isochrones (see e.g. figure 18 by Gortana et al., 2014).
The same approach can be applied to the personal trajectory network. The
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Figure 19: Applying the isochrone concept onto the abstracted trajectory network
(left to right): 1) isochrone based on time, and historic travel information;
2) taking into account the current mode of transport, one can apply filters
based on mode of transport derived from historic trip information, and
reduce the network to matching trips; 3) in a similar manner the prob-
ability of a route being taken under current conditions (e.g. day of the
week, hour of the day) can be added.
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Figure 20: Héagerstrand’s time-space prism as a tool for intersecting possible des-
tination locations (DL1-5) from a given origin location (OL), within a
timespan (T).

past trajectories should allow the model to build a location-specific set of
constraints. Applying those constraints to the network should enable the
modelling and thus predicting of movement for a specific user within their
personal spatio-temporal network (see figure 19).

Using Héagerstrand’s prism visualisation, a prediction for a trip opens a
new prism, which can be constrained by the information aggregated from
the user’s trip history. Thereby, the resulting prism overlaps with a set of
locations that represent potential destinations for the user (see figure 20).
In conclusion, the novel combination of the spatial network model with the
time geography constraints delivers a user-specific perspective from the cur-
rent standpoint of the user in his or her network, perceived in a temporal
continuum, which enables the prediction and analysis of potential destina-
tions.
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3.3 CONCEPTUAL CONCLUSION

In conclusion, the third chapter used existing concepts and models to con-
ceive a new conceptual model for the algorithmic developments to be out-
lined in chapter 6. The model is built upon requirements that are derived
from existing literature on LBSs as well as technological developments in the
context of the application domain (chaper two). They relate to the research
question of how we can make use of smart data-driven services while shar-
ing only as much data as is needed (chapter one). The principle of data-
austerity, introduced in chapter one, was used as a guideline. The technology
stack provided the input data for the modelling (locations and trajectories)
as well as a fundamental concept for structuring the computational setup (se-
lective cloud computing). Based on the requirements and the technology stack,
a modelling approach was selected. Central to this approach is a spatial
network which incorporates temporal and semantic features. The proposed
model should allow the client-side implementation to identify contexts and
predict spatio-temporal behaviour. Therefore, the concept of time geography
is incorporated into the network model. By including spatio-temporal con-
straints, a concept for predictions is constructed. This model represents the
central user model of this thesis. In order to meet the requirements out-
lined in chapter 2, the following chapter extends the conceptual user model
with an approach for sharing it with a remote service in order to enable, for
example, collaborative filtering.
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The previous chapter outlined the framework for modelling spatio-temporal
behaviour for tasks of prediction and recommendation. One requirement
still unmet by the sections above is the server-side collaborative filtering,
which requires the user to share certain aspects of his or her data. The
requirements clearly outline that for effective collaborative filtering, a user
needs to share features of his or her spatio-temporal behaviour and his or her
derived preferences with the remote service. This undermines the general
goal of this thesis to keep the shared data at a minimum, following the
principle of data austerity. To overcome this dilemma, the thesis proposes
two concepts: 1) sharing a model instead of the raw data and in addition,
it should be explored if it is possible to 2) allow the user to determine the
granularity of the shared model.

As outlined in the technology chapter, most modern LBAs send all their
data to the remote servers, giving the providing company full access to their
users’ data. By moving the modelling onto the user’s device (selective cloud
computing), the imbalance is changed and the user is put back in control
over his or her data. Collaborative filtering requires a set of user-specific
preferences (e.g. location history), which can then be used to correlate users
and find common user groups (e.g. based on interests). Therefore, an ad-
ditional requirement for the client side is to provide data to the server side
that allows for such comparisons. In order to maintain the users’ privacy,
this thesis proposes the use of generalisation. Generalisation here is meant
in the sense as cartography applies it to map making.

Generalisation is the process of filtering and abstracting spatial informa-
tion depending on map scale and map purpose. Over recent decades, several
conceptual models of this process have been suggested (see e.g. McMaster
and Shea, 1992 for an overview). Traditionally, a cartographer applies this
process manually. With the introduction of GIS, researchers have worked
on automating this process and thereby introducing semi-automatic gener-
alisation concepts. Semi in such a way that most of the process becomes

0 0

0 0 0

Figure 21: Spatial relationship preserving generalisation.
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automated while still relying on human-made rules for the generalisation
process. Consider the display of a river on a map for example: in a digital
map creation process, the line or polygon data of the river can be progress-
ively simplified automatically as the zoom level of a map decreases (see fig-
ure 21); A cartographer has to define those levels of simplification manually
and, more importantly, decide when to show and hide the river. While the
latter could be achieved by calculating visual complexity, the reason for the
human-made decision is a focus on the purpose of the map. While a map
of waterways needs to show rivers at all zoom levels, a highway map might
only show rivers on high zoom levels. This makes all maps human-made
products, as the early text from 1908 on generalisation already highlighted:
“In generalizing lies the difficulty of scientific map-making, for it no longer
allows the cartographer to rely merely on objective facts but requires him to
interpret them subjectively. To be sure the selection of the subject matter is
controlled by considerations regarding its suitability and value [...].[...] gener-

alised maps and, in fact, all abstract maps should, therefore, be products of art
clarified by science”

(Eckert and Joerg, 1908, p. 347).

Two important aspects make generalisation a compelling conceptual model
for being used as a foundation for sharing the spatio-temporal models in the
proposed system. On the one hand, generalisation uses abstraction and sim-
plification to render objects at various levels of detail. This process brings
about data loss and inaccuracy. On the other hand, the same process at-
tempts to maintain certain aspects of the topology of the spatial informa-
tion (e.g. distance, orientation, etc.). Applying this for example to a user’s
spatial network could mean that the accuracy of the spatial vertices is de-
creased while the edges between vertices remain intact. Thereby, it allows
us to change the accuracy of the shared data while maintaining general rela-
tionships and patterns. In this sense, the process of creating maps at various
zoom levels of the same spatial information is applied to the process of cre-
ating data models at varying levels of granularity or rather levels of detail.

To guide this process of generalisation, Robinson and Morrison have pro-
posed a further formalisation of the generalisation process on the basis
of four steps simplification, classification, symbolisation, and induction as
well as four conditionals objective, scale, graphic limits, and quality of data
(Robinson et al., 1995). This formal framework provides a conceptual guideline
for the generalisation process of the models and spatio-temporal networks
to be developed in the next chapters.

The challenge in applying the conceptual model of generalisation to the
shared data is the aspect of temporality and semantics. While generalisa-
tion in its cartographic sense is applied to spatial information, the models
above also include temporal and semantic features. Therefore, the follow-
ing chapters attempt to incorporate the above-outlined conceptual model of
generalisation into temporal and semantic features. In addition, the level
of generalisation in cartographic products is usually defined by the level of
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zoom or traditionally the scale. As previously discussed, an ideal framework
would allow the user to define such a scale. This thesis thus explores ways
of using generalisation to provide users with such novel capabilities.

In order to allow for collaborative filtering, the generated models need to
be shared with a remote service. Therefore, the concept of generalisation is
applied to the models in order to change the level of detail of the shared
information (see figure 22 for an overview of the whole conceptual model
from chapter 3 and 4).

In contrast to this individual user-specific perspective, which is represen-
ted by the conceptual models discussed in chapter 3 and 4, most related
work in this area is concerned with deducing general patterns by aggregat-
ing data from multiple users. Such approaches de-emphasise the individual
in favor of an aggregate. In those cases, the individual often only stands out
as an outlier. The following chapter emphasises the egocentric perspective
taken by the proposed techniques (for a discussion on egocentric geovisu-
alisations see Meng, 2004). The chapter will take up a specific focus on
time geographies and their capability of capturing a personal perspective in
relation to urban space and its individual usage by that person.
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Figure 22: Construction of the conceptual model.



THE INDIVIDUAL IN THE DATA

Chapters three and four developed a conceptual model for capturing the
user’s spatio-temporal behaviour. In contrast to most existing examples,
this modelling process is only built on the user’s own data, and as a result,
takes only a very individual user-specific perspective. The following sec-
tion will explore the broader implications and potentials of such individual
perspectives.

5.1 INDIVIDUAL PERSPECTIVES

The following section is in part adopted from Meier and Glinka, 2017, written by
the author of this thesis.

Geography and cartography alike have a long history of critical perspect-
ives within the respective disciplines. An important critique, often strongly
influenced by post-colonial and feminist theory, is directed at the manifesta-
tion of power imbalances inherent to maps and cartographic products in gen-
eral. One of the main counterarguments to cartographic practice emphasises
its complicity in the reproduction, reification, and stabilisation of cultural or
social imbalances. This is being most prominently discussed in relation to
the infamous Mercator projection, which has become the standard projection
for most web-based slippy maps (see e.g. Monmonier, 2004 and Cosgrove,
1999, p. 217). The underlying paradox is that cartographic representations
could execute the power to question the status quo and establish altern-
ative perspectives within and through established representations (Wood,
1992). Similarly, time geography has been accused of simply reproducing
established power structures while remaining unreflective on that capabil-
ity (Kwan, 2007; Kwan and Ding, 2008; Scholten et al., 2012; McQuoid and
Dijst, 2012). This capability is sometimes referred to as counter-mapping (see
e.g. Mitchell and Elwood, 2015; Lee Peluso, 2011; Hodgson and Schroeder,
2002). Prominent examples of counter-mappings can be seen in the works
of the French Situationist International in the 1950s. They tried to visualise a
concept referred to as psychogeography. The term ‘psychogeography” was
most prominently coined by Guy Debord as “the study of the [...] specific
effects of the geographical environment, whether consciously organized or
not, on the emotions and behavior of individuals” (Debord, 1955). Likewise,
the approach presented in this thesis that is based on personal big data at-
tempts to predict how the geographical environment affects the behaviour
of the individual in particular. The approach of personal big data thus seeks to
emphasise such perspectives of the individual over the aggregated big data
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patterns. It seeks to account for the complexity and diversity of urban space
and life.

Many publications within this field of study cite the spatial knowledge
modelling approach by Kuipers. Kuipers’ concept of modelling spatial beha-
viour is inspired by the mental perception of space and the development of
personal spatial knowledge (Kuipers, 1978). This thesis follows this line of
thought and borrows from the domain of mental maps and personal percep-
tions of space in order to shape models of personal spatial behaviour. Several
academic disciplines, ranging from sociology to psychology and philosophy,
have explored such individual and subjective perceptions and representa-
tions of the physical world and its social and mental manifestations. The
construction of mental maps as a personal vehicle of spatial perception and
knowledge remains central to this discussion. The following paragraphs
provide an overview of the discourse on personal perspectives on space and
mental maps in order to guide the development of the executive models
described in the previous sections.

A large body of research has emerged on the question of how people con-
struct spatial knowledge and how this knowledge is used to make sense
of the physical world, for instance when performing navigational tasks. A
dominant image used in this discourse is the mental map. A general hypo-
thesis within these discourses assumes that an aggregation of the entirety
of our experiences form and influence our mental representations of space
(Montello, 2013; Kitchin, 1994). Tversky extended the metaphoric concept
of the mental map to mental collages, as those mental representations are
not solely of map-like forms (Tversky, 1993). More generally, the correlation
between map use and its impact on the shaping of mental maps has been a
strong research focus, unravelling findings like the interdependency of ori-
entation in maps and mental maps (mental rotation) (Tversky, 1981; Hintz-
man et al., 1981). Among these influencing factors, the mode of transport
has been identified as one that has a significant impact on our perception of
space and on how we interact with our environment (as will be discussed in
the next chapter).

Scientists have tried to capture, model, and visualise mental representa-
tions of space, for instance by letting people draw or describe maps (Lynch,
1960; Vertesi, 2008). Research within neuroscience has produced valuable
results in visualising neuronal maps that indicate where spatial information
is stored in our brain (Maguire et al., 1997). However, visualising the result-
ing mental maps and making them usable (e.g. in computational models)
has proven difficult. The task of the proposed modelling approach is not to
create a model of a complete mental map, instead the modelling attempts to
capture the user’s personal behaviour and in turn also his or her relationship
to the city (e.g. a bar (location) might be a place for spending leisure time for
one person, while it is a workplace for another person). Therefore, the fol-
lowing chapters will use research on and concepts of mental maps, or rather
personal individual maps, as an influential construct in the modeling of per-
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sonal perspectives within user models. The notion of the importance of the
personal perspective should help as an underlying guideline throughout the
development process of the computational models.

The next section takes this individual perspective a step further by es-
tablishing a modelling critique. This critique should not undermine the
previous chapters, but instead contextualise the modelling approaches in a
broader framework.

5.2 CRITICAL REFLECTION ON DATA & MODELLING

Technological research and the natural sciences often take a positivist atti-
tude towards their own research. The same stands for many publications
written on modelling, which for example state that modelling “[...] allows
for a precise abstraction of reality]...][, it allows] master complexity [...][, and
is] validated by solid mathematical foundations” (Banks, 2010, p. 22)7. This
contradicts the primary principle of models, which states that they “are ap-
proximations [emphasis added] of the real world” (Banks, 2010, p. 1), making
them imprecise by nature. In the following, the downsides of models, espe-
cially data-driven approaches to modelling, are discussed.

A model is incomplete and inaccurate compared to the real-world entity
or process it attempts to depict. In part, it is designed to be that way, and in
part, it simply lacks data and insight. In regards to the research described in
this thesis, some operations in creating the model are vulnerable to such ob-
jections. In order to create a model, one has to acquire information. For the
purpose of creating a cartographic model, for example, one has to measure
the physical world. In our case, we use data gathered through a smartphone.
More precisely, we use the smartphone’s GPS sensor for positioning and its
accelerometer for identifying the activity type. The decision to use exactly
this set of sensors and interpret their output in the way done in this publica-
tion is a (human-made) decision. It is a decision that influences the resulting
data and thereby the model generation. Many such decisions accumulate
when designing a data acquisition process, from the choice of sensors to the
way the data is being stored in the database. Different choices will result
in different data, data structures and finally different models. While we
try to come to a decision using logical reasoning, we remain susceptible to
preconditioned systemic influences. Therefore, the way we design our data
acquisition techniques as well as the way our modelling algorithms are de-
signed must be perceived as human-made and thus also as cultural artefacts
and not as seemingly objective technological artefacts. By highlighting those

The goal of this section is not to highlight misconceptions resulting from other research.
Therefore, no further references for such attitudes are provided. The critique is more about a
general mindset of the academic community than about individual researchers per se. One
exception is the exemplary citation from Banks, whose work is cited throughout this thesis
and whose foundational books on models and simulations have been an important and help-
ful resource for the development of this work.
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influences on the data acquisition process it should be clear that data is not
objective. People tend to trust numbers or rather quantitative data implicitly,
as Porter illustrates in his 1995 book ‘Trust in Numbers’ (Porter, 1995). This
even accounts for visualisations built from quantitative data, as in the ones
created in this thesis, which help as visual interfaces to the models. Authors
are in line with Porter’s perception and speculate on the diffusion of this
concept of trust into diagrammatic representations like maps and informa-
tion visualisations since they are built upon quantitative information and as
a result might inherit a certain aura of truth (Monmonier, 1991). Halpern,
for example, calls this quality ‘communicative objectivity” (Halpern, 2014).
Similar downsides have also been pointed out in the academic discourse
on data-driven journalism (Lewis and Lewis, 2014) and cartographic journ-
alism (Green, 2013; Vujakovic, 2013). Beyond these systemic biases, which
insinuate themselves into our technologies, our technologies are also prone
to failure. Missing data or inaccuracies further falsify our models. In ad-
dition to these unwillingly included issues, we design our models to be an
abstraction of reality. Real-world entities and processes in their full intric-
acy are too complex to be used in a model. Therefore, one has to create an
abstraction. One must create an abstraction that summarises or combines
properties as well as leaves out properties, in order to make it manageable
and usable. I want to stress this point to make sure that when we talk about
a user’s spatio-temporal behaviour model, that we are discussing one possible
abstraction of this user’s behaviour. It remains a small extraction of the user’s
complete real-world behaviour. It is rather turned into an abstract model, in-
ducing uncertainty and error, in order to make it usable and applicable.

As more and more areas adopt Machine Learning (ML) algorithms to deal
with complex data analysis to the disadvantages of traditional statistical eval-
uations, the data which is used to train those ML models needs to be thor-
oughly investigated. This is because biases in the data will result in biases
in the models and resulting predictions. Even though the models developed
through the approaches in this thesis are user-specific, we also discuss the
possibility of recombining those models into global models. In those cases,
one also needs to be aware of biases in spatial trajectories (Johnson and
Hecht, 2015). All the test-datasets used in this thesis, for example, stem
from urban areas, and thus neglect rural ones.

A thesis in the area of geoinformatics would not be feasible if one could
not build upon accepted conventions and conceptual models, like for ex-
ample the geographic coordinate system. This thesis does not have the capa-
city to discuss each of the foundations that it thesis relies on. Therefore, it
should be stated that the author is aware of the, for example, cultural bias, as
introduced in the paragraph above, as among those foundations that shape
and inform the overall knowledge constructed in this thesis.

Moreover, the above section acknowledges the incompleteness and uncer-
tainty of the techniques developed in this thesis, as well as the potential bias
introduced by the white Western male author of this thesis. Recognising
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that the modelling and prediction approaches developed in this work are at
best good approximations of reality and at worst simply a solid hypothesis
in the right direction, these approaches can never constitute an exact replica
of reality itself. For the sake of writing style, the above is implied and will
not be mentioned every time a model is described and discussed.
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The previous chapter introduced the conceptual model, which serves as
the theoretical foundation for the computational model developed in this
chapter (see figure 10). This chapter starts with the basis of the models: the
real-world datasets that are being used to evaluate the algorithms, and the
spatio-temporal data processing. The resulting data is then used in the third
section to identify locations and finally, in the fourth section, to construct
the network. The predictions derived from the behavioural models will be
combined in the subsequent chapter in order to connect the client- with the
server-side by introducing an event-based communication. This communic-
ation makes use of generalisation approaches for data anonymisation. Each
algorithm presented in this chapter is exemplary for showing the applicabil-
ity of the conceptual model from the previous chapters. While the decision-
making that led to these specific examples is discussed, it should remain
clear that the presented examples are only some of numerous viable solu-
tions available. Throughout this chapter, visualisation acts as an interface
for computational models. Thereby, the models can be inspected, validated,
and improved?.

6.1 TEST DATASETS

In order to test the computational models developed in the following sec-
tions, two datasets are used. The first dataset is the GeoLife dataset (Asia,
2012), which was produced by the Microsoft Asia Research team from April
2007 to August 2012 and published later that year (Zheng, 2007). The dataset
includes GPS trajectories with classified activities from 182 users. The team
around Zheng has collected and investigated the data in order to learn more
about spatio-temporal behaviour in the area of Beijing (China) (Zheng et al.,
2008a; Zheng et al., 2008b; Zheng et al., 2009). This first dataset is primarily
used to test preprocessing and thereby simulates the process on an actual
mobile device. Due to the short continuous observation spans of the GeoLife
dataset, it can only be used for the location type predictions, but not for the
trip predictions, as the dataset does not include enough trips to identical
locations.

The second dataset is made up of six individual spatial datasets, collected
from six individuals in the area of Berlin, constructed through the aforemen-

The corresponding code for each of the experiments and developed solutions can be obtained
from the following GitHub repository: https://github.com/sebastian-meier/Personal-Big-
Data. As mentioned in the beginning of this chapter, some datasets are private and are
therefore not included in the repository.
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tioned Moves Application. Each individual spatial dataset is spread out over
the time period of one year (four men, two women; ages ranging between
25 and 4o years; two students, three employees). While the GeoLife dataset is
open source, the latter dataset was only collected for the development and
testing of the models in this thesis. To ensure the participant’s privacy the
datasets are not available outside of this thesis. Due to privacy concerns, the
second collection of datasets is neither included in the example visualisa-
tions. Only the thesis” author’s trajectories are visualised. The two example
datasets are structured as follows:

Moves Data

The data from the Moves application is provided in GeoJSON format
(Butler et al., 2008). On the upper-level, a FeatureCollection encloses
all items in the dataset. Within the feature collection, the data is struc-
tured in what Moves calls a ‘storyline’. The storyline is a continuous
list of events ordered by time. The events are either trips or places.
The trips contain the spatial trajectory accompanied by the detected
activity as well as a temporal start- and endpoint for the trip. The
places between trips contain the coordinate for the place, time of ar-
rival and departure, semantic information like location type, as well
as a location ID. In addition, the place item contains information on
the activity within the location, which is usually walking activity (an
example dataset excerpt is provided in the appendix). The latter place
activity is not used in this thesis, as the GeoLife dataset does not contain
this kind of information.

GeoLife Data

The GeoLife data is in a more raw format than Moves and is hence
transformed into the previously-cited Moves format. The GeoLife data
is provided in folders per subject and divided into multiple plt files (An
example dataset excerpt is provided in the appendix). Plt files contain
a header with metadata followed by a Comma-Separated-Values (CSV)-
formatted table. The plt tables contain one point per line from the
user’s trajectories (x, y, altitude, timestamp). The data has a very high
resolution, usually multiple points per minute. While the Moves data
for the collected participants contains continuous information for a
year with only a few gaps, the GeoLife data contains many gaps, often
over multiple days within the tracking timespan. Some of the datasets
contain an additional labels.txt file. This file is a CSV formatted list
of detected activities, where each activity has a start and an ending
timestamp. The detected activity can be applied to the trajectory points
through an additional processing step.

The following preprocessing approach is designed to be applied to raw
input data that is collected by the user’s device. In order to test it, it will be
applied to the above-described datasets.
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6.2 SPATIO-TEMPORAL DATA PREPROCESSING

The section on spatial data from smartphones in chapter 2 described how to
acquire the current geographic position (P) that consists of a two-dimensional
coordinate (x, y) from a user’s device. On most devices, as in the example
datasets described above, those coordinates are provided in the spherical
Mercator projection (WSG84, EPSG:3857), where x is the longitude in the
range of -180 to 180 degrees and y is the latitude in the range of -go to 9o
degrees. In addition, the activity recognition APIs, as described in the tech-
nology section of the previous chapter, are utilised. For each position in
the recording, the activity (a) with the highest probability is stored with the
position.

A spatial trajectory is defined as “a trace generated by a moving object
in geographical spaces, usually represented by a series of chronologically
ordered points.” (Zheng, 2015, p. 1) (see also Spaccapietra et al., 2008).
As such trajectories (T) are recordings of a certain timeframe (t to tn), a
timestamp (ts) must be attached to each position. Depending on the device,
additional parameters are added to the position, for example, altitude or,
based on interpolations from the previous position, speed and acceleration.

P=(x,y, a ts) (1)

TZ[P], Pz,..., Pn} (2)

Before those trajectories can be used for further calculations they need to
be processed for two reasons. On the one hand, such processing improves
the dataset and reduces errors and, on the other hand, it reduces data re-
duction, so that we can save storage on the device.? For error reduction, a
weighted median filter is used instead of a mean filter as “it is less affected
by outliers” (Lee and Krumm, 2011, p22). Since the dataset includes activity
classification, the median filter is activity-specific (see figure 23). The data-
sets used in this thesis include sparse positions due to the battery-saving
approach. Hence, only the next position can be corrected, using the next po-
sitions normalised vector (V) and the weighted median speed of the previous
positions. For a new position in the trajectory (P},), the previous step’s speed
(S) of the same activity with a limit (I) are taken into account (S,_1,...,.Sp—1),
and a linear weight (W) is assigned to it in order to account for changes in
e.g. speed. Having a trajectory history at hand, a threshold for the specific
activity can be calculated. This threshold is used to define a tolerance for
each new position. If a step exceeds the tolerance threshold, the median
filter is applied. By doing so, the median filter process can be sped up.

An overview of existing techniques on the preprocessing of spatial trajectories that strongly
informed this section is provided by Lee and Krumm, 2011.
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Figure 23: Original line (dotted) and the resulting line after applying the median
filter.

l+1)—mn
Wweight = (1) (3)

|(Pp—n — prn71)|
tp—n - tp7n71

Sspeed =

weighted_median{(Sp—1,Wp_1), ..., (Sp—1, Wp_1)} (5)

if(S > activity_threshold > S)}{Pp, = Pp_1 * V x weighted_median} (6)

To reduce the positions in the trajectory, in order to reduce memory usage
and improve processing speed, two techniques are used. First, locations are
detected by recognising spatial inactivity. This is done by finding consecut-
ive positions which do not exceed a predefined spatial error threshold (et)
(see figure 24). The threshold has to be introduced to balance the errors in
the dataset. While one would assume that a user’s stay in a location is rep-
resented as one and the same coordinate, the inaccuracy of the GPS signal
will result in many slightly offset coordinates. Therefore, for a series of posi-
tions which do not exceed this threshold, only the first and last position are
stored. The geographic coordinates of the two edge positions are calculated
from the median of all positions (including the dropped positions). Beyond
the inactive positions, the Douglas Peucker Simplification algorithm is applied
(see figure 25) for reducing the positions of the trajectories (Douglas and
Peucker, 1973). The Douglas Peucker algorithm “produce[s] the most accur-
ate generalization” (Shi and Cheung, 2013, p) when the difference between
original and optimised path is the quality criterion™.

The previously described preprocessing steps, which would normally be
applied directly on the user’s device, are applied to the GeoLife and Moves
dataset. The Moves dataset format serves as an intermediary format, there-
fore, the GeoLife data needs to be transformed into the Moves storyline format.

10 In evaluations with a different focus, for example generalisation, other algorithms outper-
form the Douglas Peucker approach (Visvalingam and Williamson, 1995).
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Figure 24: Spatial inactivity threshold for identifying a location.
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Figure 25: Simplified example for a progressive line simplification.

Using the median filter, the dataset is cleaned and filtered. Then, tem-
poral gaps and location visits (spatio-temporal threshold) are detected and
a unique ID is created for each location. The overall dataset is then split
into trajectories between locations. For those trajectories where activity la-
bels exist, the trajectories are further refined through the activity data. In
so doing, this process splits the trips between locations by activity type into
segments. The previously-mentioned Douglas Peucker algorithm is applied
in order to reduce the data while maintaining the topology of the trajectories.
The processed data is then stored in the Moves GeoJSON format.

In order to increase performance for subsequent queries on the trajectory
dataset, the data is stored in a database. One of the most advanced databases
that are available for mobile operating systems (iOS as well as Android) un-
der an open source license is SQLite (SQLite, 2017). SQLite can furthermore
be extended through the SpatiaLite extension (Furieri, 2017), which makes it
the best fit for the use case in question. SpatiaLite adds spatial capabilities
to the SQL-based database. SpatiaLite is similar to PostgreSQL'’s (PostgreSQL,
2017) PostGIS extension (PostGIS, 2017). SpatiaLite is a relational database.
Anticipating the need for locations (vertices) as well as connections between
locations (edges), the database is structured accordingly''. One table con-
tains locations. Locations are the previously-mentioned consecutive posi-
tions with spatial inactivity. Locations with a distance smaller than the pre-
defined error threshold are assumed to be the same location. Connected to
the location table is a table containing events at a location (user visiting /
staying at a location). The third table contains trips between location A and
location B. A fourth table contains trajectory segments for each trip. A tra-
jectory is split by activity type (e.g. bike + train + car) into such segments.
The next two sections will use those four tables to classify locations that the
user visits in the future and to build the spatial network.

Other database formats that are optimised to represent network structures are graph data-
bases that, in contrast to SQLite + SpatiaLite, do not support spatial data optimised structures
and queries.
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As described in the previous section, the definition of a location is a geo-
graphic position within an additional spatial error threshold which the user
occupies for a certain time threshold (see figure 24). A two-step process at-
tempts to enrich the location with additional metadata, more precisely the
location type (category). In a first step, the system contacts a location API.
A location API is an interface to a location database, examples for such are
Foursquare (Foursquare, 2017b), Google Places (Google Inc., 2017a), Facebook
Graph Search (Facebook, Inc., 2017), or Yelp Fusion (Yelp, 2017). One feature
that those APIs have in common is the capability to query their location data-
base on the basis of a geographic location (x,y). The result is a list of nearby
locations with their geographic position as well as additional metadata (e.g.
category). The system can then request feedback from the user to confirm
the new location. The system suggests either the location list delivered by
the API (see 2.2.2) or one of the predefined location types (Home, Work,
School/University, Other Home, Leisure, Shopping, Eating/Drinking, Trans-
port, Transit'®) or the user can define their own location type. If a location
from the suggested API locations is selected, the upper-level category (e.g.
restaurant) is added as a location type.

As outlined in the previous chapter, temporality is an important aspect of
the user’s spatio-temporal behaviour. The same accounts for locations (see
e.g. Noulas et al., 2011b; Yuan et al., 2013; Biagioni and Krumm, 2013 for
temporal pattern recognition in locations). In order to improve the manual
location identification process, a second layer is introduced. When a user
confirms a location type, the temporal patterns of that location (time of ar-
rival, time of departure, time spent at the location, the day of week and
month) are stored in the location event table. The data is used to train
an ANN, in order to identify the type of future locations with similar beha-
vioural patterns. Each user starts with an untrained neural net. To com-
pensate for the time it takes to train the personal neural net, a pre-trained
net is running in the background. The pre-trained ANN is using statistical
data from time use surveys (see 6.3.2), which give insight into where people
are and what they do at certain times of the day. The decision to use this
second ANN only as a backup goes back to the individual perspectives and
the emphasis on diversity introduced in the previous chapter. Any machine
learning approach that builds upon a dataset, that is aggregated from a large
set of users, generalises in order to classify or predict. Therefore, edge cases
are difficult to detect. In this particular case, an edge case might be the
behaviour of a specific user that does not fit in the overall behavioural pat-
terns of the aggregated mass of users. By allowing the users to train their
own classification system instead of using a system which is creating aver-

The set of predefined location types is a simplified version of the categories selected in the
time use surveys, presented later in this section.
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Figure 27: Example of an ANN setup.

age patterns across a larger userbase, the proposed system seeks to account
for the individual perspectives of users. The following sections will dissect
the previously-introduced approach and shed further light on the individual
components. They will also evaluate the proposed system in regards to ac-
curacy and test the individual versus the generalised perspective.

6.3.1  Artificial Neural Networks

A brief Introduction

ANNs belong to the group of machine learning techniques. While there is a
variety of possible fields of application for ANNs, the most common applic-
ation is data analysis and processing, including classification and pattern
recognition. This is why the actual techniques are also often referred to as

‘classifiers” or ‘estimators’. The following describes the setup of an ANN to

be used as a classifier’>. The structure of ANNs is inspired by the nervous
system of the human brain'4. They are made up of so-called neurons’ or

‘nodes” which are organised in layers (see figure 27). Because of their lay-

out, networks with many layers are sometimes referred to as ‘deep nets” and
their usage ‘deep learning’ respectively. Each layer contains neurons that are
interconnected with the preceding and subsequent layer. Most important are
the input (first) and the output (last) layer. The layers in between are called
hidden layers. In order to process information, the information needs to be
broken down into parameters. Depending on the system in use, they need to
be further refined into continuous or discrete numeric values, which are then
transformed into matrices or rather tensors. To give an example for added
clarification, we will describe image classification, a common task for ANNs.

The setup of ANNs for other purposes differs slightly.

While the image of the human brain is a metaphor widespread in the ANN literature, lately
some began challenging this concept, e.g. Gomes, 2014.
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Figure 28: Input tensors for a 5x5 pixel grey-scale image and an RGB image.

The MNIST"S dataset, for example, is used for classifying hand-written di-
gits in images. Taken a set of images, each 5 x 5 pixels in grey-scale (o = black
to 255 = white), the input tensor would be a two-dimensional tensor with
5 rows and 5 columns, one for each pixel in the image, each containing an
integer between o and 255. If the dataset would include RGB images instead,
it would be a three-dimensional tensor with 5 rows and columns times 3 for
each colour (red, green, blue) value (see figure 28). Those input tensors can
then be used in an ANN, which tries to assign a class (0-9) to each image.

To conclude, any input data that needs to be analysed also needs to be
transformed into the above-described format. The same applies for the out-
put. The output value, sometimes referred to as ‘target’, defines the desired
output for each input data item. When ANNs are used for classification, one
has to differentiate between two approaches: supervised and unsupervised.
In a supervised mode, one needs to define the expected output classes, while
unsupervised approaches allow the network to determine classes itself, by
trying to identify patterns in the data. In the following, only supervised
approaches are discussed. The creation and usage of such an ANN consists
of three phases:

1) The definition of the network, specifies the number of layers and neur-
ons, as well as further optimisation techniques, which are applied to
the classification process (e.g. optimisers, loss function, etc.). As for
most adjustments of ANNs, they strongly depend on the underlying
data. This process of adjusting ANNSs is guided by a number of rules:
The number of nodes and hidden layers is proportional to the input
and output nodes. More layers generally improve the accuracy of a
net, until, at a certain threshold, the network begins to overfit, which
will make the accuracy decrease at a certain stage. “Much the same
behavior can be observed for decision trees as the number of nodes
increases, or production rules, as the rule length increases.” (Weiss
and Kapouleas, 1989, p. 786). More and more sub-types of neural net-
works are introduced by current developments. In this thesis, only
the very simple form of so-called ‘feedforward networks” are used. In
a ‘feed-forward network’, input parameters are passed to the network
through the input layer and passed down until the information reaches

15 Documentation of the dataset: LeCun et al., 1998b and the initial usage by LeCun and his

team: LeCun et al., 1998a
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the output layer. In order to improve the accuracy of the network, back-
propagation is used. Backpropagation entails the comparing of the out-
put of the network to the desired output and back-propagates the error
to the nodes. Such simple “feedforward networks” are sometimes also
referred to as ‘multi-layer Perceptrons’. In this thesis, these ‘feedfor-
ward networks’ trained through a supervised training approach (fur-
ther explained for each use case). As the datasets in question are very
sparse, an ‘Adam Optimizer’ is used.®

2) The training of the network with a training dataset. In this phase, the
network is learning which inputs should result in what kind of out-
put. During this phase, pre-classified training data is fed into the sys-
tem. Thereby, neurons learn how the received input information from
preceding neurons has to be processed and handed down to the next
neurons. In a very abstracted and simplified manner, this leads to a
weighted decision-making network through which the input data is
transformed.

3) The deployment of the network is the final stage. The trained network
can then be used to classify new information that it has not processed
in the training phase. A common procedure for testing the accuracy
of a network is to divide the pre-classified data into two parts, one for
training and one for testing (e.g. 20% for testing). Once trained, the
model of the network can be exported and reused.

While the structure of ANNs is different from traditional machine learning
approaches (e.g. random forest), the three phases remain very similar."”

While some statistically or empirically grounded guidelines exist for setting up and fine-
tuning machine-learning algorithms like ANNs, in reality, the individual case strongly de-
pends on the underlying data. Therefore, various combinations of optimisations need to be
tested against those datasets. Taking into account the number of possible variations, this pro-
cess can be quite time-consuming. An alternative approach, which has seen a lot of attention
recently is automated machine learning. The concept behind automated machine learning is, to
use an algorithm to work out the most successful variation of parameters on a specific dataset.
One of the prototyping tools used in this thesis, Conovnet.js, offers a magic class, “which per-
forms fully automatic prediction given [...] arbitrary data. Internally, the MagicNet tries out
many different types of networks, performs cross-validations of network hyper-parameters
across folds of [...] [the] data, and creates a final classifier by model averaging the best archi-
tectures” (Karpathy, 2014). This idea is even picked up by startups like DataRobot (DataRobot,
2017), which provide fully automated infrastructures to their users in order to pick the best
prediction techniques for the dataset in question. This development is in line with a trend
for higher level APIs for machine learning techniques. Google’s TensorFlow, for example, offers
functionalities where the user simply needs to provide a set of classified images and the rest
will be done by the underlying algorithms. Taking into account the ongoing developments
in this area, this trend is likely to continue. Therefore, methods of machine learning will
become available to a broader audience and more research communities. This will, at least
for experiments and simple cases, make the fine tuning described in these paragraphs to a
certain extent obsolete.

ANNG are a very complex topic, this thesis can therefore only provide a short overview and
more details on the exact implementation. Overviews and introductions to this topic are
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ANN:S for Spatio-Temporal Classifications

Over the last ten to twenty years, ANNs have experienced a peak in develop-
ment and interest across research communities. In the geospatial sciences,
common use cases are “classification, change detection, clustering, function
approximation, and forecasting or prediction” (Gopal, 2016, p. 5). One ex-
ample is the land use classification of data from aerial or satellite photo-
graphy (see e.g. Carpenter et al., 1997). While image analysis and classific-
ation is a prominent example for supervised ANNs, they can be used for a
variety of classification purposes, as long as they can be broken down into
the previously outlined input and output parameters. This thesis explores
their usage as classification algorithms for classifying and predicting spatio-
temporal behaviours. The decision to use ANNs was guided by technological
and data-driven statistical requirements. Similar to the underlying database,
as described above, the classification technique needs to be implemented on
the user’s device. With the growing popularity of machine learning, several
systems have been extended to be compatible with smartphone frameworks.
One of the most advanced systems is Google’s TensorFlow system (Google
Inc., 2017b). The library is Open Source and available for Android as well
as i0OS applications. The mobile version is streamlined to work efficiently
on a smartphone. Furthermore, the library does not only allow developers
to implement ANNs, but also other machine learning approaches like, for
example, random forest'8.

Beyond the technical requirements, the data or rather statistical require-
ments were even more important. Therefore, the following paragraphs dis-
cuss why machine learning was chosen over traditional statistical prediction
methods and why ANNs in particular were chosen. As machine learning
algorithms are not only more complex than traditional statistical methods
for prediction, but also more cost-intensive (in terms of processing power,
memory, time, etc.), there needs to be a good reason to favour them.

provided by Zeiler and Fergus, 2013; Wang and Raj, 2017, Schmidhuber, 2014. Probably
typical for a cutting-edge technological development, many additional resources that are es-
sential to not only understanding but implementing ANNs are web articles and discussions by
the research and development community e.g. Kurenkov, 2015; Beam, 2017; Horowitz, 2017;
Kogan and Tseng, 2016; Nielsen, 2015; Karpathy, 2017; Ericson et al., 2017; Stackoverflow,
2010.

For prototyping, the JavaScript library ConvNet.js as well as the Java-based WEKA system
were used in addition to the TensorFlow system (Karpathy, 2014; Machine Learning Group at
the University of Waikato, 2016).



63 LOCATION TYPE IDENTIFICATION

Carnahan et al. describes one downside of discriminant analysis and logistic
regression:

“Principal among [the limitations of discriminant analysis and logistic regres-
sion] is their dependence on a fixed, underlying model or functional form. Dis-
criminant analysis uses linear summation of independent variables to differenti-
ate one category from another (Huberty & Lowman, 1997). Logistic regression
also makes use of linear summations of independent variables, incorporated
into a logistic function (Myers, 1990). Koza (1992) made the observation that
both techniques use regression merely to discover numerical coefficients for
predetermined models.”

Carnahan et al., 2003, p. 409

This leads to the problem that in many cases “functional form cannot be
established a priori. Such circumstances would necessitate the use of altern-
ative classification modeling approaches.”Carnahan et al., 2003, p. 409 This
problem is also true for the approach in this thesis. In contrast, most tech-
niques of machine learning belong to those methods, which” do not rely
on predetermined models using linear summations of independent vari-
ables.”Carnahan et al., 2003, p. 409. Here, Carnahan et al. summarise a
general argument for machine learning over traditional linear statistics. A
report by McKinsey illustrated this concept by comparing the risk prediction
from two drivers (A, B) in a two-dimensional plot (see figure 29), highlight-
ing the advantage of machine learning over, in this case, regression analysis
(Pyle and Jose, 2015).

But, as figure 29 also illustrates, this effect obviously highly depends on
the underlying data (compare e.g. Weiss and Kapouleas, 1989). Many of
the above-mentioned papers, books, and websites even argue that strict gen-
eralisable conventions on when to use what kind of machine learning or
statistical technique are difficult, especially due to the dependency on the
data and its structure. Therefore, one should test various tools and find the
best solution for the dataset in question. But beyond this general observa-
tion, Carnahan et al. (2003) mentions an important aspect of this thesis: the
ability to establish a functional form a priori. This functional form includes,
for example, the investigation of correlations between variables and building
the statistical model a priori. In this thesis’ case, the data is user-specific and
generated on the user’s device. Therefore, the prediction and classification
methods need to adapt to each user’s specific demands. Gopal summarises
exactly this quality by stating that

“[ANNs] have the ability to learn from experience in order to improve their
performance and dynamically adapt themselves to changes in the environment.
In addition, they are able to deal with fuzzy or incomplete information and
noisy data, and can be very effective, especially in situations where it is not

possible to define the rules or steps that lead to the solution of a problem.
Hence they are fault tolerant”

Gopal, 2016, p. 1.
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Figure 29: A highly abstracted illustration adapted from Pyle and Jose, 2015, to
discuss the difference between machine learning and linear statistics.

This means that the input is predefined, while the output is defined by
the user and the connections within the network are left for the ANN to be
built.

The model develops on the user’s device using the user’s personal spatio-
temporal behaviour. This method connects this choice of technique with the
individual perspectives introduced in the previous chapter, as every model
is, even if it is built on the same input parameters, highly user-specific.

The last feature that made ANNs a good solution for this thesis is their abil-
ity to be shared, recombined, and merged. The implementation in Google’s
TensorFlow allows the combination of multiple models in a process called
‘ensemble learning’, sometimes referred to as ‘training ensembles’. This pos-
sibility will be explored as a way of sharing the model with the remote
service, instead of sharing the raw input data.
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The discussion above led to the decision to use an ANN for the classifica-
tion process.™

Throughout the previous paragraphs, the choice for using ANNs as well
as their basic functionality has been established. In what follows, this tech-
nique will be applied to the case of location type classification. In the case
of the location type classification, two competing neural networks are im-
plemented. One network builds on custom user-specific data and one is
based on the time use survey data. Both are based on the assumption that
the temporal usage of certain location types (e.g. home or work) generates
user-specific patterns (see e.g. Noulas et al., 2011b; Yuan et al., 2013).

6.3.2 Time Use Survey

The properties that are extracted for classifying a location type are the time
of arrival and departure, the duration of the stay as well as weekday (to
account for differences between workdays and non-workdays*°) and month
(to account for seasonal changes).

The backup classifier is trained through time use surveys. Those surveys
expose the above-mentioned properties of a set of participants. Time use
surveys are conducted in many countries®'. They use diary studies to gain
insights into the activities and whereabouts of a representative sample of
the inhabitants of a country over several days or even weeks. For the Beijing
dataset, the author tried to obtain a copy of the Chinese 2008 time use sur-
vey (Fisher, 2017a), which was not available. The 2012/2013 time use survey
from Germany was also not available at the granularity required for this
thesis (Lander Forschungsdatenzentrum, 2016). Therefore, as an alternat-
ive, the time use survey from the UK was used. According to the results
produced by Winquists’s report, Germany and the UK share many simil-
arities, especially the overall temporal patterns of weekends and weekdays
(Winquist, 2004).

The author acknowledges that many if not all of the above requirements are also met by
techniques like random forest or other machine learning techniques. Overall it can be said
that the performance strongly depended on the underlying training data. As every user’s
dataset showed different patterns they also performed differently. The choice to explore ANNs
was based on their overall good performance as well as their novelty in the field of spatio-
temporal behaviour prediction. As the focus of this work is not to compare machine learning
techniques, which could easily fill another book, there is no further evidence provided by
comparing all available machine learning techniques. The author clearly states that ANNs are
one viable solution but not the only solution. To provide some comparison, for every ANN
evaluation, a short list of comparable approach and their performance is offered through
subsequent sections.

In order to produce more diverse and individual models, workday and non-workdays are
not predefined, but establish themselves through the user’s behaviour.

A very comprehensive international list of such studies is maintained by the Centre for time
use research at the sociology department at Oxford University (Fisher, 2017b)
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Figure 30: UK time use survey data for weekday (left) and weekend (right). Each
area represents one location type. The y-axis shows the percentage of
participants currently in a location type. The x-axis highlights 10-minute
intervals of a 24-hour day, starting at 04:00. As an example the area for
transport is highlighted in black.

The raw data from the 2014-2015 UK time use survey (Oxford, 2015), is
organised in a tab-separated spreadsheet format. Each line represents one
entry from a person for one timeslot. Each entry contains an extensive set of
additional metadata, although for this thesis only the location and the day of
the week (weekend, weekday) is relevant (a summary of the data is shown
in figure 30). The granularity of available location types in the dataset is
very high. Therefore, the location types have been grouped and reclassified
(the classification is available in the appendix).

Each item in the dataset is used as one training item for the neural net-
work and contains: location type, start time, end time, duration, and week-
end/weekday. The property month is not used, as the study was not con-
ducted over a long enough period to account for seasonal changes. After re-
moving events with missing data, the dataset resulted in 92.627 items. Two
alternative input approaches were tested: 1) using the previously introduced
parameters start time, end time, and duration; 2) instead of start and end
time and the duration, the three parameters were combined into 144 binary
parameters, each for a 10 minute interval of a 24 hour day**. This approach
was inspired by the process by which two-dimensional images are mapped
onto tensors. Based on the two datasets, two ANNs were set up. Taking
into account the guidelines for layers and neurons the according setup was
1: 10-20-10 and 2: 100:50:10. For optimisation purposes, the SGD algorithm
was used (see for an overview discussion of gradient descent optimisation
algorithms see Ruder, 2016).

In a first run, the datasets were split into 83364 items for training and 9263
items for testing (10% randomly picked testing items from the original set of
items). The variation between the two input approaches was not significant

The day in this dataset starts at 04:00 in the morning. According to the data, four o’clock is
the time with the least activity and therefore a good breakpoint.
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Technique Correctly Classified Instances
Random Forest 66.29%
Multi-Layer Perceptron (ANN 5-10-20) 66.99%
Multi-Layer Perceptron (ANN 5-10) 66.67%
Multi-Layer Perceptron (ANN 5) 66.78%
Logistic Regression 65.00%
TensorFlow ANN 67.01%

Table 1: Comparing the performance of the time-use survey ANN against other ma-
chine learning techniques.

and ranged between one and two percent. As the input approach with fewer
parameters was obviously faster, it was favoured for the following tests. The
overall accuracy of the ANN was between 63% and 70%, averaging at 67%. A
more in-depth analysis of the accuracy revealed that the location types which
occurred more often received higher accuracies (home and work). A reduced
set of location types (removing minor classes) reached an accuracy of 87.27%.
The problem of unbalanced datasets for training is further discussed in the
next section.

In addition, in order to highlight the choice of ANNs a comparison of the
same training data applied to different machine learning techniques was
performed using WEKA (see table 1).

In a second run, the trained dataset from above was tested against 400
randomly selected pre-classified location events from the Moves Application
datasets. The ANN achieved an average of 77.78% accuracy on these locations.
When reducing the location types to home and work, the accuracy reached
even 98.41%. The increase in performance on the Moves dataset is likely
due to less variation in the individual’s behaviour, compared to the time-use
survey.

6.3.3 User-specific Model

When locations are identified through the spatio-temporal threshold, they
are classified by the user. In order to automatically classify future locations,
an ANN is trained on the temporal patterns for each location type (the day
of the week, time of arrival, duration, and location type). The Moves dataset
was used for an initial testing, as it already contained user-classified loca-
tions. The test was conducted for four individuals. For each individual,
the dataset contained 500 classified location events, for 3 to 7 different loca-
tion types. The small number of location types was the result of dropping
location types which had less than 10 events or where locations were not
classified. A problem that arose early during the test was that all individu-
als had strongly unbalanced location events data. This means that a small
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al b c| d| e t g | < classified as

354 | 38| 24| 7|42 28 7 | a =home

o|27| 23| o] 1 0 9 | b = work

o 8l104 | 11| 1 0| 36 | c=transport

12| 5| 47193 | 1 0 2 | d = food

68 | 24 8| 2147 8 3 | e = shopping

24| 2 1| 2| 7| 124 o | f = other_home

o| 7| 40| o] o o | 113 | g = doctor

Table 2: Extract from the unbalanced example evaluation.

number of location types accounted for most of the events. In all cases, these
were the events for home and work locations. To account for this imbalance,
a three-step approach inspired by the SMOTE algorithm (Chawla et al., 2002)
was incorporated. The general concept behind SMOTE is the oversampling
of minority classes. Therefore, KNN item-clusters of the minority classes
are being generated, which are then used to build new synthetic items. In-
corporating this concept, a histogram of events per location type is created.
Through a Sturges threshold, the optimal number of bins is calculated (nb)
(Sturges, 1926). The bin index (bi) (1 for least events to nb for most events)
is assigned to each group of location type events and is used as a weight to
even the number of overall location events, as a reference the maximum (m)
from the highest bin is used as a reference. Thereby, the needed number (n)
of events for a location type within bi is defined by

n= n—ﬂ; * bi (7)

If the actual number of events in a bin for an event type is smaller than n,
the missing items are synthetically generated through the SMOTE concept.
In order to evaluate the resulting ANN, a test set (t) was extracted (before the
SMOTE oversampling) where the distribution of events per location type
represent the overall distribution in the complete dataset. The SMOTE ap-
proach helped identify the minor classes (compare table 2 to table 3). At the
same time, it reduced the success rate of the major classes. Due to the high
number of major classes, this led to an overall decrease in accuracy. There-
fore, the unbalanced dataset was used for further testing, as it resulted in a
higher overall success rate.

To simulate the learning process of the ANN (more data being generated
by the user over time), the data was randomly divided into 10 parts, each
subsequent part containing the data from the previous in addition to the
next set of items (t_length*o.1, t_length*o.2, ... , t_length*1). In order to
test the performance for each individual, the test data was run against each
of the 10 training sets. As the randomisation during the test data retrieval
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a|l blc|d| e| f]|g]| < classified as
527 o|2|19|2]|o0|a=home
8|12|0| 0| o|o]|o]|Db=food
40| olo| 1| 1|o0]|o0|c=shopping
11| o|lo| 1| 3| 0] o] d=transport
25| olo|o|30|0]|o0]|e=work
8| o|lo|o| 4|0/ o] f=doctor
16| o|o| 0| o|o0]| o] g=other_ home

Table 3: Extract from the unbalanced example evaluation.
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Figure 31: Performance development over n-month of training data. x represents
the number trained month and y the accuracy. The thick line indicates
the average performance.

changes the composition of the training and test data, each individual was
tested 20 times to generate an average. The success rate came down to an
average of 82.7% (median: 82%, max: 91%, min:72%). Although, as more
data was introduced for training, a growth of success was expected over
time, the growth was not significant and only varied between 78.46% and
87.69% (see graph 31). In order to see the effect of the minor classes in
the dataset, an additional test was performed only for the major classes.
Using only classes with at least 10 trips, the ANN reached up to 93.22% and
using only home and work (the most common classes) even 94.74%. After
all, the imbalance of the data is still not sufficiently solved and needs further
attention. To again show the superiority of the ANN, the approach was tested
against other machine learning techniques using the WEKA framework (see
table 4).

6.3.4 Predicting Duration of Location Events

Building upon the results of the location type classification and prediction,
this second approach takes the reverse approach and predicts the duration
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Technique Correctly Classified Instances
Random Forest 83.1%
Multi-Layer Perceptron (ANN 5-10-20) 81.69%
Multi-Layer Perceptron (ANN 5-10) 80.28%
Multi-Layer Perceptron (ANN 5) 80.28%
Logistic Regression 83.1%
TensorFlow ANN 87.69%

Table 4: Comparing the performance of the user-specific ANN against other machine
learning techniques.

Minutes 0-15 16-80 81-255 | 256-624 625-1295 | 1296 - n
Hours 0-0.25 | 0.27-1.33 | 1.35-4.25 | 4.27-10.4 | 10.42-21.58 | 21.6-n
Continuous Class | o0-1.9 2-2.9 3-3.9 4-4.9 5-5.9 drop
Discrete Class 1 2 3 4 5 drop

Table 5: Transformation of duration.

of a stay at a location based on the time of arrival, the day of the week, and
the location type. An exploratory data analysis revealed that the duration
parameter included numerous outliers. Those outliers range between 24
and sometimes up to more than 72 hours. Those outliers are likely to be
generated if the app crashes or is turned off. Atthe moment the app resumes,
the missing time is categorised as a location, leading to these long periods.
To counter this problem, the duration was transformed (see equation and
table 5).

trans_duration = duration®?® (8)

Durations for longer than 21.6 hours were removed from the training data.
Based on the revised training data, the same neural network from the previ-
ous section was used to build a prediction system. The concept of continu-
ous classes worked best in regards to the accuracy of predictions. The ANN
in this case only achieved the second best results after the random forest
approach, which is a similar result to the experiments above. The mean
absolute error of the predictions was 0.6994 (Random Forest 0.61), which
means that the predictions were on average not more off than one class. As
in the previous cases, a comparison to other machine learning techniques
was performed (see table 6).



Table 6: Comparison of machine learning approaches on the location event duration

dataset.

63 LOCATION TYPE IDENTIFICATION

ANN

Correlation coefficient 0.6009
Mean absolute error 0.6994
Root mean squared error 1.0324
Relative absolute error 65.1349%
Root relative squared error | 82.3324%
Random Forest

Correlation coefficient 0.7114
Mean absolute error 0.6197
Root mean squared error 0.9119
Relative absolute error 57.7105%
Root relative squared error | 72.7269%
Linear Regression

Correlation coefficient 0.5931
Mean absolute error 0.7804
Root mean squared error 1.0212
Relative absolute error 72.6716%
Root relative squared error | 81.4448%

67



68

COMPUTATIONAL MODEL

6.3.5 Conclusion

The evaluation of the two competing ANNs showed that the user-specific
algorithm outperforms the generic approach that is based on the time use
survey data. We will now strengthen the argument for the implementation
of the user-specific algorithm. The test design for the user-specific ANN
anticipated a gradual learning process, which means that as more data beo-
mes available, the accuracy in turn improves. This was only true for a very
small increase, which was not significant. The imbalanced nature of the data
presents an issue for the modelling approach. A solution to overcome this
could be the combination of the synthetically balanced algorithm, which
performed better on the under-represented classes and the imbalanced al-
gorithm, which performed better on the over-represented classes. Other ex-
tensions of the approaches described above could include the incorporation
of additional parameters e.g. activity at a location, previous location or even
external influences like weather data. Another approach, which was not ex-
plored in this thesis, is the application of unsupervised machine learning
for data analysis. While unsupervised training will not improve the identi-
fication of location types, it could help identify common temporal patterns
across location types (see figure 33). As an example for unsupervised clas-
sification, the canopy algorithm was applied to the location event duration
dataset (McCallum et al., 2000). Canopy specialises in unsupervised cases, as
it does not require a predefined number of clusters, other than for example,
k-Means-Clustering (Lloyd, 1982). The clustering in the example case in fig-
ure 33 identified overlaps and distinctions between classes, for example, a
difference between weekend and weekday patterns.

To conclude, the supervised approach described in this section can be used
to identify similar location types based on their temporal usage patterns.
Those locations, in combination with spatial behaviour information, can be
used to identify changes in the user’s behaviour among other things. As an
example, a user who switches his or her job will show up as a new location
with the location type work assigned to it, if the user exhibits the same
temporal patterns as in his or her previous job. Such events could trigger
location recommendation processes that are discussed in the next chapter.

The process developed throughout this chapter is linked to the conceptual
model’s coupling constraints, as it applies the user’s location-specific temporal
behaviour in order to derive the constraints specific to a location.

Having identified and classified locations within the spatio-temporal data-
sets, the next section describes the process of building the network from the
trips between those locations.

64 FROM LOCATIONS TO THE NETWORK

In regards to the user’s spatial behavioural network, the preceding section
described how to acquire information on the vertices (locations). In this next
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Figure 32: The y-axis shows days of the week, the x-axis on the left the starting
point of an event on a 24 scale, the x-axis on the right the duration of the
event. Both show clear cluster-distinctions between the days o and 1 and
the rest of the week.
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Figure 33: The y-axis represents the location types, the x-axis are the same as in
the figure above. The left graphic shows that the location home shares
clusters with all other locations (0), as it exhibits a broad variety of uses.
The right graphic shows that the categories doctor, transport, and food
(1,3,5) have similarly short durations and belong accordingly to similar
clusters.
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Figure 34: Network of locations, each edge in the visualisation represents one or
multiple edges.

step, those vertices are connected through edges, which are the user’s trips
between those locations. The conceptual model’s capability constraints are
thus further explored by taking spatial and temporal patterns into account.

6.4.1 Building the Network

The section above on spatio-temporal data preprocessing detailed how the
input data from the device is preprocessed and stored in a relational data-
base. For each connection between location A and B from the location table,
we have trips AB and BA in the trip table. Two locations can be connected
by zero, one, or multiple trips. Those trips consist of n (at least one) trip
segments (TS). A trip is either divided into segments by multiple activity
types (e.g. A > walking + bike + train + walking > B) or by gaps during the
tracking process (e.g. A > walking ? walking > B). This process results in a
network of locations (see figure 34).

In order to improve efficiency for further analysis, a clustering is applied
to the edges to reduce the complexity of the network. In a first step, trips
with the same start and end location are clustered into one trip group. There-
fore, a new table is created that holds the groups and references the trips.
The result of this initial clustering phase is a network with a maximum
of two directed edges per vertex-pair. Directed means either AB or BA.
Each edge is weighted by the amount of trips it represents (edge_weight =
count(AB)), in order to account for the clustering during the following net-
work analysis (see figure 35). In network analysis, the weight of the edge is
also sometimes referred to as strength.

The resulting network can then be used for network analysis. As discussed
in the previous section, the network can for example be used to analyse the
importance of vertices through centrality analysis. This provides the model
with insight into the importance of nodes with respect to their connectivity
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Figure 35: Network of locations, each edge represents a group of edges in the same
direction, the weight (number of edges) is visualised through the width
of the lines.

to the overall net (see figure 37). The results from the network analysis can
be used to further enrich the location metadata as well as to inform the
subsequent route predictions. As mentioned before, the imbalanced nature
of the data also presents a challenge to the network analysis (see figure 36).

6.4.2 Predicting Movement in the Network I

Continuing the theme of predictions from the previous section, the remain-
ing paragraphs of this section concentrate on using the above-generated net-
work for the prediction of the user’s spatio-temporal behaviour. While cent-
rality and similar measures provide insights into the network structure, most
of them ignore the spatiality and temporality of the network, which are es-
sential for the prediction of the user’s behaviour. Therefore, the subsequent
steps incorporate the spatiality into the prediction process. The general ap-
proach is inspired by hidden markov models for finding patterns in trajectory
datasets (Jeung et al., 2007), which try to identify reoccurring sequential pat-
terns of spatio-temporal events, as well as the work by Tiakas et al. (Tiakas
et al., 2009) and Chen et al. (Chen et al., 2013). Due to the inaccuracy of
the dataset, an exact implementation of neither hidden markov chains nor
Tiakas” or Chen’s method was possible and thus themethods had to be ad-
justed. By following the general ideas of the hidden markov models, the
paragraphs that follow attempt to predict the user’s movement in the net-
work based on the user’s historic trajectory data.

In a first step, the edges of the network are enriched with a temporal
dimension which depicts the occurrence of trips on each edge (see figure 38).

The basis for this second prediction or rather classification approach is
again ANNs, as discussed in section on location type detection. The goal
of this prediction is to determine where a user is travelling (output layer)
by taking into account the start location as well as temporal features (input
layer). During the tests, the performance in predicting the destination purely
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Figure 36: The x-axis in both graphs represents the number of visits to a location.
The y-axis shows the number of edges connected to a location. The radius
of each circle indicates the average time spent at each location. The colour
highlights the degree of centrality. The upper graph is built on a linear
scale and the lower uses a linear scale. The difference between the graphs
highlights the problem of this imbalanced nature.
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Figure 37: The visualisation shows the author’s spatial network for the metropolitan
area of Berlin. The colour of the vertices is derived from their (top to
bottom) closeness centrality, degree centrality, between centrality, and
page rank (in 2 zoom levels) (black = strong to light grey = weak).
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Figure 38: Visual explanation of temporal enrichment of edges (from left to right):
1) directed edge bundles 2) bundles split up by their temporal distribu-
tion between the two vertices 3) space-time cube of two exemplary edges
between the two vertices.
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Figure 39: Prediction accuracy increase as data variation decreases. X-axis shows
the threshold of minimum edge-counts that make it into the training set
and the y-axis represents the accuracy. Size of the points represents the
number of trip-groups in the training data using a logarithmic scale.

based on the start location and temporal information was only able to reach
an accuracy of about 30%. An exploration of the data highlighted that the
majority of trips only occurred once in the dataset. As soon as a threshold is
implemented, limiting the trips included in the training data to trips occur-
ring at least n-times, the prediction rate increases (see figure 39)*3. At the
same time, this obviously also decreases the variety of potential destinations
that the algorithm can predict. To overcome these limitations, the following
sections work to improve this initial prediction approach.

Similar to the previous cases, the most successful attempt was repeated with random forest
and linear regression to highlight the difference between those techniques and the ANN (see
table 7).
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Artificial Neural Network | 73.27%
Random Forest 69.31%

Linear Regression 70.30%

Table 7: Correctly classified instances for the dataset with at least 6 edges per net-

work.

a|b|c| d|e| f]|<—classifiedas

431 1[3| 2|4 | o|a=plogby92719 | 81.13%
1|/2(3| o|3]| o] b=pl2477990 22.22%
0[3[3| o|2]| o] c=plg6793809 37.5%
1|{o|o|11|0| o]|d=pliy1iy721792 | 91.67%
2/0|2| o|5| ofe=pli188291457 | 55.56%
olo|o| o]o|10]f=plog6792910 100%

Table 8: Correctly classified instances for the dataset with at least 6 instances per
edge group.

6.4.3 Refining the Network

The approaches applied above only accounts for the temporal dimension as
well as the origin and destination of a trip, but they ignore the actual spatial
trajectory between the two locations. Therefore, in the following, the spatial
trajectories between locations will be included in the calculation. This will
allow the technique to include an estimation of the actual route that the user
might take to a destination, in the calculations and lead to better predictions.
In order to discuss and illustrate the challenge of this analysis, the dataset
is reduced to three locations and trips between those. The underlying ap-
proach will in the end be scaled to the overall network. While the abstracted
network allows discussion of general relationships between locations as well
as trips between locations, the underlying spatial trajectories are ignored. In
the abstracted network the trip AB can be clearly distinguished from the trip
AC, whereas this proves difficult in the actual trajectory data, as trajectory
segments overlap (see figure 40).

The following steps will inform a method that incorporates the abstracted
network as well as the underlying spatial trajectories. The first step towards
this is to further cluster the underlying trajectories. The trips are clustered
by direction (AB vs BA) as well as their inherent activity types (e.g. walk-
ing, transport, car, bike). In order to differentiate between trips with varying
activities, temporary transition locations (TL) are created for the spatial po-
sition at which the activity type switches (see figure 41). Those transitional
locations are stored in a new table for transition locations. Based on the
transit locations and the new trips between those and the end and start loc-
ation, new clusters are created which are made up of the same sequence
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Figure 40: Visualising the problem between a simplified trip network and the actual
underlying spatial network between three given locations A, B, and C.
The blue dot represents the user’s current position.
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Figure 41: Creating temporary locations at activity intersections.

of activities and transition locations. Those clusters are stored again in a
new table referencing the split-up trips. In a high precision dataset, the next
step would include a map-matching procedure or a trajectory clustering (see
Lou et al., 2009 for map matching and Kharrat et al., 2008 for trajectory
clustering), followed by an analysis of finding common trajectory segments
between trips (Mao et al., 2017). As the resolution of the dataset in question
is not high enough, this is not possible. Therefore, an intermediary solution
is integrated: trip corridors.

Trip corridors aggregate uni-directional trips between two locations. As a
common trajectory segment analysis is not possible, each trajectory is exten-
ded through a buffer (100 meters) and then overlaps of at least 60 percent**
are required in order for a trajectory to be grouped together. The result-
ing clusters are combined and extended with the additional buffer to create
a polygon around the trajectories (see figure 42 and figure 43). Those cor-

24 The number of 60 percent was calculated by trial and error, with the goal of achieving dis-
tinctive but not too sparse clusters.
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ridors can then be used to detect which trip the user might embark on by
comparing the user’s current trajectory with the corridors in the database
(see query and figure 42). Due to the inaccuracy of the dataset, an exact
WITHIN or CONTAIN query cannot be used, therefore the overlap between
the current trajectory and corridors is calculated. Matches with more than
70% overlaps are included in the result set.

Listing 1: Querrying corridor matches

#To speed up the query, the users current trajectory is stored in a
temporary table called temp_query

SELECT
temp_query.id AS temp_id, corridors.id, corridors.from_id, corridors.
to_id, corridors.from_cluster, corridors.to_cluster, COUNT(x) AS
group_count, group_concat(trips.start_10_min) AS t_start_10_min,
group_concat(trips.end_10_min) AS t_end_10_min, group_concat(trips
.day_of_week) AS t_day_of_week, Area(Transform(Intersection(
temp_query.the_geom, corridors.the_geom), 3857)) AS inter_area,
Area(Transform(temp_query.the_geom, 3857)) AS trip_area
FROM
temp_query,
corridors
LEFT JOIN corridor_trips ON corridors.id = corridor_trips.corridor_id
LEFT JOIN trips ON corridor_trips.trip_id = trips.id
WHERE
Intersects(temp_query.the_geom, corridors.the_geom) AND
(inter_area / trip_area) > 0.7
GROUP BY
temp_query.id, corridors.id
ORDER BY temp_query.id, corridors.id ASC

6.4.4 Predicting Movement in the Network 11

For further refining of the matched trajectories (if multiple), an approach
like ANNs would not be efficient. This is the case not only due to processing
requirements, but also due to a lack of data. Therefore, the temporal inform-
ation on each corridor is used to run a KNN on the user’s current temporal
information and the matched corridors. As a result, this calculates the cor-
ridor with the highest probability. The prediction, as outlined above, is per-
formed in intervals (2 minutes apart). While the user moves through space,
the trajectory extends and, thereby, the accuracy is increased with every it-
eration (see figure 45). Due to the inaccuracy of the trajectories, at a certain
step towards the end of the trajectory, some of them will not be able to match
a correct corridor. This is due to the fact that too main points are outside of
the corridors and therefore a big enough intersection cannot be computed
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Figure 42: Process of creating the trajectory corridors. Top to bottom: 1) Raw traject-
ories between the three locations. 2) Each trajectory is extended through
a buffer of 100 meters. 3) Trajectories that share 60% overlap are com-
bined into one corridor, which can then be used to intersect with the
user’s current location and trajectory (blue).
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Figure 43: Corridor examples from the author’s Moves dataset. The two highlighted
examples (circles) show how minor differences between trajectories (GPS
inaccuracy) are ignored due to the tolerance.

(see figure 44). As a result, the optimal prediction rate is reached towards
the end of the process with a value of 56%. The overall likeliness of finding
a match at all is at the highest 43% throughout the testing cycle. he correctly
classified cases reach a value of 50% (mean: 46.7%, median:50%) towards
the end of the journey. But even at the beginning of the journey, after 10% of
its length, this number already reaches 40%. If the cases are included where
the correct destination was in second and third place of the prediction, the
rate rises to 85% (min: 70%, max: 85%, mean:77.5%, median: 80%).

To summarise, the previous steps have created a spatial network that con-
sists of locations (vertices) and trips between locations (edges). These are
refined into trip groups in which each trip is made up of trip segments that
are combined into trip corridors. Those elements allow us to predict move-
ment within the existing network.

In order for the clustering and prediction approach to work, one precon-
dition must be satisfied for a trip to be considered of the same group: start
and end location must be the same. In the previously described approach,
so-called temporary transit locations were created (switches between two
activity types, e.g. walking mode to car mode). As was revealed by an
exploratory data analysis where the time threshold of the location identifica-
tion was changed, there are two types of natural transit locations. First of all,
there are actual transit locations that are detected as locations because the
user stays there long enough (location time threshold) for it to be counted
as a location (e.g. waiting for a connecting train). Secondly, users sometimes
do not immediately proceed to their final destination but visit locations near
start or stop locations (e.g. running quick errands near a location). Those
two cases present challenges for the prediction algorithm. In order to over-
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Figure 44: The iterations for each test trajectory (of one test subject) are mapped to
1-100 (x-axis). For each step in this iteration the knn is performed. The
stacked bar-chart shows the result of the knn. Blue highlights the number
of correct classified instances. Dark green is used when the correct loca-
tion was second in the knn-results, with bright green third, yellow forth
and orange fifth. The red gradient indicates matches beyond rank five.
Black visualises cases in which no resulting corridor matched the expec-
ted outcome. The y-axis thereby represents the percentage of classified
and unclassified cases.
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Figure 45: Example of iterations from a corridor trip prediction (only every second
iteration is shown). The darker the polygon, the higher the probability
calculated by the KNN algorithm. The longer the trajectory becomes, the
less viable intersections are produced.
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Figure 46: Identifying transit locations through intersections with similar trips.

come those, two extensions of the approach are presented: transit locations
and origin / destination clusters.

6.4.5 Transit Locations

The destination prediction from the previous section only predicts the trip
to the next location, but in some cases this might not be the actual final des-
tination. To overcome this problem and improve the network, the approach
of Transit Locations is proposed. Transit locations are locations along a user’s
trajectory, where the user spends enough time for it to be accounted as a
location, but not being the actual final destination of the overall trip. Two
identification approaches are combined to recognise transit locations. First
a location is intersected with historic trajectory data in order to determine if
there are trips with the same start and end location, that pass through that
location without an intermediate stop. To do so, a simple buffer is used to
collect nearby trajectories. The result is then filtered further to only include
trajectories that start from the user’s current trajectory origin (see figure 46).

Listing 2: Identifying possible transit locations

SELECT COUNT(x) FROM trips WHERE loc_1 = location_1 AND loc_2 =
location_2 AND ST_Intersects(geom, ST_Buffer(transit_location, 2x*
location_spatial_buffer))

In addition to this intersection technique, the reverse location identifica-
tion approach from the first section of this chapter is used to predict the
duration of the stay at the location. If the stay is shorter than:

2 x location_time_threshold (9)

it is also classified as a potential transit location.

If a location is identified as a potential transit location, the destination
prediction is executed, using the transit location as a starting point. By doing
so, a chain of locations can be identified that leads to the potential final
destination (see figure 47). One exception was identified while applying this
approach: locations that the user only visits shortly before travelling directly
back to the origin location. If it is a direct trip back to the origin location,
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Origin Location

Predict a potential destination <

Via trajectory inter-
section technique
—1 |

1
\

{ Has the location been flagged as a transit Iocatlon” Predict next destination

¢

Predict duration of stay
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Figure 47: Process of building a sequence of potential destination location predic-
tions.

the location is not considered a transit location, since it is assumed that
the user went to this location intentionally. Consequently, these locations
are not reclassified as transit locations. A problem with this approach is
that the uncertainty with each iteration stacks up. Therefore, the resulting
predictions have to be handled carefully.

6.4.6  Origin / Destination Clusters

By visualising the resulting spatial network, another insight became clear.
While there are many reoccurring trips between location pairs, another pat-
tern are groups of nearby locations that are connected to another group of
nearby locations in another area (see figure 48).

The problem illustrated in figure 48 is not yet covered by the outlined
prediction approaches, as each trip would be identified individually but not
as part of a common cluster. While the prediction approach still works
without taking this fact into account, further clustering and refining of the
network will increase the performance of the predictions. This is due to
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Figure 48: Clusters of locations that are connected with one another but also across
the clusters.

Figure 49: Graph generalisation through clustering, while maintaining graph con-
nections.

the fact that the refined predictions only need to forecast trips to a cluster
instead of an exact location (a discussion of a comparison of both approaches
against one another will be presented at the end of this section).

Consequently, the goal of this clustering approach is to group related loc-
ations or vertices in the network into clusters. This reduces the overall com-
plexity of the network. In the domain of graphs and networks, this can
be achieved through graph generalisation or graph clustering. Similar to
cartographic generalisation it continuously reduces the complexity of the
network. In this specific case it is required to maintain the overall network
relationships. This means if we cluster two vertices, the edges of both ver-
tices need to merge and be present in the new vertex, which excludes many
general network generalisation or clustering techniques (see figure 49).

One possible method to apply to the network is the Louvain method for
identifying communities in the network (Blondel et al., 2008). Blondel et
al. describe the potential of their algorithm, as “[t]he identification of these
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Figure 50: Distance-based DBSCAN algorithm with a network (connectivity) filter
(location in the lower right is within the distance buffer, but not connec-
ted and therefore not considered for the cluster).

communities [, which] is of crucial importance as they may help to uncover a-
priori unknown functional modules such as topics in information networks
or cyber-communities in social networks.” (Blondel et al., 2008, p. 2) The
algorithm by Blondel et al. finds strong connected and, more importantly,
interconnected sub-graphs in the overall graph by applying modularity op-
timisation. Thereby clusters (communities) are detected. While the results
of the Louvain method and similar algorithms are of interest for exploring
the transportational capabilities of the network, they ignore the spatiality
of the network in question. In order to incorporate the spatiality of the
network, the raw trajectories were used as an intermediary clustering tech-
nique. The technique is inspired by density clustering algorithms like DB-
SCAN and more hierarchical and connectivity-based clustering algorithms
like the Louwain method. Similar to DBSCAN, the primary identification of
locations belonging to the same cluster is the distance between connected loc-
ations. The difference of the method applied in this thesis and DBSCAN is
the limitation of scanning for the distance between locations, only if they are
also connected through a trajectory (see figure 50).

6.4.7 Predicting Movement in the Network 111

Using the new cluster information, the corridors are updated and the pre-
diction is repeated. As the algorithm now only needs to predict the correct
cluster instead of the correct location, the performance increases compared
to the previous attempt. The correctly classified cases at the end of the trip
reach up to 90% (mean: 78.3%, median:75%), and even after only 10% of the
journey this number is already at 68%. If also these cases are included where
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the correct destination was in second and third place of the prediction, the
rate constantly remains at about 9o% (min: 90%, max: 95%, mean:91.7%, me-
dian: 90%). At the same time, the number of cases that cannot be classified
never reaches more than 5% (see as an example figure 51).

6.4.8 Conclusion of Network Analysis

Guided by the conceptual model which combined the network model with
Hagerstrand’s time-geography constraints, this chapter has used the pro-
cessed spatio-temporal information to construct a user-specific network and
predict the behaviour within that network. Through the improvements of
corridors and clusters, the trip prediction reached up to 75% accuracy in-
cluding minor classes. With this results, the primary requirement of ana-
lysing and predicting spatio-temporal behaviour is met. The imbalance and
inaccuracy within the data proved to be challenging but could nonetheless
be overcome by the proposed methods and techniques. Further general lim-
itations and critiques will be discussed in the final chapter.

Future Works

The usage of ANNs in the area of aerial imagery classification has matured
over the last few years. The processing and analysis of spatio-temporal be-
haviour through ANNs is still very much in flux. Promising research like
the papers by Zhang et al. (Zhang et al., 2016b; Zhang et al., 2016a), will
bring about more possibilities for prediction and classification of trajector-
ies through ANNs. Furthermore, those approaches could be combined with
more advanced implementations of the markov chain approaches in order
to predict trip sequences.

While the idea of weighted learning was conceptually discussed when
ANNs were introduced, the approach has not been implemented. Neverthe-
less, in a next step, weighted learning should be implemented in order to
account for changes in the user’s behaviour over time.

The focus of this section was put on predictions and classifications, but
the underlying data and mechanics could also be used for creating navig-
ational recommendations in a next step. If a user wants to travel from A
to B, the algorithm could provide the route the user usually takes between
those two locations. In this sense, the last section of this chapter uses the
underlying data to derive further inferences on the user’s behaviour to be
used in location recommendation processes.

65 FROM LOCATIONS AND NETWORKS TO AREAS

Section 6.3 described a method for identifying and classifying locations
through the user’s spatio-temporal behaviour. Section 6.4 extended this
to the movement between those locations. This last section focuses on the
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Figure 51: The iterations for each test trajectory (for one of the test subjects) are

mapped to 1-100 (x-axis). The KNN is performed for each step in this iter-
ation. The stacked bar chart shows the result of the KNN. Blue highlights
the number of correct classified instances. Dark green when the correct
location was second in the knn-results, bright green third, yellow forth
and orange fifth. The red gradient indicates matches beyond rank five.
Black visualises cases where no resulting corridor matched the expected
outcome. The y-axis thereby represents the percentage of classified and
unclassified cases.
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second requirement, outlined in chapter 2: the inference of semantic and per-
sonal information. While there are numerous examples that use the under-
lying data to derive behavioural metadata, for example for general temporal
patterns or location type preferences, this last section focuses again on two
examples in the spatio-temporal domain. The two cases serve as examples
for such inference techniques, which demonstrate the client-side capabilities.
The two exemplary methods are areal descriptors and Potential Memorisation
Index (PMI).

6.5.1 Areal Descriptors

As cited throughout this section, these paragraphs strongly build upon this thesis’
author’s publication Meier, 2017, which introduced the concept of areal descriptors.
Through the network clustering approach, this thesis has proposed a method

for identifying connected neighbourhoods. Beyond their connectivity, the
approaches above have not further analysed the inherent structure of those
neighbourhoods. As already noted in the requirements, further insights on
the areas occupied by the user are helpful for refining location recommend-
ations and deriving inference-information. One such example that can be
conducted on the location clusters are areal descriptors (Meier, 2017).

The fundamental concept behind this approach is the idea of connecting
locations to their urban fabric. The location identification process from sec-
tion 6.3 already enriches each location with a location type, which allows the
system to categorise a location (e.g. restaurant). In regards to architecture
and urban planning,

“[...] it is a prevailing notion that a location is influenced by more than its own
properties. Christopher Alexander describes this at many times in his 1977
book “A Pattern language” (Alexander et al., 1977), e.g. in his chapter on the
mosaic of subcultures (page 42ff). The environment, the urban fabric in which
a location is embedded, plays a crucial role in shaping the color, ambience, or
rather atmosphere of a location, e.g. by the amount of nature it is surrounded
by (Sullivan et al., 2004). One might think of restaurants in a picturesque part
of town or a restaurant on the countryside. Following this line of thought,
the land use, building types, natural features, the mix of locations, etc. of the
surroundings affect the inherent locations. Especially the mix of locations, a
feature requiring only a location dataset itself”

Meier, 2017, p. 4

, presents a good starting point for enriching the location’s metadata. Sec-
tion 6.4 presented a method for clustering connected and nearby locations
into what could be described as neighbourhoods. Those clusters present
areas that the user occupies to visit certain location types. Applying the
concept of areal descriptors, the locations within a cluster are analysed in
regards to their location types as well as the temporal dimension of those
location events. A resulting summary is stored alongside the cluster (see
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Home Nightlife Spot Work Shop & Service

Figure 52: The four examples above show four location types and their temporal
patterns clustered by days (Sunday to Saturday) and by hour (4am to
3am) in 10 minute intervals. The examples highlight that some locations
exhibit very specific patterns. Home locations are for example most oc-
cupied during evening, night, early mornings, and the weekends, while
work locations exhibit the exact opposite and nightlife locations are most
visited during Fridays and Saturdays. The gradients nicely illustrate how
temporal behaviours shift slightly and are not the exact same every day.
Using those insights one can still predict the outcomes.

figure 52). This metadata can then, for example, be used for location recom-
mendation (Example: A destination forecast predicts the user is travelling
to cluster C, filtering the temporal summary of the cluster with the current
time through KNN, the algorithm can suggest certain category types). Tests
with the Moves test data showed that this approach achieved between 50 to
83% accuracy (median: 66%, mean: 66.8%) in correctly identifying location
categories, including those where the correct match is only one off in the
prediction ranking, it reaches even 61% to 95% (median: 84%, mean: 81.8%).

The areal descriptors made use of the user’s identified and classified loc-
ation data. The next approach shifts back to the trajectories and applies
a novel approach for acquiring further user-specific insights on the spatial
structures the user occupies.
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6.5.2 Potential Memorisation Index

This section is adopted from Meier and Glinka, 2017. Most paragraphs have been
slightly modified to fit the context of this thesis. The co-authors’ (Katrin Glinka)
main contribution was chapter 2.2, which was therefore excluded from this thesis.

While the previous approach relied on location data, the approach on
potential memorisation shifts the focus back to the trajectories. The following
approach addresses two issues: first, personal spatial relationships which
are not present in the network structure (e.g. locations the users passes
while travelling to a third location, which are therefore not connected by
a trajectory). Second, it connects to the undertaking of improving location
recommendation and the prediction of trips between locations, especially
incorporating the trip’s multimodality.

The construct of the mental map and the individual perception of space
was introduced in the section on individual perspectives in chapter 2. The
following section presents an algorithm, that highlights insights from the
personal usage of space. To do so, the approach is based on the supposition
that mental maps are influenced by many external stimuli, one of them be-
ing the way the users move through a city (Chorus and Timmermans, 2009;
Mondschein et al., 2010). The users” movements change the way they ex-
perience the physical world and thus influence the shaping of mental maps.
The presented approach uses the trip data discussed above and focuses on
the mode of transport as one such experiential factor, which builds upon
work by Mondschein et al., who reported that active or passive navigation
influences the quality (richness of detail) of mental maps (Mondschein et al.,
2010). Pollowing this supposition, the algorithm attempts to calculate the
personal level of potential memorisation or spatial knowledge of a certain area.
This constitutes an additional metadata attribute to be used in a location
recommendation algorithm. The calculated value is based on the user’s tra-
jectories and the mode of transport (activity type): from the highest value
for walking, to a lower value for cycling, and finally to the lowest value for
motorised transport. The term (potential) memorisation might at first sight
seem ambiguous. Memorisation is often used in contexts of intentional learn-
ing as such, describing how information is moved from the working memory
to the long-term memory. In this case, it rather describes the acquisition of
knowledge of a certain area. Still, the repetitive interactions and the type of
interactions with a certain area help us estimate the quality of spatial know-
ledge. Therefore, the term (spatial) memorisation is used. The previously
discussed trajectories as well as their activity classification are analysed in
order to gains insights from a single aspect of a person’s mental map: the
potential knowledge or rather memorisation of certain spatial areas.
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Figure 53: PMI, per transport mode (motorised transport = 1, cycling = 2 and walk-
ing = 3.

6.5.2.1 Temporal Data Clustering & Network Analysis

On the basis of the calculated locations and trips, the level of assumed spatial
knowledge over certain areas is mapped by deriving a value for the potential
level of memorisation based on the mode of transport. Mondschein et al.
(Mondschein et al., 2010) did not develop a formula to calculate these levels,
their findings rather indicate an order of memorisation potential for various
transport modes. Their findings are used to develop a formula that translates
visits of a certain part of town by a certain mode of transport into a potential
memorisation level that can be used in algorithmic calculations. This formula
serves only as a starting point for the research and has to be refined by
more user studies as discussed in the end of this section. Based on the
order introduced by Mondschein et al., a logarithmic curve that represents
an exponential learning curve with a limit is used. At a certain level of
knowledge, each additional spatial interaction will only increase the value
of the PMI by a very small amount.

In order to test the approach, a 50-meter raster was created and then in-
tersected with the trajectories, using a buffer of an additional 20 meters to
overcome the precision issues of the trajectories, which resulted in a heat-
map-like visualisation. Since cities are not made up of 50-meter grid cells,
buildings were chosen as the final projection canvas, so that the PMI was
calculated for each building. The building’s geometries were sourced from
OpenStreetMap (OpenStreetMap 2016).

Looking at the resulting visualisation (see figure 54), areas with high PMIs
were identified, mainly resulting from walking activities, which were named
walking islands. Those islands were located across the city and connected
by other modes of transport (e.g. underground, car, or bike). To explore
those connections of known areas, a new network graph was created on
top of the islands, highlighting the connections between islands and their
respective strength. Strength was calculated through the number of trips, as
well as modes of transportation and time spent on trips between islands (see
Figure 55 left). In order to visualise the inherent individual perspective, this
network graph was then translated into a force-directed graph-like concept,
allowing the reorganisation of the islands depending on their edges. As a
result, (see Figure 55 right), a new city layout emerged that represents the
movement and the associated personal experience, which is inspired by the
visualisations of the Situationist International (Debord, 1955).
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Figure 54: Trajectories mapped onto buildings. On top of the buildings, the network
structure between the walking islands is visualised. Colour-scale: from
white unknown to black well known buildings.

Figure 55: On the left, the same network represented in a Situationist fashion with
a manual projection and weighted links (arrows). On the right, using a
force-directed graph method, the city layout is rearranged and distorted
by the suppression of distance.
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6.5.2.2  Evaluation of Clusters & Model

As mentioned in the previous section, several uncertainties become appar-
ent when implementing the concept of Mondschein et al. in an algorithmic
approach. In order to improve the modelling approach, a preliminary user
study with the initial algorithm that incorporates feedback on the assumed
level of memorisation was conducted with the providers of the Moves data-
sets that has been used for this thesis. The Moves data was segmented on
the time axis to only include the last 12 months. Since this part of the study
was focused on the potential memorisation or knowledge of an area, the par-
ticipants were also asked about how long they had been living in Berlin,
which was shown to have no impact on the evaluation results.

For the test we selected 22 locations, with a wide range of algorithmically-
generated potential memorisation values derived from the mix of transport
modes. In addition, we added three locations presumably unknown to the
user (at least based on the data we received). We created a web interface
in which the user would receive a 360° image of each location, using Google
Street View. The user could change the angle of the image but not the loca-
tion. The participants were then asked if they knew the location. If so, they
were asked to pin-point the location on a map. If the user did not know the
location, the correct position was disclosed on the map. If the user recog-
nised the area from the image, or knew the area indicated on the map, they
were asked to rank their knowledge on a scale from 1 to 6. From user feed-
back we learned that in some cases the Google Street View images were quite
old and therefore hard to identify. Thus, we allowed people to also rank
their knowledge solely based on the position indicated on the map. This
applied in cases when they were not able to identify the location based on
the image, but later saw on the map that they indeed knew the location.

Our study investigated the performance of our algorithmic approach by
comparing the PMI of our algorithm and the reported response from the
users. With such a small sample it is difficult to discernibly implicate a cor-
relation or a significant effect, but there is a clear trend in the data which
indicates that our algorithm, even in this untrained phase, performs well.
Figure 56 left and middle show that for a high memorisation response our al-
gorithm also calculated a high PMI. Returning to Mondschein et al.’s theory,
we see in Figure 56 on the right that areas with low memorisation responses
show less walking and cycling and more motorised transport modes.

6.5.2.3 Conclusion

Informed by the theoretical perspective of mental maps, a data-driven and
quantitative perspective on deducing further user-specific inference from the
spatio-temporal data was presented in this section. The complexities of men-
tal maps are acknowledged and the resulting algorithm therefore does not
try to answer the question of how to visualise mental maps in general. Thus,
the scope was limited to subjective experiences of the urban space on the
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Figure 56: The x-axis represents the memorisation response from participants. On
the left and in the middle, the y-axis represents the algorithmically-
calculated potential memorisation index. The figure on the left shows the
raw data points with averages (red) and the figure in the middle shows an
analogous box-plot with medians (red). The graph on the right visualises
the percentage for modes of transport for each memorisation response
value. Green: walking, purple: cycling, and blue: motorised transport.

basis of movement through the city. Inspired by the works of Mondschein et
al. the presented algorithm creates a PMI that is based on mode of transport.
The algorithm showed promising results in the preliminary user study and
therefore serves as a good example for complex insights generated from the
user’s underlying spatio-temporal data.

6.5.3 Areal Conclusion

This last section of the computational model focused on the second require-
ment from chapter 2, the deducing of inference from the users spatio-temporal
data, especially insights that go beyond time and space. The first approach
gave insights into temporal-semantic usage patters inside the cluster-areas.
The second approach allowed the system to calculate a potential memorisa-
tion index for any given point in space. Those two techniques only serve as
examples to highlight the potential of such client-side inference techniques.

6.6  MODELLING CONCLUSION

Chapter 6 focused on the user modelling as laid out by the requirement
definitions in chapter 2. The process was guided by the conceptual model
from chapter 3. The input data from the user’s phone was transformed
into vertices (locations) and edges (trips). These were used to build the
network of the user’s spatio-temporal behaviour. A novel combination of
techniques for classifying and predicting the user’s behaviour were presen-
ted, discussed, and evaluated. Even though the inaccuracy and imbalanced
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nature of the data presented a challenge throughout the applied techniques,
the results from the evaluations are good. This proves the case that such
spatio-temporal intelligence can be built on the client-side, only using the
user’s data without the need for aggregated multi-user approaches. Due to
the imbalanced nature of the dataset, the biggest issue discovered through-
out the exploration and development of approaches was the correct classific-
ation of minor-classes. Chapter 7 draws together the developed techniques
in order to highlight how everything could be combined in a real-world use
case. To this end, the last requirement of sharing the developed user model
with a remote service will also be discussed.
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The overall focus of the thesis was put on the computational model for client-
side modelling of a user’s spatio-temporal behaviour, presented in chapter 6.
This chapter will take a step back again and briefly highlight how this model
could be incorporated into a real-world application. This endeavor builds
upon the technology stack that was introduced in chapter 2 (see figure 57).

7.1 EVENT-BASED RECOMMENDATION

The previous chapter outlined models and techniques for classifying and
predicting the user’s behaviour. In the context of the application domain,
those insights need to be turned into assistance or recommendations. A
common developing paradigm in object-oriented programming are so-called
events. In this example, events serve as the middlemen between client and
server side. Events can connect two processes with one another and syn-
chronously send information. To apply this to the use case in question, the
external recommendation service registers to the client-side user model (ex-
amples are provided in list 3).?5. If such an event is triggered and a recom-
mendation is required, a connection to the remote service needs to be estab-
lished. At this point, it is important to point out, that, if a user wants to make
use of a modern data-driven service, some user-data needs to be exchanged
at some point. Otherwise collaborative filtering and other IR techniques will
not deliver sufficient results. Therefore, the next section will introduce sev-
eral approaches on how the client-side model can be shared with a remote
service without revealing all of the user’s sensitive raw information.

As previously mentioned, the exact technological development of an application making use
of the client-side modelling approach is not the focus of this work. Therefore, the event-based
process is only briefly introduced to explain a possible connection between client-side and
server-side processes.
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Figure 57: Technology Stack, the foundation of the conceptual Framework. In red
the central components to be explored and developed in this thesis.

Listing 3: Example event registrations

let user_mode = UserModel()

user_model.on(
{
type: ‘destination_prediction’

}I
function(user_object, destination, probability){}

user_model.on(
{
type:’destination_prediction’,
filter:{
key: "type’,
value: ‘'work’
}
+

function(user_object, destination, probability){}

user_model.on(
{
type: ‘'new_location_classification’,
filter:{
key: "type’,
value: 'home’
}
I

function(user_object, location, probability){}
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7.2 GENERALISATION & DATE EXCHANGE

Following the concept of data-austerity and data-avoidance, the goal is to share
only the data that is truly required in order to perform a certain task. In the
conceptual model, the principle of generalisation was introduced to build
such a data sharing strategy. The following sections present two distinct
conceptual examples for how such a process could be designed: Generalisa-
tion and Ensemble training.

7.2.1  Generalisation of Data for improved Privacy

Generalisation is always guided by certain (communication) goals. Similar
to cartographic generalisation, the communication goal of the sharing pro-
cess guides the selection and abstraction of the data. The proposed process
uses GIS” concept of hierarchies for generalisation. “When going from the
bottom up [of such a hierarchy] one encounters an increasing level of gener-
alisation, i.e. the object description becomes less specific with each step up
in the hierarchy”(Molenaar, 1998, p. 137). In order to achieve those levels of
generalisation, Molenaar describes four operations:

“1) The selection of objects to be represented at the reduced scale. This selection

will be based on the attribute data of the objects. 2) The elimination from the

database of objects that should not be represented. 3) The aggregation of [...]

objects that should not be represented individually. 4) The reclassification of
the generalised objects.”

(Molenaar, 1998, p. 167)

While the application to spatial (geometric) information is well known,
this can also be applied to semantic information. The following examples
will refer back to the initial application domain of LR in LBAs, as a goal for
the exchanged data.

Spatial Network

Generalising trajectories, is a task that can, for example, be achieved
through simplification algorithms. Generalising a spatial network is
more complex. Traditional network generalisation approaches, do not
account for the spatiality of the network. The clustering, which is
already built into the approaches presented in the previous chapter,
therefore presents an alternative. In this case, the specific start and
end locations are hidden and only the connections between clusters
are presented (see figure 58). By only sharing clusters and cluster con-
nections, a remote service could still use the data to find common
clusters and predict general patterns of trips between those clusters.
In addition, this would require the submission of temporal informa-
tion inherent to those trips (see next example). In a use case, where the
goal is a route calculation, such a level of abstraction would obviously
not be sufficient.
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Figure 58: Example for the generalisation of the spatial trajectory network.
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Figure 59: Example for the generalisation of temporal attributes.

Temporal Information

The generalisation of temporal information, even more so than the pre-
vious spatial networks, relates to the hierarchical generalisation of data.
Taken a set of timestamps of visits in a certain location, a remote ser-
vice wants to detect temporal patterns in the data of visitors. In this
example, the exact time stamps represent the raw information with
the highest level of detail. As in the techniques applied in chapter 6,
the exact time can be generalised into 10-minute intervals, thereby in-
troducing a first level of generalisation. Next, the exact date can be
generalised into the day of the week and month. The day of the week
can be used to identify patterns between workdays and weekends and
the month can be used to identify seasonal changes. This can then be
further generalised by getting rid of the day of the week and month,
just leaving the 144 time slots of a 24 hour days. Each layer loses in-
formation while it increases the anonymisation and, as a result, the
privacy of the user (see figure 59).
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Figure 60: Example for the generalisation of semantic attributes.

Semantic Information Similar to the temporal information, the semantic
information can be transformed into a hierarchical systematic. The
location types, for example, are traditionally already organised into
hierarchies. From top-level categories, like ‘restaurant” in general, to
a second level like Asian restaurant to a very specific classification like
Vietnamese restaurant (see figure 60). Molenaar also uses an example in
which he connects spatial generalisation to semantic descriptions: field
> farm yard > farm > farm district (Molenaar, 1998), which is similar
to how locations are generalised into neighbourhoods in this thesis.

Seeing the three examples above, it should be clear that every level of
abstraction and generalisation reduces the level of detail and, therefore, also
the level of detail for any inference built on top.

7.2.2  Sharing trained Machine Learning Models

At several instances throughout the computational model, ANNs are being
trained and used for classification and prediction. One reason that led the
decision to use ANNs is their ability to be shared and recombined. A trained
ANN can be stored in a relatively small data format, compared to the train-
ing data that went into the training of that model. Those model states can
then be shared without including the original training data. If a third party
collected such states, they could use so-called ensemble training or ensemble
machines®® to combine a set of ANNs and create a global generalised ANN. A
variety of techniques exists for combining those ensembles, one of the less
complex techniques is ensemble averaging (see e.g. Naftaly et al., 1997; Zhou
et al., 2002; Krogh and Vedelsby, 1994, an introductory overview of the topic
is provided by Haykin, 1998). Most of the publications did not have this
intended use case in mind but rather use the approach for creating better
predictions, for example by overfitting individual models in the ensemble
(Peter Sollich, 1996).

The resulting generalised ANN could also be used as a starting point for
users who need to start from scratch with an untrained network, similar

The technique of ensembles is sometimes also referred to as committee machines. As in a
committee of different experts that help solve a problem (Haykin, 1998, chapter 7).
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to how the time-use survey was used for the location type classification in
chapter 6.

From models to systems

The conceptual data exchange approaches briefly outlined above connect the
developed client-side user modelling approach to a larger context of applic-
ations and scenarios. In so doing it puts a specific emphasis on the privacy-
preserving focus of this work. To further extend the pros and cons of the
developed approach, the last chapter will close this thesis with a discussion
of limitations and opportunities.
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This final chapter discusses upsides and downsides of the developed ap-
proach, starting with an expert evaluation. This is followed by an elabora-
tion on possible future applications of the developed method. The chapter is
completed by an overview of current developments in the field of client-side
modelling and machine learning. The last section distils the most important
insights of this thesis and lays out future works.

8.1 EXPERT EVALUATION

Each component of the computational model in chapter 6 has been tech-
nologically evaluated using the sample datasets. Beyond this technological
evaluation, the work was presented to three experts from the domain of
spatial analytics. Two of the experts work for companies that specialise in
the analysis and visualisation of spatial data and one expert works for a
research centre in the department of mobility analytics. Each interviewee
was given a presentation of the system, followed by an open interview that
centred around the three focus points outlined in the first chapter: Client-
Side, User-Modelling, and Data Exchange. All interviewees stated that the
developed techniques presented an interesting new approach with many
possible applications, not only in regards to privacy but also in areas includ-
ing urban planning and especially in the domain of distributed computing.
As noted by one interviewee, a combination of the suggested client-side
approach - that comes into effect especially in situations in which network
access is weak - with a more powerful server-side approach, could present a
promising use case. Besides the classification and prediction algorithms, the
method for potential memorisation as an example for inference techniques
was of particular interest for the interviewees. Even though the focus was
put on the modelling and the theoretical and computational process, many
questions went beyond the academic scope and took up real-world use cases
and implementational questions. Throughout the interviews, a couple of
questions or critical remarks were repeatedly raised, which will be briefly
discussed in an aggregated manner in the following paragraphs.

Is the approach feasible in regards to processing limitations on mobile handsets?

The client-side modelling envisioned in this thesis is meant to be implemen-
ted on a smartphone. All technical frameworks used in the computational
model were picked to be compatible with the inherent requirements of those
mobile handheld devices. While the processing performance strongly de-
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Figure 61: Removing the sensitive start- and end-segments of the trajectory.

pends on various environmental and data-specific requirements, the data-
footprint was for all Moves test-subjects around 10 MegaBytes large. This
includes the input trajectories, as well as clusters and corridors. To put this
number into perspective, most of the mainstream smartphones from the last
two years are backed by 32 or more gigabytes of storage. Accordingly, the
approach stays well within the processing limitations of mobile handsets.

Could anonymisation be used alternatively?

In existing server-side implementations one of the standard solutions for en-
suring a user’s privacy is anonymisation. A problem with this approach is,
however, that a large field of research is also investigating methods of de-
anonymisation. Gambs et al., for example, showed that in a dataset similar
to the one used in this thesis 45% of users could be correctly identified, al-
though their data had been previously anonymised (Gambs et al., 2014). The
problem lies within the distinct spatio-temporal patterns of every individual
in the dataset. Consequently, anonymisation was not taken into account as
a viable privacy technique that could be useful to the framework of this
thesis. An interesting suggestion by one of the interviewees in regards to an-
onymisation was the removal of sensitive information from the trajectories,
more particularly the start- and end-segments that could lead to the exact
start- and end-location of the user. This could be achieved by starting the
trajectories at the outskirts of the clusters, instead of at the exact start- and
end-locations (see figure 61).

What influence does the progressive training of algorithms (more data over time)
have on the presented approach?

Each module of the computational model presented in chapter 6 was evalu-
ated on several real-world datasets. In those tests, the analysis and training
of the data was conducted in batches. This means that after removing test-
cases from the overall dataset, the remaining training data was used to train
or build the prediction model. In a realistic setting, this would obviously
not be the case. Every day that the user operates the application, more train-
ing data is generated, which needs to be used to update and further train
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the models. While this has not been discussed in the previous chapters, the
methods and techniques chosen to create the models all allow for this to be
implemented. In the domain of machine learning, such concepts are sub-
sumed under the term online machine learning (see Fontenla-Romero et al.,
2013 for an introduction). Those techniques allow for the continuous and
thereby progressive training of machine learning algorithms, like the ANNs
used in this work. The processing techniques applied to the spatial input
data were already done in a progressive manner. While this progressive
approach makes it in part slow for a large batch of data, new data is incor-
porated very quickly. As an example, the process for incorporating a new
trajectory into a one-year dataset takes less than a second - which includes
cleaning and inserting the data, calculating the intersections for corridors,
and reclustering the network.

How does Big Data vs. Personal Big Data and Server- vs. Client-Side compare?

The downsides identified in this thesis, notably the difficulty in identifying
minor classes in the unbalanced data, were also brought up by the inter-
viewees. In this case, a Big Data approach holds the potential of having lar-
ger amounts of data at hand, aggregated from several individuals. Nonethe-
less, this stands against the advantages of distribution and privacy, which
are the main motivations for this thesis. Another downside raised by one of
the interviewees is the capability to exactly identify specific transport types.
While this thesis relied on the transport types delivered through the smart-
phone’s API, server-side approaches that integrate street network data for
instance, can yield more detailed results. Depending on the use case, this
would make a server-side solution more powerful. Especially in regards to
business use cases, the sustainability of server-side solutions holds benefits
for companies in terms of their ability to secure the longevity of data-driven
services, as discussed in chapter 2. A particular downside of the client-side
approach is the first training phase initiated by the user, where no exist-
ing data is available for training the model. While this thesis presented an
approach for using a generalised model for the location identification, sim-
ilar approaches would be required for the other classification and prediction
methods. A minor remark came up in regards to cross-device scenarios, in
which case a server-side approach would be a lot easier to implement.

Remarks on: Services Need Data

This last remark, regarding the service’s need for data, was not mentioned
in the interviews, but came up in discussion with more business focused
experts. It dealt with the question of: How much data does a remote service
need to rise to its full potential? The question is difficult to answer, as it de-
pends on the specific service. The experts agreed that a certain process of
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modelling and abstraction is conducted on the server-side service anyway
and it could, therefore, be viable to move this part to the client-side. On the
downside, if it is decided to later on that the model needs to be changed and
additional data needs to be acquired, this would then be a problem for the
client-side models. Furthermore, collaborative filtering, which is normally
based on having aggregated raw user data at hand, would need some re-
thinking. The focus of this work remained on the user modelling. Therefore,
future research would require a focus on the data exchange and on tests that
compared traditional approaches to the novel approach presented in this
thesis.

8.2 ENVISIONING FUTURE APPLICATIONS

“The future cannot be predicted, but futures can be invented.”

Gabor, 1963, p. 207%7.

Before the discussion closes with final concluding remarks, this section
will take a step back from the scientific and technology-driven course of this
dissertation and shift towards envisioning further scenarios of applications
for the developed approach. The first chapter highlighted that - beyond the
technological and methodological development in this thesis - one goal is
to foster and support the discourse on data privacy. As discussed in the
first chapter, there are tendencies to loosen the regulations on protecting
citizens” data privacy in favour of data-driven innovation by the digital eco-
nomy. With the conceptual and technological developments in this thesis,
an alternative approach for such innovative technologies is laid out and dis-
cussed that still enables innovative technologies. To deepen this discussion,
the following examples will partially go beyond today’s status quo and illus-
trates the way services are developed and implemented. By envisioning such
future implementations of the thesis” approach, the examples try to further
question the status quo and illustrate alternatives. The concepts of selective
cloud computing, client-side user modelling, and generalised data exchange form
the basis of all examples.

Shopping:
Recommendations in digital shopping experiences are a common ex-
ample for personalised user-experiences. The proposed client-side
modelling could easily observe the shopping behaviour of a user across
shopping sites and build a user-specific interest model. This model
could then be shared with shops in return for discounts or other ser-
vices. This would not only allow the user to regain control over their

27 The quote or variations of the quote often appeared in computer science related literature.
Alan Kay is most associated with the quote, but Gabor was the first in line to say it according
to Investigator, 2017
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data but would furthermore allow shopping sites to get a broader per-
spective by being able to access the user’s complete shopping beha-
viour model across all shopping sites, instead of one that is limited to
their own platform.

News reading:

Recommendations in the context of online news has lately received
some negative publicity through the discussion concerning filter bubbles®.
While not completely removing the problem of filter bubbles, the own-
ership over the client-side behaviour model would make users inde-
pendent from aggregation systems like Facebook. Users could thus
take their model and visit news outlets directly and filter the content
based on their interests.

Routing:
Exact routing was not part of the exemplary methods developed in this
thesis, but it could easily be built on top of the methods discussed in
this work. By incorporating the user-specific model, the system could
for example predict previously used routes to a destination. Even more
interestingly, a system could implement Hégerstrand’s personal con-
straints within the calculation. Instead of computing a generalised
duration for a bike trip, the algorithm could take the user’s personal
constraints into account and in so doing refine the predictions.

The public discourse on privacy indicates that there is a growing interest
in personal information privacy and data protection. A study funded by
the EU in 2012 even highlighted that there is an economic potential for com-
panies to implement privacy-preserving functions (Jentsch et al., 2012). On
the other hand, several studies and publications discuss what is known as
the privacy paradox (Norberg and Horne, 2007; Kehr et al., 2014; Brown and
Muchira, 2004). The paradox details the phenomena that people describe
themselves as being “privacy concerned” while their actual behaviour indic-
ates otherwise. In his overview paper Preibusch described that finding sig-
nificant insights about the influence of privacy concerns on users’ behaviour
is complex, as it involves interdependencies between concerns and other
needs:

“users can appropriate returns from disclosing personal data, such as better
prospects of finding a job or a romantic relationship [...] [to] returns in the
form of better product recommendations. [..] In both cases, users’ benefits
may well outweigh their privacy concerns.”

Preibusch, 2013, p. 5
In this context, the system discussed in this thesis offers a potential al-

ternative, which does not force users to change their behaviour, but instead
changes the underlying infrastructure.

28 The term filter bubble describes the effect of intense personalisation, which can facilitate a
news feed that only represents the user’s own world views and ideologies.
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In the final months of this dissertation, several technological developments
emerged that align with the proposed framework in this thesis. The fol-
lowing paragraphs will shortly describe three examples and discuss them
in the context of this thesis. The mobile development plugin by the com-
pany Set was already introduced in the technology section of chapter 2 (Set,
2017). Set was publicly announced in early 2017 and left private beta in
early April. Its capabilities now include location detection and behaviour
(trip destination) predictions. While their implementation looks very prom-
ising, the framework so far offers no approach towards sharing the user’s
data. As highlighted in the generalisation section of chapter 7, in order to
provide recommendations or other data-driven services, data needs to be
shared in some form. The second example is closer to delivering a solution
for exactly that. In early April 2017, Google announced their upcoming tech-
nique Federated Learning (McMahan and Ramage, 2017). While their Tensor-
Flow framework already allows for ensemble learning, federated learning
takes this approach to the next level. The concept behind federated learning
is to start with a global model that is installed on the user’s device. The
user then customises this model through their own data and thereby trains
and creates their own model. This user-specific model resides on the user’s
device. If a good internet connection is available, the user-specific model is
sent to the server, where it is recombined with other users’ models into a
new global model. Thereby, the user’s training data is not shared with the
remote service, instead only the abstracted model is shared. This is similar
to the advantages outlined in this thesis. Google emphasises, that this is not
only of interest in regards to privacy. It is also relevant in terms of saving
data transmission costs, as the phone does not need to send continuous up-
dates but only incremental changes of the abstracted model. This approach
is very close to the framework outlined in this thesis. The new technique
by Google should be made public in the next few months and is already
implemented in the latest version of Google’s smart keyboard (word predic-
tion). Apple’s approach to privacy-preserving data collection is Differential
Privacy (DP). The technique of DP gained some attention lately as Apple is
integrating it into their data aggregation infrastructure. The fundamental
concept behind DP is adding noise to the collected data. In principle, the
technique adds so much noise that general patters remain intact, while it is
not possible to identify individual events or items. A recent news announce-
ment by Bloomberg Technology (Gurman, 2017) reported that Apple is working
on a mobile chip specifically designed for artificial intelligence, or rather ma-
chine learning. Apple was one of the earliest companies to introduce a smart
assistant on their devices: Siri. This development of custom chip designs
that are optimised for machine learning is not new. In mid-2016, Google an-
nounced their new chip designs (Jouppi, 2016), which are optimised for their
TensorFlow platform. In contrast to Apple’s technology, the so-called TPUs are
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developed for Google’s cloud-based services and are, as of May 2017, already
available in their second generation (Dean and Holzle, 2017). Apple’s move
to optimise client-side machine learning through custom processors falls in
line with other chip-manufacturers, for example, ARM (Windeck, 2017).

The developments outlined above show that this thesis is set in a techno-
logical domain which is in a state of flux. The trend of machine learning,
especially with ANNs, is merging with the concept of distributed computing,
as discussed in this thesis through the concept of selective cloud computing.
While it feels like this trend is mainly driven by an economic interest in the
optimisation of behavioural modelling (e.g. through distributed computing),
an increase in more data privacy might be the by-product of this develop-
ment - a development which needs to be assessed carefully while it unfolds.

8.4 DISCUSSION

This thesis set out to explore the potentials of client-side user modelling of
spatio-temporal behaviour. As a proof of concept, a client-side modelling
process for location- and context-based applications was developed. This de-
velopment process was grounded on the requirements outlined in chapter
2. As a conceptual framework, the principles of network theory were com-
bined with time-geography, that later defined the spatio-temporal network
constraints in chapter 3. Those constraints were transferred into a computa-
tional model, which was tested and evaluated in chapter 6. This process was
accompanied by a critical perspective on technology in chapter 5, highlight-
ing the potentials and limitations of the presented approaches.

Scientific Contribution

This thesis explored the concept of selective cloud computing in order to achieve
a stronger privacy-centred user-modelling approach. As a proof of the
concept, a client-side user-modelling approach for spatio-temporal beha-
viour was developed and evaluated. The modelling was achieved by com-
bining methods and techniques from the domain of machine learning and
spatial data analysis. For this particular data type, the combination of the
two fields within the limitations of a smartphone device, is a novel develop-
ment based on all indications. Even the plugin by Set (discussed in chapter
2) which is neither published open source nor academically documented,
does not go as far as the approaches in this thesis. Two specific challenges
in this development were posed by the size of the datasets: the imbalance
within datasets, and the spatial error thresholds in the input trajectories. Due
to those restrictions, many traditional methods for trajectory analysis could
not be used, like the hidden markov model, map matching, or common seg-
ment analysis. An additional restriction was the implementational focus on
mobile devices, which emphasised feasibility in regards to performance and
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resource usage. In this specific setting, the presented conceptual and com-
putational model revealed a novel approach with promising performance,
as presented in the previous chapters. It thereby extends the discourse on
spatial data processing through ANN and in conclusion illustrates the inher-
ent potentials for applied use cases and scenarios. Beyond client-side user
modelling, the presented approach could also be of interest for many other
research fields that deal with the modelling of spatio-temporal behaviour
and the limitation of sparse datasets. Those research fields span from trans-
port research to human geography. Due to the small datasets required for
the approach, the novel technique could also be helpful to prototyping and
testing environments.

The exemplary proof of concept presents a feasible approach for a privacy-
centred modelling while also taking into account recent discourses in adja-
cent fields. In this context, most discussions on privacy highlight the prob-
lems and try to force regulations onto businesses. As opposed to this, the
approach developed within this thesis shows an alternative, which could
change the underlying infrastructure instead of forcing business or users to
change their behaviour.

Limitations

As mentioned in chapter 6 and the expert feedback above, there are also
some downsides to the presented approach. For one, there is the limitation
to only include data by one user, which limits predictions or the identifica-
tion of classification patterns to those that have previously been exposed by
the user and thus are represented in the data. Secondly, there is the prob-
lem of minor classes within the behaviour modelling. Those two limitations
introduce an accuracy trade-off in favour of the client-side modelling. This
contradiction has been noted by researchers who considered privacy in their
discussion. Berkovsky et al., for example, point out that “the goals of the
privacy-preserving mechanisms contradict the goals of the personalization
systems, leading to privacy versus accuracy trade-oft”(Berkovsky et al., 2009,
p 16f). They continue by suggesting that “[o]ne possible compromise may
be that the user will have a comprehensive representation of his/her model
and allow parts of it to be provided anonymously to the service provider,
if requested”(Berkovsky et al., 2009, p 17), which aligns with the concept
presented in this thesis. Therefore, the best results will likely be achieved
by combining server- and client-side approaches. This can be achieved for
example through generalised global models and user-specific local models.

This thesis put the focus on modelling and did not elaborate on the chal-
lenge of abstracting or rather generalising and then sharing the data in the
same depth. As will be highlighted in the future works section, this particu-
lar strand of research still requires attention.

Implementational limitations of the approach include problems in cross-
device syncing, as the client-side user model resides on a specific device.
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This and other implementational downsides are briefly discussed in chapter
2. They simply present obstacles for implementing the proposed model, but
not for the modelling itself. As a result, they will not be further discussed.

Future Work

The work presented in this thesis explores an approach to privacy-preserving
selective cloud computing for the domain of LR in LBSs. This work lays out
frameworks and foundations for further explorations into privacy-focused
mobile applications. While this work showed first examples, there are sev-
eral things to further investigate. Three perspectives are believed to be es-
pecially fruitful for further discoveries: additional contextual information,
increased privacy, and interfaces to the model.

Additional contextual information:

The models discussed in this thesis were primarily built on a user’s
spatio-temporal behaviour, extended through activity classifications
and user feedback. As described in chapter 2, an important feature
of modern LBAs is their location- and context-awareness. While the
former is modelled and represented, additional context-features are
not taken into account (due to the extent of this thesis). In a next step,
the models need to be extended to include more contextual informa-
tion, that could be acquired in reference to the space and time paramet-
ers. A first example for such an extension is weather data (Liu, 2014).
To demonstrate a use case: The models developed in chapter 6 describe
trips between locations as well as the machine learning predictions.
They are used to estimate the highest probability for a possible destin-
ation when the user starts a trip. This model could be extended to also
include weather data in the calculations. As a result, the trajectories
would be extended through weather data (e.g. temperature, precipit-
ation, and wind), which would allow the machine learning algorithm
to include those parameters as additional input. Hypothetically, this
would enable the prediction that the chances of the user taking pub-
lic transport or bike on a sunny day might be 50-50. On a rainy day,
on the other hand, this enhanced model would likely calculate a low
probability for the user to choose the bicycle.

Long-term observations:

The data used to validate the approaches developed in this thesis
covered one year of usage. This timespan is not long enough to dis-
cover changes in the user’s spatio-temporal behaviour patterns. Such
a discovery would require data collected over longer timespans. With
long-term data at hand, one could furthermore extend the modelling
approaches to systematically identify changes in the user’s behaviour,
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for example by employing long-term and short-term models, which
compare prediction results.

Increased privacy:

In chapter 7 the data exchange between client and server was mostly
discussed on a conceptual level. In a next phase, this needs to be
transferred into a more concrete computational model and put to a
test. In addition, contemporary techniques for anonymisation should
be explored in order to access their potential for the data exchange.
The technique of DP, for example, as discussed in the previous section,
could offer such a service. Applied to the approach presented in this
thesis, this could mean adding certain trajectories or locations to the
dataset that create enough noise that the exact home address of the
user cannot be retrieved from the data while the home region can still
be identified.

Interfaces to the model

While it is unlikely that the client-side model will reach the precision of
a big data server-side solution, there might be other ways of overcom-
ing the inherent problems of the client-side modelling. Data-driven
interfaces for instance, which include the user in the decision-making
process, could do just that. For example, the problem of minor classes
in the prediction of destinations and events could be overcome by in-
cluding not only the prediction with the highest probability but also
lower ranked results (see figure 62). In this way, the lack of accuracy
might be overcome by including the user in the decision-making.

Critical Reflection

Beyond the focus on the technical innovations, this work also sought to take
a humanistic perspective to the user modelling process. This thesis intro-
duces individual and user-specific approaches that go beyond generalised
aggregates and thereby conceptually allow more diversity in the modelling
process. This puts emphasis on the user’s individual perspective on spatio-
temporal behaviour. In a next step, this could be extended to reflective prac-
tices, allowing users to visually analyse their behaviour (see for example
Otten et al., 2015; Meier and Glinka, 2017; Thudt et al., 2013) or even build
their own context- and location-based intelligence.

Personal Reflection?

The field of machine learning is a vibrant field of research. Many discip-
lines that need help in analysing and classifying data or more advanced
machine intelligence have an interest in the upcoming sets of developments.
While there is a broad conceptual discussion on machine learning in many
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It looks like you

: Primary location (type) prediction: Home
are heading home. Y (type) p

N\ Are you interested in going S d location t diction: Rest t
out for dinner tonight? econdary location type prediction: Restaurants
If you need to do some

@ shopping, a new organic Tertiary location type prediction: shopping

market opened last week.

Figure 62: Overcome the problem of minor class predictions through an interface
solution. In this scenario the location home received the highest prob-
ability, but for the same spatial area and the same time threshold other
locations might be viable destinations as well. Brain graphic by Sergey
Patutin, Knife by Mello, Groceries by Chiara Galli, all from the Noun
Project.
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academic communities, there is still a lack in reproducible implementations
and their technical documentation. The WEKA tool and Convnet.js are two
of the few examples where researchers turned their research into publicly
available technology. This is a problem that goes beyond the field of ma-
chine learning and is, in my opinion, a fundamental flaw in the academic
gratification system. While some publications present novel and innovative
approaches to spatial data analysis, it is merely impossible to implement and
validate those approaches without spending a lot of time rebuilding them.
The reproduction and reimplementation of other researchers” work was one
of the biggest challenges in developing this thesis. In hope of making a dif-
ference, all experiments conducted in this thesis and their code foundation
are published under an open source license.
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APPENDIX

MOVES SAMPLE GEOJSON

"type" "FeatureCollection",
"features" : [ {
"type" "Feature",
"geometry" : {
"type" "Point",
"coordinates" [ 13.43459, 52.48248 ]
H
"properties" : {
"type" "place",
"startTime" "20131231T010128+0100",
"endTime" "20140101T013834+0100",
"place" : {
"id" : 96792719,
"name" "Home",
"type" "user",
"location" : {
"lat" : 52.48248,
"lon" 13.43459
}
+
"activities" : [ {
"activity" "walking",
“group" "walking",
"manual" : false,
"startTime" "20140101T001222+0100",
"endTime" "20140101T001252+06100",
"duration" : 30.0,
"distance" : 35.0,
"steps" : 71,
"calories" : 2
1
"lastUpdate" "20140408T121729Z2",
"date" "20140101"

"type" "Feature",
"geometry" : {
"type" "MultiLineString",
"coordinates"

P P I
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+
"properties" : {
"type" : "move",
"startTime" : "20140103T155125+0100",
"endTime" : "20140103T164701+0100",
"activities" : [ {
"activity" : "transport",
“group" : "transport",
"manual" : false,
"startTime" : "20140103T155125+0100",
"endTime" : "20140103T160805+0100",
"duration" : 1000.0,
"distance" : 3616.0
oA
"activity" : "walking",
"group" : "walking",
"manual" : false,
"startTime" : "20140103T160805+0100",
"endTime" : "20140103T163219+0100",
"duration" : 1454.0,
"distance" : 2398.0,
"steps" : 2107,
"calories" : 153
oA
"activity" : "transport",
"group" : "transport",
"manual" : false,
"startTime" : "20140103T163218+0100",
"endTime" : "20140103T163548+0100",
"duration" : 210.0,
"distance" : 1573.0
oA
"activity" : "walking",
"group" : "walking",
"manual" : false,
"startTime" : "20140103T163548+0100",
"endTime" : "20140103T164701+0100",
"duration" : 673.0,
"distance" : 890.0,
"steps" : 1060,
"calories" : 57
1
"lastUpdate" : "20140103T194321Z",
"date" : "20140103"
b
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GEOLIFE SAMPLE DATASET

Example PLT file

Geolife trajectory

WGS 84

Altitude is in Feet

Reserved 3

0,2,255,My Track,0,0,2,8421376

0
39.921712,116.472343,0,13,39298.1462037037,2007-08-04,03:30:32
39.921705,116.472343,0,13,39298.1462152778,2007-08-04,03:30:33
39.921695,116.472345,0,13,39298.1462268519,2007-08-04,03:30:34
39.921683,116.472342,0,13,39298.1462384259,2007-08-04,03:30:35
39.921672,116.472342,0,13,39298.14625,2007-08-04,03:30:36

Example Labels Text-File

Start Time End Time Transportation Mode
2007/06/26 11:32:29 2007/06/26 11:40:29 bus
2008/03/28 14:52:54 2008/03/28 15:59:59 train
2008/03/28 16:00:00 2008/03/28 22:02:00 train

LOCATION LABELS FROM THE TIME USE SURVEY

Listing 4: Full list of labels in the UK time use survey for locations and their reas-
signed location label o dropped

Value = 0.0 nlLabel

0 Label = Unspecified location

Value = 10.0 nLabel = 0 Label = Unspecified location (not travelling)

Value = 11.0 nLabel = Home Label = Home

Value = 12.0 nLabel = Home Label = Second home or weekend house

Value = 13.0 nLabel = Work Label = Working place or school

Value = 14.0 nLabel = OtherHome Label = Other peoples home

Value = 15.0 nLabel = Food Label = Restaurant cafe or pub

Value = 16.0 nLabel = Leisure Label = Sports facility

Value = 17.0 nLabel = Leisure Label = Arts or cultural centre

Value = 18.0 nLabel = Leisure Label = Parks countryside seaside beach or
coast

Value = 19.0 nLabel = Shopping Label = Shopping centres markets other
shops

Value = 20.0 nLabel = 0 Label = Hotel guesthouse camping site

Value 21.0 nLabel = 0 Label
)

Value = 30.0 nLabel = Transport Label = Unspecified private transport
mode

Other specified location (not travelling




Value = 31.0 nLabel = Transport Label

Value = 32.0 nLabel = Transport Label

Value = 33.0 nLabel = Transport Label
or motorboat

Value = 34.0 nLabel = Transport Label
the driver

Value = 35.0 nLabel = Transport Label

passenger

Value = 36.0 nLabel = Transport Label
driver status unspecified

Value = 37.0 nLabel = Transport Label

Value = 38.0 nLabel = Transport Label

Value = 39.0 nLabel = Transport Label
travelling mode

Value = 40.0 nLabel = Transport Label
mode

Value = 41.0 nLabel = Transport Label

Value = 42.0 nLabel = Transport Label

Value = 43.0 nLabel = Transport Label
underground

Value = 44.0 nLabel = Transport Label

Value = 45.0 nLabel = Transport Label

Value = 46.0 nLabel = Transport Label

Value = 47.0 nLabel = Transport Label

Value = 48.0 nLabel = Transit Label =

Value = 49.0 nLabel = 0 Label =

Value = 90.0 nLabel = 0 Label =

Value = 99.0 nLabel = 0 Label =

Value = -9.0 nLabel = 0 Label =

Value = -7.0 nLabel = 0 Label =

Value = -2.0 nLabel = 0 Label =

Travelling
Travelling
Travelling
Travelling
Travelling

Travelling

Travelling
Travelling

on
by
by
by
by

by

by
by

Bibliography

foot

bicycle

moped motorcycle
passenger car as
passenger car as a

passenger car -

lorry or tractor
van

Other specified private

Unspecified public transport

Travelling
Travelling
Travelling

Travelling
Travelling
Travelling
Travelling

by
by
by

by
by
by
by

taxi
bus
tram or

train
aeroplane
boat or ship
coach

Waiting for public transport

Other specified public transport mode
Unspecified transport mode

Illegible location or transport mode
No answer/refused

Interview not achieved

Schedule not applicable
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