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Abstract
Solving problems combining task and motion planning requires searching across a symbolic search space and a geometric
search space. Because of the semantic gap between symbolic and geometric representations, symbolic sequences of actions
are not guaranteed to be geometrically feasible. This compels us to search in the combined search space, in which frequent
backtracks between symbolic and geometric levels make the search inefficient. We address this problem by guiding symbolic
search with rich information extracted from the geometric level through culprit detection mechanisms.
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1. Introduction

Popular robotic platforms such as ASIMO have demon-
strated impressive skills for various types of tasks. These
platforms embody the most recent achievements from the
fields of computer vision, motion planning, automatic con-
trol, and actuation, which provide them with the capacity
to achieve a great deal of complex actions. However, these
impressive results rely for a large part on human interven-
tion for scripting the sequences of actions executed by the
robot. Setting aside the inherent issues of uncertainty in
perception and execution, we focus on the planning tech-
niques that could be used for replacing human scripting by
a fully automated process. Automated planning techniques
exist for computing symbolic plans containing hundreds
of actions, likewise efficient motion planning techniques
exist that could compute a motion path for each such
action. Unfortunately, combining both planning techniques
together is not straightforward. The main problem is that
symbolic planning works on idealized representations of the
real world, hence symbolic plans are not always geometri-
cally feasible at the outset. Consequently, finding a geomet-
rically feasible plan requires combining search both across
symbolic and geometric levels. This problem is referred to
as Combined Task and Motion Planning (CTAMP).

Searching in the combined search space is intractable in
most cases, because the cross product of both search spaces
is too large. Decoupling both search spaces is not workable
either, because in the case of geometrically intricate prob-
lems, the dependencies between geometric actions (which
are not captured by the symbolic level) lead to intensive

backtracking between symbolic and geometric levels. The
key idea for achieving intelligent search across both search
spaces is to leverage information from the geometric level
in order to guide search at the symbolic level (or vice versa).
This idea has been used by many authors, but not fully
exploited (see Section 2). In most cases, the information
fed back to the task planner relates to a motion path that
was unfeasible, or to an object that was occluding another
object. We argue that such simple feedback cannot effi-
ciently guide the task planner, because it provides a local
explanation of failure, i.e. an explanation that is only valid
for the particular sequence of actions that produced it.

If the task planner is fed back with local explanations
for geometric failures, it may repeatedly end up with plans
leading to similar failures. Consider for instance the prob-
lem illustrated in Figure 1. The task is to create a pile
of blocks a-b-c-d, at any location. A geometric failure is
detected when the motion planner is called for the last
action place( d, c). If the task planner is only notified that
this action is unfeasible, it will backtrack to a previous
decision point in order to reach the goal through a differ-
ent sequence of actions. But without the explicit knowledge
that the cause of failure is rooted in the choice of p1 as the
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Fig. 1. Stacking the last block is not possible because of collisions
between the gripper and a fixed obstacle.

location for block a, there is no reason for directly back-
tracking to that particular decision point. Hence, it may try
out a large number of symbolic plans before finding one
which avoids this pitfall. This could be avoided if the actual
cause of failure was precisely identified. Our approach con-
sists of focusing the computational effort on finding min-
imal explanations for geometric failures, in order to pre-
cisely guide the task planner towards a feasible plan. This
idea is similar in principle to well-known search techniques
used in artificial intelligence (AI) such as dependency-
directed backtracking (Stallman and Sussman, 1977) or
conflict-driven back-jumping (Dechter and Frost, 2002).

In this paper, we describe the core component of our
approach, a geometric reasoner capable of computing min-
imal explanations for failures occurring in the process of
geometrically instantiating a symbolic sequence of actions.
These explanations are then used as logical constraints by a
task planner based on answer set programming (ASP) (Lif-
schitz, 2008). Computing minimal explanations essentially
boils down to a culprit detection problem, which is a diffi-
cult problem in general, since it reduces to the set covering
problem (Bylander et al., 1991). We propose two techniques
to address it. The first one is a polynomial-time algorithm
for culprit detection in a constraint network representing a
relaxed version of the geometric part of the CTAMP prob-
lem. The second one consists of constructing a graph of
the geometric dependencies between the actions of unfea-
sible symbolic plans, in order to extract subsequences of
actions which are separately evaluated as potential culprit
subsequences. Beyond these two techniques, the main con-
tribution of this paper is to propose a novel view on the
problem of combining task and motion planning, by point-
ing out a culprit detection problem at the interface between
the symbolic and geometric search spaces.

The rest of this paper is organized as follows. After
reviewing some related work in Section 2, we describe the
general principles of our approach in Section 3, which moti-
vate the choices made for the architecture of our system,
presented in Section 4. A brief introduction to planning with
Answer Set Programming is given in Section 5. Then, the
symbolic and geometric domains used for our experiments
are described in Sections 6 and 7. The core of the article
describes the culprit detection mechanisms in Sections 8, 9
and 10. Finally, we present the results of the experimental

evaluation of the proposed approach in Section 11 and end
up with some concluding remarks.

2. Related work

Different approaches to CTAMP have been devised, with
different schemes for integrating symbolic and geometric
reasoning. We review this work in the light of the topic of
this paper, i.e. how the information at one level is used in
order to guide the search at the other level. A number of
relevant related problems in motion planning and constraint
programming literature are also reviewed.

In some approaches, the geometric level steers the
search and gets guidance from the symbolic level. In Sam-
plSGD (Plaku and Hager, 2010) for instance, the system
mainly works on a motion planning problem, while a heuris-
tic task planner (FF, Hoffmann and Nebel (2001)) is repeat-
edly called in order to compute a utility value based on the
length of the symbolic plan that achieves the goal. ASyMov
(Cambon et al., 2009) uses a similar principle, but takes
into account both the symbolic distance to the goal and the
number of failures of the path planner (based on probabilis-
tic roadmaps (PRMs), Kavraki et al. (1996)) to determine
the heuristic values of the search nodes. These nodes repre-
sent hybrid symbolic/geometric states, and a plan is found
using A* search. In these type of approaches, symbolic
and geometric reasoning are tightly intertwined, i.e. each
visited geometric state triggers a call to the task planner.
This may be an issue for large problems, in which decou-
pling search spaces is necessary for reaching a solution.
Our approach addresses this difficulty by alternating pure
symbolic search and pure geometric search.

In a more common type of approach, the task planner
is steering the search, while a geometric reasoner is called
to geometrically evaluate the preconditions and compute
the geometric effects of actions. These approaches include
semantic attachments (Dornhege et al., 2009; Guitton and
Farges, 2009; Karlsson et al., 2012). HPN (Kaelbling and
Lozano-Pérez, 2011) differs by using a late commitment
approach, more suited for interleaving execution and plan
refinement. In all these approaches, the feedback from the
geometric level to the symbolic level consists in mere “suc-
cess” or “failure”, the latter resulting in a dead-end for the
task planner. This opens the door for repeatedly encoun-
tering similar geometric failures, as explained in the intro-
ductory example. By contrast, our approach prevents this
by analyzing the very cause of geometric failures, and pro-
vides a meaningful feedback to the task planner so that the
same failure cannot occur again.

The approach of Srivastava et al. (2014) allows a richer
feedback by means of logical predicates. They present a
general interface which takes care of the geometric details,
and assume optimistic default values for geometric precon-
ditions. If a geometric failure is detected, the symbolic state
is updated accordingly and re-planning is triggered. This
approach relies on the assumption that the actual cause of
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geometric failures lies in individual actions, and that the
plan can be repaired from the current state. Again, this
stands in contrast with our approach, which is based on the
observation that locally dealing with geometric failures may
cause them to re-occur over and over again.

Garrett et al. (2014) tightly connect geometric and sym-
bolic levels via a conditional reachability graph used for
computing the heuristic of the task planner. The heuris-
tic implicitly informs the symbolic level about occluding
objects that need to be moved and in which order they are
to be moved. This approach is somehow opposite to Asy-
mov (using FF as a heuristic guiding a PRM planner) since
it uses a PRM planner to compute a heuristic for FF. It
is not possible to pre-compute the conditional reachability
graph for all possible situations, therefore these computa-
tions are performed on-demand while the heuristic is com-
puted. The problem is then similar to Asymov: Each visited
symbolic state triggers geometric computations, thus both
search spaces are tightly intertwined. This may be problem-
atic for large problems that require decoupling of the search
spaces.

Lozano-Pérez and Kaelbling (2014) frame the CTAMP
problem as a discrete Constraint Satisfaction Problem
(CSP) (Rossi et al., 2006) for quickly assessing if a given
symbolic plan is geometrically feasible or not. A solution to
the CSP provides grasps and placements that do not inter-
fere with each other. The strength of their approach is to
account for path existence constraints in the CSP formula-
tion, by pre-computing a map representing the free-space.
This approach focuses on the geometric aspects of CTAMP,
assuming a symbolic plan given by an external task planner,
but it does not provide a mechanism for integrating geomet-
ric constraints in the symbolic search space, as we propose
in this paper.

In previous work (Bidot et al., 2015; Lagriffoul et al.,
2014), we combined a HTN (Hierarchical Task Network)
planner (Nau et al., 2004) for task planning with a bidi-
rectional RRT path planner (LaValle, 2006) for motion
planning, and used a linear constraint network for prun-
ing out kinematically inconsistent choices for grasps and
placements. The limitation of this approach is that HTN
(and more generally state-space planning) does not allow
us to exploit geometric constraints in a meaningful way at
the symbolic level. The reason for this is that geometric
constraints are fed back to the task planner through the pre-
conditions of symbolic operators. This restricts the expres-
siveness of constraints that can be fed back to the symbolic
level, since they inherently relate to single actions. In the
presented work, we address this limitation by replacing the
HTN planner by a logic programming approach, which is
allows us to leverage meaningful geometric constraints in
the task planning process (see Section 3.2).

A third type of approach consists of stating the
symbolic planning problem in terms of logic programming
(Gelfond and Lifschitz, 1998; Kautz and Selman, 1992; Lif-
schitz, 2002). The main difference with the previous type
of approaches (based on state-space planners) is the way

the symbolic space is traversed. With logic-based planning,
the task planner operates in a search space comparable to
the space of plans. Such a search space enables pruning out
families of plans regardless of the exact chronology of their
actions, unlike state-space planners which can only prune
out sub-trees rooted in the state currently visited. This fea-
ture is exploited in the approach presented in this paper: The
geometric failures detected in a small number of unfeasible
plans are used for pruning out entire families of plans con-
taining the same flaws, although their sequences of actions
may be very different.

In this vein, Choi and Amir (2009) use a sampling-based
motion graph to build an action theory, from which a plan
is computed. Only feasible actions are represented in the
graph, hence failures do not directly guide the search. How-
ever, the reachability of objects is associated to modes,
which implicitly represent the fact that some combinations
of actions prevent some objects from being reached. In
Luna et al. (2014), a Satisfiability Modulo Theories (SMT)
solver is used for plan synthesis. Like in the approach of
Choi and Amir (2009), the failures are not explicitly fed
back, but the feasibility of geometric paths with respect
to objects placements is connected with the logical level,
through a manipulation graph (computed offline) encoded
in the formula. Erdem et al. (2011) use the action lan-
guage C+ to encode the planning problem into a logic
program. The failures detected at the geometric level are
fed back in the form of logical constraints and a new plan is
computed. The feedback is limited to collisions or infea-
sibility of motion paths. A similar approach is taken by
Aker et al. (2012), but using ASP programs. A similar
scheme is used in our work, but the major difference in our
approach (besides using culprit detection mechanisms) is
the level of granularity used for symbolically representing
the world (see Section 6.6 for a comparison between both
approaches).

Toussaint (2015) addresses sequential manipulation plan-
ning problems of building stable piles of objects. His
approach stands out from the previously mentioned ones
in the sense that the symbolic level is not guided by geo-
metric failures, but rather by a heuristic value calculated
by optimizing different costs, computed for different lev-
els of refinement of the symbolic action sequence. At the
lowest level of refinement, the cost is given by optimizing
the stability of the resulting pile, and in further refinement,
kinematic constraints are taken into account for optimizing
motions. As mention by the author, this approach is valid
for problems where collisions are not of major concern (a
flying robotic arm is used), because collisions are consid-
ered only at a later stage. However, this may be inefficient
for more “classical” CTAMP scenarios, i.e. where collisions
are the main cause of reconsidering symbolic decisions.

Related problems

A number of techniques have been developed beyond basic
motion planning in order to cope with robotic problems.
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The limitations of motion planning arise when obstacles
need to be moved, or when task constraints impose dis-
crete steps on motion paths. A general approach to the
Manipulation Planning problem was proposed by Simeon
(2004), based on the composition of several Probabilistic
Roadmaps (PRMs). Stilman and Kuffner (2008) and Stil-
man et al. (2007) address the difficult problem of robot
Navigation Among Movable Obstacles (NAMO), with a
backward search algorithm that recursively moves occlud-
ing objects out of the space which the robot has to
traverse. Multi-modal Motion Planning addresses high
dimensional motion planning problems by planning dis-
crete mode switches in which lower dimensional sub-
spaces are sampled using domain-dependent strategies.
This approach has been successfully applied by Hauser
and Latombe (2010) to climbing robots, or push-planning
by a humanoid robot (Hauser et al., 2007). These works
however, do not take causal reasoning into consideration.

Recent work by Hauser (2014) on the Minimum Con-
straint Removal (MCR) problem is relevant to the present
work. It is proven that deciding the minimum number of
obstacles to remove for making a path feasible is NP-Hard.
A greedy algorithm is presented, which can compute parsi-
monious explanations for path planning failures. This falls
in line with our approach, which aims at computing min-
imal explanation for geometric failures, but is currently
lacking methods for detecting path planning failures.

Several search techniques developed in other areas are
also relevant to this work. Although they address differ-
ent types of problems, they share with the present work
the use of culprit detection mechanisms for pruning the
search space. Stallman and Sussman (1977) introduced
the Dependency-Directed Backtracking scheme to reduce
the complexity of electronic circuit analysis. The possi-
ble operating regions of electronic devices are represented
by discrete states, and their physics are described by alge-
braic relations. As a physical contradiction is detected, a
dependency-structure is used to compute a relevant expla-
nation and prevent similar choices occurring again. Sim-
ilar techniques are used in Boolean Satisfiability (SAT)
solvers. The conflicts occurring during search are analyzed
by specialized procedures (Silva and Sakallah, 1996), and a
clause expressing the negation of the cause of conflict is
re-injected in the clause database for pruning the search
space. Backjumping techniques (Dechter and Frost, 2002)
analyze the dead-ends reached during search to identify
inconsistent partial solutions, which allows the algorithm
to backtrack several levels up in the decision tree, skipping
irrelevant variables. Similarly in this paper, specialized pro-
cedures perform culprit detection at the geometric level,
which are then exploited by the intelligent backtracking
mechanisms of the ASP solver.

3. General principles

Our approach relies on two key components. First, there
is a geometric reasoner capable of analyzing the cause of

Fig. 2. A set of bounding boxes (bbox) representing all the possi-
ble poses that the center of each object can occupy is computed.
In the illustrated example, block e is placed on p2 and block f
is placed on p3. Some bounding boxes are also computed for the
intermediate poses of objects, but they are not represented in this
figure.

geometric failures. This is achieved by two culprit detection
mechanisms which we introduce in this section. Secondly,
since the cause of failure is not a mere “success/failure”
answer, we need a common language between the geomet-
ric reasoner and the task planner, so that the cause of failure
can directly be used by the symbolic search process. In
most approaches, the common language is defined by the
preconditions of symbolic operators, which are true/false
depending on the success/failure of the geometric reasoner.
Here, since we use a logic programming approach for task
planning, the common language is more expressive since it
can be any logical expression supported by the task planner.

3.1. Finding minimal explanations for geometric
failures

Consider again the blocks-world problem illustrated in Fig-
ure 1. If the task planner initially decides to build the pile
at location p1, the action place( d, c) always fails geomet-
rically, because the gripper always collides with the fixed
obstacle. The cause of failure is not the action place( d, c)
per se, because this action would be feasible if the pile
was built at location p2 or p3. Rather, it is the result of the
choice of p1 as a location for a, combined with the geomet-
ric effects of actions place( b, a) , place( c, b) , place( d, c),
and the position of the fixed obstacle relative to p1. Note
also that, during the last action (place( d, c)), blocks e and f
have been moved to some temporary locations, but neither
the choice of these locations nor the order in which blocks
are moved are relevant for explaining the failure. Wherever
blocks e and f are placed, and whatever order is chosen for
actions, the same problem will eventually occur. Therefore,
a minimal explanation of the failure should only depend on
blocks a, b, c, d and p1, otherwise the task planner may
return an infinite number of unfeasible plans by permuting
the temporary locations of blocks e and f , by permuting the
order of actions, or by increasing the number of actions. Iso-
lating the minimal number of factors explaining the failure
is the culprit detection problem that we propose to solve.
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Definition Culprit Detection Problem

The input of a culprit detection problem is defined by a
set of hypotheses and a set of observations to be explained.
The output is an explanation, i.e. a parsimonious set of
hypotheses which explains all the observations (Bylander
et al., 1991).

Next, two methods are sketched out for addressing this
culprit detection problem. In the first method, the hypothe-
ses are a set of linear constraints, and the observation is
the inconsistency of the constraint network. In the second
method, the hypotheses are symbolic actions, and the obser-
vation is when a sequence of actions is not geometrically
feasible.

The first method consists of computing a set of bound-
ing boxes, which encompass all the poses that each object
can possibly occupy at each time step (see Figure 2). The
sizes and positions of the bounding boxes are computed
using the spatial relations between objects (e.g. on( a, p1),
on( b, a)) taken from the symbolic plan, plus some numeric
information from the geometric domain, e.g. the pose of p1,
the dimensions of block a, etc. The bounding boxes are rep-
resented by a network of linear constraints. The constraint
network is used to detect geometric failures caused by vio-
lation of kinematic constraints, and bounding boxes are
used to sample objects/robots poses for detecting geomet-
ric failures caused by collisions. For instance, the bounding
box of the gripper (bbox( gripper) in Figure 2) is used to
sample a discrete subset of the poses that the gripper can
possibly occupy, and perform a collision check for each of
them. Since all the samples cause a collision, the sequence
of actions is unfeasible. Then, using the constraint network
and culprit detection mechanisms, it is possible to prove that
the pose of bbox( gripper) only depends on the poses of p1,
blocks a, b, c and d, and create an explanation of the failure
which is neither depending on blocks e and f , nor depending
on the order of actions. The culprit detection mechanisms
for achieving this are presented in Section 8. The drawback
of this method is that the bounding boxes cover volumes
which are often larger than what the manipulator can actu-
ally reach. Hence, some sample positions that are actually
not feasible can be found to be collision-free, which causes
some failures not to be detected.

The second method copes with this problem by discretiz-
ing the poses of robots and objects using the same process
that is used for finding a geometric plan (see Section 7.3),
the difference being that motion planning is not performed,
i.e. only the initial and final configurations of actions are
considered (more about this point in Section 4.3), and only
subsets of actions from the task plan are considered. The
goal is to find a minimum subset of actions causing the geo-
metric failure. Imagine for instance a sequence of symbolic
actions 〈A1, . . . , An〉. Let us assume that a geometric failure
occurred for action A7. It may be that the problem is intri-
cate and, regardless of the geometric instances chosen for
the symbolic actions, there is no solution to the problem.

Fig. 3. Schematic illustration of the test of the subsequence
〈A3, A7〉. The black dots represent geometric instances of sym-
bolic actions resulting from the discretization process (see Sec-
tion 7.3). All the combinations within these discretized geometric
instances of A3 and A7 are tested.

But most often, geometric failures are caused by one or two
actions only. For instance, if a large object is placed in a box
(A3), it is impossible to place another object in that box later
on (A7), and this problem is independent from the actions
performed in between (〈A4, A5, A6〉). Proving this is a culprit
detection problem. In order to detect the culprit action(s),
several subsequences of actions are tested in isolation, e.g.
〈A1, A7〉, 〈A2, A7〉, etc. All the possible combinations within
the sets of discretized geometric instances of each action
in the subsequence are tried out (see Figure 3), and if all of
them fail, the subsequence is reported as unfeasible. Section
9 describes how this is done in practice, in particular how
to select proper subsequences of actions, since trying all of
them is intractable. Next, we discuss how to represent the
causes of geometric failures, and how to use them within
the task planning process.

3.2. Reasoning about failures in the planning
process

Continuing on the blocks-world example (Figure 1), let us
assume that the actual cause of failure is detected by the
geometric reasoner, and returned to the task planner. As
mentioned above, the cause of failure should not include
the positions of blocks e and f , neither should it refer to the
order of actions. One could represent it as a conjunction of
logical statements, for instance

on( a, p1)∧ on( b, a)∧ on( c, b)∧ on( d, c) (1)

This information is valuable only if it can quickly guide
the task planner to backtrack to the action place( a, p1) and
build the pile at a different location. If the planning problem
is modeled in propositional logic, this process is facilitated,
because the planning problem is represented as a set of
clauses P (Kautz et al., 1996), and expression (1) can be
added as a logical constraint to the problem. Informally

P ∧ ¬( on( a, p1)∧ on( b, a)∧ on( c, b)∧ on( d, c) )

which is equivalent to

P ∧ ¬( on( a, p1)∧ goal)
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Fig. 4. The two main components of our system; the ASP solver
for task planning, and the geometric reasoner to geometrically
instantiate the symbolic plan or to analyze the causes of failure.

Since the goal must be true, a simple inference mechanism
entails that on( a, p1) is false.

Most state-of-the-art planners are based on heuristic
search and do not support this type of global inference
mechanism. Therefore, we use the logic programming
paradigm for the task planning component of our system. It
allows us to efficiently guide task planning with logical con-
straints formulated from the explanations of geometric fail-
ures, and the inference mechanisms of logic programming.
In the present work, we opted for ASP, which provides an
expressive language and effective solvers. Note that the pro-
posed approach does not specifically rely on ASP: The only
requirement for the task planner is to support global infer-
ence mechanisms. Other logic-programming languages, or
satisfiability-based planners could be used as well.

4. System overview

4.1. Overall architecture

The overall architecture of our system is simple (see Fig-
ure 4). The ASP solver takes as input a domain definition
file and a problem definition file, both written in AnsPro-
log, the logic programming language of ASP. The domain
describes the actions, when they can apply, and which log-
ical effects they have. It also contains a set of rules which
describe what does not change (frame axioms), and what
is indirectly changed by the actions (indirect effects). More
details about these rules are given in the next section and
in Section 6. A problem definition file contains a symbolic
description of the initial state and the goal state. The geo-
metric reasoner takes as input the geometric description of
the initial scene, i.e. the initial poses of robots, objects, and
obstacles. The scene also includes the 3D representations
of each robot, object, and obstacle. The geometric reasoner
also gets some information from the symbolic domain:
which objects are movable, and the kinematic structure of
compound robots, i.e. which base is connected to which
manipulator. The working process is a simple loop where
(i) the ASP solver finds a symbolic solution plan, (ii) the
plan is analyzed by the geometric reasoner, and (iii) the geo-
metric reasoner feeds back the (potential) cause of failure to

(1)

(2)

(3)

Fig. 5. The geometric reasoner analyzes the cause of failure
through three layers representing the plan at different levels
of abstraction: (1) spatial relations, (2) geometric dependencies
chains, and (3) whole plan with motion paths.

the ASP solver in the form of a logical constraint, or returns
a geometric instance of the symbolic plan otherwise. With
this logical constraint added to the problem, the ASP solver
generates a new plan that is free from the detected failures,
and the cycle repeats until a feasible plan is found.

For the goals of this paper, the core component of our
system is the geometric reasoner (Figure 5). The geomet-
ric reasoner takes as input a sequence of symbolic actions.
First, this sequence of actions is searched for geometric
failures in layer (1) spatial relations and layer (2) geomet-
ric dependencies chains. If no failure is found, it attempts
to geometrically instantiate the symbolic plan in layer (3)
by searching for a motion path for each action. If a failure
is detected in any of these layers, the geometric reasoner
returns a logical expression describing the cause of failure.
The layers are hierarchically organized from a high level of
abstraction down to the motion planning level. The lower in
this hierarchy, the more computationally expensive it is to
detect a failure. Hence, when a failure is detected, a logi-
cal constraint is returned and the remaining more primitive
checks are not performed. A more detailed description of
the different layers is given in Section 4.2.

4.2. The geometric reasoner

Finding a culprit subset of elements is a difficult prob-
lem in general, because it requires checking all the subsets
in the power set of these elements, which requires up to
2N checks, N being the number of actions in a symbolic
plan in our case. This quickly leads us to an intractable
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number of subsets of actions to be checked. In CTAMP,
this combinatorial problem is made worse by the fact that
“checking” one subset of actions implies that various geo-
metric computations are performed, including searching for
feasible grasps and placements, and motion planning. The
first layer of the geometric reasoner “Spatial relations” (1)
copes with this complexity by working on an abstraction
of the space of grasps and placements, by building a set of
bounding boxes which encompass all the possible poses that
objects/robots can occupy after completion of each action.
Although this representation is not precise, it allows us to
detect some geometric inconsistencies in polynomial time
(see Section 8). These bounding boxes are also used to per-
form various collision checks which are explained in Sec-
tion 10. No motion planning is performed in this layer. The
logical constraints returned by this layer are expressed in
terms of spatial relations between objects (see Section 6.4).

Since the first layer does not take into account the kine-
matics of robots, it may let some geometric failures go by
undetected. The “geometric dependencies chains” in layer
(2) copes with this problem. This layer analyzes the geomet-
ric dependencies between the actions of a symbolic plan.
For example, if two mobile robots located at some dis-
tance from each other pick up two different objects, there
are no geometric dependencies between both actions, but if
robot A reaches robot B and hands over an object, then geo-
metric dependencies between these actions exist. Layer (2)
constructs a graph of the geometric dependencies between
the actions of a plan, and uses this graph to select some
subsequences of actions to be extracted from that plan.
These subsequences are then geometrically evaluated sep-
arately from the other actions in the plan. Several types of
collision checks are performed during this evaluation (see
Section 10). The details of this process are presented in Sec-
tion 9. Motion planning is not performed in this layer, i.e.
only the feasibility of the initial and final configurations of
the paths is checked. The logical constraints returned by this
layer represent unfeasible subsequences as partially-ordered
subsequences of actions.

Finally, if no geometric failure is detected by the previ-
ous layer, layer (3) evaluates the whole sequence of actions
through geometric backtrack search, that is, depth-first
search in the search space of possible grasps and placements
until a motion path for each action is found (see Section 9.1,
and our previous work, Bidot et al. (2015)). For this last
step, a cutoff time is set. If no solution is found within the
time limit, the logical constraint returned by the geometric
reasoner is the subsequence of actions that it managed to
instantiate within the time limit. For the ASP solver, this
means that it must no longer return any plans that begin
with this subsequence of actions.

4.3. Assumptions and completeness issues

In Section 3.1, the second method for culprit detection
analyzes subsequences of actions by only considering ini-
tial and final configurations of motions. The reason why

we exclusively consider these two configurations is moti-
vated by the fact that we do not consider heavily cluttered
environments. Therefore when kinematically feasible initial
and final configurations have been found, finding a motion
path is possible in most cases. Furthermore, the manipula-
tors are more subject to kinematic constraints at grasp and
release positions, because the pose of the gripper is con-
strained by the pose of the object to be grasped / target
pose to place the object in, which is not the case during
the transfer of the object. Note however that all the paths
are computed in any case, i.e. our system does not pro-
duce motions which may cause collisions. But if an action
is invalidated because of a path planning failure, no mean-
ingful explanation is fed back to the symbolic level, and
the same failure may be encountered again in a different
sequence of actions. This owes to the fact that identifying
the culprit colliding object(s) in a path planning failure is
a difficult problem (Hauser, 2014). This issue is discussed
further in the conclusion.

The proposed approach is not complete in different
respects. Although the motions performed for each action
are computed by a resolution-complete path planner, the
start and goal configurations of these paths are a priori dis-
cretized, therefore many start and goal configurations are
excluded from the search space. Another source of incom-
pleteness lies in the fact that the geometric problem is
broken down by the task planner into a sequence of sub-
problems, each of which is solved within a subspace of the
configuration space. For instance, if the symbolic plan con-
tains an action commanding the right arm of a humanoid
robot, the subspace is the configuration space of the right
manipulator, while the left arm acts as an obstacle. Potential
solutions are lost in this way, compared with if the prob-
lem had been stated in the combined search space of both
arms. For the same reason, only the objects represented in
the symbolic domain can be acted upon. Therefore, if they
are not symbolically represented, occluding objects cannot
be moved away, nor can a flat surface be used as a temporary
location.

Another issue with completeness concerns the detection
of failures. Proving a continuous-space problem unfeasible
is not possible with sampling-based techniques. However,
our simplified approach for multi-step motion planning
facilitates this process: since the resulting configurations
of actions are discretized, and since they act as obliga-
tory pathways for a global solution, failures can be eas-
ily detected by considering these configurations in priority.
Failures owing to kinematic violations and failures owing to
collisions present us with two different cases. In the case of
kinematics violations, our approach is conservative, i.e. the
bounding boxes always overestimate the actual capacities
of manipulators, or the size of regions in which objects can
be. Consequently, violations of kinematic constraints can be
safely fed back to the ASP solver without loss of solutions.
This is not true for the failures owing to collisions, because
collision checks are performed on a finite set of samples,
therefore feasible configurations may not be discovered. In
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Fig. 6. Initial situation of the minimal example of placing block b
onto the red_tray.

1 #program base.
2 block(a). block(b).
3 location(green_tray ). location(red_tray ).
4 actuator(arm).

6 init(on(a,green_tray )).
7 init(on(b,red_tray )).
8 goal(on(a,red_tray )).

Fig. 7. ASP instance for the minimal example.

this case, the constraint returned to the ASP solver prunes
out potential solutions.

5. Planning with ASP

A formal definition of the ASP language is given in
Appendix A. For illustration purposes, a small ASP exam-
ple will be presented in this section. The problem in the
example scenario is for a robotic arm to move a block a

from a green_tray to a red_tray. The scenario also
includes an additional block b which may obstruct a trivial
solution.

As common in ASP, we divide the encoding of the exam-
ple into two parts, a fact format for representing problem
instances and a generic encoding for solving pick&place
problems. Figure 7 presents the problem instance of our
example. The facts in Line 2 to 4 define our environment,
consisting of two blocks, two locations and an actuator (the
robotic arm). Line 6 and 7 presents the initial conditions,
with block a placed on the green_tray and block b on the
red_tray. Finally, Line 8 defines the goal condition of our
example with block a on the red_tray.

A general ASP encoding for solving this problem is
shown in Figure 8. Note that this code is for illustration
purposes, and is a simplified version of the actual code
(Appendix C presents samples of the actual encoding). The
encoding consists of three parts: base, incremental and
end. The base part represents the initial situation of the
scenario. In the incremental part possible actions and
their effect on the environment at a specific point in time are
defined. Finally, the goal conditions are described in the end
part. As long as the incremental part is insufficient to sat-
isfy the goal condition in the end part, an additional time

step (action) is appended to the incremental part. This is
handled by an outside controller as well as the identification
of the new final action. While expanding the encoding with
an incremental part all occurrences t are substituted by
an integer, representing the time step to be added.

In the encoding shown in Figure 8, the base part extends
from Line 1 to 6, the incremental part form Line 8 to 28
and the end part from Line 30 to 31. The rules in Line 3
and 4 formulate the potential actions the robotic arm is able
to execute, with pick_up(Block) stating that Block is
to be picked up and place(Location) that a currently
grasped object is to be placed on Location.

The first rule of the incremental part is a choice rule
(Line 10), stating that on every time step the task plan may
include one action from the set of potential actions specified
above for each actuator. The do(Actuator,Action,t)

predicate represents that an Actuator performs an Action
at time step t. The integrity rule in Line 11 ensures that any
chosen action for each actuator must be possible for it to
execute in this incremental step. Possible actions are defined
by the rules in Line 13 to 20. The first rule states that it is
possible for an actuator to pick_up any block, given that
the block was placed on a location and the actuator was
not grasping anything in the previous step. The second rule
states that it is possible for an actuator to place a block at
any location if the actuator was grasping the block in the
previous step.

Lines 22 to 28 model the logical consequences of cho-
sen actions implementing the frame axiom in ASP. If a
pick_up action is chosen for an actuator, it holds for
the current step that the object is grasped by the actua-
tor (Line 22), while the condition that the object is on a
location stops (Line 23). The rules are equivalent for the
place action, but the block is now on the placed location
(Line 25) and stops to be grasped by the corresponding
actuator (Line 26). Line 28 declares that any fluent held in
the previous step also holds in the current step unless it was
stopped.

The end part of the encoding starts with the external
literal horizon(t) which in Line 30 identifies the last
incremental step of the solution, i.e. the last action of the
action plan. Being external, the value of the literal is deter-
mined by the controller, not the solver. The controller sets
horizon(t) to true if t is the last incremental step and to
false if not. The integrity rule in Line 31 excludes all answer
sets in which the goal of the example is not fulfilled in the
last incremental step.

Since it is not possible to move block a to the red_tray
in only one action, the ASP solver fails to find a solution
with only the base and incremental(1) part. Thus, the
controller adds the incremental(2) part to the encoding
and a solution can be found:
do(arm,pick_up(a),1)

do(arm,place(red_tray),2)

Assuming the red_tray is not large enough to hold both
blocks, the geometric solver rejects the plan and feeds back
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Fig. 8. ASP encoding for the minimal example.

an integrity constraint describing the cause of error to the
ASP solver, i.e. that a and b may not be on red_tray at the
same time step. Since there are now no valid solutions with
only two actions, the encoding is extended by two additional
incremental steps (3 and 4). The next solution is found with
four actions by first placing the block b on the green_tray
and then the a block on the red_tray:
do(arm,pick_up(b),1)

do(arm,place(green_tray),2)

do(arm,pick_up(a),3)

do(arm,place(red_tray),4)

Note that the plan length is only increased if the ASP
solver proved that there are no valid plans for the current
length.

6. Symbolic domain

In order to make the presentation of our techniques more
concrete, we will use examples based on a concrete domain,
in which we use three simulated robots with different capa-
bilities. The first robot is Justin, the DLR humanoid robot
(Ott et al., 2006), with two arms with 7 degrees of freedom
(DoF) each, and two dexterous hands. The second robot is
Fabot, a mobile manipulator with a 3 DoF arm that can
translate along the vertical bar attached to its base, which
allows it to grasp objects on the floor, or to reach high loca-
tions (see Figure 9). For the mobile part, Fabot’s base is
holonomic. The third robot is r2d2, a mobile robot with
holonomic base and a flat area on top, which can be used
as a mobile tray. Justin is constrained to be fixed, in order to
enforce the cooperation between the robots.

6.1. Representing robots

Robot parts are referred to as components, represented by
variables, and some predicates are used to define proper-
ties or relationships between them. For instance, Fabot is
defined as follows:
component(fabot_base)

component(fabot_arm)

architecture_child(fabot_base,fabot_arm)

base(fabot_base)

able(fabot_base,moving)

able(fabot_arm,manipulating)

skilled(fabot_arm)

The predicate architecture_child indicates that the
two mentioned components belong to the same robot, and
the predicate base identifies its base. The specific abil-
ities of the components are represented with the able

predicate, which determines which actions each compo-
nent is supported for. The skilled predicate specifies that
Fabot can pick piles of objects (because the design of its
manipulator prevents the gripper from tilting). This can be
easily modeled by adding a constraint in the domain (see
Appendix C, 3) without the need for defining a different
pick action for each robot. This scheme allows us to model
more complex robots such as Justin (see Appendix C, 5).

Objects and locations are also represented by variables
and predicates. For instance:

location(table)

object(cup)

object(block_a)

Types can be assigned to objects, for domain-specific use:

block(block_a)
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A robot such as r2d2 can also be used as a location, i.e.
objects can be placed on it:

location(r2d2)

6.2. Geometric predicates

Geometric predicates form a language which allows the
ASP solver to symbolically reason about the physical world.
These predicates accept a time parameter (see parameter t
in Figure 8) which is omitted here for brevity.

1. moved(X) represents the fact that X moves or is moved.
X can be a component, object, or location.

2. connected(Parent,Child) implies that if Parent
is moved, then Child moves as well (but not necessarily
the converse). It applies to a wide range of situations:
robot composition, object grasp, or object support.
Examples: connected(fabot_base,fabot_arm),
connected(fabot_arm,cup), connected(tray,

cup).
3. on_location(Object,X) represents the relation

resulting from the transitivity of the connected rela-
tion. X can be a location or a component. Example:
block_a is on the tray and block_b is on block_a,
then on_location(block_b,tray).

4. oriented(Object,Orientation) represents the
gross orientation of Object, i.e. its alignment/anti-
alignment with one of the reference axes (see Sec-
tion 7.1). Orientation can be x1, x2, y1, y2, z1 or
z2, e.g. z1 represents upright and z2 upside-down.

5. reachable(X,Component) represents the fact that
Component is located at a sufficient distance from X

for attempting a pick, place or stack action. X can be an
object or a location.

6. manipulated(Component,Object) represents the
fact that Object is actively acted upon by Component,
directly or indirectly. Examples of manipulated cup:
Fabot grasps a cup, Fabot moves its base while holding
a cup, r2d2 moves with a cup on top of it.

The value of these predicates changes over time by the
direct effect of actions, but also indirectly through side-
effects and ramification. For instance, when the base of a
robot moves, the locations/objects reachable by the manip-
ulator are not reachable any longer. Similarly, if the robot
is holding an object, this object is also moved. By using
ASP as a modeling language, we are able to express ram-
ifications and indirect effects in a native way. Appendix C
(1,2) presents rule samples that illustrate how this can be
handled.

6.3. Actions

The symbolic domain consists of six actions: The manipu-
lators are able to perform pick, place and stack actions,
while the bases can do reach and dock actions. All compo-
nents can perform the move action. A general description of

Fig. 9. The three types of spatial relations.

actions is given here, the reader may consult Appendix C for
a complete AnsProlog implementation of the pick action
as an example.

1. pick(Object,GraspType) represents the action of
picking Object using a given grasp type (top, side,
or bottom).

2. place(Orientation,GraspType,Location) rep-
resents the action of placing the held object on
Location using GraspType in a given orientation (z1
or z2). Location must be of type location.

3. stack(Orientation,GraspType,Location) is
similar to place, but the target location must be of type
object. Geometrically, sample poses for stacking are
limited to one point centered on top of the supporting
object, with different orientations.

4. reach(X,Manipulator) moves the base to which
Manipulator is connected so that X becomes reach-
able by it. X can be a location or an object.

5. dock(Base,Manipulator) is the converse of reach:
it moves Base so that Manipulator can reach it (used
by the r2d2 robot).

6. move(Component) simply moves Component away
from its current pose1. This action is used if a compo-
nent needs to be moved.

6.4. Spatial relations

Just as symbolic actions are the symbolic counterparts
of geometric actions, spatial relations are the symbolic
counterparts of spatial constraints (see Section 8). They are
used in order for the ASP solver to reason upon the logical
constraints fed back from the “Spatial relations layer”. The
general form of a spatial relation predicate is:

relation(X, Y, type, p1, …, pn, t)

where X and Y represent the two objects/robots/locations on
which the relation applies. We define three types of spatial
relations: grasp, placement, and dock, which are illustrated
in Figure 9.

A grasp relation exists between an object and a Tool Cen-
ter Point (TCP) whenever an object is picked, placed, or
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Fig. 10. Entailment of spatial relations.

stacked. It represents the fact that, at some point during the
action, the TCP of the robot is necessarily within a volume
centered at the object. A grasp relation does not hold any
longer if:

• the object is not grasped and the TCP is moved or;
• the object is not grasped and the object is moved.

A placement relation exists between a robot/object/loca-
tion o1 and an object o2 whenever o2 is placed or stacked. It
represents the fact that, at the end of the action, o2 is neces-
sarily located in a region centered around o1. A placement
relation does not hold any longer if:

• o2 is not connected with o1 and o1 is moved or;
• o2 is not connected with o1 and o2 is moved.

A dock relation exists between location/robot r1 and a
robot r2 whenever r1 docks to r2 or when r2 reaches a loca-
tion/robot r1. It represents the fact that, at the end of the
action, r2 is necessarily located in a region centered at the
location/robot r1. A dock relation does not hold any longer
if:

• r1 is moved or;
• r2 is moved.

The implementation of these rules is provided in
Appendix C (4). Note that spatial relations, just as with spa-
tial constraints, do not represent an actual state of the world.
Their role is rather to express a necessary relation result-
ing from an action. For instance, the existence of a grasp
relation does not mean that the object can be grasped, how-
ever, if the grasp relation cannot hold, then a fortiori the
object cannot be grasped (nor placed, nor stacked). There-
fore, when a spatial constraint is proven not to hold (by the
geometric reasoner), the corresponding spatial relation can
be use by the ASP solver for pruning the actions by which
it is entailed.

Spatial relations are entailed by actions as depicted in
Figure 10. Spatial relations are used when the cause of
failure is detected by the “Spatial relations layer” of the
geometric reasoner. A logical constraint expressed with spa-
tial relations is more powerful than a logical constraint
expressed with actions, because (i) there is a “many-to-one”
mapping between actions and relations, and (ii) because the
predicates of spatial relation sometimes have less param-
eters than the predicates of actions. For instance, imagine
that the geometric reasoner computes the following con-
straint:

:- relation(r2d2, bottle, placement, z1, t)

relation(r2d2, fabot, dock, t)

relation(justin, bottle, grasp, top, t)

This means that Justin cannot pick/place the bottle in
upright position (z12) from/on r2d2 with a top-grasp, while
r2d2 is docked to Fabot. This constraint is powerful because
(i) it applies to both pick and place actions, (ii) it does
not explicitly say how the placement relation is created
(it could be any robot using any type of grasp), (iii) nor
does it say how the dock relation is created (it could be
r2d2 docking to Fabot or Fabot reaching r2d2). This type
of constraint can rule out a large number of symbolic
plans. Therefore, constraints expressed in terms of spatial
relations achieve a stronger guidance of the task planner,
compared to constraints expressed in terms of actions.

6.5. Generalized constraints with types

In many scenarios, it is needed to manipulate several
objects that are instances of the same type. One can
reasonably assume that during the perception of the scene,
it is possible to compare the shape of objects and assign
them to different classes. In the present work, we manually
assigned the type “block” for all objects:

block(block_a). block(block_b). block(block_c)...

The idea is to make some logical constraints more general
by using typed variables instead of object instances. Con-
sider for instance the geometric failure depicted in Figure 1.
This failure can be described using spatial relations:

:- relation(p1, block_a, placement, z1, t)

relation(block_a, block_b, placement, z1, t)

relation(block_b, block_c, placement, z1, t)

relation(block_c, block_d, placement, z1, t)

relation(gripper, block_d, grasp, top, t)

Since all blocks have the same geometry and can afford the
same grasps, this constraint is actually valid for any combi-
nation of block instances. Hence, we can use the following
generalized constraint instead:

:- relation(p1, X1, placement, z1, t)

relation(X1, X2, placement, z1, t)

relation(X2, X3, placement, z1, t)

relation(X3, X4, placement, z1, t)

relation(gripper, X4, grasp, top, t)

block(X1), block(X2), block(X3), block(X4)

Note that if the object instance has a feature that is not
shared by all instances, this substitution is not allowed. For
example, if an object instance is in its initial pose, it is
unique with respect to reachability/graspability, and there-
fore cannot be substituted. This technique results in addi-
tional computational costs, because the ASP solver must
ground the constraint with respect to all possible variable
substitutions. Nevertheless, the planning performance is
radically improved because generalized constraints have a
stronger pruning effect.
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6.6. Granularity of symbolic representations

An important issue for designing the symbolic domain is
how detailed the symbolic representations should be, e.g.
should the precise poses of objects be symbolically rep-
resented, should the modeling of grasping actions include
the movement of the base, or the opening/closing of the
gripper? A good point of comparison with our work is
the work by Aker et al. (2012) which sometimes uses
more detailed representations, and sometimes less detailed
ones. For object/robots poses, they gridize the geometric
space and each cell is represented in the symbolic domain
with a row-column scheme, while the choice of grasp is
entirely dealt with at the geometric level. Conversely in our
approach, object/robots pose are dealt with by the geomet-
ric reasoner and the type of grasp is decided at the symbolic
level. One may argue that this is solely an issue about dele-
gating more or less computational effort to the task planner
or to the geometric reasoner, and that the overall cost is the
same. Next, we present some arguments for nuancing this
statement.

An obvious limitation of using detailed symbolic repre-
sentations is that the task planner is literally “drowned in
details”, and therefore cannot efficiently reason about the
big picture, i.e. causal or temporal aspects of the problem.
Another limitation of this approach is that it prevents us
from using specialized (algebraic, constraint-based) meth-
ods for dealing more efficiently with the continuous aspects
of CTAMP, which the task planner is not designed for.

On the other hand, our domain uses semi-detailed sym-
bolic representations for some geometric aspects. For
instance, we represent the gross orientation of objects and
the type of grasp used for picking objects. This increases
the complexity at the symbolic level, but it also simplifies
the work of the geometric reasoner by excluding unfeasible
actions from its search space (see Appendix C, 3 and 6). In
specific cases, it can prove geometric tasks unfeasible only
by means of causal reasoning, e.g. the robot Fabot cannot
bring an object from upside-down to the upright position
on its own.

7. Geometric domain

This section describes how object poses, actions, and states
are represented at the geometric level. It also explains how
the continuous configuration space is discretized.

7.1. Hybrid pose representation

In order to have a symbolic representation of the orienta-
tions of objects/TCPs, we use a hybrid discrete-continuous
scheme to represent the pose of a body. We use bold low-
ercase letters to denote a column vector, e.g. p, and bold
capital letters to denote matrices, e.g. T . All coordinates
are expressed in the world frame. The pose of a body is
obtained by applying a rotation, a translation and a tem-
plate transformation to the body (see Figure 11). Hence,

Fig. 11. Examples of template transformations Tside_z (a) and
T top_z (b) for the left gripper. Side grasp poses for instance, can
be parametrized by pi, γi and uq, applying the translation pi, the
rotation γi about uq (z in this example), and the transformation
Tside_z to the gripper (c). ( u, v, w) represents the body-fixed frame
attached to the gripper.

the pose of a body oi will be noted ( pi, Tp, uq, γi), where
pi =( xi, yi, zi)∈ R

3 represents the translation of the ith body.
Tp represents a transformation of the body-fixed frame in
the world frame, which we define as a template transforma-
tion. Template transformations represent natural positions
of interest for objects and grippers, i.e. upright or upside-
down for objects, and top, bottom, or side grasps for grip-
pers. uq ∈ R

3 is a unit vector which we define as reference
axis, and γi ∈ R an angle of rotation about the axis uq.
Tp belongs to a predefined set of transformations, and uq is
chosen among a predefined set of axes. Both are determined
by the geometric reasoner depending on symbolic informa-
tion. As an example, for sampling poses of an object to
be placed in upright position on a table (see Figure 12),
the geometric reasoner selects the upright template trans-
formation of this object, and uq = z as template axis. The
geometric reasoner computes the z parameter according to
the pose of the table and the height of the object. Then,
translations (x, y) and orientations (γ ) are sampled and the
transformation matrix M of the object is then given by

M =
[

Ruq ( γ ) p
O 1

]
Tupright

with

Ruq = Rz =
⎡
⎣ cos( γ ) −sin( γ ) 0

sin( γ ) cos( γ ) 0
0 0 1

⎤
⎦ and p =

⎡
⎣ x

y
z

⎤
⎦

The limitation of this representation is that all possi-
ble orientations cannot be represented, since finite sets of
template transformations and reference axes are used. The
advantage is that the orientations of the TCPs and objects
can be represented at the symbolic level by ignoring the
intrinsic orientation γi, using instead the gross orienta-
tion x1, x2, y1, y2, z1 or z2 (see Section 6.2). As
explained in Section 6.6, symbolic reasoning about orien-
tations presents some advantages. In the next sections, the
pose of a body is simply noted as ( pi, γi) for clarity.

7.2. Representing actions and states

Let 〈A1, . . . , An〉 be a sequence of symbolic actions. We
denote by sj the geometric state resulting from applying
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Fig. 12. The discretization schemes for different actions.

the symbolic action Aj on the previous geometric state. We
consider m rigid bodies. The ith object is denoted by oi,
i ∈ {1, . . . , m}. The position of object oi in state sj (i.e. after

action Aj has been completed) is denoted by p(j)
i , and its

orientation, by γ
(j)
i(
p(j−1)

i , γ (j−1)
i

) Aj−→
(

p(j)
i , γ (j)

i

)

Finally, we define a geometric state, or configuration as the
set of values representing the poses of all objects, mobile
bases, and TCPs

c = {p1, γ1, . . . , pm, γm,

pbase1, γbase1, pbase2, γbase2, . . .

ptcp1, γtcp1, ptcp2, γtcp2, . . .

q1, q2, . . . }
where qi represents the configuration chosen for the ith

robotic manipulator to place the gripper at ( ptcpi, γtcpi). In
addition to the geometric state, we also need to keep track of
which objects are attached to which ones, in order to predict
how the state will change when robots are actuated.

At the geometric level, a symbolic action Aj can be per-
formed in various ways, e.g. a pick action can be performed
with different orientations of the TCP, a place action can
result in different positions/orientations of the object, and a
dock/reach action can result in different positions/orienta-
tions for the mobile robot (see Figure 12). We denote one
geometric instantiation of a symbolic action Aj by kaj, k ∈
{1, . . . , r}, where r, the resolution, depends on the type of
action and the resolution used for discretization. k is later
referred to as the action index.

7.3. Domain dependent discretization

Discretization of grasps and placements is a limitation of
this approach, but we emphasize the fact that discretization
only concerns the resulting configuration of each action. In
other words, the final motion plan consists of discretized
configurations (one for each action) which are connected
to each other by calling a bi-directional RRT algorithm
(LaValle, 2006) working in the continuous domain.

Fig. 13. Reach and pick example with Fabot and a cup,
top view. Crosses represent possible locations for the mobile
base for different values of γ1. The orientation of the base is
determined by γ2.

When dealing with robot manipulation tasks, an impor-
tant issue is to sample transition configurations at the inter-
section of different sub-spaces, e.g. the space of a mobile
robot moving its base towards an object, and the space of its
manipulator grasping the object. This problem is addressed
in the multi-modal planning literature Hauser and Latombe
(2010), the idea is to use intelligent strategies for sampling
transition configurations between the different modes of the
system. A similar but simpler approach is used here, the dif-
ference being that transitions between different modes are
decided at the symbolic level. Next, we illustrate through an
example the simple domain dependent strategies used for a
“reach and pick” task, which involves two distinct modes.

In this example (see Figure 13), the mobile manipulator
Fabot is to pick a cup which is out of reach. Unlike multi-
modal planning, the problem is not defined by an initial and
a goal configuration, but rather by an initial configuration,
an initial symbolic state, and a symbolic plan (computed by
the ASP solver). In the initial symbolic state, the cup is not
reachable by Fabot (symbolically), while the action pick
only applies to reachable objects. The action reach makes
an object reachable by a robot. Hence, the ASP solver
computes a symbolic plan consisting of a reach action fol-
lowed by a pick action. These actions are discretized (see
Figure 12 and Table 1) as follows;

1. The reach action is discretized into 40 poses
parametrized by two angular values γ1 and γ2. The
poses are distributed on a circle3 centered around the
reached object, with radius R depending on the type
of robot performing the action (see Figure 13). R was
empirically determined such that the gripper affords
a wide range of approach directions, while the base
remains far enough from the object to minimize the risk
of collision with a potential supporting object.

2. The pick action is discretized into 16 grasp frames,
which are pre-computed for all possible gripper-object
pairs. These grasp frames are such that the gripper does
not collide with a potential flat surface under the object.
For objects with axial symmetry, the grasp frames are
obtained by incremental rotations of a template grasp
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Table 1. Parametrization and typical resolutions used for discretization. The “index” column refers to a list of pre-computed grasp
frames.

Action x y z γ1 γ2 Index Total

Pick – – – – – 16 16
Stack 1 1 1 16 – – 16
Place 7 7 1 16 – – 784
Dock / Reach – – – 8 5 – 40

frame. For other objects (e.g. a tray), the grasp frames
are manually created for different graspable areas of
the object. The grasp frame is then applied to the grip-
per, and inverse kinematic (IK) solutions are computed
for the manipulator. The first collision-free solution is
selected.

The problem boils down to finding a resulting configu-
ration for the reach action, from which a feasible grasp
can be performed. With the typical resolutions shown in
Table 1, this may require 40 × 16, namely 640 configu-
rations to check in the worst case. This is done by the
GeometricBacktracking() algorithm (see Algorithm 1, Sec-
tion 9.1), which proceeds in a depth-first search manner. In
a nutshell, each action is computed “backwards”, i.e. (i) the
resulting configuration is computed first, (ii) collisions are
checked, (iii) a path from the current configuration to the
resulting configuration is computed. In case of success, the
next action is processed, otherwise another resulting config-
uration is tried. If none of the configurations work, the algo-
rithm backtracks to the previous action. Configurations are
chosen according to van der Corput sequences (Kuipers and
Niederreiter, 1974), which guarantee a uniform distribution
of the samples.

This approach for multi-step motion planning is incom-
plete because of the naive discretization and because the
modes are enforced by the symbolic level, e.g. a robot can-
not fold/unfold its manipulator for getting through a narrow
corridor if the implementation of the reach action does not
allow for it. We do not use sophisticated sampling strategies
for sampling grasp configurations, e.g. using loop-closure
constraints (Cortés and Siméon, 2004), but simply select
among the set of discretized grasps, those which accept an
IK solution. However, although the focus of this work is
not multi-modal planning, tasks requiring complex object
manipulation could be solved, as shown in the experimen-
tal evaluation (Section 11). We also refer the reader to the
GeRT (Generalizing Robot manipulation Tasks) project for
more details about the application of these techniques on
the real robotic platform Justin (Ott et al., 2006) and provide
video links for concrete illustration4.

In the next sections, we describe the techniques used
for culprit detection in the different layers of the geomet-
ric reasoner (see Figure 5): spatial constraints in Section
8, and unavoidable collisions in Section 10. Then, Sec-
tion 9 focuses on geometric dependencies chains, which

Fig. 14. Representation of the spatial constraints as bounding
boxes.

is not a culprit detection technique, but a way of selecting
subsequences of actions from the symbolic plan.

8. Culprit detection with spatial constraints

This section describes the first test performed by the geo-
metric reasoner: the “consistency check” (see Figure 5,
layer (1)). The problem is relaxed by representing the poses
of objects/robots by a set of bounding boxes. A network
of linear constraints is built, from which inconsistencies
are detected using linear programming techniques. These
inconsistencies reveal violations of kinematic constraints or
reachability problems. It is crucial that the bounding boxes
always cover a larger space than the space actually occupied
by objects/robots, in order to guarantee that only unfeasible
geometric states are rejected by the constraints.

8.1. Building the linear constraint network

The spatial constraints are the geometric counterparts of the
spatial relations introduced in Section 6.4. Hence, we also
define three types of spatial constraints: grasp, placement,
and dock (see Figure 9). These constraints are automatically
generated from the symbolic plan. One can see them as a
set of bounding boxes, which encompass all the possible
poses in which each object/base/TCP can be. For instance,
a placement constraint can be visualized as a polyhedral
region encompassing the location in which the center point
of the object has to be after the corresponding place action
has been executed. The placement constraint on the pose of



904 The International Journal of Robotics Research 35(8)

Fig. 15. Polyhedral region for the TCP relative to the object
during a grasp action.

an object oi with respect to a fixed location at step j can thus
be written as a linear inequality

a(j) ≤ p(j)
i ≤ b(j) (2)

with a(j) =( locxmin, locymin, loczmin)
and b(j) =( locxmax, locymax, loczmax)

where a(j) and b(j) define a bounding box around the loca-
tion in the world frame. In most cases, the constraints are
between two objects that can move, e.g. a grasp constraint
between an object at pose pk and a TCP at pose pi at step j
can be written as

p(j)
k + c(j) ≤ p(j)

i ≤ p(j)
k + d(j) (3)

with c(j) =(−ε,−ε, δ)
and d(j) =( ε, ε, δ)

where ε and δ are some parameters that can be extracted
from the grasp frame (see Figure 15). Note that depending
on the type of constraint, the bounding box is not neces-
sarily centered around the object. The poses of unmovable
objects and the initial poses of movable objects are modeled
as variables subject to unary equality constraints, e.g.

p(0)
i = pinit (4)

where pinit is a constant.

The linear constraint network is initialized with the ini-
tial poses of objects/bases/TCPs, and built by iterating over
the actions of the symbolic plan. For each action, one or
several constraints are added. A new set of variables is cre-
ated for each object/base/TCP that is moved. From now on,
we use the term “variable” to denote the translation p of an
object, which actually consists of three variables ( x, y, z).
Let us describe this process with an example. Consider for
instance the symbolic plan:

A1: dock (r2d2, left_base)
A2: pick (right, top, block_a, table)
A3: stack (right, top, block_b, z1, block_a)

In the initial state s0, the bounding box of each variable is a
point corresponding to the initial pose. After the dock action
A1, r2d2 is moved, and so is block B, which is placed on
r2d25, hence two variables r2d2(1) and block(1)

B are created.
A dock constraint is posted to the constraint network, which

imposes the new variable r2d2(1) to be within a bounding
box centered around left_base(0). left_base(0) is a variable
representing the pose of the first link of the left arm of
Justin. A placement constraint P (1) is created between r2d2
and block B, since the block is connected to the robot (this
is known from the symbolic state). After the pick action
A2, a new variable tcp(2)

right is created since the right TCP is
moved. A grasp constraint is added to the network, that con-
strains the right TCP to be within a bounding box located
above block A (see Figure 14). The exact size and position
of this bounding box is determined using the predefined
grasp frames of this object class. Finally, after the stack
action A3, the right TCP and block A are moved, hence new
variables are created for both. Two constraints are created:
a grasp constraint G(3) between the TCP and the object, and
a placement constraint P (3) between block B and block A.
The kinematic constraints for manipulators (K(2) and K(3))
can be modeled as a box centered on the first joint of the
manipulator with dimensions depending on the length of
the manipulator, although a better approximation is possible
(Lagriffoul et al., 2012). The resulting constraint network is
shown in Figure 16.

We define the vector of the variables representing the
poses of all objects/bases/TCPs in the problem

x =( x1, x2, . . . , xN )

The bounding boxes are represented by a set of intervals that
define an upper bound and a lower bound on these variables,
which we call the domain D of the problem

D = 〈[x1, x1], [x2, x2], . . . , [xN , xN ]〉
The set of all linear constraints of the problem

C = {G(j),P (j),D(j),K(j)}, j ∈ {1, . . . , n}
can be expressed as

Dx ≤ e (5)

where D and e aggregate all the spatial constraints of the
problem (see expressions (2), (3) and (4)).

8.2. Culprit detection in the linear program

Identifying a culprit subset of constraints in a constraint
network is a difficult problem in general. In the case of
linear programming, there exists efficient methods (imple-
mented in most solvers) to compute a so called Irreducible
Infeasible Set (IIS). An IIS is an infeasible subset of con-
straints, from which removing one constraint makes the
unfeasible problem feasible. IISs are useful for diagnosing
a potential cause of infeasibility in simple cases, but often a
problem has many IISs (potentially an exponential number)
and finding the actual cause of failure requires a tedious
find-and-repair process. IISs are essentially a tool for find-
ing modeling errors, which is not useful here. Imagine for
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Fig. 16. The spatial constraints graph for the plan 〈A1, A2, A3〉
from Section 8.1. The arrows represent the constraints created
for each action: grasp constraints (G), placement constraints (P),
dock constraints (D), and kinematic constraints (K). The variables
in the figure represent the three components of the translation x, y
and z. The nodes indexed by 0 are constants.

instance that the problem illustrated in Figure 14 gives rise
to an inconsistency, i.e. the right TCP cannot reach r2d2 in
order to stack block A on block B. In this case, an IIS would
tell us that the inconsistency could be removed if the dock-
ing area was larger, or if the right arm of Justin was longer,
etc. These constraints are not modeling errors, but the real
constraints of the problem. Rather, what is useful here is
to determine the culprit set of constraints which causes
inconsistency. The solution to this problem is to compute
a set of constraints which contains at least one constraint
from each IIS in the model (Chinneck, 1996). This prob-
lem, referred to as the IIS set covering problem, is known
to be NP-hard (Chakravarti, 1994). This problem is related
to computing the maximum cardinality feasible subsystem
(see, e.g. Parker and Ryan (1996)). In the present work,
we take advantage of the specific structure of the constraint
network to devise a simpler technique.

8.3. Identifying the culprit set in a line-network

While constraints are added to the network, a hypergraph of
the constraint network is built, in which the edges represent
constraints of type bounding box, and the nodes contain the
variables of the pose of an object at a certain time step (see
Figure 16). We call this graph the spatial constraints graph.
Each time a constraint C is posted, a consistency check is
performed. Therefore, when an inconsistency is detected,
we know that C belongs to the set of culprit constraints.
Then, the graph is used for tracing back all the constraints
in relation with C, until a unary equality constraint (4) is
reached. When such a constraint is reached, there is no
need to continue the process, since the associated variable
is constant, hence its value cannot be affected by other con-
straints. We call the constraint network resulting from this
process the candidate culprit set. Let us consider the exam-
ple in Figure 14. Imagine that an inconsistency is detected

c0 : p0 = pinit

c1 : p0 − c(1) ≤ p1 ≤ p0 + d(1)

c2 : p1 − c(2) ≤ p2 ≤ p1 + d(2)

. . .

ci−1 : pi−2 − c(i−1) ≤ pi−1 ≤ pi−2 + d(i−1)

Fig. 17. Linear inequalities resulting from splitting a line-
constraint network in two parts. pinit, c(1), d(1), . . . , c(i−1), d(i−1)

are constants.

when the placement constraint P (3) is posted. Then, one can
trace back the following candidate culprit set

S = {K(3),G(3),P (3),P (1),D(1)}

Tracing the candidate culprit set is a preliminary step before
finding the culprit set, which eliminates irrelevant con-
straints (K(2) and G(2) in this example). In order to prove
that the candidate culprit set S is the culprit set, we have to
prove that there is no smaller subset of S causing inconsis-
tency. This may require many consistency checks, because
it requires checking all the subsets in the power set of S.
Another approach consists in proving that all the subsets
of cardinality n − 1 are consistent. This proves that S is
the smallest inconsistent set, hence the culprit set. In other
words, it is only needed to show that removing any one of
the constraints in S removes the inconsistency. We propose
a simple way to proceed in case the candidate culprit set is
a line-network, i.e. a network of which the topology is a tree
with branching factor equal to 1.

Proposition 1: In an inconsistent line-network with con-
straints of type bounding box, removing any one of the
constraints removes the inconsistency.

Proof: Let s = {c0, . . . , cn} be a line constraint network.
Removing a constraint ci from s always results in two line-
networks {c0, . . . , ci−1} and {ci+1, . . . , cn}, where c0 and cn

are unary equality constraints of type (4) (because they
correspond to the initial pose of an object), and the con-
straints c1, . . . , ci−1, ci+1, . . . , cn−1 are binary constraints of
type “bounding box” (see equation (2) or equation (3)). Fig-
ure 17 represents the linear inequalities composing such a
line-network

The two subsets of constraints are trivially feasible because
it is always possible to recursively construct a solution
( p0, p1, . . . , pi−1) (see Figure 18)

with pk =
1

2
( d(k) − c(k))+pk−1, k = 1, . . . , i− 1 (6)

�

Therefore, if the candidate culprit set is a line-network, then
it is necessarily the culprit set.
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Fig. 18. Example of a trivial solution with real intervals instead
of bounding boxes: p1 = 1

2 ( 3− 1)+0 = 1, p2 = 1
2 ( 1− 2)+1 =

1
2 , p3 = 1

2 ( 2−1)+ 1
2 = 1. But if a unary constraint is imposed on

p3, the system may be inconsistent, for example with p3 = x, x <

−10 or x > 10.
.

With the culprit set, one can automatically generate a
logical constraint for the task planner, using the mapping
between geometric constraints and spatial relations:

G(3) → relation(right, blockA, grasp, top, 3)

P (3) → relation(blockB, blockA, placement, z1, 3)

P (1) → relation(r2d2, blockB, placement, z1, 1)

D(1) → relation(r2d2, left base, dock, 1)

and the mapping between variables and symbolic objects:

right_base(0) → right_base

left_base(0) → left_base

The logical constraint is constructed as a conjunction of
terms, which simply are the spatial relations associated to
the geometric constraints. Besides, using Proposition 1,
we observe that the inconsistency in the culprit set can be
removed if either c0 or cn are removed. This means that the
inconsistency can be avoided if one of the objects that are in
their initial pose was moved. This information is included
into the constraint as well (in the last two lines). Finally, the
following expression is generated:

:- relation(right, blockA, grasp, top, t)

relation(blockB, blockA, placement, z1, t)

relation(r2d2, blockB, placement, z1, t)

relation(r2d2, left_base, dock, t)

not 1{moved(left_base, 1..t-1); moved(right_base,

1..t-1)}

In natural language, this means that the ASP solver cannot
return a plan in which r2d2 is docked at the left base, while
B is placed on r2d2 and A is placed on B, while the right
TCP is grasping B, unless the left base or the right base is
moved in a previous time step.

Note that in this constraint, the relations are indexed by
the same variable t, whereas the corresponding constraints
have been posted in the network at different time steps. This
is not wrong, since the spatial relations persist at the sym-
bolic level until they are destroyed according to the rules
defined in Section 6.4. Therefore, this constraint prevents
the task planner from returning the plan 〈A1, A2, A3〉, as
well as all the plans that cause these relations to be true
at the same time. This is another reason why spatial con-
straints are effective: they make abstraction of time to a

Fig. 19. The spatial constraints graph for the sequence of actions
〈A1, A2, A22, A3, A32〉.

Fig. 20. The simplified spatial constraint graph after tracing back
and simplification.

certain extent, hence they prune out entire families of plans
regardless of the specific ordering of actions.

8.4. Identifying the culprit set in a tree

In more complicated cases, the candidate culprit set is not a
line-network, but a tree6. In this case, there may be several
possible culprit sets. Consider for instance the following
sequence of actions:

A1: dock (r2d2, left_base)
A2: pick (right, top, block_a, table)
A22: pick (left, top, block_c, table)
A32: place (left, top, block_c, z1, r2d2)
A3: stack (right, top, block_b, z1, block_a)

This is the same plan as in the previous example, with the
addition that in parallel with actions A2 and A3, Justin picks
and places another block C from the table onto r2d2 with the
left arm (actions A22 and A32). The corresponding constraint
network is given in Figure 19. If the constraints associated
to A3 are posted before the constraints associated to A32,
then an inconsistency is detected and we can trace back a
set of constraints which is a line-network, as in the previous
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example. Otherwise, the following candidate culprit set is
traced back

S′ = {K(3),G(3),P (3),P (1),D(1),P ′(3),G ′(3),K′(3)}
Figure 20 represents a simplification of the candidate cul-
prit set. Note that the variable left_base(0) can be seen as
two different leave nodes because it is a constant. In this
example, the culprit subset is obviously {C1, C3} because the
actions A22 and A32 do not resolve the kinematic problem of
the right manipulator being unable to reach r2d2. But auto-
matically finding the culprit set is not easy in the general
case. It requires finding the smallest inconsistent subset,
i.e. performing consistency checks on the power set of the
set of constraints, considering subsets of increasing size. In
this way, the inconsistent set with the smallest possible car-
dinality can be found. We refer to this set as the optimal
culprit set, but there may be other culprit sets, which we
refer to as minimal culprit sets. These sets are minimal in
the sense that removing any constraint from them removes
the inconsistency, but their cardinality is not minimal.

Finding a culprit set in a tree constraint network is com-
putationally expensive, but in all the scenarios addressed in
this paper, the structure of the problem allows us to use a
simpler technique. The reason is that in the problems we
address, the culprit set is always a line-network. Indeed, the
topology of the constraint network maps to the kinematic
relations between robots/objects at the time of inconsis-
tency. This means that a culprit constraint network consist-
ing of three or more branches, would result from a situation
in which three or more robots are simultaneously interact-
ing with the same object, which never occurs, because it is
not allowed by the symbolic domain.

Using the assumption that the culprit set is a line-
network, we can use Proposition 1 and iterate over all the
constraints in order to test if they belong to the culprit sub-
set or not, hence isolating the culprit set from the candidate
culprit set. We use the following procedure

Given a candidate culprit set S = {C1, . . . , Cn} with bound-
ing box constraints, for each Ci ∈ S:
if S \ {Ci} remains inconsistent, then S← S \ {Ci}

which requires n consistency checks. The constraint net-
work resulting from this process is a minimal culprit set.
Once a minimal culprit set is found, a logical constraint
is automatically generated as previously explained, and
returned to the ASP solver. Note that there may exist several
culprit sets depending on the order in which the constraints
are tested. It is possible to enumerate all of them and send
them in bulk to the ASP solver, or simply return the first
one and detect the other ones during the next iterations.

In summary, detecting the culprit spatial relations is
achieved by detecting inconsistencies in a constraint net-
work representing the spatial constraints of the problem.
This is done efficiently for two reasons. First, inconsisten-
cies are detected using linear programming, for which effi-
cient methods with polynomial worst-case complexity exist

(Boyd and Vandenberghe, 2004). The second reason is that
we maintain a graph representing the constraint network,
and take advantage of its structure to trace back a candidate
culprit set. If the candidate culprit set is a line-network, it is
the culprit set itself. If it is a tree, the culprit set can be found
with a simple procedure with linear worst-case complexity.

9. Culprit detection in geometric
dependencies chains

This layer of the geometric reasoner also works on a relax-
ation of the problem, but unlike the “Spatial relations” layer,
the actions are evaluated with their exact kinematic con-
straints, and a search in the space of grasps and placements
(geometric backtracking) is performed. The relaxation con-
sists of (i) isolating subsequences of actions in the symbolic
plan, (ii) not performing motion planning (only the final
configurations resulting from actions are considered, i.e.
grasp/release positions for pick/place actions, or final pose
of the robot for dock/reach actions). First, we introduce the
geometric backtracking process.

9.1. Geometric backtracking

Geometric backtracking is a search process which allows
us, when an action fails, to reconsider the choices made at
the geometric level for previous actions (Bidot et al., 2015;
Karlsson et al., 2012). In the present work, we reconsider
the choices made for grasps and placements. It is also possi-
ble to reconsider the choices of inverse kinematic solutions
for manipulators, but we found that few problems need this
feature to be solved. Algorithm 1 implements geometric
backtracking in a systematic depth-first search manner, but
it can be implemented in different ways, e.g. by combining
several probabilistic roadmaps (Cambon et al., 2009).

The function is initially called with the initial configura-
tion (see Section 7.2) which gives a geometric description
of the initial scene, a symbolic plan (from the ASP solver),
and an empty list sol. At each call, the function takes the
first action A in the sequence S, and keeps the remaining
list T for the recursive call (line 9). The resolution r of an
action is the number of ways a symbolic action can be geo-
metrically instantiated. Then, the function iterates over all
the possible action indexes k (see Section 7.2) for the action
A. The function resultConfig( ) (line 5) returns the configu-
ration resulting from applying the geometric action ka on
the configuration c, or null if the action is unfeasible. If the
action is feasible, the temporary solution sol′ is appended
with the current action index (line 7). In case some actions
remain to be evaluated (T 
= ∅), the function is recursively
called with the new configuration and the list of remaining
actions. In case of failure, the next action index k is tried.
If all of them fail (line 14), the null value is returned to
the calling function through line 9, and the calling func-
tion tries the next action index. If the last action is reached
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Algorithm 1: GeometricBacktracking

Function GeometricBacktracking( c,S, sol)

input : c: a configuration
S: a sequence of symbolic actions
sol: a list of action indexes

1 A = S.head( )
2 T = S.tail( )
3 r = A.resolution

4 for k← 1 . . . r do

5 c′ = resultConfig(k a, c)

6 if c′ 
= null then

7 sol′ ← sol ∪ k

8 if T 
= ∅ then

9 temp = GeometricBacktracking( c′,T , sol′)
10 if temp 
= null then
11 return temp

12 else
13 return sol′

14 return null

(T = 0, line 13), the solution is returned to the initial call-
ing function through line 11 in the form of a list of action
indexes, which indicates which grasp/placement to use for
each symbolic action.

GeometricBacktracking() is a depth-first search algo-
rithm with no heuristic to guide the search. Although some
work has been initiated in this direction (Bidot et al., 2015;
Lagriffoul et al., 2012), geometric backtracking remains
a difficult problem because of the large branching factor
and because geometric computations such as motion plan-
ning are not computationally reducible. In practice, Geo-
metricBacktracking() cannot complete in reasonable time if
the depth exceeds 4-5 actions. Therefore, a cutoff time has
to be used. However, if the problem contains few geometric
dependencies, then less geometric backtracking is needed,
and it is possible to find a solution for a symbolic plan con-
taining dozens of actions. Next, we define different types
of geometric dependencies and the concept of geometri-
cally ground sequence of actions, which is used to isolate
subsequences of actions to be separately evaluated.

9.2. Geometric dependencies

This section refers to the notion of Geometric Reachable
Set and Geometric dependency between two actions, which
are formally defined in Appendix B. Next, we will consider
three types of geometric dependencies in particular:

(A)dependencies based on reachability;
(B) dependencies based on body connection;
(C) dependencies based on collisions.

Fig. 21. Illustration of a part of the symbolic plan 〈A1, . . . , An〉.

We illustrate these through an example. Consider for
instance the following subsequence of symbolic actions,
illustrated in Figure 21. We assume that the plan contains
some other actions performed by other robots on other
objects, and that block A was not manipulated prior to
action Ac5:
. . .

Ac1: pick (r2, side, bottle, cellar)
. . .

Ac2: reach (r2, table)
Ac3: place (r2, bottle, z1, table)
. . .

Ac4: reach (r1, table)
Ac5: pick (r1, side, block_a, table)
. . .

The first type of geometric dependency (A) exists between
actions Ac2 and Ac3, or Ac4 and Ac5. The geometric reachable
set for the actions Ac3 and Ac5 is affected by the geomet-
ric instance chosen for the actions Ac2 and Ac4, because
the poses that the TCP can reach depend on the pose of
the base relative to the table. The second type of geomet-
ric dependency (B) exists between actions Ac1 and Ac3,
because the set of poses in which the bottle can be placed
on the table depends on how the bottle has been grasped,
even if the action Ac2 is performed in the same way. This
depends on the connection between the gripper and the
bottle. The third type of geometric dependency (C) exists
between actions Ac3 and Ac5 because placing the bottle on
the table may cause collisions between the bottle and r1,
which may change the geometric reachable set of the action
Ac5. We denote a geometric dependency of type T between

Ai and Aj by: Ai
T� Aj.

According to definition 2, geometric dependencies of
types A and B are direct geometric dependencies, since the
geometric reachable set is only affected because of kine-
matic issues. Note also that in a direct geometric depen-

dency Ai
dir.� Aj, Aj cannot be geometrically instantiated if Ai

is not geometrically instantiated. Consider for example the

relation Ac1
B� Ac3: without a geometric instance for Ac1,

the position of the bottle within the gripper is unknown,
hence no geometric instance can be defined for Ac3. Sim-

ilarly with Ac4
A� Ac5, the geometric instantiation of the

pick action requires the pose of the robot to be defined.
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Some actions require several actions in order to be instanti-

ated, then we denote it by {Ai1 , . . . , Aik }
dir.� Aj. In contrast,

when two actions have a non-direct geometric dependency,
the second action may be instantiated even if the first action

is not. Consider Ac3
C� Ac5 for instance: Ac5 can be geo-

metrically instantiated without the pose of the bottle on the
table being defined.

We say that an action is independent (with respect to
the plan containing it) if it has no direct dependency with
other actions. In our example, Ac2 and Ac4 are indepen-
dent because they only depend on the position of the table,
which cannot be moved (although they may have non-direct
dependencies with other actions, because of collisions).

Definition 3 Geometrically ground subsequence of actions
Let P = 〈A1, . . . , An〉 be a sequence of actions, and Q =
〈Ai1 , . . . , Aiq〉 a subsequence extracted from P , i.e. 1 ≤ i1 <

· · · < iq ≤ n. The subsequence Q is geometrically ground
iff ∀Aj ∈ Q,

Aj is independent or

∀Ap ∈ P such that Ap
dir.� Aj, we have Ap ∈ Q.

In other words, a ground sequence of actions is “self-
contained”, and can be geometrically instantiated even if
it is a subsequence of actions extracted from a larger
sequence. Examples of ground subsequences of action are
given in the next subsection. For the sake of brevity, we
simply use the term “ground” in the remainder of the article.

9.3. Finding culprit subsequences

In order to find a culprit subsequence of actions in a sym-
bolic plan 〈A1, . . . , An〉, one needs to find a minimal sub-
sequence of actions 〈Ac1, . . . , Acq〉 which is unfeasible. In
order to prove that a subsequence is not feasible, we deac-
tivate collision detection for objects which are not manip-
ulated in the subsequence, and use the algorithm Geo-
metricBacktracking(), which searches a possible geometric
instantiation of that subsequence. If it returns false, then
the subsequence would a fortiori be unfeasible if executed
within the original plan, and therefore is a culprit one.

The difficulty is that one must work with the power set
of {A1, . . . , An}, i.e. checking all the subsequences with one
action, two actions, three actions, etc. However, the basic
problem is not about the combinatorial, but rather about
finding subsequences of actions which are ground, because
a subsequence which is not ground cannot be geometrically
instantiated in the first place. Consider again the problem
in Figure 21 for example. The plan fails because wherever
the bottle is placed on the table, the bottle prevents r1 to
grasp block A. Intuitively, the culprit subsequence seems to
be 〈Ac3, Ac5〉. In order to prove it, one needs to show that
all the possible combinations of the geometric actions kac3

and k′ac5 are unfeasible. The problem is that 〈Ac3, Ac5〉 is
not ground because it cannot be geometrically instantiated
without the actions Ac1, Ac2 and Ac4.

Fig. 22. A manipulation problem with two robots. The goal state
is to have both blocks stacked on table1 (dashed line).

Therefore, in order to detect culprit subsequences, one
must first find the ground subsequences, i.e. identifying
the direct geometric dependencies that exist between the
actions of the plan. Consider the actions of the symbolic
domain and their parameters (we limit ourselves to pick,
place, and reach for clarity):

pick (Robot, Grasp_type, Object, Location)
place (Robot, Object, Axis, Location)
reach (Robot, Location)

The direct dependencies can be determined by mapping the
parameters of actions in the symbolic plan with domain
knowledge provided by the user about how actions affect
object reachability and body connection (see Tables 2 and
3). Using this information, the graph of direct geometric
dependencies Gdir can be automatically constructed.

We illustrate the construction of this graph with an exam-
ple. Consider the problem illustrated in Figure 22. The goal
is to have block B stacked on block A on table1. A possible
symbolic solution plan for this problem could start with the
following action sequence:

A1: reach (r1, table2)
A2: reach (r2, table3)
A3: pick (r2, top, block_b, block_a)
A4: reach (r2, table2)
A5: place (r2, block_b, z1, table2)
A6: pick (r1, top, block_b, table2)
A7: reach (r2, table3)
A8: reach (r1, table1)
A9: pick (r2, top, block_a, table3)
A10: reach (r2, table2)
A11: place (r1, block_b, z1, table1)
. . .

The first step in constructing Gdir is to determine for each
action, using Table 3 and the parameters of the symbolic
actions, which objects are moved, and which connections
between bodies are created (see Figure 23). Then, for each
action Aj, using the table of dependencies (Table 2), the pre-
vious actions are listed for finding the last action(s) that
changed what Aj depends on (arrows in Figure 23). Note
that this process runs in time quadratic in the number of
actions of the plan.

As an example, the action A5 place(r2, block_b, z1,
table2) depends on action A4 because A4 moved the robot’s
base (type (A) dependency) and on action A3 because A3

created a connection between the TCP and the object (type
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Fig. 23. Graph of direct geometric dependencies. The column on
the right indicates the objects/bodies that are moved because of
their connection with a mobile base.

Table 2. Actions and their associated dependencies.

Action Depends on pose of Depends on connection of

pick Robot_base, Object Location and Object
place / stack Robot_base, Location TCP and Object
reach / dock Location ∅

Table 3. Actions and their effects on pose and connection.

Action Changes the pose of Creates a connection between

pick TCP TCP and Object
place / stack TCP, Object Location and Object
reach / dock Robot_base ∅

(B) dependency). A5 also depends on the pose of the loca-
tion table2, but in this plan, table2 was not moved in the pre-
vious actions, hence no dependency is represented. Then, a
set of ground subsequences Sground can be built by tracing
back the direct dependencies from each action:

Sground = {
〈A1〉, 〈A2〉, 〈A2, A3〉, 〈A4〉, 〈A2, A3, A4, A5〉,
〈A1, A2, A3, A4, A5, A6〉, 〈A7〉, 〈A8〉,

〈A7, A9〉, 〈A10〉,
〈A1, A2, A3, A4, A5, A6, A8, A11〉}
As an example, the subsequence 〈A7, A9〉 is ground because
it can be instantiated regardless of other actions (it depends
on the pose of table3 which is unmovable, and it depends
on the pose of block_a which has not been moved yet). In
contrast, the subsequence 〈A8, A11〉 is not ground because
action A11 requires the prior grasp of block_b.

In practice, since geometric backtracking is computation-
ally expensive, only ground subsequences containing up to
four actions are evaluated. It is possible to construct more
(and longer) ground subsequences by combining the ele-
ments of Sground with each other, but this is not done for the
same reason. Culprit subsequences are detected by running
the algorithm GeometricBacktracking() on each ground
subsequence in Sground . Let us denote by 〈Ag1, . . . , Agm〉
a ground subsequence. In case of failure, the depth d
at which the failure occurs is recorded. The subsequence
〈Ag1, . . . , Agd〉 is therefore a culprit subsequence.

During the evaluation of a subsequence, different types of
collision checks are performed (see Section 10) in order to
identify the objects that always collide. If the subsequence
is unfeasible, a constraint is returned to the task planner, for
example:

:- action1 (param11, param12, t1),

action2 (param21, param22, t2),

action3 (param31, param32, param33, t3),

...

t1<t2, t2<t3, ...,

not moved(colliding_object1, 1..t2-1); not

moved(colliding_object2, 1..t3-1); ...}.

The culprit subsequence is defined by a partial order on the
actions. This representation is general, hence a large num-
ber of symbolic plans can be ruled out by this constraint.
However, this type of constraint is weaker than the con-
straints returned by the “Spatial relations” layer, in which
no order on the actions is imposed.

In this section, we have described the second layer of the
geometric reasoner, which detects culprit subsequences of
actions within a symbolic plan. It uses the direct geomet-
ric dependencies between actions in order to extract ground
subsequences which can be tested independently. In the next
section, we explain in more details the different types of col-
lision checks that are performed in both the first and second
layers.

10. Different types of collisions checks

Unavoidable collisions checks are performed in layers (1)
and (2) of the geometric reasoner (see Figure 5). Unavoid-
able collisions are a common cause of infeasibility in
CTAMP problems: when all the geometric instantiations
kaj of an action Aj in the plan result in a collision. We
detect three types of unavoidable collisions, which return
constraints of different strength:
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• strong unavoidable collisions: collisions with fixed
obstacles only (see Figure 1);

• weak unavoidable collisions: collisions with objects that
have not yet been moved in previous time steps;

• collision with unavoidable volumes, i.e. regions of
space which are necessarily occupied at some time step.

These three types of collision detection checks are per-
formed both in the “Spatial relations” layer (1) and in the
“Geometric dependencies chains” layer (2) (see Figure 5).
In both cases, the same types of collision checks are per-
formed, but the way the geometric configurations are sam-
pled is different. In this section, we describe how this is
done in the “Spatial relations” layer, i.e. using bounding
boxes.

10.1. Strong unavoidable collisions

When this test is performed, a set of bounding boxes (D)
has been computed for each object/base/TCP at different
time steps (see Section 8). Algorithm 2 is run for each of
them, following the chronological order of the steps. First
of all, Algorithm 2 deactivates collision detection for each
object/base/TCP, except oi (line 1). This means that only the
collisions between oi and the fixed obstacles are considered
during the collision detection phase. Then, it retrieves from
D the bounding box bbox associated to the object/base/TCP
oi (line 2). From this box, a discrete set of positions is uni-
formly sampled, as well as a set of orientations (line 4),
and the pose of the object/base/TCP is updated accordingly
(line 5). The orientation γ represents the rotation around
a reference axis applied to a template transformation, as
described in Section 7.1. The function collide() returns a
list of colliding objects, if any (line 6). If one sampled pose
is collisions-free (line 7), this means that collisions are not
unavoidable and the function returns false (line 8). Other-
wise, a list of objects causing the collisions is populated at
line 10.

The process is demanding when an unavoidable colli-
sion exists because all the samples need to be tested. In
such case, a logical constraint is automatically generated
as explained earlier. The candidate culprit set is found by
back-tracing from the node o(j)

i in the spatial constraints
graph (see Section 8.3). For instance, the problem depicted
in Figure 1 would result in the following constraint:

:- relation(p1, block_a, placement, z1, t)

relation(block_a, block_b, placement, z1, t)

relation(block_b, block_c, placement, z1, t)

relation(block_c, block_d, placement, z1, t)

relation(gripper, block_d, grasp, top, t)

not 1{moved(p1, 1..t-1)}

10.2. Weak unavoidable collisions

This test is similar to the strong unavoidable collisions
test, but it also includes collisions with the movable objects

Algorithm 2: DetectStrongUnavoidableCollisions

Function DetectStrongUnavoidableCollisions(D, oi, j)

input : D: a domain
oi: an object/base/TCP
j: a step in the symbolic plan

1 deactivate all movable objects but oi

2 bbox = {[xoi
(j), xoi

(j)], [yoi
(j), yoi

(j)], [zoi
(j), zoi

(j)]} ⊂ D

3 unavoidable = ∅
4 forall the ( x, y, z)∈ bbox, γ ∈ [0, 2π ] do

5 setPose(oi, x, y, z, γ )
6 collisions = collide()

7 if collisions = ∅ then
8 return false

9 else
10 unavoidable← unavoidable ∪ collisions

11 return unavoidable

Fig. 24. Example of weak unavoidable collision between the TCP
and the bottle.

that have not been moved yet (according to the ordering of
actions). If an object consistently causes such collisions, a
logical constraint is generated using the spatial constraints
graph as previously explained. In addition, the constraint
enforces that the colliding object(s) have to be moved dur-
ing a previous time step. Consider for instance the situation
illustrated in Figure 24. The bottle prevents r1 from grasp-
ing block A. In this case, a weak unavoidable collision is
detected between the gripper and the bottle, and the follow-
ing constraint is returned to the task planner:

:- relation(area1, r1, dock, t) (a)
relation(block_a, gripper, grasp, side, t) (b)
relation(r2, block_a, placement, z1, t) (c)
not 1{moved(area1, 1..t-1); moved(r2, 1..t-1)} (d)
not moved(bottle, t2) (e)
t2<t

Like in the case of a spatial inconsistency, the extremities of
the culprit chain are used to determine that moving area1 or
r2 may relax the linear constraints, hence possibly avoid the
collision (d).
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Fig. 25. 2D example of construction of an UV: the center of a
rectangular object is to be placed on a square target location (top).
First, the unavoidable volume by rotation is computed (disc at bot-
tom left). Then the intersection of all possible translations of that
disc on the target location (bottom right).

This “occlusion problem” is often mentioned in similar
works. A common strategy is to use an ad hoc “occlud-
ing” predicate in order to artificially trigger the removal of
the object. Here, occlusions are just a special case of weak
unavoidable collision. The advantage is that the ASP solver
is not tied to a predefined strategy, and can find other ways
to solve the problem by using the logical constraint and the
inference mechanisms of the solver. Removing the object is
not the only possibility. Basically, any plan that makes one
term of the constraint (a, b, c, d, e) false resolves the prob-
lem. For example, without changing the length of the plan,
the solver could decide to choose a different docking area
(a = false), or use a top grasp (b = false). If no solution
is found this way, some actions can be added to the plan,
e.g. moving block A to another location with another robot
(c = false), moving the robot r2 (d = false), or picking the
bottle up and placing it away (e = false).

10.3. Unavoidable volumes

An unavoidable volume (UV) represents a region of space
which is necessarily occupied at a given time step. It is con-
structed by intersecting the volumes of an object in all the
possible poses it can occupy as the result of an action. Fig-
ure 25 depicts how UVs can be geometrically constructed.
In our implementation, these volumes are not computed in
this way. We use a predefined set of cylinders with differ-
ent radius and height, which are selected with ad hoc rules
when needed.

According to the example in Figure 25, UVs can only be
computed when the pose of a large object is constrained to
be inside a small region. However, UVs can be computed
in many situations, e.g. during stacking actions or grasping
actions, because both the TCP and the grasped object are
confined in a small region. Unavoidable volumes are com-
puted after a symbolic plan is found. The bounding boxes
are used to determine the size of the regions that each object
occupies at each time step. A data structure Luv is used to

Fig. 26. Example of collision between the gripper and the
unavoidable volume of the lid of the box.

store which UVs are occurring at each time step, and which
objects these UVs correspond to.

As an example, consider the situation in Figure 26, from
which the following sequence of actions is to be executed:

A1: pick (left, top, block_a, table)
A2: stack (left, top, block_a, z1, block_b)
A3: pick (right, top, lid, table)
A4: stack (right, top, lid, z1, box)

Regardless of how block A is stacked on block B, this
sequence is doomed to fail at step 4, when the lid is stacked
on top of the box. This problem can be detected as an
unavoidable collision between the left TCP and the UV of
the lid. Note that this problem cannot be detected either
by the strong unavoidable collision check (because it only
considers fixed obstacles), or by the weak unavoidable col-
lision check (because the left TCP is moved before the lid
is stacked, hence it is deactivated).

Collisions with UVs are detected together with weak
unavoidable collisions, using specific rules for activating
UVs at the correct time step. For instance in our example,
the UV of the lid must be activated because the position of
the left TCP at step 2 is not changed until the lid is stacked,
at step 4. This can be determined using the list Luv and the
symbolic plan P . P contains the information that the left
TCP is not moved after step 2, and Luv indicates that an UV
exists for the lid at step 4.

The logical constraint is generated as for weak unavoid-
able collisions: a culprit set is found by back-tracing from
the node o(j)

i (left_tcp(2)) in the spatial relation graph. But
in addition, another culprit set is back-traced from the node
corresponding to the object associated to the colliding UV
(lid(4)). The resulting constraint is built as a conjunction of
the terms of both culprit sets. In our example, this process
results in the following constraint:

:- relation(left_tcp, block_a, grasp, top, t)

relation(block_b, block_a, placement, z1, t)

relation(box, block_b, placement, z1, t)

not 1{moved(left_base,1..t-1); moved(box,1..t-1)}

relation(right_tcp, lid, grasp, top, t)

relation(box, lid, placement, z1, t)

not 1{moved(right_base,1..t-1);

moved(box,1..t-1)}

Note that UVs are also useful during geometric back-
track search, because in some problems, they prevent from
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Fig. 27. Geometric bodies attached to the TCP for Justin (left)
and Fabot (right).

placing an object in a pose which may compromise a future
action.

The collision checks described in this section are done in
all the layers of the geometric reasoner. For layers (1) and
(2), in the special case where the tested body oi is a mobile
robot, only the base is used for collision detection. If oi is a
gripper, only the body attached to the TCP (see Figure 27)
is considered, i.e. the links of the manipulator are ignored.
None of these restrictions apply in layer (3).

11. Experimental evaluation

In this section, we evaluate our approach on three differ-
ent scenarios, which present different difficult aspects of
CTAMP. Scenario 1 is based on the introductory example.
The difficulty lies in the peculiar geometric configuration
which requires a culprit detection mechanism in order to
avoid repeatedly encountering the same failure. This sce-
nario is used for evaluating the scalability of our approach.
Scenario 2 illustrates the generality of our approach, by
addressing a problem which usually requires ad hoc algo-
rithms to be solved. Scenario 3 shows an example of a
problem where the causes of failure need to be generalized
in order to solve the problem efficiently. Scenario 4 shows
a limitation of our approach: geometric constraints cannot
be fed back to the ASP solver, because symbolic aspects
(allocation of tasks to robots) play a predominant role. Sam-
ple videos of the solutions to these problems can be found
online7.

The linear programs are solved with Gurobi8, and col-
lision detection with the library V-Collide (Hudson et al.,
1997). Motion planning (for Justin’s manipulators, Fabot’s
manipulator and Fabot’s base) is done with bi-directional
RRT (LaValle, 2006) implemented in Java. The ASP com-
bined grounder-solver is clingo 4.2.18. The rest is imple-
mented in Java, and all the experiments are conducted on a
MacBook Pro with Intel Core 2 duo i5, 2.4 GHz.

For a better understanding of the results, we present in
Table 4 an order of magnitude of the time spent during the
culprit detection checks, for a plan containing 30 actions.
These checks are performed in sequence, and if a check
fails, the latter ones are not performed. It may seem counter-
intuitive to do the consistency check before the unavoidable
collisions checks which are faster. The reason is that the
consistency check is also used to compute the bounding
boxes necessary for the subsequent checks. The resolutions
used for discretizing actions are those presented in Table 1.
Note that when the geometric backtracking check succeeds,
a valid solution is found.

Table 4. Average times for the different checks performed by the
geometric reasoner, assuming a plan with 30 actions.

Check (layer) Success Failure

Consistency (1) 3 s 7 s
Unavoidable collisions (1) 0.07 s 0.15 s
Unavoidable collisions (2) 2 s 3 s
Geometric backtracking (3) 45 s 1 min

Fig. 28. The 3D version of the introductory example. The picture
shows the experiment with 10 blocks. For the experiments with
fewer blocks, the top-most blocks are removed from the piles.

The planning times given in the results do not include the
path smoothing time. When a solution is found, the motion
plans consist of raw RRT paths that guarantee feasibility,
but which need to be smoothed. We do not include this time
in the results because we consider that smoothing can be
done during execution (except for the first action), with an
average time of 2 seconds per action. We also use the term
iteration, which refers to the fact that a failure has been
detected and that a new plan is generated by the ASP solver
(see Figure 4).

11.1. Scenario 1

This experiment is inspired by the introductory scenario
as shown in Figure 28. The aim of the experiment is to
show the scalability of our approach on a combinatorial task
planning blocks-world problem with a non-trivial geomet-
ric problem. The task is to build a pile by stacking all the
blocks in a randomly chosen order. The location of the pile
is not specified, it may be on any of the modeled locations
(the table or one of the three trays).

A fixed obstacle is located above the table at a distance
such that it is impossible to build a pile with more than
two blocks on the table, otherwise the TCP would collide
with this obstacle. The right-most tray is not covered by
the obstacle, but its higher position prevents the robot from
stacking more than six blocks on it, because of kinematic
constraints. These constraints are not logically encoded in
the symbolic domain, the ASP solver will receive them
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Fig. 29. Total average planning time with respect to the number
of blocks. The numbers above the bars correspond to the average
number of actions in the solution plans.

from the geometric reasoner. If these two problems are
not detected, the problem is intractable because the planner
gets trapped in trying different plans which all lead to the
same failures, i.e. collision with the obstacle or kinematic
problem.

The problem was scaled up by increasing the number of
blocks from three to ten. The initial configuration resem-
bles what is depicted in Figure 28. Each problem was run
with four different initial positions for the tray on the table,
and with block A located on the tray. We did not change
the position of the piles, because of reachability issues for
blocks C and J. In total, 96 runs were conducted. For the
experiments with nine and ten blocks, it happens that no
solution is found because the planner ends up in a patholog-
ical situation where block C is occluded by the pile under
construction (see Figure 30, left). As a result, 91.7% of the
runs were solved.

The global results of the scalability experiment are pre-
sented in Figure 29. The trend is exponential, reaching up
to 15 minutes average planning time for ten blocks (52
actions). Nevertheless, the planner is able to find a solu-
tion in reasonable time (less than 1 minute) for problems
up to six or seven blocks, with plans containing around
30 actions. The time spent by the ASP solver on com-
puting the symbolic plan(s) increases faster than the time
spent on geometric reasoning. This is owing to the fact that
the algorithms used in the geometric reasoner run either in
polynomial time, or have a cutoff time.

The detailed results for the time spent on geometric rea-
soning are given in Figure 31. Detection of unavoidable
collisions all together is fast, and increases linearly with the
number of actions, while most of the time is spent on geo-
metric backtracking. Figure 32 shows the average number
of iterations needed to solve the problems, and the pro-
portion of each type of failure encountered during culprit
detection. For problems up to six blocks, all the failures are
detected by some strong unavoidable collision checks in the
“spatial relations” layer. It takes on average 4-5 iterations
for the geometric reasoner to detected that it is impossible
to build any pile on the table with more than two blocks,
using the left or right TCPs. Then a valid plan is found,

Fig. 30. Two pathological cases making the problem unfeasible
or difficult. On the left, a pile is built which prevents grasping
block C later on. On the right, blocks are placed on the table in
an intermediate position, and due to clutteredness, some actions
become difficult to perform.

Fig. 31. Details for the average time spent on geometric rea-
soning. “Unavoidable collisions” refers to the three types of
unavoidable collisions performed in layers (2) and (3) in Figure 5.

Fig. 32. This figure shows which checks in the geometric reasoner
detected the failures during the iteration process (see Figure 4). (1)
refers to the “Spatial relations” layer in Figure 5.

by building the pile on one of the two trays which are not
occluded by the obstacle.

For problems with more than six blocks, the consis-
tency check is triggered, because the planner finds solu-
tion plans in which the pile is built on the right-most tray.
Then an inconsistency is detected because it is not possi-
ble to stack more than six blocks for kinematic reasons.
For nine and ten blocks, the planner attempts to build the
pile on the table, which is also impossible with respect to
kinematic constraints. That is why we observe two extra
failed consistency checks. Note that this is also not possi-
ble because of the obstacle, but recall that in the sequence
of checks, the consistency check is performed before the
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collision checks. These consistency checks lead the planner
to choose the left-most tray as the only possible location
to stack the blocks, which explains why less unavoidable
collision checks are observed for nine and ten blocks.

Even when the main causes of failure have been detected,
the planner needs to iterate over several solution plans,
because it fails at the geometric level for reasons that are
not detected by any specific check. This happens when the
choice made at the geometric level for an action Ai causes
occlusions or motion planning failures for another action Aj.
If Ai and Aj are too far from each other in the plan, the geo-
metric backtracking layer cannot reconsider Ai and returns
failure. These situations typically occur because of pecu-
liar configurations, or when the number of objects increases
(see Figure 30). This explains why the number of geomet-
ric backtracking checks increases for more than six blocks
(Figure 32). Consequently, the geometric backtracking time
increases as well (see Figure 31), secondarily because the
plans are longer, but mainly because the geometric back-
tracking check is performed multiple times. Another prob-
lem of geometric backtracking failures is that they are not
informative for the ASP solver, because they just prevent it
from returning one specific plan.

In summary, our approach shows a decent performance
for plans up to 30 actions, although two factors appear
as a limitation for larger problem instances. (i) Task plan-
ning is a difficult problem in general. (ii) At the geometric
level, intricate situations occur more frequently for larger
problem instances. Often, they cannot be solved by geo-
metric backtracking, and lead to failures that do not guide
the ASP solver. Therefore, the planner has to iterate over
different plans until a plan without intricacies is found by
chance. This is time-consuming because geometric back-
track search has to be done several times.

11.2. Scenario 2

In this scenario, we replicate the experiment by Havur
et al. (2014) on rearrangement planning of multiple objects.
The aim of this experiment is to show the generality of
our approach, by applying it to a problem which usually
requires specific techniques to be solved. Rearrangement
planning is a variation of navigation among movable obsta-
cles (Stilman et al., 2007). These problems are known to
be complex, therefore a common assumption applied for
addressing them is to restrict the space of solutions to mono-
tone plans, i.e. plans in which objects are moved at most
once, which is an incomplete approach. We refer the reader
to Havur et al. (2014) for the related work. They propose an
approach with multiple stages, including the gridization of
the continuous plane and hybrid planning combining ASP
and geometric reasoning.

The scenario is illustrated in Figure 33. The goal is to
swap the position of the cup with the position of the tray
(meaning the center of the cup with the center of the tray).
Blocks A and B have to be moved in order to free some

Fig. 33. Erdem et al. (2011) experiment on rearrangement plan-
ning of multiple objects (left), and our setup (right). The difference
is that they use a mobile manipulator whereas in our setup Justin
remains in a fixed position.

Fig. 34. Left: Details for the average time spent on geometric rea-
soning. Right: Checks in the geometric reasoner used to detect
the failures during the iteration process (see Figure 4). (1) Refers
to the “Spatial relations” layer and (2) refers to the “Geometric
dependencies chains” layer in Figure 5.

space for the tray. The cup has to be moved to a tempo-
rary position, and placed at its final position after the tray
has been moved. Note that it is also possible to move the
tray first. The limited space on the table, plus the fact that
Justin can only use one manipulator makes the task diffi-
cult. It is also forbidden to stack the objects on each other,
otherwise the problem is less challenging. At the task level,
the problem is simple if the objects that need to be moved
are identified. At the geometric level however, the tempo-
rary poses of objects need to be carefully chosen because
the space is limited.

We conducted 100 runs, with randomized initial posi-
tions for all objects (ensuring that they are reachable). 100%
of the runs were solved. Depending on the initial configura-
tion, the solution plans contain six, eight, or ten actions in
respectively 29%, 46%, and 25% of the problem instances.
When the problem is solved with six actions (which is the
simplest case), the plan consists in moving the cup (respec-
tively the tray) to an intermediate position, moving the tray
to the position of the cup (respectively the tray), and then
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moving the cup to the position of the tray (respectively the
cup). Two or four extra actions are used when blocks A
and/or B need to be moved. The results are summarized in
Figure 34.

The time spent on ASP solving is negligible, hence the
chart on the left in Figure 34 practically represents the total
planning time: on average 12, 54, and 87 s for respec-
tively six, eight, and ten actions. Although most of the time
is spent on geometric backtracking, the chart on the right
shows that the type of failure which is the most frequently
detected is weak unavoidable collisions in the first layer.
These checks have not much impact on the geometric rea-
soning time because they are fast (Table 4), and occur early
in the sequence of checks (see Figure 5).

Let us illustrate the iteration process with an example
where block B is close to the cup, and therefore has to
be moved. We use two virtual locations (5×5 cm squares),
symbolically labeled target1 and target2, corresponding to
the initial centers of respectively the tray and the cup. The
goal is defined as:

:- not connected(target1, cup, t), horizon(t)

:- not connected(target2, tray, t), horizon(t)

Even though the initial state is randomized at the geometric
level, it remains symbolically the same for each run. There-
fore, the first plan returned by the ASP solver is always:

A1: pick(right, border, z1, tray, table)
A2: stack(right, border, target2, z1, tray)
A3: pick(right, top, z1, cup, table)
A4: stack(right, top, target1, z1, cup)

For action A2, the geometric reasoner detects an unavoid-
able collision with block B. The collision is detected as
“weak” since block B has not been moved yet. It is detected
in the first layer, i.e. by sampling all the positions of the
tray in a bounding box centered on target2. The following
constraint is returned:

:-relation(tray, right, grasp, border, t)

relation(target2, tray, placement, z1, t)

not 1{moved(block_b, 1..t-1); moved(cup, 1..t-1)}

The second plan avoids this problem by starting to move
the cup instead of the tray. But a similar problem occurs
because of a collision with the tray. Therefore a weak
unavoidable collision with the tray is detected and the
following constraint is returned:

:-relation(cup, right, grasp, top, t)

relation(target1, cup, placement, z1, t)

not 1{moved(tray, 1..t-1)}

Now, there are no more solutions within plans of length 4.
The solver increases the length to 5, for which there is no
solution, and then searches for a plan of length 6. The first
constraint enforces to move block B or the cup before plac-
ing the tray on target2. The third plan takes this constraint
into account by moving the cup in action A4:

A1: pick(right, border, z1, tray, table)
A2: place(right, border, table, z1, tray)
A3: pick(right, top,z1, cup, table)
A4: stack(right, top, target1, z1, cup)
A5: pick(right, border, z1, tray, table)
A6: stack(right, border, target2, z1, tray)

But a problem remains because of block B that still pre-
vents the tray from being placed on target2. Again, a weak
unavoidable collision is detected in the first layer and the
following constraint is returned:
:-relation(tray, right, grasp, border, t)

relation(target2, tray, placement, z1, t)

not 1{moved(block_b, 1..t-1)}

The ASP solver returns the fourth plan which satisfies all
the constraints, i.e. block B is moved before the tray is
placed, and the tray is moved before the cup is placed:

A1: pick(right, top, z1, block_b, table)
A2: place(right, top, table, z1, block_b)
A3: pick(right, border, z1, tray, table)
A4: stack(right, border, target2, z1, tray)
A5: pick(right, top, z1, cup, table)
A6: stack(right, top, target1, z1, cup)

But the problem remains that the cup has to be removed
before the tray is placed. Note that this problem was
detected at the first iteration, but since several colliding
objects were detected, the constraint contained a disjunc-
tion with respect to the objects to be moved (block B or
cup). Through several iterations however, this disjunction is
incrementally resolved. Finally, another weak unavoidable
collision is detected and this constraint is returned:

:-relation(tray, right, grasp, border, t)

relation(target2, tray, placement, z1, t)

not 1{moved(cup, 1..t-1)}

With this constraint, the ASP solver cannot find a solution
plan with six actions, but it finds one with eight actions, by
inserting two actions at the beginning of the fourth plan that
move the cup onto the table.

We showed through an example how our system solves a
particular problem instance. Five iterations are necessary to
detect which objects have to be moved, and in which order.
This is achieved quickly because the geometric checks
involved are fast, and the problem is simple at the symbolic
level. The difficulty is at the geometric level, in the choice of
the intermediate poses for the objects. They have to be cho-
sen in a way that does not compromise any future action,
which is not trivial because of the limited space together
with the kinematic constraints of the manipulator. These
geometric choices are facilitated by the unavoidable vol-
umes (see Section 10.3), which can be computed because
the tray is a large object to be placed on a small area. Nev-
ertheless, the UV of the tray is a cylinder which is smaller
than the actual tray (see Figure 25), hence the possibility
remains that some objects are placed in positions occupied
by the tray in the next steps. Consequently, a significant
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effort remains to be spent on geometric backtrack search in
order to find appropriate intermediate poses for all objects.

11.3. Scenario 3

This scenario demonstrates the capacity of our approach to
generalize from the detected failures, i.e. after detecting an
inconsistent configuration with two particular blocks, the
planner is able to prune out the plans leading to the same
failure with another combination of blocks. In the initial
configuration, an open box is located on the right side of
Justin, containing a pile with six blocks and a bottle, and
the lid of the box is set on the table (see Figure 35). The
goal is to have the six blocks inside the box and the box
closed with the lid:

:- not on_location(block_a,cylbox,t), horizon(t).

:- not on_location(block_b,cylbox,t), horizon(t).

:- not on_location(block_c,cylbox,t), horizon(t).

:- not on_location(block_d,cylbox,t), horizon(t).

:- not on_location(block_e,cylbox,t), horizon(t).

:- not on_location(block_f,cylbox,t), horizon(t).

:- not connected(cylbox,cylbox_lid,t), horizon(t).

There is no predicate to represent that an object is “inside”
the box, because we did not implement an action able to
achieve this geometric effect. Instead, we use the predicate
on_location, which represents the fact that an object is
directly connected to the box, or connected to a pile of
objects located in the box (see Section 6.2). We use the
following rule:

on_location(Object, Location, t) :-

connected(Location, Object, t).

and a rule that ensures the transitivity:

on_location(Object2, Location, t) :-

on_location(Object1, Location, t),

connected(Object1, Object2, t).

From these rules, there is a large number of combinations
that satisfy the goal: 1 pile with 6 blocks, 2 piles with 1 and
5 blocks, 2 and 4 blocks, or 3 and 3 blocks, etc., modulo all
the possible orderings of the blocks. We added a symbolic
constraint stating that no more than 3 piles can be made
inside the box, otherwise the problem gets difficult, due to
the size of the robot’s hands with respect to the size of the
box. Geometrically, it is not possible to close the box if the
bottle is inside, nor if more than 2 blocks are stacked on
each other. Therefore the only solution is to create 3 piles
with 2 blocks each.

The mobile robot Fabot was used in this scenario. It can
grasp all the objects with a side grasp, and unlike Justin,
it can grasp an object which is not clear, i.e. it can grasp a
whole pile of objects. With this additional robot, the prob-
lem can be solved in fewer steps, since some actions can be
done in parallel. On the other hand, parallel actions some-
times lead to intricate situations where both robots interfere
with each other (see Figure 37), which triggers costly GBT.

Fig. 35. A complex scenario combining several difficulties.

Fig. 36. Left: Details for the average time spent on geometric rea-
soning. Right: Checks in the geometric reasoner used to detect the
failures during the iteration process (see Figure 4). (1) Refers to
the “Spatial relations” layer in Figure 5.

Fig. 37. Examples of interference between both robots during
geometric backtracking. One of the robots cannot move its arm
after a pick action because the other robot’s arm is above (left), or
less common: Fabot’s TCP is trapped between Justin’s hand and
the grasped object (right).

The initial positions of the bottle and the pile were ran-
domized, and 100 runs were conducted. A solution was
found in 75% of the runs using a cutoff time of 5 minutes.
The average time for finding a solution is 131 s (standard
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deviation 59 s). The plans consist of 9 or 10 steps, contain-
ing 16 to 19 actions. The detailed results are presented in
Figure 36. We aggregated the results into two groups. In
the first group (28 runs out of 75), the problem was solved
in 72 s on average (standard deviation 9.6 s). In the sec-
ond group (47 runs out of 75), the problem was solved in
163 s on average (standard deviation 49 s). The ASP solv-
ing time is negligible: respectively 2.9 s and 4.5 s. The time
spent on geometric reasoning is dominated by geometric
backtracking, although not as strongly as in the previous
scenarios.

Both groups share the same three types of checks.
Unavoidable volumes are mainly used to detect that it is
not possible to place a block (or stack 2 blocks) in the box,
and leave the hand of Justin there while the box is closed.
They also detect that it is not possible to have a pile with 3
blocks and the lid on the box. Strong unavoidable collisions
detect that Fabot cannot pick/place a block in the box, or
stack a block on 1 or 2 other blocks in the box, without the
TCP colliding with the rim of the box (the TCP of Fabot is
by construction always horizontal). Weak unavoidable colli-
sions detect that it is not possible to place the lid on the box
without moving block C and/or D. Whether D needs to be
moved or not depends on the position of the pile: the handle
of the lid collides with block D if the pile is located in the
middle of the box. Once these culprits have been detected,
the problem is basically solved, unless the initial position
of the pile and the bottle are prone to interference, as illus-
trated in Figure 37 on the left, which explain the 25% of
failures, because GBT does not complete.

In order to explain why the second group of runs takes
twice the time to solve the problem, we need to analyze
what happens during the first iterations of the algorithm.
The first symbolic plan is always the same: putting the lid
on the box. Consequently the geometric reasoner feeds back
a constraint saying that this is not possible unless the bottle
or blocks C and/or D are moved. At the second iteration,
the ASP solver finds a plan in which the bottle is moved, by
stacking the bottle on block F with the right arm and putting
the lid on the box with Fabot. Depending on the initial con-
figuration, an inconsistency may be detected, because the
neck of the bottle may be too high to be reachable by the
right arm. But in some cases, no inconsistency is detected:
the TCP of Justin grasping the bottle is inside its bound-
ing box, although the exact kinematics do not allow that
movement. If it is detected, the problem is “easy”, otherwise
the system needs more iterations to figure out that stacking
the bottle on block F is not a good option. During these
iterations, extra consistency checks and geometric back-
tracking checks are performed as indicated in Figure 36,
which increases the planning time.

This scenario contains another difficulty which does not
appear in the presented results. There is a large number of
possible arrangements of the blocks to achieve the goal at
the symbolic level, from which only a small subset is geo-
metrically feasible, i.e. 3 piles with 2 blocks each. This is

Fig. 38. A transportation scenario with two mobile robots.

Fig. 39. Total average planning time with respect to the number
of blocks. The numbers above the bars correspond to the average
number of actions in the solution plans.

achieved thanks to the generalized constraints with types as
explained in Section 6.5. Once the system has tried to create
a pile in the box, e.g. F-E-D, and detected that this prevents
from placing the lid on the box, it generates a constraint
with object types, that prevents all possible combinations
of 3 blocks in the box with the lid on the box. Moreover,
the ASP solver can infer that it is impossible to build a pile
with 4, 5 or 6 blocks, because this is logically impossible
without first building a pile with 3 blocks. Therefore, it is
only possible to build 3 piles with 2 blocks each (remember
that we imposed a constraint of maximum 3 piles in the box
for space reasons). This example shows that the ASP solver
is not only used for planning action sequences, but also for
reasoning about spatial relations between objects.

11.4. Scenario 4

In this scenario, the task is to clean a set of objects. In the
initial state, objects are dirty and located at their respec-
tive tables (see Figure 38). In the goal state, they have to be
clean, and back to their initial position. Cleaning an object
is simulated by the action of placing that object on the table
in front of Justin. Note that this problem is not solvable by
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multimodal planning techniques, since symbolic reasoning
is needed to achieve the goal.

A simple solution consists of Fabot moving back and
forth between Justin’s table and the smaller tables, trans-
porting each object one after the other, which requires
6-7 actions for each object9. But since parallel actions are
allowed, since r2d2 can carry several objects, and since
Fabot can manipulate piles of objects, better solutions exist,
in which robots wisely cooperate with each other.

The problem is geometrically simple, i.e. there are no
narrow passages, and only weak geometric dependencies
between actions. Therefore, the symbolic plan returned
at the first iteration is always geometrically feasible, and
the geometric reasoning time increases linearly with the
number of actions (see Figure 39). At the symbolic level
however, 4 robots can manipulate the objects, which leads
to a large number of combinations. Remember that the
ASP solver only increases its search horizon when it has
proven that no valid plan exists for the current length.
The advantage is that the plans are optimal (in terms of
number of steps), but the drawback is that the computa-
tional cost increases exponentially with the horizon length,
as shown in Figure 39. This type of problem would be
more efficiently solved with state-space heuristic planning
approaches (Dornhege et al., 2009; Srivastava et al., 2014),
or the approach by Kaelbling and Lozano-Pérez (2011) for
long-horizon problems.

It is interesting to compare these results with the results
of scenario 1, in which plans with 52 actions (for the
10-blocks problem instance) are found in much less time.
Setting aside the fact that both problems are different, we
hypothesize the following explanation: in scenario 1, a solu-
tion is found after 9 iterations. During these iterations, the
ASP solver finds several shorter plans, which are unfeasi-
ble, but which enable to compute 9 logical constraints that
can be used for pruning the symbolic search space. This
does not occur in the present scenario, i.e. the ASP solver
has to solve a difficult problem from the start, and no log-
ical constraint is used for pruning, since only one iteration
is performed.

Note that this poor performance owes to the fact that an
optimal plan is sought. The performance is dramatically
improved if the ASP solver is asked for a solution within
more steps. For instance, the 5-blocks problem instance is
optimally solved with 26 steps in 2 hours. Solving the same
problem within 50 steps takes only 28 s, although the plan
contains useless actions (see the videos for a comparison of
the optimal versus non-optimal plan).

11.5. Comparative experiments

11.5.1. Experiments without culprit detection In order to
assess the impact of the culprit detection mechanisms, the
same experiments have been done, with layers (1) and (2)
deactivated. Layer (3) was maintained for geometric evalua-
tion of symbolic plans, and forcing the ASP solver to return

a different plan in case of failure. With this setup, the sys-
tem becomes equivalent (in terms of type of information fed
back to the ASP solver) to the approaches by Erdem et al.
(2011) and Aker et al. (2012).

Scenario 1: No problem instance solved
Without culprit detection mechanisms, none of the prob-
lem instances could be solved, not even those instances
with three blocks. Let us consider the simpler three-blocks
case in detail. A solution for this problem requires six
steps, for instance (some parameters have been omitted for
concision):

1. pick(right, block_c) pick(left, block_a)
2. place(right, block_c, table) place(left, block_a,

blue_tray)
3. pick(left, block_b)
4. stack(left, block_b, block_a)
5. pick(left, block_c)
6. stack(left, block_c, block_b)

However, without geometric feedback, a logically feasi-
ble plan consists in leaving block_a in place, and stacking
block_b and block_c on top, which can be done in three
steps. There exists four such plans of length 3, 99 plans
of length 4, and 1193 plans of length 5. Since the ASP
solver increases its horizon after exhausting all the solu-
tions, the system therefore needs to geometrically evaluate
1296 plans before considering solutions of length 6, which
is not possible within the allotted time (20 min).

Scenario 2: Time increased by one order of magnitude
For this scenario, the average solving time is increased by
a factor 10, and not all instances could be solved. Problems
requiring six and eight actions were all solved, on average
in 135 and 606 s respectively. For problems requiring ten
actions, only two problem instances were solved (out of
25), in 17 and 19 min, the rest being cut off. The prob-
lems requiring six actions could be solved because after
trying the two possible 4-actions plans (swapping the cup
and the tray), the ASP solver enumerates 6-actions plans,
which consist of swapping the cup and the tray, plus mov-
ing an extra object. If by chance the extra object is the cup
or the tray, a solution is found. Problems requiring eight
actions present more combinations, but a plan moving the
occluding object can be found by chance within 20 min-
utes. Few plans requiring ten actions were solved because
reaching to that search horizon requires exhausting all the
plans of length 6 and 8, which is rarely possible within the
allotted time.

Scenario 3: No problem instance solved
The problem in scenario 3 is similar to the case of scenario
1. Logically speaking, the problem is feasible within two
steps: since the blocks are on_location with respect to
the box in the initial state, it is sufficient to pick the lid
and place it on the box for achieving the goal. However, the
actual feasible plans consist of at least nine steps. Consider-
ing the number of possible arrangements of blocks, and the
combinations for deciding which robot manipulates which
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blocks, the problem is clearly intractable without feedback
from the geometric level.

Scenario 4: Similar results
Similar results were observed for scenario 4 because one
iteration is sufficient to solve all problem instances. The
time spent on geometric reasoning was not significantly
reduced, because the time spent on geometric backtracking
dominates the time spent on culprit detection.

11.5.2. Comparison with heuristic planning approaches
In this experiment, we evaluate how approaches based on
state-space heuristic planning, which interleave symbolic
and geometric reasoning, e.g. Dornhege et al. (2009); Sri-
vastava et al. (2014), would perform on scenario 1. Since
their setup cannot be exactly replicated, we instead emu-
lated geometric reasoning in order to address a simpler
problem, and therefore assess a lower bound on the results
that may be obtained for solving the same problem with
these types of approaches. The tested hypothesis is that for
some problems, heuristic state-space planners may perform
poorly because the geometric constraints of the problem are
not captured by the heuristic function.

An equivalent pick-and-place domain was implemented
in PDDL (Ghallab et al., 1998), and the forward state-space
planner FF (Hoffmann and Nebel, 2001) was used. No
detailed geometric representations were used, i.e. only one
symbol for each location, one type of grasp, were used. The
fact that the red tray (respestively blue tray) is only reach-
able by the right (respectively left) arm, was hardcoded in
the domain. In order to emulate geometric reasoning, we
implemented a function Fstop which symbolically evaluates
if a pile of more than two blocks exists on the table or on
the green tray (which always causes a collision between
the gripper and the obstacle). Fstop is called for each vis-
ited symbolic state, and the state is not expanded if such a
pile is detected. The running time of this function is neg-
ligible compared to the time for computing the heuristic,
therefore the timings obtained are a lower bound on the
time that would be taken if actual geometric reasoning was
performed.

The native heuristic function of FF (hFF) estimates the
goal distance by building a planning graph and comput-
ing a plan ignoring the negative effects of actions. Instead,
we used the heuristic function f = g + hFF (where g is
the length of the partial plan at hand), otherwise the plan-
ner gets trapped in a heuristic plateau owing to the lack of
geometric information, as explained next.

The results are presented in the second line of Table 5,
and confirm the hypothesis. In absence of information
about the obstacle above the table, the heuristic consid-
ers that bringing a block towards the green tray (or the
table) requires two actions, whereas bringing a block from
one side to another requires four actions. Hence, it esti-
mates that stacking all blocks on the green tray requires less
actions (say, ngreen actions) than stacking all blocks on the

red tray or the blue tray (say, nside actions). Therefore, the
planner does not reconsider moving block_a to the blue tray
or the red tray as long as the heuristic “sees” solutions with
less than nside actions. Although the function Fstop prevents
the planner from exploring all such unfeasible plans, there
remains many states to visit from which a plan with less
than nside actions seems possible. For instance, the blocks
from the initial piles can be unstacked in different orders
or to different locations, and worse, nside − ngreen irrelevant
actions can be inserted without making the current state
less promising than moving block_a to the red tray or the
blue tray. The planner cannot escape this local minimum for
problem instances with more than five blocks. If the native
heuristic function of FF is used, the planner is trapped in
a heuristic plateau for the same reasons, and never escapes
from it. These results cannot be generalized to other types of
problem, since scenario 1 was constructed with the aim of
highlighting this issue. Nevertheless, it suggests that similar
pitfalls may be encountered each time geometric constraints
are not well captured by the heuristic function.

Table 5 also includes the results obtained with the ASP
solver on the same problem instances (see Figure 29). A
fair comparison is difficult: the ASP solver did not have
the information computed by the FF heuristic, and the FF
planner did not have the logical constraints computed by
the culprit detection mechanisms. It is also inappropriate to
compare optimal and non-optimal planning. The question is
how would the FF planner perform if the information com-
puted with culprit detection mechanisms was integrated in
the computation of the heuristic. This raises the issue of the
feasibility of such integration in the first place. Although
the work by Garrett et al. (2014) presents a method for
including information about occluding objects in the FF
heuristic, extending this approach to the complex logical
expressions returned by our geometric reasoner appears as
a very challenging problem.

Scenario 1 is also an example in which information about
occluding objects may not be useful, since the occluding
object cannot be moved. This supports our initial claim
that information about occluding objects or unfeasible paths
is not sufficient to efficiently guide the task planner in
all situations, and advocates for using more informative
diagnosing methods, such as the proposed culprit detec-
tion mechanisms. Assuming that such mechanisms could
be implemented in the heuristic function, one may expect
performance issues since the heuristic function is called for
each expanded node. This problem does not arise with our
approach because symbolic and geometric reasoning are
weakly coupled.

11.6. Discussion

In the first scenario, the scalability of the planner was evalu-
ated. The experiments indicate an exponentially increasing
planning time, which is the rule for planning problems.
Nonetheless, the planning time remains below 1 min for
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Table 5. Average task planning time (s) for scenario 1, ASP solving time versus FF planning time. Dashes represent cutoff time (30
min) or insufficient memory.

Number of blocks 3 4 5 6 7 8 9 10

ASP 0.2 0.36 1.04 3.9 12.9 56.1 134.7 319
FF 1.3 10.2 132 – – – – –

problems requiring 30 actions, which is a decent perfor-
mance with respect to the complexity of the problem. Sce-
nario 1 also demonstrates the ability of our approach to deal
with combinatorial task planning problems, which is possi-
ble because of the weak coupling between the symbolic and
geometric levels.

In scenario 2, the challenge is at the geometric level.
After a few iterations, the objects that need to be moved
are known by the task planner. The difficulty is then to
carefully choose intermediate positions for these objects.
Although the performance is not impressive, the experi-
ments showed that all instances were solved. This demon-
strates the ability of our approach to solve, without specific
heuristics or strategies, a problem which usually requires ad
hoc algorithms.

The third scenario, although it seems simple, hides sev-
eral difficulties. The symbolic goal state can be achieved in
many ways, although few of them are geometrically feasi-
ble. Solving the problem requires to detect geometric con-
straints on specific objects instances and generalize them to
other objects of the same type.

The last scenario points out a limitation of our approach,
i.e. when a difficult symbolic problem is to be solved in the
first place. Then, it is not possible to iterate through sim-
pler solutions, that offer opportunities for adding geometric
constraints which can help solving the symbolic problem.
This is the drawback of decoupling symbolic and geometric
search spaces.

The experiments also point out another limitation of
our approach, i.e. when the symbolic solution plan leads
to intricate geometric configurations (see Figure 30 and
37), which cannot be resolved by geometric backtrack-
ing. Since the geometric reasoner cannot explicitly express
the cause of failure into a logical constraint, the system
needs to iterate over symbolic plans until the problem
disappears by chance, which is very inefficient. A pos-
sible approach to address this issue is discussed in the
next section.

Comparative experiments have shown that culprit
detection mechanisms are the backbone of our approach,
in particular for solving intricate problems. In scenario 2,
the difficulty was mainly at the geometric level, while in
scenario 4, the difficult part was the symbolic problem. On
both scenarios, removing the culprit detection mechanisms
did not affect the results much. On scenarios 1 and 3, where
symbolic and geometric aspects are more intricate, using
culprit detection mechanisms makes the difference.

Finally, a brief comparison with state-space heuristic
planning approaches on a specific problem points out poten-
tial local minimum problems if the heuristic does not com-
pletely capture the geometric constraints of the problem.

12. Conclusion

We presented an approach for combining task and motion
planning which included two culprit detection mechanisms
in order to feed back rich information from the geometric
level to the symbolic level. The first mechanism works on
a relaxed version of the geometric problem, in which the
poses of robots and objects are approximated by a set of
bounding boxes represented by a network of linear con-
straints. We proposed techniques to detect spatial incon-
sistencies within this network in polynomial time. These
bounding boxes are also used to detect different types of
unavoidable collisions. The second mechanism relies on
the construction of a graph of the geometric dependencies
between actions. From this graph, shorter subsequences of
actions can be extracted and independently evaluated.

The failures detected by these mechanisms efficiently
guide the ASP solver because they do not simply report
a “local” failure, but rather a context (expressed with spa-
tial relations) or a culprit subsequence of partially ordered
actions (with geometric dependencies chains). Since the
task planner is based on logic programming, the detected
failures are fed back by simply adding logical constraints
to the problem. Therefore, the planning problem and the
geometric constraints are homogeneously integrated in the
same search space. ASP is not strictly required for the task
planning part though: other logic-programming languages,
or satisfiability-based planners could be used as well. One
could also think of partial order planning as a suitable can-
didate, since the logical constraints returned by the geo-
metric reasoner can be interpreted in terms of constraints
on partially instantiated plans, and therefore they could be
mapped to a small number of decision points in the plan-
space. It is less obvious though how this could be integrated
with a state-space planner.

The experiments have demonstrated the capacity of
our system to solve various types of problems. Thanks
to the weak coupling between symbolic and geometric
search spaces, challenging task planning problems can be
addressed, provided that geometric information can be used
to cut the search space. Thanks to geometric backtrack-
ing, intricate geometric problems can be solved, although
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this may be expensive in some cases. The proposed cul-
prit detection mechanisms are effective: in most cases, a
dozen iterations is sufficient to symbolically capture the
main causes of geometric failures in a problem. This allows
the ASP solver to prune out large parts of the search space,
and quickly reach to a feasible plan. Last but not least, our
system produces plans optimal in the number of steps, and
supports for parallel actions, which few other approaches
do. Nevertheless, we found limitations that need to be
addressed in order to apply this approach to a wider range
of problems.

(i) Path planning failures are not explained. The pro-
posed culprit detection mechanisms only consider the con-
figurations reached by a robot after completion of an action.
As mentioned, this limitation is not of major concern for
the proposed scenarios, but it would have a greater impact
if the robots had to operate in heavily cluttered environ-
ments. In order to handle path planning failures, one needs
to prove that a path does not exist, which remains a diffi-
cult and unsolved problem. The work by Hauser (2014) on
the Minimum Constraint Removal Problem is promising in
this respect. It could plug this gap in our approach, by feed-
ing back to the ASP solver minimal explanations for path
planing failures, indicating which objects need to be moved
away.

(ii) Geometric backtrack search is difficult. In the exper-
iments, some of the runs could not be solved because the
symbolic plan led to an intricate configuration (see Fig-
ure 30), and since the culprit decision was made early,
geometric backtracking is not able to backtrack up to that
decision before the cutoff time is reached. In related work
(Bidot et al., 2015), we proposed a heuristically guided geo-
metric backtrack search algorithm to address this issue. It
turned out to be difficult to find heuristics that can handle
all situations, because geometric dependencies result from
subtle interactions between the kinematics of the robot and
the configuration space of obstacles.

In most such cases however, we observed that intricate
situations only concern one or two actions, while the rest
of the plan can be geometrically instantiated without diffi-
culty, since the geometric reasoner has already detected the
main possible causes of failure. In most cases, one could
circumvent such problems by simply switching the order
of two actions, or by inserting actions that move undesir-
able objects away, while preserving the rest of the plan. We
will therefore focus our future efforts on integrating local
symbolic plan repair strategies to the current approach.

Another possibility which could be explored is to relax
some constraints during geometric backtracking, which is
for now inflexible with respect to kinematic constraints and
collisions, and to perform the needed adjustments at exe-
cution time by local reasoners (Scioni et al., 2015; Winkler
et al., 2012). In other words, delegating some of the prob-
lems encountered offline during geometric backtracking to
online execution processes, which would also provide more
robust execution.

(iii) Task planning with ASP can be improved. The com-
bined ASP grounder-solver clingo offers a general declara-
tive framework for incorporating heuristics into the solving
procedure (Gebser et al., 2013). In our future work we plan
to utilize this framework to specify a heuristic for task plan-
ning problems in order to firstly reduce the solving time
of the ASP solver and, secondly to guide the ASP solver
such that the task plan found is adjusted to the geometric
solver, e.g. avoiding unnecessary actions, spreading objects
over available locations, etc. This would further reduce the
overall solving time and would allow to approach more
challenging problems.
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Notes

1. Geometrically, manipulators are moved away from their “nat-
ural” workspace, e.g. for Justin, away from the space in front
of the torso. Bases are moved to a circular region one meter
away from the current position.

2. The meaning of this symbol is explained in the next section.
3. This could be improved by sampling with in a ring or a disk,

but a circular domain proved suffcient in all the experiments.
4. https://www.youtube.com/user/MRLabSweden
5. This is known from the symbolic state: since r2d2 and block

B are connected, if r2d2 is moved, then block B is moved by
ramification.

6. Because new variables are created each time an object is
moved, no cycles can be created, but this is out of the scope of
this article.

7. http://aass.oru.se/~fll/videos_ijrr.html
8. Gurobi Optimization, Inc (2013) Gurobi optimizer reference

manual. http://www.gurobi.com
9. Potassco (2014) Potassco, the Potsdam answer set solving

collection. http://potassco.sourceforge.net/
10. reach small_table1, pick block_a, reach table, clean, pick

block_a, reach small_table1, place block_a, pick block_b,...
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Appendices

A. Answer set programming

The reader may be interested in consulting a brief intro-
duction to Answer Set Programming (Lifschitz, 2008) for
completing the reading of this section.

A rule r is of the following form

H ← B1, . . . , Bm,∼Bm+1, . . . ,∼Bn

We use headr = H and body( r)= {B1, . . . , Bm,∼
Bm+1, . . . ,∼Bn} to denote the head and the body of r,
respectively, where “∼” stands for default negation.10 The
head H is an atom a belonging to some alphabet A, the fal-
sum ⊥, or a count constraint L {�1, . . . , �k}U . In the latter,
�i = ai or �i = ∼ai is a literal for ai ∈ A and 1 ≤ i ≤ k;
L and U are integers providing a lower and an upper bound.
Either or both of L and U can be omitted, in which case they
are identified with the (trivial) bounds 0 and ∞, respec-
tively. If bodyr = ∅, r is called a fact, and we skip “←”
when writing facts below. A rule r such that headr = ⊥
is an integrity constraint, one with a count constraint in
the head is a choice rule because it amounts to choosing

some literals among �1, . . . , �k subject to the encompass-
ing bounds. Each body component Bi is either an atom or a
count constraint for 1 ≤ i ≤ n.

We adhere to the definition of answer sets provided
in Simons et al. (2002). A count constraint holds with
respect to a set X of atoms if L ≤ |{a | �j = a, 1 ≤ j ≤
k, a ∈ X } ∪ {∼a | �j = ∼a, 1 ≤ j ≤ k, a /∈ X }| ≤ U . A
body literal Bi (or ∼Bi) holds with respect to X if Bi holds
(or does not hold) with respect to X , where an atom a holds
if a ∈ X . A rule r is satisfied with respect to X if some
body literal of r does not hold with respect to X , H is count
constraint holding with respect to X , or H ∈ X . Note that
an integrity constraint is unsatisfied if all literals in its body
hold with respect to X .

A ground logic program � is a set of ground (i.e.
variable-free) rules. A set X of atoms is a model of � if
each r ∈ � is satisfied with respect to X . An answer set
of � is a model X of � such that every atom in X is deriv-
able from �. Roughly speaking, the latter means that, for
each a ∈ X , � contains a rule r with head H = a or H
being a count constraint comprising a such that all body lit-
erals of r hold with respect to X . We still note that programs
are required to be safe (Ullman, 1988), that is, each vari-
able must occur in a positive body literal. Predicates such
as p and variables such as Y in “p( Y )” are written as lower-
case or uppercase strings, respectively. Default negation ∼
is written as “not”.

B. Definitions

Definition 1 Geometric reachable set

Let us consider a sequence of actions P = 〈A1, . . . , An〉.
We denote a geometric instantiation of P applied on the
geometric state s by

π ( s)= 〈i1a1, . . . ,in an〉
where i1, . . . , in represent the action indexes of each action,
and we denote the resolution used for discretizing an action
Aj by rj (see Section 7.2). Let kπ ( s) (respectively cπ ( s)) be
the boolean function returning true if all actions in π ( s) are
kinematically valid (respestively collision-free), and false
otherwise. We define the Geometric Reachable Set from the
geometric state s by an action Aq ∈ P as:

R( Aq, s,P)= {aq ∈ π ( s) | π ( s) is a geometric instance of P ,

aq is a geometric instance of Aq,

kπ ( s) , cπ ( s) },

and similarly, we define the Geometric kinematically
Reachable Set from the geometric state s by an action
Aq ∈ P , which does not take collisions into account, as:

Rkin( Aq, s,P)= {aq ∈ π ( s) | π ( s) is a geometric instance of P ,

aq is a geometric instance of Aq,

kπ ( s) }.
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Definition 2 Geometric dependencies between two actions

Let Ap, Aq ∈ P = 〈A1, . . . , An〉 be two symbolic actions
such that p < q. Let s0 be the initial geometric state on
which P applies. Let π ( s0) and π ′( s0) be two geomet-
ric instantiations of the symbolic subsequence 〈A1, . . . , Ap〉
which only differ with respect to the geometric instance
chosen for Ap

π ( s0) = 〈i1a1,i2 a2, . . . ,ip ap〉
π ′( s0) = 〈i1a1,i2 a2, . . . ,i

′
p ap〉, ip 
= ip′

and sp, s′p, the geometric states resulting from π ( s0) and
π ′( s0), respectively. Ap is geometrically dependent on Aq

iff ∃π ( s0) , π ′( s0) such that

R( Aq, sp, 〈Ap+1, . . . , Aq〉) 
= R( Aq, s′p, 〈Ap+1, . . . , Aq〉)

which we denote by Ap � Aq. In other words, Ap is geomet-
rically dependent on Aq if changing the geometric instance
of Ap can lead to a different geometric reachable set for Aq.
Similarly, Ap is directly geometrically dependent on Aq iff
∃π ( s0) , π ′( s0) such that:

Rkin( Aq, sp, 〈Ap+1, . . . , Aq〉) 
= Rkin( Aq, s′p, 〈Ap+1, . . . , Aq〉) ,

which we denote by Ap
dir� Aq.
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C. ASP encoding of the planning problem
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