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1. IntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroduction

The present work will introduce a Finite State Machine (FSM) that processes any Collatz Se-
quence; further, we will endeavor to investigate its behavior in relationship to transformations
of a special infinite input. Moreover, we will prove that the machines word transformation is
equivalent to the standard Collatz number transformation and then discuss the possibilities
for utilizing this approach for solving similar problems. The benefit of this approach is that
the investigation of the word transformation performed by the Finite State Machine is less
complicated than the traditional number-theoretical transformation.

1.1 Motivation

The Collatz conjecture is a number theoretical problem, which has puzzled countless re-
searchers using myriad approaches. Presently, there are scarcely any methodologies to de-
scribe and treat the problem from the perspective of the Algebraic Theory of Automata. Such
an approach is promising with respect to facilitating the comprehension of the Collatz se-
quences "mechanics". The systematic technique of a state machine is both simpler and can
fully be described by the use of algebraic means.

The current gap in research forms the motivation behind the present contribution. The
present authors are convinced that exploring the Collatz conjecture in an algebraic manner,
relying on findings and fundamentals of Automata Theory, will simplify the problem as a
whole.

1.2 Related Research

The Collatz conjecture is one of the unsolved mathematical Millennium problems [1]. When
Lothar Collatz began his professorship in Hamburg in 1952, he mentioned this problem to
his colleague Helmut Hasse. From 1976 to 1980, Collatz wrote several letters but missed
referencing that he first proposed the problem in 1937. He introduced a function g :N→N
as follows:

g(x) =

3x+1 2 ∤ x

x/2 otherwise
(1.1)

This function is surjective, but it is not injective (for example g(3) = g(20)) and thus it is not
reversible.

In his book The Ultimate Challenge: The 3x+1 Problem [2], along with his annotated
bibliographies [3], [4] and othermanuscripts like an earlier paper from 1985 [5], Lagarias has
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4 1.2. Related Research

reseached and put together different approaches from various authors intended to describe
and solve the Collatz conjecture.

For the integers up to 2,367,363,789,863,971,985,761 the conjecture holds valid. For
instance, see the computation history given by Kahermanes [6] that provides a timeline of
the results which have already been achieved.

Inverting the Collatz sequence and constructing a Collatz tree is an approach that has
been carried out by many researchers. It is well known that inverse sequences [7] arise
from all functions h ∈ H , which can be composed of the two mappings q,r : N → N with
q :m 7→ 2m and r :m 7→ (m− 1)/3: H = {h :N→N | h = r(j) ◦ q(i) ◦ . . . , i, j,h(1) ∈N}

An argumentation that the Collatz Conjecture cannot be formally proved can be found
in the work of Craig Alan Feinstein [8], who presents the position that any proof of the
Collatz conjecturemust have an infinite number of lines and thus no formal proof is possible.
However, this statement will not be acknowledged in depth within this study.

Treating Collatz sequences in a binary system can be performed as well. For example,
Ethan Akin [9] handles the Collatz sequence with natural numbers written in base 2 (us-
ing the Ring Z2 of two-adic integers), because divisions by 2 are easier to deal with in this
method. He uses a shift map σ on Z2 and a map τ :

σ (x) =

(x − 1)/2 2 ∤ x

x/2 otherwise
τ(x) =

(3x+1)/2 2 ∤ x

x/2 otherwise

The shift map’s fundamental property is σ (x)i = xi+1, noting that σ (x)i is the i-th digit
of σ (x). This property can easily be comprehended by an example x = 5 = 1010000 . . . =
x0x1x2 . . ., containing σ (x) = 2 = 0100000 . . .

Akin then defines a transformation Q :Z2→Z2 by Q(x)i = τ i(x)0 for non-negative inte-
gers i which means Q(x)i is zero if τ i(x) is even and then it is one in any other instance. This
transformation is a bijective map that defines a conjugacy between τ and σ : Q ◦ τ = σ ◦Q
and it is equivalent to the map denoted Q∞ by Lagarias [5] and it is the inverse of the map
Φ introduced by Bernstein [10]. Q can be described as follows: Let x be a 2-adic integer.
The transformation result Q(x) is a 2-adic integer y, so that yn = τ (n)(x)0. This means, the
first bit y0 is the parity of x = τ (0)(x), which is one, if x is odd and otherwise zero. The next
bit y1 is the parity of τ (1)(x), and the bit after next y2 is parity of τ ◦ τ(x) and so on. The
conjugancy Q ◦ τ = σ ◦Q can be demonstrated by transforming the expression as follows:
(σ ◦Q(x))i =Q(x)i+1 = τ (i+1)(x)0 = τ (i)(τ(x))0 =Q(τ(x))i

A simulation of the Collatz function by Turing machines has been presented by Michel
[11]. He introduces Turing machines that simulate the iteration of the Collatz function,
where he considers them having 3 states and 4 symbols. Michel examines both turing ma-
chines, those that never halt and those that halt on the final loop.

A function-theoretic approach this problem has been provided by Berg and Meinardus
[12], [13] as well as Gerhard Opfer [14], who consistently relies on the Bergs and Meinardus
idea. Opfer tries to prove the Collatz conjecture by determining the kernel intersection of
two linear operators U, V that act on complex-valued functions. First he determined the
kernel of V, and then he attempted to prove that its image by U is empty. Benne de Weger
[15] contradicted Opfers attempted proof.

Reachability Considerations based on a Collatz tree exist as well. It is well known that
the inverted Collatz sequence can be represented as a graph; to be more specific, they can be
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depicted as a tree [16], [17]. It is acknowledged that in order to prove the Collatz conjecture,
then one needs to demonstrate that this tree covers all (odd) natural numbers.

The Stopping Time theory has been introduced by Terras [18], [19], [20]. He introduces
another notation of the Collatz function T (n) = (3X(n)n +X(n))/2, where X(n) = 1 when n is
odd and X(n) = 0 when n is even, and defined the stopping time of n, denoted by χ(n), as the
least positive k for which T (k)(n) < n, if it exists, or otherwise it reaches infinity. Let Li be a
set of natural numbers, it is observable that the stopping time exhibits the regularity χ(n) = i
for all n fulfilling n ≡ l(mod2i), l ∈ Li , L1 = {4}, L2 = {5}, L4 = {3}, L5 = {11,23}, L7 = {7,15,59}
and so on. As i increases, the sets Li , including their elements, become significantly larger.
Sets Li are empty when i ≡ l(mod19) for l = 3,6,9,11,14,17,19. Additionally, the largest
element of a non-empty set Li is always less than 2i .

Many other approaches exist as well. From an algebraic perspective Trümper [21] ana-
lyzes The Collatz Problem in light of an Infinite Free Semigroup. Kohl [22] generalized the
problem by introducing residue class-wise affine, in short, by utilizing rcwa mappings. A
polynomial analogue of the Collatz Conjecture has been provided by Hicks et al. [23] [24]
and there are also stochastical, statistical and Markov chain-based and permutation-based
approaches to proving this elusive theory.
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2.1 Introducing a Dependent Threads State Machine (DTSM)

Let us regard a Finite State Machine (Σ,S, s0,δ,F ∈ S), Σ as the input alphabet, S a set of
states, s0 the starting state, F a set of final states, and δ : S ×Σ→ S the transition function.
We may concisely write δ0(x) = δ(x,0) : S→ S.

Definition 2.1 A DTSM (Dependent Threads State Machine) is a finite state machine
that has the following properties:

1. Σ = {0,1}, the input alphabet consists of two elements called bits. It is a binary
alphabet.

2. F = {f0}, the DTSM has only one final state.

3. δ0(s0) = s0, the DTSM remains in its starting state when inputting zero.

4. ∀s ∈ S\{s0} : ∃n ≥ 0,δ(n)0 (s) = f0, if the DTSM is in any state except s0, a continuous
input of zero leads to guaranteed f0.

5. A transition S ×Σ→ S is considered synonymous with a directed edge. Any bit
that is an input of the function δ and thus a value of the corresponding edge,
we call a δ-bit. Additionally, we label each edge with an ϵ-bit using a function
ϵ : S ×Σ→ Σ. The meaning of this labeling will be explored later.

It may be noted that the term "State Machine" can be treated as synonymous to the term
"Automaton" (plural Automata). Hence, a Finite State Machine (FSM) may also be denoted
as Finite State Automaton (FSA). In accordance with the automata theory, a FSM belongs to
a special set of the Turing machines respective to all Turing machines.

2.2 The Collatz DTSM

The Collatz DTSM is an example of a DTSM and defined by four states S = {s0, a,b,c} and the
functions δ, ϵ provided by table 2.1. The positions that are inputs of both functions δ and ϵ
are the source positions, not the target positions.
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δ 0 1
s0 s0 c
a a b
b a c
c b c

ϵ 0 1
s0 0 0
a 0 1
b 1 0
c 0 1

Table 2.1: Definition of the both functions δ and ϵ

We can represent the δ and ϵ functions in a more compact way. Let’s focus on the edges
which connect the nodes s0, a, b and c. Every edge has it’s δ-bit and it’s ϵ-bit. In such a
way, we have a graph with double colored edges. The δϵ-adjuncency matrix is provided by
table 2.2.

s0 a b c
s0 0,0 - - 1,0
a - 0,0 1,1 -
b - 0,1 - 1,0
c - - 0,0 1,1

Table 2.2: δ and ϵ as colorings of the transition edges

The graph of the Collatz DTSM is exhibited by Figure 2.1. The edges of the graph pre-
sented in Figure 2.1 are labeled with their δϵ-colorings. The node s0 is the starting node.
The node b is highlighted in blue, since all of it’s outgoing edges have uniquely unequal δ-
and ϵ-bits. Additionally, this node represents the center of symmetry.

s0

0,0

c

1,1

1,0

b

0,01,0

a

0,0

0,11,1

Figure 2.1: Graph Representation of the Collatz DTSM
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2.3 Series of State Transition Sequences

Allow us to regard a binary sequence (dk)k∈N0
defined by a mapping D : N→ Σ that has a

finite preimage D−1(1). In other words, a natural k exists, for which all m ≥ k are mapped to
zero D(m) = 0 and thus all sequence members dm are zero. This binary sequence describes
the DTSM’s state transitions starting from s0. Hence the sequence members correspond to
the δ-bits. In accordance to the DTSM definition, this sequence must end up and remain
eternally in the state a. The following example illustrates the state transitions of the DTSM.

Example 2.1 Assume we have a sequence (dk) = (1,0,1,0,1,0,1,1,0,1,0,0,0 . . .). This
sequence generates a sequence of DTSM positions (pk) = (c,b,c,b,c,b,c, c,b, c,b,a,a, . . .).

It is important to point out that for an input bit dk the corresponding position pk is the target position into
which the token moves to and not the source position from which the tokens moves from. Hence we consider
the starting position s0 to have a negative index −1, which in our notation means p−1 = s0.

The ϵ-bit, an edge is labeled with, belongs to a sequence of ϵ-bits that result from the
DTSM’s state transitions. A sequence of δ-bits describes a sequence of state transitions
through the DTSM’s edges beginning at the starting node s0. The sequence of ϵ-bits is de-
fined by the order of passed edges in the walk through, which each naturally are specified by
(labeled with) an ϵ-bit. A sequence of ϵ-bits forms the sequence of δ-bits describing the state
transitions for the next walk through. This continuing principle is illustrated by table 2.3,
which provides a simulative description (state by state) of these consecutive walk throughs
up to 10101011010000000000.

The latter binary sequence is the δ-bit sequence of the first walk through. All other δ-bit
sequences arise from the ϵ-bits of those edges that are traversed during this and subsequent
walkthroughs. For example, the ϵ-bits of traversed edges by the second walk through form
the sequence of δ-bits for the third walk through and beyond.

Along the δ-bit sequences, table 2.3 portrays the corresponding sequences of DTSM po-
sitions, which have been walked through up to their respective states.

In table 2.3 we can reproduce and verify the repeated application of ϵ-bit sequences. If
we take a closer look at the example (p1,k) which is the sequence of DTSM positions describ-
ing the first token’s walk through, that generates the ϵ-bit sequence 00000001000100000000.
This bit sequence corresponds to the δ-bit sequence (d2,k) that defines the walk through of
the second token.

Red colored edges indicate the first token’s walk through. The edge between the starting
node s0 and the node c is highlighted dotted, when a new token becomes active by leaving
the starting node, respectively moving to c. For greater readability, we symbolize the starting
state simply with s.
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(d1,k ):.1 (d1,k ):.10 (d1,k ):.101 (d1,k ):.1010
(p1,k ):sc (p1,k ):scb (p1,k ):scbc (p1,k ):scbcb
(d2,k ):.. (d2,k ):... (d2,k ):.... (d2,k ):.....
(p2,k ):ss (p2,k ):sss (p2,k ):ssss (p2,k ):sssss
· · · · · · · · · · · ·

2,3,4. . .

1

2,3,4. . . 1 2,3,4. . .

1

2,3,4. . . 1

(d1,k ):.10101 (d1,k ):.101010 (d1,k ):.1010101 (d1,k ):.10101011
(p1,k ):scbcbc (p1,k ):scbcbcb (p1,k ):scbcbcbc (p1,k ):scbcbcbcc
(d2,k ):...... (d2,k ):....... (d2,k ):........ (d2,k ):........1
(p2,k ):ssssss (p2,k ):sssssss (p2,k ):ssssssss (p2,k ):ssssssssc
(d3,k ):...... (d3,k ):....... (d3,k ):........ (d3,k ):.........
(p3,k ):ssssss (p3,k ):sssssss (p3,k ):ssssssss (p3,k ):sssssssss
· · · · · · · · · · · ·

2,3,4. . .

1

2,3,4. . . 1 2,3,4. . .

1

3,4,5. . .

1,2

(d1,k ):.101010110 (d1,k ):.1010101101 (d1,k ):.10101011010 (d1,k ):.101010110100
(p1,k ):scbcbcbccb (p1,k ):scbcbcbccbc (p1,k ):scbcbcbccbcb (p1,k ):scbcbcbccbcba
(d2,k ):........10 (d2,k ):........100 (d2,k ):........1000 (d2,k ):........10001
(p2,k ):sssssssscb (p2,k ):sssssssscba (p2,k ):sssssssscbaa (p2,k ):sssssssscbaab
(d3,k ):.......... (d3,k ):..........1 (d3,k ):..........10 (d3,k ):..........101
(p3,k ):ssssssssss (p3,k ):ssssssssssc (p3,k ):sssssssssscb (p3,k ):sssssssssscbc
(d4,k ):.......... (d4,k ):........... (d4,k ):............ (d4,k ):.............
(p4,k ):ssssssssss (p4,k ):sssssssssss (p4,k ):ssssssssssss (p4,k ):sssssssssssss
· · · · · · · · · · · ·

3,4,5. . . 1,2 4,5,6. . .

1,3

2

4,5,6. . . 1,3

2

4,5,6. . .

3

2

1



10 2.3. Series of State Transition Sequences

(d1,k ):.1010101101000 (d1,k ):.10101011010000 (d1,k ):.101010110100000 (d1,k ):.1010101101000000
(p1,k ):scbcbcbccbcbaa (p1,k ):scbcbcbccbcbaaa (p1,k ):scbcbcbccbcbaaaa (p1,k ):scbcbcbccbcbaaaaa
(d2,k ):........100010 (d2,k ):........1000100 (d2,k ):........10001000 (d2,k ):........100010000
(p2,k ):sssssssscbaaba (p2,k ):sssssssscbaabaa (p2,k ):sssssssscbaabaaa (p2,k ):sssssssscbaabaaaa
(d3,k ):..........1011 (d3,k ):..........10110 (d3,k ):..........101100 (d3,k ):..........1011000
(p3,k ):sssssssssscbcc (p3,k ):sssssssssscbccb (p3,k ):sssssssssscbccba (p3,k ):sssssssssscbccbaa
(d4,k ):.............1 (d4,k ):.............10 (d4,k ):.............101 (d4,k ):.............1010
(p4,k ):sssssssssssssc (p4,k ):ssssssssssssscb (p4,k ):ssssssssssssscbc (p4,k ):ssssssssssssscbcb
(d5,k ):.............. (d5,k ):............... (d5,k ):................ (d5,k ):.................
(p5,k ):ssssssssssssss (p5,k ):sssssssssssssss (p5,k ):ssssssssssssssss (p5,k ):sssssssssssssssss
· · · · · · · · · · · ·

5,6,7. . .

3,4

1,2

5,6,7. . . 3,4

1,2

5,6,7. . .

4

1,2,3

5,6,7. . . 4

1,2,3

(d1,k ):.10101011010000000 (d1,k ):.101010110100000000 (d1,k ):.1010101101000000000 (d1,k ):.10101011010000000000
(p1,k ):scbcbcbccbcbaaaaaa (p1,k ):scbcbcbccbcbaaaaaaa (p1,k ):scbcbcbccbcbaaaaaaaa (p1,k ):scbcbcbccbcbaaaaaaaaa
(d2,k ):........1000100000 (d2,k ):........10001000000 (d2,k ):........100010000000 (d2,k ):........1000100000000
(p2,k ):sssssssscbaabaaaaa (p2,k ):sssssssscbaabaaaaaa (p2,k ):sssssssscbaabaaaaaaa (p2,k ):sssssssscbaabaaaaaaaa
(d3,k ):..........10110000 (d3,k ):..........101100000 (d3,k ):..........1011000000 (d3,k ):..........10110000000
(p3,k ):sssssssssscbccbaaa (p3,k ):sssssssssscbccbaaaa (p3,k ):sssssssssscbccbaaaaa (p3,k ):sssssssssscbccbaaaaaa
(d4,k ):.............10100 (d4,k ):.............101000 (d4,k ):.............1010000 (d4,k ):.............10100000
(p4,k ):ssssssssssssscbcba (p4,k ):ssssssssssssscbcbaa (p4,k ):ssssssssssssscbcbaaa (p4,k ):ssssssssssssscbcbaaaa
(d5,k ):.................1 (d5,k ):.................10 (d5,k ):.................100 (d5,k ):.................1000
(p5,k ):sssssssssssssssssc (p5,k ):ssssssssssssssssscb (p5,k ):ssssssssssssssssscba (p5,k ):ssssssssssssssssscbaa
(d6,k ):.................. (d6,k ):................... (d6,k ):...................1 (d6,k ):...................10
(p6,k ):ssssssssssssssssss (p6,k ):sssssssssssssssssss (p6,k ):sssssssssssssssssssc (p6,k ):ssssssssssssssssssscb
· · · · · · · · · · · ·

6,7,8. . .

5

1,2,3,4

6,7,8. . . 5

1,2,3,4

7,8,9. . .

6

1,2,3,4,5

7,8,9. . . 6

1,2,3,4,5

Table 2.3: Simulation of the Collatz DTSM’s walk through

If we consider the δ-bit sequences (d1,k), (d2,k), . . . , (d6,k) shown in table 2.3 as the inverse
binary representation of odd numbers (from the first 1 to the last 1) we are given the number
sequence provided by table 2.4.

Sequence Inverse binary Binary Decimal
(d1,k) 1010101101 1011010101 725
(d2,k) 10001 10001 17
(d3,k) 1011 1101 13
(d4,k) 101 101 5
(d5,k) 1 1 1
(d6,k) 1 1 1

Table 2.4: Collatz numbers that result from the walk throughs

This example corresponds to the Collatz sequence started at 725 (binary 1011010101,
inverse binary 1010101101), which is illustrated by table 2.5.
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725
2176 1088 544 272 136 68 34 17

52 26 13
40 20 10 5
16 8 4 2 1

Table 2.5: Collatz sequence started at 725

Theorem 2.1 All members of a Collatz sequence are equivalent to the sequences of
δ-bits.

Proof. Let d be a positive odd number, the binary representation is accomplished through
the bit sequence (d0,d1, . . . ,dn−1) as follows: d = d0 · 20 + d1 · 21 + . . . + dn−1 · 2n−1. Since d is
odd, we know that d0 = 1. Additionally we fill this sequence infinitely with zero bits on the
right side, which means, an index exists n, for which all bits that are indexed with an k ≥ n
are zero dk≥n = 0.

An operation x 7→ 3x + 1 on d can be described as (2d + 1) + d, where the multiplication
with 2 is equivalent to a right shift of the bit sequence. The addition with an integer 1 means
to insert a bit 1 at the front of the bit sequence: 2d +1 = (1,d0,d1,d2, . . .). The sum (2d +1)+d
can be represented as follows:

2(d0 · 20 + d1 · 21 + . . . + dn−1 · 2n−1) + 1 + d

= 1 + d0 · 21 + d1 · 22 + . . . + dn−1 · 2n + d

= 1 + d0 · 21 + d1 · 22 + . . . + dn−1 · 2n + d0 · 20 + d1 · 21 + . . . + dn−1 · 2n−1

= 1 + d0 + (d0 + d1) · 21 + (d1 + d2) · 22 + . . . + (dn−1 + dn) · 2n

= 1 + d′0 · 2
0 + d′1 · 2

1 + . . . + d′n · 2n

We initiate a sequence (ek)k∈N0
defined by the recurrence ek = ⌊(ek−1 + dk−1 + dk)/2⌋. And

we define another (non-recursive) sequence (d′k)k∈N0
by d′k =mod(ek−1 + dk−1 + dk ,2). For the

sake of completeness we define e−1 = 1 and d−1 = 0, which can be understood as predecessor
of a first sequence element, but which technically is not a member of the sequence. Because
we have already stated that d is odd, we know that d0 = 1 and thus d′0 = 0:

d′0 =mod(1 + 0+ d0,2) = 0 e0 = ⌊(1 + 0+ d0)/2⌋ = 1
d′1 =mod(e0 + d0 + d1,2) e1 = ⌊(e0 + d0 + d1)/2⌋
d′2 =mod(e1 + d1 + d2,2) e2 = ⌊(e1 + d1 + d2)/2⌋
...

...
d′n =mod(en−1 + dn−1 + dn,2) en = ⌊(en−1 + dn−1 + dn)/2⌋

(2.1)

A member of the sequence (ek)k∈N0
is the overflow bit that results from binary adding

two successive members of (dk)k∈N0
, which is illustrated with the example of (2d + 1) + d =

27+13 = 40:

0 0 0 1 1 1
0 1 1 0 1 0

+ 0 0 1 0 0 1
1 0 1 0 0 0

=

e4 e3 e2 e1 e0 1
d4 d3 d2 d1 d0 0

+ d5 d4 d3 d2 d1 d0
d′5 d′4 d′3 d′2 d′1 d′0
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We assume that the sequence (dk)k∈N0
is an odd input into the state machine controlling

the n-th token. To prove the theorem it would be sufficient to demonstrate that the sequence
(d′k)k∈N0

controls the next token which is the same as saying this sequence is equal to the
sequence of that generated ϵ-bits as given later by (2.3). Let the n-th token be in a state pn,k ,
that is k+1 steps have been taken by processing the sequence (d0, . . . ,dk). Therefore pn,−1 = s0
and pn,0 = c, since d0 = 1. The state machine’s mechanics are given by the following explicit
definition of the n-th token’s target position pn,k (shorthand noted as pk) that depends on the
sum dk + ek . At this point, we refer to example 2.1 to remind that pk continually refers to the
target (and not to the source) position.

pk =


a dk + ek = 0

b dk + ek = 1

c dk + ek = 2

(2.2)

The sequence of ϵ-bits, generated by the walk of the n-th token is exactly equal to the
sequence (d′k)k∈N0

. We remember that in compliance with table 2.1 the input position of the
ϵ-function is the token’s source and not target position:

ϵ(pn,k−1,dn,k) = d′n,k (2.3)

Using induction over k we prove that both the DTSM’s mechanics (2.2) and the equality
of the bit sequences stated in (2.3).

Start of induction: The n-th token is in the DTSM’s starting node s, furthermore k = 0,
d0 = 1 (the input is odd) and as given by (2.1) we are also aware that e0 = 1. The first bit
d0 = 1 of the input sequence causes the token to move from s0 into node c (see figure 2.1).
For this reason the construct (2.2) describing the DTSM’s mechanics are correct. Because of
the input’s oddness we recognize as validated in (2.1) that d′0 = 0. The edge connecting s0
with c is labeled with the ϵ-bit 0, which conforms to the equality ϵ(p−1,d0) = ϵ(s,1) = d′0 = 0
stated by (2.3).

Induction steps: We assume that the statements (2.2) and (2.3) are valid for all integers
up to k − 1 (induction hypothesis) and we corroborate the validity of these statements for k.
We will now examine the three cases defined by (2.2) separately.

Case 1: pk−1 = c. According to the induction hypothesis applied to (2.2) we require that
the sum dk−1 + ek−1 = 2, which leads to the only possible bit-variable setting dk−1 = ek−1 = 1.
By taking a closer look at the definition of the recurrence ek = ⌊(ek−1 + dk−1 + dk)/2⌋ given
in (2.1), we recognize that ek only accepts the value 1, no matter what binary value dk has:
ek = ⌊(2 + dk)/2⌋.

So far we have substantiated that ek = 1 when a token has moved into the target position
pk−1 = c within the context of our induction hypothesis. In the course of proving the legiti-
macy of (2.2) for the next target position pk , the node c is our source position. Conformant
with the conditions given by (2.2) the token’s next target position pk is b for an input bit
dk = 0 (dk + ek = 0 + 1 = 1) and it remains c for an input dk = 1 (dk + ek = 1 + 1 = 2). This is
consistent with the DTSM’s mechanics, see figure 2.1.

Now we must validate the correctness of the statement (2.3). In this case we have d′k =
ϵ(pk−1,dk) = ϵ(c,dk) and as of (2.1) we have d′k =mod(ek−1+dk−1+dk ,2). Utilizing the induction
hypothesis we know the sum dk−1 + ek−1 = 2 and thus ϵ(c,dk) =mod(2 + dk ,2) = dk . Since the
ϵ-bit of each edge outgoing from c is equal to the σ - bit as shown in figure 2.1 the statement
(2.3) is correct in this case as well.
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Case 2: pk−1 = b. Analoguous to the first case, we apply the induction hypothesis to
(2.2) and thus assume the sum dk−1 + ek−1 = 1, which leads us to ek = ⌊(1 + dk)/2⌋ = dk by
substituting this assumed sum into (2.1).

Now we prove the exactness of (2.2) for the next target position pk , whereby b becomes
the source position. In compliance with the DTSM’s mechanics posed in figure 2.1, an input
dk = 0 causes the token to move to a. The condition defined by (2.2) for the target position
pk = a is the sum dk + ek = 0, which is correct in our current case dk = ek = 0. An input dk = 1
causes the token’s movement from b to c. Here again the condition dk + ek = 2 specified by
(2.2) matches our case dk = ek = 1.

Now we have to affirm the statement (2.3). For this we proceed in the same way as in
the first case referring to (2.1) and substitute again into d′k =mod(ek−1 + dk−1 + dk ,2) the sum
dk−1 + ek−1 = 1 with the result that d′k = mod(1 + dk ,2). The consequence is that d′k has the
inverse value of dk . In fact each edge outgoing from b is labeled with a σ - and ϵ-bit that are
mutually inverse (see figure 2.1). For this reason (2.3) is valid in this case too.

Case 3: pk−1 = a. The induction hypothesis will now be applied for this third case to (2.2)
with the result dk−1 + ek−1 = 0, that is dk−1 = ek−1 = 0. With reference to (2.1) we are given
ek = ⌊dk/2⌋ = 0. Simply put ek is in each case zero, notwithstanding which value dk has.

So far we have authenticated that ek = 0 when a token has moved into the target position
pk−1 = a within the context of our induction hypothesis. In the course of proving the legiti-
macy of (2.2) for the next target position pk , the node a is our source position. As illustrated
in 2.1 an input bit dk = 1 will cause the tokens move to node b and an input dk = 0 will cause
the token to remain at position a. The formula (2.2) that explicitely defines the tokens target
position pk complies to this behaviour in its conditions dk + ek = 1+0 = 1 (token’s movement
to b) and dk + ek = 0 + 0 = 0 (token’s stay in position a). Hence (2.2) is credible in this third
case.

Finally we have to substantiate the statement (2.3) in this third case. Substituting the
sum dk−1 + ek−1 = 0 into (2.1) we are given d′k = mod(dk ,2) = dk and thus ϵ(a,dk) = d′k = dk .
Both edges that are outgoing from a have an ϵ- and σ -bit which are the same. Finally (2.3) is
accurate as well in this third case.

The equality of the sequence (d′k)k∈N0
to the sequence of generated ϵ-bits has been val-

idated and due to the fact that the sequence of ϵ-bits forms the sequence of σ -bits that
describes the next token’s walk through, we have proven the theorem 2.1.
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3.1 Defining a Free Binary String Monoid

Let us express a monoid M that is freely generated by the set of two elements p and q.
The monoid’s operator is the concatenation and it’s elements are strings (similarly called
words) made of the 2-letter alphabet {p,q}, where each letter represents an ϵ-bit of an integer
that is a Collatz sequence member (p represents zero, q represents one). For instance, 5 is
represented by qpq.

The complete specification of this monoid, including all of its characteristics, is given by
the following definition 3.1

Definition 3.1 We define a Binary String Monoid as an algebraic structure (M,+, e),
which possesses the following properties:

1. M is freely generated over A ⊂M, A = {p,q}. The subset A is the called generator
or base of M. It satisfies e ∪A∪A2 ∪ · · · ∪An ∪ · · · = M and if u1 · · ·un = v1 · · ·vm,
where u1, . . . ,un,v1, . . . ,vm ∈ A, thenm = n and ui = vi , i = 1, . . . ,n (see definition of
free monoids [25, p. 5]). In other words, each string in M is unambiguously rep-
resented by the elements of A. Since A is finite, A is also symbolized by alphabet.

2. + : M ×M → M is an associative operator that signifies the concatenation of
elements of M, in our case the concatenation of the binary strings.

3. The neutral element e is and empty string, which demonstrably fulfills e + u =
u + e = u for all elements u ∈M.

We can now describe a homomorphism ϕ : M → S3 which maps M to the symmetric
group S3 on the set S \ {s0} of states defined by our DTSM, (see definition 2.1) excluding the
starting state. Hence the image of ϕ contains the permutations of the DTSM’s states {a,b,c}.
The image of the string p is (a c b) and the image of q is (b a c). For better readability we have
written permutations in one-line notation. We defined the image under ϕ of all elements
of the generator A = {p,q}, which means that we have implicitly defined the image of all
elements in M, due to the nature that any multi-letter string inside M is a concatenation of
p and q (freely generated over A) and ϕ(u1 + u2) = ϕ(u1) ◦ϕ(u2), where ◦ is the operator for
permutation composition in S3.

Preimages of the identity permutation, more precisely the identity element (a b c) ∈ S3,
are all the strings that can be transformed into an empty string e by striking out substrings
such as pp, qq, pqpqpq, whose image under ϕ is the identity element in S3. One example is

14
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the string pqqp, because we can strike out the substring qq from the middle and then gain
the resulting string pp.

The mapping fromM to S3 by ϕ comprising all six elements of S3 is revealed in table 3.1.
It is worth noting, that, because ϕ is surjective, ϕ is an epimorphism and the preimage of
each element in S3 is non-empty.

string inM permutation in S3 one-line notation order
e

(
a b c
a b c

)
(a b c) 1

p
(
a b c
a c b

)
(a c b) 2

q
(
a b c
b a c

)
(b a c) 2

pq
(
a b c
c a b

)
(c a b) 3

qp
(
a b c
b c a

)
(b c a) 3

pqp, qpq
(
a b c
c b a

)
(c b a) 2

Table 3.1: Definition of the mapping from M to S3 by ϕ

The fourth column of table 3.1 contains the order of each element s ∈ S3, which is defined
as the smallest natural number n such that sn is the identity element of S3: sn = (a b c). In
this context we define the order of an element u ∈M as the order of its image under ϕ.

Both operations, the concatenation of strings as well as the permutations chains are composed from right
to left. To this end, we need to read any string u ∈M from right to left and the same applies to interpreting
permutation chains. In contrast, sequences of bits or positions we read exactly as usual - from left to right.

We construct a function fc : M → M, which maps every string u ∈ M to another string
v ∈M in line with the following principle: The output string v results from the δ-bits, which
a token at state c needs to traverse in order to produce an ϵ-bit sequence that is represented
by the input string u. The δ-bit sequence behind v describes the token’s walk through in
concert with the permutation given by ϕ(u). We should like to return to example 2.1 and
illustrate this principle by the following example 3.1.

Example 3.1 Let u,v ∈M and fc(u) = v = pppqpqqpqpqp. The string v is the reverse
representation of the bit sequence (0,1,0,1,0,1,1,0,1,0,0,0), which is a subsequence
of the sequence (dk)k∈N0

that we previously investigated in example 2.1. The sole dif-
ference consists in the fact that the succeeding does not contain the first δ-bit d0 that
initiated the token’s move from the starting state s0 to the state c. Indeed the function
fc, envisaged here, refers to a token’s walk beginning at the state c. The image of u
under ϕ is the composition of permutations: (a c b) ◦ (b a c) ◦ (a c b)3 ◦ (b a c) ◦ (a c b)6 =
ϕ(pqpppqpppppp) = ϕ(u).

This token residing in the state c will then accordingly move to b and back to c and will
continue moving so that it is consistent with example 2.1 and the resulting sequence of
DTSM positions (b,c,b,c,b,c, c,b, c,b,a,a). Concurrently, we may suggest that the input
string u that we pass to fc is the reverse representation of the ϵ-bits generated by this
walk through. We observed this walk through, which is defined by the bit sequence
given through v, from the token’s position at state c. Finally, u correctly relates to the
binary form of the Collatz number 17 as demonstrated in table 2.4.
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To surmise, the strings belonging to the set M, reversely written they represent bit se-
quences. These sequences are inverse representations of Collatz numbers. The nature of
the Collatz sequences might tempt the reader to assume that the function fc would not be
injective, because of the two different input sequences; that is, the sequence taken from ex-
ample 2.1 which is the inverse binary representation of 725 and the sequence which is the
inverse binary representation of 181 both induce a walk through that generates an ϵ-bit
sequence which is the inverse binary representation of one and the same Collatz number,
namely of 17 - the successor of 725 and of 181. Nevertheless, the input strings u that are
arguments of fc for both cases differ from each other as demonstrated in table 3.2.

case of input 725 case of input 181

δ-bit sequence 1010101101000 1010110100000

subsequence without first δ-bit 010101101000 010110100000

string v rep. the subsequence
(reversly written)

pppqpqqpqpqp pppppqpqqpqp

position sequence starting in c bcbcbccbcbaa bcbccbcbaaaa

permutation chain behind
position sequence

(acb)(bac)(acb)3(bac)(acb)6 (acb)3(bac)(acb)3(bac)(acb)4

string u rep. permutation
chain

pqpppqpppppp pppqpppqpppp

ϵ-bit sequence rep. by string u
(reversly written)

000000100010 000010001000

Table 3.2: Processing the Collatz numbers 725 and 181 compared

Consequently, we define the functions fa and fb, where the token’s walk begins at the
DTSM state a and b. The set F = {fa, fb, fc} form together with the identity function idF as a
neutral element and the operator ◦ that acts as the function composition a monoid (F,◦, IdF).
And here again, the operator is a right-to-left composition.

Theorem 3.1 The functions fa, fb, fc are all bijective.

Proof. The bijectivity of the function fc can be proven in two steps: First we prove fc is
injective and then we prove it is surjective.

Injectivity: Each string in the preimage of fc has its own unique matching string in the
image. We need to prove that every string of the function’s codomain (the functions image -
also referred to as the target set), is the image of at most one string of it’s domain (preimage).
Let us recall, the function fc when inputting a string un · · ·u2u1 (that represents the ϵ-bit
sequence of the token’s walk through starting in state c) outputs the related δ-bit sequence,
which induces this exact walk through.

Let u,w ∈ M,u ̸= w be two non-equal strings and let i ∈ N be the index that indicates
the position of the first letter, in which both strings differ: ui ̸= wi and ∀j < i : uj = wj . The
token resides first in state c, then the token will move in synchronization with the substring
ui−1 · · ·u2u1 = wi−1 · · ·w2w1, and after the token has finished its walk through (defined by
this substring) it will be located in a state s ∈ {a,b,c}. The δ-bits, that were the necessary
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input of our DTSM for this walk through, are (in reverse order) represented by the image of
ui−1 · · ·u2u1 under fc and markedly in the same way by the image of wi−1 · · ·w2w1 under fc.

As per definition, our DTSM has no state, from which a token, when inputting the same
δ-bit, has two different movement possibilities (directions) that would generate a different
ϵ-bit. In other words, no state defined by our DTSM has two outgoing edges that are labeled
with a same δ-bit and a different ϵ-bit (see figure 2.1). Quite to the contrary, each state
has two outgoing edges, which differ in their δ-bit. Even beyond the states a, b and c have
solely outgoing edges (naturally two) that differ both in their δ-bit and ϵ-bit. This leads to
the fact that due to ui ̸= wi the images fs(ui) and fs(wi) are unequal fs(ui) ̸= fs(wi) and thus
fc(u) ̸= fc(w). Formally, the compositions may be expressed as follows:

fc(ui · · ·u2u1) = fs(ui) ◦ fc(ui−1 · · ·u2u1)
̸= fc(wi · · ·w2w1) = fs(wi) ◦ fc(wi−1 · · ·w2w1)

Surjectivity: Each string in the image of fc has at least one matching string in the
preimage. In other words, there will not be a string in the codomain (target set) that is left
out. Every string vn · · ·v2v1 that represents a δ-bit sequence written in a reverse order, moves
a token residing at state c through the positions c, b and a. The ϵ-bits generated by this walk
form a sequence that is (in reverse order) represented by the string un · · ·u2u1. The latter
string is precisely the preimage of vn · · ·v2v1 under fc: fc(un · · ·u2u1) = vn · · ·v2v1. Hence we
have proved that every bit sequence (represented by a string that is an element ofM and thus
composed of letters p and q) has a preimage under fc and therefore surjectivity is proven.

The argumentation used for proving that the function fc is bijective is similarly applied
for the functions fa and fb. Ultimately the functions fa, fb and fc are all bijections.
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4.1 Summary

Wehave defined a structure in Algebraic Automata Theory, whichwe call Dependent Threads
State Machine (DTSM). Building on this, we introduced an example called Collatz DTSM,
which utilizes Collatz sequences (in binary form) as an input alphabet and is able to traverse
these sequences. Finally, we proved that any binary coded Collatz sequence is equivalent to
the sequence of the Collatz DTSM’s input bits (δ-bits).

4.2 Outlook

By introducing the DTSM we defined an algebraic structure of automata that forms a basis
for further research.
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