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Abstract. High precipitation quantiles tend to rise with tem-
perature, following the so-called Clausius–Clapeyron (CC)
scaling. It is often reported that the CC-scaling relation
breaks down and even reverts for very high temperatures.
In our study, we investigate this reversal using observational
climate data from 142 stations across Germany. One of the
suggested meteorological explanations for the breakdown is
limited moisture supply. Here we argue that, instead, it could
simply originate from undersampling. As rainfall frequency
generally decreases with higher temperatures, rainfall inten-
sities as dictated by CC scaling are less likely to be recorded
than for moderate temperatures. Empirical quantiles are con-
ventionally estimated from order statistics via various forms
of plotting position formulas. They have in common that
their largest representable return period is given by the sam-
ple size. In small samples, high quantiles are underestimated
accordingly. The small-sample effect is weaker, or disappears
completely, when using parametric quantile estimates from a
generalized Pareto distribution (GPD) fitted withLmoments.
For those, we obtain quantiles of rainfall intensities that con-
tinue to rise with temperature.

1 Introduction

The atmospheric water holding capacity and thus potential
precipitation intensity depends exponentially on air tempera-
ture according to the Clausius–Clapeyron (CC) relationship.
As empirically documented by several studies, high precip-
itation quantiles rise with temperature, increasingly so with
shorter duration, such as hourly or shorter. This CC scaling
describes a log-linear dependence of precipitation intensity
on temperature (P–T relationship) that roughly follows or

exceeds the CC rate of 7 % K−1 for water vapor. Similarly
well documented is a breakdown or even reversal of that
relation for temperatures beyond some thresholds, usually
somewhere between 15 to 20 ◦C, as indicated in Fig. 1. This
drop was also observed by Brandsma and Buishand (1997),
Klein Tank and Koennen (1993), Panthou et al. (2014), and
Westra et al. (2014). More details about the methods used in
each referenced article can be found in Tables 1 and 2.

Several explanations for this phenomenon have been pro-
posed, such as an increase in the proportion of rainfall stem-
ming from convective events as opposed to large-scale strat-
iform precipitation (Haerter and Berg, 2009). Other explana-
tions include a slower increase in moisture availability than
in moisture storage capacity according to the CC relation-
ship (Berg et al., 2009) or fully saturated conditions lasting
less than event duration (Hardwick Jones et al., 2010). There
may be several different mechanisms in process at different
timescales and locations (Utsumi et al., 2011). The decrease
in precipitation intensity at high temperatures coincides with
a decrease in the number of observations. The aim of this
study is to examine whether this drop could (partly) be a
sample size artifact. For this purpose, we contrast two dif-
ferent approaches to estimate very high precipitation quan-
tiles, namely empirical quantiles (which are based on plot-
ting positions), and parametric quantiles (which are derived
from fitting the generalized Pareto distribution (GPD) to the
data). We compare both estimation methods with regard to
their sample size dependency and their effect on the shape of
P –T relationships, using both observed hydrometeorologi-
cal and synthetic data.
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Figure 1. P–T relationships (99 % quantile, hourly intensities) digitized from several figures in the literature on a logarithmic scale. Red
dashed lines indicate CC scaling by the August–Roche–Magnus approximation (7 % at 0 ◦C, 6 % at 20 ◦C), see Panthou et al. (2014) and
Hardwick Jones et al. (2010). Across regions and studies, P rises with T but then decreases. (a) Berg et al. (2013), Berg et al. (2009)
(mm day−1), and Berg and Haerter (2013). (b) Lenderink et al. (2011), Hardwick Jones et al. (2010), and Utsumi et al. (2011) (converted
from mm day−1). The last two articles use temperature bins of varying width with a semi-constant number of observations per bin. More
details on study region and temperature variables can be found in Table 2.

Table 1. P–T analysis methods used in the cited literature.

Article Bin width Min nbin Quantile + estimation method

Klein Tank and Koennen (1993) 2 ◦C unknown mean amount
Brandsma and Buishand (1997) 2 ◦C unknown mean amount
Lenderink and Meijgaard (2008) 2 ◦C unknown 75+ 90+ 99+ 99.9 %, emp.+GPD top 5 and 10 %
Berg et al. (2009) 2 ◦C 300 99 %, GPD top 20 %; mm day−1 (for each month)
Hardwick Jones et al. (2010) variable median 233 99 %, empirical order stats1

Lenderink et al. (2011) 2 ◦C (overlap: 1 ◦C steps) 2001 90+ 99+ 99.9 %, empirical + GPD top 4 %2

Utsumi et al. (2011) variable, avg. 2 ◦C 150 99 %, unknown, presumably empirical
Berg and Haerter (2013) 5 ◦C (overlap: 3 ◦C steps) 300 99 %, unknown, presumably empirical
Berg et al. (2013) 1 ◦C unknown 95+ 99 %, unknown, presumably empirical
Panthou et al. (2014) 2 ◦C (overlap: 1 ◦C steps) 100 90+ 95+ 99 %, emp.: Cunnane unbiased estimator1

Westra et al. (2014) – – as in Lenderink et al. (2011)

1 Personal communication per email. 2 As in climexp.knmi.nl (p).

2 Data and methods

2.1 Climate data

We analyzed publicly available time series of precipitation,
temperature, and relative humidity from 142 stations across
Germany from the German Weather Service (DWD, 2016).
The stations are selected based on the length of available
hourly time series. All selected datasets contain at least 15
years of observations, mostly 20 years. The R code for
data selection, download, and analysis is available at https:
//github.com/brry/prectemp.

To analyze only the nonzero precipitation records that are
actually of interest for this article, values below 0.5 mm h−1

are omitted. This cutoff is in line with the cited literature and

is suitable because measurements of very low rainfall inten-
sities have a high relative uncertainty. The values are then
logarithmized to enable a comparison of rates of precipita-
tion change across temperatures. Because of the very skewed
nature of rainfall values, this also allows for better distribu-
tion fits.

2.2 Temperature binning

Throughout this paper, event dew-point temperature is used
as an integrated measure of air temperature and water va-
por saturation (or moisture supply). It is defined as the av-
erage dew-point temperature of the 5 h preceding each rain-
fall hour, similar to the procedure by Lenderink et al. (2011).
Dew-point temperature is calculated with the Magnus for-
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Table 2. Regions and temperatures used in the literature cited in Fig 1.

Article Region Temperature variable

Berg et al. (2013) SW Germany Refers to Lenderink et al. (2011)
Berg et al. (2009) Western Europe Surface temperature
Berg and Haerter (2013) Germany Presumably air temperature
Lenderink et al. (2011) Hongkong+NL Dew-point temperature
Hardwick Jones et al. (2010) Australia Surface temperature
Utsumi et al. (2011) Japan Presumably air temperature

mula based on observed relative humidity and air tempera-
ture at 2 m height (see Buck, 1981).

Following the analysis method of Lenderink and Meij-
gaard (2008) and Berg and Haerter (2013), we partition the
hourly precipitation depths according to the event dew-point
temperature. We use moving temperature bins with a fixed
width of 2 K. Bin midpoints increase in 0.1◦ steps.

2.3 Empirical quantiles

Empirical quantiles are estimated by a monotonic mapping
of the ordered sample to sample-size-specific probabilities
called plotting positions. This can be done in a variety of
ways as reviewed by Hyndman and Fan (1996). Common to
all is the fact that the portion to the right of the sample max-
imum is left unresolved (no extrapolations) and receives the
same probability as the maximum. Quantiles representing re-
turn periods larger than the sample length are consequently
mapped to that maximum. They are therefore underestimated
– a fact apparently too trivial to have warranted any publica-
tion. The empirical quantiles used in this article are computed
based on the k−1/3

n+1/3 plotting positions (n= sample size, k =
1,..., n; see Hyndman and Fan, 1996).

2.4 Parametric quantiles

The parametric quantile estimates are obtained in a peak-
over-threshold approach, where the generalized Pareto dis-
tribution is fitted to the top 10 % of the sample. Quantiles are
calculated from the fitted GPD.

We use the method of L moments to fit the GPD param-
eters. They are analogous to the conventional statistical mo-
ments (mean, variance, skewness, and kurtosis) but “robust
[and] suitable for analysis of rare events of non-normal data.
L moments are consistent and often have smaller sampling
variances than maximum likelihood in small to moderate
sample sizes. L moments are especially useful in the con-
text of quantile functions” (Asquith, 2016, 2011; Hosking,
1990).

To obtain the quantile from the fitted distribution, the given
probabilities must be scaled with the conditional probability
of the truncation. For example, if the 99 % quantile (Q0.99)
is to be computed from the top 10 % of the data, Q0.90 of
the truncated sample must be used. We refer to Q0.99 as the

“censored 99 % quantile”. Because five values are required to
obtain Lmoments, the minimum sample size at 90 % trunca-
tion is 50 (45 values are discarded).

Selecting a suitable fitting method is of great importance in
the context of sample size bias. For example, unlike moment-
based procedures, maximum likelihood estimation (MLE)
can still show an underestimation bias at small sample sizes,
as shown in the Supplement. This happens in small samples
(n < 200) for distributions with bounded parameters (and the
optimum of the likelihood function lying on the boundary).
We refer to the Supplement for a comparison of the different
methods.

The GPD quantile computation formula used in the source
code of lmomco is

x(F )=

{
ξ + α

κ
(1− (1−F)κ) if κ 6= 0

ξ −α× log(1−F) if κ = 0
,

with ξ = location,α = scale,κ = shape.

2.5 Sample size dependency

In Sect. 2.3, we pointed out that empirical methods inher-
ently underestimate high quantiles in small samples. In order
to quantify the potential effect in the context of P –T rela-
tionships, we set up the following experiment: to investigate
the dependency of both quantile estimation methods on sam-
ple size, we draw random samples from a defined popula-
tion. This should optimally be a large set of values following
a distribution observed in nature. We therefore use a pooled
dataset with all the precipitation values observed at any of the
142 stations. From this population, we draw random samples
of several sizes and compute empirical and parametric quan-
tiles from each sample. For each sample size, this is done
1000 times, resulting in a corresponding quantile distribution
depending on sample size.

2.6 Synthetic P –T relationship

We apply the results of the previous Sect. 2.5 – that is, the
potential small-sample effects of empirical and parametric
quantile estimates – to P –T scaling relationships and ana-
lyze the drop at high temperatures. To study that effect, we
designed an experiment with synthetic data. Here, precipita-
tion values are generated in a way that exhibits a stable tem-
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perature scaling over all temperature ranges. The CC-scaling
rate is constant, and the increase in high rainfall quantiles
per degree Kelvin remains the same over all temperatures.
When sampling from such synthetic data, any drop in the P –
T relationship must be a statistical artifact. For this purpose,
we define a “temperature-dependent GPD” with parameters
that depend on temperature. To achieve a realistic tempera-
ture scaling, we base the parameters on the linear regression
of the fitted parameters at several dew-point temperatures.

From that synthetic GPD, 1000 random samples are gen-
erated for each temperature bin. The sample size corresponds
to the average number of precipitation observations at the cli-
mate stations in each bin. From these sets of random samples,
the empirical and parametric 99.9 % quantiles are calculated.

3 Results

3.1 Sample size dependency

The dependence on sample size, as revealed by 1000 random
draws per sample size from the pooled precipitation data,
is shown in Fig. 2. The 99.9 % quantile of this population
(n= 1.16 million) is 19.5 mm h−1. It is strongly and consis-
tently underestimated by the empirical estimator with shrink-
ing sample size. For a sample size of 50, the median estimate
is only 7 mm h−1. Realistic estimates are obtained only for
samples larger than about 700, around which the estimates
converge to the (true) population value. The parametric esti-
mators do not exhibit this bias – only their variance increases
with smaller samples (the uncertainty range is wider). This is
a typical example of the well-known bias–variance tradeoff
in estimation theory.

3.2 P –T relationship: empirical vs. parametric
quantiles

The procedure of obtaining parametric (using the GPD) and
empirical quantiles was applied per temperature bin to the
datasets of each of the 142 stations. The empirical precipita-
tion quantiles per bin are presented in the left panel of Fig. 3.
The shape of the P –T relationships is consistent with the be-
havior of P –T relationships shown in Fig. 1 of the introduc-
tory section. The empirical quantile estimates start decreas-
ing between 15 and 20 ◦C. Some stations show the empiri-
cal quantile drop more distinctly than others. The figure also
shows the average across stations, where the drop becomes
particularly clear. Compared to the red line depicting the CC
scaling of 7 to 6 % K−1, the precipitation increase follows a
super-CC scaling with a rise that is steeper than the CC rate.
This is in accordance with previous findings, e.g., by Berg
and Haerter (2013).

The parametric estimates are displayed in the right panel.
At temperature ranges where empirical quantiles decrease,
parametric quantiles keep increasing. This difference is less
pronounced for smaller quantiles (see Supplement Sect. S4).
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Figure 2. Median of the empirical and parametric 99.9 % quantile
estimates depending on the size of samples drawn from all the pre-
cipitation intensity values along with their uncertainty bands. The
horizontal dashed line marks the empirical quantile of the complete
dataset (n= 1.16 million). For n > 500, we used a step size of 10
(instead of 1) for the sample size, so the curve appears smoother
there.

3.3 Synthetic P –T relationship

The synthetic P –T relationship that continuously rises with
temperature (see Sect. 2.6) is defined with the parameters
shown in the left panels of Fig. 4, where each dot repre-
sents one of the stations. The right panel shows the median
of the 99.9 % quantile estimates from random samples with
the original sample sizes. Even though the distribution con-
tinues to increase with temperature, empirical quantiles from
random samples stagnate or drop around 18 ◦C where sample
size decreases quickly. Parametric quantiles obtained by dis-
tribution fitting do not drop and follow the theoretical quan-
tile from the distribution function.

4 Discussion and conclusions

Precipitation quantile estimates rise with temperature until
they reach a turning point, beyond which they decrease. For
this drop in the CC-scaling relation towards higher tempera-
tures, a number of explanations have been suggested. In this
study we offer the alternative view that the drop can be under-
stood, at least in some cases, as a statistical artifact of small
samples. At higher temperatures, fewer precipitation obser-
vations are available because (1) wet events are less frequent
at high temperatures and (2) precipitation events at higher
temperatures are generally convective in nature and very lo-
calized in space; they are thus often missed by the observing
network, resulting in smaller sample sizes compared to large-
scale precipitation at lower temperatures. A rather simple ar-
gument shows that empirical quantile estimators have an un-
derestimation bias for return periods exceeding the sample

Nat. Hazards Earth Syst. Sci., 17, 1623–1629, 2017 www.nat-hazards-earth-syst-sci.net/17/1623/2017/
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Figure 3. The 99.9 % precipitation intensity per temperature bin with empirical and parametric quantile estimate (a and b respectively). Each
line represents one of the 142 stations, with the black line as the average across stations. The red line denotes CC scaling as in Fig. 1. The
green line in (b) repeats the average from (a) for comparison.
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Figure 4. (a) Parameters of a temperature-dependent GPD: ξ (location), α (scale), and κ (shape). The orange lines show a linear regression
as per Sect. 2.6. (b) Corresponding 99.9 % distribution quantile (orange) and median of the 99.9 % quantile estimates generated from samples
in 1000 random draws along with their variance bands.

size, and we verified this behavior in a set of Monte Carlo
experiments. It turned out that the underestimation of high
quantiles, such as those relevant for the upper portion of the
CC-scaling relationship, can be substantial. We have shown
that when empirical estimators are appropriately replaced
by parametric ones, the high-temperature drop in CC scal-
ing disappears. The method of parametric estimation is cru-
cial, nevertheless, as similar small-sample biases are known,
e.g., from using MLE estimators (see above and more exam-
ples in the Supplement). The most robust estimates were ob-
tained from moment-based methods. Past CC-scaling studies

that have relied on empirical or ML-based quantile estima-
tors are likely affected by the small-sample artifacts for high
temperatures that we have described here. For those, we find
it necessary to revisit the corresponding estimation step us-
ing other, e.g., moment-based, procedures. This may be es-
pecially interesting for quantiles beyond the 99.9 % level.

To exclude potential physical effects related to precipita-
tion as much as possible, we have repeated the analysis with
synthetic data and obtained essentially the same results. Fur-
thermore, we have used dew-point temperature instead of air
temperature in order to rule out that the drop in the P–T rela-
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tionship is caused by a lack of moisture supply. It should be
noted, though, that the use of dew-point temperatures only
accounts for moisture that is already stored in the local at-
mosphere. It does not account for large-scale moisture con-
vergence which becomes more important with longer pre-
cipitation duration intervals. This is evidence that the drop
in empirical quantile estimates is precipitation independent;
it is less a physical phenomenon but rather a statistical ar-
tifact caused by small samples, and it can largely be over-
come by employing parametric estimators. Still, alternative
physical explanations considering physical processes should
not lightly be discarded. Some were summarized briefly in
Sect. 1. It might also, for example, be hypothesized that near-
surface temperature is not an adequate proxy for air tempera-
ture at the height where precipitation-forming patterns unfold
on very warm days.

Parametric quantiles from fitted distributions provide a
means to retrieve less biased estimates of extreme quan-
tiles. The price to be paid is the larger uncertainty of those
estimates. This should be quantified by confidence inter-
vals or application to several datasets to avoid singular non-
representative results. The parametric method requires sig-
nificantly fewer data points in a sample than empirical quan-
tiles need to converge to the actual (unknown) value. In the
combination of small sample sizes and very high quantiles,
the use of parametric quantiles is recommended.

Code and data availability. The datasets are freely available
through the DWD Climate Data Center. The complete analysis code
and more graphical results are available at https://doi.org/10.5281/
zenodo.892004.

The Supplement related to this article is available
online at https://doi.org/10.5194/nhess-17-1623-2017-
supplement.
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