
Mathematisch-Naturwissenschaftliche Fakultät

Holger Giese | Stefan Henkler | Martin Hirsch

A multi-paradigm approach supporting
the modular execution of reconfigurable
hybrid systems

Postprint archived at the Institutional Repository of the Potsdam University in:
Postprints der Universität Potsdam
Mathematisch-Naturwissenschaftliche Reihe ; 410
ISSN 1866-8372
http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-402896

Suggested citation referring to the original publication:
Simulation : transactions of the Society for Modeling and Simulation International
87 (2011), pp. 775-808
DOI http://dx.doi.org/10.1177/0037549710366824
ISSN (online) 1741-3133
ISSN (print) 0037-5497

Simulation

A multi-paradigm approach supporting
the modular execution of reconfigurable
hybrid systems

Holger Giese1, Stefan Henkler2 and Martin Hirsch2

Abstract

Advanced mechatronic systems have to integrate existing technologies from mechanical, electrical and software engi-

neering. They must be able to adapt their structure and behavior at runtime by reconfiguration to react flexibly to

changes in the environment. Therefore, a tight integration of structural and behavioral models of the different domains is

required. This integration results in complex reconfigurable hybrid systems, the execution logic of which cannot be

addressed directly with existing standard modeling, simulation, and code-generation techniques. We present in this paper

how our component-based approach for reconfigurable mechatronic systems, MECHATRONIC UML, efficiently handles the

complex interplay of discrete behavior and continuous behavior in a modular manner. In addition, its extension to even

more flexible reconfiguration cases is presented.

Keywords

code generation, hybrid systems, reconfigurable systems, simulation

1. Introduction

When developing advanced mechatronic systems we do
not only have to combine technologies from mechani-
cal, electrical, and software engineering, we also have to
develop systems which can react flexibly to changes in
the system itself or the environment. Therefore,
advanced mechatronic systems have to be able to
adapt their structure and behavior at runtime (reconfi-
guration). In addition, mechatronic systems usually
have real-time requirements and often show hybrid
behavior, which requires the integration of the different
modeling paradigms in the form of a hybrid system.
Owing to the increasing complexity, such integration
has to cover advanced specification techniques from
the involved disciplines as well as their tools.

The design of complex mechatronic systems has
become so intricate that it can only be done by means
of computer-aided modeling.1 The models comprise
modules and hierarchies that are derived from the phys-
ical–topological structure of the system. For subse-
quent symbolic and numerical processing, the models
are transformed into a format appropriate for process-
ing which takes their modular–hierarchical structure
into account.2

Hierarchical block (HB) diagrams are the usual
method to model technical or reactive systems. They
are used in different domains, e.g. in mechanical and
electrical engineering, software or systems engineering.
This common notation has its origin in control engi-
neering. The blocks describe the behavior of the system.
Modularization and hierarchical structuring are impor-
tant aids for the solution of the complexity problem in
technical systems. Modularizing the function helps to
decompose it into isolated subproblems which can be
addressed by different working teams and different sup-
pliers. In software engineering, component-based speci-
fication techniques that emphasize in addition the

1System Analysis and Modeling Group, Hasso Plattner Institute at the

University Potsdam, Prof.-Dr.-Helmert-Strasse 2–3, D-14482 Potsdam,

Germany.
2Software Engineering Group, University of Paderborn, Warburger

Strasse 100, D-33098 Paderborn, Germany.

Corresponding author:

Stefan Henkler, Software Engineering Group, University of Paderborn,

Warburger Strasse 100, D-33098 Paderborn, Germany

Email: shenkler@upb.de

Simulation: Transactions of the Society for

Modeling and Simulation International

87(9) 775–808

! The Author(s) 2010

Reprints and permissions:

sagepub.co.uk/journalsPermissions.nav

DOI: 10.1177/0037549710366824

sim.sagepub.com

component type and interface typing rather than clas-
sical block diagrams are used to model the required
hierarchical decomposition.

In addition, only a single paradigm, such as contin-
uous systems from the control engineering domain, is
not sufficient to address advanced mechatronic systems.
Instead, multiple paradigms from the involved domains
have to be supported. Mosterman and Vangheluwe3

have identified three orthogonal dimensions for multi-
paradigm development approaches, which are
(i) models of different abstractions, (ii) different formal-
isms, and (iii) meta-modeling. For the reconfiguration
within advanced mechatronic systems as targeted by
this article, in particular, the integration of different
formalisms matter.

1.1. Advanced mechatronic system example

A typical example of an advanced mechatronic system
is the RailCab4 research project at the University of
Paderborn. In this project, autonomous shuttles are
developed which operate individually and make inde-
pendent and decentralized operational decisions.

The modular railway system combines sophisticated
undercarriages with the advantages of new actuation
techniques as employed in Transrapid5 to increase pas-
senger comfort while still enabling high-speed transpor-
tation. In contrast to Transrapid, the existing railway
tracks will be reused.4

Figure 1 shows a schema of the physical model of the
active vehicle suspension system and the body control-
ler. The suspension system of railway vehicles is based
on air springs which are damped actively by a displace-
ment of their bases and three vertical hydraulic cylin-
ders which move the bases of the air springs via an
intermediate frame: the suspension frame. The vital

task of the system is to provide the passengers with
high comfort and to guarantee safety and stability
when controlling the shuttle’s coach body. In order to
achieve this goal, multiple feedback controllers are
applicable with different capabilities in matters of
safety and comfort. The right-hand side of the figure
shows the controller model of the suspension module.

As a concrete example, we later look into the control
system of a testbed of a magnetic-levitation train
(Figure 2(a)). The testbed allows control of the body
mass only in the vertical direction. It consists essentially
of a supporting frame, two vertical guides for the body
and carriage mass, sensors to obtain the position of the
body and the carriage mass, two voice-coil actuators
for the simulation of disturbances as well as the levita-
tion motor and the body and carriage mass connected
by a mechanical spring. On the basis of this testbed we
show the modeling and code synthesis of a switchable
control.

Another detailed example considered later is the
control of shuttle convoys (Figure 2(b)). The particular
problem is to reduce the energy consumption due to air
resistance by coordinating the autonomously operating
shuttles in such a way that they build convoys whenever
possible. Such convoys are built on-demand and
require a small distance between the different shuttles
such that a high reduction of energy consumption is
achieved. Coordination between speed control units
of the shuttles becomes a safety-critical aspect and
results in a number of hard real-time constraints,
which have to be addressed when building the control
software of the shuttles. In addition, different control-
lers are used to control the speed of a shuttle as well as
the distance between the shuttles. The controllers have
to be integrated with the aforementioned real-time
coordination.

A B

C

Prop.- valves

A / D

Controller

D / A

Sensors

Hydr. pump

Car body

Hydr. actuators

Air springs

to the
actuators

z

y

Controller model
(CAMeL-view)

x_rel_mod

springActive

x_z_ist_a

x_z_soll_a

x_z_soll_b

x_z_soll_c

L0_A
calc_Cyl_ref

calc_F_aktiv

Calc_F_aktivClass

GlobalControllerHcsType

L0_B

L0_C

x_z_ist_b

x_z_ist_c

yLFLRel_ist

zLFLRel_ist

yLFRRel_ist

zLFRRel_ist
sum_F_mod

Sum_F_modClass

c

x = f (x u t)

x = f (x u t)

x = f (x u t)
y = g (x u t)

y = g (x u t)

y = g (x u t)

SpringActiveClass

damperActive

DamperActiveClass

Figure 1. Suspension module with controller.

776 Simulation: Transactions of the Society for Modeling and Simulation International 87(9)

1.2. Problem statement

Advanced mechatronic systems such as the outlined
RailCab system require solutions which incorporate
multi-paradigm models and exhibit flexible reconfigura-
tion where the effects of reconfiguration can propagate
across module boundaries as we exemplify in more detail
later on. For such flexible reconfigurable hybrid sys-
tems specified by multi-paradigm models, an efficient
evaluation scheme is required which excludes deadlocks
caused by the evaluation of the continuous parts of the
hybrid system. However, existing approaches fall short
in providing the required efficient solution. White-box
approaches require too many global evaluation
schemes and thus too much memory for reconfigurable
hybrid systems. Black-box approaches in contrast
result either in deadlocks during evaluation or require
iterative evaluation schemes which are not appropriate
for real-time processing. Schemes relying on the data-
flow are usually inefficient and runtime failures cannot
be excluded. Existing modular techniques6–11 consider a
(restricted) kind of reconfiguration but neither do they
consider the required propagation across module
boundaries nor a flexible kind of reconfiguration.
Furthermore, these approaches do not support an inte-
gration of proper analysis techniques in order to ensure
the correct real-time behavior.

1.3. Contribution

In order to apply component-based models for the spe-
cification of advancedmechatronic systems with reconfi-
guration, we have inventedMECHATRONICUML12,13 as
domain-specific refinement and extension of the Unified
Modeling Language (UML).14,15 Among others,
MECHATRONIC UML defines hybrid componentsa and

hybrid reconfiguration charts16 which permit the inte-
grated modeling of discrete behavior specified by the
hybrid reconfiguration charts in the form of extended
timed automata models with continuous components
(e.g. feedback controllers) that are specified by block dia-
gramsor differential equations. In former paperswehave
also described in detail the techniques to ensure the cor-
rectness of the reconfiguration with respect to given real-
time constraints16,17 and the available tool support for
the approach.18 In Table 1 the basic paradigm formal-
isms used in mechatronic systems that are covered by
MECHATRONIC UML are presented.19

As identified in the problem statement, complex
reconfigurable hybrid systems as resulting from
MECHATRONIC UML models cannot always be directly
addressed with existing simulation and code-generation
techniques. The focus of this article is therefore the
modular execution scheme for reconfigurable hybrid
systems which result from the combination of the dif-
ferent paradigms that overcome this problem by oper-
ating with rather restricted memory while still
remaining efficient. We outline its capabilities and
describe in detail which analytic information is required
to be able to synthesize the modular execution logic.

Our solution for handling the required complex inter-
play between discrete behavior and continuous behavior
with a modular hierarchical execution scheme is

(a)

Upper
voice-coil actuator

Lower
voice-coil actuator

Body
position sensor

Body spring
Body mass

Carriage mass

Carriage
position sensor

(b)

Figure 2. Testbed for the active vehicle suspension system (a) and convoy building shuttles (b).

Table 1. Paradigms used in MECHATRONIC UML

Paradigm

Continuous Event-based

Dynamic

structural

adaptation

Formalism Block diagrams Automata Story pattern

Semantics Differential

equations

Timed

automata

Graph

transformation

systems

aMECHATRONIC UML supports different component types. We
explicitly name them except for general software components which
we refer to as components.

Giese et al. 777

described in this paper in detail. The ideas for this
scheme have been published previously.16,20–22 In this
paper we integrate these ideas with the formal semantics
of the models, provide the complete details required to
employ the modular evaluation scheme, describe the
static analysis and runtime checking techniques to safe-
guard the development and report about the concrete
tool integration efforts and the available simulation
capabilities. In addition to our previous work, we
extend the former results to also cover more general
forms of reconfiguration without losing the benefits of
the developed modular scheme where possible.

The approach has been realized for the integration
of the UML tool Fujaba23 and the CAE (Computer
Aided Engineering) tool CAMeL-View24 for the simu-
lation environment IPANEMA.25 The modular execu-
tion scheme effectively enables the integration of
models of both tools by enabling a shared notion of a
hybrid component using the modular execution capa-
bilities. Finally, we also present the simulation and
visualization for validation purposes for a reconfigur-
able hybrid model within the CAMeL-View tool.

1.4. Outline

The paper is structured as follows. We first discuss the
state of the art in Section 2. Then, we sketch the
MECHATRONIC UML approach for modeling reconfi-
gurable hybrid systems in Section 3 with the focus on
the underlying integration of different paradigms using
the introduced example. Then, we look into the prob-
lem of ordering the evaluation of reconfigurable con-
tinuous models in Section 4. We present in detail how
the required characteristics for a modular execution
scheme can be derived from the models and employed
to resolve this problem. An overview about support for
the correct development with models employing the
modular scheme by static analysis and runtime checks
is sketched in Section 5 and the underlying integration
of the two involved tools is presented in Section 6 refer-
ring also to the example. The paper closes with a con-
clusion and an outlook on future work.

2. State of the art

The considered state-of-the-art approaches are chosen
on the basis of their capabilities of modeling hybrid
systems (see Section 2.1) and their capability of gener-
ating code for continuous and hybrid systems (see
Section 2.2).

2.1. Modeling of hybrid systems

MATLAB/Simulink and Stateflow26 are the de facto
industry standard for the modeling of technical

systems. Reconfiguration can be modeled by condition-
ally executed subsystems which are triggered by control
signals. Another approach for the modeling of reconfi-
guration is the integration of discrete blocks (Stateflow
models) into block diagrams. The alternative controller
outputs are fed into a discrete block whose behavior is
described by a Stateflow model. Dependent on the
Stateflow models’ current discrete state, the corre-
sponding continuous signals are blind out or directed
to the block’s output. This enables switching between
the output signals of different controllers. Thus, a
Stateflow model can be used to only trigger the required
elements of the currently active configuration instead of
blinding out the results of those that are not required.
This approach allows modeling of reconfiguration but
it has the disadvantage that systems will become very
complex.

Hybrid bond graphs27 introduce so-called controlled
junctions to model reconfiguration. A finite-state
machine (FSM) is associated with each controlled junc-
tion. Each state of the FSM is of the type on or off,
indicating if the controlled junction acts like a normal
junction or as a 0 value source. Therefore, state changes
turn parts of the model on or off. Modeling reconfi-
guration with hybrid bond graphs has the same draw-
back as conditionally executed subsystems, as graphs
consist of all active and inactive configurations.

Other approaches combining components and
hybrid automata concepts such as CHARON28 (and
its extension R-CHARON29), HyROOM,30,31

HyChart,32,33 HybridUML,34 and Ptomely II35 provide
hierarchical automata models for the specification of
behavior and hierarchical architectural models. In
UMLh,36 the architecture is specified by extended
UML class diagrams that distinguish between discrete,
continuous, and hybrid classes. Also, the OMG effort
to integrate models from the software engineering
domain with models from the control engineering
domain falls into this category. The Systems
Modeling Language (SysML)37 is a first proposal to
standardize system engineering, which could be inte-
grated with a possible UML 2.0 successor.38

All of the presented tools and techniques for hybrid
components support the specification of a system’s
architecture or structure by a notion of classes or com-
ponent diagrams. All approaches support modular
architecture and interface descriptions of the modules.
Nearly all approaches embed the continuous models in
the discrete state machines using the hybrid automata
concept in order to model reconfiguration of the con-
tinuous behavior within one module. Specifying recon-
figuration with SysML should be possible with the
activity diagrams, but concrete examples for this issue
do not exist. Nevertheless, the approaches do not
respect that a module can change its interface due to

778 Simulation: Transactions of the Society for Modeling and Simulation International 87(9)

reconfiguration which can lead to incorrect configura-
tions and further the approaches do not permit that
reconfiguration takes place across module/block
boundaries.

CHARON, Masaccio, HybridUML with HL3,
UMLh, HyROOM, and HyCharts have a formally
defined semantics, but due to the assumption of zero-
execution times or zero-reaction times, most of them
are not implementable, as it is not realizable to perform
a state change infinitely fast on real physical machines.
CHARON is the only approach providing an imple-
mentable semantics. HyCharts are implementable
after defining relaxations to the temporal specifications.
They respect that idealized continuous behavior is not
implementable on discrete computer systems. Further,
CHARON provides a semantic definition of refinement
which enables model checking in principle. Ptolemy II
even provides multiple semantics and supports their
integration.

2.2. Composition and evaluation order

Given a continuous system, to evaluate the differential
equation the different parts of the equation system have
to be executed. For a correct execution the overall eval-
uation order has to be respected in order to prevent a
deadlock during computation or invalid results.39 The
connections of subsystems has a direct impact on the
method of the so-called model integration, i.e. embed-
ding of subsystems into the simulation platform. In the
process one has to distinguish between different kinds
of integration: in a black-box integration, communica-
tion can disregard the inner structure of the subsystem
while in a white-box integration the communication
routines are implemented purposefully into the evalua-
tion functions of the subsystems. A dataflow integration
is the third alternative. Finally, we discuss mixed
approaches, which use the benefits of the aforemen-
tioned approaches.

The most simple solution to determine the evalua-
tion order is to use white-box integration. To this end,
the overall evaluation graph is built and the evaluation
is done in an intertwined manner such that the nodes of
different blocks have to be evaluated separately. Since
the sequence of the evaluation can be computed only
for the entire system, this integration approach is inher-
ently non-modular and only permits us to derive opti-
mizations concerning the granularity of the execution
logic for the whole system.

White-box integration thus solves the problems con-
cerning the evaluation order for a whole system if we
have a static structure and do not require modular exe-
cution. In the formal semantics defined in Appendix
A.2.2, we simply flattened the hierarchal structure and
composed the directed acyclic evaluation graphs when

composing continuous blocks and thus effectively
employed white-box integration as this is the state-of-
the-art approach by control engineers. However, while
theoretically sound such a solution does not fit to our
needs for the execution logic of reconfigurable hybrid
systems (high number of evaluation orders due to the
exponential).

A Java and a C/Cþþ export to support simulation
of hybrid bond graphs has been outlined previously.40

The evaluation order has to be derived for every global
state (the cross product of FSMs of all controlled junc-
tions). In our approach, we exploit the hierarchical
component structure to build a tree structure, which
avoids getting a number of evaluation orders that is
exponential in the number of states. Further, a switch
of a discrete state in a FSM can trigger transitions in
other FSMs. Therefore, no upper bound is given,
describing the number of transitions, which fire before
the system reaches a consistent, stable state and contin-
uous evaluation can proceed. In our approach the dis-
crete and the continuous evaluation are decoupled and
the upper bound of firing transitions is set by the
hierarchy.

An alternative for determining the evaluation order
which allows the use of a more coarse-grained structur-
ing of the execution logic is black-box integration. In
our approach, only the input/output interfaces of the
submodels are considered. Their inner structure
remains hidden. Therefore, communication occurs
only vectorially at certain, precisely defined moments
in the program run.39

In order to reduce dependencies, the equations can
be sorted according to the categories non-direct link
(ND), direct link (D), and state equations (S). These
categories serve to classify the input/output variables41

for _x the state vector, y the output vector, u the input
vector, p the parameter vector, and t the time as
follows.

Non-direct links. All output variables that do not
depend directly on input values are non-direct links
and can thus be computed directly: yN (t)¼ f (x, p, t)
(see y1 of Figure 3(a)).

Direct links. This category comprises all input vari-
ables that have an immediate effect on at least one
output variable: yD (t)¼ f (x, u, p, t) (see y2 or y4 of
Figure 3(a)).

State variables. Input variables that apply only to
state equations fall into this category: _x ¼ f x,u,p,t

� �

(see _x of Figure 3(a)).
However, in principle, the problem of a communica-

tion deadlock due to a cycle in the evaluation graph
which results from the composition of two continuous

Giese et al. 779

blocks cannot be fully solved just by introducing the
ND-, D-, and S-blocks. A deadlock can occur, if the
couplings between direct-link blocks make up a cycle.
The model cannot be evaluated at the chosen granular-
ity level any more because the subsystems required to
compute the data are waiting for the data of the other
subsystems. These cyclic waiting dependencies can thus
result in a conceptual deadlock (Figure 3(b)).

The deadlock can be dissolved by employing itera-
tions or by white-box approaches. Descriptor methods
based on differential-algebraic equations (DAEs) are an
approach for supporting modular simulation based on
iterations. One drawback of these methods is that they
cannot be used in real-time contexts because of the iter-
ative parts of the necessary solvers. There are several
CAE tools that are also based on DAEs, such as
ADAMS42 or SIMPACK43, which allow multi-body
modeling and simulation yet have the same drawbacks
in real-time evaluation as do all DAE-based tools.44

Another feasible solution is the use of filters.
However, they alter the model and thus the system
behavior, which is in most cases unacceptable.7,8

Another option is dataflow integration which main-
tains no precomputed evaluation orders but use the
flow of data via the expressions and connections to
control the evaluation. While conceptually elegant
and even applicable for any imagined reconfiguration,
this solution results in two serious problems.

At first, deadlocks in the evaluation order are not
detected during the compilation and composition of the

system but rather at runtime.45 This is a rather unsafe
situation which is often not acceptable for many
mechatronic systems as oftentimes critical functionality
is realized and thus runtime failures which cannot be
resolved easily at runtime also have to be excluded.
Furthermore, reconfiguration across module bound-
aries is not supported.45

Second, evaluating each single equation related to
the nodes of the evaluation graph of the system as a
single unit results in an extremely slow execution logic.
In between each single assignment the potentially com-
plex processing of the dataflow and the availability of
all inputs of an equation happens.

Therefore, this alternative is in fact no real option
for an industrial strength solution for reconfigurable
hybrid systems unless the models executed under this
regime are rather small. However, we look for a solu-
tion for large, complex mechatronic systems.

It is also possible to avoid such runtime checks and
rely on computing a fixpoint at runtime.46,47 However,
this fixpoint may contain undefined values, which
means such code cannot be used in safety-critical,
hard real-time applications.

The last solutions are approaches that mix the dif-
ferent other approaches. Approaches for modular code
generation of synchronous languages, such as
MATLAB/Simulink and LUSTRE48 or Esterel,49,
have been presented previously.6,10,11 Modular code
generation is mandatory for synchronous languages
to find adequate variables which lead to deadlock-free
and efficient code. These approaches abstract each
block in a way which enables modular code generation.
For example, a set of interface functions of each block
and a set of dependencies between these interfaces can
be generated.10,11 The finer the abstraction, the more
information about the input and output dependencies is
preserved, which enables the block to be more reusable.
This is similar to our gray-box approach for the evalu-
ation of block diagrams (see Section 4), but these
approaches did not consider reconfiguration across
module boundaries as well as no flexible reconfigura-
tion as required in our problem statement (see
Section 1.2).

Previous studies7–9 have considered synchronous
languages with dynamic reconfiguration. The authors
present a conservative extension of LUSTRE with hier-
archical state automata, based on a translation seman-
tics into a clocked dataflow kernel. The authors
advocate that such a translation not only gives the
semantics of the whole language, but is an effective
way to implement the compiler (code generation) in
the sense that the generated code is efficient and of
small size. In this approach cyclic dependencies are
avoided by requiring that every feedback loop is
broken by a unit-delay block at every level of the

Figure 3. Correct (3(a)) and deadlocked (3(b)) black-box

integration with ND–D–S decomposition.

780 Simulation: Transactions of the Society for Modeling and Simulation International 87(9)

hierarchy. This is a major modeling restriction, as most
diagrams in practice exhibit feedback loops with no
such delays at higher levels of the hierarchy.

2.3. Comparison

In summary, the existing approaches fall short when it
comes to reconfiguration that is not restricted to effects
within a single module. In addition, existing evaluation
schemes are not able to cope with the complexity when
evaluating reconfigurable hierarchical hybrid systems.
The presented solution for MECHATRONIC UML over-
comes these limitations providing modeling capabilities
as well as an efficient evaluation scheme for the result-
ing complex models.

3. Multi-paradigm modeling

In this section, we consider how the different modeling
paradigms for the control and software engineering
domain are integrated into the MECHATRONIC UML
approach (see Table 2). We especially focus on
the resulting support for reconfigurable hybrid sys-
tems.b We introduce here only the supported
notation. A detailed formalization of the concepts
including the basic syntax and semantics is presented
in Appendix A.2.

3.1. Continuous models

As stated in Section 1, a common technique for the
specification of controllers that is widely used in differ-
ent tools is the notion of HB diagrams.

Block diagrams generally consist of basic blocks
(BBs), specifying behavior, and HBs that group basic
and other HBs to reduce the visual complexity. Each
block has input and output signals. The unidirectional
interconnections between the blocks describe the

transfer of information. For example, the output
signal of a BB is fed as an input signal into a HB.

Figure 4 displays the three controllers that are
applied in our example. In Figure 4 the Comfort con-
troller, providing the passengers the most comfort, is
shown. It consists of two PIDT1 controllersc: one for
controlling the undercarriage, the other for controlling
the coach body. For inputs, PIDT1,body obtains the
desired and the actual positions of the coach body.
The first is provided by a user input, the latter by a
sensor. The output yields the position of the undercar-
riage and serves as an input for PIDT1,carriage. The other
input, the current position of the undercarriage, is also
provided by a sensor.

If, however, a user input does not exist, this value is
set to a constant value as displayed in Figure 4(b). In
case the xbodycurrent sensor should fail, this controller struc-
ture could lead to an instability. Then the system needs
to be reconfigured as shown in Figure 4(c). The
required position of the undercarriage is set to a con-
stant value. This controller provides less comfort, but
guarantees stability. To ensure stability, fault tolerance
patterns are applied in such a way that the signal
xcarriagecurrent is computed redundantly such that we can
rely on xcarriagecurrent even in the case on sensor data fails.

A single block is characterized by input, output, and
auxiliary variables and a set of expressions with a left-
hand side variable and a right-hand side expression
with references to other variables (see Figure 5).

If the set of equations is well-formed (see Appendix
A.2.1), it can be represented by a corresponding direc-
ted acyclic evaluation graph. Each left-hand side vari-
able is represented by a node and all occurrences of
variables in the right-hand side as an edge from the
node of the referenced variable to the node of the
defined variable. Following this outline, we can derive
an acyclic evaluation graph G¼ (N, E) with node set N
and edge set E�N�N. For each n2N and the related
expression v :¼ . . .v0. . . holds that for each variable v0

the expression refers to an edge (n0, n)2E with n0 is
related to v0. In addition, we have for each evaluation
graph Nstate�N denoting the subset of nodes which

Table 2. Paradigms and Tools in the Mechatronic UML

Paradigm

Continuous Continuous þ event-based Dynamic structural adaptation

Formalism Block diagrams Hybrid reconfiguration charts þ hybrid components Story pattern þ hybrid components

Semantics Differential equations Hybrid reconfiguration automata Hybrid graph transformation systems

Tool CAMeL Fujaba Fujaba

bNote that in addition to providing a solution to the multi-paradigm
modeling problem, in practice rather than simply a new language
support for the different established domain-specific notation and
tools is needed. The Fujaba Real-Time Tool Suite presented in
Section 6 therefore realizes the MECHATRONIC UML approach by
integrating an existing CAE tool. cPIDT denotes proportional–integral–derivative–time controller.

Giese et al. 781

represent the internal state of the block. In the case of a
well-formed composition of two continuous blocks, we
can derive the resulting directed acyclic evaluation
graph by simply combining the graphs of both blocks
at the connected inputs and outputs. In the case of a
single block as well as a composition, a simple check of
the evaluation graph at compile-time is sufficient to
exclude problems with the evaluation at runtime.

3.2. Reconfigurable hierarchical hybrid models

The architecture of the system is based on distributed,
interconnected components. The components are based
on UML 2.0 components but we distinguish between
different types of components (see Figure 28). We dis-
tinguish between (discrete) components, hybrid compo-
nents, and continuous components (block diagrams).
As required in the introduction of Section 3, compo-
nents can embed other components. In addition, we can
distinguish between component types and component
instances.

Figure 6 shows an instance view of the component
structure of the suspension system. There it is shown
that a hybrid Monitor component embeds continuous
Sensor and Storage components and, moreover, a

hybrid BodyControl component, which embeds three
different controllers (not shown in the figure). Based on
the availability of the information of the Storage,
which stores track information of other shuttles,
which are communicated from the registry and the
Sensor of the BodyControl can switch between differ-
ent controllers based on the available information. In
addition to the shown embedding of the different par-
adigms, a more abstract view in the form of patterns is

(a)

(b)

(c)

Figure 4. (a) Comfort controller; (b) semi-comfort controller; and (c) robust controller.

Inputs: U1, U2, U3, U4
Outputs: Y1, Y2, Y3, Y4
States: X=0;
Auxilars: a, b, c, d

a := U1 + U2;
b := U3;
c := U4;
d := 1;
X' := X + c;
Y1 := a;
Y2 := b;
Y3 := b;
Y4 := d*x;

Figure 5. A basic continuous block.

782 Simulation: Transactions of the Society for Modeling and Simulation International 87(9)

also supported as shown in the figure. A pattern in
our case consists of port roles (MonitorRole,
RegistryRole) and a connection between the roles.
In addition to the structure, a pattern also consists of
a behavioral description.17

The behavior of this hybrid BC component is speci-
fied by a simple hybrid statechart (see Figure 7) which
is an extension of a real-time statechart.50 It consists of
three different control modes (discrete states) associ-
ated with the three configurations from Figure 4.

The configurations consist of PIDT1,carriage,
PIDT1,body, and the P blocks. For switching between
two controllers, we can distinguish between atomic
switching and cross-fading. If the switching between
two blocks can take place between two computation
steps, atomic switching is used and otherwise we use
cross-fading. The cross-fading itself is specified by a

fading function and an additional parameter which
determines the duration of the cross-fading. Bold
arrows indicate that output cross-fading, which con-
sumes time, has to be applied when there is a switch
between two states. The deadline intervals di specify the
minimum and maximum fading time allowed. In con-
trast, thin arrows indicate that a switch is performed
without time-consuming fading.

When using this component in advanced contexts
(e.g. embedding the component in another configura-
tion), usually an abstract view of the component with-
out the implementation details is sufficient. This view is
given by the hybrid interface statechart (see Appendix
A.2) of the component (see Figure 8). It consists of the
externally relevant real-time information (discrete
states, their continuous inputs and outputs, possible

Monitor
Role

:Sensor

:Registry

Registry
Role

:Monitor

storage : Storage

:BC

Monitor−
Registration

Figure 6. Structural description of the suspension system.

Figure 7. Behavior of the BodyControl component.

Figure 8. Interface statechart of the Body Control

component.

Giese et al. 783

state changes, their durations, signals to initiate transi-
tions, and signal flow information).51 They abstract
from the embedded components and from the fading
functions. Ports that are required in each of the three
interfaces are filled in black, those that are only used in
a subset of the states are filled in white.

In this example, each discrete state of the component
has a different continuous interface, a fact that leads to
an interface statechart which consists of as many dis-
crete states as does the detailed hybrid statechart.
Usually, not every internal reconfiguration will result
in a different external state, which leads to further
reduction of complexity in the interface statechart.
The external view of the monitor component (see
Figure 10) does not change at runtime although it con-
sists of four discrete states. Therefore, its interface sta-
techart consists of just one state.

As displayed in Figure 9, the BC component is
structurally embedded into the Monitor component.
Figure 10 shows the behavior of the monitor embed-
ding and coordinating the behavior of BC and the other
embedded components as described previously.16,21 For
this embedding the notation from the interface state-
chart (see Figure 8) is used.

The hybrid statechart in Figure 10 consists of
four states representing that (i) a user input exists
as well as the sensor providing xbodycurrent (state
AllAvailable), (ii) both of these signals are not avail-
able (state NoneAvailable) and (see (iii) and (iv))
exactly one of these signals is available (states
BodyAvailable and UIAvailable). Note again
that the sensor providing xcarriagecurrent is laid out as fault
tolerant.

Every state is associated with a configuration. Thus,
a switch from NoneAvailable to BodyAvailable

results in a reconfiguration and a switch of the embed-
ded BC component from state Robust to SemiComfort.
The states UIAvailable and NoneAvailable are
required to keep track of the available signals, yet a
switch between them will not lead to a reconfiguration
or further state switches.

Transitions, visualized by bold arrows, are associ-
ated with deadlines because they are time consuming.
They are triggered by events, raised from the xBody

Sensor or UserInput component.

s1:Sensor

:UserInput

s2:Sensor

:Actuator:BC

Monitor

Figure 9. Structure of the controlling system.

(a)

(b)

Figure 10. (a) Behavior and (b) interface statechart of the Monitor component.

784 Simulation: Transactions of the Society for Modeling and Simulation International 87(9)

3.3. Flexible reconfigurable hierarchical
hybrid models

The approach presented so far can effectively be
applied when the required reconfiguration is local.
Usually, all possible configurations are well known at
the design time and their number is small. However,
specifying more flexible reconfiguration which results
from the need to coordinate ad hoc groups cannot be
addressed.

When shuttles build a convoy and a leader shuttle
determines the reference positions for all of the follow-
ing shuttles, the control of these reference positions
depends on the length of the convoy and on the partic-
ipating shuttle types and characteristics. For example, a
heavy load shuttle has to hold a larger distance within
the convoy. The leader shuttle of a convoy can respect
such individual properties or requirements only when
individual components or feedback controllers are
applied to determine the reference positions. Using our
approach presented so far would thus be impractical as a
large number of possible configurations (in principle,
even infinitely many) have to be specified explicitly.

In the given example, the different shuttle types are
not known a priori at design time (recall how many
different types of automobiles exist). Thus, each shuttle
sends the component, which the leader shuttle has to
apply, to the leader shuttle when it joins the convoy at
runtime. We therefore suggest to specify the required
flexible structural reconfiguration by means of reconfi-
guration rules where control elements can be deter-
mined by parameters which are based on a story
pattern.52 Story patterns are based on the theory of
graph transformations systems which are usually
applied for model transformations. We exemplify that
they are an appropriate visual, model-based description

technique for the specification of reconfiguration at
runtime.

A cut-out of the behavior of the shuttles for coordi-
nating convoys is depicted in Figure 11. We previously
described how to ensure a safe building of convoys.17

The hybrid reconfiguration chart consists of three
states: ConvoyLeader represents that the shuttle is the
leader shuttle, ConvoyFollower represents that the
shuttle is part of a convoy but not the leader shuttle,
and NoConvoy represents that the shuttle is not in a
convoy at all.

Residing in state ConvoyFollower, the shuttle
applies a position controller that delivers the current
acceleration a dependent on its reference position sref
and its current position scurrent. It periodically receives
the event receiveRefPos with parameter pos[] and
stores the new reference position pos[id] as a side
effect in sref. In state NoConvoy, the shuttle applies a
velocity controller, requiring a reference and the cur-
rent velocity as input. The latter is used to determine
the current position pos[id]. When a new shuttle joins
the convoy, it sends an event enterConvoy with the
following parameters: its identifier id, the component
C to be used to determine the shuttle’s reference posi-
tion, and the IDs pre and suc of the shuttles which let
the new shuttle in.

The reconfiguration rule of the transition (visualized
with a dashed border) adds the component C to the
shuttle’s control structure: an instance of a component
Char is created that provides the characteristics of the
leader shuttle such as length or maximal brake acceler-
ation. These characteristics and the current position of
the leader shuttle are fed into C which determines the
reference position pos[id] as the output. A simple
implementation of component C would just add the
length of the preceding shuttle and an individual

Figure 11. Shuttle behavior to control convoys.

Giese et al. 785

safety margin to the current position of the preceding
shuttle. Port c[id] provides the characteristics of the
new shuttle.

Residing in state ConvoyLeader, the shuttle sends
periodically with a period p2 [plow; pup] the reference
positions pos[] to the according shuttles. If a further
shuttle joins the convoy, its component is inserted into
the structure between the components of prev and suc.
Reconfiguration rules for the special cases when a shut-
tle joins at the end or at the beginning of the convoy or
for the case when a shuttle leaves the convoy are omit-
ted in Figure 11. Owing to a lack of space, we also
omitted transitions which model that shuttles leave
the convoy. If we specified a transition, leading from
ConvoyLeader to NoConvoy, the current configuration
(eventually consisting of multiple components) would
be discarded and the configuration of NoConvoy would
be applied.

The example points out that modeling flexible recon-
figuration with reconfiguration rules leads to an enor-
mous reduction of the visual complexity, as not every
possible configuration has to be specified explicitly.

4. Modular execution

In the following, we present in detail our concept for
the modular execution of reconfigurable hybrid systems
for the reconfigurable models sketched in the former
section. First, we discuss our solution for modular hier-
archical continuous systems and then extend it to
reconfigurable hierarchial hybrid systems. Finally, our
solution for the continuous dataflow part of flexible
reconfigurable hierarchical hybrid systems is presented.
For completeness, the syntactic and semantic founda-
tions are presented in Appendix A.2.

4.1. Modular composition and evaluation order

For providing a feasible evaluation scheme for the hier-
archical reconfigurable hybrid systems presented in the
last section, we require as a crucial prerequisite a mod-
ular composition scheme which is less restrictive and
more efficient than black-box integration.10 Our pro-
posed approach20,22 outlined in the following combines
the advantages of both the white-box and the black-box
approach and is thus named gray-box integration (as
originally coined by Oberschelp et al.53 for the dynamic
computation of the evaluation order at runtime).

With a gray-box method one tries to combine the
advantages of the white box with those of the black
box. The sequence of evaluation for gray-box integra-
tion is determined in two stages. The first stage defines
the local sequence of evaluation of each BB indepen-
dently of an external coupling. For a HB, the coupling
information on its children and the resulting reduced

evaluation graph will be determined and further
employed. This implies an independent derivation of
the execution logic for every block; thus, a model can
be generated from independent modules. At the second
stage the external coupling information yielded by the
HBs is taken into account for determining the entire
sequence of evaluation and making up the evaluation
graph. This presupposes a well-defined module inter-
face. The information required for this step were
obtained in the preceding stage so that this procedure
can be completed during initialization of the
application.

When proceeding in this way we are able to hide the
internal logic of a module. This is especially important
if one wants to exchange models and integrate them
even though their content is to be kept secret. The
gray-box method solves the problem of the direct-link
feedback coupling by further decomposing the equa-
tions in the direct-link block into independent partial
blocks. Appurtenance of the equations to a partial
block is defined by their dependence on one or several
input and output variables, with an input or an output
variable being allocated definitely to just one partial
block in the direct-link block.

In order to derive the required information to embed
the acyclic evaluation graph in an arbitrary context, we
have to partition it into separate evaluation blocks (see
Figure 12, right). For the optional decomposition into
such evaluation blocks, it must hold that when the orig-
inal evaluation graph G¼ (N, E) can be safely embed-
ded in a given context that also the evaluation blocks
condensed evaluation graph can be embedded safely.

The partitioning problem for a given acyclic
expression graph G¼ (N, E) of a continuous block is
thus to determine a minimal number of partitions

Inputs: U1, U2, U3, U4
Outputs: Y1, Y2, Y3, Y4
States: X=0;
Auxilars: a, b, c, d

a := U1 + U2;
b := U3;
c := U4;
d := 1;
X' := X + c;
Y1 := a;
Y2 := b;
Y3 := b;
Y4 := d*x;

ND-Block
d := 1;

ND

D1

D2

S

Y4 := d*x;

D-Blocks

a := U1 + U2;
Y1 := a;

Y2 := b;
b := U3;

Y3 := b;

S-Block
c := U4;
X' := X + c;

Figure 12. Partitioning of the evaluation graph.

786 Simulation: Transactions of the Society for Modeling and Simulation International 87(9)

N1, . . . ,Nn�N such that:

1. N¼N1[� � � [Nn and for all i 6¼ j, Ni\Nj¼;,
2. the derived graph Gp¼ (Np,Ep) with Np¼

{N1, . . . ,Nn} and Ep¼ {(Ni,Nj)|i 6¼ j6i, j¼ 1, . . . ,
n6 9n0 2Ni 6 n00 2Nj : (n

0, n00)2E} is acyclic, and
3. for any context graph G0 ¼ (N0,E0) with

(N\N0)� (Nin[Nout) and G00 ¼ (N00,E00) with
N00 ¼N[N0 and E00 ¼E[E0 an acyclic graph holds
that the related derived graph for the partitioning
built by N1, . . . ,Nn and each node of N0 �N is also
an acyclic graph.

Condition (1) ensures that the partition setsNi cover the
full node set N. The partitioning preserves the acyclic
nature (see condition (2)). Finally, condition (3) infor-
mally states that the chosen partitioning when embed-
ded into an arbitrary context only results in a cycle when
also the original graph would also result in a cycle.

For a given acyclic graph G¼ (N, E), we can com-
pute the required maximal partitioning of such a graph
in several phases.

First, we compute the set Din of all inputs the node
depends on in a forward topological traversal of the
graph. Then, we perform a backward traversal to com-
pute all influenced outputs Iout for all input nodes.
Based on Din and Iout we can then determine the
nodes of the S-block and ND-block. The remaining
nodes are finally partitioned by propagating the depen-
dencies L. Two nodes n and n0 are then assigned to the
same partition (NL[n]) iff L[n]¼L[n0]. The resulting
algorithm is presented in Figure 13.

4.2. Hierarchical composition and
evaluation order

The presented scheme is sufficient to handle the com-
position of a number of continuous blocks. However,
systems in practice are structured by hierarchies
describing the coupling between blocks and between
hierarchies (Figure 14).

Figure 15 depicts our decomposition approach
which enables us to structure mechatronic systems
using only BBs and HBs. To achieve such a decompo-
sition in a modular fashion we have to determine
whether it is possible to find a partitioning of the eval-
uation code and interface definition for modules such
that the internal evaluation order of the modules can be
adapted to any possible external coupling.

To extend our scheme also to hierarchical systems,
we suggest to compute an abstraction in the form of a
reduced evaluation graph which serves as an interface
for the execution logic and evaluation.

To derive the reduced evaluation graph which relates
to the computed optimal partitioning (see Figure 16,

right), we can use the computed dependencies captured
by L. The algorithm performing this task is presented in
Figure 17.

Using the evaluation blocks as evaluation steps, it
becomes possible to execute an entire system in a mod-
ular manner using the following three cases.

1. Local partitioning and local execution order. For a
non-hierarchical gray-box component we can com-
pute a minimum partitioning by means of the algo-
rithm outlined. Condition (3) then ensures that for
any possible context, a correct evaluation order of
the blocks can always be identified if it can be found
in the white-box scenario. The subgraphs of the acy-
clic expression graph related to each block are also
acyclic and correspond to a partial order of the
expression evaluations. The partial order can be
refined into a total order which can then be used
to sequentially evaluate the expressions within the
code for those blocks.

2. Hierarchical partitioning and local execution order.
The block partitioning algorithm outlined can also
be used to derive the required partitioning informa-
tion in a hierarchical manner. The evaluation graph
which results from the reduced evaluation graphs of
all embedded components is sufficient to derive again
a minimal set of hierarchical evaluation blocks (see
Figure 18). In contrast to the non-HBs, these blocks
consist of the blocks of the embedded components
and the coupling. If no block partitioning can be
found, a logical flaw in the component structure
exists which would also prevent execution in the
white-box scenario. If a block partitioning has been
found, we also know that the original is acyclic. The
subgraphs of the dependency graph which is assigned
to each block will thus always be acyclic too, and can
be used to derive the required internal order of the
subordinated blocks, couplings, or expression
evaluations.

3. Global execution order. When the top hierarchical
level has been reached, the only remaining inputs
andoutputs are sensors or actuators.We can therefore
be sure that the resulting evaluation graphs are acyclic
and we can derive the main execution logic following
the scheme outlined for the hierarchical case.

To summarize, we can derive the execution logic for
each component in a modular manner by:

(a) deriving the blocks, their local execution logic, and
a reduced evaluation graph for all BBs;

(b) deriving the blocks, their local execution logic, and
a reduced evaluation graph for all HBs considering
only the internal coupling and the reduced evalua-
tion graph of all embedded blocks; and

Giese et al. 787

(c) using a simple execution logic for the top-level
block which only triggers the evaluation of it
subblocks.

In the case of a static hierarchical continuous system
this modular procedure has a higher overhead pro-
duced by the granularity of the partitioned blocks
than a monolithic solution. However, in the following

section we show that the presented scheme is required
to have a feasible scheme to evaluate reconfigurable
hybrid systems.

4.3. Reconfigurable hierarchical hybrid systems

In addition to the hierarchy, if we consider that the
switching between different states of a hybrid

Figure 13. Block partitioning algorithm.

788 Simulation: Transactions of the Society for Modeling and Simulation International 87(9)

reconfiguration chart results in a reconfiguration, we
have to further extend our evaluation scheme. In con-
trast to the static case the local state changes result in a
different configuration of embedded components and
their wiring which must be executed (see Figure 19).

For such a reconfigurable hierarchical hybrid
system, a white-box integration is not feasible as we
require one global evaluation order for potentially
exponential many configurations. The modular
scheme outlined before is, however, still applicable
and can be used to realize the execution logic with
low effort.

For reconfigurable hybrid systems we have
extended the modular evaluation scheme presented
so far as follows. Owing to the additional discrete
part, we have to locally determine the ordering and
selection of evaluated subblocks depending on a local
state for each HB leading to a modular scheme for
hierarchical hybrid systems. Therefore, we have to
derive for every discrete state the blocks, their local
execution logic, and a reduced evaluation graph taking
only the internal coupling and the reduced evaluation
graph of all embedded blocks in the embedded mode
into account.

Only function /
mathematics /
behavior

Only couplings

BB BB

HE

HE

BB HE

BB

BB BB

HE

BB

HE-hierachical element
BB-basic block

basic block basic block

basic block

basic block

basic block

hierarchy
hierarchy

hierarchy

basic block basic block

hierarchy

Figure 14. Hierarchical block diagrams.

basic block basic block

basic block

basic block

basic block

hierarchy
hierarchy

hierarchy

Representative

Submodel A

Submodel B

basic block basic block

hierarchy

Figure 15. Decomposition of block diagrams.

Giese et al. 789

To explain the resulting overall modular execution
scheme, we outline here the details for our initial
testbed. When the Monitor component is evaluated, it
will trigger the evaluation of its embedded components.

As not every embedded component belongs to every
configuration, it depends on the current discrete state
of the Monitor which of the embedded components are
evaluated. Then, the triggered components will them-
selves trigger their embedded components (dependent
on their discrete states).

Thus, there is one evaluation order per discrete global
state. Enhancing the top-level monitor component with
this information is usually not feasible as the number of
global states grows exponentially with the number of
components. Therefore, we compose the whole system
as a tree structure consisting of modular hybrid
components.

Each hybrid component is partitioned into multiple
discrete and continuous evaluation nodes using the
former outlined hierarchical partitioning. The continu-
ous evaluation nodes compute continuous states and
outputs of the feedback controllers similarly to the
blocks discussed before. The discrete evaluation nodes
switch the discrete states of the components and recon-
figure subordinated hybrid components. As the appli-
cation of certain continuous evaluation nodes depends
on the actual configuration and thus on the actual dis-
crete state, safety can only be guaranteed if one

Figure 17. Algorithm to compute the reduced evaluation

graph.

ND-Block
d := 1;

ND U1

U2

U3

U4

Y1

Y2

Y3

Y4

D1

D1

D2

S ND

D2

S

Y4 := d*x;

D-Blocks
a := U1 + U2;

b := U3;
Y2 := b;
Y3 := b;

YI := a;

S-Block
c := U4;
X' := X + c;

Figure 16. Derive the reduced evaluation graph for a basic

block.

Basic block

Basic block

Basic block

Basic block

hierarchy hierarchy

hierarchy

Interchange,
reconfiguration

A

B

Figure 19. Decomposition of hierarchical hybrid component

diagrams.

Figure 18. Evaluation graph of a hierarchy.

790 Simulation: Transactions of the Society for Modeling and Simulation International 87(9)

continuous evaluation cycle is not preempted by the
evaluation of a discrete node which switches the
actual discrete state. Therefore, we separate the evalu-
ation of the discrete nodes from the evaluation of the
continuous nodes in time.

4.3.1. Basic continuous components. We have to
determine the evaluation order of the continuous
nodes dependent of their external couplings. In
order to minimize computational effort, we partition
multiple single evaluation nodes of subordinated com-
ponents into evaluation nodes of the superordinated
component. The order within such a superordinated
evaluation node is static and thus does not change.
We apply the partitioning algorithm outlined in the
last section.

The output of the algorithm is called the reduced
evaluation graph of the configuration. It shows the
interface of the component, the partitioned evaluation
nodes, and their input–output dependencies.

Figure 20(a) shows ad P and a PIDT1 controller. Each
node represents a set of expressions (e.g. mathematical
expressions) and the arrows indicate the dependencies.
The reduced evaluation graphs, which are obtained from
the application of the partitioning algorithm, are shown
in Figure 20(b). The P controller consists of one (direct
link) node nd0, the PIDT1 controller consists of one
(direct link) node nd0 and a (state) node ns0.

In order to evaluate the nodes in a different order,
each basic continuous component is implemented as a
class, providing an evalCont(int nodeId) method.
According to the parameter of the method, the corre-
sponding node is evaluated (see Figure 21). The possi-
ble nodeIds nd0 or nd0, and ns0 respectively correlate to
the nodes which have been determined by the partition-
ing algorithm (see Figure 20(b)), the internals
(auxiliars[0]¼. . .) are the expressions of the compo-
nents (see Figure 20(a)).

4.3.2. Basic discrete components. Discrete evalua-
tion nodes do not need to be partitioned, because
every discrete component consists of exactly one dis-
crete node. Dependent of the current discrete state,
transitions are checked for activation and, as the case
may be, are fired in this evaluation node.

Similar to the implementation of a basic continuous
component, a discrete component consists of a method
evalDiscrete(). It has no nodeId parameter as it con-
sists of exactly one evaluation node. Furthermore, it
consists of an attribute current indicating the current
discrete state.e Inside the evalDiscrete() method,

there is a check, in dependent on the current discrete
state, if transitions are triggered. In case of some trig-
gered transitions, one is selected, its side effects are exe-
cuted and the discrete state is changed. This application
flow is displayed in Figure 22.

4.3.3. Hybrid hierarchical components. When the
controller is embedded into a well-known configuration
(that defines the external coupling of the single control-
lers), the algorithm is applied again to partition the
configuration. The algorithm does not consider the
single algebraic expressions, but just the nodes from
the reduced evaluation graphs of the single component.

Figure 23(a) shows the configuration of the
SemiComfort state from Figure 7 (see Figure 4(b)).
The partitioning results in the reduced evaluation
graph of Figure 23(b). Partitioning of the other config-
urations of Figure 7 (see Figures 4(a) and (c)) is per-
formed similarly. Thus, each of the three discrete states
of the BC component is associated with another reduced
evaluation graph.

As shown in Figure 10, the configuration that is
associated with a discrete state does not have to consist
exclusively of continuous components, but may also
consist of hybrid components. These hybrid compo-
nents are in a specific discrete state in this configura-
tion. Then the partitioning algorithm works on the

(a)

(b)

Figure 20. (a) Evaluation node structure and (b) reduced eval-

uation graph of a P and a PIDT1 controller.

Figure 21. Activity diagram of the evalCont(int nodeId)

method of a P and a PIDT1 controller.

dP denotes proportional controller.
eIn the case of a flat automata model, current is usually a simple
data type, such as int. In a statechart model with hierarchical and
orthogonal states it is of a more complex type.

Giese et al. 791

reduced evaluation graphs of the appropriate discrete
states.

When evaluating the discrete evaluation nodes of
hierarchical components, we have to make sure that a
change at the top-level component affects the subordi-
nated components within the same execution cycle.
Therefore, the discrete nodes of the components at a
higher hierarchy level must be evaluated prior to those
at the lower hierarchy levels.

An implementation of the hybrid hierarchical com-
ponents, such as BC, consists of the methods
evalCont(int nodeId) and evalDiscrete(). These
methods call the corresponding methods of the embed-
ded components. Therefore, the hierarchical compo-
nent needs to have references to these components.
Figure 24 displays this structure using a UML object
diagram for the BC component.

The implementation of the evalCont(int nodeId)

method of a hybrid hierarchical component differs
from that of a basic continuous component. It does
not contain the direct code but sequences of function
calls to evaluate the continuous nodes of the embedded
(basic continuous or hybrid hierarchical) components.
These lists are dependent on the current discrete state.
Figure 25 shows the content of the evalCont(int

nodeId) method of BC as an activity diagram.
Independent of the current discrete state, each node
(nd1 and ns1) consists of a different list of evaluation
nodes of embedded components. If, for example, the
component is in state SemiComfort, the node nd1 will
consist of three sequential calls of the nodes nd0 from P
controller p1, block nd0 from PIDT1 controller body2,
and block nd0 from PIDT1 controller car2. As the
number of states and nodes is finite (also in a concrete

situation during runtime), the list of evaluation nodes is
finite and, therefore, the algorithm terminates.

Note that the evaluation nodes of the embedded
components, which are executed when nd1 or ns1 is eval-
uated, are determined by the partitioning algorithm as
shown in Figure 23. These nodes of the subordinated
components are the nodes from their corresponding
reduced evaluation graphs. Thus, no knowledge about
the internal node structure of the embedded compo-
nents is required inside BC.

The discrete evaluation node of BC is the node pre-
sented in Figure 22. As BC embeds only basic continu-
ous components, no other discrete nodes have to be
evaluated.

Figure 26 shows the implementation of the
evalCont(int nodeId) method of the Monitor com-
ponent in the form of an activity diagram. Owing to a
lack of space we do not show that a Monitor instance
references the embedded sensor and actuator compo-
nents and the BC component (similar to Figure 24).
Because Monitor is a self-contained component, it con-
sists of exactly one continuous evaluation node nd2.
This node is periodically evaluated at runtime.

4.4. Flexible reconfigurable hierarchical
hybrid systems

For the flexible reconfiguration behavior the earlier
outlined dataflow integration can be used. At runtime
the evaluation graphs are computed (as distinguished
from the static approach in the last section). The eval-
uation graphs are traversed to determine the next pos-
sible node to evaluate. While this results in a rather bad
performance, as long as only small parts of the system
are executed under this regime the performance draw-
back can be more than compensated for by the gained
flexibility. The cause is that flexibility is the key enabler
for self-* properties (such as self-adaption or self-
optimization).

To also extend our modular evaluation scheme to
flexible reconfiguration scenarios where we cannot
encapsulate the externally relevant evaluation blocks
upfront, we have to combine our scheme with the data-
flow integration concept. For such a combination, in
addition to the local execution logic, we have to distin-
guish whether the component (controller) is embedded
into another reconfigurable component which is flexible
or not.

1. Combine flexible reconfigurable components. If a flex-
ible reconfigurable component is embedded by
another flexible reconfigurable component, we
simply have to arrange for that dataflow propaga-
tion to also happen across the component
boundaries.

BC::evalDiscrete() : void

[current == SemiComfort]

[current == Robust]

[current == Comfort]

...

if (queue.isAvailable(eventZRefOk)) {...}
...

if (queue.isAvailable(eventZAbsOk)) {...}
...

if (queue.isAvailable(eventZAbsFailure)) {...}
[else]

[else]

[else]

Figure 22. Activity diagram of the evalDiscrete() method

of BC.

792 Simulation: Transactions of the Society for Modeling and Simulation International 87(9)

2. Embedding a component with interface statechart. In
the case that a non-flexible reconfigurable compo-
nent is embedded by a flexible reconfigurable com-
ponent, we simply have to consider the evaluation
blocks provided by the embedded component in
its interface as nodes in the dataflow propagation.
This results in an at runtime-computed evaluation
order which respects what the embedded component
offers. It should be noted that the efficiency of
the modular execution of the embedded component
is not affected at all by the less-efficient processing
of the embedding component. Therefore, unless
large parts of the system follow the flexible scheme
we do not observe any relevant performance
problems.

3. Embedded by a non-flexible reconfigurable compo-
nent. If we in contrast have the case that a non-
flexible reconfigurable component embeds a flexible
reconfigurable component, we have to face the

problem that the non-flexible reconfigurable compo-
nent requires information about the evaluation of
the embedded component which cannot be provided
offline. One option is to simply use a predefined
interface for the flexible reconfigurable component
which can then be used by the non-flexible reconfi-
gurable component to follow the usual modular exe-
cution scheme. This, however, requires that all
flexible reconfiguration steps within the flexible
reconfigurable component respect the constraint pre-
sent due to the interface. Therefore, after each con-
figuration step this crucial constraint has to be
checked at runtime. Alternatively, the non-flexible
reconfigurable component can be switched to con-
trol the evaluation in the dataflow manner.
However, the interface of the non-flexible reconfi-
gurable component then requires that for the
whole set of components employing together a data-
flow evaluation scheme after each configuration step
the constraint implied by the interface has to be
checked at runtime.

5. Prevent critical runtime failures

As outlined in more detail by Giese and Hirsch,54, we
can support the correct development of reconfigurable
hybrid systems based on the introduced modular exe-
cution scheme. This support at first has to exclude acy-
clic global evaluation graphs to ensure the proper
modular execution of the continuous parts. In addition,
the correct real-time behavior of the discrete reconfi-
guration steps has to be ensured. In addition, we dis-
cuss means to also cover flexible reconfiguration using
runtime checks.

(a)

(b)

Figure 23. Configuration and reduced evaluation graph of the semi-comfort controller.

embeds
embeds embeds embeds

embeds

bc:BC

current : State

evalCont(int nodeId) : void
evalDiscrete() : void

embeds embeds

p2:Pp1:P

fader:Fader

embeds

car1:PIDT1

body2:PIDT1

body1:PIDT1

car3:PIDT1

car2:PIDT1

Figure 24. Object structure at runtime (cut-out).

Giese et al. 793

5.1. Static analysis for reconfiguration

In this section we present two ways to prove that the
reconfiguration behavior, specified for a hierarchical
parallel composed component, is a refinement of the
non-composed component. First, we present a syntactic
check which is applicable in many cases (see Appendix
A.3 for a detailed formalization). If this check is not
applicable, we apply model checking to prove the
refinement.

5.1.1. Syntactic checks. Checking the refinement
relation simply requires answering the following three
questions:

1. Are the implied state changes possible, i.e. does there
exist a transition from the source state of the subor-
dinated component to the target state?

2. Do the temporal requirements of this transition con-
tradict the temporal requirements of the superordi-
nated component?

Figure 25. Activity diagram of the evalCont(int nodeId) method of BC.

Figure 26. Activity diagram of the evalCont(int nodeId) method of Monitor.

794 Simulation: Transactions of the Society for Modeling and Simulation International 87(9)

3. Can the transition of the subordinated component
become triggered simply by raising events?

The answer to question (3) determines whether the
syntactic checks are applicable: if the transition of the
subordinated component is simply associated with a
signal and if the guard and the time guard are true,
the reconfiguration is simply executed by raising the
appropriate signal. Otherwise, a complex analysis is
required to determine whether raising the signal will
lead to a correct reconfiguration in all cases. This anal-
ysis is done by model checking as presented in the
following.

Obviously, the first question is answered posi-
tively if the third question is answered positively.
In order to prove that the temporal specifications
are not contradictory, the deadlines simply need to
be regarded: the deadline interval dsub of the subordi-
nated component needs to be a subset of the deadline
interval dsup of the superordinated component,
dsub� dsup.

5.1.2. Model checking. The model checking has
to prove whether a parallel composition of the compo-
nents may lead to an undefined state combination. As
we first apply the syntactic checks where possible, model
checking just needs to be applied if complex analysis is
required to obtain the information if a transition of a
subordinated component can be triggered just by rais-
ing the corresponding signal.

As the interface state charts are regarded on this
level of abstraction instead of the detailed behavior,
specified by the corresponding hybrid reconfiguration
chart, the complexity of this verification step is signifi-
cantly reduced as the approach requires not do verify
the complete system at all.

5.2. Runtime checking for flexible reconfiguration

As presented in Section 4.4, we can differ between
three scenarios for the flexible reconfiguration: (1) com-
bine flexible reconfigurable components, (2) embedding
a component with an interface statechart, (3) embedded
by a non-flexible reconfigurable component. While
cases (1) and (2) are straightforward, the embedding
of a flexible component in an inflexible solution
is problematic. In this case the coverage of offline
techniques such as static analysis are rather limited.
If the flexible reconfiguration rules only result in a
feasible finite number of reachable configurations,
we can map the resulting state space on our known
techniques which enumerate the configurations and
employ the related offline analysis techniques.
However, when the resulting number of configurations

is too large or even unbounded, only runtime checking
can be used.

Depending on the case of combination for the flex-
ible and non-flexible reconfigurable components and
size of the system which follows the dataflow scheme
different schemes for the runtime checking become
appropriate:

1. If we have a small part which is executed using the
dataflow scheme, it is feasible to check the required
constraints when a flexible reconfiguration has
occurred. Using a double buffering for the configu-
ration management, the detection can then be used
to rollback the configuration and continue to execute
the known well-formed configuration (see the
shadow configuration of Alimi et al.55). This
scheme, of course, requires that the initial configu-
ration is well formed which can be checked offline.

2. In the case of larger parts which are executed using
the dataflow scheme, it is often not feasible to check
the required constraints when a flexible reconfigura-
tion has happened. Instead, we can use known tech-
niques to detect the problem during dataflow
executing (see Section 2). However, this solution
obviously can result in a rather late detection
where no compensation is possible without losing
at least one continuous evaluation cycle. If losing
one cycle can be tolerated, a rollback to the former
configuration can resolve the problem. However,
when no such degraded performance can be toler-
ated, the application of the flexible dataflow scheme
is simply not appropriate as we cannot exclude flex-
ible reconfiguration steps leading to not well-formed
continuous models.

We can summarize that the flexible reconfiguration
scheme can only be used if either the real-time con-
straints are rather relaxed or when due to the small
size of the configurations the runtime checks can be
performed before activating a configuration.

6. Tool support

In order to outline the achieved tool integration we first
discuss its realization and then outline the resulting
capabilities using the convoy building example. We
mainly focus on the hybrid aspects and not on the flex-
ible reconfiguration as this shows well the complete
approach from modeling via code generation to simu-
lation. The flexible reconfiguration, as mentioned in
Section 3, would especially help to support the flexible
evolution of the system in cases where we cannot stat-
ically model all possible reconfigurations of the system
upfront.

Giese et al. 795

6.1. Tool integration

The presented seamless approach is realized by the
Fujaba Real-Time Tool Suite. We integrate the
Fujaba Real-Time Tool Suite with the CAE Tool
CAMeL-View and, therefore, use the ability of
CAMeL-View to generate code. As shown in
Figure 27 both tools export hybrid components,
which are integrated into a hierarchical model as an
input for the binding tool. The export of the tools
includes already the transformations of the model for-
malism to a code formalism, such as Cþþ. Afterward,
the binding tool combines the inputs and, therefore,
combines both formalisms.

The core of the tool is our MECHATRONIC UML
approach. The specific characteristic is that all above-
mentioned formalisms are combined by only one meta-
model which becomes possible by a well-defined union
of all formalisms.

In Figure 28 a cut-out of the MECHATRONIC UML
meta-model is depicted. Both the time-continuous
behavior and structure as well as the continuous con-
trol behavior and structure are integrated into one
meta-model. This is reflected in the figure by
ContinuousComponent and DiscreteComponent.
Furthermore, the hybrid class (HybridComponent and
the port classes ContinuousPort and DiscretePort.

HybridRoconfigurationChart

Component

HybridComponent

ContinuousComponent

evalCont (phase : integer, t:ReaI, h:ReaI, nodelD:lnteger): Void

evalCont (phase : integer, t:ReaI, h:ReaI, nodelD:lnteger): Void
evalDiscrete () : Void

portID : Integer

ContinuousPort

DiscretePort

sendEvent (event : Event) : Void

evalCont (phase : integer, t:ReaI, h:ReaI, nodelD:lnteger): Void

index : integer

evalDiscrete () : Void

Figure 28. Cut-out of MECHATRONIC UML meta-model.

Figure 27. Tool integration overview.56

796 Simulation: Transactions of the Society for Modeling and Simulation International 87(9)

The MECHATRONIC UML approach applies model-
driven development to develop software systems at a
high level of abstraction to enable analysis approaches
such as model checking57 as shown in Section 5.
Therefore, ideally, we start with platform-independent
models as shown in Section 3 to enable the composi-
tional formal verification. Afterwards, the platform-
independent model must be enhanced with
platform-specific information to enable code genera-
tion. The required platform-specific information is
based on a platform model, which specifies the
platform-specific worst-case execution times.
Furthermore, we add platform-specific information
such as priorities, periods, and deadlines to the
models. After specifying the platform-specific informa-
tion we can generate code from the models by consid-
ering the modular execution approach as presented in
Section 4. We therefore apply three different models of
abstraction, such as the Model-Driven Architecture
(MDA), with conformable transformations.

6.2. Structural modeling

We use the Fujaba Real-Time Tool Suite for modeling
the architecture. Figures 29 and 30 show a cutout of the
internal structure of Shuttle. Similar to the Shuttle
component, which is composed of multiple other com-
ponent instances, the types of the subordinated

instances are defined by further compositions. This
leads to an architectural description of Shuttle, con-
sisting of multiple layers.

6.3. Behavioral modeling

After modeling the structure of the shuttle convoy
example, we specify the behavior of each component.
We first show the specified discrete real-time behavior,
on the level of the real-time coordination patterns and
the individual discrete components which are modeled
by the Fujaba Real-Time Tool Suite. The Shuttle’s sta-
techart realizes the discrete real-time coordination and
it embeds, among other things, an instance of the
hybrid component DriveTrain. The coordination
leads to state changes, indicating whether the shuttle
is part of the convoy and whether it is the leading shut-
tle of the convoy. Each of these states is associated with
a different configuration where the DriveTrain

instance is in different states. Therefore, a state
change of shuttle implies a state change of
DriveTrain which implies a state change of
AccelerationControl. This models reconfiguration
via multiple hierarchical levels.

Figure 31 shows a hybrid reconfiguration chart that
describes the behavior of the AccelerationControl

component. It consists of three discrete states: the
states VelocityControl, PositionControl, or
PositionControlWithPilotControl are associated

Figure 29. Structure of Shuttle.

Giese et al. 797

Figure 30. Structure of DriveTrain.

Figure 31. Hybrid reconfiguration chart of AccelerationControl with fading transitions.

798 Simulation: Transactions of the Society for Modeling and Simulation International 87(9)

with the continuous controller component configura-
tions which have been sketched previously.

6.4. Simulation and runtime

As a prerequisite for simulation we require the exclu-
sion of deadlock caused by reconfiguration. In most
cases the required refinement relation can be guaran-
teed following outlined static analysis (see Section 5). In
several more complex cases, model checking for timed
automata can be used54,58 to check the refinement.f

After having checked the prerequisite, we generate
Cþþ code from our model as described in Section 6.1
for a PC platform. After code generation and compila-
tion, we show the behavior of the system using a

simulation environment of the CAE Tool CAMeL-
View. Figure 32 (simple convoy) shows two shuttles
in a convoy (bottom-right window). In the upper-left-
hand plot the acceleration of the first and second shut-
tle is shown. In the upper-right-hand plot the positions
of the shuttles are shown. In the bottom-left plot the
reference values for the second shuttle are shown.

7. Conclusion and future work

The presented modular execution approach enables the
modular execution of reconfigurable hybrid compo-
nents. This is achieved by an expressive interface con-
cept which ensures the proper handling of the
embedded components using their reduced evaluation
graph. The approach combines the advantage of the
white-box scenario that works for any model without
algebraic loops while avoiding its disadvantages such as
monolithic execution logic and exponentially many
evaluation orders in the case of large hybrid systems.
Moreover, we have presented how even more flexible

Figure 32. Simulation environment.

fIf a complex interplay exists between the continuous and discrete
behavior this would require the reachability analysis for the general
form of hybrid systems which is undecidable.59 Thus, we cannot
expect to find an automatic solution for the general problem.
However, the developed techniques cover most relevant cases for
MECHATRONIC UML.

Giese et al. 799

rule-based reconfiguration can be combined with the
scheme.

We have also presented how this modular execution
scheme for reconfigurable hybrid systems could be fur-
ther supported. We have presented static analysis and
verification techniques which guarantee that the recon-
figuration itself does not result in undesired effects such
as blocked or delayed reconfiguration steps. In addi-
tion, we have presented the tool integration between
Fujaba and CAMeL-View which is based on the pre-
sented modular execution schemes effectively integrated
models of both tools via a shared notion of a hybrid
component with modular execution capabilities. We
have finally presented how the resulting reconfigurable
hybrid models can be simulated and visualized within
the CAMeL-View tool for validation purposes. This
approach is currently evaluated by an industrial appli-
cation (as a first step, the approach is implemented in
an industrial tool).

The flexible methods for reconfiguration were very
successful when applied in first evaluations by students
in the form of master theses and other student projects
using the RailCab project.60 We have also presented61

an appropriate worst-case execution approach for flex-
ible reconfigurations. The formal verification of flexible
reconfigurations is taken into account by Hirsch and
co-workers.62,63

In the future, we plan to further develop more sup-
port in particular for the flexible methods for reconfi-
guration. Also, the handling of the intertwined
execution of the continuous and discrete parts can be
further improved. The discrete statecharts often permit
longer reaction times and require longer execution
times than the continuous evaluation nodes.
Therefore, the discrete parts do not have to be evalu-
ated in every cycle and we might be able to optimize the
overall performance by means of a clever schedule.

Acknowledgments

The authors wish to thank all of the students who worked on
the project. In particular, we thank Sven Burmester for his

substantial contributions and Tobias Eckardt for proof-read-
ing. We further thank the reviewers for their detailed and help-
ful comments that helped to improve the paper considerably.

This work was developed in the course of the Special

Research Initiative 614—Self-optimizing Concepts and
Structures in Mechanical Engineering—University of
Paderborn, and was published on its behalf and funded by

the Deutsche Forschungsgemeinschaft.

References

1. Heimann B, Gerth W, and Popp K. Mechatronik:

Komponenten, Methoden, Beispiele. München/Wien:

Fachbuchverlag Leipzig im Carl Hanser Verlag, 2001.

2. Zanella MC, Stolpe R. Distributed HIL simulation of

mechatronic systems applied to an agricultural machine.

DIPES ’98: Proceedings of the IFIP WG10.3/WG10.5

International Workshop on Distributed and Parallel

Embedded Systems. Norwell, MA: Kluwer Academic,

1999, p.107–116.
3. Mosterman PJ, Vangheluwe H. Computer automated

multi-paradigm modeling: an introduction. Journal on

Simulation 2004; 80: 433–450.

4. RailCab. The ‘‘Rail Technology’’ challenge. RailCab

Project Homepage 2004. http://nbp-www.upb.de/en/

concept/challenge.php
5. Transrapid. http://www.transrapid.de/en/index.html
6. Biernacki D, Colaço JL, Hamon G, and Pouzet M.

Clock-directed modular code generation for synchronous

data-flow languages. SIGPLAN Notices 2008; 43:

121–130.
7. Colaço JL, Girault A, Hamon G, and Pouzet M.

Towards a higher-order synchronous data-flow language.

In: EMSOFT ’04: Proceedings of the 4th ACM

International Conference on Embedded Software, Pisa,

Italy. New York. ACM Press, 2004, p.230–239.

8. Colaço JL, Pagano B, and Pouzet M. A conserva-

tive extension of synchronous data-flow with

state machines. In: EMSOFT ’05: Proceedings of the

5th ACM International Conference on Embedded

Software, Jersey City, NJ. New York. ACM Press,

2005, p.173–182.
9. Delaval G, Girault A, and Pouzet M. A type system for

the automatic distribution of higher-order synchronous

dataflow programs. In: LCTES ’08: Proceedings of the

2008 ACM SIGPLAN-SIGBED Conference on

Languages, Compilers, and Tools for Embedded Systems,

Tucson, AZ. New York. ACM Press, 2008, p.101–110.
10. Lublinerman R, Szegedy C, and Tripakis S. Modular

code generation from synchronous block diagrams:

Modularity vs. code size. In: POPL ’09: Proceedings of

the 36th Annual ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages. Savannah, GA.

New York: ACM Press, 2009, p.78–89.
11. Lublinerman R, Tripakis S. Modularity vs. reusability:

Code generation from synchronous block diagrams.

In: DATE ’08: Proceedings of the Conference on Design,

Automation and Test in Europe, Munich, Germany. New

York. ACM Press, 2008, p.1504–1509.
12. Burmester S, Giese H, and Tichy M. Model-driven devel-

opment of reconfigurable mechatronic systems with

mechatronic uml. In: Assmann U, Rensink A, and

Aksit M (eds) Model Driven Architecture: Foundations

and Applications Lecture Notes in Computer Science.

Vol. 3599, Berlin: Springer, 2005, p.47–61.
13. Giese H, Henkler S, Hirsch M, Roubin V, and Tichy M.

Modeling techniques for software-intensive systems.

In: Tiako DPF (ed.) Designing Software-Intensive

Systems: Methods and Principles. Langston University,

2008, p.21–58.

14. Object Management Group (2003) UML 2.0

Infrastructure Specification. Document ptc/03-09-15,

Object Management Group

800 Simulation: Transactions of the Society for Modeling and Simulation International 87(9)

15. Object Management Group (2003) UML 2.0

Superstructure Specification. Document ptc/03-08-02,

Object Management Group

16. Giese H, Burmester S, Schäfer W, and Oberschelp O.

Modular design and verification of component-based

mechatronic systems with online-reconfiguration. In:

Proceedings of 12th ACM SIGSOFT Foundations of

Software Engineering 2004 (FSE 2004). Newport

Beach. New York: ACM Press, 2004, p.179–188.

17. Giese H, Tichy M, Burmester S, Schäfer W, and Flake S.

Towards the compositional verification of real-time uml

designs. In: Proceedings of the 9th European Software

Engineering Conference held jointly with 11th ACM

SIGSOFT International Symposium on Foundations of

Software Engineering (ESEC/FSE-11), Helsinki,

Finland. New York. ACM Press, 2003, p.38–47.
18. Burmester S, Giese H, Münch E, Oberschelp O, Klein F,

and Scheideler P. Tool support for the design of self-

optimizing mechatronic multi-agent aystems. Int J

Softw Tools Technol Transf 2008; 10: 207–222.
19. Henkler S, Hirsch M. A multi-paradigm modeling

approach for reconfigurable mechatronic systems.

In: Proceedings of the International Workshop on Multi-

Paradigm Modeling: Concepts and Tools (MPM06),

Satellite Event of the 9th International Conference on

Model-Driven Engineering Languages and Systems

MoDELS/UML2006, Genova, Italy (BME-DAAI

Technical Report Series. Vol. 2006/1, Budapest

University of Technology and Economics, 2006, p.15–25.
20. Burmester S, Giese H, Gambuzza A, and Oberschelp O.

Partitioning and modular code synthesis for reconfigur-

able mechatronic software components. In: Bobeanu C

(ed.) Proceedings of European Simulation and Modelling

Conference (ESMc’2004), Paris, France. EOROSIS

Publications, 2004, p.66–73.
21. Burmester S, Giese H, and Oberschelp O. Hybrid UML

components for the design of complex self-optimizing

mechatronic systems. In: Araujo H, Vieira A, Braz J,

Encarnacao B, and Carvalho M (eds) Proceedings of 1st

International Conference on Informatics in Control,

Automation and Robotics (ICINCO 2004), Setubal,

Portugal. INSTICC Press, 2004, p.222–229.
22. Oberschelp O, Gambuzza A, Burmester S, and Giese H.

Modular generation and simulation of mechatronic sys-

tems. In: Callaos N, Lesso W, and Sanchez B (eds)

Proceedings of the 8th World Multi-Conference on

Systemics, Cybernetics and Informatics (SCI), Orlando,

FL. International Institute of Informatics and Systemics

(IIIS), 2004, p.1–6.

23. Fujaba. http://www.fujaba.de
24. CAMeL-View. http://www.ixtronics.com
25. Burmester S, Giese H, Henkler S, Hirsch M, Tichy M,

Gambuzza A, et al. Tool support for developing

advanced mechatronic systems: Integrating the Fujaba

Real-Time Tool Suite with CAMeL-View.

In: Proceedings of the 29th International Conference on

Software Engineering (ICSE), Minneapolis, MN. Los

Alamitos, CA. IEEE Computer Society Press, 2007,

p.801–804.

26. MATLAB/Simulink and Stateflow. http://
www.mathworks.com

27. Mosterman PJ, Biswas G. Modeling discontinuous beha-

vior with hybrid bond graphs. In: Proceedings of the
International Conference on Qualitative Reasoning,
Amsterdam, the Netherlands. 1995, p.139–147.

28. Alur R, Dang T, Esposito JM, et al. Hierarchical

hybrid modeling of embedded systems. EMSOFT ’01:
Proceedings of the First International Workshop on
Embedded Software. London: Springer, 2001, p.14–31.

29. Kratz F, Sokolsky O, Pappas GJ, and Lee I. R-charon, a
modeling language for reconfigurable hybrid systems. In:
Hybrid Systems: Computation and Control (Lecture Notes

in Computer Science, Vol. 3927). Berlin: Springer, 2006,
p.392–406.

30. Bender K, Broy M, Peter I, Pretschner A, and Stauner T.

Model based development of hybrid systems. Modelling,
Analysis, and Design of Hybrid Systems (Lecture Notes on
Control and Information Sciences, Vol. 279). Berlin:
Springer, 2002, p.37–52.

31. Stauner T, Pretschner A, and Péter I. Approaching a
discrete-continuous UML: Tool support and formaliza-
tion. In: Proceedings UML’2001 Workshop on Practical

UML-Based Rigorous Development Methods—Countering
or Integrating the eXtremists. Toronto, Canada: 2001,
p.242–257.

32. Grosu R, Stauner T, and Broy M. A modular visual
model for hybrid systems. In: FTRTFT ’98: Proceedings
of the 5th International Symposium on Formal Techniques
in Real-Time and Fault-Tolerant Systems. London:

Springer, 1998, p.75–91.
33. Stauner T. Systematic Development of Hybrid Systems.

PhD thesis. Germany: Technische Universität München,

2001.
34. Berkenkötter K, Bisanz S, Hannemann U, and Peleska J.

Executable hybrid UML and its application to train con-

trol systems. In: Ehrig H, Damm W, Desel J, et al. (eds)
Integration of Software Specification Techniques for
Applications in Engineering (Lecture Notes in Computer

Science, Vol. 3147). Berlin: Springer, 2004, p.145–173.
35. Liu X, Xiong Y, and Lee EA. The Ptolemy II framework

for visual languages. In: Proceedings of the IEEE 2001
Symposia on Human Centric Computing Languages and

Environments (HCC’01). Stresa, Italy: 2001, p.50–51.
36. Friesen V, Nordwig A, and Weber M. Object-oriented

specification of hybrid systems using UMLH and

Zimoo. In: Proceedings of the 11th International
Conference of Z Users on the Z Formal Specification
Notation, Berlin, Germany (Lecture Notes in Computer

Science,, Vol. 1493), Berlin. Springer, 1998, p.328–346.
37. Object Management Group (2005) Systems Modeling

Language (SysML) Specification, Object Management
Group

38. Kobryn C. Expertr’s voice: UML 3.0 and the future of
modeling. Software and Systems Modeling 2004; 3: 4–8.

39. Honekamp U. IPANEMA—Verteilte Echtzeit-

Informationsverarbeitung in mechatronischen Systemen.
PhD thesis. Germany: University of Paderborn, 1998.

40. Mosterman P. Hybrsim—a modeling and simulation

environment for hybrid bond graphs. Journal of

Giese et al. 801

Systems and Control Engineering—Part I 2002; 216:

35–46.

41. Homburg C. Entwurf und implementierung einer standar-

disierten beschreibungsform mechatronischer systeme.

Master’s thesis. Germany: University of Paderborn, 1993.
42. ADAMS. http://www.adams.com
43. SIMPACK. http://www.simpack.com

44. Hahn M. OMD—Ein Objektmodell für den

Mechatronikentwurf. Anwendung in der objektorientierten

Modellbildung mechatronischer Systeme unter

Verwendung von Mehrkörpersystemformalismen

(Fortschritt-Berichte VDI, Reihe 20, Nr. 299).

Düsseldorf: VDI Verlag, 1999.
45. Malik S. Analysis of cyclic combinational circuits.

In: ICCAD ’93: Proceedings of the 1993 IEEE/ACM

International Conference on Computer-aided Design,

Santa Clara, CA,. Los Alamitos, CA. IEEE Computer

Society Press, 1993, p.618–625.

46. Edwards SA, Lee EA. The semantics and execution of a

synchronous block-diagram language. Sci Comput

Program 2003; 48: 21–42.
47. Lee EA, Zheng H. Leveraging synchronous language

principles for heterogeneous modeling and design of

embedded systems. In: EMSOFT ’07: Proceedings of the

7th ACM & IEEE international Conference on Embedded

Software, Salzburg, Austria. New York. ACM Press,

2007, p.114–123.
48. Caspi P, Pilaud D, Halbwachs N, and Plaice JA. Lustre:

A declarative language for real-time programming.

POPL ’87: Proceedings of the 14th ACM SIGACT-

SIGPLAN Symposium on Principles of Programming

Languages. Munich, West Germany. New York: ACM

Press, 1987, p.178–188.

49. Berry G, Cosserat L. The Esterel Synchronous

Programming Language and its mathematical semantics.

In: Seminar on Concurrency. Carnegie-Mellon University,

London: Springer, 1985, p.389–448.
50. Burmester S, Giese H. The Fujaba real-time statechart

plugin. In: Giese H, Zündorf A (eds) Proceedings of the

First International Fujaba Days 2003. Kassel, Germany:

(Technical Report TR-RI-04-247) University of

Paderborn, 2003, p.1–8.

51. Oberschelp O, Gambuzza A, Burmester S, and Giese H.

Modular generation and simulation of mechatronic sys-

tems. In: Callaos N, Lesso W, and Sanchez B (eds)

Proceedings of the 8th World Multi-Conference on

Systemics, Cybernetics and Informatics (SCI), Orlando,

FL. International Institute of Informatics and Systemics

(IIIS), 2004, p.1–6.
52. Köhler HJ, Nickel UA, Niere J, and Zündorf A.

Integrating UML diagrams for production control sys-

tems. In: Proceedings of the 22nd International

Conference on Software Engineering (ICSE), Limerick,

Ireland. New York. ACM Press, 2000, p.241–251.
53. Oberschelp O, Homburg C, Deppe M, Gambuzza A, and

Seuss J. Verarbeitungsorientierte darstellung verteilter

hybrider systeme der mechatronik. In: 5. Magdeburger

Maschinenbautage. Magdeburg: Otto-von-Guericke-

Universität, 2001, p.22–34.

54. Giese H, Hirsch M. Checking and automatic abstraction

for timed and hybrid refinement in mechtronic UML.

Technical Report TR-RI-03-266, Software Engineering

Group. Paderborn, Germany: University of Paderborn,

2005.
55. Alimi R, Wang Y, and Yang YR. Shadow configuration

as a network management primitive. In: SIGCOMM ’08:

Proceedings of the ACM SIGCOMM 2008 Conference on

Data Communication, Seattle, WA. New York. ACM

Press, 2008, p.111–122.
56. Burmester S, Giese H, and Klein F. Design and simula-

tion of self-optimizing mechatronic systems with fujaba

and CAMeL. In: Schürr A, Zündorf A (eds) Proceedings

of the 2nd International Fujaba Days 2004. Darmstadt,

Germany: University of Paderborn, 2004, p.19–22

(Technical Report TR-RI-04-253).
57. Burmester S, Giese H, and Schäfer W. Model-

driven architecture for hard real-time systems: From

platform independent models to code. In: Proceedings

of the European Conference on Model Driven

Architecture—Foundations and Applications (ECMDA-

FA’05), Nürnberg, Germany (Lecture Notes in Computer

Science, Vol. 3748), Berlin. Springer, 2005, p.25–40.
58. Giese H, Hirsch M. Modular verification of safe online-

reconfiguration for proactive components in mechatronic

UML. In: Satellite Events at the MoDELS 2005

Conference (Lecture Notes in Computer Science,

Vol. 3844), Berlin. Springer, 2006, p.67–78.

59. Henzinger TA, Kopke PW, Puri A, and Varaiya P.

What’s decidable about hybrid automata?. Journal of

Computer and System Sciences 1998; 57: 94–124.

60. Henkler S, Breit M, Brink C, et al. fritsCab: Fujaba

re-engineering tool suite for mechatronic systems.

In: Gorp PV (ed.) Proceedings of the 7th International

Fujaba Days. Eindhoven University of Technology,

2009, p.25–29.
61. Henkler S, Oberthür S, Giese H, and Seibel A. Model-

driven runtime resource predictions for advanced mecha-

tronic systems with dynamic data structures. In:

Proceedings of 13th International Symposium on Object/

Component/Service-oriented Real-time Distributed

Computing (ISORC). Los Alamitos, CA: IEEE

Computer Society Press, 2010, p.202–209.

62. Hirsch M, Henkler S, and Giese H. Modeling collabora-

tions with dynamic structural adaptation in mechatronic

UML. In: SEAMS ’08: Proceedings of the 2008

International Workshop on Software Engineering for

Adaptive and Self-managing Systems. New York: ACM

Press, 2008, p.33–40.

63. Henkler S, Hirsch M, Priesterjahn C, and Schäfer W.

Modeling and verifying dynamic communication struc-

tures based on graph transformations. In: Proceedings

of the Software Engineering 2010 Conference,

Paderborn, Germany. 2010.
64. Lynch N, Segala R, and Vaandrager F. Hybrid I/O auto-

mata revisited. In: Benedetto MDD, Sangiovanni-

Vincentelli A (eds) Proceedings of Hybrid Systems:

Computation and Control, Fourth International

Workshop (HSCC’01), Rome, Italy, (Lecture Notes in

802 Simulation: Transactions of the Society for Modeling and Simulation International 87(9)

Computer Science, Vol. 2034). Berlin: Springer, 2001,
p.403–417.

65. Burmester S, Giese H, and Oberschelp O. Hybrid UML

components for the correct design of self-optimizing mecha-
tronic systems. Technical Report TR-RI-03-246, Software
Engineering Group. Paderborn, Germany: University of
Paderborn, 2004.

66. Henzinger TA, Ho P-H, and Wong-Toi H. Hytech: The
next generation. In: Proceedings of the 16th IEEE Real-
Time Symposium. Los Alamitos, CA: IEEE Computer

Society Press, 1995, p.56–65.
67. Burmester S, Giese H, and Hirsch M. Syntax and seman-

tics of hybrid components. Technical Report TR-RI-05-

264, Software Engineering Group. Paderborn, Germany:
University of Paderborn, 2005.

A. Syntax and semantics

A.1. Prerequisites

First, we have to define the employed basic mathema-
tical notation.

We use R to denote the set of the real numbers, N0 to
denote the natural numbers including 0, [a, b] with a,
b2A and a� b to denote the interval of all elements
c2A with a� c� b, +(A) to denote the power set of A,
and [A!B] and [A*B] to denote the set of total
response partial functions from A to B. EQ(Vl,Vr)
denotes the set of all equations of the form
vl ¼ f iðv1r , . . . ,vnr Þ with operations f i of arity n and left-
and right-hand side variables of the equation
vl 2Vl, v

1
r , . . . ,vnr 2Vr. COND(V) denotes the set of all

conditions over variables of V. The set of possible
operations and constants is named OP.

As a special case we assume a set of operations {oi}
which do not explicitly define for an equation
vl ¼ ?iðv

1
r , . . . ,vnr Þ any specific restrictions on the rela-

tion between the input and output trajectories. The set
of all of these operations is denoted by OPo. The set of
only fully deterministic input/output operations are
denoted by OPdet.

Other than the vector equations usually used by con-
trol engineers, we use a set of variables V to denote each
single value and describe the mapping by a function
[V!R]. All values of a vector of the length n can be
represented in a similar fashion as [[0, n]!R].

Here f� g further denotes the composition of the
two functions f : A1!B1 and g : A2!B2 with disjoint
definition sets A1\A2¼; defined by (f� g)(x) equals
f(x) for x2A1 and g(x) for x2A2. The combination of
two updates a1� a2 further denotes the composition
of the two functionals a1 : ½A1! B1	 ! ½A

0
1! B01	

and a2 : ½A2! B2	 ! ½A
0
2! B02	 with disjoint

sets A1\A2¼; and A01 \ A
0
2 ¼ ; defined by

(a1� a2)(x� y) :¼ a1(x)� a2(y).
A directed graph is defined as a pair (N, E) with N a

finite set of vertices and E�N�N. We write n! n0 if

(n, n0)2E and extend this to sequences of transitions
such that n!* n

0 if exists k
 0 and n0, . . . , nk2N such
that n0¼ n, nk¼ n0, and for all 0� i� k� 1 holds
ni! niþ1. If!* is irreflexive (`nwithn!* n) the direc-
ted graph is acyclic. For a graph G¼ (N, E) we have the
following additional defined terms: dout(n) :¼ j{n0 2N |

(n, n0)2E}j is the out-degree of node n, din(n) :¼ j{n0 2N|

(n0, n)2E}j is the in-degree of node n, Nout�N is the
subset of output nodes with 8n2Nout holds dout(n)¼ 0,
and Nin�N is the subset of input nodes with 8n2Nout

holds din(n)¼ 0.

A.2. Integrated modeling

In this section, we consider the syntax and semantics of
the different modeling approaches for the control and
software engineering domain and especially focus on an
integrated approach supporting reconfigurable hybrid
systems. Further, we consider a flexible reconfiguration
approach which is required due to the evolution of the
system.

A.2.1. Continuous models
Syntax A continuous block provides a sufficient syn-
tactical structure for the used concept of differential
equations. Its syntax is defined by Definition 1.

Definition 1. A continuous block M is described by a
7-tuple (Vx, Vu, Vy, F, G, C, X0) with Vx the state vari-
ables, Vu the input variables, and Vy the output variables.
For the implicitly defined state flow variables V _x and
auxiliary variables Va

¼Vy
\Vu, the set of equations

F � EQðV _x [Va,Vx [Vu [VaÞ describes the flow of
the state variables, the set of equations
G�EQ(Vy

[Va, Vx
[Vu

[Va) determines the output
variables, and X0

� [Vx
!R] is the set of initial states.

The invariant C with C2COND(Vx) is further used to
determine the set of valid states.

A blockM is only well formed when for the system of
differential equations F[G it holds that there are no
cyclic dependencies, no double assignments, all unde-
fined referenced variables are contained in Vu

�Vy, and
a value is assigned to all state variables (V _x) and output
variables (Vy).

We can compose two continuous models if their
variable sets are not overlapping and the resulting sets
of equations are well formed as follows.

Definition 2. The composition of two continuous
models M1 ¼ ðV

x
1,V

u
1,V

y
1,F1,G1,C1,X

0
1Þ and M2 ¼

ðVx
2,V

u
2,V

y
2,F2,G2,C2,X

0
2Þ denoted by M1 k M2 is again a

continuous model M¼ (Vx, Vu, Vy, F, G, C, X0) with
Vx :¼ Vx

1 [V
x
2, Vu :¼ Vu

1 [V
u
2, Vy :¼ V

y
1 [V

y
2, F :¼

F1[F2, G :¼G1[G2, C is derived from C1 and C2

as C¼ {(x1�x2) | x12C16 x22C2}, and the set

Giese et al. 803

of initial states is X0 ¼ fððl1, l2Þ, ðx1 � x2ÞÞjðl1, x1Þ 2
X0

1 ^ ðl2, x2Þ 2X
0
2g.

Here M1kM2 is well formed iff Vx
1 \ V

x
2 ¼ ;,

Vu
1 \ V

u
2 ¼ ;, V

y
1 \ V

y
2 ¼ ;, and F[G are well

formed. A composition is consistent if the resulting con-
tinuous model is well formed.

Semantics The state space of a continuous behavior
is X¼ [Vx

!R] which describes all possible assign-
ments for the state variables. A trajectory �u:
[0,1]! [Vx

!R] for the set of differential equations
F and input u : [0,1]! [Vu

!R] with �u(0)¼ x for the
current continuous state x2X and �u(t)2C for all
t2 [0, 1] describes a valid behavior of the continuous
system. The output variables Vy are determined by yu :
[0, 1]! [Vy

!R] using G analogously. The semantics
for a continuous modelM is given by all possible triples
of environment and system trajectories (u, �u, yu)
denoted by [[M]].

A.2.2. Reconfigurable hierarchical hybrid
systems. Before defining the syntax and semantics of
a hybrid reconfiguration automaton which can capture
hybrid statecharts and interface statecharts, we define
the syntax and semantics of a standard hybrid automa-
ton with static interfaces similar to hybrid I/O
automata.64

Syntax The syntax of a hybrid automaton is defined
by Definition 3.

Definition 3. A hybrid automaton is described by a
6-tuple (L, D, I, O, T, S0) with L a finite set of locations,
D a function over L which assigns to each l2L a con-
tinuous model D(l)¼ (Vx, Vu, Vy, F(l), G(l), C(l), X0(l))
(see Definition 1) with identical variable sets, I a finite
set of input signals, O a finite set of output signals, T a
finite set of transitions, and a set of initial states
S0
� {(l, x) | l2L6 x2X0(l)}. For any transition (l, g,

g0, a, l0)2T it holds that l2L is the source location,
g2COND(Vx

[Vu) the continuous guard, g0 2+(I[O)
the I/O guard, a2 [[Vx

!R]! [Vx
!R]] the continuous

update, and l0 2L the target location. For every l2L we
require that D(l) is well formed.

Definition 4. The interface I(M) of a hybrid automaton
M is defined as the external visible event sets and input
and output variables (I�O, O� I, Vu

�Vy, Vy
�Vu).

Note that the presented definition of a hybrid auto-
maton easily permits us to still employ the concepts of
real-time statecharts such as clocks. We simply have to
define clock variables vi whose values are determined by
equations _vi ¼ 1 in F to encode this feature into a
hybrid automaton.

The parallel composition of two hybrid automata is
defined as follows.

Definition 5. For two hybrid automata M1 and M2

the parallel composition (M1kM2) results in a hybrid
automaton M¼ (L, D, I, O, T, S0) with L¼L1�L2,
D(l, l0)¼D1(l)kD2(l

0), I¼ I1[I2, O¼O1[O2. The
resulting transition relation is T ¼ fððl1, l2Þ, g1^
g2, g

i
1 [g

i
2, ða1 � a2Þ, ðl

0
1, l
0
2ÞÞ j ðl1, g1, g

i
1, u1, l

0
1Þ 2T1^

ðl2,g2, g
i
2, u2, l

0
2Þ 2T2 ^ gi1 \ ðI2 [O2Þ ¼ gi2 \ ðI1 [O1Þg[

fððl1, l2Þ, g1, g
i
1, u1, ðl

0
1, l2ÞÞ j ðl1, g1, g

i
1, u1, l

0
1Þ 2 T1 ^ gi1\

ðI2[O2Þ¼;g [fððl1,l2Þ,g2,g
i
2,u2,ðl1,l

0
2ÞÞj ðl2,g2,u2,l

0
2Þ2

T2^g
i
2\ðI1[O1Þ¼;g. Here S0 is defined as S0

1�S
0
2.

The automaton M is only well defined when for all
reachable (l, l0)2L it holds that D((l, l0)) is well formed
and the internal signal sets are disjoint
((O1\I1)\(O2\I2)¼;). The composition of hybrid
automata is only consistent when the resulting automa-
ton is well defined.

If the set of equations is well formed for every
location, it can be similar to the case of a continuous
block represented by a corresponding directed
acyclic evaluation graph. In the case of composition
of two hybrid automata, we can derive the resulting
directed acyclic evaluation graphs for every combina-
tion of locations by simply combining the graphs of
both locations at the connected inputs and outputs. If
the composition is well formed, the resulting combined
graphs are all acyclic. It should be noted that the
number of considered evaluation graphs grows
exponentially.

In order to abstract from signals, e.g. signals that are
exchanged between automata, we define the hiding of
signals as in Definition 6 which is taken from Burmester
et al.65

Definition 6. For a hybrid automaton M¼ (L, D, I, O,
T, S0), the hiding of some signals A� I[O denoted by
MnA is defined as the hybrid automaton M0 ¼ (L, D, I0,
O0, T0, S0) with I0 ¼ I�A, O0 ¼O�A, and T0 ¼ {((l, g,
gi�A, u, l)) | (l, g, gi, u, l))2T}.

Semantics For X¼ [Vx*R], the set of possible con-
tinuous state variable bindings, the inner state of a
hybrid automaton can be described by a pair (l,
x)2L�X. There are two possible ways of state mod-
ifications: either by firing an instantaneous transition
t2T changing the location as well as the state variables
or by residing in the current location which consumes
time and alters just the control variables.

When staying in state (l, x), firing an instantaneous
transition t¼ (l 0, g, gi, a, l 00) is done iff:

. the transition’s source location equals the current
location, l¼ l 0;

804 Simulation: Transactions of the Society for Modeling and Simulation International 87(9)

. the continuous guard is fulfilled, g(x� u)¼ true for
u2 [Vu

!R] the current input variable binding;
. the I/O-guard is true for the chosen input and output

signal sets i� I and o�O, i[o¼ gi; and
. the continuous update still fulfills the invariant of

the target location a(x)2C(l 00).

The resulting state will be (l 00, a(x)) and we denote this
firing by (l, x) !(i[o) (l

00, a(x)).
Iff no instantaneous transition can fire, the hybrid

automaton resides in the current location l for a
non-negative and non-zero time delay �> 0. Let �u:
[0, �]! [Vx

!R] be a trajectory for the differential
equations F(l) and the external input u:
[0, �]! [Vu

�Vy
!R] with �u(0)¼ x. The state for all

t2 [0, �] will be (l, �u(t)). The output variables Vy
�Vu

and internal variables Vy
\Vu are determined by yu:

[0, �]! [Vy
!R] using G(l) analogously. We addition-

ally require that for all t2 [0, �] holds that �u(t)2C(l).
The trace semantics is thus given by all possible infi-

nite execution sequences ðu0, l0, �
0
u0
, �0u0 , �0Þ !e0

ðu1, l1, �
1
u1
, �1u1 ,�1Þ . . . denoted by [[M]]t where all

ðli, �
i
ui
ð�iÞÞ !ei ðliþ1, �

iþ1
uiþ1
ð0ÞÞ are valid instantaneous

transition executions.
Other aspects of hybrid behavior, such as

Zeno behavior and the distinction between urgent
and non-urgent transitions, are omitted here. A
suitable formalization can be found, e.g., in
Henzinger et al.66

A.2.3. Hybrid reconfiguration automata. In the fol-
lowing, we describe the syntax and semantics of
hybrid reconfiguration automata that supports the flex-
ible reconfiguration across module boundaries is
defined formally.

Syntax We define the syntax of hybrid reconfigura-
tion charts as in Definition 7.

Definition 7. A hybrid reconfiguration automaton is
described by a 6-tuple (L, D, I, O, T, S0) with L a
finite set of locations, D a function over L which assigns
to each l2L a continuous model, D(l)¼ (Vx(l), Vu(l),
Vy(l), F(l), G(l), C(l), X0(l)) (see Definition 1), I a
finite set of input signals, O a finite set of output signals,
T a finite set of transitions, and S0

� {(l, x) | l2L 6
x2X(l)} the set of initial states. For any transition (l,
g, gi, a, l0)2T it holds that l2L is the source location,
g2COND(Vx(l)[Vu(l)) the continuous guard,
gi2+(I[O) the I/O guard, a2 [[Vx(l)!R]!
[Vx(l0)!R]] the continuous update, and l0 2L the
target location. For every l2L we require that D(l) is
well formed.

The automaton additionally allows that each loca-
tion has its own variable sets. We use Vx to denote the

union of all Vx(l). Vu and Vy are derived analogously.
We further use Vx(F(l)) to denote the state variable set.
All assigned output variables are analogously named
provided output variable set (Vy(F(l)[G(l))) and all of
the input variables used are named the required input
variable set (Vu(F(l)[G(l))).

Definition 8. The (static) interface I(M) of a hybrid
reconfiguration automaton M is defined as the external
visible event sets and input and output variables (I�O,
O� I, Vu

�Vy, Vy
�Vu).

The parallel composition of two hybrid reconfigura-
tion automata can be defined as follows.

Definition 9. For two hybrid reconfiguration automata
M1 and M2 the parallel composition (M1kM2) results in
a hybrid reconfiguration automaton M¼ (L, D, I, O, T,
S 0) with L¼L1�L2, D(l, l0)¼D1(l)kD2(l

0), I¼ I1[I2,
O ¼ O1[O2. T ¼ fððl1, l2Þ, g, g

0, ða1 � a2Þ, ðl
0
1, l
0
2ÞÞj

ðl1, g1, g
0
1, u1, l

0
1Þ 2T1 ^ ðl2, g2, g

0
2, u2, l

0
2Þ 2T2g [fððl1, l2Þ,

g01, u1, ðl
0
1, l2ÞÞjðl1, g1, u1, l

0
1Þ 2T1g [fððl1, l2Þ, g

0
2, u2, ðl1, l

0
2ÞÞj

ðl2, g2, u2, l
0
2Þ 2T2g is the resulting transition relation

where g(x, u, i, o)¼ g1(x, u, i, o) 6 g2(x, u, i, o),
g01ðx, u, i, oÞ ¼ g1ðx, u, i, oÞ ^ o \ I2 ¼ ; ^ i \O2 ¼ ;,
and g02ðx, u, i, oÞ ¼ g2ðx, u, i,oÞ ^ o \ I1 ¼ ; ^ i \O1 ¼ ;.

The automaton M is only defined when for all
reachable (l, l0)2L it holds that D((l, l0)) is defined and
the internal signal sets are disjoint ((O1\ I1)\
(O2\ I2)¼;).

The parallel composition also follows directly from
the non-reconfigurable case. In the case of
hybrid reconfiguration automata, a correct parallel
composition has to ensure that for all reachable
(l, l0)2L it holds that D((l, l0)) does not contain cyclic
dependencies.

Further, we define the terms fading location and reg-
ular location in Definition 10 and passive location in
Definition 11 similar to those presented by Burmester
et al.65 The fading locations are inspired by the idea of
Lynch et al.64 and represent fading transitions as time
consuming intermediate states.

Definition 10. For a hybrid reconfiguration automaton
M¼ (L, D, I, O, T, S0) a location lf2L with
D(lf)¼ (Vx(lf), V

u(lf), V
y(lf), F(lf), G(lf), C(lf), X

0(lf)) is
a fading location iff:

. the invariant consists of just one inequality with
respect to the variable v and an upper bound dmax,
C(lf)� (v� dmax);

. v is a clock, 9v2Vx(lf) with ð _v ¼ 1Þ 2Fðlf Þ;

. v is reset to zero when entering lf, for all (l, g, g0, a,
lf)2T it holds that (v¼ 0)2 a;

. exactly one transition exists leaving lf, j{(lf, g, g
0, a, l0)|

(lf, g, g
0, a, l0)2T}j ¼ 1; and

Giese et al. 805

. for this transition it holds that g� dmin� v� dmax,
g0 ¼ true, and a¼ Id.

All non-fading locations are regular locations.

Definition 11. For a hybrid reconfiguration automaton
M¼ (L, D, I, O, T, S 0), a regular location lp2L is a
passive location iff the location and all transitions leav-
ing it have no continuous constraints.

As in the case of the hybrid automata, it holds that if
the set of equations is well formed for every location, we
have a corresponding directed acyclic evaluation graph.
In the case of composition of two hybrid reconfiguration
automata, we can derive the resulting directed acyclic
evaluation graphs for every combination of locations
by simply combining the graphs of both locations at
the connected location-specific inputs and outputs.

Semantics The semantics can be derived from the
hybrid automata semantics (see Section A.2.2) by
always taking into account the location-dependent
notion Vx(l) instead of the location independent Vx.

A.2.4. Flexible reconfigurable hierarchical hybrid
systems
Syntax While the graph transformation systems
permit us to model complex discrete models, we have
to also support continuous behavior and thus in addi-
tion consider the following extensions for hybrid graph
transformation systems (HGTSs): we assign types to all
nodes and edges, provide node-type-specific attributes
a2V, and node-type-specific continuous behavior for
the attributes of that node type. The state of a HGTS
therefore consists of a graph G as well as an assignment
X which provides for each node n and related attribute
a the current value as X(n, a).

Graph patterns are accordingly extended such that
they can also contain Boolean constraints over the node
attributes. In addition, for the right-hand side graph
pattern we also allow updates to be employed which
determine the new attribute values as a function of
node attributes of the left-hand side.

By permitting differential equations that define how
the future state of a variable of node n can depend on
the variables of all its neighbors, the HGTS can model
in addition to its structure every possible evaluation
graph. A well-formed HGTS state therefore requires
that the evaluation graph is acyclic.

Semantics Owing to the additional continuous beha-
vior, we have, similarly to hybrid automata, two steps
for HGTS:

1. First, the classical GTS step results in a discrete
change of the graph which takes place in zero time.

In addition, the application of a rule requires that
the additional Boolean constraints are fulfilled and
may also change some of the attribute values of the
nodes denotes by related attribute updates in the
right-hand side of the rule.

2. Second, a time-consuming continuous step that
results for a current state (G, X), a time step �> 0,
and trajectories � : [0, �]! [V!R] with �(0)(a)¼
X(n, a) for each node n2G and attribute a2V
which conforms to the continuous behavior specifi-
cation of the type of n results in a state (G, X�) for
time � with identical graph G and the continuous
state X� defined by X�(n, a) :¼ �(�)(a).

Using this concept, we can, for example, describe the
velocity of a vehicle given as a node n using differential
equations or real-time behavior by means of clock vari-
ables with a constant derivative 1.

Using a rule labeling alphabet A and a correspond-
ing labelling for all rules �: R!A we further
write G a!G0 instead of G !r G0 if �(r)¼ a and
G �ð�Þ

!G0 for a continuous step. Here G w!�G
0 is

accordingly defined as the finite sequence of steps
Gi

ai!Giþ1 with w the concatenation of the labels
a1;. . .; an with �(�1);�(�2) is reduced tog �(�1þ �2). If
more appropriate we may also omit the labeling and
write G!G0 and G!* G

0.
The composition S�T of two HGTSs S and T is

defined by simply joining the rule sets. We can in addi-
tion define the parallel composition SkT of two labeled
HGTSs S and T by synchronizing always two rules of
both HGTSs with the same label. We further require
that to build a parallel composition, the combined rules
are always identical with respect to shared element
types. For the parallel composition holds that S as
well as T simulate SkT (see below).

A.3. Static analysis for reconfiguration

To exclude runtime failures in the case of reconfigura-
tion, static analysis can be performed using the refine-
ment notion related to the interface statecharts and
checked carefully to ensure a correct embedding.

A.3.1. Refinement and abstraction. To study
what a correct relation between the realization
of a component and its interface automaton is,
we write for a possible execution sequence of states
and transitions of a hybrid automaton M¼ (L, D, I,
O, T, S0) with ðu0, l0, �

0
u0
, �0u0 , �0Þ !e0 ðu1, l1, �

1
u1
, �1u1 ,�1Þ

2 ½½M		t simply ðl0, �
0
u0
ð0ÞÞ !ðu0,�0u0 ,�

0
u0
, �0Þ ðl0, �

0
u0
ð�0ÞÞ !e0

gWe ignore here the problem of Zeno behavior which might result
from an infinite sequence of classical steps or an non-convergent
sequence of time steps (

P
�i91).

806 Simulation: Transactions of the Society for Modeling and Simulation International 87(9)

ðl1, �
1
u1
ð0ÞÞ !ðu1,l1,�1u1 ,�

1
u1
, �1Þ ðl1, �

1
u1
ð�1ÞÞ to represent

the state changes in a more uniform manner.
We thus have the concept of a hybrid
path � ¼ ðu0, �

0
u0
, �0Þ; e0; . . . ; ðun, ln, �

1
un
, �nÞ; en such

that we write ðl0,�
0
u0
ð0ÞÞ !� ðln,�

n
un
ð�nÞÞ iff it

holds that ðl0,�
0
u0
ð0ÞÞ!ðu0,�0u0 ,�

0
u0
,�0Þ ðl0,�

0
u0
ð�0ÞÞ!e0 . . .

ðln,�
n
un
ð0ÞÞ! ðun,ln,�nun ,�

n
un
,�nÞðln,�

n
un
ð�nÞÞ.

For e0i ¼ ei � ðO \ IÞ the externally relevant events
and �iui ¼ �

i
ui
jVyðliÞ�VuðliÞ the output minus the internal

variables, we have an abstract path
�0 ¼ ðu0,�

0
u0
,�0Þ; e

0
0; . . . ; ðun,�

1
un
,�nÞ; en; . . . and we write

ðl0,�
0
u0
ð0ÞÞ)�0 ðln,�

n
un
ð�nÞÞ. Note that w; e; w0 with e¼;

is collapsed to w; w0 as no externally relevant events are
received or emitted. The offered discrete as well as con-
tinuous interactions for a state (l, x) are further denoted
by the set offer(M, (l, x)) which is defined as {e | 9(l, x)
)e (l

0, x)}[{(du/dt)(0) | 9(l, x))(u,yu,�) (l, x
0)}.

An appropriate notion of hybrid refinement for the
interface is then defined as follows.

Definition 12. For two hybrid reconfiguration
automata MI and MR it holds that MR is a
refinement of MI denoted by MRYMI iff a relation
�� (LR�XR)� (LI�XI) exists, so that for every
c2 (LR�XR) a c00 2 (LI�XI) exists such that (c, c00)2�
and for all (c, c00)2� it holds that

8c)� c
0 9c00)� c

000 : ðc0, c000Þ 2� and ð1Þ

offerðMR, cÞ
 offerðMI, c
00Þ and ð2Þ

8 ððlR, xRÞ,ðlI, xIÞÞ 2�: DeðDRðlRÞÞ � DeðDLðlIÞÞ:

ð3Þ

We denote dependencies between input and output
variables using D(M)�Vu

�Vy. The external visible
dependencies De(M) are accordingly defined as
De(M) :¼D(M)\ ((Vu

�Vy)� (Vy
�Vu)). Note that

these dependencies essentially capture what has been
formalized with the reduced evaluation graphs. What
is not required for the considerations here is the accu-
mulation of multiple inputs and outputs into separate
evaluation blocks. Here, we are only interested in cor-
rectness and do not require this information which is
essential for an efficient modular evaluation scheme.

A.3.2. Correct embedding. Owing to the fact that
hierarchical composition in contrast to the general par-
allel composition restricts a potential overlapping of
locations, the previous subsection introduced refine-
ment can be checked in many cases with static analysis
without consideration of the full state space of the
model. In these checks, fading transitions and their
durations play an important role. Formalizing their
semantics leads to simple interface automata.65

Definition 13. An interface automaton M¼ (L, D, I, O,
T, S0) is simple if it contains only passive and fading
locations and two fading locations are never connected
directly.

We then can define the set H of possibly reachable
state combinations of a reconfigurable hybrid compo-
nent and its embedded occurrences as follows.

Definition 14. Let C¼ (S, M, P, prop) be a reconfigur-
able hybrid component with M¼ (L, D, I, O, T, S0),
S(l)¼ (I(l), B(l), E(l), map(l)), and E(l)¼ {(N1, (M1,
I1, P1, prop1), l1), . . . , (Nn, (Mn, In, Pn, propn), ln)}.
The set of possibly reachable states is H¼ {(l,
(l1, . . . , ln))| l2L}. We call MkH (M1k. . .kMn) :¼
behavior(C)k(M1k. . . kMn) the hierarchical parallel
composition of M and M1k. . . kMn.

The following theorem describes a simple
syntactical rule which is sufficient to prove for
the restricted case sketched above that a hierarchical
parallel product does not have any timing errors.
The basic idea is that the timing interval of a hybrid
reconfiguration chart’s fading transitions has to con-
form with one of its embedded simple interface state
charts.

Theorem 1 (see Burmester et al.65). For the hierarchical
parallel composition M1kH M2 of two hybrid automata
M1 and M2 it holds that M1kH M2YM1nI2[O2

if the

following hold.

1. We have I(M1 kH M2)¼ I(M1nI2[O2
).

2. All initial states are also contained in H:
ðfðl1,l2Þjðl1,xÞ 2S

0
1 ^ ðl2,yÞ 2S

0
2g � HÞ.

3. M2 is a simple interface state chart (see
Definition 13).

4. For all (l1, l2)2H and transition t1 ¼
ðl1, g1, g

i
1, a1, l

0
1Þ 2T1 the following hold.

(a) If l01 is not a fading location, then for all
t2 ¼ ðl2, g2, g

i
2, u2, l

0
2Þ 2T2 with gi1 \ ðI2 [O2Þ ¼

gi2 the following must hold:
(i) g2¼ true;
(ii) l02 is a passive location (see Definition 11); and
(iii) ðl01, l

0
2Þ 2H.

In addition at least one such transition in M2 must
exist.

(b) If l01 is a fading location we can conclude that
exactly one transition t01 ¼ ðl

0
1, g
0
1, g

i
1
0
, a01, l

00
1Þ 2T1

with g01 � d1min � v � d1max and gi
0

1 ¼ ; exists
(see Definition 10). For any t2 ¼
ðl2, g2, g

i
2, a2, l

0
2Þ 2T2 with gi1 \ ðI2 [O2Þ ¼ gi2 the

following must hold:
(i) g2¼ true;
(ii) l02 is a fading location; and

Giese et al. 807

(iii) ðl01,l
0
2Þ 2H.

For the uniquely determined successor transition
t02 ¼ ðl

0
2,g
0
2,g

i
2
0
,a02,l

00
2Þ2T2 with g02 � d2min � v� d2

max

the following must hold:
(iv) l002 is a passive location (see Definition 11);
(v) ðl001, l

00
2Þ 2H; and

(vi) ½d 2
min, d

2
max	 � ½d

1
min,d

1j
max	 must be satisfied.

Again, at least one such pair of transitions in M2 must
exist.

Theorem 1 can be extended to the general case of
MSkH (M1k. . . kMn) by induction. Owing to the syntac-
tical check of Theorem 1, the hierarchical composition
by means of the underlying hybrid control software
cannot invalidate the timing properties ensured by the
embedding hybrid statechart of the monitor (see
Burmester et al.67 for details of the proof).

808 Simulation: Transactions of the Society for Modeling and Simulation International 87(9)

	Title
	Abstract
	1. Introduction
	1.1. Advanced mechatronic system example
	1.2. Problem statement
	1.3. Contribution
	1.4. Outline

	2. State of the art
	2.1. Modeling of hybrid systems
	2.2. Composition and evaluation order
	2.3. Comparison

	3. Multi-paradigm modeling
	3.1. Continuous models
	3.2. Reconfigurable hierarchical hybrid models
	3.3. Flexible reconfigurable hierarchical hybrid models

	4. Modular execution
	4.1. Modular composition and evaluation order
	4.2. Hierarchical composition and evaluation order
	4.3. Reconfigurable hierarchical hybrid systems
	4.3.1. Basic continuous components.
	4.3.2. Basic discrete components.
	4.3.3. Hybrid hierarchical components.

	4.4. Flexible reconfigurable hierarchicalhybrid systems

	5. Prevent critical runtime failures
	5.1. Static analysis for reconfiguration
	5.1.1. Syntactic checks.
	5.1.2. Model checking.

	5.2. Runtime checking for flexible reconfiguration

	6. Tool support
	6.1. Tool integration
	6.2. Structural modeling
	6.3. Behavioral modeling
	6.4. Simulation and runtime

	7. Conclusion and future work
	References

