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2 Abstract 
 

All life-sustaining processes are ultimately driven by thousands of biochemical 

reactions occurring in the cells: the metabolism. These reactions form an intricate 

network which produces all required chemical compounds, i.e., metabolites, from a set 

of input molecules. Cells regulate the activity through metabolic reactions in a context-

specific way; only reactions that are required in a cellular context, e.g., cell type, 

developmental stage or environmental condition, are usually active, while the rest 

remain inactive. The context-specificity of metabolism can be captured by several kinds 

of experimental data, such as by gene and protein expression or metabolite profiles. In 

addition, these context-specific data can be assimilated into computational models of 

metabolism, which then provide context-specific metabolic predictions.  
This thesis is composed of three individual studies focussing on context-specific 

experimental data integration into computational models of metabolism. The first study 

presents an optimization-based method to obtain context-specific metabolic predictions, 

and offers the advantage of being fully automated, i.e., free of user defined parameters. 

The second study explores the effects of alternative optimal solutions arising during the 

generation of context-specific metabolic predictions. These alternative optimal solutions 

are metabolic model predictions that represent equally well the integrated data, but that 

can markedly differ. This study proposes algorithms to analyze the space of alternative 

solutions, as well as some ways to cope with their impact in the predictions.  

Finally, the third study investigates the metabolic specialization of the guard cells of the 

plant Arabidopsis thaliana, and compares it with that of a different cell type, the 

mesophyll cells. To this end, the computational methods developed in this thesis are 

applied to obtain metabolic predictions specific to guard cell and mesophyll cells. These 

cell-specific predictions are then compared to explore the differences in metabolic 

activity between the two cell types. In addition, the effects of alternative optima are 

taken into consideration when comparing the two cell types. The computational results 

indicate a major reorganization of the primary metabolism in guard cells. These results 

are supported by an independent 13C labelling experiment. 
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3 Zusammenfassung 
 

Alle lebenserhaltenden Prozesse werden durch tausende biochemische Reaktionen in 

der Zelle bestimmt, welche den Metabolismus charakterisieren. Diese Reaktionen 

bilden ein komplexes Netzwerk, welches alle notwendigen chemischen Verbindungen, 

die sogenannten Metabolite, aus einer bestimmten Menge an Ausgangsmolekülen 

produziert Zellen regulieren ihren Stoffwechsel kontextspezifisch, dies bedeutet, dass 

nur Reaktionen die in einem zellulären Kontext, zum Beispiel Zelltyp, 

Entwicklungsstadium oder verschiedenen Umwelteinflüssen, benötigt werden auch 

tatsächlich aktiv sind. Die übrigen Reaktionen werden als inaktiv betrachtet. Die 

Kontextspezifität des Metabolismus kann durch verschiedene experimentelle Daten, wie 

Gen- und Proteinexpressionen oder Metabolitprofile erfasst werden. Zusätzlich können 

diese Daten in Computersimulationen des Metabolismus integriert werden, um 

kontextspezifische (metabolische) Vorhersagen zu treffen. 
Diese Doktorarbeit besteht aus drei unabhängigen Studien, welche die Integration von 

kontextspezifischen experimentellen Daten in Computersimulationen des Metabolismus 

thematisieren. Die erste Studie beschreibt ein Konzept, basierend auf einem 

mathematischen Optimierungsproblem, welches es erlaubt kontextspezifische, 

metabolische Vorhersagen zu treffen. Dabei bietet diese vollautomatische Methode den 

Vorteil vom Nutzer unabhängige Parameter, zu verwenden. Die zweite Studie untersucht 

den Einfluss von alternativen optimalen Lösungen, welche bei kontextspezifischen 

metabolischen Vorhersagen generiert werden. Diese alternativen Lösungen stellen 

metabolische Modellvorhersagen da, welche die integrierten Daten gleichgut 

wiederspiegeln, sich aber grundlegend voneinander unterscheiden können. Diese Studie 

zeigt verschiedene Ansätze alternativen Lösungen zu analysieren und ihren Einfluss auf 

die Vorhersagen zu berücksichtigen.  

Schlussendlich, untersucht die dritte Studie die metabolische Spezialisierung der 

Schließzellen in Arabidopsis thaliana und vergleicht diese mit einer weiteren Zellart, 

den Mesophyllzellen. Zu diesem Zweck wurden die in dieser Doktorarbeit vorgestellten 

Methoden angewandt um metabolische Vorhersagen speziell für Schließzellen und 

Mesophyllzellen zu erhalten. Anschließend wurden die zellspezifischen Vorhersagen  

auf Unterschiede in der metabolischen Aktivität der Zelltypen, unter Berücksichtigung 

des Effekt von alternativen Optima, untersucht. Die Ergebnisse der Simulationen legen 

eine grundlegende Neuorganisation des Primärmetabolismus in Schließzellen verglichen 

mit Mesophyllzellen nahe. Diese Ergebnisse werden durch unabhängige 13C  

markierungs Experimente bestätigt. 
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Chapter 1 
 

1 Introduction 
 

An intricate network of biochemical reactions lies at the core of all cellular processes: 

the metabolism. Metabolism transforms environmental energy and matter into useful 

forms for the cells, and interconverts chemicals, i.e., metabolites, to create all necessary 

compounds sustaining life. In addition, metabolism operates in a specialized manner, 

adapting the activity trough the reactions to meet the requirements of diverse cellular 

contexts—e.g., cell type, developmental stage or environmental conditions. A thorough 

understanding of the adaptation of metabolism is therefore basic to deciphering how 

cells operate. In this respect, experimental techniques in biochemistry and molecular 

biology provide a wealth of context-specific data. These data can be combined with 

mathematical and computational descriptions of metabolism, which provide a 

quantitative frame to interpret experimental observations, test diverse hypotheses and 

guide further experiments. 

This thesis provides mathematical and computational methods which integrate 

experimental data to obtain context-specific metabolic predictions, and it is composed 

of three related studies. The first two studies present the new methods, while the third 

study applies these methods to investigate how metabolism specializes in a concrete cell 

type: the guard cells of the plant Arabidopsis thaliana. Each study is presented in an 

individual chapter and provides detailed background. In contrast, this introductory 

chapter provides a general background to the subject of this thesis. We will begin by 

elaborating on the definition of metabolism, which will be followed by a brief historical 

description of the development of mathematical models of metabolism. We will 

continue with an introduction to the rationale behind the class of methods developed in 

this thesis. We will finalize this chapter with the main types of experimental data used 

to obtain context-specific metabolic predictions, followed by a summary of the state-of-

the-art computational methods devoted to this end.  
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1.1 Metabolism 

Cellular metabolism is composed of thousands of (bio)chemical reactions and 

metabolites. Reactions and metabolites do not occur isolated, but form an intricated 

network in which metabolites can be shared between several reactions. Moreover, the 

reactions act in an organized and controlled way to meet the cellular requirements. On 

the one hand, reactions are thermodynamically coupled, that is, reactions that release 

energy are coupled to reactions that require energy to proceed. The thermodynamic 

coupling enables the activity through reactions that would never occur in isolation, 

and renders an overall feasible metabolism (Voet & Voet, 2011). On the other hand, 

the activity through most reactions is coordinated by proteins or protein complexes, 

the enzymes, which are biological catalyzers. This is because most metabolic 

reactions, even though thermodynamically feasible, would proceed at very slow rates 

without catalysis.  

Enzymes not only speed up metabolism, but also provide an entry point to regulatory 

processes, which control the flux1 through reactions. This control is exerted by 

varying the concentration of functionally active enzymes, which can be accomplished 

by altering: i) the transcription of the coding genes and/or the stability of the 

corresponding transcripts, ii) the translation rate into proteins and/or the stability of 

the proteins, iii) the inactivation of existing enzymes, either by means of allosteric 

regulation, posttranslational modifications or by controlling the availability of 

cofactors essential to enzyme functioning (Metallo & Vander Heiden, 2013). 

Although metabolism has not a clear natural partitioning, groups of metabolic 

reactions have been traditionally classified based on general physiological functions. 

For instance, metabolism can be decomposed into catabolism and anabolism: 

Catabolic reactions typically break high energy compounds into smaller molecules 

and obtain in the process free energy. In contrast, anabolic reactions typically 

synthetize complex compounds from simpler ones; a process that utilizes the free 

energy derived from catabolic reactions or directly withdrawn from the environment 

(Voet & Voet, 2011). A finer partition of metabolism employs the concept of 

metabolic pathway. Metabolic pathways are chains of linked reactions, in which at 

least one product of a reaction acts as a substrate of the next one in the chain. The 

reactions in a pathway generally act together to accomplish a specific function within 

metabolism, and may be switched on or off depending on the metabolic demands of a 

cellular context. In this sense, metabolism can be regarded as a collection of 

metabolic pathways specialized in certain metabolic tasks. An example of a catabolic 

pathway is the glycolysis, a sequence of 10 reactions that collectively break down 

glucose into smaller subunits; a process that releases free energy which can be 

employed to drive anabolic processes (Bar-Even, Flamholz, Noor, & Milo, 2012). 

                                                 
1 The flux of a reaction corresponds to the rate at which a substrate is consumed (or a product 

synthetized), as measured, for instance, by moles of consumed substrate per volume per unit time. 
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1.2 Models of metabolism in the pre-omics era 

Most of the current scientific knowledge of metabolism derives from studies 

conducted throughout the 20th century, which employed classical techniques from 

biochemistry. During this time, the investigations were tailored to discovering new 

metabolic pathways or characterizing isolated reactions (Voet & Voet, 2011). These 

efforts produced a wealth of information about enzyme kinetics and reaction 

mechanisms, which vastly increased the scientific knowledge of metabolism. 

However, during this time, metabolic pathways were generally studied in isolation, 

like small submodules of metabolism specialized in fulfilling a particular function. 

This approach sharply contrasts to the modern, systemic approach to studying 

metabolism of the “omics” era, which will be later discussed.  

1.2.1 The mass action formalism 

The advent of a wealth of biochemical data encouraged the development of the first 

mathematical models of metabolism. In 1913, Leonor Michaelis and Maud Menten 

proposed the first formalism explicitly developed to model enzymatically catalyzed 

(biochemical) reactions, the Michaelis-Menten rate law (K. A. Johnson, Goody, 

Johnson, & Goody, 2011). However, this formalism was derived from the mass action 

rate law, a previous formalism developed to model non-enzymatically catalyzed 

reactions. The law of mass action, originally conceived by Cato Guldberg and Peter 

Waage in 1864 (Voit, Martens, & Omholt, 2015), is a probabilistic law stating that the 

flux through a reaction is proportional to the product of the concentrations of the 

substrates. For instance, consider the following reaction. 

 1

2
1 2 32

v

v
X X X   (1.1) 

where two molecules of the chemical species X1 react with a molecule of X2 to form 

X3. To simplify notation, we will abuse language from now on and denote the 

concentration (e.g. in molar units) of a species by the same denominating symbols, 

then the flux, i.e., reaction rate, 𝑣1 in the forward direction of the reaction (from left to 

right) corresponds to  

 2

1 1 1 2v k X X   (1.2) 

                                                                                                                  

and the flux 𝑣2 of the backward direction to  

 2 2 3v k X   (1.3)                                                                                                                           

where the exponents are the stoichiometric coefficients of the corresponding species 

in the reaction, and the kinetic constants, k1, k2, are parameters that depend on the 
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particular reaction mechanism and environmental conditions. Therefore, for a general 

reaction, the flux, v, under the law of mass action is represented by 

 
| |

1

ij

m
s

i

i

v k X


    (1.4) 

where si is the stoichiometric coefficient of each reactant species Xi in the reaction. 

1.2.2 The Michaelis-Menten formalism 

Leonor Michaelis and Maud Menten began considering the simple, enzymatically 

catalyzed reaction 

 1 3

2
1 2

v v

v
E X Z E X     (1.5) 

which is a two-step reaction. The first step involves the binding of one molecule of 

substrate X1 to a molecule of free enzyme E to form the enzyme-substrate complex Z, 

a process that is reversible. In the second step, the product X2 is formed and released 

from the enzyme, a process that is assumed irreversible. To see how the Michaelis-

Menten formalism derives from the law of mass action, we begin by considering the 

dynamical system 

 

1 1 2 3

1 1 1 2

1 1 2 3

2 3

( )

( )

E k EX k k Z

X k EX k Z

Z k EX k k Z

X k Z

   

  

  



  (1.6)                                 

which is represented under the mass action formalism—first order time derivatives 

are symbolized by a dot over the variable name. Michaelis-Menten further assumes 

that the first step of the reaction occurs much more rapidly than the second. 

Originally, the first step was assumed to be at equilibrium, so that 1 1 2k EX k Z  hence 

1 0X  (Voit et al., 2015). Alternatively, in 1925, G.E. Briggs and J.B.S. Haldane 

(Briggs & Haldane, 1925) proposed the quasi-steady-state assumption in which                                          

 
1 1 2 3( ) 0Z k EX k k Z      (1.7)                                     

so that 

 
1 1 2 3( )k EX k k Z    (1.8)                                                  

and which we will follow in the derivation.  We also note that the system (1.6) has the 

conserved quantity   

 TE Z E    (1.9)                                                          
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since we have 0E Z  . We continue the derivation by realizing that the global flux, 

converting X1 into X2, in (1.5) effectively depends on 3 3v k Z , since, by assumption, it 

is the slowest step. However, the enzyme-substrate complex is unstable and hence 

unmeasurable experimentally, thus our final goal is to express Z as a function of 

measurable variables. By (1.8) we obtain 

 2 31

1

k kEX

Z k


   (1.10) 

and from (1.8) and (1.9) we have 

 2 31

1

( )T
k kE Z X

Z k


  . (1.11)                                                    

Hence   

 1

1

T

M

E X
Z

K X



  (1.12) 

with  

 2 3

1

M

k k
K

k


 .  (1.13) 

 Finally, we arrive at the desired expression  

 max 1
3

1M

v X
v

K X



,  (1.14) 

which expresses the Michaelis-Menten rate function for the reaction in (1.5). The 

expression in (1.14) depends on the concentration of the substrate S and on two 

parameters: max 3 Tv k E corresponds to the maximum rate of the reaction, and depends 

on the catalytic constant k3, usually denoted kcat, the maximum turnover of the 

enzyme—i.e., maximum conversion rate of substrate into product—and the total 

concentration of enzyme, ET, in the system. On the other hand KM represents an 

inverse measure of the affinity of the enzyme for its substrate, and can be defined as 

the concentration of the substrate in the system when 1
23 maxv v (Voet & Voet, 2011). 

Both parameters can be measured in vitro and serve to characterize the catalytic 

properties of the enzyme in the reaction under study. 

Contrary to the mass action formalism, the Michaelis-Menten rate law does not have a 

general form; its derivation depends on the type of biochemical reaction being 

modelled and on biochemical assumptions, such as the quasi steady-state assumption 

on the enzyme-substrate complex.  In fact, the simple formulation in (1.14) becomes 

more convoluted with more complex reactions. For instance, in reactions with more 
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than one substrate, the different orders in which each substrate is utilized render 

different formulations of the rate law (Leskovac, 2003). Additionally, the affinity for 

a substrate, captured by KM, may not be constant, but a function of the same or other 

substrates in the system. The Hill equation (Goutelle et al., 2008) extends Michaelis-

Menten to account for cases in which the binding of a molecule of substrate increases 

of decreases the affinity of the enzyme, a process known as positive and negative 

cooperative binding, respectively. On the other hand, other extensions of (1.14) are 

necessary when non-substrate molecules compete for the active site of the enzyme, 

thus inhibiting the rate of the reaction and affecting vmax, which is no longer  constant 

(Leskovac, 2003).  

1.2.3 A generalization of the mass action formalism 

The Michaelis-Menten formalism and its extensions provide more realistic predictions 

than that of the law of mass action. However, this comes at the cost of losing a 

canonical representation of the formalism and of more free parameters to determine, 

which restricts the usage of Michaelis-Menten to well-studied and small-scale 

biochemical systems. Motivated by the need to address this problem, generalizations 

of the mass action law were proposed in the 1970s. For instance, one of this 

formalisms, is the generalized mass action formalism (Savageau, 1969), in which the 

reaction rate for a general reaction is defined as 

 
1

i

m
g

i
i

Xv 


  .  (1.15) 

The only differences between (1.15) and (1.4) are (i) the exponents gi are not the 

stoichiometric coefficients, but parameters of the system which can take any real 

value within an allowable range, (ii) other participating species, besides reactants, 

may be included, such as inhibitory species, in which case the corresponding 

exponent gi < 0. These characteristics make the generalized mass action formalism 

suitable to model phenomenological processes instead of single biochemical 

reactions. For instance, v may represent the net flux through an entire metabolic 

pathway, in which several reactions are grouped together into a single process. 

Therefore, this formalism may be interpreted as a compromise between the simple but 

limited law of mass action, and the biochemically more realistic but also complex 

Michaelis-Menten. 

1.3 Models of metabolism in the omics era 

The development of faster and automated sequencing techniques led to a milestone in 

molecular biology: the sequencing of the first (non-viral) genome, that of the bacterial 

species Haemophilus influenza in 1995 (Fleischmann et al., 1995). Subsequent 

improvements in sequencing techniques rapidly increased the number of species with 

a fully-sequenced genome. Furthermore, the development of bioinformatics tools 
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allowed annotating extensive lists of genes, as well as unravelling putative gene 

functions based on sequence comparison with known genes (Stein, 2001). Altogether, 

these technological innovations enabled large-scale analysis of whole genomes, thus 

starting the genomics era.  Thousands of genomes have been sequenced since 1995—

including the human genome in 2003 (Human Genome Sequencing Consortium, 

2004)—and are available in several online databases, which provide easy and public 

access to this wealth of information, e.g. (Auton et al., 2015; Berardini et al., 2015; 

Caspi et al., 2016; Kanehisa, Sato, Kawashima, Furumichi, & Tanabe, 2016; Yates et 

al., 2016). 

The paradigm of large-scale or systemic analyses of organisms did not stop with 

genomics, but continued to be applied to other areas of molecular biology. New 

techniques have allowed the quantification of the expression of thousands of 

annotated genes in a single experiment (Butte, 2002; Z. Wang, Gerstein, & Snyder, 

2009). This transcriptomics data, give a global picture of the gene expression state, 

i.e., the average number of transcripts for the monitored genes in a cell. Therefore, 

while genomics provides a static vision of the genome, transcriptomics captures how 

the genome is being effectuated by the cell at the time of the experiment, and hints at 

new possible physiological functions.  

Today, modern high-throughput experimental techniques allow taking large-scale 

measurements of additional elements in the hierarchical causal processes controlling 

metabolism—i.e., from gene transcription to messenger RNA (mRNA) translation 

into proteins (enzymes), to posttranslational modification, and to the reaction fluxes 

and the metabolites. Proteomics characterize and quantify thousands of proteins at the 

same time (Righetti, Campostrini, Pascali, Hamdan, & Astner, 2004). Similarly, 

metabolomics aims at identifying and measuring the concentrations of a large number 

of metabolites (C. H. Johnson, Ivanisevic, & Siuzdak, 2016; Rochfort, 2005). More 

recently, attempts have been made into estimating the metabolic fluxes, although 

current techniques only allow the quantification of a relatively small number of 

metabolic fluxes in central metabolism (Niedenführ, Wiechert, & Nöh, 2015).  

The investigation of metabolism changed drastically upon the arrival of the omics 

data: from the classical small-scale and pathway-centered approach to the modern 

systemic and network-centered. This change has required the development of new 

computational and statistical techniques to preprocess, analyze and integrate the 

different kinds of omics data. In this sense, genome-scale metabolic models and 

constraint-based approaches have proven successful computational methods to 

investigate large-scale properties of metabolism, both at a basic level and in applied 

research (Cook & Nielsen, 2017; Oberhardt, Palsson, & Papin, 2009; Zhang & Hua, 

2015) 
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1.3.1 Genome-scale metabolic model reconstructions 

Genome-scale metabolic models (GEMs) are data structures that aim at integrating 

the metabolic network of a species with additional biochemical information (Kim, 

Sohn, Kim, & Kim, 2012). GEMs list all known biochemical reactions and provide a 

detailed stoichiometry of the consumed and produced metabolites, which fully 

describes the underlying metabolic network. Furthermore, additional data associated 

to each reaction are included. Reactions that are enzymatically catalyzed are 

associated to an enzyme commission (EC) number (International Union of 

Biochemistry and Molecular Biology. Nomenclature Committee. & Webb, 1992), 

which classifies biochemical reactions based on their mechanism of action. In most 

cases, the conventional protein and gene identifiers associated to each reaction are 

also provided, as well as the thermodynamic reversibility of each reaction under 

normal physiological conditions.  

Most GEMs of eukaryotic species are also compartmentalized. That is, reactions in 

the model are grouped into the major subcellular compartments like: the cytosol, 

mitochondrion, vacuole, peroxisome and the chloroplast (if applicable). Each 

compartment then operates as a metabolic subnetwork which is connected to the rest 

of the compartments by suitable transport reactions. Altogether, these features make 

GEMs excellent sources of metabolic information. However, the principal utility of 

GEMs—as the name suggests—is to serve as models of metabolism, i.e., provide in 

silico metabolic predictions under particular scenarios. 

The first GEM, that of the bacterium Haemophilus influenzae, appeared in 1999 result 

of the pioneering work of Benhard Palsson’s group (Edwards & Palsson, 1999). This 

model was rapidly followed by other GEMs of bacterial species, such as Escherichia 

coli in the year 2000 and Helicobacter pylori in 2002. In 2003 the first GEM of a 

eukaryotic organism, the yeast Saccharomyces cerevisiae, was released (Förster, 

Famili, Fu, Palsson, & Nielsen, 2003), to which it followed the first GEMs of 

complex multicellular organisms: mouse in 2005 (Sheikh, Förster, & Nielsen, 2008) 

and human in 2007 (Duarte et al., 2007). The first GEM of a plant species, namely 

Arabidopsis thaliana, appeared in 2009 (Poolman, Miguet, Sweetlove, & Fell, 2009).  

Today, hundreds of metabolic models of species from the three domains of life are 

available and accessible through public databases (King et al., 2016; Magnúsdóttir et 

al., 2017; Pornputtapong, Nookaew, & Nielsen, 2015). This success has been partially 

derived from the improvement of automatic reconstruction algorithms and curating 

techniques (Baart & Martens, 2012; Dias, Rocha, Ferreira, & Rocha, 2015; Kim et al., 

2012; Thiele & Palsson, 2010), which has enabled relatively fast reconstruction of 

metabolic models from existing metabolic databases like the KEGG database 

(Kanehisa et al., 2016) or BioCyc (Caspi et al., 2016). In addition, the agreement on a 

common language to display such models, the Systems Biology Markup Language 

(Hucka et al., 2003) has standardized the metabolic model reconstructions and 

facilitated their use and investigation by the scientific community.  
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The metabolic network in a GEM is represented by a directed weighted hypergraph, 

H(M,R), in which the set of nodes correspond to the metabolites, M, and the set of 

hyperedges to the biochemical reactions, R (Figure 1.1A). Thereby H captures the 

topology of the metabolic network of a species. Further, H is encoded by the  

 

                                           

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1. Cartoon example depicting the core idea behind constraint-based approaches and 

optimization methods. (A) A metabolic network can be represented as a hypergraph, where nodes, 

i.e., metabolites, are connected through hyperedges, i.e., chemical reactions transforming metabolites.  

Each metabolite participates in a reaction, either as a substrate or a product, with a specific 

stoichiometry. (B) The topology of the hypergraph, and the stoichiometry of the reactions, are captured 

by the stoichiometric matrix S. In S, column vectors depict the stoichiometric coefficients of each 

metabolite, 𝑥𝑖, in each reaction, 𝑟𝑖, where negative coefficients correspond to consumption and positive 

to production of a metabolite. Thermodynamically reversible reactions, 𝑟3−5, may be split into two 

components, the forward, 𝑟𝑓, and backward, 𝑟𝑏 , direction, which are explicitly included in an extended 

stoichiometric matrix. In this case, three extra columns are added—the backward direction for each 

reversible reaction—in which the signs of the stoichiometric coefficients are flipped. (C) The steady-

state assumption and the flux bound constraints define a flux cone, which contains all feasible flux 

distributions. An optimization problem may be defined to find a particular flux distribution. In this 

example, we want to optimize the production of U
3
, i.e., maximize 𝑣7, provided that the system can 

only feed on U
2
, i.e., 𝑣1 = 0. Optimal flux values, depicted in blue, may be unique for some reactions, 
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but other reactions can adopt a range of optimal flux values without affecting the maximum value of 

the objective function. In this case, the optimal value of our objective reaction, 𝑣7
∗, is on a edge of the 

cone that lays along the dimension of the reaction 𝑣6, thus 𝑣6 can vary its flux at the optimum. This is 

the basic principle behind alternative optima encountered in constraint-based approaches (discussed in 

the main text). 

 

so-called stoichiometric matrix, S, in which the sm,r entry contains the stoichiometric 

coefficient of the metabolite m participating in reaction r—by convention, a negative 

coefficient indicates metabolite consumption whereas a positive coefficient indicates 

production by the reaction. Therefore, each column in S represents a chemical 

reaction in the metabolism of a species (Figure 1.1B). In addition to the stoichiometry 

and the topology of the network, a metabolic model contains information about the 

maximum and minimum flux capacity, i.e., upper and lower bounds of each reaction, 

which is derived from experimental evidence. In general, reaction flux values are non-

negative quantities. However, it is customary to define negative lower bounds for 

thermodynamically reversible reactions. This is because the flux, v, through a 

reversible reaction is implicitly interpreted as the difference between the flux through 

the forward, vfor, and the backward, vback, direction, i.e., v = vfor – vback, where both vfor 

,vback ≥ 0. Alternatively, it is sometimes more convenient to split reversible reactions 

and explicitly include the forward and backward reaction as individual columns in S. 

In this case, the signs of the stoichiometric coefficients corresponding to the backward 

reaction are flipped (Figure 1.1B).  

1.3.2 Genome-scale metabolic model predictions  

GEMs are primary tailored to generate large-scale metabolic predictions, which 

generally consist of assigning flux values to each reaction in the metabolic network. 

These flux values describe the metabolic state of the network, and are obtained as 

solutions to a linear system of equations in which the domain is restricted by some 

metabolic and physiological constraints (Palsson, 2006). These solutions are usually 

not unique, therefore in most settings an underlying optimization problem is 

employed to select particular solutions. During the optimization, a property of the 

metabolic network is usually optimized subject to the metabolic and physiological 

constraints (Orth, Thiele, & Palsson, 2010). For instance, a typical optimization 

problem consists of finding the metabolic state that maximizes the production of a 

particular metabolite by the network, subject to mass conservation and maximum flux 

capacity constraints, and when only some input molecules are allowed to enter the 

network (Figure 1.1C).  

The combination of constraint-based approaches (CBAs) and optimization 

techniques render GEMs very useful frameworks to investigate metabolic function 

under different environmental scenarios. Importantly, GEMs also allow a 

mathematically precise mapping between genotype and phenotype. Here, genotype 

corresponds to the set of reactions in the network—which is identified to the set of 
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included enzymes. In contrast, phenotype corresponds to their flux value or, more 

coarsely, to their activity state: active if a reaction carries an absolute flux value 

greater than a small threshold, inactive otherwise. The genotype-to-phenotype 

mapping provided by GEMs allows a quantitative investigation of the phenotypic 

effects due to changes in the genotype, which currently constitutes a major open 

problem in biology (Dowell et al., 2010; Nuzhdin, Friesen, & McIntyre, 2012; 

Pigliucci, 2010).  In the next sections we will review the mathematical formalism that 

makes these large-scale metabolic predictions possible. 

1.3.3 The rationale of constraint-based approaches 

A complete description of the state of a metabolic network—i.e., the time evolution of 

metabolite concentrations and reaction fluxes—is encoded by the dynamical system 

 {1,( ( )) ( ..., }( )),  i ij j ik k

j I k O

i mX X t X ts s 
 

     (1.16)         

where iX  represents the (first) time derivative of the concentration of metabolite i, 

which is computed as the difference between the weighted sum of the metabolic 

fluxes of the input— index set I—and output—index set O—reactions which produce 

and consume metabolite i, respectively. Each flux is weighted by the stoichiometric 

coefficient sij, encoded in the corresponding entry of S. The metabolic fluxes, or 

reaction rates, ( )Xv  , are, in general, non-linear functions of 
0

m
X  ,  the 

concentrations of the metabolites in the network. Examples of common rate functions 

are the mass action or the Michaelis-Menten kinetics discussed in 1.2.  

However, a genome-scale dynamical description of metabolism is currently 

unfeasible. This is mainly due to the lack of knowledge on the correct form of  , 

particularly regarding the parametrization of the system. For instance, even when 

considering the simplest rate function, the mass action formalism of (1.4), we need to 

experimentally determine the values of the rate constants, k, for each reaction and 

under the studied physiological conditions. This situation is even more challenging 

when using the Michaelis-Menten formalism (1.14), since both the maximum 

velocity, vmax, and the affinity, KM, constants must be experimentally determined. 

Current experimental evidence only supports the parametrization of small-scale 

dynamical systems, which usually consist of at most, tens of metabolites and 

reactions.  Therefore, the description of the metabolic state of large-scale networks 

requires different approaches. 

CBAs came to rescue this situation soon after the first GEMs where reconstructed, 

and still constitute the only way to obtain genome-scale metabolic predictions. These 

approaches focus on reaction flux values and neglect the description of metabolite 

concentrations. Therefore, the system in (1.16) becomes 
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 {1, ..., }( ) ( )  ,i ij j ij j

j I j O

X i ms v t s v t
 

     (1.17) 

or in matrix notation 

 ( )X Sv t .  (1.18) 

The system in (1.18) is a linear system in which the stoichiometric matrix S maps the 

vector of n reaction fluxes,
nv , to the vector of time derivatives of the m 

metabolite concentrations 
m

X  , where both v and X  are unknown. If we further 

restrict our attention to the special case 0X  —i.e., when the system is at steady-state 

and thus the concentrations are constant—we then obtain 

 0Sv  ,  (1.19) 

which is solvable for v through standard linear algebra techniques.  

The system in (1.19) is usually underdetermined, since more reactions (columns in S) 

than metabolites (rows in S) are normally found in metabolic networks. Hence, 

solutions to (1.19) correspond to v that are compatible with a steady-state of the 

dynamical system in (1.16)—in this context, a particular reaction rate vector v is 

commonly known as a flux distribution. The steady-state assumption allows easy 

computation of flux distributions. However, this comes at the cost of losing 

information about the metabolite concentrations and the dynamics of the system in 

(1.16).  

The steady-state assumption can be motivated from two perspectives. On the one 

hand, metabolic reactions occur at much shorter time-scales than that of other cellular 

processes, such as gene expression. This observation justifies treating metabolite 

concentrations as constant under the larger time-scales of measured physiological 

processes, an approach known as the quasy-steady-state approximation (Heinrich & 

Schuster, 1996; Varma & Palsson, 1994). On the other hand, on the long run 

metabolism must be mass balanced, i.e., the production and consumption of most 

metabolites must be similar as to avoid unlimited accumulations or depletions 

(Reimers & Reimers, 2016) 

Finally, the feasible space of (1.19) must be further restricted by physiological 

constraints, such as the previously discussed thermodynamic and flux capacity 

constraints. Thus, the actual feasible space is a solution to 

 

min max

(such that)

0

. . 

Sv

s t

v v v



 

  (1.20)         

The system of linear equality and inequality constraints in (1.20) defines a convex 

polyhedron, additionally, if 0,  i iv   —i.e., when reversible reactions are split—this 
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polyhedron corresponds to a convex polyhedral cone (Rockafellar, n.d.), usually 

designated as the flux cone,  

 
min max{ : 0, }nK v Sv v v v       (1.21) 

which contains all flux distributions, v, that are compatible with a steady-state of 

(1.16) and that satisfy the imposed thermodynamic and flux capacity constraints. The 

general goals of CBAs then reduce to: i) investigating global properties of K, with the 

objective of characterizing the entire set of allowed flux distributions of a GEM, and 

ii) find a particular v K that optimizes some pre-stablished property—e.g., maximize 

the production of a certain metabolite.  

In the first case, the flux cone can be fully characterized by enumerating the set of 

extreme rays generating K (Figure 1.2). The set of extreme rays is a set of feasible 

flux distributions with the property that any other feasible flux distribution v K can 

be expressed as a non-negative, or conic, combination of them. Translated to a more 

formal language and denoting the set of extreme rays 1{ ,..., }kE e e , with E K —

dismissing the trivial case where S contains a single reaction column and E = K— we 

have,  

 
1

,  ,  0
k

i i i

i

v K v e 


    .  (1.22) 

Additionally, extreme rays must be conically independent—i.e., each e E cannot be 

expressed as a conic combination of the rest of the members of E. Several variants of 

generating sets have been proposed besides extreme rays, such as extreme pathways 

(Wiback & Palsson, 2002) and elementary flux modes (Zanghellini, Ruckerbauer, 

Hanscho, & Jungreuthmayer, 2013).  Although similar in concept, these variants 

differ in subtleties, mainly due to how reversible reactions are treated—an excellent 

review on this topic is provided in (Llaneras & Pic, 2010). In any case, the 

enumeration of extreme rays, extreme pathways or elementary flux modes is restricted 

to analyzing small- and medium-size subnetworks. The reason is that the number of 

extreme rays, elementary flux modes or extreme pathways scales up exponentially 

with the size of the network. This characteristic renders the enumeration 

computationally challenging or even impossible when using regular computers. 

Additionally, even if possible, the interpretation of such big number of generators—

reaching hundreds of millions for a regular GEM—is cumbersome (Horvat, Koller, & 

Braunegg, 2015; Terzer, 2009).  

An alternative way of investigating K relies on drawing random samples of flux 

distributions in K, and then analyzing general properties of the samples (Figure 1.2). 

This approach provides insights on the allowable flux values that each reaction in v 

can take such that v K . Specifically, the samples allow generating distributions of 

flux values for each reaction, which allows an indirect, but computationally 

affordable, characterization of the flux cone. Moreover, efficient algorithms permit 
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extracting large samples of flux distributions using regular computers, even for full-

sized GEMs (De Martino, Mori, & Parisi, 2015; Schellenberger & Palsson, 2009). 

Thereby, random sampling constitutes a common approach to investigating general 

properties of K. Finally, we can also apply a flux variability analysis (R. Mahadevan 

& Schilling, 2003) to K. This approach computes the minimum and maximum flux 

bounds for each reaction, thereby complementing the random sampling approach by 

providing flux bounds to the sampled distributions (Figure 1.2). In chapters 3 and 4, 

we will see how both random sampling and flux variability analysis can be adapted to 

explore particular subsets of K, which are defined by including additional constraints 

in (1.20) and represent specific cellular scenarios derived from a general GEM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2. An illustration of three approaches employed to characterize the flux cone. A full 

characterization of the flux cone, K, requires the enumeration of a generating set. In this cartoon 

example, the five extreme rays, 𝑒1 𝑡𝑜 𝑒5, generating K correspond to the edges of the polyhedral cone. 

Any point, i.e., flux distribution, in K can be expressed as a conic, i.e., non-negative, combination of the 

extreme rays. A random sample of points, depicted as blue dots, is a more computationally tractable 

way of charactering K. Once we have a sample of flux distributions, we can generate distributions of 

flux values for each of the reactions in the GEM, in this example only three reactions, 𝑟1, 𝑟2, 𝑟3, Finally, 

flux variability analysis provides the minimum and maximum flux values for each reaction in the GEM. 

In the example, the three reactions range from a minimum flux value of zero to the corresponding 

maximum allowable flux value, 𝑣𝑚𝑎𝑥 ,  which serve as a bound to the sampled distributions. The 

maximum flux value depends on the geometry of K, and on arbitrary maximum flux capacity 

constraints that truncate the cone. 

𝑟2 

𝑟1 

𝑟3 
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The second case—finding a particular v K that optimizes a given metabolic 

property—is the most widely employed approach, and also was the starting point of 

CBAs, with the so-called flux balance analysis (FBA) (Orth et al., 2010). All methods 

in this category are based on numerically solving some sort of convex optimization 

problem. Optimization problems define an objective function which is optimized (i.e., 

minimized or maximized) and which is defined over a restricted domain. In the case 

of CBAs, the restricted domain corresponds to K—or subsets of K if additional 

constraints are considered—while the objective function may take diverse forms. All 

computational methods proposed in this thesis rely on some kind of convex 

optimization problem. For this reason, we will briefly review some general 

characteristics of convex optimization problems, and then continue with a brief 

review of the main types of optimization problems employed in CBAs. 

1.3.4 Brief notes on convex optimization 

A general mathematical optimization problem consists of minimizing a real-valued 

function over a constrained or feasible domain (Boyd & Vandenberghe, 2010). This 

problem is formalized in general as, 

 1, ...,

1, ...,

  ( ) ,   

      ( ) ,   

min ( )

. . i i

i i

i p

i q

f v

s t g v b

h v c









  (1.23) 

where the objective function : nf   is minimized subject to p equality and q 

inequality constraint functions , : n

i ig h  , respectively, which define the feasible 

domain { : ( ) , ( ) }i i i iF v g v b h v c   —note that we do not consider the maximization 

of f since it is equivalent to minimizing (–)f. A vector v F  is considered a global 

optimum if it minimizes the objective function over the entire feasible domain, that is, 
* , ( ) ( )v F f v f v   . In contrast, a vector *w  is considered a local optimum if it 

minimizes the objective function only over a δ-neighboring region 
*

2
 0}{ : ,U Fw w w       centered on *w , that is, * , ( ) ( )w U f w f w   . 

Optimization problems can be classified into groups based on the form of the 

objective and constraint functions (Boyd & Vandenberghe, 2010; Rockafellar, n.d.). 

A particular group is that of convex optimization problems, in which both, the 

objective function and the feasible domain defined by the constraints are convex. We 

designate a function f as convex if, , domv w f  , the following inequality holds  

 ( (1 ) ) ( ) (1  [0,1]) ( ),f v w f v f w         ,  (1.24) 



Chapter 1  1.3 Models of metabolism in the omics era  

16 

additionally, if the strict inequality, <, holds in (1.24) then f is designated as strictly 

convex. On the other hand, a convex set, F, satisfies,  

 , (1 )  [0,1],v w F v w F        .  (1.25) 

In both cases, the concept of convex combination of two points, v, w, i.e., 

(1 )v w    with [0,1]  , is crucial, and geometrically corresponds to the line 

segment connecting v and w. In fact, statement in (1.24) can be phrased as: a function 

is convex if its image in the line segment connecting any two points, v, w, in its 

domain lies below or on the line segment connecting the images of the function at 

these two points (Figure 1.3A). Statement (1.25) may be phrased: a set is convex if 

the line segment connecting any two points, v, w, in the set is also contained in the set 

(Figure 1.3B). These two properties grant convex optimization problems the 

following, and perhaps most important, characteristic: in convex optimization 

problems, any local optimum is also a global optimum, that is, 

                          
* *( ) ( ) ( ) (  ,  ),f w f w w U v Ff w f v                             (1.26) 

Statement (1.26), a classic result in convex optimization (Boyd & Vandenberghe, 

2010; Rockafellar, n.d.), can be easily proven in the following way. Suppose that we 

construct a point *(1  [0,1) , ]z v w       which is a convex combination of a 

local optimum *w and a general point v F no necessarily contained in U, then, since 

F is a convex set we have z F  by property (1.25). Now, as 0  , we see that
*z w , hence z U for a sufficiently small . Since *w  is a local optimum, this 

implies that *( ) ( )f w f z . Substituting z and applying the convexity property in 

(1.24) we obtain       

                          
* * *( ) ( (1 ) ) ( ) (1 ) ( )f w f v w f v f w                                (1.27) 

hence  

                                         
* *( ) ( ) (1 ) ( )f w f v f w     (1.28) 

which implies  

                                                   
*( ) ( )f w f v                                                   (1.29) 

and                                                    

                                                    
*( ) ( ) f w f v ■                                            (1.30) 

 

In practice, statement (1.26) implies that a suitable algorithm is guaranteed to find the 

global optimum of a convex optimization problem—provided that such optimum 

exists. This makes convex optimization problems especially amenable to solve, which 
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is far from being the case when dealing with non-convex optimization problems 

(Boyd & Vandenberghe, 2010).  

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.3. Illustrations of convex functions and convex sets. (A) A function  𝑓 is convex if the image 

of the function corresponding to the line segment between two points 𝑣, 𝑤 ∈ 𝑑𝑜𝑚 𝑓 lies below or on 

the line segment connecting the images 𝑓(𝑣),  𝑓(𝑤) of the two points. Note that all affine functions, 

hence all linear functions, satisfy this condition since 𝑓(𝛼𝑣 + (1 − 𝛼)𝑤) = 𝛼𝑓(𝑣) + (1 − 𝛼)𝑓(𝑤). (B) 

A set is convex if any line segment connecting two points in the set is also in the set, thus the 2D torus 

is non-convex in this example while the parallelogram is. (C) Quadratic equally constraints are never 

A 

B 

C 
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convex, since the points on the parabola 𝑣2 = 𝑑 are not a convex set. In contrast, the set of points 

satisfying 𝑣2 < 𝑑 form a convex set and hence quadratic inequality constraints of this form keep the 

convexity of the optimization problem. Note that the set of points satisfying 𝑣2 > 𝑑 is again non-

convex.  

 

 

1.3.4.1 Types of convex optimization problems employed in constraint-

based approaches 

Convex optimization problems can be further classified in different categories based 

on the specific form of their objective and constraint functions. The simplest possible 

scenario is that of linear objective and constraint functions, in which case the 

optimization problem, usually designated as a linear program (LP), takes the form, 
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  (1.31) 

where d is a vector of constant weights for the n variables in  
nv —the superscript 

T represents transposition—and the p equality and q inequality constraints are 

represented by matrices 
pxnA and 

qxnB , and the right-hand-side vectors b and c, 

respectively.  Additional constraints can be imposed on the values that v can take, 

these constraints can take the form of lower (lb) or upper (ub) bounds on v, i.e., 

lb v ub  , or even constrain the totality or part of the variables in v to take integer 

values. In the last case, these optimization problems are known as integer linear 

programs (ILPs) and mixed-integer linear programs (MILPs), when all or part of the 

variables take only integer values, respectively. 

FBA (Orth et al., 2010), the most widely employed CBA is formulated as a LP. In 

fact, we only need to let A = S, the stoichiometric matrix of the metabolic network, b 

= 0, the null vector, and dismiss the inequality constraints, excluding lb v ub  , in 

(1.31), with the feasible space F = K, to arrive at the formulation of FBA. The 

objective function  

 
1

n
T

i i

i

f d v d v


    (1.32) 

consists of a linear combination of reaction flux values which are weighted by real 

coefficients, di. In the first implementations, although still widely employed, f

corresponded to a single reaction, the biomass reaction, which is an artificial 

metabolic reaction included in S to represent cellular growth. Specifically, the 

biomass reaction, vbio, is a sink reaction—i.e., its products are not consumed by any 

other reaction in S—which drains certain metabolites. These metabolites and their 

stoichiometry are experimentally defined, and are assumed building blocks to cellular 

growth (Feist & Palsson, 2010). In the LP of FBA, vbio is then maximized—in (1.31) 
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this would correspond to minimizing ( ) T vd , where all entries in d are 0 minus the 

entry corresponding to the index of vbio in S, which is 1. With this strategy, we thus 

seek for a v F that maximizes vbio, i.e., we assume that a given species optimizes its 

metabolic state, the flux distribution at steady-state, to maximize cellular growth. 

FBA has expanded to include other definitions of f , such as the minimization of 

energy consumption (Savinell & Palsson, 1992) or the minimization of metabolic 

costs associated to operating reactions (Holzhütter, 2004). 

Besides FBA, almost all remaining optimization problems that arise in CBAs are LPs 

or MILPs. However, in some applications quadratic programs (QPs) are also 

employed. In this case, the objective function is quadratic, which gives the general 

form, 

 

min
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where Q is a positive semi-definite (negative semi-definite in case of maximizing the 

objective) matrix of weights for the quadratic terms of the objective function. 

Additionally, a quadratic function may be combined with integer constraints to render 

integer quadratic programs (IQPs) or a mixed integer quadratic programs (MIQPs).  

A natural implementation of a QP arises when the second norm of the difference 

between two vectors is minimized, e.g., 

 2

1

( )
n

i i

i

f v w


    (1.34) 

for some , nv w .  For instance, the method of minimization of metabolic 

adjustment (MOMA) (Segrè, Vitkup, & Church, 2002), finds a feasible flux 

distribution v K  that  minimizes the distance to a fixed w K previously obtained 

through FBA. In this setting, w corresponds to an optimal flux distribution, e.g., 

maximizing growth, of a wild-type specimen, while v  corresponds to a mutant 

specimen, e.g., a knock-out strain where some reactions in v  have been constrained to 

carry zero flux. MOMA thus hypothesizes that mutant strains will reach a steady-state 

that is most similar to the wild type state. The last two cases, IQPs and MIQPs, 

seldom appear in CBAs, however, one of the methods developed and presented in this 

thesis, RegrEx (Robaina Estévez & Nikoloski, 2015), is formulated as a MIQP 

(Chapter 2). 

All constraint functions presented so far have been linear. However, quadratic 

constraints may also be included in a convex optimization problem, in which case the 

optimization programs are known as quadratically constrained linear programs 

(QCLPs) or quadratically constrained quadratic programs (QCQPs).  However, only 
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quadratic inequality constraints of the form T T

i i iv Q v r v t  , where Qi must be a 

positive semi-definite matrix, are valid to guarantee that the feasible space is convex 

(Figure 1.3C). Quadratic equality constraints may arise naturally in certain 

optimization problems. In Chapter 3, we will encounter quadratic equality constraints 

arising during the evaluation of the alternative optima space of RegrEx. In this case, a 

change in the formulation of RegrEx is required to eliminate the quadratic equality 

constraints, hence exploiting convex optimization to evaluate its alternative optima 

space. 

1.4 Context-specific metabolic predictions 

The metabolic networks contained in GEMs capture all known biochemical reactions 

of a species. This implies that all biochemical reactions are considered when using 

GEMs to obtain metabolic predictions. However, metabolic networks can specialize 

in certain metabolic functions, which only require a subset of the reactions included in 

the GEM. For instance, this may be the case of a bacterium like Escherichia coli 

growing in aerobic or anaerobic conditions. Certainly, after reaching a steady-state, 

the metabolic network will focus on operating aerobic metabolic pathways in the first 

case, such as the respiratory chain, or anaerobic pathways, such as fermentation 

pathways, in the second. A richer metabolic specialization is found among 

multicellular organisms. There, a multitude of cell-types specialize in different 

metabolic functions while deliberately obliterate others (Figure 1.4). Therefore, to 

render more realistic predictions, the context-specific specialization of metabolism 

must be reflected in GEMs when simulating scenarios in which the metabolic context 

is important—e.g., when dealing with different cellular types in multicellular species. 

The advent of the first GEMs of multicellular species stimulated the development of 

computational methods to obtain context-specific metabolic predictions. The general 

idea in these methods is simple: use context-specific experimental data to reduce the 

solution space of (1.20), leaving flux distributions v K  that are also compatible with 

data. This context-specific solution space can then be directly employed to predict 

flux distributions, e.g., (Colijn et al., 2009; D. Lee et al., 2012; Recht et al., 2014). 

However, more commonly, the context-specific flux distributions are employed to 

determine which reactions are likely to be active, i.e., carry non-zero flux, under the 

particular context, e.g., (Jerby, Shlomi, & Ruppin, 2010; Schultz & Qutub, 2016; 

Shlomi, Cabili, Herrgård, Palsson, & Ruppin, 2008; Vlassis, Pacheco, & Sauter, 2014; 

Yuliang Wang, Eddy, & Price, 2012). This information is then used to prune the 

genome-scale or generic network in the GEM, as to extract a context-specific 

(sub)network, which preferentially includes the set of active reactions. The different 

data fields in the GEM—such as the stoichiometric matrix, the flux capacity bounds 

and the lists of reaction, metabolite and gene names—are then updated to obtain a 

context-specific metabolic model, which can be interrogated with the usual CBAs 

(Figure 1.4). In the following, we will refer to both, context-specific flux distributions 
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and context-specific models, with the general term context-specific metabolic 

predictions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4. Metabolic activity is context-specific. A genome-scale model contains the entirety of 

known metabolic reactions of a species, such as the plant Arabidopsis thaliana. All cells in A. thaliana 

contain the same genome. Therefore, they can potentially realize all reactions contained in the 

metabolism of the species. However, tissues specialize in certain metabolic tasks, rendering 

metabolism tissue-specific. A more realistic model of the metabolic processes must take into account 

this specialization. To address this, context-specific models can be reconstructed from a genome-scale 

or generic model and experimental data. The experimental data are employed to prune the generic 

model, selecting reactions that are most likely active under the context. In this sense, experimental data 

define the context while the genome-scale model guarantees that the selected reactions will still be 

mass balanced, i.e. supporting a steady-state, and will satisfy the flux capacity constraints. In this 

example, three organ-specific models have been extracted after integrating gene expression data of 

flower, leaf and root. Higher resolutions, e.g., cell-specific models, can be obtained if experimental 

data are available.  
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1.4.1 Main types of experimental data integrated in genome-scale 

models 

Diverse kinds of experimental evidence can be integrated into GEMs to obtain 

context-specific predictions. Metabolomics data may be used to determine which 

metabolites are being synthetized in a given context, and constraint model predictions 

to guarantee their production (Schmidt et al., 2013). Alternatively, metabolomics data 

can be employed to constraint the maximum flux values of some reactions in a GEM 

(Töpfer, Kleessen, & Nikoloski, 2015). Proteomics and transcriptomics data serve as 

a proxy for reaction activity—based on the assumption that reaction flux is controlled 

by enzyme levels—although proteomics data provide a more direct approximation, 

since directly quantify enzyme levels. Some studies have employed existing 

proteomics data to reconstruct tissue-specific human models (Agren et al., 2012, 

2014), benefiting from one of the largest proteomics databases, the Human Protein 

Atlas (Marx, 2014). However, the majority of methods rely on transcriptomics data to 

obtain context-specific predictions for two main reasons. Firstly, current techniques 

allow cheap and fast transcript quantification, while measuring protein levels require 

more costly and harder to implement techniques. Thus, in most cases proteomics data 

are not available. Secondly, the coverage—i.e., the number of reactions for which 

experimental data can be associated—of transcriptomics data is larger than that of 

proteomics. Thus, in most cases, proteomics data have to be supplemented with 

transcriptomics data to cover the missing reactions (Agren et al., 2012).  

As commented before, measurements of transcript or protein levels can only serve as 

a proxy of the activity of metabolic reactions, which ultimately depends on other 

factors, such as metabolite concentrations and regulatory processes. However, their 

usage is justified by the fact that, to date, they are the only data type with a genome-

scale coverage. This issue will be further discussed in section 4.1. On the other hand, 

measurements of metabolic fluxes provide the most direct evidence of reaction 

activity. Yet, although recent advances in experimental techniques are promising 

(Vinaixa et al., 2017), a genome-scale quantification of metabolic fluxes is still 

unfeasible, thus making this data type insufficient in most settings. We will next 

review two widely employed experimental techniques to generate transcriptomics 

data, their advantages and disadvantages, and the main methods to map these data into 

the reactions of a GEM. 

1.4.1.1 DNA microarrays 

DNA microarrays arose in the early 1990s, and were the first available tool to 

quantify cellular mRNA levels at a genomic scale in a single experiment (Butte, 

2002). A microarray consists of a collection of ordered microspots on a solid surface 

(like glass or plastic). Each microspot contains thousands of DNA fragments, i.e., 

probes, representing different genomic features, such as gene fragments. To measure 

transcript levels in a microarray experiment, total RNA is extracted from the 
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biological sample, converted to complementary DNA (cDNA), labelled with a 

fluorophore, and exposed to the microarray as to allow hybridization between the 

probes and their cDNAs. Microarrays are finally passed through a washing process to 

eliminate spurious hybridizations, followed by an optical reading of the fluorescence 

intensity of the fluorophores under the right emission wavelength—microarrays are 

exposed to the appropriate absorption wavelength of the particular fluorophore used. 

The logic behind this quantitative method is that fluorescence intensity is proportional 

to the number of cDNA molecules hybridized on each microspot. Raw intensity data 

must be processed to allow a biologically meaningful interpretation of the results, 

which is especially important when comparing gene expression among different 

samples. Data processing includes correcting for background—i.e., unspecific—

hybridization, as well as normalizing the intensities between different samples, as to 

account for sample-specific differences in the hybridization conditions. Popular 

methods for background correction include subtracting the average inter-microspot 

signal to all microspot entries, or subtracting a probe background signal specific to 

each microspot (Butte, 2002). In the last case, DNA microarrays include two classes 

of probes: match probes, with the original sequence, and mismatch probes, which 

contain a degenerate sequence. The signal corresponding to mismatch probes is taken 

as proportional to the intensity of unspecific hybridization of each probe in the 

microarray. Algorithms like MAS5 (Hubbell, Liu, & Mei, 2002) take into account 

both match and mismatch probes to subtract the background noise. In the case of 

multiple comparisons across different experiments, algorithms like the Robust Multi-

Array Average (RMA) (Irizarry et al., 2003) allow to correct sample-specific 

differences in hybridization conditions as well as total RNA levels, thus rendering 

comparable results. 

1.4.1.2 RNA-Seq 

The RNA-Seq technique—from RNA sequencing—first appeared in 1998 (Z. Wang 

et al., 2009), and has been gaining popularity ever since. In contrast to DNA 

microarrays, RNA-Seq does not rely on DNA hybridization to identify specific 

transcripts, instead, it relies on their nucleotide sequence. In a RNA-Seq experiment, 

total RNA is also first extracted, however, at this step mRNA is enriched, either by 

using a specific tag (e.g., poly-T), or by depleting ribosomal RNA levels. This step is 

required to increase the signal to noise ratio, since most of the cellular RNA 

corresponds to ribosomal RNA. After the enrichment step, cDNA is synthetized and 

the fragments are sequenced by next generation sequencing techniques (Z. Wang et 

al., 2009). The sequenced fragments, called reads, are then usually mapped to a given 

genome, although some techniques allow for a de novo assembly of reads (Haas et al., 

2013). The assumption here is that gene expression levels are proportional to the 

number of mapped reads to the specific locus to which a gene is associated. As in the 

case of DNA microarrays, raw RNA-Seq data must be processed to render 

biologically meaningful results. In particular, read counts must be normalized by the 

coverage or depth of the sequencing step, which may differ between experiments. 
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Therefore, read or fragment2 counts are usually measured in reads or fragments per 

million mapped reads, RPM and FPM, respectively. Additionally, since gene lengths 

vary and longer genes tend to produce more reads, the final results are usually given 

in fragments or reads per kilobase of transcript per million mapped reads, FPKM and 

RPKM, respectively. 

1.4.1.3 Drawbacks and advantages of DNA microarrays and RNA-Seq 

RNA-Seq is currently the preferred technique to measure gene expression levels. 

There are a number of advantages to using RNA-Seq instead of DNA microarrays. In 

first place, results are more reliable since sequencing is more precise than 

hybridization to identify DNA fragments. Secondly, RNA-Seq has a wider dynamic 

range (Zhao, Fung-Leung, Bittner, Ngo, & Liu, 2014), free of probe saturation issues 

and more sensitive to small expression levels, since, in theory, a single fragment in 

the sample is enough for a gene to be detected. In the case of DNA microarrays, small 

concentrations of a specific transcript may not be detected due to the background 

noise. Thirdly, RNA-Seq renders gene expression values that are absolute. In contrast, 

microarray data render relative values due to the probe effect (C. Chen et al., 2011). 

Finally, RNA-Seq allows more flexible measurements of the transcriptome, since it 

can take into account non-coding RNAs, alternative splicing and virtually any RNA 

fragments that can be mapped onto a given genome. Altogether, these advantages of 

RNA-Seq over DNA microarray render transcript levels that are more in accord to 

measure protein levels from a same experiment (Zhao et al., 2014), and thus justify its 

used as a default technique to quantify gene expression. However, besides these 

advantages, DNA microarrays are still widely used. The main reasons are threefold: i) 

DNA microarrays are easier and faster to use, due to efficient commercial 

implementations, ii) they are cheaper and thus more accessible to researchers and iii) 

large resources of microarray data are freely accesible online, such as the GEO 

database (Barrett et al., 2013), which is not yet the case for RNA-Seq data. 

1.4.2 Mapping data into genome-scale models 

In CBAs, the metabolic state of a GEM is described by a flux distribution at steady-

state. However, we have seen that the experimental data employed to obtain context-

specific metabolic predictions do not directly quantify metabolic fluxes. Instead, 

indirect measures of metabolic activity, such as transcript and to a lesser extend 

protein levels are used. These data are sometimes complemented with metabolite 

levels, when available, or even with a variety of biochemical information—including 

enzyme activity essays and immunostaining—that is retrieved from biochemical 

databases (Caspi et al., 2016; Haug et al., 2013; Moretti et al., 2016; Placzek et al., 

                                                 
2 A fragment is a mapped region in the DNA that can contain more than one read. 
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2017). Therefore, experimental data have to be first associated, or mapped, to the 

reactions in the GEM, before employing it to obtain context-specific predictions.  

Data types associated to gene or protein expression can be mapped to the reactions in 

a GEM through the gene-protein-reaction (GPR) rules, which are contained in the 

model. The GPR rules are logical rules that encode the causal relationships between 

genes and catalyzed reactions. The rules capture all the known enzymes catalyzing 

each reaction—e.g., enzyme isoforms—as well as the genes coding for the enzymes. 

Genes that code for the same enzyme are related by an AND operator, while groups of 

genes that code for different enzymes catalyzing the same reaction are related by an 

OR operator. For example, the following rule: 

      1 2 1 3 4 5       g AND g OR g AND g OR g AND g   (1.35) 

associates five different genes to a hypothetical reaction. In this case, three different 

dimeric enzymes are able to catalyze the reaction; one enzyme is coded by genes g1 

and g2, the other one by g1 and g3 and the last one by g4 and g5—where gi represents a 

string containing the canonical gene identifier for a given species. Once GPR rules are 

evaluated, an expression value is associated to the reaction from the individual 

transcript levels of the genes in the rule. The most common way of doing this is by 

evaluating the AND relation as the minimum value between the two related genes, and 

the OR relation as the maximum value. For instance, if we assign a transcript level ti 

to each gene gi in (1.35), then the expression value, r, associated to the corresponding 

reaction would be computed as  

 1 2 1 3 4 5max(min( , ),min( , ),min( , ))r t t t t t t .  (1.36)  

Alternatively, the OR relation can be evaluated as the sum instead of the maximum 

value between the two transcript levels (D. Lee et al., 2012), although this form is less 

commonly used. 

The reasoning behind this mapping is the following: if a set of genes is required to 

code a given enzyme, then the gene with the smaller transcript level will limit the total 

expression of the enzyme—leaving aside other limiting factors downstream of gene 

expression, such as the stability of the mRNA. On the other hand, if two enzyme 

isoforms are able to catalyze the reaction, then the enzyme whose coding genes are 

preferentially expressed will be the largest contributor to the reaction flux among the 

two isoforms. If the sum instead of the maximum value is selected in the OR relation, 

then the evaluation is interpreted as the total catalytic contribution of the two 

isoforms. Additionally, protein levels can be mapped to individual reactions following 

the same rules, although genes must first be mapped to enzymes. 

Other data types, besides transcript and protein levels, require a different mapping to 

the corresponding reactions. We already described two common ways of integrating 

metabolite data: forcing the inclusion of reactions producing a metabolite known to be 

present in a context (Schmidt et al., 2013), and using metabolite levels to directly 
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constraint the maximum flux capacity of some reactions (Töpfer et al., 2015). On the 

other hand, heuristic approaches may be used when dealing with heterogeneous data 

types, such as using enzyme activity or immunostaining essays together with 

transcriptomic, proteomic or metabolomic data. In this case, a total score is usually 

assigned to each reaction based on the contributions of each kind of experimental 

evidence (Wang et al., 2012).  

The definition of such a heuristic approach may be difficult. Especially since it is not 

clear a priori how to weight the contributions of the different data types to the total 

score.. On the other hand, this approach allows integrating diverse sorts of 

experimental observations: from transcript and protein levels, to metabolomics, 

enzyme activity essays or, in general, any kind of available biochemical 

information—the term bibliomics data is usually employed in this case.  

1.4.3 A classification of existing methods 

In this section, we briefly review the main characteristics of the existing methods 

particularly developed to extract context-specific metabolic models. A more detailed 

mathematical classification of these methods is provided in Robaina Estévez & 

Nikoloski (2014). 

Existing methods devoted to extract context-specific metabolic models differ in 

several aspects. The way in which data are used during the optimization, the number 

of additional metabolic functions that are imposed and the level of automation of the 

algorithms are some of them. Yet, they can be grouped into three main families of 

methods that follow similar optimization principles: the GIMME-like, iMAT-like and 

MBA-like families, named after the first method of each family in chronological order 

(Figure 1.5).  

The GIMME-like and iMAT-like families are characterized by using optimization 

problems that maximize the similarity between a feasible flux distribution and the 

employed data. However, the main difference between methods in the two families is 

whether an additional required metabolic functionality is imposed during the 

optimization. Methods such as GIMME (Becker & Palsson, 2008) and GIM3E 

(Schmidt et al., 2013) require, for instance, a minimum growth rate that must be 

satisfied by the optimal—i.e., most similar to data—flux distribution; although any of 

the metabolic functions defined in FBA may be used. This additional constraint 

guarantees that the final context-specific models maintain a given metabolic 

operability.  

On the other hand, methods such as iMAT (Shlomi et al., 2008) and INIT (Agren et 

al., 2012), in the iMAT-like family, do not impose any required metabolic 

functionality, and thus focus on maximizing the similarity to data—an updated 

version of INIT, tINIT (Agren et al., 2014) allows defining certain metabolic tasks 

that must be fulfilled by the context-specific model. However, the user still must 
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select an arbitrary threshold to binarize the employed data; hence these approaches are 

not totally unbiased.  

The MBA-family, with MBA (Jerby et al., 2010), FastCORE (Vlassis, Pacheco, et al., 

2014), FastCORMICS (Maria Pires Pacheco et al., 2015), mCADRE (Wang et al., 

2012) and CORDA (Schultz & Qutub, 2016) as representatives, substantially differs 

from the previous. In this case, experimental data are used to define a core set of 

reactions that must be included in the final context-specific model. Importantly, the 

core set is stablished through a heuristic approach, for instance, by defining a 

threshold value to binarize the data associated to the reactions. For example, 

FastCORE uses the barcode algorithm (McCall et al., 2014) to binarize the original 

data. In more elaborated cases, the methods establish a score weighting the 

importance of each reaction based on different kinds of experimental data. In this 

latter case, mCADRE first classifies reactions into core and non-core based on the 

barcode algorithm. However, core reactions are then ranked in ascending order of 

specificity based on three criteria, which involve both, properties of the expression 

data and of the underlying metabolic network (Yuliang Wang et al., 2012). On the 

other hand, CORDA employs the discrete level of expression of the associated 

enzymes provided by the Human Protein Atlas (Uhlén et al., 2005; Uhlén, 2015) to 

classify reactions into four categories. In turn, the Human Protein Atlas assigns the 

discrete expression values (low, medium and high) based on an established procedure 

which weights the relative importance of the experimental evidence (Uhlén et al., 

2005) 

  

The approaches followed by the three families of methods offer different advantages. 

On the one hand, GIMME-like methods endow extracted models with a given 

context-specific metabolic operability—i.e., a metabolic function that the model is 

able to perform—selected by the user prior to the extraction. Importantly, the 

metabolic function in this case is not merely achieved by the inclusion of a set of 

reactions performing it, as it could be done in MBA-like methods by including them 

in the core set. On the contrary, GIMME-like methods impose a minimum flux value, 

i.e., greater than the arbitrary small threshold employed by MBA-like methods, to this 

set of reactions. Hence, GIMME-like methods may be a good choice when a 

metabolic function is known to operate under a particular context. 
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Figure 1.5. A classification of methods to extract context-specific metabolic models. Different 

methods are able to extract context-specific models from genome-scale models and experimental data. 

These methods can be grouped into three main families based on their general formulation. GIMME-

like methods aim at extracting models that are most similar to data and, at the same time, are able to 

conduct a pre-defined metabolic function, thus the reconstruction process is not fully data-driven. 

iMAT-like methods also aim at extracting models that are most similar to data, here, however, no 

assumptions about metabolic functionality are made, thus rendering the extraction fully data-driven. 

While both, GIMME-like and iMAT-like provide both a flux distribution and a context-specific model, 

MBA-like methods focus on reconstructing context-specific models. Moreover, they are capable of 

integrating diverse kinds of experimental data, since data are integrate in a semi-automatic, heuristic 

approach which precedes the optimization process. In this thesis, we will introduce a new family of 

methods, the Reg-based, for regularization, family, which has a unique member: RegrEx. RegrEx aims 

at obtaining models in a fully data-driven way, like the iMAT-like family. However, in contrast to the 

iMAT-like family, RegrEx does not require user-defined parameters, such as threshold values for the 

data. RegrEx finds the best parameter value during the optimization process, based solely on data, 

which renders the extraction process fully data-driven and automatic. 

 

On the other hand, iMAT-like methods may be better suited in contexts for which no 

clear knowledge about the metabolic function exists, or if some functions are known 

to operate but their relative importance is unknown. In such cases, it is best to follow 

a data-driven approach in which experimental data alone shape the context-specific 

network. Finally, MBA-like methods stand out for their flexibility when it comes to 

integrating different experimental data types. This is due to the heuristic approach 

followed during the definition of the core set, which is done prior to solving the 

optimization problem. This characteristic allows employing bibliomics data (section 

1.4.2), which may be advantageous in situations where diverse experimental data 

types are accessible. 
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All the previous methods require some degree of biased intervention by the user. For 

instance, GIMME-like methods require not only the definition of a metabolic 

functionality but also the selection of a cost function to measure the discordance 

between model predictions and the employed data. Similarly, iMAT-like methods 

require selecting a threshold or penalty value to categorize the experimental data as 

context-specific—e.g., establishing a threshold value for transcript levels as to filter 

out context-specific gene expression from background levels. Furthermore, MBA-

methods require the establishment of the heuristic approach to translate all the 

employed, perhaps qualitatively diverse, experimental observations into a core set of 

reactions that must be active in the particular context. In all three cases, the election of 

arbitrary thresholds or heuristic approaches is not a trivial task—especially when little 

is known about a metabolic context. Additionally, slight variations in the threshold 

values or in the heuristic approaches can propagate and widely affect the end result of 

the context-specific network extraction.  

An alternative method, operating in complete autonomy from user-based decisions 

and relying on a fully data-driven extraction, could be of help to this problem. 

RegrEx, which is presented in Chapter 2, fits this last description, and aims at 

extracting context-specific metabolic networks in a fully automated, data-driven 

process. As we will see in detail in Chapter 2, RegrEx (standing for Regularized 

Extraction) maximizes the similarity to data, thus similar to the iMAT-like family, to 

obtain both context-specific metabolic models and fluxes. However, the main 

characteristic of RegrEx is the usage of regularization3 which allows a data-driven 

selection of the set of reactions that best capture the context-specific metabolic 

context. Moreover, the only free parameter used by RegrEx is optimized to maximize 

the overall similarity to data, as measured by the Pearson correlation, which is again a 

data-driven process. 

1.4.4 Alternative optimal solutions in convex optimization 

In section 1.3.4, we proved that every local optimum is also a global optimum in 

convex optimization problems. Now, in addition to this, we can say that if f is strictly 

convex near the optimum, then a unique vector 
*v  renders the global optimum *( )f v

(Boyd & Vandenberghe, 2010). In fact, if we derive the previous proof (1.27-1.30) of 

statement (1.26) using the strict inequality we obtain *( ) ( )f w f v , which implies that 

*y is the only global optimum—any other vector v renders a higher objective function 

value. If f is not strictly convex near the optimum, then we obtain again *( ) ( )f w f v , 

which opens the possibility to *( ) ( )f w f v  with *w v , that is, we may find a 

multitude of alternative optimal solutions to the convex optimization problem. These 

                                                 
3 Regularization techniques are widely employed when estimating models from high-dimensional and 

redundant data sets, as a means to obtain sparser and simpler models.  (Vidaurre et al., 2013) 
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alternative optimal solutions are all, by definition, global optima to the problem. 

However, they may substantially differ, i.e., they can be located in distant regions of 

the feasible space, F. When solving a convex optimization problem, current 

algorithms commonly report only one optimal solution, even in cases where an 

alternative optimal set of solutions exists. This situation is not of major concern when 

the prime interest behind an optimization problem is finding an optimal solution, or 

the optimal value of the objective function, or both. However, if the particular values 

of the optimum 
*v  are of interest, then a complete answer to the convex optimization 

problem requires an evaluation of the alternative optimal set of solutions, as well as a 

decision procedure to select a representative solution vector from this set. 

Alternative optima normally arise when solving FBA problems. In fact, the previously 

introduced flux variability analysis (R. Mahadevan & Schilling, 2003) was developed 

to analyze the set of alternative optimal flux distributions of FBA. The idea was to 

compute the minimum and maximum flux value of each reaction in the GEM such 

that the flux through the objective reaction is fixed to the (previously found) optimal 

value. The added constraint on the objective reaction effectively changes the shape of 

the flux cone. Therefore, investigating alternative optima is equivalent to exploring a 

modified flux cone, in which all flux distributions are optimal to a given optimization 

problem. Although alternative optima are well recognized in FBA problems (Kelk, 

Olivier, Stougie, & Bruggeman, 2012; S. Lee, Phalakornkule, Domach, & 

Grossmann, 2000; R. Mahadevan & Schilling, 2003; Müller & Bockmayr, 2014; Reed 

& Palsson, 2004), other settings lack of this recognition, and demand efficient 

methods to investigate alternative optimal solutions. For instance, this is the case 

when using CBAs to reconstruct context-specific metabolic models 

1.4.5 Alternative optima in context-specific metabolic predictions 

Existing methods to obtain context-specific metabolic predictions rely on solving 

some kind of convex optimization problem. For instance, the GIMME-like and the 

MBA-like families require solving LPs, while the iMAT-like family relies on 

MILPs—RegrEx solves either a MIQP or a MILP depending on the formulation, 

details will be given in Chapter 2. We have seen that, in general, the convexity of 

these optimization problems guarantees that a global optimum will be found by a 

suitable solver, although a multitude of alternative solutions may all be global optima. 

In our particular case, the existence of alternative optima translates to encountering a 

multitude of context-specific metabolic networks, or flux distributions, that are all 

equally compatible with the employed experimental data. Further, these alternative 

context-specific networks may differ substantially, i.e., some context-specific 

reactions may not be consistently included among the alternative networks. Therefore, 

alternative optimal networks introduce ambiguity in context-specific metabolic 

predictions, and demand a careful evaluation of the alternative optima space to avoid 

misleading results. However, few studies have proposed any means to evaluate the 

alternative optima of a context-specific network extraction (Recht et al., 2014; 
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Rossell, Huynen, & Notebaart, 2013; Shlomi et al., 2008), and generally, they do not 

provide a quantitative analysis of the impact that the alternative optimal networks may 

have in further context-specific metabolic predictions. Thereby, this is currently an 

open field of research that must be addressed to guarantee that future context-specific 

metabolic predictions are robust.  

1.5 Thesis outline 

This thesis is the result of three scientific studies in which I have been the first co-

author, the next chapters will present these studies. The first two chapters present a set 

of computational methods developed to obtain context-specific metabolic predictions. 

In contrast, the third chapter consists of an application of these methods to study the 

central carbon metabolism of a given cell type, the guard cells of Arabidopsis 

thaliana. Each chapter follows the structure of a scientific publication: a general 

introduction to the topic as well as the motivation of the study, followed by a “results 

& discussion” section, a general conclusion and outlook, and ending with the methods 

section. In the following, we briefly summarize the motivation and main findings of 

each chapter. 

GEMs provide a means to investigate metabolism at a systems level. Recent 

computational developments provide context-specific metabolic predictions, which 

additionally allow investigating the context-dependent specialization of metabolism. 

Generally, these methods require a GEM and context-specific experimental data, such 

as transcript or protein levels, to extract a context-specific model. Additionally, the 

methods require the specification of either free parameters or a heuristic method to 

calibrate the influence of experimental data during the model extraction. For instance, 

the cutoff expression value required by GIMME (Becker & Palsson, 2008), GIM3E 

(Schmidt et al., 2013) and iMAT (Shlomi et al., 2008), or the weights assigned to 

reaction-associated enzymes used by INIT (Agren et al., 2012) and CORDA (Schultz 

& Qutub, 2016), and utterly derived from a heuristic approach followed by the 

Human Protein Atlas database (Uhlén et al., 2005).  On the other hand, as discussed in 

section 1.4.3, FastCORE (Vlassis, Pacheco, et al., 2014), FastCORMICS (Maria Pires 

Pacheco et al., 2015) and mCADRE (Yuliang Wang et al., 2012) rely on the cutoff 

value assigned by the barcode algorithm to pre-classify reactions into the groups of 

core (which should be included in the final model) and non-core reactions— 

mCADRE goes further and ranks reactions in the core following three different 

criteria. 

These procedures are justified in each particular setting. However,t the nature of the 

final context-specific models depends on the election of particular threshold values or 

heuristics to pre-classifiy reactions (or the associated data value) into specific or non-

specific to the context of interest. To address this issue, we developed the RegrEx 

(Regularized Extraction) method.Specifically, RegrEx exploits a regularization 

technique that requires a single parameter to extract a context-specific model. In turn, 
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the value of this parameter is automatically determined through a data-driven process. 

Morever, no cutoff value or heuristic approach is employed to pre-evaluate the 

specificity of reactions. Instead, reactions are selected through an optimization 

problem that uses the original (continuous) data values, which are subject to the 

constraints imposed by the underlying metabolic network.  

Chapter 2 is dedicated to the RegrEx method, including a detailed description of its 

mathematical formulation and performance evaluation. In the performance evaluation 

RegrEx is employed to extract 11 organ-specific human models and compared with 

other contending methods. Additionally, the metabolic capabilities of the generated 

models are tested. Moreover, RegrEx predictions are validated with an independent 

data set, using human proteomics data instead of the transcript profiles employed to 

generate the models. 

Chapter 3 addresses the issue of alternative optima in context-specific metabolic 

predictions. To this end, several computational approaches intended to analyze the 

alternative optima of context-specific extraction methods are provided. Our 

motivation started with analyzing the alternative optima space of RegrEx, for which 

we developed two algorithms, and proposed the Shannon entropy as a measure of the 

uncertainty generated by the alternative optimal solutions. However, we also 

developed a computational framework to analyze the alternative optima space of a 

different class of methods—the MBA-like family discussed in 1.4.3. This framework 

allows generating a sample of alternative optimal context-specific networks which can 

then be analyzed. These tools can be employed to reconstruct a consensus context-

specific model, in which reactions with a higher representation in the alternative 

optima space are preferentially included. Therefore, our contribution paves the way 

towards obtaining more robust context-specific metabolic predictions. 

Chapter 4 provides a specific application of the computational tools developed in 

Chapters 2 and 3. Specifically, we applied RegrEx to obtain context-specific 

metabolic predictions of the central metabolism of guard and mesophyll cells of 

Arabidopsis thaliana. By exploring the alternative optima space in each case, we 

could make robust comparisons between the two cellular scenarios. This comparison 

allowed the unravelling of specialized metabolic pathways in the guard cells, a system 

that is currently not very well understood. Additionally, an independent 13C labelling 

experiment supported the key predictions of our modeling framework. Therefore, 

Chapter 4 serves as a “real life” example of the utility of the previously presented 

computational methods. 

The last chapter of this thesis (Chapter 5) consist of a general discussion and outlook 

of the thesis. We will revisit Chapters 2 to Chapter 4 and discuss drawbacks and open 

problems in each case, as well as possible future directions to address them.  
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Abstract 

Genome-scale metabolic models have proven highly valuable in investigating cell 

physiology. Recent advances include the development of methods to extract context-

specific models capable of describing metabolism under more specific scenarios (e.g., 

cell types). Yet, none of the existing computational approaches allows for a fully 

automated model extraction and determination of a flux distribution independent of 

user-defined parameters. Here we present RegrEx, a fully automated approach that 

relies solely on context-specific data and ℓ1-norm regularization to extract a context-

specific model and to provide a flux distribution that maximizes its correlation to data. 

Moreover, the publically available implementation of RegrEx was used to extract 11 

context-specific human models using publicly available RNA-Seq expression profiles, 

Recon1 and also Recon2, the most recent human metabolic model. The comparison of 

the performance of RegrEx and its contending alternatives demonstrates that the 

proposed method extracts models for which both the structure, i.e., reactions included, 

and the flux distributions are in concordance with the employed data. These findings 

are supported by validation and comparison of method performance on additional data 

not used in context-specific model extraction. Therefore, our study sets the ground for 

applications of other regularization techniques in large-scale metabolic modeling.
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2.1 Introduction 

The investigation and understanding of cell metabolism has experienced a paradigm 

shift, which has been largely propelled by the development of high-throughput 

methods in the last two decades. As a result, the classical pathway-centered view has 

been substituted by a network-driven perspective, which considers the entire set of 

known interconnected biochemical reactions. This had led to the creation of genome-

scale metabolic models (GEMs) for organisms from each of the three domains of life: 

archaea, bacteria and eukarya (Schellenberger, Park, Conrad, & Palsson, 2010). While 

a GEM constitutes an organized and comprehensive system of knowledge about an 

organism, it also allows in silico analyses based on constraint-based methods, relying 

on the corresponding stoichiometric matrix representation and assumptions about 

cellular metabolism. The findings from these analyses provide useful insights in 

metabolism, and may circumvent the drawbacks of estimating fluxes from labeling 

studies–still a computationally demanding undertaking (Kruger, Masakapalli, & 

Ratcliffe, 2012; Ravikirthi, Suthers, & Maranas, 2011; Young, Shastri, 

Stephanopoulos, & Morgan, 2011). Furthermore, several methods facilitate the 

integration of high-throughput data in GEMs. The benefits of these methods are 

twofold: improving the accuracy of flux prediction and providing a scaffold network 

for analysis of additional experimental data (Blazier & Papin, 2012; D. R. Hyduke, 

Lewis, & Palsson, 2013).  

However, a metabolic network that includes all known biochemical reactions of an 

organism may not be realistic in a particular cellular scenario, since there is mounting 

evidence that cells adapt their metabolism to arising conditions, such as: external 

environment, developmental stage, cell type in multicellular organisms, or even 

during a pathological condition (e.g., cancer), to name only a few. In these different 

contexts, only a subset of reactions is typically active. Therefore, the shift towards 

reconstructing context-specific models of cell metabolism has become necessary to 

provide more accurate and biologically meaningful insights. This is of particular 

importance when tackling the physiology of multicellular organisms, not only to 

better understand tissue- or cell-specific metabolism, but as a first step to reconstruct 

metabolic networks of an entire organism/body, where multiple specialized models 

are mutually interconnected (Dal’Molin, Quek, Palfreyman, Brumbley, & Nielsen, 

2010; Grafahrend-Belau et al., 2013).  

Several methods have been proposed to determine context-specific networks, already 

comprehensively reviewed in Machado & Herrgård, (2014). In general, the methods 

for extracting a context-specific model from a given GEM integrate high-throughput 

data from a particular context to select the set of respective active reactions. While 

these methods differ with respect to their underlying assumptions and mathematical 
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formulation, they can be classified into three main groups (Robaina Estévez & 

Nikoloski, 2014), briefly discussed in the following.  

GIMME (Becker & Palsson, 2008) and GIM3E (Schmidt et al., 2013) form the first 

group, whereby first a metabolic functionality (e.g., biomass production) is optimized 

through Flux Balance Analysis (Orth et al., 2010) (a linear mathematical program), 

and then the obtained optimal value is employed to constrain a second linear program 

which aims at minimizing the discrepancies between fluxes and data. The latter is 

based on selecting a user-defined data-dependent threshold value and then penalizing 

reactions whose associated data is under the threshold.  

The second group comprises iMAT (Shlomi et al., 2008) and INIT (Agren et al., 

2012) which use a mixed integer linear program. The binary variables in this 

formulation select the reaction states (i.e., active or inactive) which are most 

concordant with the associate data state. While iMAT uses data to pre-classify 

reactions of the GEM into active or inactive groups, INIT integrates data as a 

weighting factor for the binary variable. Moreover, INIT includes a set of key 

metabolites which must exhibit a small positive deviation from the steady state 

condition. In an extended version, tINIT (Agren et al., 2014), a set of metabolic tasks 

(i.e., biochemical pathways) that must carry non-zero flux can be added as further 

constraints.  

The third group, composed of MBA (Jerby et al., 2010), mCADRE (Yuliang Wang et 

al., 2012) and FastCORE (Vlassis, Pacheco, et al., 2014), first defines a core set of 

reactions, classified as active in a given context according to experimental data, and 

then finds the minimum set of reactions outside the core required to satisfy the model 

consistency condition (i.e., all reactions in the model must be able to carry a non-zero 

flux in at least one of the allowed steady-state distributions). Unlike the methods in 

the previous two groups, these only extract a context-specific model and do not 

provide a respective flux distribution.  

With respect to another classification criterion, the first group belongs to the so-called 

biased methods (within the constraint-based analysis) since the achieved solution 

depends on the definition of a metabolic function to be optimized. In contrast, the 

second and third group consist of unbiased methods since they are independent of a 

metabolic function (Lewis, Nagarajan, & Palsson, 2012). However, in the case of 

iMAT, MBA and FastCORE, a group of preferential reactions (to the context of 

choice) must still be predefined. The choice of unbiased methods is of particular 

importance when the metabolic functions to be optimized under a given context may 

be difficult to obtain and justify, e.g., in multicellular organisms, where cells perform 

various specialized functions. 

However, none of these methods allow fully automated model extraction and flux 

prediction, i.e., without using a priori knowledge of a context-specific function and 

without any binarization or pre-classification of reactions in the process of data 



Chapter 2  2.2 Results & Discussion  

37 

integration. This is particularly important in settings where: (i) a large number of 

context-specific models are to be extracted, or (ii) in case of poorly characterized 

organisms, for which no information regarding the context-specificity of reactions or 

metabolic function may not be available. Here we present RegrEx, an approach based 

on a regularized least squares optimization whim aims at extracting context-specific 

models and providing flux distributions in an automated and unbiased way. 

2.2 Results & Discussion 

2.2.1 The RegrEx method 

Regularization is commonly applied when modeling (i.e., learning) high-dimensional 

functions from observations, as a means to reduce model complexity (i.e., the number 

of variables included in the model) and prevent overfitting to background noise. The 

latter has been shown to considerably improve prediction performance and model 

robustness. Several regularization methods have already been proposed, including: the 

Dantzig (Candes & Tao, 2007), the Ridge (McDonald, 2009) and the Elastic Net (Zou 

& Hastie, 2005) selectors. However, a particular one,  the Least Absolute Shrinkage 

and Selection Operator, abbreviated as LASSO (Tibshirani, 1994), has become very 

popular in high-dimensional regression problems with n explanatory variables and m 

observations, where n≫m. This has been largely due to a better performance of the 

LASSO selector in feature selection (typically obtaining sparse models with a 

minimum number of explanatory variables) along with the simplicity of the operator, 

which facilitates its computation (Hesterberg, Choi, Meier, & Fraley, 2008; Vidaurre, 

Bielza, & Larrañaga, 2013).  

The LASSO optimization problem is given in (2.1), below, whereby a weighted ℓ1-

norm on the coefficients, β, as regularization to an ordinary least squares regression 

with response vector, ym, and variables, Xmxn , is minimized: 

 2
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
   . (2.1) 

The weighting parameter, λ, is usually determined by cross-validation, which offers 

an unbiased way (i.e., not user-defined and purely based on the data) to find a best 

suited value with respect to a measure of performance (e.g., mean squared error or 

coefficient of determination). Regularization by means of the ℓ1-norm, as 

generalizations of LASSO, has been already applied in metabolic modeling;  for 

instance, it has been used to reconstruct biochemical networks from time series data 

(Pan, Yuan, & Stan, 2012), as an alternative to more computationally expensive 

methods, to study network adaptation to mutations (Tirthankar Sengupta. Shivi Jain. 

Mani Bhushan., 2013) and, more recently, in FastCORE, one of the existing 

algorithms to reconstruct context-specific models (Vlassis, Pacheco, et al., 2014). 
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The Regularized Context-specific model Extraction method (RegrEx) aims at finding 

a feasible flux distribution, v, i.e., satisfying the mass-balance, thermodynamic and 

capacity constraints, which is as close as possible to the experimental data, d, e.g., 

gene expression or protein level profiles. At the same time, it excludes the reactions 

irrelevant for the given context by shrinking their fluxes to zero. This is obtained by 

minimizing the squared Euclidean distance (second norm) between v and d, and 

exploiting the ability of the ℓ1-norm regularization to perform feature selection. This 

leads to the optimization problem in (2.2), which is analogous to the formulation of 

LASSO in (2.1) augmented by the cellular constraints, and is given by: 
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where irreversible reactions, 𝑣𝑖𝑟𝑟, are forced to taken non-negative flux values. 

To implement RegrEx in existing mathematical programming solvers, we cast  the 

optimization problem in (2.2) as a quadratic program, (2.3), which minimizes the 

second norm of the error vector, 𝜖 = 𝑑 − 𝑣, considering only the subset, 𝑅𝐷 of 

reactions to which data can be associated—via the GPR associations (Jensen, Lutz, & 

Papin, 2011). We also need to introduce special constraints to deal with reversible 

reactions, which can take negative values, while the data vector is always non-

negative. To this end, reversible reactions are split into the forward and backward 

directions; the net flux is then given by the difference of the respective fluxes. In 

addition, we need to include a vector of binary variables, x, to select either the 

forward or the backward direction for a particular reaction. This is included to avoid 

the drawback of bounding the two irreversible reactions to the same data value, which 

would cause the net flux to be zero. 
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Altogether, this results in a mixed integer quadratic program (MIQP) capturing the 

RegrEx method, (2.4), in which the sign of the net flux for the reversible reactions is 

part of the optimization problem and relies ultimately on maximizing similarity to 

data.  
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As pointed out above, cross-validation is the canonical method to determine an 

optimal λ-value for a regression problem. However, this is not an appropriate method 

for RegrEx due to its particular characteristics. Specifically, a consecutive sampling 

of the observations would imply selecting arbitrary subsets of reactions in the GEM, 

which may be incompatible a steady-state. For this reason, we optimized λ selection 

by running the algorithm for a sequence of λ-values and taking the one that rendered 

the highest Pearson product-moment correlation between fluxes and data (Figure 2.1).  

2.2.2 Evaluation of RegrEx performance 

As a case study, we applied RegrEx to extract 11 context-specific human models, 

namely, adipose tissue, colon, heart, hypothalamus, kidney, liver, lung, ovary, skeletal 

muscle, spleen and testes, and to obtain the corresponding flux distributions. The 

starting GEM was the Recon 1 reconstruction (Duarte et al., 2007), which was 

reduced to its consistent part4. This pre-processing improves RegrEx performance 

since the existence of blocked reactions in the GEM would lead to stoichiometric 

inconsistencies. We used RNA-Seq expression profiles for 11 human tissues  as 

context-specific data (Krupp et al., 2012). Although it has been shown that gene 

expression does not always represent a good proxy of the metabolic flux state 

(Moxley et al., 2009; Rossell et al., 2006), it still constitutes the best data source 

regarding coverage and quality (typically providing quantitative data for the great 

majority of genes in the GEM).  

                                                 
4 GEMs may contain blocked reactions, which are reactions incapable of carrying a non-zero flux in 

any feasible steady-state distributions. This is the case, for instance, if a reaction leads to a dead-end 

metabolite, which is not consumed by any reaction. The consistent part of a GEM is then obtained by 

removing all blocked reactions and dead-end metabolites.  
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Figure 2.1. The optimal λ value maximizes the correlation between data and flux values. (A) The 

Pearson correlation (ρ) is plotted as a function of λ for all human tissues. The correlation increases up 

to a maximum, at the optimal λ value, then decreases for higher λ values, as the flux through reactions 

shrinks to zero. (B) In contrast to the Pearson correlation, the residual (Res.), which is computed as 

averaged absolute difference between data and flux values, increases monotonically with λ. (C) The 

cardinality of the context-specific models (number of active reactions) decreases with increasing λ, as 

expected. 
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We compared RegrEx performance with other existing methods for context-specific 

model extraction and flux prediction. Namely, iMAT (Shlomi et al., 2008), the 

method proposed in Lee et al., (2012)—here called Lee2012—as well as a non-

regularized version of RegrEx (RegrEx-λ0), as a special case of the RegrEx method 

with λ = 0. We also included FastCORE in our comparison; however, since 

FastCORE only provides a context-specific model (i.e. set of active reactions), we 

only included it in comparisons at the structural level of the extracted models. In each 

case, we used the consistent part of Recon 1 and the same gene expression data from 

the RNA-Seq Atlas to provide unbiased and fair comparison.  

We would like to point out that Lee2012 was not originally developed to extract 

context-specific models. However, RegrEx has a form similar to that of Lee2012, 

which aims at improving flux prediction through minimizing the absolute distance 

between data (e.g., RNA-Seq expression profiles) and flux values. For this reason, we 

also included Lee2012 in the comparative analysis. Nevertheless, RegrEx differs from 

Lee2012 in the inclusion of regularization and also in the treatment of reversible 

reactions: Lee2012 applies an iterative approach, where the optimization problem 

starts with the subset of irreversible reactions, and reversible reactions are then added 

sequentially by solving additional optimization problems. This last step is time 

consuming because it involves two optimization problems per reversible reaction. In 

contrast, RegrEx selects direction of reversible reactions at once through the use of a 

binary variable, as explained in Methods (section 2.4), thus reducing the 

computational time. Moreover, RegrEx is unbiased with respect to the order in which 

the reversible reactions are added, which is a shortcoming not resolved in Lee2012. 

The performance analysis was divided into two parts: First, the similarity with the 

expression data used to extract the models was evaluated. This evaluation included 

two measures: the correlation between predicted fluxes and data values (except for 

FastCORE) and the level of agreement between the correlation matrix of the 

expression data for each context and the Jaccard distance matrix of the extracted 

models. (As to quantify the distance between two models in terms of the set of active 

reactions). Second, we performed an independent validation of the extracted models 

by measuring their level of agreement with protein expression data taken from the 

Human Protein Atlas (Uhlén, 2015). 

2.2.3 Main characteristics of extracted models by the evaluated 

methods 

The general characteristics of the extracted models by each method are summarized in 

Table 2.1, and fully detailed in S1 Table. In terms of cardinality (i.e., the number of 

reactions included in an extracted model), Lee2012 generates models with the lowest 

mean cardinality (on average approximately 785 reactions per model) followed by 

RegrEx and RegrEx-λ0 (with, on average, approximately 843 and 1030 reactions per 

model, respectively). In contrast, FastCORE and iMAT result in markedly bigger 
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models for the corresponding contexts (with, on average, approximately 1358 and 

1411 reactions per model, respectively). Each set of context-specific models extracted 

by a particular method has a core set of reactions shared by all contexts. In addition, 

each context has an exclusive set of reactions (i.e., reactions that are only present in 

the examined context). In this sense, RegrEx extracted models have the smallest set of 

shared reactions, with 299 reactions, and the biggest set of total exclusive reactions 

(i.e., exclusive reactions over all context), with 332 reactions. These two properties 

demonstrate that the models extracted by RegrEx are in fact more context-specific 

than the ones extracted by the other methods, which is confirmed by the mean Jaccard 

similarity between models. The Jaccard similarity is lowest in the case of RegrEx 

(IJ̅RegrEx=0.56, with a standard deviation, σIJRegrEx=0.04) in support of the previous 

claim. On the contrary, Lee2012 generates the greatest core set among the methods 

evaluated, with 509 shared reactions, and the smallest set of total exclusive reactions, 

amounting to 140 reactions, This, in turn, makes the Lee2012 models to be the least 

context-specific (IJ̅Lee2012=0.77, with a standard deviation, σILee2012=0.01). 

In general, when extracting a context-specific model it is likely that a subset of the 

reactions in the original (unspecific) GEM is unbounded by data. This can be due to 

the absence of GPR rules (either because the reaction is not enzyme catalyzed or 

because the gene-protein association has not been annotated), or simply because 

experimental data are missing for that reaction. In any case, it is of interest to 

minimize the number of included reactions without associated data, here called data-

orphan reactions, since their inclusion results in uncertainty (given the available data). 

In this manner, simpler models only containing data-orphan reactions that are required 

to obtain a good overall match with data are preferred. On this line, we evaluated the 

aforementioned property by computing the data-orphan ratio (i.e., the ratio between 

the number of incorporated reactions with non-associated and that with associated 

experimental data) of each of the extracted models. RegrEx extracted models show 

the second lowest mean data-orphan ratio across all methods (ORRegrEx=0.34, with a 

standard deviation, σRegrEx=0.05), only surpassed by Lee2012 (ORLee2012=0.28, with a 

standard deviation, σLee2012=0.03), Notably, this is only valid when a regularized 

extraction is used, since in the case of RegrEx-λ0, the data-orphan ratio ranks to the 

second worst position, only surpassed by FastCORE, with mean orphan ratios of 0.47 

and 0.50, respectively. The reduced data-orphan ratio indicates that RegrEx, although 

surpassed by Lee2012, is still capable of extracting compact models in which the 

number of data-orphan (uncertain) reactions is minimized. 

Regarding the set of represented reactions of Recon 1 across all contexts, here called 

total cardinality, RegrEx models collect 1618 unique reactions out of the total of 2469 

reactions in Recon 1. Therefore, RegrEx models rank in an intermediate position 

between Lee2012 models (with 1092 total unique reactions) and iMAT and 

FastCORE (with 2205 and 2232 total reactions, respectively). The differences in total 

cardinality as well as mean cardinality per model can be explained by the two main 

objectives that the evaluated methods take; namely, minimizing the distance between 
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data and flux values, like in the case of Lee2012 and RegrEx(-λ0), or including the 

entirety or a majority of a predefined core set for a particular context, like in 

FastCORE and iMAT, respectively, which here was the same for both methods (see 

Methods, section 2.4).  

Indeed, this last grouping was reflected when we compared the similarity between 

models of the same context extracted by the different methods. Results were similar 

across all contexts, iMAT and FastCORE-derived models shared many reactions, as 

indicated by the high Jaccard similarity index (mean value across 

contexts, IJ̅iiMAT/FastCORE=0.81, with σIiiMAT/FastCORE=0.02) and are thus grouped 

together in the corresponding dendrogram of Figure 2.2. On the other hand, RegrEx, 

RegrEx-λ0 and Lee2012 form another cluster, where models extracted by RegrEx and 

RegrEx-λ0 are grouped together, and the ones extracted by Lee2012 are closer to 

RegrEx-λ0.  

 

Table 2.1 Comparison of models extracted by the four evaluated contending methods: Mean values 

across contexts. Global characteristics of the models are derived by applying RegrEx (with automated 

determination of λ), RegrEx-λ0 (i.e., RegrEx without regularization), Lee2012, iMAT and FastCORE. 

The abbreviations stand for the following: 𝐶𝑎𝑟𝑑.̅̅ ̅̅ ̅̅ ̅̅  denotes mean cardinality, 𝑂̅R, mean data-orphan 

ratio, 𝜌̅(V,D), mean correlation between data and predicted flux values, 𝑅̅(V,D), mean residual value 

between fluxes and data, 𝐼J̅, mean Jaccard index to any other context, Shared,  number of shared 

reactions across all contexts, and Total Exclusive represents total number of exclusively context-

specific reactions across all contexts. Values in round brackets correspond to the standard deviation. 

2.2.4 Similarity to data evaluation 

When inspecting the correlation between data values and predicted fluxes, RegrEx 

obtained the first position in the ranking (mean correlation, ρ̅RegrEx=0.42, 

σρRegrEx=0.07), followed by RegrEx-λ0 and Lee2012 (with a mean correlation of 0.38 

and 0.13, respectively). Moreover, iMAT results in the worst mean correlation value 

of -0.17 (FastCORE does not provide flux values, as commented before, so it is not 

evaluated with respect to this criterion). However, this difference in correlation can be 

explained by the different approach followed by iMAT, since in this case the method 

does not aim at minimizing the distance between data and flux values. 

 𝐶𝑎𝑟𝑑.̅̅ ̅̅ ̅̅ ̅̅  𝑂̅R  𝜌̅ (V,D) 𝑅̅ (V,D) 𝐼J̅ Shared Total 

Exclusive 

Total 

Card 

RegrEx 842,91(55.14) 0,34(0.05) 0,42(0.07) 0,29(0.08) 0,56(0.04) 299 332 1618 

RegrExλ0 1030,30(76.32) 0,47(0.04) 0,38(0.08) 0,28(0.08) 0,65(0.03) 490 239 1711 

Lee2012 784,6 (26.53) 0,28(0.03) 0,13 

(0.05) 

- 0,77 

(0.01) 

509 140 1092 

FastCORE 1357,9(39.03) 0,50(0.04) - - 0,61(0.05) 503 230 2232 

iMAT 1411(41.62) 0,42(0.04) -

0.17(0.03) 

- 0,65(0.04) 611 210 2205 
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Figure 2.2. Dendrogram clustering the evaluated methods and comparison of data- and model-

derived z-scores quantifying the differences between contexts. (A) The dendrogram is obtained from 

the the Jaccard similarity that models have across the different methods. Two main clusters are 

formed, iMAT and FastCORE on one side, and Lee2012, RegrEx-λ
0
 and RegrEx on the other. In the 

second cluster, RegrEx and RegrEx-λ
0
 form a subcluster. (B-F) data- and model-derived z-scores are 

compared for RegrEx, RegrEx-λ
0
, Lee2012, iMAT and FastCORE, respectively. Correlation values 

between the two series (data and model) are shown in the right upper corner in each case. 

Adi.:Adipose, Col.:Colon, Hea.:Heart, Kid.:Kidney, Liv.:Liver, Lun.:Lung, Ova.:Ovary, 

S.Mus.:Skeletal Muscle, Spl.:Spleen, Tes.:Testes. 
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To include FastCORE in the comparative analysis, we next inspected the similarity to 

data in a different manner: instead of considering the flux values, we now compared 

the set of active reactions per context. This criterion captures an aspect of the 

structure of the extracted metabolic networks. We used the sets of active reactions 

across different contexts and per method to compute the similarity matrix, using the 

Jaccard index. We then compared this similarity matrix with the corresponding 

correlation matrix of the gene expression values for all contexts. Since the compared 

matrices use different metrics, that is, correlation and Jaccard similarity, we adopted 

the following procedure for the comparison.Firstly, we computed the column-wise z-

scores (as detailed in Methods, section 2.4) for all matrices, both containing 

correlation values and Jaccard similarities. A high negative z-score corresponds to a 

context characterized by being highly dissimilar to the rest of the contexts, i.e., 

showing low correlation or Jaccard similarity values. While a high positive z-score 

indicates that this context tends to behave in a similar way as the majority of the 

contexts. The z-scores then summarize the metabolic specificity of the contexts 

evaluated. Secondly, we computed the correlation between the profile of z-scores 

derived from the Jaccard similarity matrices and the profile of z-scores of the 

correlation matrices corresponding to each context and method evaluated. In this 

manner, we measured how the different methods captured the overall specificity of 

each context. 

RegrEx performed better than iMAT and FastCORE in capturing the pattern showed 

by gene expression, as quantified by a correlation value of 0.92, between the z-score 

values of the extracted models and the ones of data, against a value of 0.88 and 0.89 

for iMAT and FastCORE, respectively, see Figure 2.2. The better agreement in the 

case of RegrEx can be observed in the number of mismatches between the sign of the 

data z-score value and the one of the extracted model. More specifically, RegrEx only 

fails in the case of the ovary model, which lies under the mean similarity between any 

two of the extracted models, thus having a negative z-score, while the corresponding 

expression data lies over the mean. However, iMAT and FastCORE commit three 

mismatches (skeletal muscle, kidney and colon in FastCORE and skeletal muscle, 

adipose tissue and hypothalamus in FastCORE). As expected, the performance of 

RegrEx-λ0 and Lee2012 is again worse than the other methods, with a correlation 

value of 0.66 and 0.57, respectively. Interestingly, liver appears to be the most 

different context in terms of active reactions, and this is captured by all methods 

except for RegrEx-λ0. This is not surprising, since liver is well known to be the organ 

with greater metabolic capabilities.  

To conclude this section, it is noteworthy to highlight the comparison of RegrEx 

performance with the one of its non-regularized version, RegrEx-λ0, since the only 

difference between the two approaches is the application of regularization and the 

inclusion of an optimization step to determine the optimal λ-value. Precisely, the 

consideration of regularization allows RegrEx not only to extract more compact 

models, as commented before, but also to increase the correlation between data and 
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flux values, reduce the data-orphan ratio, and greatly improve the general similarities 

and differences in the metabolic state of the different contexts. 

2.2.5 Evaluation of the models with human protein profiles 

We performed an independent test on the biological reliability of the extracted models 

by all evaluated methods. To this end, we compared the level of agreement of each 

model with protein expression profiles taken from the Human Protein Atlas (Uhlén, 

2015)—we had to exclude hypothalamus from the comparison since it is not present 

in this database, see Methods, section 2.4. The protein expression data is semi-

quantitative, namely, it only provides the categorical levels high, medium and low. To 

account for this, we evaluated whether models contained an enriched group of genes 

coding for proteins within the category of high expressed for the corresponding 

organ/tissue in comparison with the other two categories, as well as an enrichment in 

genes from the medium expression value group in comparison to those from the low 

expression.  

To test these hypotheses, we determined the number of genes of each group in each 

context, i.e., the number of genes in high, medium and low across all organs/tissues, 

and applied the Mann-Whitney test on the obtained distributions to determine the 

statistical significance of their difference. This test was applied for each evaluated 

method. As observed in Table 2.2, RegrEx extracted models are indeed significantly 

enriched in high and medium expressed genes since the p-values for all three 

comparisons, number of genes in the high group greater than in the medium, H > M, 

medium greater than low, M > L, and high greater than low, H > L, are below the 

significance threshold of 0.05. In the case of RegrEx-λ0 and iMAT, only two of the 

comparisons are significant, H > M and H > L, and M > L and H > L, respectively. 

Models in FastCORE are only enriched in high expressed genes in comparison to low 

expressed and none of the comparisons are significant in the case of Lee2012. These 

results add an additional experimental support to the extracted models by RegrEx and 

in a lesser extend the ones by RegrEx-λ0, iMAT and FastCORE, for two main 

reasons: the additional experimental data comes from a different (independent) 

database than the one used during the extraction, and relies on a lower hierarchical 

level in the causal chain controlling metabolic fluxes, namely, is based on protein 

expression rather than gene expression. 
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Method H>M M>L H>L 

RegrEx 0.0445 0.0262 0.0034 

RegrExL0 0.0045 0.1763 0.0006 

iMAT 0.1399 0.0444 0.0319 

Lee2012 0.3421 0.4559 0.2179 

FastCORE 0.0525 0.1575 0.0216 

 

Table 2.2 Comparasion on the level of agreement of each extracted model with the Human Protein 

Database. P-values for each Mann-Whitney test (with alternative hypothesis H>M, M>L and H>L) are 

collected here. A significance threshold of 0.05 was used to reject the null hypothesis (p-values<0.05 in 

bold). 

2.2.6 Functional analysis of RegrEx extracted models 

The next step in evaluating RegrEx extracted models was to perform a functional 

analysis. Concretely, we determined which metabolic functions were important in 

each context. To this end, we calculated the flux capacity of every reaction in the 

models, given by  the difference between the maximum and minimum corresponding 

flux value obtained per Flux Variability Analysis (R. Mahadevan & Schilling, 2003). 

However, here, the only constraints were arbitrary upper and lower bounds for flux 

values. We stress that the flux capacity value herein defined only quantifies the 

theoretical range of flux values that a reaction can take in a given network. Hence, the 

actual flux range of a reaction in a particular metabolic scenario does not have to 

coincide with the theoretical. However, the flux capacity of a reaction does depend on 

the topology of an extracted metabolic network. This makes it a reliable proxy to 

evaluate which reactions are favored in a certain context. In an alternative way, it also 

allows evaluating which reactions are not influenced by the differences in network 

topology across contexts, i.e., which are robust in flux capacity irrespective of the 

different contexts. Note that this set of robust reactions must belong to the core set of 

shared reactions across contexts.  

To facilitate the analysis, we grouped the subsystems into 8 broader metabolic 

categories: Central metabolism, Amino-acid metabolism, Carbohydrate metabolism, 

Cofactor and vitamin metabolism, Lipid metabolism, Nucleotide metabolism, 

Transport and Others, see S2 Table. In addition, we averaged flux capacity values of 

the reactions in each metabolic subsystem of Recon 1, and in each previously defined 

metabolic category. In this manner, we obtained the mean flux capacity (MFC) per 

subsystem or category. We also counted the total number of reactions (TNR) in each 

category, as an alternative way of quantifying their metabolic importance in the 

extracted networks. 



Chapter 2  2.2 Results & Discussion  

48 

Marked differences arose when we compared the results obtained by counting the 

number of reactions per metabolic category against the ones obtained by averaging 

the flux capacity. For instance, the category with largest number of reactions in all 

extracted models (using any of the methods) is Transport, similar to the findings in 

(Thiele et al., 2013). However, if we look at the MFC, Transport, in general, takes a 

modest position, often surpassed by Central and Carbohydrate metabolism. More 

specifically, in the case of RegrEx, approximately 43% of the reactions in Liver are 

assigned to Transport, whereas Transport only contributes with 6.2% to the total MFC 

of the extracted model. Similarly, Nucleotide metabolism is associated 14% of the 

total number of reactions while only contributes with 6.5% to the total MFC of Liver. 

On the contrary, systems with a smaller number of reactions, such as Amino acid and 

Carbohydrate metabolism (11% and 3.5%, respectively), get a higher contribution to 

the total MFC (20% and 14%, respectively), see Figure 2.3 and S1 Fig. for a complete 

comparison for each context. 

As commented before, all context-specific, RegrEx extracted models share a core set 

of 299 reactions. If we consider the TNR in each metabolic category we obtain the 

distribution in Figure 2.3. The core is dominated by Transport reactions (46%), 

followed by Nucleotide metabolism (21%) and Central metabolism (17%), being the 

rest of the categories represented to a smaller extent. Moreover, when computing the 

MFC for each individual reaction in the core, we see that the majority of them (80%) 

are robust reactions. Where robust here means that the flux capacity is maintained 

across contexts. However, a non-negligible part of the core (the remaining 20%) is 

constituted by non-robust reactions—those that, although being shared by all contexts, 

present a variable flux capacity. In this group, we encounter reactions like the 

superoxide dismutase (ROS detoxification), with a coefficient of variation (CV) value 

of 0.49, one of the highest in the core. Interestingly, we also find all the reactions 

belonging to the pentose phosphate pathway that are present in the core (see S3 

Table). These observations show that not all reactions in the core behave in a similar 

way. On the contrary, we can partition it into a subset of reactions that are 

independent of (context-specific) modifications of the network topology, and a subset 

that depends on the context and therefore can be more or less prominent in certain 

tissues or organs. 

Alternatively, to further evaluate the functional validity of the RegrEx extracted 

models, we used the previously calculated MFC to investigate the importance that a 

given subsystem had in each context. Furthermore, we ranked the subsystems 

according to the CV of the MFC value distribution of each subsystem across contexts. 

This implies that subsystems with a low CV are evenly represented among the 

different contexts, while with increasing CV, these subsystems tend to be more 

specific for certain contexts. For instance, all subsystems belonging to Central 

metabolism occupy top positions in the ranking, which is expected due to the 

fundamental role that these subsystems play in all cell types. The citric acid cycle is  
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Figure 2.3. Pie charts displaying the core set of shared reactions for the 11 models extracted by RegrEx and a 

selected comparison of the metabolic categories presented in the liver model. (A) Distribution of the total number 

of reactions (TNR) per metabolic category for the liver model (containing a total of 821 reactions across all 

categories). (B) distribution of the mean flux capacity (MFC) values of each metabolic category in the liver model, 

as explained in the main text, noticeable differences arise with respect to the distribution depict in A. (C) reaction 

content (TNR) for the core set of shared reactions divided per metabolic category, as explained in the main text, 

the three dominant categories are Transport, Central and Nucleotide metabolism. Metabolic category names are 

displayed in the color bar legend. 

 

the first subsystem in the ranking with a CV value of 0.078. On the contrary, the 

pentose phosphate pathway is the subsystem in Central metabolism with a highest CV 

value of 0.21. However, it can be considered low in the context of the entire ranking, 
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and may be explained by the fact that, unlike the rest of subsystems in Central 

metabolism, the totality of its reactions in the core are non-robust, as mentioned 

before, see Figure 2.4 and S4 Table. In addition to these subsystems, we also find in 

top positions others equally fundamental pathways, including: NAD, folate and 

vitamin A metabolism (all in the category of Cofactor and Vitamin metabolism), 

extracellular and mitochondrial transport or nucleotides metabolism. Interestingly, the 

last three subsystems also contain the greatest number of the previously defined 

robust reactions (S4 Table).  

Lipid metabolism presents a middle level of specialization across the different 

contexts, which is reflected by its middle positions in the ranking. Therefore, this 

finding implies that there are some tissues in which lipid metabolism is predominant. 

For instance, fatty acid metabolism is predominant in adipose tissue, liver and skeletal 

muscle. In addition, fatty acid oxidation and fatty acid activation are predominant in 

adipose tissue and skeletal muscle. This is consistent with known functions of these 

contexts; the adipose tissue and liver are primary locations for fatty acid metabolism, 

while the fatty acid oxidation provides the required energy supply for oxidative 

muscle contraction (Frayn, Arner, & Yki-Järvinen, 2006). We also find gluthatione 

metabolism (assigned to the category “Others”) in a middle position, with a CV of 

0.6, and it is highlighted in kidney. This last feature also serves as validation of the 

extracted model, in fact, glutathione metabolism is essential to the kidney for an 

adequate functioning (Lash, 2005). Finally, the lasts positions are mainly populated 

by subsystems in Cofactor and Vitamin metabolism and the miscellaneous category 

“Others”, such as: keratin sulfate degradation, heme biosynthesis and degradation or 

bile acid biosynthesis, see S4 Table and Figure 2.4  

The subsystems with largest CV value include those with extreme behavior, i.e., these 

subsystems are only predicted to be active in a single context. This category consists 

of: bile acid biosynthesis, biotin, riboflavin, vitamin B6, vitamin D, CYP, methionine 

and D-alanine metabolism (S4 Table). We can explain this behavior as a reflection of 

the original gene expression values associated to the reactions in each of these 

subsystems. For instance, in the case of bile acid biosynthesis, the liver presents an 

extremal value in the distribution of expression values in the subsystem across 

contexts (z-score=2.9, S5 Table). We wanted to know if this characteristic was 

sufficient to explain the artifact, or, in contrast, the network topology of Recon 1 was 

also contributing to this observation. The latter may happen if some reactions crucial 

to satisfying the steady-state conditions were missing in Recon 1. To test this 

hypothesis, we applied RegrEx on Recon 2, a recent extended version of the Recon 1 

model of increased size, i.e., 5317 in Recon 2 versus 2469 reactions in Recon 1, both 

after eliminating the blocked reactions (Thiele et al., 2013).  
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Figure 2.4. Illustration of selected Recon 1 subsystems displayed in a Pie chart form, depicting the 

distribution of mean flux capacity (MFC) values across contexts. Panels A-B correspond to the two 

extreme metabolic subsystems, in terms of CV, in Central metabolism. The citric acid cycle (A) shows 

the lowest CV value (both in Central metabolism and within the entirety of Recon 1 subsystems). The 

pentose phosphate pathway (B) shows the greatest CV value in Central metabolism. (C-E) the 

distribution of MFC values is shown for fatty acid metabolism (C) which is predominantly represented 

in liver, adipose tissue and skeletal muscle, fatty acid oxidation (D) and fatty acid activation (E) both 

subsystems predominant in adipose tissue and skeletal muscle. (F) the MFC distribution across 

contexts is depicted for gluthatione metabolism. Kidney is the context where this subsystem gets a 

highest MFC value, constituting a 23 % of the total MFC value across contexts. See main text for 

details. In all cases, the first number preceding the name of the subsystem corresponds to its position in 

the ranking generated by the CV values, which are shown in round brackets here. Context names are 

displayed in the color bar legend. 
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After extracting the context-specific models, and ranking the subsystems by the CV 

value of the MFC, we found that the majority of these subsystems were now 

represented in more than one context. For instance, bile acid biosynthesis (named bile 

acid synthesis in Recon 2) is present in all contexts, but has a greatest MFC value in 

Liver, see Figure 2.5 and S6 Table. 

2.2.7 Computation time comparison 

RegrEx computational performance was also evaluated and compared to the other 

methods. In all cases, with the exception of FastCORE, the Gurobi (Gurobi 

Optimization, 2017) solver was used. CPLEX (IBM, n.d.) was used in FastCORE 

instead of Gurobi for two reasons: CPLEX is the default solver in the code provided 

in (Vlassis, Pires Pacheco, & Sauter, 2014), and we believe that the differences in 

computation time between Gurobi and CPLEX are negligible when solving LP 

problems, as is the case in FastCORE.  

Table 2.3 summarizes the differences in computational time and problem formulation 

for the evaluated methods. Markedly, iMAT shows a very good computation time, 

with a mean of 0.16 seconds per model extracted. (This result changes dramatically 

when using GLPK as solver (Makhorin, 2012), where mean network extraction time 

is typically above one minute). This computation time is comparable to the one 

obtained by FastCORE. Lee2012 presents a computation time of around 10 minutes 

per extraction. (This result again changes dramatically when using GLPK as solver, 

with computation times of several hours per context extracted). When RegrEx is 

evaluated for a fixed λ-value (that is, RegrEx-λ0), the computation is fixed to around 

60 seconds per model extracted, this is due to the time limitation constraint imposed 

to the Gurobi solver, as discussed in Methods, section 2.4. When no time limit is 

imposed RegrEx gets the worst position among the evaluated methods, this may be 

due to the complexity inherent of solving an MIQP for a big network like the one of 

Recon 1. However, the sensitivity to time limit analysis suggests that the 

improvement obtained by increasing the time limit does not compensate the extra time 

expended, and even could be reduced to 30 seconds with a similar outcome (see Table 

2.4 in Methods, section 2.4).  

Finally, in the case of RegrEx, the total computation time depends on the number of 

λ-values evaluated during the optimization step. For instance, in this case the mean 

computation time per model extraction stays around 15 minutes, since a sequence of 

15 λ-values is used in the optimization. This greater computational time required by 

RegrEx is explained by the necessity of finding an optimal λ-value to control the 

regularization during the extraction, which is specific to any particular data set and 

GEM. However, the total computational time spent by RegrEx still remains within a 

reasonable range, and, as seen in Results, including regularization is fundamental to 

increase the overall performance. 
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Figure 2.5. MFC value distribution across contexts for selected subsystems in Recon 2. Bile acid 

(bio)synthesis (A), vitamin B2 metabolism (B, equivalent to riboflavin metabolism in Recon 1) and D-

alanine metabolism (C) are represented in all contexts in Recon 2. Cytochrome metabolism (D, 

equivalent to CYP in Recon 1) is represented only in two contexts, Lung and Colon, in Recon 2. In all 

cases, the first number preceding the name of the subsystem corresponds to its position in the ranking 

generated by the CV values, which are shown in round brackets here. Context names are displayed in 

the color bar of Figure 2.3. See main text for details. 
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Table 2.3 Computation time of the evaluated methods. Mean computation times per model extraction, 

type of mathematical program solved and the used commercial solver are displayed for each evaluated 

method. ⟳ stands for iteratively repeated. *Time is shown in seconds, SEM stands for Standard Error 

of the Mean 

 

2.3  Conclusion 

We have presented RegrEx, a method to extract context-specific metabolic models 

and provide a flux distribution most in accordance with experimental data. RegrEx 

generated context-specific flux distributions with the highest correlation values 

among the competing methods evaluated, as well as extracted compact models, 

enriched in reactions with high associated data values. Importantly, RegrEx 

performance is severely impaired when performing a non-regularized extraction (i.e., 

when λ=0, here called RegrEx-λ0). More specifically, the models obtained without 

employing regularization are less specific to each particular context, share a greater 

amount of reactions and contain less exclusive reactions in comparison to models for 

other contexts. This is supported by the higher mean Jaccard index over all pairs of 

compared context-specific models. In addition, the mean orphan ratio is higher if 

regularization is not used, implying that a greater number of reactions with non-

associated experimental data is included and causing these models to be less compact. 

Finally, the mean correlation values between predicted fluxes and data are also 

smaller in the non-regularized extraction. Altogether, these observations support the 

importance of including regularization to obtain a better performance in context-

specific model extraction. 

RegrEx have also proven to be a suitable method among the alternatives evaluated 

here, to provide a larger correlation between predicted fluxes and experimental data, 

as well as models that capture the general pattern of differences and similarities in 

reaction activity across contexts expressed by data. The models extracted by RegrEx 

are also in agreement with an independent data source, based on protein expression, 

and include preferentially genes that are associated to highly expressed proteins, 

outperforming the competing methods with respect to this criterion.  

Method Formulation Solver Mean Time ± SEM * 

iMAT MILP Gurobi 0.1652 ± 0.0038 

FastCORE LP ⟳ CPLEX 0.2976 ± 0.0101 

RegrEx-λ0 MIQP Gurobi 60.0785 ± 0.0025 

Lee2012 LP ⟳ Gurobi 571.2108 ± 24.8921 

RegrEx MIQP ⟳ Gurobi 928.5313 ± 2.3079 
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In the case study presented here, we have used gene expression profiles as 

experimental data. However, RegrEx can support other data sources; protein profiles 

can be easily integrated (e.g. generated through mass-spectrometry based approaches), 

and the problem of lower coverage typically presented by protein profiles can be 

alleviated by jointly integrating gene expression data to fill the gaps. In addition, if 

there exist strong experimental evidence supporting the presence of a certain reaction 

in a given context, its lower bound can be set to an arbitrary positive value (i.e., Vmin > 

ϵ, when splitting reversible reactions) thus forcing it to be included in the context-

specific model. In a similar manner, when the evidence is for the presence of a 

metabolite, the sum of the reactions producing such metabolite could be constrained 

to ensure its inclusion, thus allowing integrating metabolomics data in a qualitative 

way. 

RegrEx can be easily used in MATLAB through the provided files. Moreover, no 

parameters need to be chosen by the user, since the only parameter, λ, is determined 

by RegrEx in an automated fashion. In this manner, the user only needs to provide a 

relevant (context-specific) data source(s) and the GEM from where the context-

specific model is to be extracted; the rest of the operating process is fully automated. 

Finally, RegrEx does not require any a priori knowledge on metabolic functionality in 

a given context. The property of being an unbiased method along with the fully 

automation of the process may be a prominent quality when dealing with complex, 

multicellular organisms, where multiple cell types or tissues coexist and specialized in 

certain functions that are not yet very well understood. 

2.4 Methods 

2.4.1 RegrEx implementation 

We solved the MIQP of RegrEx using the Gurobi solver (Gurobi Optimization, 2017). 

To speed up the optimization, we restricted the computation time to 60 seconds per 

MIQP. Additional robustness analyses indicated that higher computation times 

implied a low increase in performance (tripling the time limit, i.e., 180 seconds, only 

caused a mean correlation increment between models of 0.0004, see Table 2.4).  

 

 

 

 

 

Table 2.4 Results comparison for different time limits applied to the Gurobi solver. Four different 

time limits were evaluated to test the sensitivity of optimal solutions to the early termination criterion 

(60 s) imposed. In all cases, the λ-value was fixed to a reference optimum, the one obtained when the 

 30s 60s 90s 180s 

𝜌̅ (V,D) 0.4493(.068) 0.4493(.068) 0.4493(.068) 0.4497(.068) 

𝑅̅ (V,D) 0.2845(.081) 0.2845(.081) 0.2845(.081) 0.2844(.081) 

𝐶𝑎𝑟𝑑.̅̅ ̅̅ ̅̅ ̅̅  856.55(92.124) 856.27(91.153) 855.45(91.35) 856.55(93.17) 
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time limit was 60 s. Mean values for the 11 contexts (with the standard deviation within round 

brackets) are shown for the correlation between flux values and data, 𝝆̅ (V,D), the mean residual, 𝑹̅ (V,D), 

and the cardinality, i.e., number of reactions of the extracted models, 𝑪𝒂𝒓𝒅.̅̅ ̅̅ ̅̅ ̅̅ . 

 

RegrEx was implemented in MATLAB, and the code is provided in the S1 File of the 

supporting information in (Robaina Estévez & Nikoloski, 2015). The implementation 

provides the final context-specific models in a COBRA toolbox compatible format 

(D. Hyduke et al., 2011), thus allowing facile subsequent analysis.  

2.4.2 Context-specific model extraction 

To test RegrEx performance we selected, as a case study, the existent human 

metabolic network reconstructions, Recon 1 (Duarte et al., 2007) which has been 

previously used with other algorithms (Agren et al., 2012; Vlassis, Pacheco, et al., 

2014; Zur, Ruppin, & Shlomi, 2010) and Recon 2 (Thiele et al., 2013) as a further test 

on a larger network. This case study allows a direct comparison between the models 

extracted by different methods. As input data, we used available RNA-Seq human 

expression profiles for 11 different contexts (i.e., organs or tissues) published online 

in the RNA-Seq Atlas (Krupp et al., 2012), and normalized to RPKM values. To 

avoid blocked reactions, we first extracted the consistent part of Recon 1 through a 

standard flux variability analysis, using the reduceModel function of the COBRA 

toolbox (D. Hyduke et al., 2011). 

The range of expression values typically varies between genes, especially in RNA-

Seq-derived expression data, where differences in mean values (e.g., across tissues) 

between genes can be of several orders of magnitude. This may likely cause RegrEx 

to favor reactions whose associated genes have higher mean values across contexts, 

thus, reconstructing context-specific models in a biased manner. To correct for this 

bias, we normalized the expression value, t, of each gene, i, in context, j, to its 

maximum value across all considered contexts:  

 
,

,

,

,       i , .
max( )

i j

i j

i j

t
d genes j contexts

t 

     (2.5) 

2.4.3 Performance analysis with competing methods 

The existing iMAT implementation in the COBRA toolbox (D. Hyduke et al., 2011) 

was used to perform the iMAT model extraction. The 75th percentile of the 

cumulative distribution was used as a threshold to binarize the gene expression data, 

i.e., to create the high- and low-expressed (reaction associated gene/s) groups. The 

implementation provided in (D. Lee et al., 2012) was used to analyze the model 

extraction approach, denoted as Lee2012. Since the RNA-Seq Atlas does not provide 

any variance measurement, the weighting factor to correct for experimental error was 
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not used. In addition, the upper bound on flux values was set to 1, as in RegrEx, for 

fair comparison. Reactions with an absolute value above 10-6 were considered active 

for a given context. In the case of FastCORE, we used the implementation provided in 

(Vlassis, Pires Pacheco, et al., 2014) and obtained the core set of reaction by taking 

the reactions with an expression value for the associated gene(s) above the 75th 

percentile; therefore, it uses the same set as the high-expressed group employed in 

iMAT. 

The Jaccard index was used to generate the similarity matrices comparing models 

extracted for different contexts, as well as models of the same context extracted by 

different methods. In this last case, the clustering dendrogram in Figure 2.2 was 

generated with the hclust function of the package stats in the R environment, and by 

using the average linkage criterion  

We z-normalized the sum of Jaccard similarities of each context to the remaining (i.e., 

the sum of each column of the distance matrix). Therefore, the respective z-score 

quantifies the extent to which a given context differs from the remaining.  

2.4.4 Model agreement with human protein expression data 

The protein expression profiles were taken from the Human Protein Atlas (Uhlén, 

2015) where 10 out of the 11 contexts are represented (note that the hypothalamus is 

missing, so we did not include it in the evaluation; moreover, for the adipose tissue, 

we took the data from the cell type adipocyte). In the Human Protein atlas, protein 

expression levels are classified into high, medium or low and are derived by 

inmunohystochemical staining. Recon 1 uses Entrez gene identifiers, while the protein 

coding genes in the Human Protein Atlas are identified following the Ensembl 

convention. Hence, we mapped the Ensembl identifiers onto Recon 1 using the 

BioMart data mining tool from Ensembl (“BioMart (Ensembl),” n.d.). 
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Abstract 

The integration of experimental data into genome-scale metabolic models can greatly 

improve flux predictions. This is achieved by restricting predictions to a more realistic 

context-specific domain, like a particular cell or tissue type. Several computational 

approaches to integrate data have been proposed—generally obtaining context-

specific (sub)models or flux distributions. However, these approaches may lead to a 

multitude of equally valid but potentially different models or flux distributions, due to 

possible alternative optima in the underlying optimization problems. Although this 

issue introduces ambiguity in context-specific predictions, it has not been generally 

recognized, especially in the case of model reconstructions. In this study, we analyze 

the impact of alternative optima in four state-of-the-art context-specific data 

integration approaches, providing both flux distributions and/or metabolic models. To 

this end, we present three computational methods and apply them to two particular 

case studies:  leaf-specific predictions from the integration of gene expression data in 

a metabolic model of Arabidopsis thaliana, and liver-specific reconstructions derived 

from a human model with various experimental data sources. The application of these 

methods allows us to obtain the following results: (i) we sample the space of 

alternative flux distributions in the leaf- and the liver-specific case and quantify the 

ambiguity of the predictions. In addition, we show how the inclusion of ℓ1-

regularization during data integration reduces the ambiguity in both cases. (ii) We 

generate sets of alternative leaf- and liver-specific models that are optimal to each one 

of the evaluated model reconstruction approaches. We demonstrate that alternative 

models of the same context contain a marked fraction of disparate reactions. Further, 

we show that a careful balance between model sparsity and metabolic functionality 

helps in reducing the discrepancies between alternative models. Finally, our findings 

indicate that alternative optima must be taken into account for rendering the context-

specific metabolic model predictions less ambiguous.  
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3.1 Introduction 

Genome-scale metabolic models (GEMs) have proven instrumental in characterizing 

the activity of metabolic pathways in different biological scenarios. The activity of all 

metabolic reactions is specified by the flux distribution, which can be readily inferred 

from GEMs through the usage of constraint-based approaches (Bordbar, Monk, King, 

& Palsson, 2014; Lewis et al., 2012). Such approaches often infer fluxes as solutions 

to a convex optimization problem in which an objective function is optimized under 

specified constraints. Two types of constraints can generally be considered: The first 

is due to the stoichiometry, thermodynamic viability (i.e., if a reaction is irreversible 

or reversible under normal physiological conditions) and mass-balance conditions. 

These constraints are included in every constraint-based approach. The second type 

comprises constraints specific to each approach, and usually reflects the context-

specific knowledge or data to be integrated. Flux distributions which satisfy the set of 

constraints are called feasible. A convex optimization problem is guaranteed to render 

a unique optimal value (Boyd & Vandenberghe, 2010). However, it is not always 

guaranteed that there is a unique flux distribution realizing the optimal objective 

value, which leads to alternative optimal flux distributions. Indeed, such a space of 

alternative optima arises even in the case of flux balance analysis (FBA), as a 

classical representative of constraint-based approaches (Binns, de Atauri, Vlysidis, 

Cascante, & Theodoropoulos, 2015; Kelk et al., 2012; S. Lee et al., 2000; R. 

Mahadevan & Schilling, 2003; Müller & Bockmayr, 2014; Reed & Palsson, 2004). 

Experimental systems biology studies have generated comprehensive atlases of 

transcript, protein, and metabolite levels from different contexts, such as: cell types, 

developmental stages, and environments, across different species from all kingdoms 

of life (Barrett et al., 2013; Kopka et al., 2005; Marx, 2014; Petryszak et al., 2014; 

Uhlen et al., 2016; Wishart et al., 2013). Analyses of these data sets have already 

pointed that context-specific differences in the levels of molecular components often 

affect the activity of metabolic pathways. Additionally GEMs allow constraint-based 

approaches to integrate such data sets through the so-called gene-protein-reaction 

rules, which relate metabolic reactions with the enzymes involved and their coding 

genes (Blazier & Papin, 2012; Machado & Herrgård, 2014; Maria P. Pacheco, Pfau, & 

Sauter, 2016; Robaina Estévez & Nikoloski, 2014). These approaches address two 

aims: (i) obtaining context-specific flux distributions and (ii) determining context-

specific GEMs; we refer to the respective approaches as flux- and network-centered, 

respectively. Alternative optima may also result from the integration of context-

specific data. In both settings, the existence of alternative optima leads to ambiguity 

in context-specific flux distributions and/or network reconstructions, since alternative 

solutions may substantially differ. This is particularly important in the case of 

context-specific network reconstructions, where further investigations (e.g. through 
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constraint-based approaches) conducted on a single optimal network could lead to 

erroneous conclusions.  

To our knowledge, only three studies considered the space of alternative optimal 

solutions arising from flux-centered approaches: The approach termed iMAT (Shlomi 

et al., 2008) proposed a procedure to classify the flux state of reactions into active, 

inactive or uncertain across the alternative optima space. Another approach, 

abbreviated as EXAMO (Rossell et al., 2013), later used the set of active reactions 

obtained from the iMAT alternative optima space as input to the approach referred to 

as MBA (Jerby et al., 2010), a network-centered method, to reconstruct a context-

specific network.  Additionally, the Flux Variability Sampling (Recht et al., 2014) 

was used to sample the alternative space of flux values that are equidistant to the data 

integrated. Finally, we note that alternative optimal context-specific models have not 

been recognized in the case of network-centered approaches, and currently, there is no 

available method for their analysis.  

In the present study, we propose a method to quantify the variability of alternative 

optimal flux values of a flux-centered approach. Additionally, we quantify the effect 

in the alternative optima of including an additional constraint in the flux values, 

minimize the total sum of absolute flux values, which has been proposed to obtain 

unique solutions in a flux-centered method (Collins, Reznik, & Segrè, 2012). 

Furthermore, we investigate, for the first time, the space of alternative optimal 

context-specific models that arise from several network-centered approaches, and 

analyze the potential impact on further metabolic predictions and drawn biological 

conclusions. The study is organized in two parts. The first part is dedicated to 

explaining the mathematical and computational logic of both (i) the context-specific 

data integration approaches herein evaluated, and (ii) the methods that we propose to 

analyze the respective alternative optima. The second part presents the findings 

obtained from applying the previously described methods to two particular case 

studies: a leaf-specific reconstruction from the model plant Arabidopsis thaliana, and 

a human liver reconstruction. This second part serves as an illustration of the impact 

that alternative optima have in context-specific metabolic reconstructions, and may be 

followed independently from the first part—which is primary addressed to the 

specialized reader. 

3.2 Results and discussion 

3.2.1 Evaluation of alternative optima: Computational methods 

In this section, we present the mathematical formulation of the computational 

methods that we developed to investigate the alternative optima of three selected data 

integration approaches. In all three cases, we first provide an overview of the 

approach, which is followed by a description of the method to explore its alternative 

optima space. We start by a representative of a flux-centered approach—a modified 
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version of RegrEx (Robaina Estévez & Nikoloski, 2015)—and the method that we 

propose to explore its alternative optima, termed RegrEx Alternative Optima 

Sampling  (RegrExAOS). We then focus on Core Expansion (CorEx), also developed in 

this study, which we take as representative of a network-centered approach. In 

addition, we show how the optimization problem behind CorEx can be adapted to 

evaluate not only its alternative optima space, but that of FastCORE (Vlassis, 

Pacheco, et al., 2014) and CORDA (Schultz & Qutub, 2016), two state-of-the-art 

network-centered approaches.  

3.2.1.1 Alternative optima in flux-centered approaches: the case of RegrEx 

Background 

Given a GEM and (context-specific) gene or protein expression data, the Regularized 

metabolic model Extraction (RegrEx) method reconstructs a context-specific 

metabolic model, along with the corresponding flux distribution. To this end, RegrEx 

finds a feasible flux distribution that is closest to a given experimental data set. 

Therefore, it can be considered a flux-centered approach. 

The original RegrEx approach relied on a regularized least squares optimization, in 

which the Euclidean distance between the given gene expression data vector, d, and a 

feasible flux distribution, v, i.e., the squared ℓ2 norm of the difference vector ϵ = d – v, 

was minimized (Chapter 2, optimization problem (2.4)). The regularization was 

implemented by also considering the (weighted) ℓ1 norm of v in the minimization 

problem, as a means to select the reactions in the GEM that are most important for a 

given metabolic context. However, here we used a slightly modified version of 

RegrEx: Instead of minimizing the sum of square errors, we minimized the sum of 

absolute errors, i.e., the ℓ1 norm of ϵ. Except for this substitution, the modified 

RegrEx version, called RegrExLAD (for Least Absolute Deviations), follows the same 

formulation as the original RegrEx. This modification is required to guarantee that the 

optimization problem employed to explore the alternative optima space of RegrEx 

remains convex. The details of this modification and a comparison with the original 

RegrEx formulation are provided in Appendix S3.1.  

The minimization problem behind RegrExLAD considers a set of constraints required 

to handle reversible reactions: In this case, absolute flux values must be considered 

when minimizing the distance to the (non-negative) associated gene expression (i.e., 

for a reversible reaction i, ϵi = |vi| – di). This is accomplished by splitting reversible 

reactions into the forward and backward directions, each constrained to have non-

negative flux value, and introducing a vector of binary variables, x, to select only one 

of them during the optimization. Altogether, these particularities are captured in the 

mixed integer linear program (MILP),          
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In (3.1), the flux distribution, v, is partitioned into the sets of irreversible (virr), and 

reversible reactions proceeding into the forward (vfor) and backward directions (vback), 

and the (reaction) columns of the stoichiometric matrix, Sext, are ordered to match the 

partition of v. In addition, the components of the error vector, ϵi = ϵ+
i – ϵ–

i , ϵ
+

i , ϵ
–

i ≥ 

0, are split into two non-negative variables, ϵ+
i , ϵ

–
i, as a way to computationally treat 

the otherwise required absolute values of the components of ϵ. Thus, the ℓ1 norm ||ϵ||1 

= Σi |ϵi| is replaced by ϵ+
i + ϵ–

i in the objective function (ϵ is defined only over the set 

of reactions with associated data, RD in (3.1)). Finally, the λ parameter corresponds to 

the weight of the ℓ1 norm in the objective function, and is chosen during the 

optimization as to maximize the Pearson correlation between data and flux values 

(Chapter 2, section 2.2.1).  

The convexity of the optimization problem in (3.1) guarantees finding the minimum 

distance between experimental data and a feasible flux distribution that is allowed by 

the constraints. However, it does not guarantee that the resulting flux distribution is 

the only feasible one that is optimal with respect to a particular context-specific data. 

This variability in optimal flux distributions may be attributed to two factors. On the 

one hand, as mentioned above, not all reactions in a GEM are typically associated to 

data. In contrast to data-bounded reactions, there is a set of data-orphan reactions 

comprising non-enzymatically catalyzed reactions, reactions without gene-protein 

annotation or without associated data for a particular context. Data-orphan reactions 

do not contribute to the error norm in the RegrExLAD objective function, described in 

(3.1), and their flux value can vary as long as v satisfies the imposed constraints and 

its ℓ1 norm is preserved. This situation is depicted in Figure 3.1, where the search for 

a flux distribution v that is closest to the data vector, d, is carried out in the projection 
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of the flux cone, K = {v: Sv = 0, vmin ≤ v ≤ vmax}, where d resides.  On the other hand, 

the geometry of K may preclude certain reactions to obtain an exact match with the  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1. A depiction of the alternative optima space of a toy RegrEx data integration problem. (A) 

A toy data integration problem for a metabolic network with three reactions, v
1-3

, and two reaction-

associated data values, d
1-2 

is presented. In RegrEx, the optimization problem consists of finding a flux 

distribution, v
opt

, which minimizes the distance to the data being integrated and is compatible with the 

mass balance and thermodynamic constraints. In this example, only two of the three reactions are 

data-bounded; thus, the third, v
3
, is free to vary its flux value without affecting the minimum overall 

distance in (B). This situation is depicted in (C), where the flux cone (the set of flux distributions, v, 

that are compatible with the imposed constraints) is projected onto the two-dimensional space where 

the data vector, d, resides, and the search for the optimal, v
opt

 is conducted on this projection. This 

implies that v
3 

can vary along the direction orthogonal to the projection plane, as long as its value 

remains within the flux cone (here depicted as the orange line crossing the cone). Hence, the 

alternative optima space of this data integration problem consists of alternative vectors, v
opt(i)

,
 
in which 

the components v
1
 and v

2
 are fixed, and v

3
 varies between v

3optmin
 and v

3optmax
. 

 

data value, when d remains outside the projection of K. In this case, a set of flux 

distributions may be equidistant to d, thus generating variability also in the optimal 

flux value of data-bounded reactions.  

The RegrEx alternative optima sampling method 

The general approach followed by RegrExAOS, depicted in Figure 3.2, is similar to the 

Flux Variability Sampling (Recht et al., 2014) (see Appendix S3.1). RegrExAOS first 

B 

A 
C 
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creates a random flux vector, vrand, which is bounded by the maximum and minimum 

flux values previously calculated by Flux Variability Analysis (using only upper and 

lower bounds as constraints, see Methods, section 3.4). It then searches for the closest 

flux vector, v, to vrand that belongs to the alternative optima space, i.e., it is at the same 

distance to the data vector, d, and has the same ℓ1 norm as the previously calculated 

RegrExLAD optimum. This is performed by solving the MILP given in (3.2). Finally, 

RegrExAOS iterates this routine n times to obtain a sufficiently large sample; here we 

used n = 2000, which is sufficient sample size for the subsequent statistical analyses. 
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The optimization problem in (3.2) inherits constraints 1-9 from (3.1) and incorporates 

two sets of new constraints. Constraints 10 and 11 are added to guarantee that v 

renders the same similarity to data and the same ℓ1 norm of the previously found 

RegrExLAD optimum, vopt, respectively. In addition, constraints 12-14 introduce the 

auxiliary variables δirr, δfor and δback quantifying the distance of an optimal flux 

distribution to the randomly generated vrand. More specifically, δirr(i) = δ+
irr(i) – δ–

irr(i) = 

vrand(i) – virr(i), i ∈ IR, acts over the set of irreversible reactions (IR) and δfor(i) = δ+
for(i) – 

δ–
for(i) = vrand(i) – vfor(i), δback(i) = vrand(i) – vback(i),  i ∈ RR, over the set of reversible 

reactions (RR). Note that both δirr, δfor, are defined as the difference of two non-

negative components, which enables us to formulate a linear objective function that 

renders (3.2) computationally tractable. In contrast, δback does not require this 

treatment since it always takes non-negative values (see Figure 3.2). This is because 

in the MILP (3.2), the stoichiometric matrix, S, corresponding to the GEM is first 

modified in the following way: we change the sign of the columns, as well as the 

entry in vrand, corresponding to reversible reactions that were randomly assigned a 

negative flux value in vrand 
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Figure 3.2. Pseudocode for RegrEx
AOS

 and details of the treatment of reversible reactions. (A) 

RegrEx
AOS

 first finds the minimum, v
min

, and maximum, v
max

, allowable flux values through Flux 

Variability Analysis (FVA, see Methods, section 3.4) for each reaction in the GEM. It then repeats the 

following procedure until obtaining the required number of samples (nsamples). (i) Generate a random 

flux distribution, v
rand

, in which each random flux value remains within the feasible range obtained 

before. (ii) Change the sign of the negative entries in v
rand

 and of the corresponding columns in the 

stoichiometric matrix. (iii) Generate an alternative optimal flux distribution, v
AO

, that is closest to v
rand

 

through the optimization program (OP) in (3.2), which takes the modified stoichiometric matrix, S’, 

v
min

, v
max

, v
rand

, the previous optimum RegrEx solution, v
opt

 and the data vector, d, as arguments. (iv) 

Change the sign of the entries in v
AO

 corresponding to the original negative entries in v
rand

. (B) In 

RegrEx
AOS

, reversible reactions are split into the forward and backward directions. The entries 

corresponding to reversible reactions in v
rand

 are always non-negative (since the sign is changed if 

negative), and fall in the range of the corresponding forward direction (since the sign of the associated 

column in S is changed accordingly). Hence RegrEx
AOS

 can choose between δ
+

for
 – δ

-

for
, quantifying the 

distance between v
rand

 and an optimal flux value in the forward direction, or δ
back

, which measures the 

distance between v
rand

 and an optimal flux value in the backward direction. At the end of the 

optimization process (3.2), RegrEx
AOS

 selects the direction of each reversible reaction that minimizes 

the overall distance to v
rand

. 

 

B 

A 
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In this manner, all reversible reactions in vrand operate in forward direction (i.e., are 

non-negative) which facilitates the optimization process. In addition, δfor and δback are 

constrained to be mutually exclusive by the same binary variable, x, introduced to 

select only one of the directions in reversible reactions (i.e. either forward or 

backward). In this way, the optimization problem in (3.2) will select the direction of 

reversible reactions that minimizes the overall distance to vrand. Finally, reversible 

reactions whose sign was originally changed in vrand are altered back to their original 

directions and their sampled flux values are modified accordingly.  

3.2.1.2 Alternative optimal solutions in network-centered approaches: the 

case of CorEx 

In this section, we analyze the alternative optimal solutions of CorEx, a method that 

we designed in this study to represent the network-centered approaches. In a general 

sense, network-centered approaches first partition the set R = C∪P of reactions in the 

original GEM into a core set, C, that must be present in the final context-specific 

model, and a non-core set, P, which does not necessarily have to be in the final model. 

These approaches find then a subset PA⊆ P of non-core reactions that renders C 

consistent, i.e., all reactions in the core are able to carry a non-zero flux in at least one 

steady-state solution. The final context-specific subnetwork is then defined as RA = 

C∪PA. Some approaches, like MBA (Jerby et al., 2010), mCADRE (Yuliang Wang et 

al., 2012) and FastCORE (Vlassis, Pacheco, et al., 2014), aim at minimizing the size 

of PA, as to obtain a parsimonious final model. In contrast, CORDA (Schultz & 

Qutub, 2016) relaxes the parsimony condition as a way to prevent eliminating 

important reactions for a given context. In this respect, CorEx aims at obtaining a 

parsimonious model, although, as shown in the following, it can be easily adapted to 

allow increasing the size of PA if desired.  

CorEx follows the MILP displayed in (3.3), which minimizes the number of reactions 

with non-zero flux in P while constraining all reactions in the core to carry at least a 

small positive flux (ϵ in constraints 2-3). This is achieved by minimizing the norm (Z 

in (3.3)) of the vector, x, of binary variables (constraints 4-7) which selects the set PA 

that renders the MILP feasible. Note that the selected non-core reactions are forced to 

carry a small positive flux (constraints 5, 7) to guarantee that they are active in the 

final context-specific model. Finally, like in RegrEx, reversible reactions are split into 

the forward and backward directions, to operate only with non-negative flux values. 

In addition, another vector of binary variables, y in constraints 8-9 of (3.3), is 

introduced to select the direction of reversible reactions (i.e., imposing vfor > XOR 

vback > 0, when the reaction is selected to be active).  
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  (3.2) 

To identify alternative optimal CorEx extracted networks, we developed the MILP 

displayed in (3.4). The general idea behind the optimization problem in (3.4) is to find 

the most dissimilar context-specific network, RA* = C∪PA*, to a previously found 

optimal RA, that maintains the set C consistent. Namely, it maximizes the number of 

differences between the reactions contained in PA and PA*. Note that the optimization 

problem in (3.4) inherits constraints 1-9 from (3.3), and incorporates three new 

constraints. Constraint 10 guarantees that the cardinality of PA* equals that of the 

previous optimal PA in (3.3). Constraint 11 introduces two additional binary variables, 

δ+, δ–, which measure the mismatches between the vectors x, selecting the reactions in 

PA*, and the optimal vector xopt, selecting the reactions in PA and previously found by 

the optimization problem in (3.3). Finally, constraint 12 is added to impose a δ+ XOR 

δ– relationship to avoid the trivial optimal solution in which δ+ = δ–, 
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  (3.3) 

However, besides CorEx, the optimization problem (3.4) can be used to generate 

alternative optimal networks to other network-centered approaches. We just need to 

set xopt, in constraint 11, to be the optimal x vector of the particular approach under 

study; in addition, we need to update Z, in constraint 10, to the corresponding number 
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of non-core reactions added by this approach (i.e., the size of PA). Note that xopt can be 

easily constructed from the set PA, which is derived from a particular context-specific 

model. In addition, a similar constraint to the constraint 10 of (3.4), namely ||x||1 ≥ Zlb, 

may be included in (3.3), as a lower bound to its objective function, where Z* ≤  Zlb ≤ 

R, and  Z* is the unconstrained optimum of (3.3). It is in this manner that CorEx 

allows relaxing the parsimony condition, as commented before, although in this study 

we did not constrain the CorEx optimum.  

Noteworthy, the main advantage of using the optimization problem (3.4) to obtain 

alternative optimal networks lies in its MILP formulation. This is because, with the 

exception of CorEx, which also relies on a single MILP, all existing network-centered 

approaches require iteratively solving a convex optimization problem. For instance, 

the linear programs behind the searching for sparse modesin FastCORE (Vlassis, 

Pacheco, et al., 2014), or the ones behind the flux balance analysis, iterated over each 

reaction of the GEM, in CORDA (Schultz & Qutub, 2016). Alternative optima may 

arise in each one of these iterations, thus exploring the alternative optima space in 

each case would require an extensive computational effort. In contrast, we circumvent 

this problem with the optimization problem in (3.4) by analyzing the alternative 

solutions of a single MILP. However, this optimization only generates a single, 

maximally different, alternative optimal network.  

To generate a sample of alternative networks, here we applied the optimization 

problem in (3.4) in an iterative way. We first used (3.4) to obtain a maximally 

different network to a given optimal context-specific network, and then repeated this 

process of feeding (3.4) with the successively generated alternative networks until no 

additional one was found. At that point, we randomly perturbed the last network by 

changing the state (active or inactive) of 1% of the reactions, and repeated this 

process until no additional network was found (an implementation of the procedure is 

provided in File S3.1). We note that with this iterative process, which we term the 

AltNet procedure, we do not guarantee an exhaustive enumeration of all maximally 

different alternative networks. However, as shown in the next section, it sufficed to 

illustrate the variety found across optimal context-specific extracted networks in this 

study.  

Finally, we use the AltNet procedure to analyze the alternative optima space of 

CorEx, FastCORE and CORDA. In the latter case, however, the optimization problem 

in (3.4) had to be slightly modified. The reason for the modification is that CORDA 

divides the reactions in the GEM into four categories, in contrast to CorEx and 

FastCORE, where only the core, C, and the non-core set, P, are considered. 

Concretely, reactions are separated into three groups based on experimental evidence: 

reactions with high (HC), medium, (MC) and negative (NC) confidence, and an 

additional group collecting the remaining reactions (OT) in the GEM, for which 

experimental evidence is not available. In this case, the group HC corresponds to the 

core set of reactions (i.e., all reactions in HC must be included in the final model), and 

the other three groups constitute the non-core set P, although reactions in MC are 



Chapter 3  3.2 Results and discussion  

70 

preferentially added over NC and OT reactions. To account for the different reaction 

groups, we partitioned the vector x in (3.4) into the sets of MC, NC and OT reactions, 

and evaluated constraint 10 for each of the three sets. In this manner, we guaranteed 

that an alternative optimal network contained, besides all HC reactions, the same 

number of MC, NC and OT reactions than the original CORDA optimum. 

3.2.2 Evaluation of alternative optima: Case studies 

Here, we illustrate the ambiguity found during the extraction of context-specific flux 

distributions and metabolic networks due to the alternative optima. To this end, we 

apply the methods described in the previous section to two case studies: a leaf-

specific scenario, the model plant Arabidopsis thaliana, and a human, liver-specific 

reconstruction. In the first case, we used the AraCORE model, which includes the 

primary metabolism of Arabidopsis thaliana (Arnold & Nikoloski, 2014), and a leaf-

specific gene expression data set, obtained from (Booker, Burkey, Morgan, Fiscus, & 

Jones, 2012) (Methods, section 3.4). In the second case, we employed Recon1, a well-

established human metabolic model (Duarte et al., 2007). Moreover, we considered 

two different core sets of reactions that were identified as liver-specific by 

experimental evidence (taken from [19] and [20]), and upon which the liver 

reconstructions were built. In addition, we reduced the original metabolic models by 

taking only the consistent part of them. The resulting models are termed here 

Recon1red and AraCOREred, and contain a total number of 2469 and 455 reactions, 

respectively (see Methods, section 3.4, for details). 

We first analyzed the alternative optima space of RegrExLAD—as a representative of a 

flux-centered approach—and evaluated the ability of the ℓ1-regularization of 

RegrExLAD to reduce this space. To this end, we focused on the leaf-specific scenario; 

however, we also applied these methods to the liver-specific scenario, to verify if our 

main conclusions held in the case of a larger genome-scale model. We then applied 

CorEx, a network-centered representative, to extract and analyze the alternative 

optima for the leaf- and the liver-specific reconstructions, and compare its 

performance with that of FastCORE [19], a well-established approach. In addition, we 

evaluated the alternative optimal liver-specific networks generated by CORDA, a 

recently published approach [20]. Finally, we also investigated the alternative optima 

of iMAT to the leaf- and liver-specific scenario with both, the original approach 

proposed in [16] and our own complementary method. 

3.2.2.1 Alternative RegrExLAD optima during leaf-specific data integration 

After applying RegrExLAD with λ = 0, we obtained an optimal, leaf-specific flux 

distribution. We then applied RegrExAOS to evaluate the alternative optima space of 

the previously obtained optimum. The results from this evaluation confirmed the 

existence of an alternative optima space for RegrExLAD. However, the variability of 

the fluxes at the optimal objective value was not uniform across different reactions. 
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As expected, data-orphan reactions exhibited more broadly distributed flux values at 

the alternative optima than data-bounded reactions. We quantified this property by the 

Shannon entropy (Methods, section 3.4), as a measure of uncertainty of flux value 

prediction associated to a data integration problem. In this sense, data-orphan 

reactions showed a larger mean entropy value of 1.64 in comparison to the value of 

0.95 found for the data-bounded reactions (one-sided ranksum test, p-value = 

1.95x10-5). However, we found reactions with particularly low or high entropy values 

in both sets, data-bounded and data-orphan (Table S1). 

This last observation suggests that reactions with low entropy values may be of 

special importance under the leaf-specific metabolic state. On the other side, high 

entropy values suggest that the corresponding reactions could operate more freely in 

the leaf context. For instance, we found that the majority of transport reactions 

showed large entropy values, in accord with the fact that most transport reactions are 

data-orphan. Nevertheless, there were some transport reactions with particularly low 

entropy values, such as: the TP/Pi translocator (reaction index 327 in AraCOREred, 

H = 0.07) interchanging glyceraldehyde 3-phosphate and orthophosphate between the 

chloroplast and cytoplasm, the P5C exporter (index 363, H = 0.01) exporting 1-

Pyrroine-5-carboxylate from mitochondria to cytoplasm and the ADP/ATP carrier 

(index 320, H = 0.01), interchanging ATP and ADP also between mitochondria and 

cytoplasm. For a comparison, the highest entropy value in the rank is H = 2.92, 

corresponding to the Proline uniporter (see the complete list in Table S3.1). 

Therefore, the leaf data integration constrains these transport reactions to take a small 

range of different flux values due to the network context in which they operate, since 

they are not directly bounded by experimental data. This observation is contrasted by 

the high entropy values that these same three reactions when no experimental data are 

integrated, i.e., when a similar sampling procedure is performed in which only mass 

balance and thermodynamic constraints are imposed (Methods, section 3.4). In this 

case, all three entropy values are markedly larger (H > 2, Table S3.1).  

We next focused on the entropy values of reversible reactions in the AraCOREred 

model. Reversible reactions in a GEM usually correspond to reactions for which no 

thermodynamic information is available (leaving aside the set which is known to 

operate close to equilibrium). Therefore, it would be informative to evaluate whether 

integrating context-specific experimental data in a GEM could be used to fix the 

direction of such reactions. Interestingly, we found that a large proportion (75.81%) 

of the reversible reactions carrying a non-zero flux (including data-orphan) had a 

fixed direction, either forward or backward, in the alternative optima (Table 3.1). This 

finding indicates that, even though there is variation in the flux value of reversible 

reactions, integration of expression data can determine their direction in a given 

context. Therefore, the proposed approach and findings provide valuable information 

on how metabolism could be operating under the particular condition. 
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Leaf λ = 0 λ = 0.1 λ = 0.3 λ = 0.5 

𝐻𝐷𝑎𝑡𝑎 73.17 71.34 81.77 65.46 

𝐻𝑂𝑟𝑝ℎ𝑎𝑛 86.82 62.18 59.97 36.50 

𝐻𝑇𝑜𝑡𝑎𝑙 159.99 133.52 141.74 101.95 

𝐻̅𝑇𝑜𝑡𝑎𝑙 1.23 1.03 1.09 0.78 

FixedRev (%) 75.81 75.81 80.95 98.18 

Liver λ = 0 λ = 0.1 λ = 0.3 λ = 0.5 

𝐻𝐷𝑎𝑡𝑎 817.22 789.37 763.68 780.87 

𝐻𝑂𝑟𝑝ℎ𝑎𝑛 810.79 658.66 488.31 310.21 

𝐻𝑇𝑜𝑡𝑎𝑙 1628.14 1448.04 1251.99 1091.08 

𝐻̅𝑇𝑜𝑡𝑎𝑙 1.20 1.07 0.92 0.80 

FixedRev (%) 61.78 60.31 62.41 52.09 

 

Table 3.1 Summary of the alternative optima space of RegrExLAD for two case studies, Leaf and 

Liver, and four values for the parameter λ. For the analyzed sequence of increasing λ-values, the table 

includes: The sum of entropy values for the subset of data-bounded, HData, and data-orphan, HOrphan, 

reactions, as well as for all reactions, HTotal, the mean entropy value across all reactions,𝐻𝑇𝑜𝑡𝑎𝑙, and 

the proportion of reversible reactions with fixed direction in the alternative optima sample, FixedRev. 

 

3.2.2.2 Effect of regularization on the alternative optima space 

We next evaluated the RegrExLAD alternative optima space for a sequence of 

increasing λ-values. This was motivated to test whether the inclusion of ℓ1-

regularization, besides imposing sparsity in optimal flux distributions, could also 

reduce the variability found in individual reaction flux values across the alternative 

optima space. This property could serve as a way to decrease the uncertainty, as 

measured by the Shannon entropy, associated to a context-specific data integration 

problem. To this end, we first applied RegrExLAD on AraCOREred and the same leaf 

data set, but using three increasing λ-values (λ1 = 0.1, λ2 = 0.3 and λ3 = 0.5). We then 

applied RegrExAOS to sample the alternative optima space of each of the three 

RegrExLAD data integrations.  

We found that the entropy tended to decrease with increasing λ-values, although the 

effect was more pronounced for the data-orphan reactions (Table 3.1, Figure 3.3).  
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Figure 3.3. Effect of regularization on the alternative optima space of RegrEx
LAD

. The effects of 

regularization are presented, for the two case studies, by depicting the box plots of the distributions of 

Shannon entropy values, H. The distributions are partitioned into the set of data-orphan (A and E, for 

leaf and liver, respectively) and data-bounded reactions (C and G, for leaf and liver, respectively) 

across increasing λ-values. Median values, represented by red lines, decrease monotonically only in 

data-orphan reactions (bottom and upper edges in the box plots indicate the 25
th

 and 75
th

 percentile, 

respectively). Additionally, the individual entropies for each data-orphan (B and F, for leaf and liver, 

respectively) and data-bounded (D and H, for leaf and liver, respectively) reaction are also presented 

in decreasing order for the four λ–values (reactions with H < 10
-3

 are omitted). In data-orphan 

reactions, all distributions with λ > 0 fall below the corresponding to λ = 0 (without regularization, 

depicted in blue), which is not the case in data-bounded reactions.  
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For instance, the sum of entropy values among data-orphan reactions decreased from 

a value of HOrphan = 86.82 for λ = 0, to HOrphan = 36.50 with λ = 0.5. In contrast, for 

the data-bounded reactions, it only decreased from a value of 73.17 with λ = 0 to 

65.46 with λ = 0.5, and even led to a transient increase at λ = 0.3 (Table 3.1, Figure 

3.3). These findings suggest that the inclusion of regularization can reduce the 

uncertainty associated to a context-specific data integration problem. Naturally, there 

is a trade-off between decreasing uncertainty and increasing sparsity of the obtained 

models, since greater λ-values also produce smaller models that may exclude 

reactions that are relevant to a particular context (Figure 3.4). However, a mild 

regularization (λ = 0.1) already had a substantial effect in reducing the uncertainty of 

the RegrExLAD data integration in this analysis. Specifically, it decreased the total 

model entropy, defined as the sum of entropy values over all reactions, by 16.54% 

(from a value of HTotal = 159.99 for λ = 0, to HTotal = 133.52 with λ = 0.1, Table 3.1). 

 Finally, we focused on the effect that regularization had on reversible reactions. We 

found that the number of reversible reactions with fixed direction increased 

monotonically with increasing λ-values (Table 3.1). Hence, this finding suggests that 

a mild regularization can further constrain the direction in which a reversible reaction 

can proceed under a particular metabolic context.  

3.2.2.3 The RegrExLAD alternative optima in the liver-specific case 

We next analyzed the alternative optima space of RegrExLAD in the liver scenario. 

Specifically, we focused on evaluating whether the qualitative results obtained in the 

leaf context remained unchanged when using Recon1red, a larger genome-scale 

model. To this end, we used a liver-specific and publicly available gene expression 

data set (Krupp et al., 2012), and mapped it to the reactions in Recon1red following 

the same procedure as in the leaf-scenario (Methods, section 3.4). Obtaining samples 

in a larger model is more challenging, due to the increased computational time 

required to solve the MILP of (3.2). Therefore, we restricted our sample to 100 

random points for each of the four λ-values evaluated here, as to avoid an excessively 

large computational time (the total sample time remained under 41 hours, see 

Methods, section 3.4, for details).  

We observed a general qualitative agreement between the leaf and the liver scenarios 

throughout the increasing λ sequence (Figure 3.3, E-H). More specifically, data-

orphan reactions showed a monotonic decrease in their median entropy values; 

however, this effect was less apparent in the case of data-bounded reactions. 

Specifically, although the total entropy values of data-bounded reactions tended to 

decrease with increasing λ, with the exception of λ = 0.5 (Table 3.1), these differences 

were not significant (one-sided ranksum test, α = 0.05). However, we observed 

marked differences when looking at the proportion of fixed reversible reactions. In 

general, this fraction was smaller in the liver scenario, 61.78% versus 75.81% with λ 

= 0 (Table 3.1), and, in contrast to the leaf case, it did not show an increasing trend 

with increasing λ-values. We conclude that, while the sample size was smaller than 

that in the leaf case, these results again suggest that a mild ℓ1-regularization of 

RegrExLAD can be of help in reducing the ambiguity of context-specific flux values. 
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Figure 3.4. The RegrEx
LAD

 solution path through a sequence of increasing λ-values. A sequence of 

optimal solutions (i.e., flux distributions) to the leaf-specific RegrEx
LAD

 integration problem is 

presented. The sequence begins with λ = 0 (i.e., no regularization) and ends with λ = 1, which is the 

value for which all fluxes are shrunk to 0. Flux distributions get sparser with increasing λ values. In 

addition, the total entropy of the alternative optima tends to decrease with increasing λ (Figure 3.3). 

This indicates the existence of a trade-off between sparsity and entropy reduction. In this study, a mild 

regularization (λ = 0.1) seems sufficient to substantially reduce the total entropy value while 

preventing flux distributions to become too sparse (i.e., in which important reactions for a given 

context may be excluded). 

 

3.2.2.4 Alternative optima in leaf- and liver-specific metabolic networks 

We first applied CorEx and FastCORE to reconstruct two leaf-specific networks, 

LeafCorEx and LeafFastCORE. To this end, we used the AraCOREred model and a core set 

of 91 reactions, which was previously obtained by considering reactions for which the 

associated gene expression data had a value greater than the 70th percentile (Methods, 

section 3.4). Both LeafCorEx and LeafFastCORE, contained the core set and were 

consistent, i.e., all reactions were unblocked. However, we noticed that LeafCorEx was 

more compact than LeafFastCORE, containing 236 versus 254 non-core reactions, 

respectively (Table 3.2). We next reconstructed the two liver-specific networks in a 

similar way. To this end, we used the Recon1red model, and the core set of 1069 

reactions defined in the original FastCORE publication (Vlassis, Pacheco, et al., 

2014). In this case, CorEx added 593 non-core reactions to the core set, obtaining the 

liver-specific reconstruction LiverCorEx. FastCORE, on the other hand, it added 677 

non-core reactions to generate LiverFastCORE. Hence, CorEx was able to extract a more 

compact liver-specific network, resembling the behavior found in the leaf-specific 

case. After obtaining these context-specific metabolic reconstructions, we searched 

for alternative optimal networks to all of them, using the AlterNet procedure 

described in the previous section. To quantify the uncertainty of the leaf- and liver-

specific reconstructions, we looked at the number of reaction mismatches between all 
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pairs of alternative networks in each case (computed as the Hamming distance, see 

Methods, section 3.4). This metric was normalized by the total number of reactions in 

each metabolic model to allow fair comparison between the two case studies. 

 

 P #models 𝑴𝑹𝒎𝒂𝒙 𝑴𝑹
̅̅ ̅̅̅ (CV) p-value 

LeafCorEx 236 61 52 [22%] 29.03(0.29)  0 

LeafFastCORE 254 201 118 [46.5%] 66.76(0.54) 

LiverCorEx 593 4 156 [26.3 %] 108.33(0.37) 0.0022 

LiverFastCORE 677 100 398 [58.8%] 247.93(0.46) 

LiverCORDA 1527 104 992 545.22(0.42) 0 

LiverCORDAtest 1527 18 860 389.40(0.48) 

 

Table 3.2 Summary of the alternative optima space of the evaluated network-centered methods. This 

table summarizes the results of the evaluation of the CorEx alternative optima space. It includes the 

number of added non-core reactions, P, the maximum, 𝑀𝑅𝑚𝑎𝑥 (within brackets the percentage of 

reaction in P), and the mean number, 𝑀𝑅
̅̅ ̅̅  (CV stands for coefficient of variation), of reaction 

mismatches (i.e., Hamming distance) across the alternative networks for the leaf- and the liver-specific 

scenarios evaluated by two methods, CorEx and FastCORE. The last column displays the p-value 

resulted from a one-sided ranksum test comparing the distributions of Hamming distances between any 

pair of the alternative networks of CorEx and FastCORE (the null hypothesis states that the 

distribution generated by CorEx is bigger than that of FastCORE). 

 

We found marked differences between alternative optimal networks in both 

approaches and metabolic scenarios. In the case of LeafCorEx, alternative networks 

differed on average in 29 non-core reactions, with a maximum value of 52 reactions 

(22% of the added non-core reactions). In LeafFastCORE, networks differed on average 

in 66.78 reactions, and had a maximum number of 118 discrepant reactions (46.5%, 

Table 3.2). This situation was even worsened in the liver-specific reconstructions. 

Between alternative networks to LiverCorEx, we found a maximum of 156 discrepant 

reactions among the 593 in the added non-core (26.3%), with an average of 108.3. In 

the case of LiverFastCORE, the maximum number of discrepant reactions was as high as 

398 out of the 677 (58.8%) added non-core reactions, with an average of 246.93 

between alternative optimal networks (Table 3.2).  

As a complementary analysis, we also determined the frequency of occurrence of 

every non-core reaction across the alternative optimal networks. In this manner, we 

could identify: (i) a set of non-core reactions that were always included, termed the 

active non-core set, (ii) a set of non-core reactions that were excluded from all 

alternative networks, termed the inactive non-core set, and (iii) a set of non-core 

reactions that were included in some of the networks, referred to as the variable non-
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core set. In this case, we took the size of the variable non-core set as a measurement 

of the uncertainty of a context-specific network extraction; 28% and a 47% of the 

total non-core reactions were in the variable set in the cases of LeafCorEx and 

LeafFastCORE. On the other hand, a 12% and a 58% were found in LiverCorEx and 

LiverFastCORE, respectively (Figure 3.5, A-D). 

The previous results quantify the structural differences among the generated 

alternative optimal networks. However, these structural differences do not consider 

which kind of reactions (i.e., in which pathways in the GEM) are more or less 

frequent (i.e., ambiguous), in the alternative optima space. To address this issue, we 

assigned a score (between 0 and 1) to each metabolic pathway based on its 

representation in the active, variable or inactive non-core set. Specifically, the score 

represents the fraction of reactions of a given pathway that are assigned to a non-core 

subset with respect to the total size of the non-core set (Methods, section 3.4). 

Pathways with high score values in the active and inactive non-core are consistently 

over- and under-represented, respectively, among the alternative optimal networks. 

Therefore, these pathways should be more important (the opposite in the inactive non-

core case) to maintain the core active and hence the assumed context-specific 

metabolic function. In contrasts, pathways with high-score values in the variable non-

core tend to be represented only in certain alternative optimal networks, thus being 

more ambiguous in the context-specific reconstruction. 

For instance, in the leaf scenario, we found among the pathways with highest score in 

the active non-core: the Calvin-Benson cycle, light reactions and photorespiration. 

All of these pathways showed a maximum score value of 1 in both cases LeafCorEx and 

LeafFastCORE, which agrees with key roles of these pathways in a photosynthetic tissue. 

Additionally, alongside these photosynthetic pathways, we also found housekeeping 

pathways for the synthesis of AMP, CTP, GMP, UMP, Acetyl-coA or Fatty acid, 

among others, with the maximum score value in both cases. More interestingly, 

among the pathways with the highest scores in the variable set we also found primary 

pathways like the Tricarboxylic acid cycle, Alanine synthesis, the Pentose Phosphate 

Pathway and Pyruvate metabolism. However, we also found pathways that are usually 

linked to active photosynthetic tissues like Starch and sucrose degradation and 

sucrose synthesis (see Table S9 for a complete list containing the ranked pathways).  

Moreover, in the liver scenario, we found typical liver-specific pathways like 

Cholesterol Metabolism and Fatty acid oxidation (Mitra & Metcalf, 2009) with the  

maximum score value in the active non-core in the case of LiverCORDA. However, we 

also found a variety of other pathways with high scores in the variable non-core such 

as CoA catabolism, ROS detoxification or Vitamin A metabolism, which indicates that 

the variable non-core set contains a diverse set of metabolic functions that may be 

important to the canonical liver physiology (see Table S9 for a complete list of the 

ranked metabolic pathways). 
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Figure 3.5. Alternative optima of CorEx and FastCORE context-specific network extractions. The 

results are divided into the leaf-specific scenario for the CorEx (A) and FastCORE (B) alternative 

optima, and the liver-specific scenario, for CorEx (C), FastCORE (D) and CORDA without applying 

the metabolic test (E) and applying the metabolic test (F) to further constraint the alternative optima 

space (see main text). In all cases, non-core reactions are partitioned into the set that is always 

included in all alternative networks, (the fixed non-core set, in green), the set that is always excluded 

(excluded non-core, grey) and the variable non-core set (yellow) which is formed by reactions that are 

included in some of the alternative networks. In both, the leaf- and the liver-specific scenario, the 

alternative optima networks generated by CorEx contain a larger proportion of fixed non-core 

reactions and a smaller proportion of variable non-core reactions. These differences in behavior may 

be explained by the greater number of non-core reactions that are added by FastCORE, as compare to 

CorEx, in the optimal solution (see main text). 
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Finally, we analyzed the alternative optima space of CORDA, a recently published 

network-centered approach (Schultz & Qutub, 2016). As explained in section 3.2.1, 

CORDA differs to CorEx and FastCORE in two ways. On one hand, CORDA does 

not aim at obtaining compact or parsimonious models, but rather emphasizes the 

metabolic functionality of the final context-specific reconstructions. On the other 

hand, CORDA considers four groups of reactions based on experimental evidence, 

out of which only one, the high confidence core set (HC), has to be fully included in 

the final model (thus being equivalent to the core set of CorEx and FastCORE). In this 

case, a suitable alternative optimal network must contain not only the entirety of the 

HC set, but exactly the same number of reactions added by CORDA in each one of 

the three remaining groups: the medium (MC) and the negative confidence (NC) 

groups, and the reactions without experimental data (OT). Therefore, it is reasonable 

to expect that this additional constraint may reduce the uncertainty of the CORDA 

reconstructions.  

To test this idea, we searched for alternative networks to the CORDA liver 

reconstruction (here LiverCORDA) provided in (Schultz & Qutub, 2016). LiverCORDA 

was obtained from Recon1 and experimental evidence from the Human Protein Atlas 

(Marx, 2014), and contains 279 HC, 369 MC, 11 NC and 1147 OT reactions. We used 

again our AltNet procedure, Recon1red (since blocked reactions, by definition, can 

never be included in a final network), and the classification of the reactions in the four 

groups also provided in (Schultz & Qutub, 2016). We were indeed able to find 

alternative networks to the original LiverCORDA with marked differences among them. 

Concretely, a maximum number of 992 discrepant reactions between two alternative 

networks, out of the total 1527 distributed among the MC, NC and OT groups (65%, 

Table 3.2), with a mean number of 545.22. Similarly, 51% of the non-core reactions 

(MC, NC and OT) in Recon1red were assigned to the variable non-core set (Figure 

3.5, E). 

The examples presented here show that the context-specific reconstructions are more 

ambiguous than specific, especially in the human liver scenario. This latter case is of 

special concern, given the implications of obtaining accurate context-specific 

reconstructions in biomedical research. In fact, most, if not all, of the network-

centered approaches have focused on human metabolism (Jerby et al., 2010; Schultz 

& Qutub, 2016; Vlassis, Pacheco, et al., 2014; Yuliang Wang et al., 2012). There are 

ways, however, to cope with this ambiguity or uncertainty of context-specific 

reconstructions. For instance, as commented before, CORDA aims at obtaining 

functional reconstructions. In fact, the authors in (Schultz & Qutub, 2016) tested the 

capability of the LiverCORDA model to conduct a basic set of liver metabolic functions, 

including aminoacid, sugar and nucleotide metabolism.  

We evaluated the alternative LiverCORDA models with the same metabolic test 

(Methods, section 3.4), and extracted the subset that passed it. Among these networks, 

we found that the number of discrepancies and the size of the variable non-core were 

significantly reduced, as compared to the total set of alternative networks (Table 3.2, 
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Figure 3.5, E-F). This is not surprising, since requiring the alternative networks to 

fulfill certain metabolic functions indirectly imposes an additional constraint to the 

optimal solution. On the other hand, this additional constraint can also be realized by 

augmenting the core set, as to guarantee that certain key reactions are present in the 

final context-specific network. This relates to an additional way to reduce the 

ambiguity of the reconstruction. In the case studies evaluated here, we found that the 

CorEx alternative networks tended to be more similar among each other than that of 

FastCORE or CORDA, as quantified by the (normalized by non-core size) number of 

discrepancies (Table 3.2). These differences may be explained by the number of non-

core reactions included in the optimum: CorEx obtained more compact models than 

FastCORE in the Leaf- and the Liver-specific case. This imposes a more stringent 

constraint when searching for alternative optimal networks. However, there is a 

tradeoff between model parsimony and functionality. In fact, the LiverCorEx model was 

not able to pass the metabolic function test, while LiverFastCORE was able to pass it. In 

this particular case, LiverCorEx did not contain the 9 basal exchange reactions 

(Methods, section 3.4) required to perform the metabolic functions in the test. 

However, including these 9 reactions in the liver core set sufficed to generate a 

LiverCorEx model that passed the test. 

The analysis of the alternative optima space can be employed to cope with the 

ambiguity of a context-specific network reconstruction. Notably, the authors of 

EXAMO  (EXploration of Alternative Metabolic Optima) (Rossell et al., 2013) 

proposed a first step in this direction. In this case, EXAMO first generates a sample of 

alternative optimal flux distributions of iMAT (Shlomi et al., 2008). It then focuses on 

the activity state of each reaction across the sample, for which it binarizes the flux 

values through the usage of an arbitrary threshold value. A reaction is included in the 

High Frequency Reaction (HFR) set if it is active throughout the alternative optima 

sample. Finally, EXAMO uses the HFR set as a core set to  MBA (Jerby et al., 2010), 

a network-centered method, which reconstructs the minimal network that renders the 

HFR set consistent. EXAMO directly addresses the problem of alternative optima. 

However, the final context-specific model is again subject to the effects of alternative 

optima, since a set of alternative networks, all containing the HFR set as a core, could 

be found for the MBA method. 

A possible way to circumvent this problem in the case of iMAT could be the 

following: i) similar to EXAMO, obtain samples of alternative optimal flux 

distributions, binarize flux values and rank the reactions according to the number of 

times that they appear as active in the sample, ii) include the reactions that are always 

active (the HFR set) in a core set and the rest in a non-core set, and iii), add non-core 

reactions in decreasing order of frequency until consistency of the core is reached. In 

this manner, this ranking provides a way to select which non-core reactions are 

included in the final model. This idea parallels that of  mCADRE (Yuliang Wang et 

al., 2012), although in the latter, reactions are ranked following an heuristic approach 

that considers experimental evidence from several databases, which may be difficult 
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to obtain for certain metabolic contexts. Finally, to generate the sample of alternative 

optima flux distributions of iMAT, we propose a sampling method similar to 

RegrExAOS that allows drawing arbitrarily large samples, as opposed to the one used 

in EXAMO which generates samples of restricted size. Details about this method, 

here called iMATAOS, can be found in Appendix S3.2. 

In the case of the network-centered approaches here evaluated, establishing a ranking 

of non-core reactions could also be a way to deal with the ambiguity during network 

reconstructions. Non-core reactions that occur with high frequency in the alternative 

optima space should be preferentially included in the final network, while reactions 

with a low frequency should be discarded. To guarantee that the final network is 

consistent (i.e. the core set is active), non-core reactions could be again added in 

decreasing order of frequency to the core set until consistency is reached. Naturally, 

this requires the development of competent methods to sample the alternative space of 

network-centered approaches. In this sense, we consider our proposed AltNet 

procedure a first step towards this goal. 

3.3 Conclusions 

We analyzed the space of alternative optima resulting from the integration of context-

specific data into GEMs. To this end, we evaluated a representative from the flux- and 

network-centered approaches. We selected RegrEx (Robaina Estévez & Nikoloski, 

2015) as a representative of flux-centered approaches and CorEx, as a network-

centered approach, proposed in this study. In addition, we adapted CorEx to obtain 

alternative optimal networks for FastCORE (Vlassis, Pacheco, et al., 2014) and 

CORDA (Schultz & Qutub, 2016), two state-of-the-art network-centered approaches. 

We compared the developed approaches and implemented tools on two illustrative 

case studies: (i) a medium size GEM of the primary metabolism of Arabidopsis 

thaliana (Arnold & Nikoloski, 2014) and a leaf-specific gene expression data set 

(Booker et al., 2012), and (ii) a larger GEM collecting a reconstruction of a human 

metabolic network (Duarte et al., 2007), two liver-specific core sets of reactions 

(Schultz & Qutub, 2016; Vlassis, Pacheco, et al., 2014) and a liver-specific gene 

expression data set (Krupp et al., 2012).  

Our findings demonstrated the existence of a space of alternative optima for all 

evaluated approaches integrating context-specific data. Consequently, this space of 

alternative optima induces ambiguous context-specific reconstructions. In the case of 

flux-centered approaches, RegrExLAD in this study, we proposed the usage of a mild 

regularization to mediate the uncertainty of the resulting context-specific fluxes.  In 

network-centered approaches, our results showed the existence of markedly disparate 

alternative context-specific networks in CorEx, FastCORE and CORDA. A delicate 

balance between model parsimony and metabolic functionality seems key to reducing 

the ambiguity of the context-specific reconstructions. Additionally, an evaluation of 

the alternative optima space followed by a ranking of the reactions according to their 
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frequency may serve as a way to determine their context-specificity. On this line, we 

proposed the AltNet procedure to generate alternative optimal context-specific 

networks.   

As a concluding remark, we acknowledge the utility of the existent experimental data 

integration methods, since they allow a fast and automated generation of context-

specific flux distributions and metabolic networks. However, our findings indicated 

that the interpretation and further usage of their results warrant caution. Specially, 

since the existence of alternative optima is likely linked to the nature of the context-

specific data integration problem, and thus is independent of the approach used. The 

latter claim is supported by our evaluation across qualitatively different approaches. 

We advocate the view that an analysis of alternative optimal solutions should be 

performed, whenever possible, if context-specific data are integrated in metabolic 

models. In the case of context-specific networks reconstructions, more reliable results 

could be obtained from subsequent careful knowledge-based curation.  

3.4 Methods 

This section contains the details about the implementation of the methods described in 

this study, the GEMs and context-specific data employed in the case examples, and 

the computation of the distance metric between alternative optimal networks. In 

addition to this section, the MATLAB code containing the entire workflow followed 

in this study can be found in the Supplementary Information. 

3.4.1 RegrExLAD, RegrExAOS, CorEx and AltNet implementations 

All optimization programs used in this study, (3.1-4) were implemented in MATLAB 

and solved using Gurobi (version 7.1) (Gurobi Optimization, 2017) on a desktop 

machine with an Intel Core i7-4790 @3.6 GHz processor and 16GB of RAM. We 

used default Gurobi parameter values except for: i) reduced feasibility tolerance to 10-

9 when solving (3.3-4), ii) increased MIPGap parameter to 1% when solving the 

MILP in (3.2).  All generated code with the implementations is available as 

Supplementary Information. 

3.4.2 Metabolic model and gene expression data 

A reduced version of the original AraCORE model (Arnold & Nikoloski, 2014) was 

used in this study:  AraCORE contains 549 reactions and 407 metabolites assigned to 

four subcellular compartments, whereas the herein used version (AraCOREred) 

contains 455 reactions and 374 metabolites. The reactions that were removed 

correspond to exchange reactions that directly connect organelles to the environment 

(circumventing the cytoplasm), and were eliminated to avoid bias in the obtained flux 

distributions. AraCOREred can be found in the Supplementary Material. 
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Leaf-specific gene expression values were taken from (Booker et al., 2012), stored in 

the GEO database under the accession numbers GSM852923, GSM852924 and 

GSM852925 corresponding to Arabidopsis thaliana Col-0 lines with no treatment. 

The corresponding CEL files were normalized using the RMA (Robust Multi-Array 

Average) method implemented in the affy R package (Gautier, Cope, Bolstad, & 

Irizarry, 2004). In addition, probe names were mapped to gene names following the 

workflow described in (Moyano, Vidal, Contreras-López, & Gutiérrez, 2015), where 

probes mapping to more than one gene name are eliminated. Gene expression values 

were then scaled to the maximum value and mapped to reactions in the AraCOREred 

model following the included Gene-Protein-Reaction rules and a self-developed 

MATLAB function, mapgene2rxn, which is available in File S1. This process was 

repeated for the three samples in the dataset and mean values were taken as 

representative values to obtain the final leaf-specific data used in this study.  

Liver-specific gene expression values were obtained from (Krupp et al., 2012), which 

is accessible under: http://medicalgenomics.org/ma_seq_atlas/download. In this case, 

we used the RPKM values corresponding to the liver (normal tissues). Since the 

RPKM values are already normalized we used them directly as input of the 

mapgene2rxn procedure, already described. 

We removed blocked reactions from the original Recon1 model to get the Recon1red 

model used in this study. To this end, we performed a Flux Variability Analysis (see 

next section) and removed reactions with a maximum absolute flux, |vi| < 10-6. The 

Flux Variability Analysis was implemented in the MATLAB function reduceGEM 

which also extracted the reduced model, Recon1red, in a COBRA compatible 

MATLAB structure. The function is available in File S1.  

3.4.3 Extreme flux values of the flux cone  

The minimum and maximum allowed values of each reaction in AraCOREred were 

determined through Flux Variability Analysis (R. Mahadevan & Schilling, 2003). 

Although only the mass balance and the thermodynamic constraints were imposed 

(i.e., no reaction was forced to take a fraction of a previously calculated optimal 

value). This was accomplished through the following linear program, 
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which was implemented in MATLAB and solved with the Gurobi solver (version 

6.04). The own-developed MATLAB function can be found in Supplementary 

Material under the name of FVA. 
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3.4.4 Sampling flux distributions from the flux cone 

To evaluate to what extent the Leaf data integration affected the entropy values of the 

reactions in the AraCOREred model, we also sampled the space of feasible flux 

distributions (i.e., the flux cone) when no experimental data was integrated. To this 

end, and to allow direct comparability of the results, the flux cone was sampled 

following a similar approach as in RegrExAOS: first, we generated a random vector of 

flux values, vrand, within the minimum and maximum values obtained by regular Flux 

Variability Analysis. The closest flux vector v to vrand within the flux cone was then 

obtained by minimizing the Euclidean distance between the two vectors. The 

following quadratic program was used to this end: 
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This procedure was iterated to obtain a sample of size n = 2000. After the sample was 

generated, we obtained the Shannon entropy values of the samples in the same way as 

when evaluating the alternative optima space of RegrExLAD (described in the next 

section). The MATLAB function implementing this sampling procedure can be found 

in File S1 under the name coneSampling. 

3.4.5 Quantification of the RegrExLAD alternative optima space 

The Shannon entropy of the sampled alternative optima distribution, Hi, was used to 

quantify the extent to which the flux values of a reaction, i, varied across the 

alternative optima space. It was calculated as follows: 
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where fi,k represents the frequency (i.e., number of counts relative to sample size) of 

the k interval in the distribution, for n = 20 equally spaced flux value intervals within 

the flux range of i. In addition, the total entropy of an alternative optima space, HT, 

was defined as the sum of the entropies corresponding to the r reactions in 

AraCOREred, i.e., 

 
( )

1

r

T v i

i

H H


  , (3.7) 

and was taken as a measure of the total flux variability found in a particular 

alternative optima space. 
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3.4.6 Measuring the distance between alternative optimal 

networks 

In the case of CorEx, we generated the set of alternative optimal metabolic networks 

from the set of sampled alternative optimal flux distributions. To this end, we first 

generated the binary vector representations of the flux distributions. The binary vector 

representations were generated by assigning a value of 1 to the entries corresponding 

to reactions with a flux value v ≥ 10-6, and 0 otherwise. This process was repeated for 

each sampled alternative optimal flux distribution. In addition, repeated vector 

representations were removed from the generated set. After the binary representations 

were obtained, we calculated the number of mismatches between any pair, a,b, of 

binary vectors, with a ≠ b, i.e., the Hamming distance 
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In this way, we obtained a distribution of MR values whose characteristics were 

reported and compared.  

3.4.7 Generation of a ranked list of metabolic pathways 

We computed a score, ranging between 0 and 1, to quantify the ambiguity found in 

individual metabolic pathways (subsystems in the GEM) across the space of 

alternative optimal networks. Concretely, the score of a pathway, M, represents the 

fraction of the reactions in the (total) non-core set, P, belonging to the pathway that 

are assigned to the active, variable or inactive non-core (thus producing a score value 

for each case). That is, in general, 
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where XM ∈ {AM, VM, IM} represents the number of reactions assigned to M that are 

included in the active, variable or inactive non-core, respectively. 

3.4.8 Functional testing of the liver-specific reconstructions 

We performed the same metabolic test proposed in (Schultz & Qutub, 2016) and 

applied to the original Liver-specific CORDA reconstruction. This test consists of a 

list of metabolic tasks that a metabolic model has to perform, including parts of the 

aminoacid, sugar and nucleotide metabolism. Concretely, there a total of 48 metabolic 

tasks, divided into the production of different aminoacids from minimal metabolic 

sources and the excretion on urea (19 tasks), the ability to synthetize glucose from 21 

different sources (including some aminoacids), and the production of all 5 nucleotides 

and nucleotide precursors (8 tasks). The details about these tasks can be found in the 
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original CORDA publication (Schultz & Qutub, 2016), while the MATLAB code of 

our implementation of this test is provided in File S3.1. In this study, we used the 

fraction of performed tasks as measure of the ability of a given liver-specific model to 

pass this test. For instance, the liver-specific model provided in (Schultz & Qutub, 

2016) (under the name of liverCORDAnew), was able to pass 89.58% of the tasks (43 

out of 48). In this study, however, we required to pass all tasks in the test to consider 

an alternative liver-specific network as functional. We realized that, in the 

liverCORDAnew model, some reactions were slightly different to the analogous 

reactions in the Recon1red model that we used throughout this study (likely due to 

different versions of the Recon1 model, which is periodically updated (King et al., 

2016)). When we reconstructed our LiverCORDA model, using the same reaction 

identifiers in liverCORDAnew but extracting the reactions from our Recon1red 

version, we found that the generated model passed all metabolic 48 tasks in the test. 

Hence, for consistency of the results, we considered that all proper alternative optimal 

networks to LiverCORDA had to pass all 48 tasks as well. 
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Abstract 

Photosynthesis and water use efficiency, key factors affecting plant growth, are 

directly controlled by microscopic and adjustable pores in the leaf—the stomata. The 

size of the pores is modulated by the guard cells, which rely on molecular 

mechanisms to sense and respond to environmental changes. It has been shown that 

the physiology of mesophyll and guard cells differs substantially. However, the 

implications of these differences to metabolism at a genome-scale level remain 

unclear. Here, we used constraint-based modeling to predict the differences in 

metabolic fluxes between the mesophyll and guard cells of Arabidopsis thaliana by 

exploring the space of fluxes that are most concordant to cell-type-specific transcript 

profiles. An independent 13C-labeling experiment using isolated mesophyll and guard 

cells was conducted and provided support for our predictions about the role of the 

Calvin-Benson cycle in sucrose synthesis in guard cells. The combination of in silico 

with in vivo analyses indicated that guard cells have higher anaplerotic CO2 fixation 

via phosphoenolpyruvate carboxylase, which was demonstrated to be an important 

source of malate. Beyond highlighting the metabolic differences between mesophyll 

and guard cells, our findings can be used in future integrated modeling of multi-

cellular plant systems and their engineering towards improved growth. 
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4.1 Introduction 

The stomata, microscopic and adjustable pores on the leaf surface, directly control 

two of the most important parameters affecting plant growth: carbon dioxide (CO2) 

uptake from the environment and transpiration (Hetherington & Woodward, 2003). 

Thus, knowledge of the processes involved in stomatal movement is fundamental to 

understanding plant growth, and may represent a route to optimizing crop yield under 

the increasingly challenging environmental conditions (Medeiros, Daloso, Fernie, 

Nikoloski, & Ara??jo, 2015; Misra, Acharya, Granot, Assmann, & Chen, 2015). 

Stomatal movement depends on variations of the volume of two highly specialized, 

kidney-shaped cells, the guard (G) cells, which juxtapose to form the pore. The 

variations in the volume of the G cells are the macroscopic result of an intricate 

network of molecular processes occurring at different hierarchical scales (Santelia & 

Lawson, 2016).  G cells stand out from the rest of the epithelial tissue—in which they 

are embedded—not only for their particular shape, but also for the remarkable 

property of containing photosynthetically active chloroplasts. Rather than contributing 

to total leaf carbon fixation, it has been suggested that active chloroplasts may be 

linked to the particular energetic and metabolic requirements for adequate G cell 

functioning(Lawson, 2009). In contrast, carbon fixation is the primary task of the 

main photosynthetically active cells, the mesophyll (M) cells. Although G and M cells 

are physiologically differentiated, the close connection between stomatal aperture and 

photosynthetic efficiency likely involves a fine coordination between these two cell 

types (Lawson, Simkin, Kelly, & Granot, 2014; Santelia & Lawson, 2016).  

G cell represents a multisensorial system that responds to endogenous and 

environmental signals. Therefore, understanding of the complex cellular processes 

behind stomatal movement requires a systems approach to integrate experimental data 

with mathematical description of the underlying mechanisms. In practice, however, a 

complete mathematical description of stomatal movement is challenging due to 

experimental challenges and the hierarchy at which the key processes take place. 

Nevertheless, several studies, focusing on the dynamical processes of stomatal 

aperture, have rendered promising results derived from small-scale kinetic models 

(Hills, Chen, Amtmann, Blatt, & Lew, 2012; Li, Assmann, & Albert, 2006; Minguet-

Parramona et al., 2016). For instance, the OnGuard modeling framework has been 

instrumental for explaining the dynamics of stomatal movement (Z.-H. Chen et al., 

2012; Hills et al., 2012; Lawson & Blatt, 2014; Medeiros et al., 2015). It is based on a 

system of ordinary differential equations modeling the relationships between the 

influxes and outfluxes of water and different inorganic and organic osmolytes, the 

membrane potential, and macroscopic variables such as: total guard cell volume, 

turgor pressure and stomatal aperture. OnGuard also provides a phenomenological 

description of the metabolic processes involving the main organic osmolytes: sucrose 

and malate. However, it remains silent with respect to a detailed description of the 
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genome-scale metabolic processes occurring in G cells, since they are out of the scope 

of the kinetic modeling approach. 

Relatively little is known about the genome-scale metabolic differences between G 

and M cells, although they can provide key insights into the modulation of 

metabolism in the two cell types (Lawson & Blatt, 2014). A genome-scale description 

of the metabolic state of G cells would provide a valuable complement to the existing 

kinetic models (Li et al., 2006; Sun, Jin, Albert, & Assmann, 2014). To this end, one 

can use the advances in genome-scale, constraint-based modeling of plants (Arnold & 

Nikoloski, 2014; de Oliveira Dal’Molin, Quek, Palfreyman, Brumbley, & Nielsen, 

2010; Mintz-Oron et al., 2012; Poolman et al., 2009; Seaver et al., 2014), which have 

facilitated testing of hypotheses concerning the (re)distribution of steady-state 

metabolic activity under various conditions (Nikoloski, Perez-Storey, & Sweetlove, 

2015). Integration of cell-type-specific data in this modeling approach is important 

since direct measurements of metabolic activity at a systems level are currently 

infeasible(Blazier & Papin, 2012; D. R. Hyduke et al., 2013). Transcriptomics data 

have been successfully employed to derive activity patterns in context-specific 

metabolic networks across a variety of organisms, from prokaryotes to more complex 

eukaryotes (Colijn et al., 2009; Lewis, Cho, Knight, & Palsson, 2009; Shlomi et al., 

2008), and are readily available for G and M cells (Aubry et al., 2016; Bates et al., 

2012; Bauer et al., 2013; Leonhardt et al., 2004; R.-S. Wang et al., 2011; Yizhou 

Wang & Blatt, 2011; Yang, Costa, Leonhardt, Siegel, & Schroeder, 2008).  

Constraint-based modeling with integration of transcriptomics data provides a way to 

conduct differential analysis of metabolic activity between G and M cells. However, 

using transcriptomic—or even proteomic—data as an indicator of metabolic state 

calls for further justification, since metabolism is downstream in the cellular 

hierarchical organization. Integration of transcriptomics data is generally justified by 

two arguments: (i) transcript levels are currently the only data type with genome-scale 

coverage among the alternatives, protein or metabolic flux measurements, and (ii) 

transcript are not meant as proportional proxies of metabolic activity, but are rather 

used to constrain the fluxes in the large -scale model. While such an approach 

provides the basis for genome-wide differential flux profiling, it faces the challenge of 

multiple alternative optima whereby metabolic predictions for the same context-

specific data (Robaina Estévez & Nikoloski, 2017), i.e., different metabolic states 

equally fit the data. Therefore, a robust differential analysis between cell-specific 

metabolic states requires a priori evaluation of the alternative optima, as to avoid 

biased conclusions based on selecting a single optimal metabolic state as a 

representative.  

The main contributions from our constraint-based modeling study based on 

integration of G- and M-specific transcriptomics data include the following: (i) 

anaplerotic carbon fixation by phosphoenolpyruvate carboxylase (PEPc) is an 

important contributor to the production of malate in G cells, (ii)  transport of 

oxaloacetate (OAA) to the mitochondria followed by malate production and its export 
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to the cytosol is the main contributor to the cytosolic malate pool, (iii) G cells perform 

an active photophosphorylation comparable to that of M cells, but they differ in the 

production of NADPH, and (iv) sucrose synthesis is dominant in G cells due to the 

presence of a futile cycle, not due to starch degradation. Our results suggested that G 

cells have adapted their metabolism towards production of malate and NADPH. We 

then showed that the key modeling predictions were robust and were in line with data 

from an independent 13C labeling experiment, performed under similar conditions to 

those of the transcriptomic data. Therefore, our study constitutes a first step towards a 

quantitative, genome-scale analysis of the metabolic adaptations of G cells, and paves 

the way to further extensions to obtain a complete understanding of G cell physiology, 

with possible applications to crop engineering.  

4.2 Results and discussion 

4.2.1 Computational workflow and rationale for model-driven 

predictions of differences in G and M cell metabolism 

To arrive at cell-specific metabolic predictions, we integrated G- and M-specific gene 

expression data in a modified version of the AraCORE model (Arnold & Nikoloski, 

2014), here named AraCOREred (Material & Methods, Supplementary Figure S1, 

Appendix S3.1, Supplementary File S1). Our approach is fundamentally data-driven, 

and we did not include any cell-specific metabolic constraints to avoid bias while 

minimizing the discordance between fluxes and associated transcript levels. In 

constraint-based metabolic modeling, a metabolic state is characterized by the steady-

state flux values through the reactions in the system (Orth et al., 2010). In addition, a 

metabolite can be described by the sum of steady-state fluxes of reactions in which 

the metabolite participates. This sum of fluxes is referred to as a flux-sum (Chung et 

al., 2009), and quantifies the flux through the pool of the respective metabolite. 

Therefore, here we predicted reaction fluxes and metabolite flux-sums from flux 

distributions in concordance with the data, which we then employed to dissect the 

differences between G and M cell metabolism. 

Since the optimum to this multidimensional optimization problem is often not unique, 

we considered the set of alternative optima to this minimization problem, i.e., the set 

of flux distributions that are equally similar to the data. To this end, we first obtained 

a representative sample of the steady-state reaction fluxes and metabolite flux-sums 

from the optimal solution space. We then applied a Mann-Whitney test to the 

resulting distributions to assess if, in a given cell type, a particular reaction or a 

metabolite showed significantly greater flux or flux-sum value, respectively. In 

addition, we used a complementary approach in which the extreme alternative optimal 

flux values for each reaction in AraCOREred—i.e., minimum and maximum flux 

values equally concordant with data—were computed and compared between G and 

M cells. We stress that a comparison of alternative optimal samples of flux values is 



Chapter 4  4.2 Results and discussion  

92 

preferred over a comparison of extreme flux values at alternative optima. The reason 

is that the flux range alone is not sufficient to provide a robust comparison between 

the metabolic states of the two cell types. In fact, it may be the case for a reaction to 

have the same minimum and maximum alternative optimal flux values in both cell 

types, whereas the distribution of flux values can markedly differ. For instance, this is 

the case if in one cell type the distribution is skewed to the minimum flux value and, 

in the other cell type, to the maximum.  

To facilitate the interpretation of the predictions, we also determined and reported the 

mean flux and flux-sum values of each distribution and their ratios between G and M 

cells (all flux and flux-sum values are expressed in arbitrary units). However, we 

would like to stress that the differential analysis of fluxes is based on comparison of 

distributions of data-compatible flux values, by employing the Mann-Whitney test, 

and not on the comparison of their means. Therefore, in this study we refer to a flux 

as differential if its respective distributions differ, although these distributions may 

have the same mean.   

4.2.2 Interplay between the tricarboxylic acid cycle (TCA) cycle 

and PEPc in the synthesis of cytosolic malate 

Malate has been repeatedly identified as a major osmoregulator controlling stomatal 

opening and closure (Fernie & Martinoia, 2009; Santelia & Lawson, 2016). Cytosolic 

carbon fixation by PEPc, followed by reduction of oxaloacetate (OAA) by cytosolic 

NADP-dependent malate dehydrogenase (NADP-MDH) may represent an additional 

source of malate in G cells, supported by 14C and 13C labeling experiments (Daloso, 

Antunes, et al., 2015; Gotow, Taylor, & Zeiger, 1988; Reckmann, Scheibe, & 

Raschke, 1990; Willmer & Dittrich, 1974) and by gene expression and enzyme 

activity measurements (Aubry et al., 2016; Bates et al., 2012; Bauer et al., 2013; W. 

H. Outlaw & Kennedy, 1978; Parvanthi & Raghavendra, 1997). These studies showed 

a high expression or activity of enzymes of anaplerotic fixation pathway in G cells 

(Daloso, dos Anjos, & Fernie, 2016). However, these findings have been countered by 

others claiming that malate content in G cells primarily depends on the supply from 

the surrounding M cells (Araújo et al., 2011; Nunes-Nesi et al., 2007; Penfield et al., 

2012). Therefore, although there is a general consensus in considering malate a key 

regulator of stomatal regulation, its source in G cells remains unclear.  

To delineate which pathway was the main contributor to shaping the pool of malate, 

we analyzed the relative contributions of cytosolic PEPc – NADP-MDH and the TCA 

cycle to malate production in G and M cells. This modeling strategy avoids setting a 

lower bound on non-zero malate uptake (from M cells) and allows an unbiased 

comparison of fluxes in the two cell types.   

In comparison to M cells, the mean fluxes in G cells through the triad: Carbonic 

anhydrase (CA), PEPc and cytosolic NADP-MDH, were upregulated by a factor of ~ 
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12, 12 and 2, respectively, that was significant when comparing the distributions of 

alternative optimal flux values (Figure 1A, Supplementary Table S1). These 

predictions demonstrated that the anaplerotic CO2 fixation by PEPc plays a significant 

role in the production of malate in G cells. Since the average increase in the flux 

through NADP-MDH was smaller than the production of OAA by PEPc, it could be 

that a great part of the produced OAA is exported to the mitochondria and then 

converted into malate by the activity of NAD-MDH. To test this possibility, we next 

inspected the contribution of the TCA cycle to the production of cytosolic malate in G 

and M cells.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.1. (A) A comparison of the predicted metabolic state of G and M cells and (B) detailed 

depiction of the sucrose futile cycle (SFC) predicted to take place in G cells.  (A) Reactions colored in 

red (resp. black) carry significantly larger mean flux values in G (resp. M) cells. Reactions depicted in 

gray cannot be discriminated in terms of mean flux values between the two cell types. The numbers on 

the reactions correspond to the indices in Supplementary Table S1. The abbreviations used in this 

figure correspond to: PEP, Phosphoenolpyruvate, Pyr, Pyruvate, Mal, Malate, OAA, Oxaloacetate, 

Glu, Glutamate, Gln, Glutamine, α – KG, α – Ketoglutarate, FD, Ferredoxin, FD
-
, reduced 

B 

A 
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Ferredoxin, DHAP, Dihydroxyacetone phosphate, G3P, Glyceraldehyde 3-phosphate, G1P, Glucose 1-

phosphate, G6P, Glucose 6-phosphate. (B) This cycle is composed by five reactions in which sucrose is 

preferentially degraded into glucose and fructose by the activity of invertase (Inv, index number 45 in 

AraCOREred) and resynthesized following activities of hexokinase (HXK, index number 31), 

phosphoglucomutase (PGM, index number 40), UDP-glucosepyrophosphorylase (UGPase, index 

number 41) and sucrose synthase (SuSy). In M cells, Glucose 6-phosphate was synthetized exclusively 

by the action of Glucose 6-phosphate isomerase (GPI, index number 39). Values in parenthesis 

correspond to the predicted mean flux values for each reaction, values in red correspond to G cells 

while values in black to M cells. A detailed comparison of the flux values for the reactions in the CBC 

is provided in Table S3.  

 

In both G and M cells, model simulations predicted a net transport of OAA to the 

mitochondrion—through three citrate-, isocitrate- and cis-aconitate-dependent 

antiporters— followed by malate production through NAD-MDH and an export of 

malate back to cytosol (Figure 1A). Further, this pathway was predicted to be the 

main contributor to the total pool of cytosolic malate in both G and M cells. 

Specifically, malate was exported out of the mitochondrion with an averaged flux 

value of 0.311, which constitutes a ~2-fold increase as compared to the mean flux 

value through the cytosolic NAD-MDH in G cells (Figure 1A, Supplementary Table 

S1). In the case of M cells, the flux through the malate antiporters, averaging to 0.292, 

was ~3.5 larger than the cytosolic counterpart, which had a mean flux value of 0.084 

(Figure 1A, Supplementary Table S1). Finally, the flux values through the 

mitochondrial production and export of malate were all significantly larger in G cells 

(p-value < 1.19x10-6, one-sided Mann-Whitney test, Supplementary Table S1), 

although the differences were slight—the maximum fold change, ~1.2, corresponded 

to the mitochondrial NAD-MDH. 

Taken together, our predictions suggested that both PEPc – NADP-MDH and the 

TCA cycle are important contributors to malate synthesis in G cells, although the 

TCA cycle was the main contributor to the pool. In addition, the marked increment in 

cytosolic malate production in G cells suggested a diverting pathway to reallocate the 

excess of cytosolic malate in G cells, especially since mitochondrial malate 

production was almost the same in the two cell types. This was confirmed by 

significantly larger flux-sums values of malate in G cells in comparison to M cells, 

particularly for the case of chloroplasts with a mean flux-sum value in G cells of 

2.211 in comparison to 1.493 in M cells (Supplementary Table S2). In fact, model 

predictions showed a marked 7.5-fold increment in the transport of cytosolic malate to 

chloroplast in G cells (Figure 1A, Supplementary Table S1). 

4.2.3 Chloroplasts adapt their function to meet the metabolic 

requirements of G cells 

Despite decades of research, the role of chloroplasts in G cells and their potential in 

providing energy for stomatal adjustments or coordination of redox potential is still 

unresolved. G cells appear to be highly specialized for solute accumulation and are 

well equipped to generate the energy required for the uptake of ions (e.g. K+, Cl−), 
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synthesis of organic anions (particularly malate2-) and accumulation of osmotically 

active sugars, such as sucrose (Vavasseur & Raghavendra, 2005; Zeiger, Talbott, 

Frechilla, Srivastava, & Zhu, 2002). Moreover, G cells are known to have fewer and 

smaller chloroplasts (Willmer & Fricker, 1996) and lower levels of chlorophyll and 

ribulose-1,5-biphosphate carboxylase/oxygenase (RuBisCO) compared to M cells 

(Reckmann et al., 1990; Shimazaki, Terada, Tanaka, & Kondo, 1989). Therefore, we 

hypothesized that G cell chloroplasts are adapted to meet the specific metabolic 

requirements needed for stomatal functioning, rather than accomplishing the typical 

tasks of photosynthetic carbon fixation of M cells, i.e. to produce sucrose and starch. 

To test this hypothesis, we first analyzed the light-dependent reactions in the models 

specific to G and M cells. We found no significant differences in flux values, neither 

across the electron transport chain (i.e. photosystem II, cytochrome b6f and 

photosystem I) nor through the chloroplast ATPase (Figure 1A, Supplementary Table 

S1). Thus, G cells were predicted to conduct an active photophosphorylation, which 

was comparable in magnitude to that of M cells. In fact, the flux-sums of ATP in 

chloroplast were identical in both cell-types (Supplementary Table S2). This result is 

in agreement with previous observations (Lawson, Oxborough, Morison, & Baker, 

2002, 2003), since it has been shown that chloroplasts of G cells are an important 

source of ATP and NADPH (Azoulay-Shemer et al., 2015; Shimazaki & Zeiger, 

1985) and are essential for blue-light induced stomatal opening (Suetsugu et al., 

2014).  

However, G and M cells produced NADPH differently. Almost all plastidial NADPH 

was obtained in M cells through the canonical ferredoxin-NADP reductase, which 

carried a mean flux value of 0.25. In contrast, in G cells, the mean flux value through 

this reaction was halved (with a flux of 0.126), even though the production of reduced 

ferredoxin was indistinguishable in both cell types (Figure 1A, Supplementary Table 

1). The remaining reduced ferredoxin was predicted to be involved in glutamate 

synthesis in G cells, through the ferredoxin-dependent glutamate synthase, which 

carried a mean flux value of 0.124. In contrast, the mean flux value in M cells was 

only 3.671x10-5 (Figure 1A, Supplementary Table S1). The rest of the NADPH in G 

cells was generated by malate decarboxylation in chloroplasts of G cells by the malic 

enzyme, to compensate for the lower activity of the ferredoxin-NADP reductase. 

Interestingly, early studies pointed at malate decarboxylation by malic enzyme as 

playing a key role in guard cell functioning (Santelia & Lawson, 2016). Moreover, 

glutamate in chloroplasts of G cells was transported to cytosol in exchange of 

cytosolic malate by the dicarboxylate transporter. The flux through the latter was 

predicted to be 7.5-fold larger in G cells, with mean flux values of 0.251 versus 0.033, 

respectively (Figure 1A, Supplementary Table S1). 

Finally, the flux through CO2 diffusion from chloroplast to cytosol was 17-fold larger 

in G cells, with mean flux values of 0.230 in G cells and 0.013 in M cells (Figure 1A, 

Supplementary Table 1). This result largely corresponded to the excess of CO2 from 

malate decarboxylation that was not fixed by RuBisCO. Moreover, our predictions 
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indicated that the exported CO2 was largely re-fixed by PEPc in the cytosol. These 

claims can be made since the model incorporates the diffusion of CO2 to and from the 

environment, between cellular compartments, as well as the interconversion of CO2 

into bicarbonate (HCO3). Taken together, these reactions formed a cycle in G cells, 

where the CO2 fixed in cytosol was transported as malate to chloroplasts and partly 

returned to cytosol after malate decarboxylation, with a net production of NADPH 

(Figure 1A, Supplementary Table S1). These results highlight the adaptation of G 

cells metabolism to produce malate and NADPH given the lower concentration of 

chlorophyll and RuBisCO found in these cells (Willmer & Fricker, 1996).  

4.2.4 The CBC drives sucrose and starch syntheses in G cells 

Several studies have suggested that sucrose acts as an important regulator in G cells 

and, thus, plays a key role in stomatal movement (Daloso, dos Anjos, et al., 2016). 

However, the extent to which G cells are able to produce sucrose on their own is a 

point of debate. On the one hand, due to the low rate of CO2 fixation, it has been 

suggested that the contribution of the Calvin-Benson cycle (CBC) to sucrose synthesis 

in this cell type is negligible. On the other hand, other studies have identified 

scenarios in which the CBC exhibits a significant activity in G cells (W. H. J. Outlaw, 

2003; L. D. Talbott & Zeiger, 1993). Moreover, C fixation by PEPc has been 

proposed as another route to incorporate C skeletons, which could further be used to 

drive starch and sucrose synthesis via  gluconeogenesis (W. H. Outlaw & Kennedy, 

1978; Parvanthi & Raghavendra, 1997; Willmer & Dittrich, 1974). A recent study 

revealed that G cells can fix CO2 by both RuBisCO and PEPc (Daloso, Antunes, et al., 

2015);  however, the extent to which each pathway contributes to the overall amount 

of sucrose remains an open question.  

To resolve the controversy, we investigated the metabolic pathways involved in 

sucrose synthesis in both G and M cells in our modeling framework. Our results 

showed that the CBC is active in both cell types. However, most of the reactions 

involved in the CBC had significantly larger distributions of alternative optimal flux 

values in M cells, with the notable exception of the PGA kinase, with a mean flux 

value 1.8-fold larger in G cells (Supplementary Table S3). Our predictions indicated 

that sucrose synthesis was ultimately driven in both scenarios by the CBC through the 

canonical pathway of exporting plastidial dihydroxyacetone phosphate (DHAP) and 

glyceraldehyde 3-phosphate (G3P) to the cytosol, followed by the synthesis of 

fructose, 1,6–bisphosphate. Interestingly, the model predicted that sucrose synthesis 

was dominant in G cells, supported by a mean flux value of 0.055 through the sucrose 

synthase (SuSy) in comparison to 1.5410-5 in M cells (Figure 1B). The higher flux 

through SuSy in G cells was maintained through a futile cycle composed by five 

reactions (Figure 1B). Futile cycles are metabolic reactions in which the net energy 

balance or the carbon flux around is zero or near to it (Schwender, Ohlrogge, & 

Shachar-Hill, 2004), and are known to occur around sucrose in both sink and source 

tissues (Geigenberger & Stitt, 1991; Trethewey et al., 1998). In our case, sucrose was 
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re-synthesized from UDP-glucose by activity of SuSy, following the activities of 

invertase (Inv), hexokinase (HXK), phosphoglucomutase (PGM) and UDP-Glucose 

pyrophosphorylase (UGPase). These reactions resulted in an equal net consumption 

and production of UTP and H+ (Figure 1B). In fact, the marked differences in sucrose 

flux-sums between G and M cells (mean flux-sum value of 0.11 in G cells in 

comparison to 5.57x10-5 in M cells) were due to the contribution of this futile cycle in 

G cells (Supplementary Table S2). 

Although sucrose synthesis and cleavage must be dynamic processes to control 

stomatal movement, our predictions resulted from invoking the steady-state 

assumption. Therefore, we interpreted the previously described sucrose futile cycle as 

the closest steady-state solution to an underlying dynamical process, in which the 

synthetic and depleting branches alternate in accord with stomatal movements. Given 

the high number of mitochondria (Willmer & Fricker, 1996), the large catabolic 

activity found in G cells (Hampp, Outlaw, & Tarczynski, 1982) and the importance of 

osmolyte accumulation in this cell type (Zhu, Talbott, Jin, & Zeiger, 1998), the 

identified futile cycle could represent a mechanism that allows avoidance of excess 

starch synthesis. As a result, carbon skeletons are maintained in sucrose and hexoses, 

rather than starch, and can be readily used as substrate for glycolysis and 

mitochondrial metabolism.  

Given that the CBC was predicted to be active in G cells, we investigated whether it 

also drives starch synthesis. We found that G cells were predicted to conduct starch 

synthesis, although fluxes were significantly higher in M cells in two of the total three 

reactions involved (Supplementary Table S3). Mean flux values throughout starch 

degradation were in general small in both cell-types, although this process was 

significantly pronounced in M cells. For instance, mean flux values through the 

amylase were ~8-fold larger in M cells, and the disproportionating enzyme was 

predicted to be active only in M cells (Supplementary Table S3). These results 

suggested that starch degradation was not a major player in sucrose synthesis in G 

cells. 

We also found marked differences between G and M cells in the main source of CO2 

entering the CBC. Cytosolic CO2 diffusion to chloroplast was only present in M cells 

(mean flux value of 0.01, Figure 1A, Supplementary Table S1). Conversely, cytosolic 

malate import to chloroplast by the dicarboxylate transporter, followed by 

decarboxylation by plastidial MDH, was the main source of CO2 in G cells (Figure 

1A, Supplementary Table S1). In addition, as commented in the previous section, 

cytosolic PEPc was key to driving malate synthesis in G cells and its import to 

chloroplast. Altogether, these results match the experimental observations from 

(Daloso, Antunes, et al., 2015) and suggest that both, carbon fixation through CBC 

and cytosolic PEPc followed by gluconeogenesis play a major role in driving sucrose 

synthesis in G cells. As a result, the findings in (Daloso, Antunes, et al., 2015) serve 

as validation of our approach to integrating transcriptomics data for the purpose of 

comparing the distribution of values for particular fluxes at alternative optima. 
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Moreover, they indicate the presence of a C4-like metabolism in G cells, in which the 

CO2 fixation by RuBisCO is derived from decarboxylation of the C4 acid malate.  

4.2.5 Robustness of prediction to adding constraints derived 

from experimental observations 

Our computational results presented were generated by constraining the fluxes with G 

cell- and M-specific expression data. Therefore, no assumptions about the activity of 

particular reactions were considered—besides imposing a minimal flux through 

biomass production and the energy maintenance reactions—as to avoid biased 

predictions. However, we observed two modeling predictions that were unlikely under 

the photosynthetically active scenario evaluated here. In the first case, RuBisCO 

oxygenation was absent in both G and M cells, while experimental evidence 

constraints the ratio of RuBisCO’s carboxylation to oxygenation to be within 1.5 and 

4 for both cell types (F. Ma, Jazmin, Young, & Allen, 2014; Sharkey, 1988; 

Szecowka et al., 2013). In the second case, three reactions in the CBC: Fructose,1,6-

Bisphosphatase, sedoheptulose 1,7-bisphosphate aldolase and sedoheptulose-1,7-

bisphosphatase (reaction numbers 11, 13 and 14 in AraCOREred) carried very low or 

no flux values, thus compromising the functional integrity of the CBC. 

To address these inconsistencies, we repeated the computational analysis adding this 

time a constraint on the carboxylation to oxygenation ratio and including a minimum 

flux value through the three mentioned reactions in the CBC (Materials & Methods). 

We next evaluated the qualitative changes upon the inclusion of these additional 

constraints on the main computational results previously generated. To this end, we 

looked at the differences in the outcomes of the Mann-Whitney tests—comparing the 

fluxes through each reaction in G and M cells—between  the modeling predictions 

when no additional constraint was considered and upon the inclusion of the 

carboxylation to oxygenation and the minimum flux value constraints discussed 

above. We found that 26.67% of the reactions in AraCOREred changed the Mann-

Whitney test status when including the carboxylation to oxygenation constraint and 

the minimum flux value constraints through the CBC (this figure was reduced to 

26.1% when reactions in the CBC, directly affected by the imposed constraints, were 

not taken into account). However, the vast majority of these changes did not 

qualitatively affect the main results presented in this study. For instance, the G/M 

mean flux ratio through the triad CA, PEPc and cytosolic NADP-MDH, shifted from 

~12, ~12 and ~2 to ~37, ~37 and ~2, and the mean flux ratios through the ferredoxin 

NADP-reductase and the glutamate synthase shifted from 0.502 to 0.520 and from 

~3391 to ~719, respectively (Supplementary Tables S6, S7 and S8 display the full list 

for comparison). Therefore, our main results are robust upon the inclusion of these 

additional, biologically relevant, constraints. 
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4.2.6 Validation of model predictions 

In this section, we provide a description of the findings from an independent gas 

chromatography mass spectrometry (GCMS)-based 13C-labelling experiment which 

we employed to validate the flux-based predictions. The employed GCMS approach 

does not allow us to analyse the 13C flux distribution in intermediates from CBC and 

glycolysis. Therefore, we focused the analysis on sucrose and metabolites related to 

photorespiration, amino acid metabolism, anaplerotic CO2 fixation and the TCA 

cycle.       

4.2.7 G cells have higher anaplerotic CO2 fixation  

The anaplerotic reaction catalysed by PEPc is characterized by the incorporation of a 

molecule of HCO3 into PEP producing OAA and Pi (Melzer & O’leary, 1987). The C 

fixed by PEPc is incorporated in the fourth C of OAA (Nargund, Misra, Zhang, 

Coleman, & Sriram, 2014), which can be directly converted to Asp or malate by 

aspartate amino transferase (AspAT) or MDH, respectively. The anaplerotic CO2 

fixation is the main source of C incorporation in cells with C4 or CAM metabolism, in 

contrast to C3 cells (Jiao & Chollet, 1991; Osmond, 1978). It has been hypothesized 

that the anaplerotic CO2 fixation by PEPc activity is higher in G cells in comparison 

to M cells (Daloso, Antunes, et al., 2015; Reckmann et al., 1990; Vavasseur & 

Raghavendra, 2005). This idea is supported by the higher expression of genes related 

to this pathway in G cells in comparison to M cells (Bates et al., 2012; Bauer et al., 

2013; Leonhardt et al., 2004; R.-S. Wang et al., 2011). Recent results from a 13C-

isotope labelling study strongly suggest that G cells are able to fix CO2 by both 

pathways those catalysed by RuBisCO and PEPc (Daloso, Antunes, et al., 2015). 

However, despite the evidences pointing for a differential anaplerotic activity in G 

cells, this hypothesis has not yet been adequately tested.  
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Figure 4.2. Evidence for the higher anaplerotic CO

2
 fixation in G cells in comparison to M cells. M 

cells (black bars) and G cells (red bars) were fed with 
13

-NaHCO
3 

and harvested after 30 min and 60 

min in the light. The abundance of mass isotopomers of aspartate m3 (left side) and malate m3 (right 

side) in mesophyll cells (M) or guard cells (G) after 30 and 60 min in the light is displayed. The 

anaplerotic reaction catalysed by phosphoenolpyruvate carboxylase (PEPc) and the subsequent steps 

catalysed by aspartate aminotransferase (AspAT) and malate dehydrogenase (MDH) are highlighted in 

the center of the figure. Small spheres represent carbon atoms labelled directly by the activity of PEPc 

(green spheres) or by the reflux of this 
13

C by the activity of the tricarboxylic acid cycle (black 

spheres). Asterisks indicate values that are significantly different between mesophyll and guard cells by 

Student’s t-test (P <0.05) in the same time point. Data presented are mean ± standard deviation (n = 

3). 

 

Here, we used 13C-isotope labelling approach to validate the predictions about 

anaplerotic CO2 fixation. Given the instability of OAA in GCMS-based analysis, we 

focused on the malate and Asp given that these metabolites are primary products of 

OAA conversion. The relative isotopomer analysis revealed that the full labelled ion 

(m3) of malate and Asp was ~34- and ~7-fold higher in G than M cells after 30 min 

under light, respectively (Figure 2). The level of the fully labelled ion of Asp and 

malate decreased from 30 to 60 min under light, suggesting that these metabolites are 

degraded or exported out of G cells. Although we cannot exclude the possibility of 

efflux of these metabolites from G cells, they can also be employed to increase the 

flux through the TCA cycle. This idea is supported by the increase in the 13C-

enrichment in citramalate, succinate and (to a lower extent) fumarate after 60 min 

under light (Figure 3).  

The higher level of Asp and malate m3 led to a higher 13C-enrichment in these 

metabolites in G cells in comparison to M cells (Figure 3). In analyses that take into 

account the concentration of the metabolites, we also found higher percentage (%) 

and total 13C-enrichment in Asp and malate in G cells (Tables S9 and S10). The fully 

labelled malate is not only due the PEPc activity, but it also depends on labelled C 

from glycolysis and the TCA cycle. As stated above, PEPc fixes CO2 onto the fourth 

C of OAA, which can be then converted to malate, producing malate with maximum 

of two 13C (refer to green spheres on Figure 2). Therefore, the other 13C detected in 

malate and Asp obligatorily comes from fully labelled Acetyl-CoA, which is derived 

from glycolysis and its assimilation provides two additional 13C to metabolites of, or 



Chapter 4  4.2 Results and discussion  

101 

associated to, the TCA cycle (Daloso, Antunes, et al., 2015). These results were in 

line with the predictions about larger flux-sums of malate in G in comparison to M 

cells (Supplementary Table S2). Further, G cells showed higher 13C-enrichment in 

metabolites that can be derived from Asp (e.g. homoserine and threonine) and malate 

(e.g. succinate and citramalate) (Figure 3, Supplementary Table S11). Altogether, 

these results confirmed the modelling predictions and reveal that the anaplerotic CO2 

fixation catalysed by PEPc is higher in G cells.  

4.2.8 Guard cells have higher 13C-enrichment but lower capacity 

to produce sucrose under 13C-NaHCO-
3 

Sucrose is the main metabolite translocated throughout the plant and performs several 

functions in the metabolism (Fettke & Fernie, 2015). Sucrose can be produced by 

using triose phosphates and hexoses exported from chloroplast following 

photosynthesis and starch degradation, respectively (Lunn, 2008), as well as by PEPc 

fixation and gluconeogenesis (Eastmond et al., 2015). The capacity of G cells to 

produce sufficient quantity of sucrose has long been debated. Under the experimental 

condition used here, we observed higher 13C-enrichment in sucrose after 13C-NaHCO-

3 incorporation in G cells (Figure 3), which confirms the predictions of the model 

(Figure 1A-B). However, it is important to note that M cells had, on average, 2.2-fold 

more sucrose than G cells (Supplementary Table S12). The difference in the amounts 

of sucrose between the two cell types leads to an equal percentage of 13C-enrichment 

and total 13C-enrichment in sucrose between G and M cells, with both calculations 

cosidering the amount of the metabolite of each cell type (Tables S9 and S10). 

Moreover, the higher 13C-enrichment observed in G cells (Figure 3) may be due the 

use of HCO3 as labelled substrate, which could favour the fixation by PEPc rather 

than by RuBisCO. The higher expression of CA (Aubry et al., 2016; Leonhardt et al., 

2004) and higher malate decarboxylation in the chloroplast of G cells, as predicted by 

the model, may create a high CO2-concentrated atmosphere around RuBisCO of G 

cells, similarly to what has been observed in C4 cells. This would optimize the 

plastidial CO2 fixation by RuBisCO in these cells, leading to higher 13C-enrichment in 

sucrose. This idea is further supported by the higher 13C-enrichment observed in 

metabolites from photorespiratory pathway such as Ser and glycerate (Figure 3, 

Supplementary Table S11). However, further experimental evidence is needed to 

confirm this hypothesis and the model predictions.  
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Figure 4.3. 
13

C-enrichment in primary metabolites. M cells (black bars) and G cells (red bars) were 

fed with 
13

-NaHCO
3 

and harvested after 30 min and 60 min in the light. Asterisks indicate values that 

are significantly different between M and G cells, (Student’s t-test, P <0.05) for the same time point. 

Data presented are mean ± standard deviation (n = 3). The complete list of the 
13

C-enrichment is 

presented in Supplementary Table S11. Abbreviations: metabolites: GABA, gamma-aminobutyric acid; 

Suc, sucrose. Enzymes: CA, carbonic anhydrase; PEPc, phosphoenolpyruvate carboxylase; Rbcs, 

ribulose-1,5-biphosphhate carboxylase/oxygenase. Amino acids are abbreviated using the standard 

three-letters code. 
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Sucrose was thought to act as an osmolyte for G cell regulation (L. Talbott & Zeiger, 

1998). However, recent evidences suggest that the role of sucrose for G cells 

regulation may be primarily energetic (Antunes, Provart, Williams, & Loureiro, 2012; 

Daloso, Antunes, et al., 2015; Daloso, Williams, et al., 2016; Ni, 2012)  and that sugar 

metabolism and HXK activity may be pivotal in the control of stomatal movements 

(Kelly et al., 2013; Lugassi et al., 2015). The model used here predicted that higher 

fluxes through sucrose occur in G cells and this can be explained by a substrate 

(futile) cycle formed around this metabolite. Substrate cycles have been proposed to 

be important for the regulation of plant metabolism (Alonso, Raymond, Rolin, & 

Dieuaide-Noubhani, 2007; Geigenberger et al., 1997; Geigenberger & Stitt, 1991; 

Hargreaves & ap Rees, 1988; Hill & ap Rees, 1993) (Alonso, Vigeolas, Raymond, 

Rolin, & Dieuaide-noubhani, 2005), despite their ‘‘futile’’ designation. It is known 

that sucrose and hexose cycles are supported by high activity of enzymes such as 

SuSy, Inv, HXK, sucrose-phosphate synthase (SPS) and other sugar-related enzymes 

(Alonso et al., 2007; Dancer, Hatzfeld, & Stitt, 1990; Wendler, Veith, Dancer, Stitt, & 

Komor, 1991). Interestingly, most of these enzymes are highly expressed in G cells 

(Daloso, dos Anjos, et al., 2016), in further support for the idea of the substrate cycle 

predicted by the model. Additionally, futile cycles have been confirmed in vivo by 

steady-state and pulse-labelling approaches using both 14C and 13C substrates (Alonso 

et al., 2005), which can be used and are required to confirm our model predictions.  

4.3 Conclusions 

Despite decades of research, the role of central carbon metabolism on the functions of 

G cells remains poorly understood. Here, we used transcriptomics data and a large-

scale metabolic model to predict pathways with differential flux profiles between G 

and M cells. Our analysis pinpointed reactions whose distributions of fluxes in the 

space of alternative optima differ between G and M cells. Since reaction fluxes are 

difficult to be experimentally estimated in photoautotrophic growth conditions, we 

predicted flux-sums as descriptors of metabolite turnover and validated the qualitative 

behavior via an independent 13C-labeling experiment. Our results highlighted the 

metabolic differentiation of G cells as compared to the surrounding M cells, and 

strengthen the idea of occurrence of a C4-like metabolism in G cell, as evidenced by 

the higher anaplerotic CO2 fixation in this cell. Moreover, our modeling approach 

brings important and new information concerning CBC and sucrose metabolism in G 

cells, indicating that the main source of CO2 for RuBisCO comes from malate 

decarboxylation rather than CO2 diffusion and that G cells have a futile cycle around 

sucrose. The modeling and data integration strategy can be used in future studies to 

investigate the concordance between flux estimates with data from different cellular 

layers. In addition, future studies on guard cell physiology would benefit from 

coupling the flux-centered genome-scale modeling framework presented in this study 

with existing kinetic models of stomatal movement, such as OnGuard (Hills et al., 

2012). Finally, although still technically challenging, future studies would also benefit 
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from quantitative experimental data of coupled G and M cells in vivo, which could be 

integrated in a unified modeling framework addressing the coordination between the 

two cell types. 

4.4 Material and methods  

This section provides the details of the computational methods used in the metabolic 

modeling. A depiction of the general procedure followed is also available in Figure 

S4.1. In addition, all the MATLAB code used to obtain the predictions is provided in 

File S1. 

4.4.1 Gene expression data 

G cell gene expression data was obtained from (Bates et al., 2012) published under 

the GEO accession numbers GSM918075, GSM918076 and GSM918077, which 

correspond to three replicates of the same experiment. Expression data of M cells 

were obtained from (Pandey et al., 2010), also with three replicates with accession 

numbers GSM486916, GSM486917, and GSM486918. In both cases, expression data 

were measured from wild type Col-0 A. thaliana.  Data from G cells set was obtained 

from plants were grown for 8-10 weeks at 22 °C, and in an 8 hours light/16 hours 

dark cycle under 150 μmol.m-2.s-1. In the case of the data set from M cells, plants 

were grown for 5 weeks at 20/16 °C, and in an 8 hours light/16 hours dark cycle 

under 120 μmol.m-2.s-1. CEL files were normalized using the RMA method 

implemented in the affy R package (Gautier et al., 2004). In addition, probe names 

were mapped to gene names following the workflow described in (Moyano et al., 

2015), where probes mapping to more than one gene name are eliminated.  

Expression values were mapped to reactions following the gene-protein-reaction rules 

and a self-developed MATLAB function, mapgene2rxn, which can be found in File 

S4.1. Specifically, the conditional relation gi AND gj in a given reaction rule was 

modeled as the minimum expression value of the two genes, gi, gj. The conditional 

relation gi OR gj was modeled as the maximum expression of the two genes. This 

process was repeated for each of the three replicates in each cell-type (i.e., G and M 

cells). The mean and standard deviation among replicates were then calculated for 

each reaction associated gene expression. Finally, values were scaled to the maximum 

in each experiment to obtain the final expression data used in this study. 

4.4.2 Metabolic network model 

AraCORE, a metabolic network model of the primary metabolism of A. thaliana 

developed by (Arnold & Nikoloski, 2014) was used to reconstruct the metabolic 

networks specific to G and M cells. The model includes 549 reactions and 407 

metabolites assigned to four subcellular compartments. The original AraCORE 
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contains exchange reactions that directly link organelles to the environment (i.e. 

circumventing the cytosolic compartment). Therefore, all exchange reactions 

bypassing the cytosol were removed to avoid biased results. Therefore, here, we used 

a reduced AraCORE version (AraCOREred), available in File S1 that consists of 455 

reactions and 374 metabolites. 

4.4.3 Gene expression integration in AraCOREred 

The two context-specific flux distributions (i.e., corresponding to guard cell and 

mesophyll) were obtained by integrating the expression data into AraCOREred. To 

this end, we used the RegrExLAD method (Chapter 3, section 3.2.1.1), which performs 

an optimization process to find a feasible flux distribution (i.e., satisfying the 

stoichiometric and thermodynamic constraints dictated by the metabolic model used) 

that maximizes the concordance to the integrated expression data. In addition, for 

each cell type, the mapped data were scaled by the respective standard deviations 

(estimated from the three available replicates. In this way, reactions whose associated 

data were less consistent among replicates (as quantified by the standard deviation) 

contributed to a lesser extent to the global similarity between the optimal flux 

distribution and the integrated expression data.  

The biomass reaction was forced to be active by imposing that the flux, vbio, through 

the reaction “light-dependent biomass” (number 454 in AraCOREred) satisfies the 

constraint 𝑣𝑏𝑖𝑜 ≥ 10−6. Additionally, the fluxes through the three energy maintenance 

reactions in AraCOREred were forced to be greater or equal to 0.001. The three 

maintenance reactions represent the consumption of ATP by non-metabolic 

processes—i.e., apart from the consumption in the reactions included in 

AraCOREred—in the cytosol (reaction index number 448), chloroplast (449) and 

mitochondrion (450), respectively. The lower bound values were chosen to represent 

approximately a 20% of the theoretically maximum flux value for each reaction in the 

alternative optima space of RegrExLAD (as calculated per RegrExFVA, described in the 

next section). 

4.4.4 Evaluation of the alternative optima space 

We investigated the space of alternative RegrExLAD solutions with two 

complementary approaches. We employed RegrExAOS (described in section 3.2.1.1) to 

generate a uniform sample 𝑉𝐴𝑂 = {𝑣𝑖,𝑘
∗ , 𝑖 = 1, … , 𝑁𝑅 , 𝑘 = 1, … , 𝑛}, of 𝑛 = 2 ∙ 104 

random alternative optimal flux distributions (containing 𝑁𝑅 = 455 reactions) for 

each of the cell-specific scenarios. On the other hand, we developed and used 

RegrExFVA, a FVA-like (for Flux Variability Analysis) algorithm, to compute the 

minimum and maximum allowable flux values in the alternative optima space. 

RegrExFVA, depicted in (4.1), adapts the Flux Variability Analysis(R. Mahadevan & 

Schilling, 2003) procedure—originally designed to investigate the alternative optima 
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space of the linear programs behind Flux Balance Analysis (Orth et al., 2010)—to the 

particular computational setup of RegrExLAD. 
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In (4.1), constraints 1-11 are inherited from (3.1) the MILP followed by the 

RegrExLAD algorithm of section 3.2.1.1. Constraints 12 and 13 are identical to the 

homonymous constraints in (3.2) the MILP followed by RegrExAOS (section 3.2.1.1). 

Supplementary Tables S4 and S5 show the extreme values for the reactions displayed 

in Supplementary Tables S4.1 and S4.3 (a complete list can be found in the MATLAB 

data file in Supplementary File S1). 

4.4.5 Evaluation of flux values across the alternative optima 

space 

Next, the previously generated distributions of alternative flux values of each reaction 

were compared between G and M cells. To this end, a Mann–Whitney test (Lovric, 

2011) (ranksum MATLAB function) was applied to obtain the set of reactions 

showing significantly increased flux values across the alternative optima space for 

each cell-type. Specifically, we performed a right-tailed test with null hypothesis 

stating that there were not differences between the two cell types and alternative 

hypothesis stating that one cell-type (i.e., guard cells or mesophyll depending on the 

comparison) had a bigger flux distribution than the other one, rejecting the null 

hypothesis at the significance level of α = 0.05. In addition, we performed a two-tailed 

Mann-Whitney test evaluating only the significance of the difference between two 

distributions, i.e., with null hypothesis stating no differences and alternative 

hypothesis stating significant differences (either larger or smaller) between the two 

distributions. In this study, only distributions that passed the two tests, i.e., 

significantly larger (or smaller) and significantly different, were taken into account, as 

to prevent inconsistent results. 
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4.4.6 Evaluation of flux-sum values across the alternative optima 

space 

We calculated the flux-sum values for each metabolite m (𝑓𝑚,𝑘) in the AraCOREred 

model and for each alternative optimal flux distribution, 𝑣𝑘
∗ ∈ 𝑉𝐴𝑂 and cell-type as 

follows: 

 *

, ,| |,  m k j k m

j

f v j R    (4.2) 

where Rm is the index set corresponding to reactions in which metabolite m 

participates either as a substrate or as a product. This procedure generated a 

distribution of alternative flux-sum values for each metabolite in each cell-type. Next, 

the previously generated distributions of flux-sum values of each metabolite were 

compared between G and M cells. To this end, we applied the same battery of Mann-

Whitney tests previously used to compare the distributions of alternative optimal flux 

values. 

In this analysis, the different subcellular localizations of a given metabolite were 

treated as different metabolites in the metabolic network, due to the 

compartmentalization of the AraCOREred model—which is subdivided into cytosol, 

mitochondrion, chloroplast, and peroxisome. Therefore, the distribution of flux-sum 

values, 𝑓𝑚,𝑘, presented above, was obtained specifically for each subcellular 

localization of a given metabolite. However, the metabolic experimental data 

generated in this study do not discriminate between subcellular localizations of the 

measured metabolites—i.e., the data measure the total cellular pool of a metabolite 

and not the specific concentrations in each subcellular compartment. To match the 

experimental conditions, we additionally calculated the flux-sums of the metabolites 

with experimental data across all subcellular compartments. Specifically, in (1), the 

reaction index set, 𝑅𝑚∗, of a metabolite, 𝑚∗, with experimental data, contained all 

reactions in which 𝑚∗ participated across all subcellular compartments. The same 

statistical analysis used to compare the flux-sum distributions of compartmentalized 

metabolites was applied in this case. 

4.4.7 Integration of additional constraints derived from 

experimental observations  

Bounds on the carboxylation to oxygenation ratio of RuBisCO were included in the 

following way. Let 𝑣𝐶  denote the flux through RuBisCO carboxylation and 𝑣𝑂that of 

the oxygenation, then the non-linear constraint 

 

c
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can be transformed into the pair of linear constraints 

 0,lb o cr v v    (4.4) 

 0,ub o cr v v    (4.5) 

where 𝑟𝑙𝑏 , 𝑟𝑢𝑏 respectively denote the lower and upper bound of the carboxylation to 

oxygenation ratio. These linear constraints were integrated as additional constraints to 

the optimization programs performed by RegrExLAD and RegrExAOS (presented in 

section 3.2.1 of Chapter 3) to guarantee that any alternative optimal solution agreed 

with the specified bounds (in this study 𝑟𝑙𝑏 = 1.5, 𝑟𝑢𝑏 = 4). Constraints regarding the 

minimum flux through the reactions: Fructose,1,6-Bisphosphatase, sedoheptulose 

1,7-bisphosphate aldolase and sedoheptulose-1,7-bisphosphatase (reaction number 

11, 13 and 14 in AraCOREred) where integrated by increasing the lower bound 

through these reactions from zero to a small amount (0.001 in this study). 

To evaluate the changes in the simulation results due to the integration of the new set 

of constraints, we compared the outcomes of the Mann-Whitney tests across all 

reactions in the AraCOREred model. Concretely, we first transformed the vector of p-

values resulting from the comparison between G and M cells of the distributions of 

alternative optimal flux values for each reaction, into a binary vector. To this end, p-

values below the significance threshold α = 0.05 were mapped to 0, and the rest to 1. 

This process was repeated for each scenario: i) the original results without additional 

constraints, ii) the results generated after constraining the carboxylation to 

oxygenation ratio and iii) the results generated when constraining the carboxylation to 

oxygenation ratio and the flux through the three above mentioned reactions. We next 

computed the Hamming distance between the three binary vectors. In this case, we 

evaluated the distance between the whole set of reactions in the AraCOREred model, 

and between all reactions except those from the CBC, since reactions in the CBC 

were directly affected by the newly imposed constraints. 

4.4.8 Plant material and growth conditions  

Seeds of wild type Arabidopsis thaliana L. plants (Columbia ecotype) were handled 

as described previously (Daloso, Müller, et al., 2015). Fully expanded rosette leaves 

of 5-week-old plants grown under long day conditions (16h light/8h dark), light 

intensity 100 µmol photons m -2 s-1 and temperature 20°C ± 2 were harvested for 

isolation of both G cells and mesophyll cell protoplasts (MCP).  

4.4.9 Experimental set-up for in vivo G and M cells analyses   

We recently developed a methodology to perform 13C kinetic isotope labeling 

experiments in isolated G cell enriched epidermal fragments (Daloso, Antunes, et al., 

2015). Here, we modified this method to analyze the metabolic flux distribution in 
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simultaneously isolated G cells and MCP. Several experiments were performed to 

simultaneously isolate both cell types from the same plant material as well as to 

perform a 13C kinetic isotope labeling experiment following the metabolic fate of 13C-

NaHCO3 by gas chromatography-time of flight-mass spectrometry. All the solutions 

used for G cells and MCP isolation were prepared in deionized water and filtered 

through a 0.45 µm filter. The isolation of both cell types was carried out in the dark 

using leaves from dark-adapted plants in order to avoid light induced metabolic 

changes during the isolation of both cell types. Furthermore, in contrast to the original 

protocols in which the isolated cells are subjected to a high concentration of mannitol 

(0.4-0.56 M), we decided to reduce the mannitol concentration to minimize the excess 

of this metabolite in the final steps of the protocol, since this causes problems in 

subsequent metabolite determination Thus, the concentration of this osmolyte in the 

medium was reduced gradually from 0.4 M (solution I) to a final concentration of 

0.05 M (solution IV - see below). The solutions used for GC and MCP isolation were: 

enzymatic solution -20 mMMes/NaOH, pH 5.7, 0.4 M mannitol, 10 mM CaCl2, 20 

mMKCl, 0.1% (w/v) bovine serum albumin (BSA), 1% (w/v) cellulase, Onozuka R10 

(Yakult Pharmaceutical Industry Co., Tokyo, Japan), 0.25% (w/v) macerozyme, 

Onozuka R10 (Yakult Pharmaceutical Industry Co., Tokyo, Japan). Solution I - 0.4 

M mannitol, 1 mM CaCl2.Solution II - 20 mMMes/NaOH, pH 6.5, 0.1 M mannitol, 1 

mM CaCl2. Solution III - 20 mMMes/NaOH, pH 6.5, 0.05 M mannitol, 1 mM CaCl2, 

5 mMKCl and Solution IV - 20 mMMes/NaOH, pH 6.5, 0.05 M mannitol, 1 mM 

CaCl2, 5 mMKCl, 1 mM13C-NaHCO3.  

4.4.10   13C isotope labelling experiment using isolated M cell 

protoplasts  

Arabidopsis MCP were isolated from dark adapted five-week-old plants using the 

TAPE-sandwich method (Wu et al., 2009) with modifications. Approximately 20 

leaves per replicate were peeled and placed in a petri dish containing 50 mL of 

enzymatic solution and shaken in the dark. After 90 min, the solution containing MCP 

was transferred to a 50 mL Falcon tube and centrifuged at 100 g for 15 min at 4°C. 

The supernatant was removed and the pellet containing MCP was gently re-suspended 

in solution I and kept on ice and in the dark for 30 min. This procedure was repeated 

by adding and removing the solutions II and III with the same interval on ice and in 

the dark. After the addition of the solution IV, the MCP were immediately transferred 

to the light (45 ± 1 µmol photons m -2 s-1) and harvested after 30 and 60 min. We 

adjusted a methodology to rapidly collect and frozen MCP in the light following a 

previous established methodology developed for 13C kinetic labelling experiments in 

Algae (Krall, Huege, Catchpole, Steinhauser, & Willmitzer, 2009) which the MCPs 

were vacuum concentrated to a glass filter (1.6 µm). This process was carried out 

under the same light source used. The time spent between the transfer of the MCP 

from the petri dishes to the glass filter and the subsequently frozen was around 1-2 

min.      
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4.4.11   13C kinetic isotope labelling experiment in G cells 

Arabidopsis G cells were isolated from five-week-old plants according to previous 

methods (Daloso, Antunes, et al., 2015; Misra, De Armas, Tong, & Chen, 2015) with 

minor modifications. Approximately 30 whole rosettes were ground using a 

commercial blender with an internal filter (Philips, HR 2084, Amsterdam, The 

Netherlands) containing 300 ml of cold deionized water for 3 min. The internal filter 

is important to remove the excess of fibers and mesophyll cells (Daloso, Antunes, et 

al., 2015). After that, the isolated guard cell enriched epidermal fragments were 

collected on a 220 μm nylon mesh and rinsed well with distilled water (1.5 L). After 

drying the excess of water, the G cell enriched epidermal fragments preparation was 

transferred to the enzymatic solution and kept for 90 min in the dark with shaking 

(Misra, De Armas, et al., 2015). The guard cell enriched epidermal fragments were 

collected on a 30 μm nylon mesh, rinsed with solution I and kept in 15 mL of this 

solution for 30 min on ice and in the dark. The osmotic potential of the solution was 

decreased by adding 15 mL of the solution II and III with an interval of 15 min on ice. 

After, G cell enriched epidermal fragments were collected on a 30 μm nylon mesh and 

transferred to 5 mL of solution III and carefully layered on top of 20 mL Histopaque® 

solution (Histopaque-1077, Sigma Aldrich, St. Louis, USA) in a 50 mL falcon tube. 

The tube was centrifuged at 200 g for 15 min in order to separate GCs from trichomes 

and other cell debris. The layer of G cells was withdrawn from the interface of the 

two solutions with a 5 mL pipette, collected on a 30 μm nylon mesh, transferred to a 

falcon tube containing solution IV and transferred to the light (45 ± 1 μmol m-2 s-1). 

After 30 and 60 min under light, G cells were rapidly vacuum concentrated to a glass 

filter (1.6 µm) as performed for MCP and frozen.  

4.4.12  Extraction and analysis of metabolites 

The extraction of polar metabolites from G cells and MCP were carried out following 

an established gas chromatography-time of flight-mass spectrometry based platform 

(Lisec, Schauer, Kopka, Willmitzer, & Fernie, 2006) adapted to G cells (Daloso, 

Antunes, et al., 2015). In brief, the extraction of the metabolites was carried out using 

1000 µL of methanol (100%) at 70 ºC for 1 h with constant agitation. 60 µl of Ribitol 

(0.2 mg/ml stock in dH2O) was added as an internal quantitative standard. The extract 

was centrifuged at 11000g for 10 min, and 600 µL of the supernatant was transferred 

to another tube, where 500 µL of chloroform (100%) (LC grade, Sigma) and 800 µL 

of deionized water were added. After vortexing for 10 s, another centrifugation was 

carried out for 15 min at 2200 g. 1300 µL of the (upper) polar phase was collected, 

transferred to 2.0 ml tubes, and reduced to dryness in a speed vac. The sample 

derivatization was carried out using N-Methyl-N-(trimethylsilyl) trifluoroacetamide 

(MSTFA, CAS 24589-78-4, Macherey& Nagel, Düren, Germany) and methoxyamine 

hydrochloride (CAS 593-56-6, Sigma, Munich, Germany) dissolved at 20 mg/ mL in 

pure pyridine (CAS 110-86-1, Merck, Darmstadt, Germany) (Lisec et al., 2006). 
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Metabolites were identified by comparison the Golm metabolome database (Kopka et 

al., 2005). The analysis of relative abundance of mass isotopomers was carried out 

using Xcalibur 2.1 software (Thermo Fisher Scientific, Waltham, MA, USA) exactly 

as described in ref(Daloso, Antunes, et al., 2015). Absolute levels and percentage and 

total 13C-enrichment of metabolite was determined as described previously (Huege, 

Goetze, Dethloff, Junker, & Kopka, 2014; Roessner et al., 2001). 
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Chapter 5 
 

5 Discussion 

 
The scientific contributions of this thesis have been threefold. Chapter 2 presented 

and tested the performance of RegrEx, a new method to integrate experimental data 

into GEMs and aimed at generating context-specific flux distributions and models. 

Chapter 3 dealt with alternative optima in context-specific metabolic predictions, 

introduced two new computational methods to analyze the alternative optimal space 

of RegrEx: RegrExFVA and RegrExAOS, and extended this analysis to MBA-like 

methods (defined in section 1.4.3) by providing additional algorithms. In Chapter 4 

we applied RegrEx, RegrExFVA and RegrExAOS to study the central metabolism of the 

guard cells of the plant species Arabidopsis thaliana. 

In contrast to the detailed discussions provided in Chapters 2 to 4, this last chapter 

provides a broader discussion of the results presented in this thesis. Specifically, this 

chapter (i) delineates the contributions of this thesis to the developing area of context-

specific data integration in GEMs, (ii) discusses the challenges faced during the 

development of the methods presented in this thesis, and (iii) proposes some 

possibilities for improvement. The discussion will end with general considerations on 

context-specific data integration in GEMs, as well as possible future directions for the 

field. 
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5.1 Further considerations on Chapter 2 

Chapter 2 presented a new method, termed RegrEx, to integrate transcriptomics or 

proteomics data into GEMs, and aimed to obtain context-specific metabolic 

predictions. Several methods have been proposed to integrate context-specific data 

into GEMs. These methods may be loosely classified into flux-centered and network-

centered, based on whether they aim at obtaining context-specific flux distributions 

(e.g., Becker & Palsson, 2008; Colijn et al., 2009; D. Lee et al., 2012; Schmidt et al., 

2013) or networks (e.g., Jerby et al., 2010; Schultz & Qutub, 2016; Vlassis, Pacheco, 

et al., 2014; Yuliang Wang et al., 2012). In this regard, RegrEx sits in between, since 

it was developed to provide both, context-specific flux distributions and networks.  

However, two main characteristics differentiate RegrEx from other methods: fully 

automated and data-driven context-specific predictions. In fact, almost all existing 

methods require either user-defined parameters—or heuristic procedures—or the 

definition of some metabolic functions known to operate in a context, or both. The 

exception to this rule is the Lee2012 method (D. Lee et al., 2012), introduced in 

Chapter 2. RegrEx adds two innovations to Lee2012: Firstly, RegrEx is formulated as 

a single optimization problem, in which reversible reactions are directly considered by 

introducing binary variables. This characteristic avoids the iterative approach 

followed by Lee2012, which reduces the required computational time and facilitates 

the investigation of alternative optimal solutions (Chapter 3). Secondly, the 

introduction of ℓ1-regularization allows RegrEx to obtain sparse, context-specific 

solutions. This is key to selecting the set of reactions that are active under a context, 

while eliminating, i.e., shrinking the flux to zero, unspecific reactions. Altogether, 

these characteristics make RegrEx optimal in scenarios where little is known about 

the main operating metabolic functions; in these cases, a first approximation to 

delineating context-specific pathways must be data-driven and unguided.  

The biggest challenge faced during the development of RegrEx was the formulation 

of the method itself. As we commented in Chapter 2, section 2.2.1, the original idea 

behind RegrEx was to adapt LASSO (Tibshirani, 1994), a regularized regression 

method, to the particular requirements of data integration in GEMs. This idea was 

motivated by the known benefits of ℓ1-regularization on variable selection when 

dealing with high-dimensional models. A feature that could be directly applied to 

select important reactions under the context or interest. In addition, one could have 

benefited from existing efficient algorithms, which simultaneously solve the LASSO 

problem (2.1) for a range of λ values (Hesterberg et al., 2008). (The control parameter 

λ weights the effect of the regularization and must be optimized when solving the 

LASSO problem, see section 2.2.1). However, as shown in (2.2), the required 

stoichiometric and thermodynamic (i.e., reaction reversibility) constraints clearly 

distinguish RegrEx from LASSO (2.1). This led to formulating RegrEx as the MIQP 

displayed in (2.4), which easily accommodates the stoichiometric constraints ( 0Sv  ) 

and the reversibility constraints by introducing the selecting binary variables, x. 
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However, this modification ruled out the possibility of using any of the existing 

solving algorithms to the LASSO problem, and requires solving the MIQP in (2.4) for 

each tested λ value. There are two directions in which RegrEx could be further 

improved: modifying the way in which the regularization parameter λ is selected, and 

including more kinds of experimental knowledge, such as metabolomics data. We will 

consider these two directions in more detail in the following. 

In Chapter 2, we proposed the maximization of the Pearson correlation between data 

and flux values as our λ selection criterion (section 2.2.1, Figure 2.1). This criterion 

allows selecting λ in an automated and data-driven way, and provides a meaningful 

interpretation. However, there are other λ selection criteria that could be explored. For 

instance, we could balance the effect of λ on the total entropy—defined in (3.8)—of 

the alternative optima space of RegrEx, and the context-specific model functionality. 

To this end, we first need to agree on a required metabolic functionality for the 

context under consideration. This required metabolic functionality could be 

represented, for instance, as a minimum flux constraint over a selected metabolic 

pathway, or the production of a certain set of metabolites. We would then take 

samples of the alternative optima space with RegrExAOS (presented in section 3.2.1.1) 

over a sequence of λ values, and compute the total entropy in each case. Finally, we 

could select the λ value that preserves the required metabolic functionality in the 

context-specific predictions and, at the same time, reduces the total entropy of the 

alternative optima space. This selection criterion implies that RegrEx predictions 

would no longer be entirely data-driven, since a choice of a required metabolic 

functionality is needed. On the other hand, it would directly address the problem of 

the uncertainty generated by alternative optima, and would serve to implement the 

balance between model sparsity and functionality discussed in section 3.2.2. 

RegrEx was developed to primarily integrate transcriptomics data, since it is usually 

the only data source with a large reaction coverage available for most contexts. 

However, the integration of additional data types, when available, can render better 

context-specific predictions. Particularly, the consideration of several data types can 

further constraint the solution space of RegrEx, which reduces the alternative optima 

space and hence the uncertainty of the context-specific predictions. The integration of 

quantitative proteomics data is straightforward and can be even combined with 

transcript profiles during the mapping to the reactions (section 1.3.1). This approach 

was followed, for instance, by INIT (Agren et al., 2012), in which authors filled the 

“gaps” left by an incomplete protein level data set with transcriptomics data, covering 

as many reactions in the GEM as possible. The integration of metabolomics data in 

GEMs requires more elaborated strategies. However, it adds valuable context-specific 

information which relates more directly to metabolic reactions than transcripts or 

protein profiles. A simple way to integrate metabolite data is that followed by GIM3E 

(Schmidt et al., 2013): first identify a set of metabolites that are known to be produced 

under a context, and then constrain reactions producing these metabolites to be active, 

i.e., carry non-zero flux, in the context-specific prediction. This strategy is especially 
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relevant when qualitative or semi-quantitative metabolic data are available, and can be 

easily adopted by RegrEx—in fact, it is included in the provided RegrEx code 

(Robaina Estévez & Nikoloski, 2015), although it has not been evaluated in this 

thesis. The integration of quantitative metabolomics data requires different 

approaches, reviewed in Töpfer et al., (2015). RegrEx could again adopt these 

approaches to include both, transcript or protein levels and metabolomics data to 

improve the accuracy of context-specific metabolic predictions. 

5.2 Further considerations on Chapter 3 

The optimization problems employed in constraint-based approaches may be subject 

to alternative optima (see section 1.3.4). Chapter 3 explored the effects of alternative 

optima in the particular setting of context-specific data integration in GEMs. This 

thesis has made two contributions in this subject. On the one hand, the proposed 

methods: RegrExAOS and RegrExFVA (presented in Chapter 4), serve to analyze the 

alternative optima space of RegrEx. This analysis allows obtaining robust RegrEx 

predictions—as we saw in Chapter 4 when applied to the investigate the guard cell 

metabolism. Additionally, RegrExAOS permitted the investigation of the effect of the 

ℓ1-regularization on the overall uncertainty generated by the alternative optima space, 

as quantified by the total entropy. In turn, this investigation showed that the ℓ1-

regularization may be used to reduce the uncertainty of context-specific metabolic 

predictions. Moreover, while the effect of ℓ1-regularization on variable selection is 

well known (Vidaurre et al., 2013), it is the first time that the added effect on reducing 

the alternative optima space is explored and quantified. On the other hand, the AltNet 

procedure, based on the context-specific network reconstruction method CorEx 

(presented in section 3.2.1.2), allows investigating the alternative optima space of 

network-centered methods aimed at reconstructing context-specific models—in this 

thesis we only investigated CorEx, FastCORE (Vlassis, Pacheco, et al., 2014) and 

CORDA (Schultz & Qutub, 2016), although it can  be employed with other methods. 

In this case, this thesis provides the first evaluation of the effects of alternative optima 

on the context-specific metabolic model reconstructions obtained by this class of 

methods.  

The biggest challenges faced during the development of the methods presented in 

Chapter 3 are related, here again, to the formulation of the optimization problems. In 

the case of RegrExAOS, we saw in section 3.2.1.1 and Appendix S3.1 that the original 

RegrEx formulation—depicted in (2.4), and renamed as RegrExOLS—required a 

modification. The alternative formulation, i.e., RegrExLAD (3.1), only differs in the 

distance function that is minimized, i.e., sum of squares vs. sum of absolute values, 

and it was necessary to avoid the inclusion of a non-convex constraint (see section 

1.3.4) when sampling the alternative optima space. Namely,  

 
21

2 2 optZ  ,  (5.1) 
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where d v    represents the error vector and 
2

1
2 2opt optZ    the sum of the squares 

of the optimal error vector previously found by RegrExOLS. Therefore, there is not 

available method to evaluate the alternative optima space of RegrExOLS. Instead, 

RegrExLAD must be employed if we want to analyze the effects of the alternative 

optima on RegrEx predictions. Moreover, the differences between RegrExOLS and 

RegrExLAD predictions may be important in settings where the data vector, d, contains 

outliers (Appendix S3.1), thus it would be interesting to be able to sample the 

alternative optima space of RegrExOLS as in the case of RegrExLAD. This situation 

may be resolved by formulating RegrExAOS as a non-convex optimization problem, in 

which the constraint in (5.1) is included. However, non-convex optimization problems 

are in general harder to solve, due to the possible existence of a multitude of local 

optima (Boyd & Vandenberghe, 2010). A preliminary analysis, employing a state-of-

the-art solver for non-convex optimization problems, has not been successful in this 

matter, hence this problem is still open. 

On the other hand, the exploration of the alternative optima space of CorEx, and the 

other MBA-like methods, FastCORE, and CORDA, also brings some challenges. In 

this case, the biggest challenge corresponds to solving MILPs with a large number of 

binary variables. Binary variables are needed whenever some sort of variable 

exclusion constraint is required. For instance, they are employed to impose the 

exclusive condition on reversible reactions, where only one of the directions, either 

forward or backward, is allowed to carry positive flux—e.g., like in the RegrEx 

formulation (2.4). In CorEx, apart from the set of binary variables of reversible 

reactions, vector y in (3.3), another set of binary variables, x, is necessary. The reason 

is that CorEx seeks to minimize the support, i.e., the number of reactions carrying 

non-zero flux, of the non-core set P, as to minimize the number of non-core reactions 

included in the final context-specific model. Other methods, such as FastCORE, 

accomplish this through iterated LPs. Yet, the exploration of the alternative space, as 

discussed in section 3.2.1.2, requires the formulation of CorEx in a single 

optimization problem, which is only possible through the inclusion of binary 

variables. Although modern MILP solvers, such as the Gurobi solver (Gurobi 

Optimization, 2017), are becoming increasingly efficient, solving MILPs with a large 

number of binary variables is still challenging.  

In this thesis, the difficulties in solving large MILPs led to abandoning a more natural 

formulation of the AltNet procedure (section 3.2.1.2). This formulation would follow 

a similar strategy to that of RegrExAOS (section 3.2.1.1): first generate a random 

network, i.e., in which the set of included non-core reactions is determined randomly, 

then search for the closest alternative optimal network to the previous random 

network, and iterate this process n times to obtain the sample. The optimization 

problem could be casted as the following QP, 
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in which: constraints 1-9 correspond to that of the optimization problem (3.3), behind 

CorEx, constraint 10, as in (3.4), guarantees that the alternative networks are optimal, 

and constraint 11 measures the distance δ between the vector of binary variables, x, 

indicating which non-core reactions are added, and the randomly generated binary 

vector, xrand. However, this formulation required very large solving times, most likely 

due to constraint 11, which rendered it unpractical when iterated to obtain the 

samples.  

Although the sampling procedure in (5.2) may be unpractical to solve, an alternative 

approach could be developed. This approach would also aim at obtaining samples of 

alternative optimal networks, by generating random points and finding the closest 

optimal network. However, instead of generating the random point as a binary vector, 

xrand, this procedure would create a random flux vector, vrand, and then search for the 

closest point in the flux cone K (1.21) which renders the optimal support in the set of 

non-core reactions. Again, this optimization problem could be casted as the QP, 
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In (5.3), constraints 1-9 are again inherited from the optimization problem (3.3), and 

constraint 10 guarantees the optimality of the alternative networks. Constraints 11 and 

12 measure the distance, δ, to vrand, the randomly generated vector of flux values for 

the non-core reactions (i.e., the indexes i∈ P in the GEM). Constraint 11 accounts for 

irreversible reactions while constraint 12 for reversible reactions. 

Besides the developing of new methods, future improvements should also be tailored 

towards elaborating decision procedures to select a representative of the alternative 

space. In section 3.2.2.4, we proposed a possible selection procedure, in which 
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reactions were first ranked according to their frequency in the alternative optima 

space, and then preferentially included in the final context-specific model according 

to this ranking. Moreover, we discussed the possibility of using (post-optimization) 

metabolic tests, in which the space of alternative models is reduced by selecting those 

that outperform at certain predefined metabolic tasks. Both strategies represent good 

starting points to solve the problem of uncertain context-specific metabolic 

predictions due to alternative optima. 

5.3 Further considerations on Chapter 4 

Chapter 4 presented a direct application of RegrExLAD and RegrExAOS to investigate 

the central metabolism of the guard cells of Arabidopsis thaliana. The major 

contributions of this study were threefold: (i) provide large-scale metabolic 

predictions specific to guard cell and mesophyll cells, (ii) a robust differential analysis 

between the two cell types, in which the alternative optima space of RegrExLAD was 

considered, and (iii) an independent 13C experiment conducted to validate model 

predictions. These contributions differentiate this study from others which focused on 

modeling the dynamical (Hills et al., 2012; Minguet-Parramona et al., 2016) and the 

signaling (Li et al., 2006; Sun et al., 2014) processes controlling stomatal opening, 

and which did not analyze the metabolic differences between the two cell types.  

The major challenges encountered during the development of this study involved the 

lack of biological knowledge on the guard cell physiology, as well as its relations with 

the mesophyll cells. On the one hand, this scenario aligns with the purpose of RegrEx, 

since fully data-driven predictions are the only choice when little knowledge is 

available for the context of interest. On the other hand, the data-driven predictions 

provided in this study require further experimental evaluation, and may be regarded as 

a first approximation to delineating the context-specific metabolic activity in the 

guard cells. For instance, future studies could explore the effects of including 

transport reactions, such as malate exchange, between mesophyll and guard cells. This 

inclusion could shed light on the role of mesophyll cells as possible carbon sources to 

guard cells (Araújo et al., 2011; Nunes-Nesi et al., 2007; Penfield et al., 2012), as well 

as their relative contributions to the total carbon pool. However, this addition would 

require the experimental determination of, at least, upper flux bounds on these 

transport reactions. Otherwise, the conclusions obtained by the modeling predictions 

could be biased.  

Besides better and more complete experimental observations, the in silico 

investigation of guard cell physiology would benefit from a combined modeling 

strategy. In this setting, GEMs could be combined with dynamical models of stomatal 

function: GEMs would serve as a framework to integrate high-throughput data and to 

obtain flux predictions, in contrast, the dynamical models would capture the signaling 

and electrophysiological processes controlling stomatal opening. The two modeling 

frameworks could be connected through key reactions, for instance, the synthesis of 



Chapter 5  5.4 Future directions  

119 

malate or sucrose, which are included in the OnGuard dynamical model (Hills et al., 

2012). Furthermore, a similar approach as that of Dynamic Flux Balance Analysis 

(Radhakrishnan Mahadevan, Edwards, & Doyle, 2002) could be followed to 

accommodate dynamic predictions in the static modeling framework of the GEM. 

Namely, discretize time into time intervals, assume quasi-steady state of the metabolic 

network within the intervals, and use the dynamic models to constraint the flux 

through key input reactions of the GEM at the beginning of each time interval. As 

commented in section 4.1, this strategy has been successfully employed to investigate 

the evolution of C4 photosynthesis5 (Mallmann et al., 2014), and could be readily 

adapted to the guard cell scenario.  

5.4 Future directions 

Context-specific metabolic model predictions would benefit from further 

developments in two areas. On the one hand, improvements in the accuracy of GEMs, 

the quality of experimental data, and further developments of the computational 

methods6 used to combined these elements would naturally lead to better predictions. 

On the other hand, new elements could be added to the basic schema of GEMs plus 

high-throughput data followed by current methods—such as the consideration of non-

metabolic and regulatory cellular processes. In the following, we will discuss some of 

the key points in both areas. 

Any improvement in the reconstruction of GEMs leading to better metabolic 

representations would benefit context-specific predictions—all constraint-based 

predictions for that matter.  However, there are two elements related to the 

experimental data mapping to reactions (section 1.42) that are key to context-specific 

predictions: gene-protein-reaction rules and gene, reaction and metabolite canonical 

identifiers. Gene-protein-reaction rules are crucial to integrating transcriptomics and 

proteomics data into GEMs. Not only because they are required to map these data into 

the reactions, but also because the experimental values mapped to the reactions 

depend on the accuracy of the rules and on the assumptions taken during their 

elaboration. Yet, not all available GEMs are equipped with gene-protein-reaction 

rules. In other occasions, the rules suffer from bias due to the automated generation by 

algorithms that do not consider key biological constraints, such as the compartment-

specific representation of certain enzymes or transporters. Although there is active 

research in this issue (Machado, Herrgård, & Rocha, 2016), further improvements in 

the representation of gene-protein-reaction rules would markedly impact the 

correctness of context-specific predictions.  

                                                 
5 In this case, a dynamical model describing the transport processes between mesophyll and bundle 

sheath cells was combined with a GEM of a C4 plant, which included both cell types. 
6 The consideration of alternative optima during context-specific metabolic predictions constitutes an 

immediate improvement; we will not cover it here since we discussed about this in the previous 

section.  
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Furthermore, the integration of both, transcriptomics and proteomics data, and 

metabolite profiles requires unambiguous canonical identifiers for these elements. 

This is particularly important for automated mappings between experimental values 

and model elements—i.e., reactions and metabolites—which are free from human 

errors and save huge amounts of time. GEMs usually provide canonical gene 

identifiers, this is not always the case with protein names, and it is even less frequent 

with metabolite names, situation that greatly impairs the integration of metabolomics 

data. While the improvement of gene-protein-reaction rules requires considerable 

research effort, including canonical identifiers is only a matter of convention, hence 

readily solvable.  

Besides enhancing GEMs and improving the computational methods, the inclusion of 

additional, non-metabolic elements would expand the accuracy and biological 

relevance of context-specific metabolic predictions. In this area, we have already 

commented the possibility of coupling small-scale dynamical models to GEMs, as to 

obtain dynamical and large-scale predictions (section 5.3). Another route of expansion 

consists of considering regulatory elements during context-specific predictions. In this 

sense, the inclusion of gene regulatory networks7 into constraint-based metabolic 

modeling is relatively well explored (Covert, 2002; Covert, Schilling, & Palsson, 

2001; Faria et al., 2013; S. Ma et al., 2015; Marmiesse, Peyraud, & Cottret, 2015) and 

can be readily employed to enhance context-specific metabolic predictions. 

Specifically, gene regulatory networks constrain the flux through the reactions 

mapped to regulated genes in response to input effectors, such as the presence or 

absence of a metabolite or a transcription factor. These regulatory processes are 

dynamical, and hence require dynamic simulations. In this case, as when integrating 

small-scale dynamic models, dynamic simulations can be realized by subdividing the 

time coordinate into time-steps, and assuming quasi-steady-state within each time-

step. GEM predictions are then updated at the beginning of each time-step by 

including the specific constraints on reaction flux bounds, as processed by the gene 

regulatory network. We could then render the metabolic predictions context-specific 

by simultaneously considering context-specific gene regulatory networks, i.e., 

specifically developed for the context of interest (Geeven, van Kesteren, Smit, & de 

Gunst, 2012; Koch, 2016), and further constraining GEM predictions by integrating 

context-specific data.  

Finally, a complete understanding of the physiological processes governing life 

requires the development of multi-scale models. In this scenario, diverse 

                                                 
7 Gene regulatory networks represent all known transcriptional interactions between the genes of a 

species. Typically, these interactions take place between regulatory elements, the transcription factors, 

and their target genes. The transcription factors, proteins coded by regulatory genes, can repress of 

activate the transcription rate, i.e., the expression, of their target genes. At the same time, the effect and 

even the nature of the interaction depend on particular inputs that are affect the transcription factors. 

The reconstruction of gene regulatory networks from time series data of transcript levels is an active 

area of research, and a variety of computational methods to perform this task is available (Chai et al., 

2014) 
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physiological processes occurring at various time-scales and locations in an organism 

are modeled. A network of cell-specific metabolic models can serve as a base 

framework for the multiscale model. These context-specific models can then be 

coupled through transport reactions that, in turn, may be described by small-scale 

dynamical models. On top of this basic skeleton, gene regulatory networks coupled 

with dynamic models of key signaling processes can be used to constraint the flux 

outputs of the metabolic models. Naturally, multi-scale models of this sort are 

ambitious and difficult to obtain. However, the first steps toward this direction have 

already been taken (Gomes de Oliveira Dal’Molin, Quek, Saa, & Nielsen, 2015; 

Grafahrend-Belau et al., 2013; Karr et al., 2012), and current methods and 

technologies grant ample room for improvement. 
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Appendix S3.1. Detailed description of RegrExLAD and comparison with the 

original RegrExOLS 

 

Here we justify the usage of RegrExLAD, presented in the MILP (3.2) instead of the 

original RegrEx version (renamed as RegrExOLS), in MIQP (2.4), when analyzing the 

alternative optima space. As commented in Chapters 2 and 3, the RegrExOLS method 

minimizes the squared ℓ2 norm of 𝜖 = 𝑑 − 𝑣, the difference vector between the 

experimental data vector, 𝑑, and a feasible flux distribution, 𝑣. This is indeed the only 

difference with respect to the RegrExLAD method, which minimizes the ℓ1 norm (i.e., the 

sum of absolute error values) of 𝜖.   

During the course of this study, we first tried to investigate the alternative optima space 

of RegrExOLS through a sampling procedure, in a way akin to the Variability Flux 

Sampling procedure  implemented in (Recht et al., 2014). The Variability Flux 

Sampling procedure was developed to investigate the alternative optima space of the 

InGenMinimizer method (presented in the same publication), by generating a random 

sample of alternative optimal flux distributions. The InGenMinimizer method follows 

the quadratic program, 
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Therefore, RegrExOLS can be seen as an extension of the InGenMinimizer method (A.1), 

in which (i) ℓ1-regularization is included in the objective function, and (ii) reversible 

reactions with associated data are also considered in the minimization, which requires 

introducing a vector of binary variables, x (as explained in the main text).  

The Variability Flux Sampling procedure was formulated as the quadratic program, 
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which minimizes the distance, 𝛿, between an alternative optimal flux distribution, 𝑣, 

and a randomly generated flux distribution, 𝑣𝑟𝑎𝑛𝑑. The QP in (A.2) is solved n times to 

obtain a sample of n alternative optimal flux distributions). The key in (A.2) is the 

constraint number 4, i.e.,  
1

2
‖𝜖‖2

2 = 𝑍𝑜𝑝𝑡 ,which guarantees that any sampled feasible 𝑣, 

is also optimal, since it renders the same squared ℓ2 norm of 𝜖 previously obtained by 

(A.1). This is a quadratic equality constraint, which makes (A.2) non-convex and thus 

intractable by convex optimization tools. Note that this constrain would also be required 

in the case of RegrExOLS, since it also minimizes the squared ℓ2 norm of 𝜖.  

In the Variability Flux Sampling procedure, authors used a non-convex solver, MINOS 

(Bruce A. Murtagh, n.d.), to tackle this problem. However, several aspects make the 

case of RegrExOLS more complex: firstly, in the Variability Flux Sampling procedure 

authors only dealt with seven reactions with associated data, in contrast, RegrExOLS 

must evaluate all reactions with associated data in a GEM. Secondly, integer variables 

were not required in the Variability Flux Sampling procedure, since all seven reactions 

were irreversible, as oppose to RegrExOLS, where reversible reactions with associated 

data are also consideredt. Lastly, a flux distribution that is alternatively optimal to 

RegrExOLS must also render the same ℓ1 norm as the original optimum, thus a second 

constraint like ‖𝑣𝑠‖1 = ‖𝑣𝑜𝑝𝑡‖
1
 must be added. Altogether, these particularities make 

the optimization problem associated to any RegrExOLS alternative optima sampling 

procedure hardy tractable by any existing solver. However, it is computationally 

tractable to sample alternative optimal solutions of RegrExLAD. This is because the 

objective function of RegrExLAD is linear, and hence only two linear constraints are 

required to guarantee that a sampled flux distribution is optimal to RegrExLAD.  Thus, 

the sampling procedure (RegrExAOS, see main text) can be casted as a convex 

optimization problem and solved with existing solvers. 

Although computational tractability was our main motivation to develop RegrExLAD, we 

noted that this alternative version may have another advantage over the original 

RegrExOLS. RegrExOLS and RegrExLAD parallel two classical approaches followed in 

linear regression, namely, the ordinary least squares (OLS) and the least absolute 

deviations (LAD, also known as least absolute value, LAV) method (Lawrence & Shier, 

2010). OLS and LAD regression behave differently upon the presence of outliers in the 

distribution of errors (i.e., the vector 𝜖), that is, elements that are very far away from the 

mean of the distribution. Concretely, the OLS method tends to get biased results in such 

cases, since the squared ℓ2 norm of 𝜖 gives excessive importance to these elements. On 

the other hand, the LAD method is more robust under the presence of such outliers, and 

thus less prone to give biased results (in fact, the LAD method is the simplest among the 

so-called Robust Regression techniques, see for instance (Dielman, 2005)). In the 

context of RegrEx, this means that RegrExLAD could be a better choice in cases where 

outliers are present in the error distribution, for instance, if a given mapped gene 

expression value is particularly high with respect to the mean value of the gene 

expression data set. In fact, this idea has been implemented in the case of the least 

absolute shrinkage and selection (LASSO) operator (Tibshirani, 1994) (which inspired 
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the development of RegrExOLS), which applies a ℓ1-regularization to an OLS regression. 

Concretely, the LASSO has been adapted to a LAD regression, showing advantages in 

cases where the distribution of errors is not appropriate for OLS estimation (H. Wang, 

Li, & Jiang, 2007). 

To test the previous idea, we evaluated the RegrExOLS and RegrExLAD performance 

under the inclusion of outliers in the leaf data set used in the main study. To this end, 

we first generated a sample of randomly perturbed leaf data vectors, 𝑑𝐿𝑒𝑎𝑓(𝑗)
∗ = 𝑑𝐿𝑒𝑎𝑓 +

𝜇(𝑗), 𝑗 = {1, … , 104}, obtained by adding a uniform noise ,𝜇(𝑗), (±1% of the mean value 

of 𝑑𝐿𝑒𝑎𝑓) to the original leaf data set, 𝑑𝐿𝑒𝑎𝑓. We next obtained a “contaminated” leaf 

data set, which contained an outlying expression value for one of the reactions. 

Concretely, we substituted the data associated to the reaction that had the minimum 

value in 𝑑𝐿𝑒𝑎𝑓 by a large amount, in this case 5 times the maximum value in 𝑑𝐿𝑒𝑎𝑓. We 

then applied RegrExOLS and RegrExLAD using the AraCOREred model and the 

contaminated leaf data set, and calculated the total sum of the absolute errors,  

 *1
( ) ( , ) ( , )| |

,
Dj i j Leaf i jR

j

T v d     (A.3) 

with 𝑖 = {1, … , 𝑅𝐷}, where |𝑅𝐷| corresponds to the number of reactions with associated 

data, between the optimum RegrExOLS and RegrExLAD flux distributions and each of the 

perturbed leaf datasets, 𝑑𝐿𝑒𝑎𝑓(𝑗)
∗ , in the sample (the code used in this evaluation is 

included in File S3.1). In this evaluation, RegrExLAD rendered smaller total sums of 

absolute errors across the perturbed data sample (mean 𝑇𝜖 = 0.718 in RegrExLAD versus 

a mean 𝑇𝜖 = 0.722 in RegrExOLS) as determined by a two-sided Mann-Whitney test (p-

value = 0). In addition, RegrExLAD did not render smaller total sums when the original 

(“uncontaminated”) leaf data set was used under the same setting (mean 𝑇𝜖 = 0.709 in 

RegrExLAD versus a mean 𝑇𝜖 = 0.706 in RegrExOLS, p-value = 1) . Although the 

reported differences between total sums of absolute errors are small, they serve to 

illustrate the more robust behavior of RegrExLAD under the presence of outliers. 
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Appendix S3.2. Description of iMATAOS and application to the two evaluated 

case studies 

Alternative optimal solutions in the iMAT method: background 

As mentioned in the main text, there already exists a procedure to investigate the 

alternative optima space for iMAT (Shlomi et al., 2008). Hence, we considered relevant 

to apply iMAT to the same context-specific reconstructions examples used in CorEx, 

and analyze its alternative optimal solutions. Here, we briefly summarize the iMAT 

method as well as the procedure proposed by the authors to analyze its alternative 

optima. In addition, we present our novel complementary approach to sample the 

alternative optima space of iMAT. iMAT aims at maximizing the global similarity 

between a given expression data set and a feasible flux distribution of the GEM where 

data is being integrated. Therefore, in this sense, it follows an approach similar to 

RegrEx. However, iMAT does not directly minimize the distance between data and flux 

values. Instead, iMAT first integrates experimental information by classifying reactions 

in the GEM into two groups: one, RH, populated by reactions with highly expressed 

associated genes (i.e., above a fixed threshold value, ϵ) and another, RL, by reactions 

with lowly expressed associated genes (i.e., below ϵ). The MILP presented in (A.4) is 

then solved to maximize the number of active reactions in RH (with non-zero flux) and 

the number of inactive reactions in RL (with zero flux value), subject to the usual mass 

balance and thermodynamic constraints. This is implemented by maximizing the norm 

of two vectors of binary variables, y+, y–, that select reactions in RH to be active and 

reactions in RL to be inactive (the extra variable, y–, is added to account for reversible 

reactions). 
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  (A.4) 

To deal with alternative optimal flux distributions, authors (Shlomi et al., 2008) 

proposed the following approach, which we denominate here iMATFVA. First, the MILP 

in (A.4) is solved twice for each reaction in the GEM; the first time, the reaction is 

forced to be active, in the second, to be inactive. The two objective values, Zact(i), Zinac(i), 

corresponding to the optimizations where reaction i was active and inactive, 

respectively, are then compared. If Zact(i) > Zinac(i), reaction i is considered to be active 

(with confidence Zact(i) – Zinac(i)), if Zact(i) < Zinac(i), is considered to be inactive (with 

confidence Zact(i) –  Zinac(i)) and if Zact(i) = Zinac(i) is taken as undetermined under the data 
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set been integrated. Therefore, iMATFVA determines the sets of reactions that 

individually increase the global similarity to data when active and inactive, respectively, 

and the set of reactions that do not affect the optimum global similarity to data under 

whatever state, active or inactive. However, it does not provide information about how 

the states of reactions distribute across the alternative optima space of iMAT. For 

instance, a given reaction could be classified as active and still be either active or 

inactive across the space of all alternative optimal flux distributions generated by 

iMAT.  

We emphasize that the results obtained through iMATFVA do not align qualitatively to 

the ones obtained for RegrEx and CorEx (by extension FastCORE and CORDA), and 

hence they have to be interpreted on their own. To make a fair comparison, we need a 

method that allows drawing samples of alternative optimal flux distributions to iMAT. 

In the EXAMO publication (Rossell et al., 2013), authors generated such a sample by 

collecting the flux distributions that rendered the maximum objective value, Zopt in 

(A.5), when applying iMATFVA. Therefore, we can only generate a limited number of 

sampled optimal flux distributions with this method. Here, we propose a different 

procedure to evaluate the alternative optimal space of iMAT (iMATAOS), which follows 

a similar approach to the one employed by RegrExAOS: we first generate a random flux 

distribution, vrand, and then search for the closest feasible flux distribution, v, that 

renders the same optimal result, Zopt, found by iMAT. iMATAOS optimizes the mixed 

integer quadratic program: 
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  (A.5) 

The MIQP in (A.5) inherits constraints 1-5 from (A.4) and includes constraint 6, which 

defines the distance, δ = v – vrand to be minimized, and constraint 7, which guarantees 

that v remains within the alternative optimal space of the previous iMAT optimization. 

In this manner, iMATAOS allows drawing an unlimited number of random alternative 

flux distributions that are optimal to (A.4). 

Alternative optimal solutions in the iMAT method: case studies 

We next applied iMAT and iMATFVA—to analyze its alternative optimal solutions—to 

AraCOREred and Recon1red. In this case, we used the core set of reactions for the leaf 

and the liver contexts as the RH group in iMAT. In this way, we obtained a leaf-specific 

model containing 131 reactions and 154 metabolites, while the liver-specific model 

consisted of 1235 reactions and 1067 metabolites. By applying iMATFVA, we found a 

total of 272 active, 178 inactive and 5 undetermined reactions across the iMAT 
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alternative optima space for the leaf context. For the liver context, the alternative optima 

space included 1223 active, 981 inactive and 143 undetermined reactions in the case of 

liver (Table A.1). We quantified the uncertainty of the iMAT data integration problem 

by taking the proportion of undetermined reactions over the total number in the GEM. 

The undetermined reactions in the alternative optima space for the leaf and the liver- 

contexts were 1.1% and 6.1%, respectively.  

 

Table A.1. Summary of the alternative optima space of iMAT. This table includes the number of 

active, A, inactive, I, and undetermined, U, reactions across the alternative optima space as determined by 

iMATFVA and the iMATAOS. The intersection between the two methods is also displayed for each of the 

three categories (Overlap). Finally, the mean number of reaction mismatches (i.e., the Hamming 

distance), 𝑀𝑅
̅̅ ̅̅ , between the generated alternative optimal networks (see main text) is also displayed (the 

coefficient of variation, CV, is shown in parenthesis). These figures are displayed for the leaf- and the 

liver-specific scenario. 

 

We next evaluated the alternative optimal space with iMATAOS, which allowed us to 

draw two random samples (size n = 2000) of leaf- and liver-specific alternative optimal 

flux distributions. We focused on characterizing the state of the reactions, as active or 

inactive, across the sample. For the leaf context, 60% of the reactions were active in all 

alternative flux distributions, 9.23% had a fixed inactive state, and a 30.8% were of 

undetermined state across the sample. For the liver context, the fraction of fixed active 

reactions amounted to a 43.3%, 9.52% showed fixed inactive state, and 47.2% of the 

reactions were of undetermined state across the sample (Table A.1). Here, too, we 

considered the fraction of reactions with undetermined state across the alternative 

optima sample as an uncertainty measure of the iMAT data integration problem. Our 

results demonstrated that the uncertainty for the liver context was greater than that for 

the leaf (Table A.1), which agrees with the results previously obtained in the case of 

CorEx. These findings were supported by the significantly different Hamming distance 

calculated between any possible pair of alternative optimal networks (one-sided 

ranksum test, p-value = 0, see Methods, section 3.4).  

Additionally, a comparison of the results obtained through the two alternative methods, 

iMATFVA and iMATAOS, showed a good agreement in the sets of reactions classified as 

active across the alternative optima space: a 94.8% of active reactions per iMATFVA 

 LEAF LIVER 

A I U 𝑴𝑹
̅̅ ̅̅̅ (CV) A I U 𝑴𝑹

̅̅ ̅̅̅ (CV) 

IMATFVA 272 178 5 - 1223 981 143 - 

IMATAOS 275 40 140 43.16(0.20) 1069 247 1153 369.32(0.05) 

OVERLAP 259 

(95.2%) 

35 

(19.7%) 

0 - 928 

(75.9%) 

69 

(5.6%) 

2 

(0.16%) 

- 
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were also found active by iMATAOS in the leaf context, and a 75.9 % for the liver 

context. However, this agreement did not hold in the case of inactive and undetermined 

reactions, both in leaf and in liver (Table A.1). Therefore, this comparison highlighted 

the importance of analyzing a sample of alternative optimal solutions to obtain a more 

complete understanding of the uncertainty associated to an experimental data integration 

problem. 

iMAT implementation and alternative optima evaluation 

The iMAT implementation was taken from the function createTissueSpecificModel in 

the COBRA toolbox (D. Hyduke et al., 2011) (for MATLAB) and slightly modified to 

allow the usage of the Gurobi solver (version 7.01), used throughout this study. In 

addition, the iMATFVA procedure was performed through adapting the previous iMAT 

implementation (no publicly available implementation of this procedure was found). 

Both MATLAB functions can be found in File S3.1 under the names of iMAT and 

iMATFVA. In addition, the implementation of our alternative sampling method, iMATAOS, 

can be found in the same file. 
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Figure S4.1. Schematic depiction of the workflow followed to obtain metabolic predictions specific to G 

and M cells. This schematic depiction is based on the toy metabolic model displayed in the top right: X 

first enters the system through the reaction, v
in

, which is dependent on the transporter E
in

. X is then 

transformed to Y through v, which is dependent on E
v
 (coded by gene1-3). Finally, Y diffuses 

spontaneously to the exterior (v
out

), and hence no genes are associated to this reaction. (1) In a first step, 

expression data is preprocessed, which includes data RMA normalization and mapping of array probe 

names to (Arabidopsis) gene names. (2) Gene expression values are then mapped to reactions in the 

metabolic model following the gene-protein-reaction rules contained in the model, which generates the 

vector D of mapped expression values. (3) In a third step, a cell-specific flux distribution that is closest to 

the mapped expression data integrated in the metabolic model is obtained through RegrEx
LAD

. However, 

the optimal solution (i.e.,flux distribution) is not unique, and an alternative optima space (AO) exists. In 

this case, this is because D contains data to only two of the three reactions (v
in

 and v) since v
out

 has not 

associated gene-protein-reaction rule. Thus, v
out

 can vary in an orthogonal direction to the plane, where 

D lies, without affecting the optimal value of the RegrEx
LAD

 objective function (section 3.2). (4) To 

account for this issue, the AO space is sampled through RegrEx
AOS

 and a sampled distribution of optimum 

flux values for v
out

 is obtained. Additionally, the function RegrExFVA calculates the minimum and 

maximum values in the alternative optima space, as a means to validate the coverage of the random 

sample. (5) Finally, the resulting AO flux and flux-sum distributions are compared through a Mann-

Whitney-Wilcoxon (MWW) test. In this example, the alternative hypothesis (H1) states that the distribution 

of flux values corresponding to G cells is greater than that of M cells, while the null hypothesis states that 

both distributions are indistinguishable. The null hypothesis is rejected at a significant level of α = 0.05. 
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Table S4.1. A comparison of the predicted metabolic state of GC and M. The predicted mean flux 

values corresponding to the reactions depicted in Figure 4.1 are shown for G and M cells. The p-values 

shown in this table correspond to a Mann-Whitney test comparing the distributions of flux values of G 

and M cells (𝑉𝐺 and 𝑉𝑀, respectively). Three different tests were considered for each comparison: (i) we 

evaluated whether the two distributions differ (null hypothesis Ho: 𝑉𝐺 = 𝑉𝑀, (ii) if G had increased flux 

values in comparison to M cells (Ho: 𝑉𝑀 > 𝑉𝐺), and (iii) if M had increased flux values in comparison to 

G cells (Ho: 𝑉𝐺 > 𝑉𝑀). In all three cases, a horizontal bar indicates a failure of the test due to distributions 

consisting of a fixed value. Reaction names and index numbers in accord with AraCOREred. 

 

Idx. 
in 

Fig.1 

Reaction Name (Idx in 
AraCOREred) 

Mean 
Flux G 

Mean 
Flux M 

Mean ratio 
(G/M) 

Ho: 𝑽𝑮 =
𝑽𝑴 

Ho: 
𝑽𝑴 > 𝑽𝑮 

Ho: 
𝑽𝑮 > 𝑽𝑴 

SubSystem 

PSII photosystem II (1) 0.125 0.125 1.000 0.317 0.159 0.841 light reactions 

Cb6f cytochrom b6f complex (2) 0.250 0.250 1.000 0.317 0.159 0.841 light reactions 

PSI photosystem I (3) 0.500 0.500 1.000 0.317 0.159 0.841 light reactions 

ATPa
se 

ATPase (5) 0.107 0.107 1.000 0.317 0.159 0.841 light reactions 

1 PEP carboxylase (54) 0.420 0.034 12.486 0 0 1.000 gluconeogenesis 

2 Cytosolic NADP-MDH (115) 0.161 0.084 1.917 0 0 1.000 pyruvate metabolism 

3 Dicarboxylate transporter (339) 0.251 0.033 7.554 0 0 1.000 transport 

4 Plastidial NADP-Malic Enzyme 
(113) 

0.249 0.032 7.848 0 0 1.000 pyruvate metabolism 

5 CO2 diffusion [Forward] (374) 0 0.001 0 0 1.000 0 transport 

5 CO2 diffusion [Backward] (374) 0.230 0.013 17.342 0 0 1.000 transport 

6 Import CO2 (413) 0.021 0.021 1.000 0.013 0.994 0.006 import 

7 Carbonic anhydrase (152) 0.420 0.034 12.486 0 0 1.000 carbon fixation 

8 Glu tamate synthase (FeS-Fd) 
(179) 

0.124 3.671e-
05 

3.391e+03 0 0 1.000 glutamate synthesis 

9 Ferredoxin-NADP reductase (4) 0.126 0.250 0.502 0 1.000 0 light reactions 

10 Export O2 (420) 0.020 0.020 1.000 0.847 0.424 0.576 export 

11 TP isomerase [Forward] (9) 0.854 0.855 0.999 0 1.000 0 Calvin-Benson cycle, glycolysis 

12 TP/Pi translocator [Forward] 
(328) 

0.857 1.000 0.858 0 1.000 0 transport 

13 Di-/ri-carboxylate carrier 
[Forward] (346) 

0.348 0.327 1.065 0 0 1.000 transport 

13 Di-/ri-carboxylate carrier 
[Forward] (347) 

0.345 0.324 1.065 0 0 1.000 transport 

13 Di-/ri-carboxylate carrier 
[Forward] (348) 

0.349 0.324 1.077 0 0 1.000 transport 

14 Di-/ri-carboxylate carrier 
[Backward] (343) 

0.311 0.294 1.059 0 0 1.000 transport 

14 Di-/ri-carboxylate carrier 
[Backward] (344) 

0.314 0.289 1.088 0 0 1.000 transport 

14 Di-/ri-carboxylate carrier 
[Backward] (345) 

0.309 0.292 1.057 2.395e-
06 

1.198e-
06 

1.000 transport 

15 Mitochondrlial NAD-MDH 
[Backward] (80) 

0.271 0.226 1.201 0 0 1.000 tricarboxylic acid cycle, glyoxylate cycle 

15 Mitochondrial NADP-MDH (117) 0.753 0.724 1.041 0 0 1.000 pyruvate metabolism 

16 FBP aldolase [Forward] (35) 0.018 0.160 0.112 0 1.000 0 sucrose synthesis, gluconeogenesis, 
glycolysis 

17 FBPase (36) 0.073 0 Inf 0 0 1.000 sucrose synthesis, gluconeogenesis, 
glycolysis 

17 PPi-dep.  Phosphofructokinase 
[Backward] (136) 

0 0.693 0 0 1.000 0 pyrophosphate recycling 

18 G6P isomerase [Forward] (39) 0.018 0.160 0.112 0 1.000 0 sucrose synthesis, sucrose degradation, 
gluconeogenesis 

19 Phosphoglucomutase [Forward] 
(40) 

0.055 7.590e-
04 

72.503 0 0 1.000 sucrose synthesis, sucrose degradation 

20 TP/Pi translocator [Forward] 
(327) 

0 0 0 - - - transport 

20 TP/Pi translocator [Backward] 
(327) 

0.362 0.439 0.825 0 1.000 0 transport 
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Table S4.2. Predicted Flux-Sums of selected metabolites in the AraCOREred model. The predicted 

mean flux-sum values for several metabolites are displayed. In each of the metabolites, the flux-sum 

values are split into each cellular compartment: cytosol (c), mitochondrion (m), peroxisome (p) and 

chloroplast (h). In addition, the total flux-sum values (i.e., taking into account all the compartments) are 

provided. The interpretation of the p-values is similar to that of Table S1. A horizontal bar indicates a 

failure of the test due to distributions consisting of a fixed value. 

Metabolite 
(compartment) 

Mean FluxSum 
G 

Mean FluxSum 
M 

Ratio 
(G/M) 

Ho: 𝑽𝑮 =
𝑽𝑴 

Ho: 𝑽𝑴 >
𝑽𝑮 

Ho: 𝑽𝑮 >
𝑽𝑴 

Total Mal 5.434 4.581 1.186 0 0 1.000 

Mal(c) 2.451 2.172 1.128 0 0 1.000 

Mal(m) 2.129 2.004 1.062 0 0 1.000 

Mal(p) 0 0 - - - 1.000 

Mal(h) 2.211 1.493 1.481 0 0 1.000 

Total Suc 0.109 5.574e-05 1.948e+03 0 0 1.000 

Futile Cycle Suc 0.109 1.203e-05 9.019e+03 0 1.000 0 

Total OAA 7.460 6.729 1.109 0 0 1.000 

OAA(c) 4.063 3.606 1.127 0 0 1.000 

OAA(m) 2.083 1.950 1.069 0 0 1.000 

OAA(p) 1.320 1.488 0.887 0 1.000 0 

OAA(h) 1.713 1.430 1.198 0 0 1.000 

Total Pyr 3.571 3.085 1.158 0 0 1.000 

Pyr(c) 1.418 1.344 1.055 0 0 1.000 

Pyr(h) 0.498 0.139 3.574 0 0 1.000 

Pyr(m) 1.656 1.639 1.010 0 0 1.000 

Pyr(p) 1.418 1.268 1.118 0 0 1.000 

Total PEP 2.896 2.583 1.121 0 0 1.000 

PEP(c) 1.880 1.679 1.120 0 0 1.000 

PEP(h) 1.536 1.672 0.919 0 1.000 0 

G3P(h) 3.626 2.832 1.280 0 0 1.000 

G3P(c) 1.837 0.966 1.901 0 0 1.000 

Total ATP 1.967 1.609 1.223 0 0 1.000 

ATP(h) 1.050 1.050 1.000 0 0 1.000 

ATP(c) 6.691 6.234 1.073 0 0 1.000 

ATP(m) 3.445 3.349 1.028 0 0 1.000 

Total NADP 1.740 1.437 1.211 0 0 1.000 

NADP(h) 1.506 1.447 1.041 0 0 1.000 

NADP(c) 6.691 6.234 1.073 0 0 1.000 

NADP(m) 3.445 3.349 1.028 0 0 1.000 

Total NADPH 1.740 1.437 1.211 0 0 1.000 

NADPH(h) 1.506 1.447 1.041 0 0 1.000 

NADPH(c) 2.781 1.659 1.677 0 0 1.000 

NADPH(m) 2.171 1.602 1.355 0 0 1.000 

Total CO2 0.839 0.070 11.998 0 0 1.000 

CO2(h) 0.001 0.002 0.788 0 1.000 0 

CO2(c) 5.434 4.581 1.186 0 0 1.000 

CO2(m) 2.451 2.172 1.128 0 0 1.000 
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Table S4.3. Activity of the CBC and starch metabolism in GC and M. The predicted mean flux values 

of reactions in the CBC cycle and starch metabolism are shown for G and M cells. The interpretation of 

the p-values is similar to that of Table S4.1. A horizontal bar indicates a failure of the test due to 

distributions consisting of a fixed value. Reaction names and index numbers in accord with AraCOREred. 

 

 

 

 

 

 

 

Reaction [direction](Idx in 
AraCOREred) 

Mean Flux G Mean Flux M Mean ratio 
(G/M) 

Ho: 𝑽𝑮 =
𝑽𝑴 

Ho: 𝑽𝑴 >
𝑽𝑮 

Ho: 𝑽𝑮 >
𝑽𝑴 

CBC  

RuBisCO Carboxylation (6) 0.019 0.020 0.974 0 1.000 0 

RuBisCO Oxygenation( 85) 2.043e-06 2.043e-06 1.000 0 0 1.000 

PGA kinase [Forward] (7) 0.495 0.278 1.779 0 0 1.000 

GAP dehydrogenase (8) 0.864 0.959 0.901 0 1.000 0 

TP isomerase [Forward] 
(9) 

0.854 0.855 0.999 0 1.000 0 

FBP aldolase [Forward] 
(10) 

0 0 0 - - - 

FBPase (11) 0 0 0 - - - 

F6P transketolase (12) 0.007 0.007 0.974 0 1.000 0 

SBP aldolase (13) 0 0 0 - - - 

SBPase (14) 0 0 0 - - - 

S7P transketolase (15) 0.006 0.007 0.974 0 1.000 0 

Ru5P epimerase (16) 0.013 0.013 0.974 0 1.000 0 

R5P isomerase (17) 0.006 0.007 0.973 0 1.000 0 

Ru5P kinase (18) 0.019 0.020 0.974 0 1.000 0 

PGA kinase [Backward] (7) 0 0 0 - - - 

TP isomerase [Backward] 
(9) 

0 0 0 - - - 

FBP aldolase [Backward] 
(10) 

0.004 0.145 0.025 0 1.000 0 

Starch metabolism  

starch synthase (22) 2.949e-04 2.949e-04 1.000 0 0 1.000 

starch synthase (23) 2.975e-04 3.068e-04 0.970 0 1.000 0 

starch synthase (24) 2.610e-06 1.177e-05 0.222 0 1.000 0 

amylase (26) 2.610e-06 2.107e-05 0.124 0 1.000 0 

disproportionating 
enzyme (28) 

0 9.165e-06 0 0 1.000 0 

disproportionating 
enzyme (29) 

0 9.298e-06 0 0 1.000 0 
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Table S4.4. A comparison of the maximum alternative optimal flux values of G and M cells for the 

reactions depicted in Figure 4.1. Results derived from the Flux Variability Analysis applied to the 

alternative optima space of RegrEx: VmaxG, VmaxM, the maximum flux value in the alternative optima 

space (as calculated by RegrExFVA) in G and M cells, respectively, and their difference are included. The 

p-values shown in this table correspond to a Mann-Whitney test comparing the distributions of flux 

values of G and M cells (𝑉𝐺 and 𝑉𝑀, respectively). 

 

Idx. in 
Fig.1 

Reaction Name (Idx in AraCOREred) VmaxG VmaxM VmaxG- VmaxM Ho: 𝑽𝑮 >
𝑽𝑴 

SubSystem 

PSII photosystem II (1) 0.125 0.125 0 0.841 light reactions 

Cb6f cytochrom b6f complex (2) 0.250 0.250 0 0.841 light reactions 

PSI photosystem I (3) 0.500 0.500 0 0.841 light reactions 

ATPase ATPase (5) 0.107 0.107 0 0.841 light reactions 

1 PEP carboxylase (54) 0.466 0.054 0.412 1.000 gluconeogenesis 

2 Cytosolic NADP-MDH (115) 0.168 0.105 0.063 1.000 pyruvate metabolism 

3 Dicarboxylate transporter (339) 0.255 0.054 0.201 1.000 transport 

4 Plastidial NADP-Malic Enzyme (113) 0.254 0.053 0.201 1.000 pyruvate metabolism 

5 CO2 diffusion [Forward] (374) 1.000
e-06 

0.012 -1.158e-02 0 transport 

5 CO2 diffusion [Backward] (374) 0.234 0.033 0.201 1.000 transport 

6 Import CO2 (413) 0.021 0.021 4.950e-05 0.006 import 

7 Carbonic anhydrase (152) 0.466 0.054 0.412 1.000 carbon fixation 

8 Glu synthase (FeS-Fd) (179) 0.250 0.026 0.224 1.000 glutamate synthesis 

9 ferredoxin-NADP reductase (4) 0.235 0.250 -1.529e-02 0 light reactions 

10 Export O2 (420) 0.020 0.020 1.310e-04 0.576 export 

11 TP isomerase [Forward] (9) 0.874 0.924 -5.007e-02 0 Calvin-Benson cycle, glycolysis 

12 TP/Pi translocator [Forward] (328) 0.888 1.000 -1.117e-01 0 transport 

13 Di-/ri-carboxylate carrier [Forward] 
(346) 

1.000 1.000 0 1.000 transport 

13 Di-/ri-carboxylate carrier [Forward] 
(347) 

1.000 1.000 0 1.000 transport 

13 Di-/ri-carboxylate carrier [Forward] 
(348) 

1.000 1.000 0 1.000 transport 

14 Di-/ri-carboxylate carrier [Backward] 
(343) 

1.000 1.000 0 1.000 transport 

14 Di-/ri-carboxylate carrier [Backward] 
(344) 

1.000 1.000 0 1.000 transport 

14 Di-/ri-carboxylate carrier [Backward] 
(345) 

1.000 1.000 0 1.000 transport 

15 Mitochondrlial NAD-MDH [Backward] 
(80) 

0.323 0.323 -4.698e-04 1.000 tricarboxylic acid cycle, glyoxylate 
cycle 

15 Mitochondrial NADP-MDH (117) 0.769 0.746 0.023 1.000 pyruvate metabolism 

16 FBP aldolase [Forward] (35) 0.034 0.218 -1.839e-01 0 sucrose synthesis, 
gluconeogenesis, glycolysis 

17 FBPase (36) 0.090 0.006 0.083 1.000 sucrose synthesis, 
gluconeogenesis, glycolysis 

17 PPi-dep.  Phosphofructokinase 
[Backward] (136) 

1.000
e-06 

0.695 -6.950e-01 0 pyrophosphate recycling 

18 G6P isomerase [Forward] (39) 0.034 0.218 -1.839e-01 0 sucrose synthesis, sucrose 
degradation, gluconeogenesis 

19 Phosphoglucomutase [Forward] (40) 0.057 0.003 0.054 1.000 sucrose synthesis, sucrose 
degradation 

20 TP/Pi translocator [Forward] (327) 1.000
e-06 

1.000e-
06 

0 1.000 transport 

20 TP/Pi translocator [Backward] (327) 0.386 0.600 -2.147e-01 0 transport 
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Table S4.5. A comparison of the maximum alternative optimal flux values of G and M cells for the 

reactions in the CBC and starch metabolism. Results derived from the Flux Variability Analysis 

applied to the alternative optima space of RegrEx: VmaxG, VmaxM, the maximum flux value in the 

alternative optima space (as calculated by RegrExFVA) in G and M cells, respectively, and their difference 

are included. The p-values shown in this table correspond to a Mann-Whitney test comparing the 

distributions of flux values of G and M cells (𝑉𝐺 and 𝑉𝑀, respectively). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reaction [direction](Idx in 
GEM) 

VmaxG VmaxM VmaxG- VmaxM Ho: 𝑽𝑮 > 𝑽𝑴 

CBC 

RuBisCO Carboxylation (6) 0.021 0.023 -1.784e-03 0 

RuBisCO Oxygenation( 85) 2.514e-
04 

2.661e-04 -1.467e-05 - 

PGA kinase [Forward] (7) 0.500 0.299 0.201 1.000 

GAP dehydrogenase (8) 0.911 0.963 -5.196e-02 0 

TP isomerase [Forward] 
(9) 

0.874 0.924 -5.007e-02 0 

FBP aldolase [Forward] 
(10) 

0.005 1.000e-06 0.005 1.000 

FBPase (11) 0.005 0.005 1.373e-04 1.96E-01 

F6P transketolase (12) 0.007 0.008 -5.059e-04 0 

SBP aldolase (13) 0.005 0.006 -8.402e-04 0 

SBPase (14) 0.005 0.006 -8.402e-04 0 

S7P transketolase (15) 0.007 0.008 -5.058e-04 0 

Ru5P epimerase (16) 0.014 0.015 -1.012e-03 0 

R5P isomerase (17) 0.007 0.007 -5.058e-04 0 

Ru5P kinase (18) 0.021 0.023 -1.784e-03 0 

PGA kinase [Backward] (7) 1.000e-
06 

1.000e-06 0 - 

TP isomerase [Backward] 
(9) 

1.000e-
06 

1.000e-06 0 0 

FBP aldolase [Backward] 
(10) 

0.020 0.204 -1.838e-01 0 

Starch metabolism 

starch synthase (22) 0.020 0.204 -1.838e-01 1.000 

starch synthase (23) 0.002 0.002 6.434e-04 0 

starch synthase (24) 0.005 0.006 -7.696e-04 0 

amylase (26) 0.004 0.003 0.001 0 

disproportionating 
enzyme (28) 

0.004 0.003 0.001 0 

disproportionating 
enzyme (29) 

0.004 0.003 0.001 0 

disproportionating 
enzyme (30) 

0.004 0.003 0.001 1.76E-05 

(starch) phosphorylase 
(32) 

0.002 0.002 1.543e-04 1.000 



  

137 

Table S4.6. A comparison of the predicted metabolic state of G and M cells after imposing 

additional experimental constraints. This table shows the analogous results, presented in Table S4.1, 

when additional constraints are taken in consideration. Concretely, the carboxylation to oxygenation ratio 

of RubisCO is constrained to stay within 1.5 and 4. Additionally, the flux through the reactions in the 

CBC: the sedoheptulose 1,7-bisphosphate aldolase and the sedoheptulose-1,7-bisphosphatase is 

constrained to carry a positive flux (Details in Materials & Methods, section 4.4). A horizontal bar 

indicates a failure of the test due to distributions consisting of a fixed value. Reaction names and index 

numbers in accord with AraCOREred. 

Idx in 
Fig 1 

Reaction Name (Idx in AraCOREred) Mean Flux 
G 

Mean Flux 
M 

Mean ratio 
(G/M) 

Ho: 𝑽𝑮 =
𝑽𝑴 

Ho: 𝑽𝑴 >
𝑽𝑮 

Ho: 𝑽𝑮 >
𝑽𝑴 

SubSystem 

PSII photosystem II (1) 0.125 0.125 1.000 - - - light reactions 

Cb6f cytochrom b6f complex (2) 0.250 0.250 1.000 - - - light reactions 

PSI photosystem I (3) 0.500 0.500 1.000 - - - light reactions 

ATPas
e 

ATPase (5) 0.107 0.107 1.000 - - - light reactions 

1 PEP carboxylase (54) 0.420 0.011 37.190 0 0 1.000 gluconeogenesis 

2 Mal dehydrogenase (115) 0.161 0.086 1.866 0 0 1.000 pyruvate metabolism 

3 Dicarboxylate transporter (339) 0.223 0.011 19.971 0 0 1.000 transport 

4 Mal dehydrogenase (113) 0.221 0.009 24.697 0 0 1.000 pyruvate metabolism 

5 CO2 diffusion [Forward] (374) 0 0.013 0 0 1.000 0 transport 

5 CO2 diffusion [Backward] (374) 0.199 7.085e-08 2.812e+06 0 0 1.000 transport 

6 Import CO2 (413) 0.021 0.021 1.000 0 1.000 0 import 

7 HCO3 dehydratase (152) 0.420 0.011 37.190 0 0 1.000 carbon fixation 

8 Glu synthase (FeS-Fd) (179) 0.120 1.670e-04 719.020 0 0 1.000 glutamate synthesis 

9 ferredoxin-NADP reductase (4) 0.130 0.250 0.520 0 1.000 0 light reactions 

10 Export O2 (420) 0.020 0.020 1.000 0 1.000 0 export 

11 TP isomerase [Forward] (9) 0.854 0.825 1.035 0 0 1.000 Calvin-Benson cycle, glycolysis 

12 TP/Pi translocator [Forward] (328) 0.856 1.000 0.856 0 1.000 0 transport 

13 Di-/ri-carboxylate carrier [Forward] 
(346) 

0.362 0.335 1.079 0 0 1.000 transport 

13 Di-/ri-carboxylate carrier [Backward] 
(346) 

0.355 0.335 1.060 0 0 1.000 transport 

13 Di-/ri-carboxylate carrier [Forward] 
(347) 

0.362 0.338 1.069 0 0 1.000 transport 

13 Di-/ri-carboxylate carrier [Backward] 
(347) 

0.332 0.309 1.076 0 0 1.000 transport 

13 Di-/ri-carboxylate carrier [Forward] 
(348) 

0.327 0.310 1.056 1.455e-05 7.273e-06 1.000 transport 

13 Di-/ri-carboxylate carrier [Backward] 
(348) 

0.332 0.305 1.089 0 0 1.000 transport 

14 Di-/ri-carboxylate carrier [Forward] 
(343) 

0.249 0.208 1.199 0 0 1.000 transport 

14 Di-/ri-carboxylate carrier [Backward] 
(343) 

0.753 0.720 1.046 0 0 1.000 transport 

14 Di-/ri-carboxylate carrier [Forward] 
(344) 

0.022 0.194 0.113 0 1.000 0 transport 

14 Di-/ri-carboxylate carrier [Backward] 
(344) 

0.058 0 Inf 0 0 1.000 transport 

14 Di-/ri-carboxylate carrier [Forward] 
(345) 

0 0.693 0 0 1.000 0 transport 

14 Di-/ri-carboxylate carrier [Backward] 
(345) 

0.022 0.194 0.113 0 1.000 0 transport 

15 Mal dehydrogenase [Backward] (80) 0.036 7.590e-04 47.157 0 0 1.000 tricarboxylic acid cycle, glyoxylate cycle 

15 Mal dehydrogenase (117) 0 0 0 - - - pyruvate metabolism 

16 FBP aldolase [Forward] (35) 0.394 0.405 0.973 0 1.000 0 sucrose synthesis, gluconeogenesis, glycolysis 

17 FBPase (36) 0.125 0.125 1.000 - - - sucrose synthesis, gluconeogenesis, glycolysis 

17 PPi-dep.  Phosphofructokinase 
[Backward] (136) 

0.250 0.250 1.000 - - - pyrophosphate recycling 

18 G6P isomerase [Forward] (39) 0.500 0.500 1.000 - - - sucrose synthesis, sucrose degradation, 
gluconeogenesis 

19 Phosphoglucomutase [Forward] (40) 0.107 0.107 1.000 - - - sucrose synthesis, sucrose degradation 

20 TP/Pi translocator [Forward] (327) 0.420 0.011 37.190 0 0 1.000 transport 

20 TP/Pi translocator [Backward] (327) 0.161 0.086 1.866 0 0 1.000 transport 
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Table S4.7. Activity of the CBC and starch metabolism in G and M cells after imposing additional 

experimental constraints. This table shows the analogous results to that of Table S4.3, when additional 

constraints are taken in consideration. Concretely, the carboxylation to oxygenation ratio of RubisCO is 

constrained to stay within 1.5 and 4. Additionally, the flux through the reactions in the CBC: the 

sedoheptulose 1,7-bisphosphate aldolase and the sedoheptulose-1,7-bisphosphatase is constrained to 

carry a positive flux (details in Materials & Methods, section 4.4). A horizontal bar indicates a failure of 

the test due to distributions consisting of a fixed value. Reaction names and index numbers in accord with 

AraCOREred. 

 

 

 

 

 

 

Reaction [direction](Idx in 
GEM) 

Mean Flux G Mean Flux M Mean ratio 
(G/M) 

Ho: 𝑽𝑮 =
𝑽𝑴 

Ho: 𝑽𝑴 >
𝑽𝑮 

Ho: 𝑽𝑮 >
𝑽𝑴 

CBC  

RuBisCO Carboxylation (6) 0.022 0.022 1.000 0 1.000 0 

RuBisCO Oxygenation( 85) 0.005 0.005 1.000 0 1.000 0 

PGA kinase [Forward] (7) 0.467 0.255 1.832 0 0 1.000 

GAP dehydrogenase (8) 0.864 0.959 0.901 0 1.000 0 

TP isomerase [Forward] 
(9) 

0.854 0.825 1.035 0 0 1.000 

FBP aldolase [Forward] 
(10) 

5.544e-04 0 Inf 0 0 1.000 

FBPase (11) 0.001 0.001 1.000 - - - 

F6P transketolase (12) 0.009 0.009 1.000 0 1.000 0 

SBP aldolase (13) 0.001 0.001 1.000 - - - 

SBPase (14) 0.001 0.001 1.000 - - - 

S7P transketolase (15) 0.009 0.009 1.000 0 1.000 0 

Ru5P epimerase (16) 0.018 0.018 1.000 0 1.000 0 

R5P isomerase (17) 0.009 0.009 1.000 0 1.000 0 

Ru5P kinase (18) 0.027 0.027 1.000 0 1.000 0 

PGA kinase [Backward] (7) 0 0 0 - - - 

TP isomerase [Backward] 
(9) 

0 0 0 - - - 

FBP aldolase [Backward] 
(10) 

0.004 0.176 0.021 0 1.000 0 

Starch metabolism  

starch synthase (22) 2.949e-04 2.949e-04 1.000 0 0 1.000 

starch synthase (23) 2.975e-04 3.065e-04 0.971 0 1.000 0 

starch synthase (24) 2.632e-06 1.203e-05 0.219 0 1.000 0 

amylase (26) 2.632e-06 2.106e-05 0.125 0 1.000 0 

disproportionating 
enzyme (28) 

2.239e-08 9.423e-06 0.002 0 1.000 0 

disproportionating 
enzyme (29) 

0 9.031e-06 0 0 1.000 0 
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Table S4.8. Predicted Flux-Sums of selected metabolites in the AraCOREred model after imposing 

additional experimental constraints. This table presents the analogous results of Table S4.2 when 

additional constraints are taken in consideration. Concretely, the carboxylation to oxygenation ratio of 

RubisCO is constrained to stay within 1.5 and 4. Additionally, the flux through the reactions in the CBC: 

the sedoheptulose 1,7-bisphosphate aldolase and the sedoheptulose-1,7-bisphosphatase is constrained to 

carry a positive flux (details in Materials & Methods, section 4.4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Metabolite (compartment) Mean FluxSum G Mean FluxSum M Ratio (G/M) Ho: 𝑽𝑮 = 𝑽𝑴 Ho: 𝑽𝑴 > 𝑽𝑮 Ho: 𝑽𝑮 > 𝑽𝑴 

Total Mal 5.615 4.722 1.189 0 0 1.000 

Mal(c) 2.678 2.359 1.135 0 0 1.000 

Mal(m) 2.355 2.186 1.077 0 0 1.000 

Mal(p) 0.006 0.006 1.001 0 1.000 0 

Mal(h) 2.155 1.443 1.493 0 0 1.000 

Total Suc 0.070 5.574e-05 1.258e+03 0 0 1.000 

Futile Cycle Suc 0.070 1.203e-05 5.822e+03 0 1.000 0 

Total OAA 7.570 6.777 1.117 0 0 1.000 

OAA(c) 4.191 3.677 1.140 0 0 1.000 

OAA(m) 2.156 2.017 1.069 0 0 1.000 

OAA(p) 1.326 1.494 0.888 0 1.000 0 

OAA(h) 1.713 1.425 1.202 0 0 1.000 

Total Pyr 3.510 2.980 1.178 0 0 1.000 

Pyr(c) 1.413 1.303 1.084 0 0 1.000 

Pyr(h) 0.442 0.057 7.725 0 0 1.000 

Pyr(m) 1.656 1.639 1.010 0 0 1.000 

Pyr(p) 1.413 1.264 1.117 0 0 1.000 

Total PEP 2.926 2.542 1.151 0 0 1.000 

PEP(c) 1.937 1.679 1.154 0 0 1.000 

PEP(h) 1.538 1.672 0.920 0 1.000 0 

G3P(h) 3.348 2.539 1.318 0 0 1.000 

G3P(c) 1.693 0.845 2.003 0 0 1.000 

Total ATP 1.802 1.417 1.271 0 0 1.000 

ATP(h) 0.968 0.968 1.000 0 0 1.000 

ATP(c) 6.691 6.226 1.075 0 0 1.000 

ATP(m) 3.445 3.344 1.030 0 0 1.000 

Total NADP 1.740 1.442 1.207 0 0 1.000 

NADP(h) 1.506 1.440 1.046 0 0 1.000 

NADP(c) 6.691 6.226 1.075 0 0 1.000 

NADP(m) 3.445 3.344 1.030 0 0 1.000 

Total NADPH 1.740 1.442 1.207 0 0 1.000 

NADPH(h) 1.506 1.440 1.046 0 0 1.000 

NADPH(c) 2.759 1.619 1.704 0 0 1.000 

NADPH(m) 2.116 1.580 1.339 0 0 1.000 

Total CO2 0.839 0.048 17.473 0 0 1.000 

CO2(h) 0.007 0.007 1.000 0 1.000 0 

CO2(c) 5.615 4.722 1.189 0 0 1.000 

CO2(m) 2.678 2.359 1.135 0 0 1.000 
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Table S4.9. Redistribution of the percentage of 13C label enrichment in primary metabolites. M and 

G cells were fed with 13-NaHCO3 and harvested after 30 min and 60 min in the light. Values in bold and 

underline type are significantly different between M and G cells according to Students t-test (P <0.05) in 

the same time point. Data presented are mean ± SE (n = 3). 

 

 

 

 

 

 

 

 

 

 % of 13C enrichment 

Metabolite m/z M30 SE M60 SE GC30  SE GC60 SE 

Gly  102 0.010 0.004 0.005 0.001 0.015 0.003 0.006 0.002 

Ser 306 0.016 0.014 0.009 0.005 0.007 0.004 0.036 0.004 

Ser 204 0.101 0.052 0.060 0.020 0.111 0.036 0.097 0.007 

Homoserine 128 0.449 0.272 0.380 0.028 0.282 0.124 0.332 0.237 

Glycolate 205 0.008 0.008 0.007 0.007 0.015 0.008 0.017 0.008 

Val 218 0.240 0.180 0.095 0.091 0.051 0.027 0.162 0.035 

Ala 188 0.416 0.198 0.361 0.141 1.476 1.260 0.459 0.355 

Thr 219 0.458 0.238 0.342 0.132 0.795 0.330 0.634 0.067 

Thr 291 0.927 0.438 0.748 0.260 1.489 0.447 1.361 0.118 

Pro 142 0.197 0.100 0.164 0.021 0.321 0.151 0.367 0.012 

Asp 218 0.018 0.018 0.012 0.012 1.638 0.947 0.786 0.622 

Asp 232 0.045 0.004 0.037 0.002 0.078 0.005 0.038 0.001 

Leu 158 0.034 0.000 0.033 0.000 0.031 0.002 0.034 0.002 

Ile 218 0.038 0.038 0.091 0.091 0.068 0.049 0.203 0.101 

Glu 156 0.010 0.001 0.014 0.004 0.020 0.009 0.022 0.007 

Glycerate 292 1.676 0.636 1.922 0.653 3.521 0.069 3.609 0.746 

Lactate 117 0.111 0.075 0.421 0.033 0.344 0.172 0.268 0.163 

Glycerol 293 0.072 0.041 0.081 0.043 0.075 0.055 0.114 0.018 

Succ 172 0.176 0.080 0.283 0.100 0.752 0.154 0.506 0.044 

Succ 247 0.219 0.071 0.266 0.102 0.954 0.071 0.607 0.039 

Mal 233 0.040 0.001 0.053 0.010 0.100 0.001 0.041 0.002 

Fum 245 0.098 0.026 0.084 0.014 0.094 0.033 0.128 0.019 

GABA 174 0.015 0.003 0.024 0.008 nd nd nd nd 

Erythritol 217 0.425 0.130 0.438 0.149 2.212 1.808 1.207 0.871 

Sucrose 437 0.000015 0.000007 0.000018 0.000009 0.000104 0.000068 0.000036 0.000010 
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Table S4.10. Total 13C-enrichment in primary metabolites. Experimental and statistical analysis as 

described in the Table S4.9.    

 

  Total 13C enrichment 

Metabolite m/z M30 SE M60 SE GC30  SE GC60 SE 

Gly  102 3257 1665 4837 624 1083 496 4738 997 

Ser 306 71.7 22.1 194.9 40.0 135.6 90.9 303.9 23.4 

Ser 204 1642 976 1786 579 921 332 836 103 

Homoserine 128 1524 976 628 44 1331 526 2202 1073 

Glycolate 205 658 658 646 646 1212 609 1370 595 

Val 218 30.3 7.2 20.9 13.7 7.3 4.7 13.2 0.9 

Ala 188 694 513 715 335 479 228 69 36 

Thr 219 276 105 270 75 136 38 128 13 

Thr 291 735 253 740 201 400 104 377 49 

Pro 142 251 92 186 24 133 50 52 15 

Asp 218 12.0 12.0 12.5 12.5 14.8 1.7 8.9 4.7 

Asp 232 1533 76 1303 37 2352 133 1154 6 

Leu 158 499 23 514 29 386 31 437 33 

Ile 218 1.84 1.84 8.88 8.88 2.72 1.36 17.59 7.21 

Glu 156 6938 109 6594 2023 2249 566 2423 313 

Glycerate 292 92.6 37.0 78.0 15.7 39.9 0.3 47.9 8.9 

Lactate 117 356 251 148 13 349 130 500 230 

Glycerol 293 3363 1273 2824 992 5972 2954 1522 283 

Succ 172 5380 3759 1361 336 779 246 905 165 

Succ 247 303 88 226 64 87 12 134 22 

Mal 233 1341 31 1790 330 3242 41 1289 53 

Fum 245 713 241 651 113 548 179 529 19 

GABA 174 14330 2650 9640 3556 nd nd nd nd 

Erythritol 217 206 53 186 43 133 64 60 15 

Sucrose 437 477177 82661 607521 270298 427991 174100 486175 190880 
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Table S4.11. 13C-enrichment in primary metabolites. Experimental and statistical analysis as described 

in Table S4.9.    

 

 13C enrichment 

Metabolite m/z M30 SE M60 SE GC30  SE GC60 SE 

Gly 2TMS 102 4.7 0.2 5.1 0.1 3.6 0.7 5.0 0.2 

Ser 306 0.8 0.5 1.1 0.2 1.0 0.6 3.3 0.1 

Ser 204 8.9 0.6 9.2 0.4 8.9 0.5 8.9 0.2 

Homoserine 128 16.1 0.3 15.4 0.1 15.9 0.5 16.5 0.0 

Glycolate 205 2.3 2.3 2.1 2.1 4.3 2.1 4.8 2.1 

Val 218 2.5 1.3 1.3 1.1 0.6 0.3 1.5 0.2 

Ala 188 9.4 1.5 12.1 4.2 12.8 1.4 5.1 2.9 

Thr 219 8.9 0.2 8.5 0.1 9.1 0.4 8.9 0.0 

Thr 291 21.6 0.5 21.2 0.3 22.5 0.1 22.4 0.5 

Pro 142 5.6 0.1 5.4 0.0 5.3 0.0 4.3 0.6 

Asp 218 0.5 0.47 0.4 0.39 4.4 1.4 2.3 1.3 

Asp 232 8.3 0.6 7.0 0.3 13.5 0.8 6.6 0.1 

Leu 158 4.1 0.1 4.1 0.1 3.5 0.3 3.9 0.2 

Ile 218 0.3 0.3 0.9 0.9 0.4 0.2 1.9 0.9 

Glu 156 6.3 1.6 7.8 0.4 5.1 2.4 5.0 1.0 

Glycerate 292 10.5 0.3 11.4 0.6 11.9 0.1 12.6 0.1 

Lactate 117 5.3 2.6 7.9 0.6 8.8 0.2 8.1 0.2 

Uracil 241 5.2 0.2 5.6 0.5 7.1 0.0 6.4 0.2 

Uracil 255 9.1 0.1 9.3 0.1 10.8 0.4 10.8 0.1 

Adipic acid 111 1.9 0.1 1.9 0.1 1.8 0.0 2.1 0.1 

Adipic acid 141 6.0 0.6 5.9 0.2 6.0 0.3 6.5 0.3 

Threonate 292 10.0 0.2 10.1 0.4 6.5 3.7 nd nd 

Salicylic acid 267 8.8 1.2 9.3 1.1 nd nd nd nd 

Glycerol 293 12.1 0.6 12.0 0.5 12.4 0.1 12.8 0.2 

OXA 175 nd nd nd nd 14.5 0.3 nd nd 

Succ 172 22.6 6.1 17.8 0.5 22.5 1.7 21.0 1.1 

Succ 247 7.3 0.5 6.9 0.3 9.0 0.3 9.0 1.0 

Mal 233 7.3 0.0 9.7 1.8 18.0 0.1 7.3 0.3 

Citramalate 247 0.3 0.28 0.1 0.097 0.8 0.4 1.3 0.8 

Fum 245 7.6 0.4 7.2 0.0 6.7 1.6 8.2 0.5 

GABA 174 6.6 0.1 6.4 0.1 nd nd  nd nd  

Erythritol 217 8.6 0.2 8.3 0.2 9.3 1.0 6.6 1.8 

myo inositol 191 4.9 4.9 4.8 4.8 7.2 4.1 11.6 2.1 

Sucrose 437 2.5 0.8 2.5 0.1 4.7 0.3 3.7 0.4 

Trehalose 169 3.9 2.2 5.6 2.8 5.1 2.7 5.0 2.5 

Maltose 361 7.6 3.8 8.7 2.2 nd nd  8.1 0.3 

Isomaltose 361 nd nd  12.6 0.6 nd nd  nd nd  
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Table S4.12. Content of the metabolites analyzed in this study. The content (ng) of each metabolite 

was obtained using the equation of a linear regression of the peak area obtained from different 

concentrations of standard compounds.  

 

 

  Concentration (ng) 

Metabolite M30 SE M60 SE GC30  SE GC60 SE 

Gly  675.1 319.4 949.3 103.7 266.1 84.7 959.5 238.7 

Ser 171.7 94.6 189.2 55.6 100.6 32.8 93.5 9.3 

Homoserine 92.3 57.6 40.9 2.8 81.7 30.6 133.6 65.2 

Glycolate 291.5 7.3 290.9 6.1 283.0 4.0 284.3 2.8 

Val 17.1 4.7 29.4 8.4 9.6 2.1 9.3 0.7 

Ala 71.7 54.4 58.7 32.7 42.1 22.1 23.4 8.4 

Thr 34.5 12.5 34.8 9.3 17.8 4.7 16.8 1.8 

Pro 44.2 15.9 34.3 4.3 24.8 9.4 11.7 2.0 

Asp 184.4 3.9 187.1 3.9 174.1 0.9 175.0 1.5 

Leu 120.6 2.3 124.9 3.7 111.3 0.8 112.8 1.5 

Ile 17.2 6.2 22.5 6.3 9.9 2.8 10.0 0.7 

Glu 673.4 207.5 697.1 263.6 224.6 92.0 324.1 146.4 

Glycerate 8.9 3.7 7.0 1.7 3.4 0.0 3.8 0.7 

Lactate 46.4 29.2 18.7 0.9 40.1 15.5 60.7 27.5 

Salicylic acid 10.7 7.6 5.3 2.2 0.5 0.1 0.5 0.1 

Glycerol 289.4 118.7 243.6 93.2 482.3 239.2 118.2 20.1 

Succ 192.6 93.8 77.4 20.6 33.3 8.4 42.5 5.7 

Mal 182.9 4.3 184.3 1.1 179.6 1.9 177.7 0.1 

Fum 94.9 33.1 90.4 15.7 81.0 22.4 65.8 7.0 

GABA 489.1 97.1 343.7 120.0 135.4 78.2 35.2 20.3 

Erythritol 24.1 6.6 22.7 5.5 15.8 8.0 11.5 4.7 

Sucrose 246540 86181 239692 101307 97619 43785 124067 39544 
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