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Abstract: Cytochrome P450 17A1 (CYP17A1) catalyses the formation and metabolism  

of steroid hormones. They are involved in blood pressure (BP) regulation and in the 

pathogenesis of left ventricular hypertrophy. Therefore, altered function of CYP17A1  

due to genetic variants may influence BP and left ventricular mass. Notably, genome wide 

association studies supported the role of this enzyme in BP control. Against this background, 

we investigated associations between single nucleotide polymorphisms (SNPs) in or nearby 

the CYP17A1 gene with BP and left ventricular mass in patients with arterial hypertension 

and associated cardiovascular organ damage treated according to guidelines. Patients (n = 1007, 

mean age 58.0 ± 9.8 years, 83% men) with arterial hypertension and cardiac left ventricular 

ejection fraction (LVEF) ≥40% were enrolled in the study. Cardiac parameters of left 
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ventricular mass, geometry and function were determined by echocardiography. The cohort 

comprised patients with coronary heart disease (n = 823; 81.7%) and myocardial infarction 

(n = 545; 54.1%) with a mean LVEF of 59.9% ± 9.3%. The mean left ventricular mass index 

(LVMI) was 52.1 ± 21.2 g/m2.7 and 485 (48.2%) patients had left ventricular hypertrophy. 

There was no significant association of any investigated SNP (rs619824, rs743572, rs1004467, 

rs11191548, rs17115100) with mean 24 h systolic or diastolic BP. However, carriers of  

the rs11191548 C allele demonstrated a 7% increase in LVMI (95% CI: 1%–12%, p = 0.017) 

compared to non-carriers. The CYP17A1 polymorphism rs11191548 demonstrated a 

significant association with LVMI in patients with arterial hypertension and preserved 

LVEF. Thus, CYP17A1 may contribute to cardiac hypertrophy in this clinical condition. 

Keywords: clinical study; genetics; heart; hypertension; cytochrome P450 17A1 (Cyp17A1) 

 

1. Introduction 

Cytochrome P450 17A1 (CYP17A1) is a key enzyme in the synthesis and metabolism of steroid 

hormones. As a unique protein of the cytochrome P450 family it catalyzes two distinct types of  

substrate oxidation [1,2]. This includes steroid 17alpha-hydroxylation activity, which is essential for the 

biosynthesis of corticoids and the 17, 20 lyase reaction which generates precursors of sex steroids [3–7]. 

CYP17A1 is encoded by a single gene on chromosome 10q24.32 and consists of eight exons and  

seven introns [6,7]. 

In the clinical context, CYP17A1 has primarily emerged as relevant for androgen dependent 

oncological diseases [8–10]. In particular, prostate cancer is influenced by the activity and genetics  

of this enzyme and a specific CYP17A1 inhibitor was recently approved by the Food and Drug 

Administration for this indication [2,11,12]. Furthermore, genetic association studies suggest that 

CYP17A1 plays a role in different pathological conditions such as in Parkinson’s disease [13], 

Alzheimer’s disease [14] or obesity [15]. 

The evidence supporting a role of CYP17A1 in the cardiovascular field is still scarce. Notably,  

the first case report of 17alpha hydroxylase deficiency, published in the year 1966, already pointed to 

hypertension as a phenotypic characteristic [16]. Concordant with this previous observation, hormonal 

substances such as corticoids and sex steroids are increasingly considered as important factors in the 

development of hypertension and the related target organ damage [17–20]. This substantiates a rationale 

for CYP17A1 as an important enzyme in the pathogenesis of both conditions. Notably, results of  

genome wide association studies (GWAS) support this notion indicating significant relations of single  

nucleotide polymorphisms (SNPs) in or nearby CYP17A1 gene to blood pressure (BP) parameters [21–27]. 

These analyses were based on large populations with or without cardiovascular diseases and therapies [28]. 

The present study focused on 1007 patients with arterial hypertension and associated cardiovascular 

organ damage that were treated according to European guidelines [29]. We tested genetic associations 

of SNPs in or nearby CYP17A1 with 24 h BP levels and left ventricular mass in this population. 
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2. Results 

2.1. Description of the Study Cohort 

The characteristics of the study cohort are summarized in Table 1. We studied 1007 patients, 834 

(82.8%) men and 173 (17.2%) women with a mean age of 58.0 ± 9.8 years. The mean 24 h systolic and 

diastolic BP values were 125.0 ± 14.7 and 73.8 ± 9.5 mmHg, respectively. Overall, 823 (81.7%) patients 

had coronary heart disease and 545 (54.1%) subjects had a history of myocardial infarction at least one 

month before enrolment in the study. The most commonly used antihypertensive drugs were beta-blockers 

(n = 883; 87.7%) and angiotensin-converting enzyme inhibitors (n = 738; 73.3%). 

Table 1. Characteristics of study cohort (N = 1007). 

Parameter Value 

Age (years) 58.0 ± 9.8 
Men 834 (82.8%) 
Women 173 (17.2%) 
BMI (kg/m2) 28.9 ± 4.7 
Current smoker 257 (25.5%) 
eGFR * (mL × min−1 × 1.73 m−2) 78.6 ± 21.0 
eGFR < 60 (mL × min−1 × 1.73 m−2) 135 (13.4%) 
Coronary heart disease 823 (81.7%) 
Myocardial infarction 545 (54.1%) 
Diabetes mellitus 270 (26.8%) 

Mean 24 h BP (mmHg)  
systolic 125.0 ± 14.7 
diastolic 73.8 ± 9.5 

Antihypertensive drugs  
ACE inhibitors 738 (73.3%) 
AT1-antagonists 155 (15.4%) 
beta-blockers 883 (87.7%) 
calcium antagonists 142 (14.1%) 
diuretics 436 (43.3%) 
other drugs 55 (5.5%) 

Data are given as mean ± standard deviation or as numbers and percentages in parentheses per total of 1007 

subjects; * estimated glomerular filtration rate (eGFR) was calculated according to Levey et al. [30]: eGFR 

(mL/min per 1.73 m2) = 186 × (serum creatinine in mg/dL)−1.154 × (age in years)−0.203 × (0.742 if female) × 

(1.210 if African-American); ACE, angiotensin converting enzyme; AT1, angiotensin type 1 receptor. 

2.2. Echocardiographic Parameters of Study Cohort 

Echocardiographic parameters of the study cohort are demonstrated in Table 2. The mean left 

ventricular mass index (LVMI) was 52.1 ± 21.2 g/m2.7. Left ventricular hypertrophy defined as  

LVMI ≥ 50 g/m2.7 in men and ≥47 g/m2.7 in women was observed in 485 (48.2%) patients according  

to de Simone et al. [31]. The mean left ventricular ejection fraction (LVEF) was 59.9% ± 9.3%  

indicating that overall left ventricular systolic function was well preserved. Left atrium was slightly 
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dilated (41.1 ± 5.4 mm) and internal left ventricular diastolic dimensions were in the normal range  

(51.1 ± 7.0 mm). 

Table 2. Echocardiographic parameters of study cohort (N = 1007). 

Parameter Value 

LVMI (g/m2.7) overall * 52.1 ± 21.2 
men 52.2 ± 21.7 
women 51.6 ± 18.4 
Left ventricular hypertrophy overall † 485 (48.2%) 
men 390 (46.8%) 
women 95 (54.9%) 
LVEF (%) 59.9 ± 9.3 
LA (mm) 41.1 ± 5.4 
LVED (mm) 51.1 ± 7.0 
LVES (mm) 34.2 ± 7.1 
E/A 1.13 ± 0.42 
IVST (mm) 11.3 ± 2.7 
PWT (mm) 11.0 ± 2.8 
RWT 0.45 ± 0.16 

Data are given as mean ± standard deviation or as numbers and percentages in parentheses per total of 1007 

subjects; * LVMI, left ventricular mass index according to Baessler et al. [32]; † LVH, left ventricular hypertrophy 

according to de Simone et al. [31] definitions LVMI ≥ 50 g/m2.7 in men and ≥47 g/m2.7 in women; LA, left atrial 

diameter; LVED, left ventricular end-diastolic diameter; LVES, left ventricular end-systolic diameter; LVEF, 

left ventricular ejection fraction; E/A, ratio of early filling velocity (E) and peak late filling velocity (A); IVST, 

interventricular septum thickness; PWT, posterior wall thickness; RWT, relative wall thickness. 

2.3. Genetic Analysis 

The polymorphisms rs619824, rs743572, rs1004467, rs11191548, and rs17115100 were analysed  

for their relations to mean systolic and diastolic 24 h BP and LVMI. Allele and genotype frequencies  

are indicated in Supplemental Table S1. They were in agreement with data from the National Center  

for Biotechnology Information SNP databases. All genotype frequencies were consistent with the  

Hardy-Weinberg equilibrium. 

2.3.1. Analysis of Polymorphisms in Relation to 24 h BP Parameters 

Multivariate adjusted analyses resulted in no significant associations of any investigated SNP with 

mean 24 h systolic or diastolic BP. Further separate analysis for mean day-time or night-time blood 

pressure phenotypes also demonstrated no significant associations, respectively (not shown). 

2.3.2. Analysis of Polymorphisms in Relation to LVMI 

Results of multivariate adjusted analyses are presented in Table 3. For rs11191548 carriers of the C 

allele indicated compared to non-carriers a 7% increase in LVMI (95% CI: 1%–12%, p = 0.017).  

In analogue comparison the T allele of rs17115100 exhibited a trend to increased LVMI (p = 0.059). 
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Correlation analyses of the SNP alleles with the use of betablockers or angiotensin-converting enzyme 

inhibitors in patients with LVH led to no significant results. 

Table 3. Relation of single nucleotide polymorphisms (SNPs) with left ventricular mass 

index (LVMI) in stepwise multivariate adjusted analysis according to combined genotypes. 

SNP Region * SNP ID Comparison LVMI Ratio [95% CI] p ** 

3ʹUTR rs619824 CC + CA vs. AA 0.96 [0.91–1.01] 0.119 
3ʹUTR rs619824 CC vs. CA + AA 1.01 [0.96–1.06] 0.794 

5ʹUTR(-34T/C) rs743572 AA + AG vs. GG 0.96 [0.91–1.02] 0.186 
5ʹUTR(-34T/C) rs743572 AA vs. AG + GG 1.01 [0.97–1.06] 0.558 

Intron 3 rs1004467 AA + AG vs. GG 0.95 [0.78–1.14] 0.569 
Intron 3 rs1004467 AA vs. AG + GG 0.95 [0.91–1.01] 0.080 
3ʹUTR rs11191548 TT + TC vs. CC 1.02 [0.83–1.25]  0.872 
3ʹUTR rs11191548 TT vs. TC + CC 0.93 [0.88–0.99] 0.017 
Intron 6 rs17115100 GG + GT vs. TT 0.94 [0.78–1.13] 0.496 
Intron 6 rs17115100 GG vs. GT + TT 0.95 [0.90–1.00] 0.059 

LVMI difference, e.g., for rs619824, carriers of C allele had a 0.96-fold LVMI compared to non-carriers; 95% CI, 

95% confidence interval; * SNP region related to CYP17A1 gene; UTR, untranslated region; ** p-values of 

the corresponding ANCOVA model; models were adjusted for gender, age, BMI, height, eGFR, coronary heart 

disease, pharmacotherapy with oral anticoagulants, and laboratory findings LDL, triglycerides. 

3. Discussion 

The present study aimed to investigate genetic associations of variants in or nearby the CYP17A1 

gene with 24 h BP and left ventricular mass in treated high risk patients with arterial hypertension and 

associated cardiovascular organ damage. Thus, about four out of five patients had coronary heart disease 

and about a half had myocardial infarction at least one month before enrolment in the study. However, 

in agreement with the inclusion criteria in the study, left ventricular function was well preserved with a 

minimum LVEF of 40% in each patient and an overall mean LVEF of about 60% observed in the study. 

About half of all patients demonstrated left ventricular hypertrophy (LVH) defined as LVMI ≥ 50 g/m2.7 

in men or ≥47 g/m2.7 in women [31]. 

3.1. Relation of Polymorphisms to 24 h BP Parameters 

In the present study, there was no significant association of any investigated SNP with mean 24 h 

systolic or diastolic BP. For two of the five investigated SNPs (rs11191548, rs1004467), significant 

relations to BP have previously been described. Thus, two genome wide association studies (GWAS) 

with cohorts each consisting of more than 29 thousand subjects of European ancestry and which were 

heterogeneous for the presence of hypertension and antihypertensive treatment revealed significant 

associations with increased systolic BP for the A allele of rs1004467 [24] and for the T allele of 

rs11191548 [25]. Studies with cohorts of East and South Asian origin replicated the latter finding and 

furthermore indicated an association of this allele with increased diastolic BP [21,22]. 

In parallel to the GWAS results, a Chinese study including 3210 unrelated individuals from Beijing 

and Shanghai described the A allele of rs1004467 and the T allele of rs11191548 as significantly related 
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to increased risk of hypertension. In two case-control studies with Chinese children, analogous 

associations of both alleles with increased systolic BP were only found in girls [33] or in those subjects 

who were characterized as physical inactive by validated questionnaires [34]. 

Nevertheless, the relation of the rs1004467 A allele with increased systolic BP could not be replicated 

in a cohort of 3077 Chinese children [35]. In contrast to the GWAS results, a study in Chinese adults 

comparing 3292 hypertensive or pre-hypertensive subjects to 1168 normotensive controls revealed 

significant associations of the T allele of rs11191548 with decreased systolic and diastolic BP  

values [36]. In addition, a case control study including 1102 individuals with essential hypertension and 

1109 normotensive controls of the same ethnic group described the C allele of rs11191548 as risk allele 

for increased systolic BP in the female, male and overall normotensive control groups. Remarkably,  

in parallel to the results of the present study, no significant association with BP was found in subjects 

with arterial hypertension [37]. 

Therefore, results of different studies about the associations of the SNPs in CYP17A1 gene with BP 

are so far heterogeneous and seem to depend on the context of the study. 

3.2. Relation of Polymorphisms to LVMI 

Notably, in the present study, the C allele of rs11191548 was significantly related to a 7% increase in 

LVMI compared to non-carriers. Furthermore, rs17115100 indicated a trend of the T allele towards 

elevated LVMI. These findings are novel and emerged in a typical clinical setting because patients with 

arterial hypertension were under pharmacotherapy according to guidelines. 

Left ventricular mass may be considered as a parameter that integrates BP levels for the long-term 

and which is more resistant against transient influences than BP values. Moreover, increased LVMI 

above the cut-off values (50 g/m2.7 for men, 47 g/m2.7 for women [31]) constitutes LVH which is an 

independent and powerful risk factor for cardiovascular morbidity and mortality particular in patients 

with arterial hypertension [38,39]. Notably, the present finding resulted from a cohort in which about 

the half of patients indicated LVH that may implicate a role of CYP17A1 in the pathogenesis of cardiac 

target organ damage. 

At the molecular level, CYP17A1 catalyses the metabolic pathway from pregnenolone to 17alpha 

hydroxy-pregnenolone which is an intermediate substance in the synthesis of cortisol and sex  

steroids. Competitive to this synthetic pathway pregnenolone can be metabolized to aldosterone [40].  

The molecular mechanism which underlies the genetic association of the rs11191548 C allele with 

increased LVMI is still unknown and will be an interesting topic for experimental studies. Nevertheless, 

one may speculate that the genetic variant rs11191548 may be involved in the regulation of the 

transcription of CYP17A1 with subsequent influences on the disposition of sex steroids, cortisol and 

aldosterone. In line with this concept are clinical reports which describe remarkable changes of levels  

of these hormones in patients with disorders of CYP17A1 [41–43]. Aldosterone is a potent molecule  

in the regulation of cell growth and survival [44]. Thus, aldosterone is able to induce hypertrophy of 

cardiomyocytes in vitro including the expression of hypertrophic markers such as A- or B-type 

natriuretic peptides (ANP, BNP) or cardiotrophin-1 [45,46]. Therefore, aldosterone is considered as one 

of the important humoral factors in the pathogenesis of LVH [17,47]. 
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Clinical studies consistently indicated positive correlations between plasma aldosterone levels  

and left ventricular mass in hypertensive patients [48–52]. Moreover, aldosterone receptor antagonists 

reduced LVMI in hypertensive patients with left ventricular hypertrophy [53]. Cortisol has been 

described as major determinant of LVH in Cushing’s syndrome [19]. In untreated hypertensive patients 

LVMI correlated significantly with 24 h urinary free cortisol and cortisone [18]. Finally, sex steroids,  

in particular androgens contribute to higher left ventricular mass in men compared to women and  

are involved in gender specific progress of cardiac hypertrophy [20]. The steroid hormone 

dehydroepiandrosterone is metabolized via 16alpha hydroxylation by CYP17A1 [40,54] and prevented 

hypertrophy of cardiomyocytes in animal studies [45]. 

Overall, these experimental and clinical studies point to CYP17A1 as a key enzyme in the generation 

and metabolism of humoral factors which are involved in the pathogenesis of LVH. Accordingly, 

CYP17A1 has been discussed as drug target for treatment of hypertensive target organ damage [40]. 

3.3. Possible Clinical Implications 

The present study describes the SNP rs11191548 as significantly associated with left ventricular mass 

in patients with hypertension under pharmacotherapy. Therefore, this SNP may be a relevant marker for 

the risk to develop LVH in an individual patient. Consequently, screening of patients may offer the 

possibility for a more personalized medicine in the future including the early onset of preventive 

strategies. Nevertheless, further studies are necessary to implement this concept. 

3.4. Limitations of the Study 

This study has important limitations. Left ventricular mass was calculated according to the American 

Society of Echocardiography-recommended formula for estimation of left ventricular mass from left 

ventricular linear dimensions [55]. The formula is appropriate for evaluating patients without major 

distortions of left ventricular geometry. To avoid incurring errors due to substantially distorted ventricles 

patients with marked segmental left ventricular dysfunction were not enrolled in the cohort. Marked left 

ventricular dysfunction was defined as akinesia or dyskinesia of two or more segments of the 16 segment 

model of the left ventricle. This included left ventricular aneurysma, asymmetric dilatation and mass 

distribution such as post-infarctional regional wall thinning. Furthermore, we a priori excluded patients 

with an LVEF < 40%. Only investigators with a long lasting experience in echocardiography were 

accredited to data acquisition and underwent joint training prior to the study where standards were 

defined and practically rehearsed. Therefore, in parallel to other large-scale genetic investigations [56] 

it can be expected that the measurement of LVMI by echocardiography was adequate to allow  

a reliable genetic analysis in the current context. Nevertheless, the present finding must be interpreted 

against the background of the used technique in phenotyping and should be confirmed by further  

clinical investigations. 

The presented results raise the hypothesis that rs11191548 may influence the activity of CYP17A1. 

Nevertheless the underlying molecular mechanisms are so far unclear and should be clarified by 

experimental studies. 
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4. Patients and Methods 

4.1. Study Population and Clinical Evaluation 

In this study 1007 Caucasian subjects (173 women, 17.2%) who participated in a cardiological 

inpatient rehabilitation program were analysed. All patients had a diagnosis of arterial hypertension 

according to guidelines criteria defined as average BP of at least 140 mmHg systolic or at least 90 mmHg 

diastolic [29]. All patients were treated according to European guidelines and had a history of at least  

1 month of documented cardiovascular index event including myocardial infarction at least one month 

before enrolment in the study. Each patient was interviewed by a standard procedure including 

demographic data, medical history and medication. All subjects were examined by a physician and 

ambulatory 24 h BP measurements were taken with automatic portable devices (custo med GmbH 

Ottobrunn, Germany) every 15 min during the day (defined from 6 to 22 h) and every 30 min during  

the night. Echocardiography was performed according to established standards [31,55,57,58] and is 

described in the supplemental digital content. Blood samples were collected after a 12 h fasting period 

and analysed with standard procedures of clinical chemistry. Estimated glomerular filtration rate (eGFR) 

was calculated according to Levey et al. [30]: eGFR (mL/min per 1.73 m2) = 186 × (serum creatinine in 

mg/dL)−1.154 × (age in years)−0.203 × (0.742 if female) × (1.210 if African-American). This study complies 

with the Declaration of Helsinki, written informed consent was obtained from all subjects, and the local 

Ethics Committee of the Campus Benjamin Franklin (Charité—Universitätsmedizin, Berlin, Germany) 

approved the study protocol. 

4.2. Determination of Genotypes 

Genotyping for CYP17A1 polymorphisms was performed by PCR with the fluorescence based 

TaqMan® system (Applied Biosystems, Darmstadt, Germany) with the pre-designed tested assays from 

the manufacturer. More details are described in the supplemental digital content. Our overall combined 

genetic analyses included the independent analysis of recessive (YY vs. YX plus XX) and dominant  

(YX plus YY vs. XX) models. 

4.3. Statistical Analysis 

Parameters, indicated in Tables 1 and 2, were analysed by methods of descriptive statistics and data 

are presented as numbers and percentages per total of 1007 subjects or as arithmetic means ± standard 

deviations. The distribution of the data was checked and if data were not normally distributed, data were 

log transformed to reach normal distribution. Following statistical analyses, all log transformed values 

were back-transformed. Analyses of covariance models were calculated and the results are reported as 

mean and 95% confidence intervals of the mean (CI). Analyses of covariance models were applied to 

investigate the simultaneous influence of potential confounding factors on BP and the echocardiographic 

parameter. In the stepwise multivariate analysis regressors were entered blockwise into the model. First, 

the demographic variables (age, gender and (if significant) their interaction) were entered then, in three 

blocks variables were added (block 1: cardiac status, block 2: pharmacological treatment, and block 3: 

laboratory findings, respectively); after analysis in each block a final backward selection was performed. 
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Variables selected in the last step are reported. A confidence-limit-based approach was applied to the 

assessment of Hardy-Weinberg equilibrium. Two-tailed values of p less than 0.05 were considered 

statistically significant. Correlation analyses were performed using chi-squared tests or Fisher’s exact 

test, as appropriate. p-values below 0.05 were considered significant.All statistical analyses were carried 

out using SAS 9.2 (SAS-Institute, Cary, NC, USA) or SPSS 20 (SPSS Incorporation, Chicago, IL, USA). 

5. Conclusions 

As conclusion, the CYP17A1 polymorphism rs11191548 has been identified as associated with 

LVMI in high risk patients with arterial hypertension and associated organ damage. The result supports 

a role of CYP17A1 in the modulation of LVMI and thus cardiac hypertrophy in this clinical condition. 

Supplementary Materials 

Supplementary materials can be found at http://www.mdpi.com/1422-0067/16/08/17456/s1. 
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