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1. Introduction

The present work will introduce a Finite State Machine (FSM) that processes any Collatz Se-
quence; further, we will endeavor to investigate its behavior in relationship to transformations
of a special infinite input. Moreover, we will prove that the machines word transformation
is equivalent to the standard Collatz number transformation and subsequently discuss the
possibilities for use of this approach at solving similar problems. The benefit of this approach
is that the investigation of the word transformation performed by the Finite State Machine is
less complicated than the traditional number-theoretical transformation.

1.1 Motivation

The Collatz conjecture is a number theoretical problem, which has puzzled countless re-
searchers using myriad approaches. Presently, there are scarcely any methodologies to de-
scribe and treat the problem from the perspective of the Algebraic Theory of Automata. Such
an approach is promising with respect to facilitating the comprehension of the Collatz se-
quences "mechanics". The systematic technique of a state machine is both simpler and can
fully be described by the use of algebraic means.

The current gap in research forms the motivation behind the present contribution. The
present authors are convinced that exploring the Collatz conjecture in an algebraic manner,
relying on findings and fundamentals of Automata Theory, will simplify the problem as a
whole.

1.2 Related Research

The Collatz conjecture is one of the unsolved mathematical Millennium problems [1]. When
Lothar Collatz began his professorship in Hamburg in 1952, he mentioned this problem to
his colleague Helmut Hasse. From 1976 to 1980, Collatz wrote several letters but missed
referencing that he first proposed the problem in 1937. He introduced a function g :N→N
as follows:

g(x) =

3x +1 2 ∤ x

x/2 otherwise
(1.1)

This function is surjective, but it is not injective (for example g(3) = g(20)) and thus it is not
reversible.

In his book The Ultimate Challenge: The 3x+1 Problem [2], along with his annotated
bibliographies [3], [4] and othermanuscripts like an earlier paper from 1985, [5] Lagarias has
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4 1.2. Related Research

reseached and put together different approaches from various authors intended to describe
and solve the Collatz conjecture.

For the integers up to 2,367,363,789,863,971,985,761 the conjecture holds valid. For
instance, see the computation history given by Kahermanes [6] that provides a timeline of
the results which have already been achieved.

Inverting the Collatz sequence and constructing a Collatz tree is an approach that has
been carried out by many researchers. It is well known that inverse sequences [7] arise
from all functions h ∈ H , which can be composed of the two mappings q, r : N → N with
q :m 7→ 2m and r :m 7→ (m− 1)/3: H = {h :N→N | h = r(j) ◦ q(i) ◦ . . . , i, j,h(1) ∈N}

An argumentation that the Collatz Conjecture cannot be formally proved can be found
in the work of Craig Alan Feinstein [8], who presents the position that any proof of the
Collatz conjecturemust have an infinite number of lines and thus no formal proof is possible.
However, this statement will not be acknowledged in depth within this study.

Treating Collatz sequences in a binary system can be performed as well. For example,
Ethan Akin [9] handles the Collatz sequence with natural numbers written in base 2 (us-
ing the Ring Z2 of two-adic integers), because divisions by 2 are easier to deal with in this
method. He uses a shift map σ on Z2 and a map τ:

σ(x) =

(x − 1)/2 2 ∤ x

x/2 otherwise
τ(x) =

(3x +1)/2 2 ∤ x

x/2 otherwise

The shift map’s fundamental property is σ(x)i = xi+1, noting that σ(x)i is the i-th digit
of σ(x). This property can easily be comprehended by an example x = 5 = 1010000 . . . =
x0x1x2 . . ., containing σ(x) = 2 = 0100000 . . .

Akin then defines a transformation Q : Z2→ Z2 by Q(x)i = τi(x)0 for non-negative inte-
gers i which means Q(x)i is zero if τi(x) is even and then it is one in any other instance. This
transformation is a bijective map that defines a conjugacy between τ and σ : Q ◦ τ = σ ◦Q
and it is equivalent to the map denoted Q∞ by Lagarias [5] and it is the inverse of the map
Φ introduced by Bernstein [10]. Q can be described as follows: Let x be a 2-adic integer.
The transformation result Q(x) is a 2-adic integer y, so that yn = τ(n)(x)0. This means, the
first bit y0 is the parity of x = τ(0)(x), which is one, if x is odd and otherwise zero. The next
bit y1 is the parity of τ(1)(x), and the bit after next y2 is parity of τ ◦ τ(x) and so on. The
conjugancy Q ◦ τ = σ ◦Q can be demonstrated by transforming the expression as follows:
(σ ◦Q(x))i =Q(x)i+1 = τ(i+1)(x)0 = τ(i)(τ(x))0 =Q(τ(x))i

A simulation of the Collatz function by Turing machines has been presented by Michel
[11]. He introduces Turing machines that simulate the iteration of the Collatz function,
where he considers them having 3 states and 4 symbols. Michel examines both turing ma-
chines, those that never halt and those that halt on the final loop.

A function-theoretic approach this problem has been provided by Berg and Meinardus
[12], [13] as well as Gerhard Opfer [14], who consistently relies on the Bergs and Meinardus
idea. Opfer tries to prove the Collatz conjecture by determining the kernel intersection of
two linear operators U, V that act on complex-valued functions. First he determined the
kernel of V, and then he attempted to prove that its image by U is empty. Benne de Weger
[15] contradicted Opfers attempted proof.

Reachability Considerations based on a Collatz tree exist as well. It is well known that
the inverted Collatz sequence can be represented as a graph; to be more specific, they can be
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depicted as a tree [16], [17]. It is acknowledged that in order to prove the Collatz conjecture,
then one needs to demonstrate that this tree covers all (odd) natural numbers.

The Stopping Time theory has been introduced by Terras [18], [19], [20]. He introduces
another notation of the Collatz function T (n) = (3X(n)n +X(n))/2, where X(n) = 1 when n is
odd and X(n) = 0 when n is even, and defined the stopping time of n, denoted by χ(n), as the
least positive k for which T (k)(n) < n, if it exists, or otherwise it reaches infinity. Let Li be a
set of natural numbers, it is observable that the stopping time exhibits the regularity χ(n) = i
for all n fulfilling n ≡ l(mod2i ), l ∈ Li , L1 = {4}, L2 = {5}, L4 = {3}, L5 = {11,23}, L7 = {7,15,59}
and so on. As i increases, the sets Li , including their elements, become significantly larger.
Sets Li are empty when i ≡ l(mod19) for l = 3,6,9,11,14,17,19. Additionally, the largest
element of a non-empty set Li is always less than 2i .

Many other approaches exist as well. From an algebraic perspective Trümper [21] ana-
lyzes The Collatz Problem in light of an Infinite Free Semigroup. Kohl [22] generalized the
problem by introducing residue class-wise affine, in short, by utilizing rcwa mappings. A
polynomial analogue of the Collatz Conjecture has been provided by Hicks et al. [23] [24]
and there are also stochastical, statistical and Markov chain-based and permutation-based
approaches to proving this elusive theory.



2. Dependent Threads State Machine

2.1 Introducing a Dependent Threads State Machine (DTSM)

Let us regard a Finite State Machine (Σ,S, s0,δ,F ∈ S), Σ as the input alphabet, S a set of
states, s0 the starting state, F a set of final states, and δ : S ×Σ→ S the transition function.
We may concisely write δ0(x) = δ(x,0) : S→ S .

Definition 2.1 A DTSM (Dependent Threads State Machine) is a finite state machine
that has the following properties:

1. Σ = {0,1}, the input alphabet consists of two elements called bits. It is a binary
alphabet.

2. F = {f0}, the DTSM has only one final state.

3. δ0(s0) = s0, the DTSM remains in its starting state when inputting zero.

4. ∀s ∈ S\{s0} : ∃n ≥ 0,δ(n)0 (s) = f0, if the DTSM is in any state except s0, a continuous
input of zero leads to guaranteed f0.

5. A transition S ×Σ→ S is considered synonymous with a directed edge. Any bit
that is an input of the function δ and thus a value of the corresponding edge,
we call a δ-bit. Additionally, we label each edge with an ϵ-bit using a function
ϵ : S ×Σ→ Σ. The meaning of this labeling will be explored later.

It may be noted that the term "State Machine" can be treated as synonymous to the term
"Automaton" (plural Automata). Hence, a Finite State Machine (FSM) may also be denoted
as Finite State Automaton (FSA). In accordance with the automata theory, a FSM belongs to
a special set of the Turing machines respective to all Turing machines.

2.2 The Collatz DTSM

The Collatz DTSM is an example of a DTSM and defined by four states S = {s,a,b, c} and the
functions δ, ϵ provided by table 2.1. The positions that are inputs of both functions δ and ϵ
are the source positions, not the target positions.
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δ 0 1
s s c
a a b
b a c
c b c

ϵ 0 1
s 0 0
a 0 1
b 1 0
c 0 1

Table 2.1: Definition of the both functions δ and ϵ

We can represent the δ and ϵ functions in a more compact way. Let’s focus on the edges
which connect the nodes s, a, b and c. Every edge has it’s δ-bit and it’s ϵ-bit. In such a
way, we have a graph with double colored edges. The δϵ-adjuncency matrix is provided by
table 2.2.

s a b c
s 0,0 - - 1,0
a - 0,0 1,1 -
b - 0,1 - 1,0
c - - 0,0 1,1

Table 2.2: δ and ϵ as colorings of the transition edges

The graph of the Collatz DTSM is exhibited by Figure 2.1. The edges of the graph
presented in Figure 2.1 are labeled with their δϵ-colorings. The node s is the starting node.
The node b is highlighted in blue, since all of it’s outgoing edges have uniquely unequal δ-
and ϵ-bits. Additionally, this node represents the center of symmetry.

s

0,0

c

1,1

1,0

b

0,01,0

a

0,0

0,11,1

Figure 2.1: Graph Representation of the Collatz DTSM
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2.3 Series of State Transition Sequences

Allow us to regard a binary sequence (dk)k∈N0
defined by a mapping D : N→ Σ that has a

finite preimage D−1(1). In other words, a natural k exists, for which all m ≥ k are mapped to
zero D(m) = 0 and thus all sequence members dm are zero. This binary sequence describes
the DTSM’s state transitions starting from s. Hence the sequence members correspond to
the δ-bits. In accordance to the DTSM definition, this sequence must end up and remain
eternally in the state a. The following example illustrates the state transitions of the DTSM.

Exempel 2.1 Assume we have a sequence (dk) = (1,0,1,0,1,0,1,1,0,1,0,0,0 . . .). This
sequence generates a sequence of DTSM positions (pk) = (c,b, c,b, c,b, c, c,b, c,b,a,a, . . . ).

It is important to point out that for an input bit dk the corresponding position pk is the target position into
which the token moves to and not the source position from which the tokens moves from. Hence we consider
the starting position s to have a negative index −1, which in our notation means p−1 = s.

The ϵ-bit, an edge is labeled with, belongs to a sequence of ϵ-bits that result from the
DTSM’s state transitions. A sequence of δ-bits describes a sequence of state transitions
through the DTSM’s edges beginning at the starting node s. The sequence of ϵ-bits is de-
fined by the order of passed edges in the walk through, which each naturally are specified
by (labeled with) an ϵ-bit. A sequence of ϵ-bits forms the sequence of δ-bits describing the
state transitions for the next walk through. This continuing principle is illustrated by ta-
ble 2.3, which provides a simulative description (state by state) of these consecutive walk
throughs up to 10101011010000000000.

The latter binary sequence is the δ-bit sequence of the first walk through. All other δ-bit
sequences arise from the ϵ-bits of those edges that are traversed during this and subsequent
walkthroughs. For example, the ϵ-bits of traversed edges by the second walk through form
the sequence of δ-bits for the third walk through and beyond.

Along the δ-bit sequences, table 2.3 portrays the corresponding sequences of DTSM po-
sitions, which have been walked through up to their respective states.

In table 2.3 we can reproduce and verify the repeated application of ϵ-bit sequences. If
we take a closer look at the example (p1,k) which is the sequence of DTSM positions describ-
ing the first token’s walk through, that generates the ϵ-bit sequence 00000001000100000000.
This bit sequence corresponds to the δ-bit sequence (d2,k) that defines the walk through of
the second token.

Red colored edges indicate the first token’s walk through. The edge between the starting
node s and the node c is highlighted dotted, when a new token becomes active by leaving
the starting node, respectively moving to c.
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(d1,k ):.1 (d1,k ):.10 (d1,k ):.101 (d1,k ):.1010
(p1,k ):sc (p1,k ):scb (p1,k ):scbc (p1,k ):scbcb
(d2,k ):.. (d2,k ):... (d2,k ):.... (d2,k ):.....
(p2,k ):ss (p2,k ):sss (p2,k ):ssss (p2,k ):sssss
· · · · · · · · · · · ·

2,3,4. . .

1

2,3,4. . . 1 2,3,4. . .

1

2,3,4. . . 1

(d1,k ):.10101 (d1,k ):.101010 (d1,k ):.1010101 (d1,k ):.10101011
(p1,k ):scbcbc (p1,k ):scbcbcb (p1,k ):scbcbcbc (p1,k ):scbcbcbcc
(d2,k ):...... (d2,k ):....... (d2,k ):........ (d2,k ):........1
(p2,k ):ssssss (p2,k ):sssssss (p2,k ):ssssssss (p2,k ):ssssssssc
(d3,k ):...... (d3,k ):....... (d3,k ):........ (d3,k ):.........
(p3,k ):ssssss (p3,k ):sssssss (p3,k ):ssssssss (p3,k ):sssssssss
· · · · · · · · · · · ·

2,3,4. . .

1

2,3,4. . . 1 2,3,4. . .

1

3,4,5. . .

1,2

(d1,k ):.101010110 (d1,k ):.1010101101 (d1,k ):.10101011010 (d1,k ):.101010110100
(p1,k ):scbcbcbccb (p1,k ):scbcbcbccbc (p1,k ):scbcbcbccbcb (p1,k ):scbcbcbccbcba
(d2,k ):........10 (d2,k ):........100 (d2,k ):........1000 (d2,k ):........10001
(p2,k ):sssssssscb (p2,k ):sssssssscba (p2,k ):sssssssscbaa (p2,k ):sssssssscbaab
(d3,k ):.......... (d3,k ):..........1 (d3,k ):..........10 (d3,k ):..........101
(p3,k ):ssssssssss (p3,k ):ssssssssssc (p3,k ):sssssssssscb (p3,k ):sssssssssscbc
(d4,k ):.......... (d4,k ):........... (d4,k ):............ (d4,k ):.............
(p4,k ):ssssssssss (p4,k ):sssssssssss (p4,k ):ssssssssssss (p4,k ):sssssssssssss
· · · · · · · · · · · ·

3,4,5. . . 1,2 4,5,6. . .

1,3

2

4,5,6. . . 1,3

2

4,5,6. . .

3

2

1
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(d1,k ):.1010101101000 (d1,k ):.10101011010000 (d1,k ):.101010110100000 (d1,k ):.1010101101000000
(p1,k ):scbcbcbccbcbaa (p1,k ):scbcbcbccbcbaaa (p1,k ):scbcbcbccbcbaaaa (p1,k ):scbcbcbccbcbaaaaa
(d2,k ):........100010 (d2,k ):........1000100 (d2,k ):........10001000 (d2,k ):........100010000
(p2,k ):sssssssscbaaba (p2,k ):sssssssscbaabaa (p2,k ):sssssssscbaabaaa (p2,k ):sssssssscbaabaaaa
(d3,k ):..........1011 (d3,k ):..........10110 (d3,k ):..........101100 (d3,k ):..........1011000
(p3,k ):sssssssssscbcc (p3,k ):sssssssssscbccb (p3,k ):sssssssssscbccba (p3,k ):sssssssssscbccbaa
(d4,k ):.............1 (d4,k ):.............10 (d4,k ):.............101 (d4,k ):.............1010
(p4,k ):sssssssssssssc (p4,k ):ssssssssssssscb (p4,k ):ssssssssssssscbc (p4,k ):ssssssssssssscbcb
(d5,k ):.............. (d5,k ):............... (d5,k ):................ (d5,k ):.................
(p5,k ):ssssssssssssss (p5,k ):sssssssssssssss (p5,k ):ssssssssssssssss (p5,k ):sssssssssssssssss
· · · · · · · · · · · ·

5,6,7. . .

3,4

1,2

5,6,7. . . 3,4

1,2

5,6,7. . .

4

1,2,3

5,6,7. . . 4

1,2,3

(d1,k ):.10101011010000000 (d1,k ):.101010110100000000 (d1,k ):.1010101101000000000 (d1,k ):.10101011010000000000
(p1,k ):scbcbcbccbcbaaaaaa (p1,k ):scbcbcbccbcbaaaaaaa (p1,k ):scbcbcbccbcbaaaaaaaa (p1,k ):scbcbcbccbcbaaaaaaaaa
(d2,k ):........1000100000 (d2,k ):........10001000000 (d2,k ):........100010000000 (d2,k ):........1000100000000
(p2,k ):sssssssscbaabaaaaa (p2,k ):sssssssscbaabaaaaaa (p2,k ):sssssssscbaabaaaaaaa (p2,k ):sssssssscbaabaaaaaaaa
(d3,k ):..........10110000 (d3,k ):..........101100000 (d3,k ):..........1011000000 (d3,k ):..........10110000000
(p3,k ):sssssssssscbccbaaa (p3,k ):sssssssssscbccbaaaa (p3,k ):sssssssssscbccbaaaaa (p3,k ):sssssssssscbccbaaaaaa
(d4,k ):.............10100 (d4,k ):.............101000 (d4,k ):.............1010000 (d4,k ):.............10100000
(p4,k ):ssssssssssssscbcba (p4,k ):ssssssssssssscbcbaa (p4,k ):ssssssssssssscbcbaaa (p4,k ):ssssssssssssscbcbaaaa
(d5,k ):.................1 (d5,k ):.................10 (d5,k ):.................100 (d5,k ):.................1000
(p5,k ):sssssssssssssssssc (p5,k ):ssssssssssssssssscb (p5,k ):ssssssssssssssssscba (p5,k ):ssssssssssssssssscbaa
(d6,k ):.................. (d6,k ):................... (d6,k ):...................1 (d6,k ):...................10
(p6,k ):ssssssssssssssssss (p6,k ):sssssssssssssssssss (p6,k ):sssssssssssssssssssc (p6,k ):ssssssssssssssssssscb
· · · · · · · · · · · ·

6,7,8. . .

5

1,2,3,4

6,7,8. . . 5

1,2,3,4

7,8,9. . .

6

1,2,3,4,5

7,8,9. . . 6

1,2,3,4,5

Table 2.3: Simulation of the Collatz DTSM’s walk through

If we consider the δ-bit sequences (d1,k), (d2,k), . . . , (d6,k) shown in table 2.3 as the inverse
binary representation of odd numbers (from the first 1 to the last 1) we are given the number
sequence provided by table 2.4.

Sequence Inverse binary Binary Decimal
(d1,k) 1010101101 1011010101 725
(d2,k) 10001 10001 17
(d3,k) 1011 1101 13
(d4,k) 101 101 5
(d5,k) 1 1 1
(d6,k) 1 1 1

Table 2.4: Collatz numbers that result from the walk throughs

This example corresponds to the Collatz sequence started at 725 (binary 1011010101,
inverse binary 1010101101), which is illustrated by table 2.5.
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725
2176 1088 544 272 136 68 34 17

52 26 13
40 20 10 5
16 8 4 2 1

Table 2.5: Collatz sequence started at 725

Theorem 2.1 All members of a Collatz sequence are equivalent to the sequences of
δ-bits.

Proof. Let d be a positive odd number, the binary representation is accomplished through
the bit sequence (d0,d1, . . . ,dn−1) as follows: d = d0 · 20 + d1 · 21 + . . . + dn−1 · 2n−1. Since d is
odd, we know that d0 = 1. Additionally we fill this sequence infinitely with zero bits on the
right side, which means, an index exists n, for which all bits that are indexed with an k ≥ n
are zero dk≥n = 0.

An operation x 7→ 3x + 1 on d can be described as (2d + 1) + d, where the multiplication
with 2 is equivalent to a right shift of the bit sequence. The addition with an integer 1 means
to insert a bit 1 at the front of the bit sequence: 2d +1 = (1,d0,d1,d2, . . .). The sum (2d +1)+d
can be represented as follows:

2(d0 · 20 + d1 · 21 + . . . + dn−1 · 2n−1) + 1 + d

= 1 + d0 · 21 + d1 · 22 + . . . + dn−1 · 2n + d

= 1 + d0 · 21 + d1 · 22 + . . . + dn−1 · 2n + d0 · 20 + d1 · 21 + . . . + dn−1 · 2n−1

= 1 + d0 + (d0 + d1) · 21 + (d1 + d2) · 22 + . . . + (dn−1 + dn) · 2n

= 1 + d ′0 · 2
0 + d ′1 · 2

1 + . . . + d ′n · 2n

We initiate a sequence (ek)k∈N0
defined by the recurrence ek = ⌊(ek−1 + dk−1 + dk)/2⌋. And

we define another (non- recursive) sequence (d ′k)k∈N0
by d ′k =mod(ek−1 +dk−1 +dk ,2). For the

sake of completeness we define e−1 = 1 and d−1 = 0, which can be understood as predecessor
of a first sequence element, but which technically is not a member of the sequence. Because
we have already stated that d is odd, we know that d0 = 1 and thus d ′0 = 0:

d ′0 =mod(1 + 0+ d0,2) = 0 e0 = ⌊(1 + 0+ d0)/2⌋ = 1
d ′1 =mod(e0 + d0 + d1,2) e1 = ⌊(e0 + d0 + d1)/2⌋
d ′2 =mod(e1 + d1 + d2,2) e2 = ⌊(e1 + d1 + d2)/2⌋
...

...
d ′n =mod(en−1 + dn−1 + dn,2) en = ⌊(en−1 + dn−1 + dn)/2⌋

(2.1)

A member of the sequence (ek)k∈N0
is the overflow bit that results from binary adding

two successive members of (dk)k∈N0
, which is illustrated with the example of (2d + 1) + d =

27+13 = 40:

0 0 0 1 1 1
0 1 1 0 1 0

+ 0 0 1 0 0 1
1 0 1 0 0 0

=

e4 e3 e2 e1 e0 1
d4 d3 d2 d1 d0 0

+ d5 d4 d3 d2 d1 d0
d ′5 d ′4 d ′3 d ′2 d ′1 d ′0
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We assume that the sequence (dk)k∈N0
is an odd input into the state machine controlling

the n-th token. To prove the theorem it would be sufficient to demonstrate that the sequence
(d ′k)k∈N0

controls the next token which is the same as saying this sequence is equal to the
sequence of that generated ϵ-bits as given later by (2.3). Let the n-th token be in a state pn,k ,
that is k +1 steps have been taken by processing the sequence (d0, . . . ,dk). Therefore pn,−1 = s
and pn,0 = c, since d0 = 1. The state machine’s mechanics are given by the following explicit
definition of the n-th token’s target position pn,k (shorthand noted as pk) that depends on the
sum dk + ek . At this point, we refer to example 2.1 to remind that pk continually refers to the
target (and not to the source) position.

pk =


a dk + ek = 0

b dk + ek = 1

c dk + ek = 2

(2.2)

The sequence of ϵ-bits, generated by the walk of the n-th token is exactly equal to the
sequence (d ′k)k∈N0

. We remember that in compliance with table 2.1 the input position of the
ϵ-function is the token’s source and not target position:

ϵ(pn,k−1,dn,k) = d ′n,k (2.3)

Using inducton over k we prove that both the DTSM’s mechanics (2.2) and the equality
of the bit sequences stated in (2.3).

Start of induction: The n-th token is in the DTSM’s starting node s, furthermore k = 0,
d0 = 1 (the input is odd) and as given by (2.1) we are also aware that e0 = 1. The first bit
d0 = 1 of the input sequence causes the token to move from s into node c (see figure 2.1). For
this reason the construct (2.2) describing the DTSM’s mechanics are correct. Because of the
input’s oddness we recognize as validated in (2.1) that d ′0 = 0. The edge connecting s with c
is labeled with the ϵ-bit 0, which conforms to the equality ϵ(p−1,d0) = ϵ(s,1) = d ′0 = 0 stated
by (2.3).

Induction steps: We assume that the statements (2.2) and (2.3) are valid for all integers
up to k − 1 (induction hypothesis) and we corroborate the validity of these statements for k.
We will now examine the three cases defined by (2.2) separately.

Case 1: pk−1 = c. According to the induction hypothesis applied to (2.2) we require that
the sum dk−1 + ek−1 = 2, which leads to the only possible bit-variable setting dk−1 = ek−1 = 1.
By taking a closer look at the definition of the recurrence ek = ⌊(ek−1 + dk−1 + dk)/2⌋ given
in (2.1), we recognize that ek only accepts the value 1, no matter what binary value dk has:
ek = ⌊(2 + dk)/2⌋.

So far we have substantiated that ek = 1 when a token has moved into the target position
pk−1 = c within the context of our induction hypothesis. In the course of proving the legiti-
macy of (2.2) for the next target position pk , the node c is our source position. Conformant
with the conditions given by (2.2) the token’s next target position pk is b for an input bit
dk = 0 (dk + ek = 0 + 1 = 1) and it remains c for an input dk = 1 (dk + ek = 1 + 1 = 2). This is
consistent with the DTSM’s mechanics, see figure 2.1.

Now we must validate the correctness of the statement (2.3). In this case we have d ′k =
ϵ(pk−1,dk) = ϵ(c,dk) and as of (2.1) we have d ′k =mod(ek−1+dk−1+dk ,2). Utilizing the induction
hypothesis we know the sum dk−1 + ek−1 = 2 and thus ϵ(c,dk) =mod(2 + dk ,2) = dk . Since the
ϵ-bit of each edge outgoing from c is equal to the σ- bit as shown in figure 2.1 the statement
(2.3) is correct in this case as well.
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Case 2: pk−1 = b. Analoguous to the first case, we apply the induction hypothesis to
(2.2) and thus assume the sum dk−1 + ek−1 = 1, which leads us to ek = ⌊(1 + dk)/2⌋ = dk by
substituting this assumed sum into (2.1).

Now we prove the exactness of (2.2) for the next target position pk , whereby b becomes
the source position. In compliance with the DTSM’s mechanics posed in figure 2.1, an input
dk = 0 causes the token to move to a. The condition defined by (2.2) for the target position
pk = a is the sum dk + ek = 0, which is correct in our current case dk = ek = 0. An input dk = 1
causes the token’s movement from b to c. Here again the condition dk + ek = 2 specified by
(2.2) matches our case dk = ek = 1.

Now we have to affirm the statement (2.3). For this we proceed in the same way as in
the first case referring to (2.1) and substitute again into d ′k =mod(ek−1 + dk−1 + dk ,2) the sum
dk−1 + ek−1 = 1 with the result that d ′k = mod(1 + dk ,2). The consequence is that d ′k has the
inverse value of dk . In fact each edge outgoing from b is labeled with a σ- and ϵ-bit that are
mutually inverse (see figure 2.1). For this reason (2.3) is valid in this case too.

Case 3: pk−1 = a. The induction hypothesis will now be applied for this third case to (2.2)
with the result dk−1 + ek−1 = 0, that is dk−1 = ek−1 = 0. With reference to (2.1) we are given
ek = ⌊dk/2⌋ = 0. Simply put ek is in each case zero, notwithstanding which value dk has.

So far we have authenticated that ek = 0 when a token has moved into the target position
pk−1 = a within the context of our induction hypothesis. In the course of proving the legiti-
macy of (2.2) for the next target position pk , the node a is our source position. As illustrated
in 2.1 an input bit dk = 1 will cause the tokens move to node b and an input dk = 0 will cause
the token to remain at position a. The formula (2.2) that explicitely defines the tokens target
position pk complies to this behaviour in its conditions dk + ek = 1+0 = 1 (token’s movement
to b) and dk + ek = 0 + 0 = 0 (token’s stay in position a). Hence (2.2) is credible in this third
case.

Finally we have to substantiate the statement (2.3) in this third case. Substituting the
sum dk−1 + ek−1 = 0 into (2.1) we are given d ′k = mod(dk ,2) = dk and thus ϵ(a,dk) = d ′k = dk .
Both edges that are outgoing from a have an ϵ- and σ-bit which are the same. Finally (2.3) is
accurate as well in this third case.

The equality of the sequence (d ′k)k∈N0
to the sequence of generated ϵ-bits has been val-

idated and due to the fact that the sequence of ϵ-bits forms the sequence of σ-bits that
describes the next token’s walk through, we have proven the theorem 2.1.



3. Conclusion and Outlook

3.1 Summary

Wehave defined a structure in Algebraic Automata Theory, whichwe call Dependent Threads
State Machine (DTSM). Building on this, we introduced an example called Collatz DTSM,
which utilizes Collatz sequences (in binary form) as an input alphabet and is able to traverse
these sequences. Finally, we proved that any binary coded Collatz sequence is equivalent to
the sequence of the Collatz DTSM’s input bits (δ-bits).

3.2 Outlook

By introducing the DTSM we defined an algebraic structure of automata that forms a basis
for further research. Through a concurrent idea we will express a monoid M that is freely
generated by the set of two elements p and q. The monoid’s operator is the concatenation
and it’s elements are words made of the 2-letter alphabet p,q, where a letter represents a
σ-bit of an integer that is a collatz sequence member (p is zero, q is one). For example, 5 is
represented by qpq.

To further develop this idea, we outline a surjective homomorphism (an epimorphism)
of the Monoid M into the permutation group S3 of the DTSM’s nodes {a,b,c}. Under this
epimorphism, the preimage of each element in S3 is non-empty.

Furthermore, an interesting mapping exists fromM intoM , which in follow-up research
will be investigated as an algebraic feature that transforms a token’s walk through into the
walk-through of the subsequent token. This mappingmay possibly be a basis for a promising
proof of Collatz conjecture.
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