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Abstract

This thesis presents methods for automated synthesis of flexible chip multiprocessor systems from

parallel programs targeted at FPGAs to exploit both task-level parallelism and architecture customiza-

tion. Automated synthesis is necessitated by the complexity of the design space. A detailed descrip-

tion of the design space is provided in order to determine which parameters should be modeled to

facilitate automated synthesis by optimizing a cost function, the emphasis being placed on inclusive

modeling of parameters from application, architectural and physical subspaces, as well as their joint

coverage in order to avoid pre-constraining the design space. Given a parallel program and a set of

an IP library, the automated synthesis problem is to simultaneously (i) select processors (ii) map and

schedule tasks to them, and (iii) select one or several networks for inter-task communications such

that design constraints and optimization objectives are met. The research objective in this thesis is

to find a suitable model for automated synthesis, and to evaluate methods of using the model for ar-

chitectural optimizations. Our contributions are a holistic approach for the design of such systems,

corresponding models to facilitate automated synthesis, evaluation of optimization methods using

state of the art integer linear and answer set programming, as well as the development of synthesis

heuristics to solve runtime challenges.
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1

1 Introduction

Transistor densities in microchips have been doubling approximately every two years following a

trend that was predicted by Gordon Moore in his 1965 paper, “Cramming more components onto

integrated circuits” [3]. With smaller transistors, the clock frequency of microprocessors could

be increased from one technology node to another during a period covering approximately four

decades. This, coupled with design innovations in instruction-set architectures, memories and micro-

architectures, has led to a dramatic increase in the performance of microprocessors.

Spurred by these technological advances, the complexity of softwares and algorithms has been

steadily increasing. That in turn has been leading to a need for higher performances. Unfortunately,

the semiconductor industry has reached a point where the performance cannot be further increased by

simple transistor scaling because of three major challenges.

The first challenge is what is known as the power wall. Power consumption in microprocessors has

two components: static and dynamic. Dynamic power consumption is a linear function of the clock

frequency, therefore, increasing the frequency undesirably increases the consumption. Even though

transistor shrinking allows the supply voltage to be scaled down and thereby reduce dynamic con-

sumption, doing so increases the static component which is becoming a major source of power con-

sumption for technologies below the 90nm node [4]. The reason is that, in order to compensate for

slower transistor switching due to lower supply voltage, the threshold voltage needs to be lowered.

Since the threshold voltage appears as a negative exponent in subthreshold current, compensating for

performance increases subthreshold static power consumption. Moreover, transistor scaling has led to

the reduction of gate oxide thickness, leading to increased static power consumption due to gate oxide

leakage. However, recent introduction of high-k dielectrics such as hafnium dioxide is significantly

reducing the impact of this last static component.

The second challenge is the memory wall. Memory latency is a bottleneck in computer architectures

[5] since access times have not been able to keep pace with clock frequencies, causing a wastage

of clock cycles. This problem is particularly severe with off-chip memories, where wire delays are

significantly larger compared to gate delays.

The third challenge is caused by diminishing returns from aggressive exploitation of instruction level

parallelism. Significant area and power overhead are not justified by small performance improvements

resulting from the detection and exploitation of the parallelism on processors [5]. Diminishing returns

are also experienced with Very Large Instruction Word (VLIW) architectures [5] because as the num-

ber of slots is increased, the size of multiplexors serving the read/write ports of the register file grows

more than linearly [5, 6]. Even though register-file partitioning reduces this problem, doing so limits

opportunities for instruction-level parallelism because of additional clock cycle latencies required to

exchange data between slots. Techniques such as chaining of register file access requests lead to the

same effect.

Two emerging solutions to these challenges are parallel and reconfigurable computing. Parallel com-

puting with multiple processors has traditionally been in the high-performance computing domain,

where supercomputers and computer clusters have been long in use, with early systems dating back

to the early 1960s. Recently, multi-processor and multi-core systems have been introduced for per-
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sonal and embedded computing to mitigate the three technological challenges. These architectures

can lead to higher performance through the exploitation of task-level parallelism without incurring

severe power penalties.

As opposed to multi-processor systems, multi-core systems have two or more processors on a single

die. The latter systems are also known as Chip Multi-Processors (CMPs). In the embedded domain

the terminology Multi-Processors System-On-Chip (MPSoC) is used to characterize heterogenous

systems consisting of general and special purpose processors as well as reconfigurable components

and Application-Specific Integrated Circuits (ASICs) on a single die. CMP systems can be perceived

as a subset of MPSoC systems containing instruction-set components only, possibly with accelerators

coupled to them.

In contrast to CMP systems, higher performance in reconfigurable computing is obtained through

customization since that reduces (or eliminates) overhead associated with instruction scheduling and

explicit data movements. Figure 1.1 shows a classification of processing elements according to soft-

ware flexibility versus performance. At extreme ends we have General Purpose Processors (GPPs)

which are fully software flexible, and ASICs which are not flexible. Even though all elements in

the figure are essentially application-specific integrated circuits, the term ASIC is now widely used

to refer to non-programmable and non-reconfigurable integrated circuits. Moving away from GPPs,

Domain-specific Processors (DPs) and Application-Specific Instruction-set Processors (ASIPs) trade

software flexibility for performance. Higher performance is obtained through specialization rather

than through exploitation of high-level parallelism.

Reconfigurable devices, notably Field Programmable Gate Arrays (FPGAs), lead to an even higher

performance because of full customization for specific applications. From the perspective of software

programmability, FPGAs are less flexible devices compared to processors. However, because of their

reconfigurable fabric, they are sometimes classified as being more flexible compared to ASIPs [7].

Between ASIPs and FPGAs, there is a class of reconfigurable ASIPs (rASIPs), which are partially

reconfigurable ASIPs.

The concept of reconfigurable computing was introduced in 1959 by Gerald Estrin [8] to achieve

gains in computational speed by exploiting special-purpose but reconfigurable hardware structures.

Modern systems in reconfigurable computing follow the same idea by integrating one or several

general purpose machines with one or several reconfigurable structures or devices. The capacity of

modern FPGAs has led to a new class of architectures that can be viewed as multi-processor systems

on FPGAs, targeting both single [9, 10] and multi-FPGA platforms [11, 12]. FPGA manufacturers

such as Xilinx and Altera are supporting this field by providing ready to use components such as soft-

and hard-core processors, bus-based communication infrastructures, and peripheral cores for off-chip

Figure 1.1: Software flexibility vs performance of processing elements
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communications.

Such flexible CMP systems are appealing because they combine the benefits of parallel and reconfig-

urable computing: task-level parallelism can be exploited on customized systems. This possibility is

particularly advantageous in the embedded domain, where the diversity of applications renders im-

possible the activity of finding a single CMP system that can satisfactorily meet the requirements of

all applications that can be mapped to any given static architecture.

A second advantage of flexible CMP systems is adaptivity. Nikitovic and Brorsson proposed in 2002

a simple adaptive CMP system [13], where adaptivity is obtained by switching one of fixed embedded

processor cores on and off to adjust the system to prevailing workload to save energy. Fully adaptive

systems can be obtained by additionally changing the communication infrastructure and the function-

ality of hardware accelerators either at compile-time or at runtime through (partial) reconfiguration.

Flexible CMP systems can be employed in applications such as pattern matching, video streaming,

distributed arithmetic, adaptive control, cryptography and software defined radios [7]. These systems

are the focus of this thesis. The rest of this chapter discusses their design approaches and tools, as

well as the objective of the research conducted as part of this thesis. The chapter concludes with an

overview and the main contribution of this thesis.

1.1 Design Phases for Flexible CMP Systems

The task of implementing flexible CMP systems on FPGAs is very complex consisting of four phases.

The first is the design of system components such as processors, memories and buses. In order to

increase design productivity such components are usually made available as Intellectual Property (IP)

cores, reducing this design activity to a selection problem. Knowledge about the application can be

used in the selection to prune the design space. However, care must be exercised to avoid limiting

options in later phases. IP-based design is assumed throughout this thesis.

In the second phase the system architecture is determined. This involves the selection of storage, I/O

and processing elements, the mapping of computational tasks to processors, and the selection and

allocation of communication resources, taking into consideration system and application constraints.

Figure 1.2 depicts the input and the output of this design phase.

In the third phase, the generated system architecture is translated into a Register Transfer Level (RTL)

description of the system. Additionally, the software application code is compiled for target proces-

sors, and appropriate drivers are configured for use. Finally, the RTL description is synthesized in the

final phase to obtain the configuration bitstream using traditional FPGA synthesis flows.

Figure 1.2: Determination of system architecture
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1.2 Research Objective

Figure 1.3 summarizes the design flow for flexible CMP systems on FPGAs. A preliminary work

towards this flow was started at the University of Kaiserslautern by the former research group “Self-

Organizing Embedded Systems”. The result of the effort was a design tool called PinHat [9, 7] which

covers the two lower design phases: System Integration and FPGA synthesis. The design approach

and the tool-chain automates system integration based on IP reuse via abstraction, offering a path to

vendor-specific FPGA synthesis tools. The contributions in this thesis stem from research effort to ad-

dress design challenges arising from the second phase in order to complete the design flow. The main

goal is to find an efficient way of determining optimum architectures from parallel programs. A pre-

requisite to this goal are definitions of (1) optimum architectures and (2) efficiency of corresponding

design flows.

1.2.1 Architecture Optimality

A semiconductor design point often represents a trade-off between flexibility, area, energy efficiency,

performance, and manufacturing objectives (yield and reliability). Consequently when more than one

of these conflicting design goals are being simultaneously optimized, optimality is defined in pareto

sense: generally, an optimum architecture is one that is located at the pareto front, implying that

none of the five design objectives can be further improved without worsening the others. However,

because the target platforms in this work are field programmable devices, only performance and

energy efficiency are immediate optimization objectives: flexibility is inherent in FPGAs, area is a

hard boolean constraint, and the field application nature means that manufacturing objectives have

already been met. In this context, a hard boolean constraint is one whose fulfillment suffices, with no

additional benefits beyond the mere fulfillment.

Static energy dissipation is caused by leakage currents from seven different sources in a CMOS device

[14, 15], of which subthreshold and gate oxide leakages are dominant. At the CMP system level

on FPGAs, the only method of optimizing for leakage is to reduce the size of the system so that

some parts of the devices can be deactivated, or to actively manage system consumption through

techniques such as powering-off components or active body-biasing. In FPGAs, the dynamic energy

component is largely consumed in the interconnect fabric with the consequence that system level

optimizations methods must be able to account for variations in routing algorithms. Therefore, generic

energy dissipation models that capture characteristics of FPGA devices and routing algorithms need

to be developed for CMP system level energy optimizations. That is an open and interesting area for

future research. This thesis focuses on the remaining optimization objective: performance.

Within this context, performance is an umbrella term for one of the following:

1. The time needed to complete a certain set of tasks for a terminating program.

2. The time needed to complete a certain set of tasks for one period of a non-terminating program.

Depending on application requirements, this can be used to optimize for processing latency

or throughput: shortening the time reduces the latency, whereas increasing the time by way

of task-level pipelining increases the throughput. Nevertheless, task-mapping must be such that

the execution time of the most critical task as well as associated scheduling and communication

overhead are minimized.

Consequently, in this thesis, an optimum architecture is the one that leads to the lowest execution time

for a set I of given tasks in a parallel program while meeting device and system constraints. If I is

the set of all tasks in the parallel program, then I = I for case 1 above, and I ⊆ I for case 2.

This definition makes it possible to target different performance objectives without altering the ba-

sic optimization method. Because of the combinatorial nature of this design problem, the optimum
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Figure 1.3: A high-level implementation flow for flexible CMP systems on FPGA

architecture may not be unique. Nevertheless, the intent is to find one such architecture (and not to

enumerate all optimum architectures).

1.2.2 Efficiency of a Design Flow

Even though the term “efficient design flow” is widely used in the EDA industry and in the academia

no metric has been publicized that can be used to measure the efficiency of a particular flow in ab-

solute or relative terms. A flow is perceived as being efficient if it enables designers to reach their

objectives easily and in reasonable time. These are arguably subjective characteristics, but still, they

provide a guidance as to what constitutes an efficient flow, namely high abstraction and automation.

That in turn implies the use of formal models that can unambiguously capture all necessary CMP de-

sign parameters to enable a rapid determination of application-specific optimum architectures, where

optimality is defined in the sense described in the previous subsection.

1.3 Main Contributions

Thus, the research objective in this thesis is to find a suitable model for automated synthesis, and to

evaluate methods of using the model for architectural optimizations. Stemming from this objective

are the following main contributions of this thesis:

1. A holistic approach to the design of flexible CMP systems on FPGAs is provided. Such an

approach quantifies and captures important high level design options such that it is possible to

formally model the design space. This is a basis for the development of automated methods

which ultimately enables such systems to be efficient designed.

2. Mathematical models for such systems are provided. These models provide a foundation for the
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development of optimization techniques that are vital for designing competitive architectures

through automation. Cost models makes it possible to reduce the complexity of the design

process since tools can be employed to optimize cost functions, thereby reducing the work load

that designers would otherwise need to spend using workbench-based exploration tools.

3. An evaluation of optimization methods for the synthesis problem is given. This helps to identify

which techniques are feasible. In total, three methods are evaluated. The first studies general

tractability using well established Integer Linear Programming. The second investigates the

effectiveness of techniques from the domain of Boolean Satisfiability (SAT) for solving this

particular synthesis problem. The third considers application-specific heuristics. In particular,

this thesis shows under which conditions the synthesis problem can be optimally solved us-

ing greedy algorithms. Further this work explains the limitation of greedy algorithms for the

synthesis problem, and three greedy-like heuristics are introduced. These heuristics attempt to

achieve two things: first, to alleviate the limitation, and second, to provide a means for fast

synthesis when greedy algorithms are not applicable at all.

The sum of these contributions constitute the solution for solving challenges arising from the second

design phase outlined in figure 1.3.

1.4 Organization

The rest of this thesis is organized as follows: Chapter 2 introduces the design space of flexible CMP

systems on FPGAs, followed by a discussion of corresponding design space exploration methodolo-

gies, where related work is put in context. The latter serves the purpose of identifying strengths and

weaknesses of existing synthesis techniques that can be potentially employed for the problem at hand.

Chapter 3 proposes a design flow that addresses design objectives identified in this thesis. Further-

more, an Integer Linear Programming (ILP) model that captures important design aspects of flexible

CMP systems is introduced. The model captures resource allocation, task-mapping, scheduling and

makespan optimization, the emphasis being that these subproblems must be jointly solved to arrive

at globally optimum solutions. An evaluation of synthesis via ILP is also given in this chapter, where

limitations are shown.

Chapter 4 briefly introduces SAT techniques as well as a related field of Answer Set Programming

(ASP). The chapter proceeds to discuss how the synthesis problem can be modeled as ASP-programs,

and concludes by evaluating the effectiveness of SAT-based techniques as used in ASP for solving

this synthesis problem. The merits of ASP over ILP are shown, and limitations are discussed.

Chapter 5 discusses in detail application-specific greedy-like heuristics. A formal proof is given using

matroid theory to show that the synthesis problem can be optimally solved using greedy algorithms

under certain conditions. Limitations of greedy algorithms are discussed, providing a motivation to

explore problem resolution using heuristics which attempt to exploit characteristics of the synthesis

problem. Moreover, these heuristics are evaluated, limitations are identified, and a synthesis strategy

in the presence of those challenges is proposed.

Finally, concluding remarks are provided in chapter 6. The tool that has been developed in the course

of this thesis is described in Appendix B.
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2 Design Space of CMP Systems

This chapter introduces the design space of flexible CMP systems in order to identify parameters

which need to be captured in a design flow. The introduction also serves as a background for a discus-

sion on related work later in the chapter in order to single out strengths and weaknesses of existing

design techniques that can be potentially used or adapted for designing such systems.

Figure 2.1 is a coarse presentation of the design space. Each arrow represents a dimension in the space

which stands for design choices that can be made. Some design choices are not mutually exclusive:

for instance, the on-chip network can be a hybrid of buses and point-to-point connections. A particular

CMP system is a point in the space which, in the presentation, can be perceived by drawing a curve

going through the points in each arrow as shown in the figure for a three-core architecture. The

design space consists of three subspaces stemming from the corresponding major design activities

: the system architecture, the programming paradigm, and the physical layout. All these subspaces

have an impact on overall system performance. Moreover, the subspaces are not orthogonal so that

design decisions made in one of them influence the effectiveness of those made in others. This is the

reason as to why emphasis is placed on joint optimization of design parameters.

There is consequently a need to determine which dimensions must be included in explorations in

order to avoid pre-constraining the design space since otherwise suboptimum architectures can result.

This is the subject of the next three subsections. Methods for covering the design space as well as the

discussion on related work follow the introduction of the design space.

2.1 System Architecture Subspace

This subspace offers options for high-level CMP system design. The dimensions reflect the choice of

IP components to be included in the system.

2.1.1 Peripherals

Peripherals dictate how the CMP system will interact with its environment. In practical applications,

a CMP system is by itself a subsystem so that peripherals are potential bottlenecks that impose a per-

formance cap. There is typically a higher level partitioning of the application that is already in place.

For instance in an SDR system, such a partition could map baseband processing to the CMP system,

and higher communication layers to a single general purpose processor. In such a scenario, sufficient

bandwidth must be guaranteed between the GPP, the flexible CMP, and the radio frequency frontend.

Therefore, the choice of peripherals is a design decision that can be excluded from optimizations,

under the assumption that peripherals that can meet system requirements exist and have already been

optimally selected during high-level partitioning. This choice is an optimization parameter at system

level that should be dealt with in that context.

2.1.2 Processing Elements
2.1.2.1 Type and Architecture Style

Processing elements determine the time that will be spent executing parallel tasks. In addition to

the general architecture of the processing elements (general purpose, signal processing, application-
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Figure 2.1: CMP design space

specific), there is a finer choice in the architecture style (scalar, SIMD, VLIW, vector, etc.). As de-

picted in figure 1.1, the tradeoff that needs to be made in the general architecture is between flexibility,

execution performance, area and power consumption. However, for the exploration of flexible CMP

systems, flexibility is not considered because processing elements can always be swapped to fit new

applications.

The tradeoff in the style is similar involving performance, area and power consumption, but exclud-

ing flexibility. Scalar RISC processors are simple and thus are small in area, so that they are well

suited for general purpose applications. SIMD processors are more suitable for exploiting data-level

parallelism, but they tend to have large register files because of required parallel processing. VLIW

processors can be used well when the application exhibit instruction-level parallelism, but they also

tend to suffer from large register files due to the need for several parallel read/write ports. Super scalar

processors do well where instruction-level parallelism is not visible at compile time, but that comes

with a considerable control overhead in the micro-architecture which is manifested in higher area and

power consumption. Vector processors are comparable to SIMDs, they have a much larger number of

parallel processing units. They are well suitable for large scientific applications.

The question as to which processing elements are more suitable for a given parallel program largely

depends on the kind of computation that is done within tasks. For the purpose of design space explo-

ration, not all levels of architectural details must be captured, but the sum of their effects as visible

in the actual performance and area cost. Parameters which need to be captured for each processing

element are

Computation cost of each task in the parallel program. In addition to the clock cycles spent for

actual computation, the cost include latencies due to memory accesses, and any speed-up due

to loosely coupled hardware accelerators. Here, processing elements are composed of the pro-
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cessor micro-architecture, local memories, interfaces and optionally accelerators as depicted in

Figure 1.2. This inclusion is arbitrary, but is otherwise not limiting as long as the effects of

these components are captured.

Cycles can be obtained via cycle accurate simulations, however that could be prohibitive for

Multi-Program Multi-Data (MPMD) paradigm when the number of tasks and processors is

large since the cost must be obtained for each possible processor-task pair. Other means of

obtaining cycles include statistical estimation [16] and macro modeling [17]. Cycle estimation

methods based on modeling can be used to lessen potentially costly simulations. Their down-

side is that they are applicable for well characterized processors only. Moreover, such charac-

terizations may not capture processor features specifically designed for particular application

domains.

Clock cycle lengths are challenging to estimate when soft cores are used, because the criti-

cal path also depends on placement and routing algorithms. Reliable figures can be obtained

when FPGA placement constraints are in place. Otherwise it may be necessary to conduct an

exploration iteratively in order to refine cost models. This technique is proposed in Chapter 3.

The area cost of the processors. This includes external resources processors need such as memo-

ries, accelerators and controllers. The area can be obtained through FPGA synthesis for the

target platform. Again, placement constraints are required to get reliable figures, or alternately,

iterative flows should be used.

The number of each available type of processors. This implies the use of an IP library. To avoid

pre-constraining, the library should ideally be extensive.

With this parameter, the tradeoff is between the degree of task-level parallelism that can be

exploited at the system level, and hence the performance, against the area. However, a higher

degree of parallelism could degrade the overall performance due to the need for data trans-

portation and synchronization between the processing elements. This crosscutting issue is an

example for non-orthogonality of the design space.

Here, a distinction is made between the number of parallel tasks in the application, and the

number of processors. The former parameter is a separate tradeoff, and is in the application

subspace. The latter parameter influence the extent to which tasks can share a processor. This

introduces yet another crosscutting issue with scheduling in the application subspace.

2.1.2.2 Composition

The choice between homogenous or heterogenous composition of processing elements directly impact

the area-performance tradeoff. Processing elements in homogenous architectures tend to be more gen-

eral purpose so that any task can be mapped onto them. On the other hand, heterogenous architectures

include specialized processors, leading to more efficient execution of specific tasks. Consequently,

the latter style tends to be more favorable from the performance point of view.

Furthermore, the composition trades performance against usability, but not always so. If the parallel

tasks in the application perform different sequences of operations as in multiple program multiple

data paradigm, then heterogenous architectures generally would lead to better performance because

each task can be mapped to a processor that is best suited to it. On the other hand, if the parallel

tasks as essentially the same performing the same sequence of operations on different data, then a

heterogenous architecture may not offer any advantage, unless there is a limit of a number of cores of

a particular type or style that can be used.

The downside is that programming for specialized processors is a difficult task that often requires non-

generic tools. Nevertheless, this is a problem that will be solved by adequate tools so that usability

need not be considered during exploration.
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Targeting applications to heterogenous architectures is inherently more difficult since different tools

need to be incorporated in the design flow to cater for different processor flavors. Despite the chal-

lenge, the IP library in use for exploration should be rich enough in order to efficiently execute tasks

on optimum processors. The final composition must result from exploration, and not the other way

round (i.e. make decision on composition, and the find a suitable exploration methodology).

No parameters need to be modeled for this dimension. A design flow must only insure the richness

of the IP library, ideally through a preliminary analysis that uses designer’s expertise and application

knowledge to identify possible candidates.

2.1.3 Communication Infrastructure

On-chip communication infrastructure is a critical component of a CMP system as it impacts the

application performance and power consumption. The reason is non-scalability of metal wires used

for interconnection, leading to wire delays which are significantly longer than gate delays. The re-

sult is high dynamic power consumption due to large capacitances and also it becomes expensive to

move data between processing elements, and to or from memories and peripherals. Thus, the system

architecture must strike a balance between parallelization and data movement.

The tradeoff between network architectures is between average performance, scalability and area.

Links are the simplest of all networks from protocol perspective. Direct links between nodes (i.e.

processing elements, memories and peripherals) have the highest possible performance because the

bandwidth is not shared. Moreover, transmission overhead is minimum as there is no need for control

and management of the communication medium.

But since the number of links can grow exponentially with the number of nodes depending on the

application, the area for direct links do not scale well. Another disadvantage is that the area require-

ment at the nodes also grows with the number of links because multiplexors must be used to direct

traffic to different links. Worse still, multiplexors increase the capacitive load at the end of links so

that buffers must be employed to maintain link performance. With crossbars, multiplexor overhead

can be moved into the communication infrastructure. However, the fundamental area problem arising

from exponential growth remains.

The best area efficiency is obtained with buses, but their performance does not scale well because

nodes must share bandwidth. Control techniques such as pipelining and out-of-order completion of

transactions mitigate the effects of bandwidth sharing, but do not solve the fundamental problem

resulting from bandwidth sharing. Better results can be obtained with hierarchical buses since these

exploit traffic locality to reduce contention on global buses. Bridges are then typically used to route

traffic between hierarchies so that overall, area is traded for average performance.

A generalization of hierarchical buses leads to the concept of Network-on-Chip (NoC). These are

more adaptable to applications since their topologies and protocols can be selected to suite a spe-

cific traffic pattern. However, their complex nature introduce cross-cutting issues: whereas through-

put maybe improved, multiple hops increase latencies. Requirements for Quality of Service (QoS)

introduce an additional dimension in the application subspace because routing algorithms must be

involved. These in turn directly impact the the latency and throughput.

Throughout this thesis, the term network is used to refer to any kind of on-chip communication

resource (link, bus, NoC, etc.). The term communication infrastructure refers to all networks that

constitute a CMP system.

The selection of a suitable communication infrastructure depends not only on the traffic pattern char-

acteristic of the parallel program, but also on selected processing elements. Therefore, these selec-

tions should not be conducted independent of each other because of the crosscutting issues between

parallelization and data movements. Parameters which need to be captured for the communication

infrastructure are
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Type and number of networks. This implies the use of an IP library. There should be no restric-

tion with respect to the number and type of networks that can be used in the system from the

functionality point of view. This is important because the traffic pattern and the selection of

processing elements may mandate the use of a hybrid network to get optimum results.

Model of communication cost between any two points in the network. This is required to get the

cost in terms of time required to move data between any two tasks via that specific network ex-

pressed per unit volume of data. The dynamic nature arising from network protocols introduce

additional challenges in estimating this parameter. These are discussed in Section 2.2.

Data traffic. This information is required to obtain a complete picture on communication cost. If

communication cost depends on data volume transmitted, data traffic should be used to derive

communication cost. Such variations occur when the ratio between control or communication

overhead to payload is not constant. This aspect highlights another challenge due to dynamic

nature as discussed in Section 2.2.

Area cost. This is required to determine overall CMP area consumption. The area should include

the cost due to bridges, routers and adaptors. Similarly to processing elements, the area of a

network is only an estimate that depends not only on FPGA resources, but also on placement

and routing algorithms. Several iterations may be required to refine area estimates.

A unique area challenge for the communication infrastructure is that the parameter depends on

the number of nodes. Therefore, the area should ideally be expressed as a function of number

of nodes attached to it. Alternately, area costs can be modeled through different networks of the

same type which support different number of nodes.

Capacity. Networks have a maximum number of nodes that can be attached to it. This poses a hard

constraint during exploration that must be observed for each network.

2.1.4 Memory Architecture

Memories are traditionally a bottleneck because they are typically slower than processors hence lead-

ing to long access latencies, and because they have limited number of ports so that parallel accesses

to them cannot be effectively exploited.

Memory hierarchies are used to trade performance for size where data or instruction locality can be

exploited. Moreover, cache sizes and policies in a specific hierarchy can be used for performance

tradeoffs: large caches can lead to a better performance since that can reduce cache misses, and

higher associativity trade complexity, and thus area, for performance. Similarly, replacement policies

and flushing mechanisms trade complexity for performance.

In addition to hierarchies, memory partitioning can boost performance by allowing more parallel

accesses than would otherwise be possible with a physically contiguous memory particulary where

data-level parallelism can be exploited, for example, in image and signal processing.

Finally, a choice between shared and distributed memories needs to be made. The former can boost the

performance when large amounts of data must be passed to another processor, but sharing is a poten-

tial bottleneck. The latter eliminate bottlenecks due to sharing, but is associated with data movement

overhead thus crosscutting with the communication infrastructure dimension. Another crosscutting

issue is with programming paradigm in the application subspace: shared memories are naturally more

suitable for a shared memory programming paradigm, whereas the latter is more suitable with a mes-

sage passing paradigm.

For the purpose of flexible CMP exploration, modeling memory parameters is rather difficult because

memory architectures tend to be transparent at higher programming application levels. One solution

to this problem is to include the effect of memories to the cost of executing a task on a processor as
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discussed in Section 2.1.2.1. However, that approach inherently assumes distributed memory archi-

tectures. To capture shared memories, one solution is to model memory nodes as processing nodes to

which only storage tasks can be mapped to. Storage tasks can be perceived to be such tasks which do

not process data, but simply serve as a common place to store shared data. Simulations must be con-

ducted for such nodes to capture dynamic effects pertaining to access latencies. Alternately, statistical

models can be employed.

2.2 Application Subspace

This subspace influence performance by determining how processing, storage and communication re-

sources of a CMP system are utilized. Apart from crosscutting issues, the dimensions in this subspace

do not represent tradeoffs on their own (i.e. area vs performance): only the performance is impacted1.

2.2.1 Task Mapping

Task mapping is a lead design activity in this subspace, and conceptually precedes all other decisions

in this subspace apart from programming paradigm. This is because optimizations for scheduling,

data transfers and reconfigurability can only be made once it is known which task is supposed to be

running on which processor.

The only parameter that needs to be captured is which task can be mapped to which processor. For

example, storage tasks can only be mapped to memory nodes as discussed in Section 2.1.4. Other than

that, the exploration methodology must allow arbitrary mappings. Prefixing mappings, for instance by

utilizing application knowledge, may lead to suboptimum results when other dimensions are factored

in. As an example, one cannot simply dictate that a correlation tasks must run on a DSP only because

the DSP can execute the computation more efficiently compared to a GPP. Doing so favor local

maxima but runs a risk of missing global maxima.

2.2.2 Scheduling

This dimension determine the utilization of processing elements, and crosscuts with the dimension

for number of elements as introduced in Section 2.1.2.1. Scheduling is required when tasks must

share a processor, either because there is a limited number of processors, because data movements

are expensive, or because realtime requirements dictate so. Scheduling insures that shared resources

are properly utilized, i.e., all tasks get a fair or a required amount of time slices, and that deadlocking

does not result. Following distinctions can be made between different scheduling mechanism:

Cooperative vs preemptive. In cooperative schedules, each task decides when to let others use pro-

cessors, for example, as in basic cyclic executives. This is a simplest of of all scheduling mech-

anisms. Its disadvantages include (1) unfair use because a task can consume most time slices

disregarding others, (2) blocking because a task may not release the processor, (3) difficult to

maintain if a certain allocation of processor time among tasks is required because the allocation

has to be manually programmed, and (4) important for performance, cooperative scheduling is

wasteful because tasks can unnecessarily block a processor while waiting for data or other

resources.

Preemptive schedulers on the other hand forcefully suspend task execution so that others can

run. These schedulers are complex, but they eliminate the disadvantages outlined above.

1There is a tradeoff between performance and energy dissipation, however this is not in the context of this thesis as

discussed in Section 1.2
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In complex applications, a preemptive scheduler is almost always the most suitable choice so

that the decision does not need to go into an exploration cycle. Such schedulers inherently

introduce an overhead because they consume CPU time. Depending on the scheduler, the over-

head may vary depending on the number of tasks. For instance, a scheduler may need to search

through or sort a list of pending tasks to determine which one has the highest priority. The time

required for this operation naturally depends on the number of tasks, leading to a phenomenon

known as scheduling jitter.

The overhead must be captured either analytically or through simulations because it impacts

the performance. However, analytical determination is not possible where no assumptions on

occurrence of events can be made.

Realtime vs non-realtime. In realtime systems, a scheduler must insure that task deadlines can be

met to guarantee overall system functionality as is the case in many embedded systems. This

aspect crosscuts with mapping by imposing restrictions on which group of tasks maybe mapped

on the same processor.

Through mapping constraints, realtime scheduling can lead to worse performance by necessi-

tating expensive data movements between tasks that must be mapped on different processors.

Nevertheless, this is not necessarily a disadvantage because there are often no benefits in im-

provements beyond meeting realtime requirements.

Conversely, even though non-realtime scheduling can vastly improve the overall execution time

by avoiding expensive data movements, that benefit could be of little use from the functionality

point of view if task deadlines are violated.

This parameter must be captured as a constraint. Performance consequences result automati-

cally and they therefore require no special considerations (i.e. these go into overall cost function

for optimization).

Fixed vs dynamic priority. Preemptive schedulers often require task priorities to make decisions by

letting higher priority tasks run first. This can improve performance if critical tasks are assigned

higher priorities. Priorities can be fixed or dynamic depending on whether priorities can change

at runtime2.

Dynamic scheduling is complex and difficult to implement, but has the advantage that deadlines

can be guaranteed at higher CPU utilization compared to fixed priority scheduling. This can

increase the performance by avoiding data transfers over the communication infrastructure by

allowing more tasks to be mapped on processors as would otherwise be possible with fixed

priority scheduling.

This parameter must be captured either analytically or through simulations because it impacts

the performance.

Mono vs multiprocessor scheduling. In mono processor scheduling, decisions on which task

should run on which processor is done during the mapping phase. The scheduler merely oper-

ates on those decisions to derive optimum schedules for each processor based on which tasks

should be running on them.

On the other hand, a task can be released to run on any of the available processors in multipro-

cessor scheduling. This technique is essentially a dynamic form of task mapping.

The design decision on which of these two scheduling mechanisms is optimum depends on

the characteristic of the application. Multiprocessor scheduling is more suitable in applications

which consist of many aperiodic tasks because no knowledge on the rate of occurrence of events

2Measures against priority inversion do change priorities dynamically, but these are not considered to be dynamic

scheduling schemes
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is known at design time as is the case in personal computing and in some control applications.

In the other case, that information can be exploited at design time to derive optimum tasks and

schedules.

This parameter does not need to go into the exploration cycle because application knowledge

can be used to make the selection in advance.

Global vs local. Local scheduling optimizes the usage of a processor between a group of tasks disre-

garding schedules for other processors. Global scheduling on the other hand attempts to sched-

ule across processor boundaries to obtain overall better performance. In cooperative multitask-

ing, global scheduling can exploit knowledge of availability of data between tasks on different

processors, and is therefore in a position to derive better schedules for individual processors.

This advantage disappears however in preemptive scheduling because critical tasks can always

be released on data availability based on their priorities.

Therefore, unless cooperative scheduling is in place, this parameter does not require consider-

ation.

2.2.3 Network-Services

Protocol features of networks impact system performance because they inherently introduce overhead

or latencies. Options for network services are usually tied to the available network so that the selection

of a network implies the selection of associated services. As a result, there is no direct tradeoff,

however, the overhead that is introduced by the services needs to be captured. This section summarizes

how different options affect the overhead.

Arbitration. In most cases, nodes must contend for network access so that mechanism that guarantee

exclusive accesses must be in place. Therefore, arbitration is a problem of resource allocation

or contention resolution. Arbitration is typically present in simple networks such as buses.

In collision avoidance mechanisms, nodes attempt to detect when the network is free so that

they can transmit. When not free, a retry is attempted after a random waiting period. The over-

head has three components: the detection which is constant, the random wait period which is

unknown but is bounded, and the number of retries which is non-deterministic.

Priority based mechanisms are different in that a node will not backup if it has the highest

priority among the currently contending nodes. This improves the overhead for highest priority

tasks by eliminating random wait and retry components.

Networks which use an arbiter has an entity that is responsible for granting accesses which may

or may not be based on priorities. The arbiter eliminates detection and retry overhead, leaving

the unknown but bounded waiting period3.

Switching. Network switching can also be perceived to be a problem of resource allocation or con-

tention resolution [18], and is typically present in complex multi-hop networks. In either case,

switching determines when and how data is forwarded to its destination. Figure 2.2 shows a

categorization of switching techniques.

In circuit switching, data follows pre-reserved paths to the destination. In exclusive mode, data

transfer proceeds in three steps (1) the path to the destination is setup during which flow control

information is routed to the destination, (2) the actual data is transferred along the reserved route

without routing and control overhead, and (3) the reserved path is teared down. The overhead is

in the first and last steps. For both setup and tear down, the overhead is indeterministic because

3A bound must exist, or there must exist an acceptable probability about an arbitrarily selected bound. Otherwise,

functionality cannot be guaranteed, and the architecture is seriously flawed.
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Figure 2.2: Network Switching Techniques

the routing path is unknown a priori. Additionally for setup, resources could be blocked leading

to unknown waiting periods or retries.

In spatial multiplexing mode, there are virtual channels which are used to share the same phys-

ical path in order to increase resource utilization compared to the exclusive access mode. This

is advantageous in situations where a node cannot fully utilize the bandwidth during the time

when the physical path is reserved for it. A constant overhead in step (2) above is incurred be-

cause additional flow control is required to distinguish the virtual channels. Additionally, if care

is not taken to insure that the bandwidth of reserved physical paths is not exceeded, additional

delays will result in the step since contention may results.

In time multiplexing mode, physical paths are shared through the use of time slots. Therefore,

in addition to the physical path, time slots are reserved as well in step (1). This eliminates

potential overhead due to contention as is the case with spatial multiplexing.

In packet switching, data is split into packets which are independently routed to the destina-

tion, possibly along different paths. This further improves network utilization by eliminating

reservation of resources, thereby eliminating the first and last steps above. The downside is that

a stochastic overhead is introduced because of different arrival times of the individual packets

caused by differing path lengths and contention of resources, and because of their different

order of arrival which necessitates rearranging at the destination node. This is in addition to a

constant overhead due to flow control information in packet headers.

The difference between the three packet switching techniques is in packet forwarding. In Store-

And-Forward (SAF), a packet must completely arrive at a router before it can be forwarded

to the next. This introduces a latency between routers which is non-deterministic because the

number of hops for the packets varies randomly.

Virtual-Cut-Through (VCT) improves the latency by starting to forward a packet as soon as

the header containing routing information has been received. Nevertheless, the latency remains

indeterministic. The disadvantage of SAF and VCT is that routers require enough buffering

space to store complete packets. This is also the case with VCT since a router must be able to

store a complete packet in case the next router cannot yet accept forwarding.

Wormhole switching eliminates the requirement for maximum buffer size in routers by splitting

a packet into smaller units. As in VCT, a packet is forwarded as soon as the header is received,

however, forwarding is now done is smaller units, so that buffering space is required for the

smaller units only. If a smaller unit cannot be forwarded, buffers can become filled up along

the route back to the sending node, thereby stalling the entire stream of the packet. Since the

blocking of a packet occurs simultaneously in several routers, deadlocking can result where

several packets wait for each other to clear buffer spaces. Employing virtual channels efficiently

solves deadlocking since packets can overtake blocked ones [19]. The associated overhead is

the same as that in step (2) in spatial multiplexing.

Routing Algorithms. Routing is present in multi-hop networks to establish a path between send-

ing and receiving nodes. Additionally, routing algorithms resolve contentions and attempt to

achieve network load balancing to improve overall throughput. These algorithms fall into three

categories.
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Deterministic routing always provide the same path between nodes. However, overheads due to

contentions remain non-deterministic. Oblivious routing selects a path randomly. Though this

method is associated with all uncertainties in overhead cost, it has the advantage of achieving

better load balancing compared to deterministic routing. Adaptive routing further improves on

oblivious routing by considering local network state in path selection. From the perspective of

deterministic overheads, nothing changes (i.e. the overhead is indeterministic).

Error Control. Transient faults have been shown to account for 80% of system failures in deep

submicron VLSI circuits [20]. These can corrupt data along its transmission route so that link

layer mechanisms are required to handle such errors.

With error detection and recovery, redundant information is added in the data stream to enable

the receiving node to detect errors and request retransmissions. In this case, there is a constant

overhead due to redundancy and detection, and a non-deterministic overhead due to retransmis-

sions.

With forward error correction, enough redundant information is injected in the data stream so

that the receiver can correct errors up to a certain number of wrong bits, in addition to the

detection. The constant overhead is consequently larger, but that significantly reduces the non-

deterministic overhead.

Quality of Service (QoS). Complex networks require a guarantee that transmission requirements

can always be met in presence of errors and non-deterministic variations in overhead, latency

and throughput. Thus in contrast to foregoing items, QoS does not result in overheads which

must be considered in exploration cycles, but rather provide their bounds by way of guarantees

so that an exploration cycle can operate on upper bounds instead. That way, resulting CMP

systems are optimum for the worst rather than average or typical case. QoS is insured along

four lines.

The first is data integrity and reliability by way of guaranteed bit error rates so that upper

bounds on overheads resulting on transient faults can be computed based on the amount of data

to be transferred.

The second is loss probability. This is related to error control in that dropped packets result

in retransmission overheads. However, on-chip networks do not yet include packet dropping

because of associated latency and throughput penalties.

The third is in-order delivery of packets through deterministic routing and flow control so that

packets follow the same route without losses. This eliminates rearrangement overhead.

The last is network-wide resource management to guarantee upper bounds on latencies and

throughput in presence of previously discussed non-deterministic factors.

2.2.3.1 Obtaining Network Parameters

The stochastic behavior of network services imply that the overhead can only be estimated for the

average case if adequate analysis or simulations are conducted. Moreover, the overhead is not a fixed

parameter for a network, but depends strongly on the communication pattern of the parallel pro-

gram, especially with respect to the contention of network resources. This is because, in presence of

scheduling and communications within the CMP environment, it is currently not possible to precisely

determine the time at which every task may begin to transmit data.

If it is known that the estimated overhead is relatively small because of the large amount of data

to be transmitted, the uncertainty can be expected to have marginal effects on the overall system

performance so that overheads can be ignored in exploration cycles. If that is not the case, the designer

has an option between worst-case and average-case optimization. The first option would base on QoS

guarantees, whereas the latter on average case estimates.
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Adequate simulations that reflect the communication pattern of the parallel application are very ex-

pensive for the exploration of flexible CMP systems because of the need to conduct such simulations

for every mapping option of interest. The situation is particulary hopeless for multi-hop networks

where the spatial position of nodes in the network matters because a completely deferent network

behavior can result from the same communication pattern of the parallel program merely by changing

the location of processors relative to each other. For N communicating tasks, and M possible nodes,

the number of combinations that would need to be evaluated is

NM+(N−1)MN
N !

2!(N − 2)!
+· · ·+2M

N !

(N − 1)
= NM+M(N−1)2N+· · ·+2MN → O(N2N )

(2.1)

This exponential complexity renders such an evaluation computationally impossible for many prac-

tical cases. Worst-case parameters can be obtained for random traffic pattern under network steady

state conditions by using the setup outlined in [19] which is depicted in Figure 2.3.

In the setup, packet sources send random data to destinations through the network. The monitor counts

and time-stamps packets to determine network throughput and latency. Both parameters increase as

the traffic into the network is increased from zero because of a better network utilization and more

packet collisions respectively. There exist a point, the saturation point, beyond which the throughput

no longer increases and the latency rises sharply. In some networks, the throughput will drop beyond

the saturation point so that congestion control measures must be employed.

The saturation point gives worst-case parameters for QoS guarantees. Parameters obtained in this way

will be almost always pessimistic taking into account application-specific communication pattern.

Therefore, a designer may decide to use actual communication pattern of the parallel program instead

of random traffic. Even though a full exploration is not possible, better network parameters may be

obtained in this way. For instance, a designer may use a placement heuristic to place nodes with heavy

traffic between them close together in the network.

To further reduce analysis time, finite state machines can be used as packet sources and destinations

in the setup of Figure 2.3 rather than full task simulations as proposed in [21]. Simulation time is

reduced by eliminating computations in tasks: the finite state machines emulate the behavior of tasks

from the communication perspective.

Analytical methods based on network flow analysis can be used instead of simulations, however, such

techniques are only suitable with oblivious and deterministic routing [18] so that they are generally

not applicable for the exploration of flexible CMP systems.

Figure 2.3: Setup for extraction of network parameters
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2.2.4 Reconfigurability

Reconfiguration enables temporal sharing of FPGA resources so that there is a time overhead when

switching between configurations. Applications which are affected are those which require dynamic

reconfiguration during their execution, for instance, to adapt the architecture to prevailing conditions.

The overhead is constant for any given FPGA architecture if the whole FPGA is reconfigured, and

can be obtained from data sheets. The magnitude depends on the reconfiguration scheme used, where

multi-context FPGAs tend to be much faster to reconfigure than their single-context counter parts.

On the other hand, the overhead for partial reconfiguration naturally depends on the FPGA area to be

replaced. However, with current technologies, FPGAs cannot be arbitrarily reconfigured, but rather,

an area for partial reconfiguration must be allocated. All components that will be dynamically re-

configured must fit in the pre-allocated space. Consequently, the overhead is constant for a given

application. An estimate of the area consumed for dynamically reconfigurable components must be

obtained prior to exploration to determine the overhead.

2.2.5 Programming Paradigm

The programming paradigm dictates how CMP resources will be used, and thus has a role of prese-

lecting CMP architecture styles.

Shared memory model. In this model, parallel tasks exchange data via a shared memory. Typically,

there is a single OS image for all processors that manages system resources. This models natu-

rally fits with shared memory architectures which were discussed in Section 2.1.4. The on-chip

network is rather simple because communications go through shared memories.

Message passing model. In this model, data is physically moved from one address space to another.

Typically, each processor has its own OS image, which may be the same. This model naturally

fits with distributed memories, and often requires elaborate network services in presence of

many cores to manage inter-processor communications.

Single Program Multiple Data Streams. In this model, each processor executes the same program

which perform the same sequence of operations on different data streams, for instance, as in

embarrassingly parallel applications. Since there is little inter-processor communications in

such scenarios, this model fits naturally with distributed memories and with rather simple on-

chip networks.

Multiple Programs Single Data Stream. In this model, the processors executes different sequence

of operations on the same data stream, for instance, as in signal processing. This model is

applicable together with both shared memory and message passing models.

Thus, designer’s knowledge on the application at hand can be used to prune the design space prior to

exploration by selecting suitable components for on-chip networks and memories that will go into the

IP library.

2.3 Physical Subspace

The physical subspace determines how components are placed on the chip, and is thus conceptually a

design activity that is done in lower levels, particularly in placement and routing. However, there are

crosscutting issues with system level design that affect the effectiveness of decisions made in either

level. The network topology ultimately determine the optimum layout that placement and routing al-

gorithms will find. Conversely, results obtained after this step may invalidate assumptions on network



2.4: Design Space Exploration 19

parameters made in system level. Moreover, these algorithms do not have any information concern-

ing the application. The layout may thus be optimum with respect to achievable clock frequencies,

but knowing the amount of traffic between nodes as well as the work load of processors is vital to

achieving better results. This information can be indirectly communicated to the algorithms through

design constraints. In either case, it may be necessary to feed information obtained from placement

and routing back to high level exploration.

2.4 Design Space Exploration

After reviewing the design space for flexible CMP system, this section discusses methods for explor-

ing the design space. The discussion on related work is categorized in this chapter based on both the

parameters covered and the exploration methodology used.

Design Space Exploration (DSE) consists of three distinct design steps, which are the specification

of the design functionality, the architecture specification, and architecture implementation and design

evaluation. The functionality is specified independent of the other steps. Architecture specification is

derived from the functionality, i.e. the architecture is specified such that the intended functionality

is covered. In the implementation step, the architecture specification is translated to obtain either a

formal description of the architecture, or the actual physical implementation. The last step is accom-

panied by evaluations to determine whether the implementation meets design objectives with respect

to the functionality and constraints. Evaluation results are also used to compare architecture alterna-

tives in terms of design objectives for the purpose of optimization. The advantage of the separation

of the overall design activity into these three steps is that designers can focus their activities to one of

the steps independently of the other two.

As shown in Figure 2.4, a systematic DSE process operates on three distinct data-sets: one or several

descriptions of intended functionality (application), description of feasible architectures and evalu-

ation results from performance analysis. The three above-mentioned design steps operate on these

data-sets. A detailed descriptions of each of these steps can be found in [1].

Figure 2.4: Y-Shaped design space exploration

The purpose of DSE is to expose efficient design points by optimizing design objectives. This is

primarily a search and compare procedure following the Y-shaped flow in Figure 2.4: mapping options

and design parameters are systematically altered, and evaluation results are ranked or charted against

each other to find superior designs. The notion of design efficiency in pareto sense is used when

multiple conflicting design objectives need to be traded against each other [1, 22, 23]. Superiority is

defined according to the Pareto criterion for dominance [24] which states that a design is superior to
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another if it is better in at least one objective, while being at least the same in all other objectives.

Consequently, a design is optimum (or efficient) if it is not dominated by any other design [24]. As

depicted in Figure 2.5, exploration methods can be categorized according to three hierarchies.

Figure 2.5: Methods for exploring the design space

Reduction of objectives. A central aspect of DSE is the optimization of objectives. Principally, there

exist two methods for optimizations with multiple objectives. In the first, objectives are simul-

taneously optimized using multi-objective optimization techniques. Because such techniques

are difficult to handle in many practical cases, the second method attempts to aggregate several

objectives into one so that simpler single-objective optimization techniques can be employed.

The categorization in the first hierarchy is about whether a DSE method uses aggregation.

Whereas the reduction of objective functions through aggregation enables the use of simpler

single-objective optimization methods, they may not reveal all efficient design points (the so-

called non-supported efficient solutions [25]).

Search methods. Since DSE is a search procedure, the second hierarchy categorizes DSE methods

depending on how they conduct the search. For each method of reducing objectives, exhaustive,

random or guided search can be used as shown in Figure 2.5.

With the first search method, all possible design points are described, implemented and eval-

uated. Because the resulting effort may be prohibitive, a subset of all feasible designs can be

randomly selected for implementation and evaluation using the second method. Random se-

lection can be further subdivided into blind and metric-driven methods. Blind methods select

parameters disregarding any previous findings or exploration state. Metric-driven methods on

the other hand use criteria in the selection process. For instance, simulated annealing uses a

probability function that depend on the energy of two states to make a transition from one state

to the other.

The last method differs from the former two in that knowledge from evaluation of one design

point is used to decide how design parameters should be modified to get efficient solutions as

depicted in Figure 2.6(a).

Reducing number of designs. Since search procedures are often expensive in terms of computation

time, DSE methods usually attempt to reduce the time by evaluating a smaller number of de-

signs. The categorization in this hierarchy is about how the number of designs are reduced

during exploration. With each of the search method shown in figure 2.5, the number of designs

for implementation and evaluation can be reduced through any of the following five techniques.

Constraining the design space means that the number of design parameters or their range of

values is restricted to a region of interest. This technique utilizes designer’s knowledge on the
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application. Sub-sampling reduces the number of designs by quantizing the value of parameters

in a desired range. Sensitivity analysis and hierarchical exploration techniques attempt to prior-

itize certain design parameters so that those parameters with less influence on design objectives

can remain unexplored. The last technique reduces the complexity by dividing the problem

into subproblems which are then independently explored. In this way, not all combinations of

parameters need to be explored. This method is illustrated in figure 2.6(b).

(a) Difference in search methods

(b) Subdividing design space

Figure 2.6: Illustration of exploration methods (source[1])

2.5 Related Work

Published literature on various aspects pertaining to the design of CMP systems based on design space

exploration is vast. This section attempts to categorize related work in this area in order to identify

strengths and weaknesses of various approaches that can be potentially adapted to designing flexible

CMP systems.

2.5.1 Processor Design and Exploration

Work in this category aim at developing IP cores for use in CMP (or SoC) systems. In addition to

exploration work leading to soft cores such as ARM and MIPS processors, several publications de-

scribe corresponding design methodologies such as [26, 27, 28, 29, 30]. These design methodologies

use guided search and/or employ techniques for reducing the number of designs. The use of such

methodologies in the scope of multiprocessor design is limited to the subproblem of designing con-

stituent IP cores.

In some cases, processor exploration frameworks are integrated into CMP design tools to serve as

instruction set simulators [31, 32] so that these tools can be used for explorations based on guided

search. In particular, tasks can be mapped to simulators followed by simulations to evaluate the map-

ping. However, this methodology is impractical for our purpose given the huge size of the flexible



22 Chapter 2: Design Space of CMP Systems

CMP system design space. In another context, such simulators can be used for functional verifica-

tions of flexible CMP systems as in the proposed design flow as described in Section 3.1. Generic

frameworks for system analysis such as [33] can also be employed for this purpose.

2.5.2 NoC Design and Exploration

Work in this category aims at developing efficient NoC architectures as well as understanding their

behavior for CMP systems. Development work can be subdivided into work that propose architectures

and corresponding techniques for network services such as [34, 35, 36], those that describe design

methodologies such as [37, 38, 39], as well as simulative and analytical evaluation methodologies as

in [40, 41, 42]. A comprehensive survey on NoC is reported in [43].

Similarly to processor design tools, the applicability of these NoC design tools and methodologies

is limited to the IP design subproblem. Their potential use during the search of the CMP space is

rendered impractical by the size of the design space. However, tools that can simulate NoC behavior

such as [44, 45] are important for functional verifications of the final CMP architecture.

2.5.3 CMP Design Tools and Methodologies

Work in this category aim at addressing CMP design challenges by proposing design methodologies

and corresponding tool-support, typically targeting the system architecture subspace. Platform-based

design is a central methodology that is commonly used.

Platform-based design is an emerging paradigm that aims at accelerating implementation. The

paradigm follows the Y-shaped exploration methodology (Figure 2.4). Architecture components are

described in an IP library such that there exist one or several descriptions for each component. These

descriptions correspond to different abstraction layers of the platforms or of its components. Thus,

mapping and evaluation is conducted starting at high abstraction layers with subsequent refinements

into lower layers until a fully implemented optimum design is obtained. The exploration itself is either

manual using guided search, or is automated using random search.

Methodologies which build on manual guided search [46, 47, 48, 31, 49] have the inherent disadvan-

tage of being impractical where the design space is huge as is the case with flexible CMP, therefore

these are not of interest.

Other authors have developed methodologies that build on random search to handle the complexity

problem. These approaches rely on optimization of a cost function using combinatorial optimizations,

simulated annealing, evolutionary algorithms or application-specific heuristics. While these tools take

the step towards the right direction by eliminating tedious manual explorations, they are limited for

flexible CMP design because they do not consider cross-effects between the subspaces as they only

target specific dimensions. As a result, suboptimum results are likely. The following examples, while

not exhaustive, demonstrate this general weakness that is inherent in published design methodologies:

Net-Chip [50] uses a heuristic algorithm to map cores on communication topologies such as mesh,

torus etc. The objective function can be the minimization of network hop-delay, area or power

consumption under bandwidth and area constraints. However, the mapping of tasks on cores is

not considered.

UMARs [38] is a single objective algorithm for mapping, routing and slot allocation in NoC-based

architectures. The algorithm attempts to map cores to NoC architectures such that latency and

bandwidth are met without over allocating network resources. The approach has the same lim-

itation as Net-Chip in that application mapping to cores is fixed.

MOCDEX [51] is a multi-objective design space exploration methodology that attempts to integrate
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system design and placement and routing. The approach generates a random CMP configura-

tion, and proceeds with synthesis, results of which are used for ranking. This is a very inter-

esting approach because it directly include actual synthesis results to determine Pareto opti-

mum architectures. The drawback is that system design is limited to the allocation of hardware

resources to components: for instance, allocating cache sizes of individual processors out of

FPGA’s block RAM. The system architecture is otherwise fixed.

Magellan [52] framework applies a machine-learning approach for the optimization problem. The

machine-learning algorithm derives its intelligence by simulating benchmarks on available

processor cores. This is an attractive technique because exploration time can be significantly

reduced after initial simulations. However, the framework does not consider communication

effects.

Kumar et al. [53] uses dynamic programming to synthesize an architecture, taking into considera-

tion task mapping and the allocation of communication resources. Moreover, context switching

overhead is considered so that this is one of the most complete automated approach for CMP

design. However, the approach is limiting because it assumes shared memory communications.

Jin et al. [54] used integer linear programming for makespan optimizations. Task mapping is con-

sidered to simultaneously allocate processors and map tasks onto them. However, they only

assume point-to-point communications.

Beltrame et al. [55] uses a unique approach based on automated guided search. Rather than using

simulations for every considered mapping, the approach attempts to estimate the impact of

varying architectural parameters probabilistically. Simulations are conducted only when the

estimates are insufficient. Consequently, the number of expensive simulations is reduced. How-

ever, this approach is only applicable where an estimation methodology exists. Obviously, that

is possible with architecture templates, but not with arbitrary CMP architectures.

Meyer et al. [56] use simulated annealing to balance performance and cost by optimally distributing

and sharing memories and communication resources. Memory allocation and bus topology

exploration are jointly conducted making decisions on where the data should be located. The

approach is limited by fixed task mapping.

Dick [57] presents in his dissertation four algorithms for automatic synthesis targeting distributed

embedded systems, platform based design, embedded client-server architectures and reconfig-

urable systems respectively. The first two algorithms are also one of the most complete ap-

proaches as they tackle allocation, mapping and scheduling problems. The last two are not

related to CMP synthesis as they target communications over wireless links and co-processing

on FPGAs respectively.

The first algorithm is a genetic multi-objective algorithm. Even though processing elements

are treated as discrete integrated circuits, that is not a limitation for use with CMP systems. To

adapt the algorithm for CMP synthesis, one needs to extend it to cover arbitrary NoC because

the algorithm assumes a specific fixed communication infrastructure. The second algorithm,

while specifically targets CMP systems by including the provisioning of clock signals and the

generation of layout, does not lift the limitation imposed therein for communication infrastruc-

ture.

Zhu et al. [58], Lee et al. [59] and Ha et al. [60] present approaches that tackle the allocation of

processors and communication resources, together with task mapping. Principally, arbitrary

network resources can be used in presented algorithms. Their drawback is that the three sub-

problems are disjointedly solved because of ranking: e.g. processor allocation first, mapping

second, and finally allocation of communication infrastructure. This approach does not capture

cross-effects between the dimensions so that sub-optimum results are likely.
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2.5.4 Mapping Applications to Fixed CMP

The focus in this category is not to derive or synthesize CMP architectures, but rather to explore ways

of mapping applications on existing platforms or templates [61, 62, 11]. Since only the application

subspace is targeted, results obtained are only local optima in the subspace. In addition to manual

guided search [63], mapping algorithms such as evolutionary [64] and simulated annealing [65] have

been used. Other approaches have used subdivision of the design space [66] to reduce mapping com-

plexity.

Scheduling during or after mapping has been extensively treated in the literature [67, 68]. There also

have been efforts to map tasks in a way that optimizes for power [69], reduces chip temperature at run

time [70], or minimizing inter-processor communications [71]. Dynamic mapping techniques has also

been introduced with objectives such as temperature management [72] and performance optimizations

through adaptive mapping [73].

2.5.5 Domain-Specific Exploration

For completion, we mention the last category in the CMP design field whose intent is to determine

efficient SoCs for a given domain or set of algorithms [74, 75, 76]. The result of these efforts are

platforms that can be targeted by one of the methods discussed in Section 2.5.4.

2.6 Chapter Summary

Three conclusions can be made from the discussion in this chapter:

Automation is necessary. Automated methods must be used to cope with design complexity.

Whereas a skilled engineer can effectively utilize work-bench based tools to design a feasible

architecture, the sheer number of design parameters renders a disciplined exploration infeasi-

ble. As demonstrated later in Chapter 3, often no consistent trend with respect to design objec-

tives can be observed when design parameters are systematically changed, where the objective

can increase or decrease by more than two orders of magnitude when moving from one pa-

rameter set to another. Moreover, results obtained can be counter intuitive. Consequently, even

experienced designers cannot effectively execute a guided exploration based on their expertise

because it is not easy to predict the outcome of parameter variation. Those results underline the

need for an automated approach.

Inclusive modeling of the design space is necessary. Methodologies for solving individual sub-

problems have been well studied. Ideas from these can be adapted for flexible CMP synthesis.

However, care must be taken in modeling the problem to insure that the design space is not con-

strained. Leaving out some parameters from the model ignores important cross-effects between

dimensions, and between subspaces.

A distinguishing aspect of architecture synthesis as proposed in this work is a framework which

enables an automated design space exploration based on mathematical models for flexible CMP

systems. This allows a wider and a disciplined coverage of the design space by relieving de-

signers from tedious manual coverage, and hence avoids constraining the design space.

Joint coverage of subspaces in necessary. Ranking individual dimensions or subspaces by optimiz-

ing one of them after the other has the same effect of constraining the design space as exclud-

ing design space dimensions because cross-effects are ignored. Therefore, when determining

the system architecture according to Figure 1.2, it is important to simultaneously (i) select

processors (ii) map and schedule tasks to them, and (iii) select one or several networks for

communications, such that design constraints and objectives are met.
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Moreover, judicial exploitation of application knowledge and designer expertise should be used to

prune the design space of unnecessary dimensions. The following chapter discusses how the design

space can be mathematically modeled to cover important and necessary dimensions and parameters

as identified in this chapter.
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3 Problem Formulation

Chapter 2 introduced the design space of flexible CMP systems where parameters that need to be cap-

tured in a design flow were identified. This chapter discusses mathematical models for the parameters

with the intent of enabling automated synthesis in order to fulfil the research objective mentioned

in Section 1.2. Since the synthesis problem at hand is inherently combinatorial, an Integer Linear

Programming (ILP) formulation is used for modeling. The evaluation of the feasibility of ILP-based

synthesis is also given in this chapter. The same ILP model is a basis for other synthesis methods

presented in Chapters 4 and 5.

Designing a flexible CMP system which is optimum for a specific application is an activity that

inherently assumes that the rate of occurrence of events in the parallel program is known as is the

case in signal and image processing applications, as well as in mathematical and scientific computing.

Applications with unpredictable behavior are better served with dynamic optimization methods. This

thesis focuses on the former class of parallel programs. We begin by proposing a synthesis flow based

on ILP in Section 3.1. The model itself is presented in three parts in Section 3.2.

3.1 Proposed Design Flow for Flexible CMP Systems

Figure 3.1 illustrates the proposed design flow for flexible CMP systems that covers application map-

ping, architecture determination, system integration, and FPGA synthesis.

The input to the flow is a parallel program and optionally information on task periods and deadlines for

realtime requirements. The program is executed and analyzed to obtain inter-task data traffic and task

precedence information. The execution is purely functional and can be conducted on any processor

without altering the required information 1. Similarly to other related work in this area, the other

input to the design flow is an IP library containing information on available processing elements and

communication networks, as well as their costs and constraints. This information is used to specify

an instance of an ILP problem which is subsequently solved by existing solvers.

The solution to the ILP instance is then used to generate an abstract description of the system which

is passed to PinHat to generate the configuration bit-stream. The description passed to PinHat spec-

ifies the number and type of processors, task mapping and their schedules on processors, allocated

networks and information on which task uses which communication network for a specific inter-task

data transfer.

Because post-synthesis results could deviate from initial cost models used as discussed in Section 2.3,

new cost models can optionally be extracted after placement and routing to start a new iteration. The

generated description can be optionally passed to a simulation framework for the verification of the

functionality.

For real time systems, it is often sufficient to meet timing constraints so that the interest is not to find

the fastest solution. In such situations, the ILP formulation in this flow can be used to find the smallest

system instead by reversing the roles of the performance objective and that of the area constraint.

1The information required is the data traffic pattern, which is a function of the parallel program only.
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Figure 3.1: Proposed architecture synthesis flow

Design space parameters from Chapter 2 (Figure 2.1) are captured as follows in this flow:

• Peripherals are not captured in the ILP model because that information is not available in the

application. Communication ports and off-chip memories are specified in PinHat as lower level

information.

• Architecture style and type of processing elements are captured in the IP library.

• Composition results explicitly from ILP solution.

• Network-types are captured in the IP library.

• Memory architecture is captured through processing elements in the IP library as depicted

in Figure 1.2. As discussed in Section 2.1.4, shared memories require dedicated processing

elements which can be included in the IP library.

• Scheduling constraints are captured through realtime requirements. Their costs are computed

from task-mappings and from processor parameters in the IP library as discussed later in section

3.2.2.

• Network services are implicitly specified in the IP library. Their cost is computed from the

communication traffic and from network parameters as discussed later in Section 3.2.1.4.

• Reconfigurability is not captured because of limitations in prevailing technologies. Neverthe-

less, this does not constrain the design space because the overhead can be trivially added to the

model once reconfigurability issues have been solved.

• Programming paradigm is a parameter that is not automated in this flow. Designer’s knowledge

on the application is used to specify suitable components in the IP-library that best suit the used

programming paradigm as discussed in Section 2.2.5

• Physical subspace is captured through the feedback by way of post-synthesis extraction of cost

models as discussed in Section 2.3.
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Capturing these parameters in the flow enables a non-constraining and a joint optimization method-

ology as is desired to meet the objective set in earlier chapters.

3.2 ILP Formulation

Next we describe an ILP model for automated synthesis for flexible CMP systems targeted at archi-

tecture determination. The optimization problem is to:

1. Map parallel tasks to a set of existing processing elements (processors) and in the process to

select the number and type of processors

2. To generate a suitable communication architecture, which can be a mixture of different network

topologies

3. Schedule the tasks on processors, when needed, to meet realtime requirements

such that a given FPGA area constraint is met, and the execution performance of the parallel program

is optimized, where the optimality criteria is as defined in 1.2. The ILP formulation is described in

three parts: Section 3.2.1 describes the basic model for points 1 and 2 above, Section 3.2.2 extends the

basic model to include scheduling, and finally, Section 3.2.3 describes a generalization of the perfor-

mance objective for overall computation time of a program, or for makespan minimization. Each part

is concluded by experimental results aimed at studying the feasibility of ILP-based synthesis. Results

obtained are the basis of discussions on alternate synthesis methods in Chapters 4 and 5.

The following notation is used: I = {I0, . . . , In} is a set of tasks in the parallel program. Ii ∈ I is the

ith task in the set. Similarly, Jj ∈ {J0, . . . , Jm} is a processor with the index j in an IP library, and

Ck ∈ {C0, . . . , CK} is a communication resource in the library with an index k. The binary decision

variable xij = {0, 1} represent a task mapping option such that xij = 1 means task Ii is mapped on

processor Jj , 0 otherwise.

3.2.1 Basic Formulation

The basic formulation covers constraints that insures functionality, without any regard to deadlines or

critical paths.

3.2.1.1 Task-Mapping Constraint

The following constraint specifies that all tasks must be mapped, and that each task must be mapped

exactly once:
m
∑

j=0

xij = 1,∀Ii (3.1)

With the above constraint, a task Ii is mapped on a specific type of a processor Jj . But we have not

specified how many instantiations of a processor Jj we have. The number of instances is a parameter

that corresponds to the composition dimension in Figure 2.1 on page 8. If we were to introduce

a decision variable which specifies how many instances of a processor we can have, then we would

additionally need to formulate a constraint that specifies that for each task-processor mapping, exactly

one instance must be used. Otherwise, (3.1) becomes ambiguous since it is not clear on which instance

a task should be mapped to. The corresponding constraint is given by

xij ≤

Bj
∑

b=0

instancejb,∀Ii, Jj (3.2)
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where instancejb is the decision variable for a bth instance of processor Jj , and Bj is the correspond-

ing number of instances. However, such a formulation, while necessary, would lead to a non-closed

formulation because the summation bound Kj is itself a decision variable which needs to be deter-

mined. In contrast, a combinatorial problem must be bounded in the sense that the solution space is

known a priori.

To get to a closed formulation, we allow multiple instances of the same processor in the processor

set J = {J0, . . . , Jm} so that each instance of the processor will have its own index j. Therefore,

when we formulate the problem we can arbitrarily fix the number of instances Kj of a processor

type. Nevertheless, this is not a limitation in practise, because we can, in principle, select Kj to be

arbitrarily large prior to solving the optimization problem.

3.2.1.2 Processor Sharing Constraint and Cost

It is often the case that several tasks need to share a processor, for example, because of area con-

straints, or to minimize communication costs. We thus must specify how many tasks can be mapped

onto the same processor instance Jj , where the limit is imposed by the available instruction and data

memory. Here we make the following assumptions which are valid for systems under consideration:

1. There is a task scheduler such that the optimization problem does not involve scheduling. This

restriction is lifted in Section 3.2.2.3.

2. The mapping of tasks is static, i.e. there is no run-time dependent dynamic mapping. This

assumption is made because the rate of occurrence of events is known a priori so that dynamic

mapping is not advantageous for the performance objective.

3. The sequence of instruction for each task is stored on a local processor memory at system

initialization, i.e. there is no post-loading of instructions in a dynamic manner for tasks from,

say, a shared system memory. This assumption does not exclude the use of instruction cache

and address space extensions to off-chip memories. Its sole purpose is to facilitate deterministic

calculations of memory requirements.

4. The number of tasks which can be mapped onto a processor is limited by the size of the corre-

sponding instruction memory only, including any extended address space.

5. The cost of task switching in terms of computation time on a given processor is constant. This

simplification is lifted in Section 3.2.2.3.

Consequently, we need a constraint for address space utilization and costs for task switching. Let

sij be the size of task Ii in the program memory of processor Jj , and sj be the size of the program

memory. The address space constraint is formulated as

n
∑

i=0

xij · sij ≤ sj ,∀Jj (3.3)

meaning that the sum of address space requirements for all tasks mapped on a processor Jj does not

exceed the memory capacity.

A distinction is made between cooperative multitasking and preemptive scheduling when modeling

processor sharing cost. Let tj be the cost of task switching on processor Jj . This parameter captures

the time that is required to save the processor state associated with a currently running task, and to

restore a previously saved state associated with another task. The total overhead is thus a multiple of

tj , depending on the number of times task switching takes place.
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It is difficult with cooperative multitasking to determine that number without simulations because

switching depends on the behavior of tasks, which in turn, generally depends on where the task is

running. Consequently, each task must be simulated on each processor to obtain the parameter Tij ,

which is the number of times the task will relinquish the processor resource. Therefore, assuming that

a task will release a processor independent of what other tasks might be doing2, the overhead is given

by

Tswitchcooperative
=

m
∑

j=0

(

tj ·
n
∑

i=0

Tij · xij

)

(3.4)

In many practical cases however cooperative multitasking is not used because of its severe disad-

vantages. Widely used preemptive schedulers rely on a clock interrupt handler which is activated for

scheduling activities at regular known intervals, Tclockj
. Consequently, the number of times a task

will involuntarily relinquish processor resources is given by Tij/Tclockj
, where Tij is the duration of

the task on the processor. That number is accurate because Tij is the net duration which excludes task

pending and suspension time when other tasks are running. The total cost of task switching is thus

Tswitch =
m
∑

j=0

(

tj
Tclockj

·
n
∑

i=0

Tij · xij

)

(3.5)

3.2.1.3 Processor Area Constraint and Cost

Let aj be the area of a processor Jj . Ignoring the communication network for a moment, the area

constraint for an FPGA could be specified as

m
∑

j=0

n
∑

i=0

xij · aj ≤ APE (3.6)

where APE is the maximum area on FPGA for mapping processing elements. A drawback of this

formulation is that if several tasks will share the processor, then the area for the processor will be

counted several times, leading to a bias against processor sharing. To clarify this point, consider a

case where we have two tasks and two instances of the same processor. The area cost of mapping the

two tasks would be the same for both possible mappings so that the problem reduces to minimizing the

computation time only, and hence disregarding time-area trade-off. Even though we do not explore

time-area trade-off directly, this circumstance could render a problem infeasible because it might

appear that the FPGA area is too small.

To compensate for resource sharing, we could try to weight the area to get the constraint

m
∑

j=0

n
∑

i=0

xij · aj ·
sij

sj
≤ APE (3.7)

so that virtually, a task uses a fraction of the area of a processor, based on the size of the task in the

program memory of that processor. However, this work-around leads to the correct computation of

area cost only when all processors are fully utilized. For partial utilizations, i.e. when more tasks can

be mapped on the processor, the area cost of the processor would be incorrect.

A correct solution involves the introduction of a decision variable for a virtual processor vj for speci-

fying the area cost. For each instance Jj of a processor, we have a corresponding virtual processor vj .

Then, we specify that for all tasks that are to be mapped to a certain instance Jj , one, and only one,

of the tasks must also be mapped to the corresponding virtual processor vj . We then count the area

2The assumption is that a task release a processor based on its functionality and availability of data or other resources

on the processor only.
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of virtual processors instead. Note that such a counting cannot be done directly with real processors

because every task must be mapped according to (3.1).

For mapping tasks on virtual processors, we cannot simply introduce a decision variable xivj
and

specify a mapping constraint similar to (3.1) because a task can be mapped to a virtual processor

which doesn’t correspond to the real one. Therefore, a relationship between xij and vj must be explicit

as in the following logical constraint

x0j ∨ x1j ∨ x2j ∨ · · · ∨ xnj = vj ∀Jj (3.8)

which essentially states that vj must be 1 when at least one task is mapped on its corresponding real

processor. Note that what we really want is having one task only mapped on the virtual processor,

however, an XOR relationship cannot be used because that would introduce mutual exclusiveness

with task mapping on the real processor which is equivalent to constraining the design space.

Transforming the logical constraint into a linear equivalent is rather difficult. So we use instead a

logical implication, whose linear transformation is discussed by Guret et al [77]. The constraint is

thus

x0j ∨ x1j ∨ x2j ∨ · · · ∨ xnj → vj ∀Jj (3.9)

and its linear transformation is
1

n + 1

n
∑

i=0

xij ≤ vj ∀Jj (3.10)

Note that because of the scaling, the Left-Hand Side (LHS) of (3.10) is always less or equal to one. If

at least one task is mapped on Jj , then the LHS is greater than zero, forcing vj to equal one. However,

if the LHS is zero, both vj = 0 and vj = 1 will lead to a feasible solution. This is a direct consequence

of using a logical implication rather than the equality (3.9). But we want to force vj to zero in such

cases, otherwise we will have incorrect area. Therefore, we additionally add the constraint

vj ≤
n
∑

i=0

xij ∀Jj (3.11)

so that the area constraint is then exactly given by

m
∑

j=0

vj · aj ≤ APE (3.12)

The overall area constraint is considered after formulating communication network constraints and

costs.

3.2.1.4 Handling Interconnect

Next we formulate constraints and costs for the communication network. Also in this case the com-

binatorial problem consists of selecting specific type of networks for inter-task communications such

as buses, rings, meshes, fat trees, hypercubes etc., under given constraints, but we allow different

topologies to be mixed to avoid constraining the design space. The formulation challenge in this case

stems from three aspects:

• Application-dependent dynamic communication patterns requires us to capture not only the

traffic between two tasks, but also the frequency of transmissions in order estimate the overhead

stemming from network services.

• Allowing the mixing of different networks in order to inclusively explore the design space.
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• Allowing the arbitrary sharing of networks, meaning that two processors can be connected by

more than one network, and that two sets of communicating tasks on two different processor

may transmit their data over different networks. This prevents constraining the design space.

While complicating, these three aspects do not impose restrictions to network usage so that an opti-

mum architecture is not excluded from the solution set of the optimization problem. Therefore, we

assume for the following formulations that:

1. If two communicating tasks are mapped on the same instance of processor then they communi-

cate locally only for example via a local shared memory, or through OS-dependent mechanisms

(for example in-processor message passing using techniques such as queues). Further, we as-

sume that intra-processor communications:

i.) Have negligible communication latency and overhead (can be easily relaxed however in

presence of significant memory access latencies, for example, with off-chip memories).

ii.) Do not contribute to area cost on the FPGA since the area cost of memories is already

accounted for by the parameter aj in (3.12).

2. A processor has network interfaces to support available networks in the library, when neces-

sary via bridges or adaptors as exemplified in Figure 3.2. However, it is not mandatory that a

processor supports all of the available networks.

3. An instance of a processor can use more than one communication network, the limit being the

physical network interface of the processor. However, it is not mandatory that the processor

must use all of the supported networks.

4. A communication network has arbitration cost resulting from possible contentions of the re-

source by parallel tasks. Here, we assume that:

i.) Tasks which share a processor are not prioritized with respect to network access. In partic-

ular, this assumes a presence of queues at network interfaces. This simplifies the estima-

tion of the overhead cost because that becomes independent of task pairings. Data packets

can however have priorities at the application level for QoS guarantees within the network

during routing. Moreover, data packets can have priorities at the application level that can

be used for access arbitration purposes. The advantage is that overhead can be estimated

without having to consider possible task pairings, which could lead to an explosion of

decision variables.

ii.) We can always compute an upper bound on arbitration time for each network topology

depending on the number of processor instances on it, or at least, we have an acceptable

probability about an arbitrarily selected bound. Otherwise, the implementation has a fun-

damental functional flaw. This assumption also relies on QoS guarantees as discussed in

Section 2.2.3.1.

iii.) We cannot predict when two or more tasks on different processors will attempt to access

a network simultaneously, but we can assume a certain probability distribution depending

on the structure of the graph representing the parallel application and its communication

pattern.

Assumptions in item 4 above result from the non-deterministic3 nature of the system, and are not

unique to automated synthesis approach as proposed in this thesis. Optimizing under the probability

distribution and the arbitration bound gives a designer a mechanism to optimize for the average or for

the worst-case.

3The non-deterministic nature with respect to data communication does not contradict the assumption made in the first

paragraph in this chapter about deterministic application behavior with respect to the rate of occurrence of events.
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Figure 3.2: Processor core showing inclusion of network interfaces

3.2.1.5 Network Usage Constraints for Inter-Task Communications

With the assumptions in the previous subsection we are in a position to formulate constraints which

insures that mapped tasks use communication networks. Let yk be a binary decision variable with

value 1 if a topology Ck shall be used for communication between any two tasks Ii1 and Ii2 , and 0

otherwise.

Now we first want to specify that exactly one communication topology must be selected for two

communicating tasks mapped on different processor instances. There are two possibilities for any

given pair of communicating tasks: both tasks are mapped on the same processor, or on different. For

the latter case, there are m × (m + 1) different ways of mapping. Therefore, the following logical

constraint results:

(xi1j0 ∧ xi2j1) ∨ (xi1j0 ∧ xi2j2) ∨ · · · ∨ (xi1jm ∧ xi2jm−2
) ∨ (xi1jm ∧ xi2jm−1

) = y0 ⊕ · · · ⊕ yK

∀Ii1 , Ii2 ∈ {I0, . . . , In} | Ii1 ⋖ Ii2 and Jj1 , Jj2 ∈ {J0, . . . , Jm} | Jj1 6= Jj2 (3.13)

Here, Ii1 ⋖ Ii2 is a precedence operator meaning that Ii1 precedes by Ii2 in the directed application

graph implying data transfer from task Ii1 to task Ii2 (modeled as a directed edge). The exclusive-or

operator in the right-hand side specifies the condition that one and only one network must be selected

in the case of mapping on different processors. For reasons which will be explained later, we first

assume that we only have two communicating tasks. This restriction is lifted shortly. Because of

(3.1), at most one of the conjunctive terms in the LHS of (3.13) is true, and therefore, the disjunction

of the terms suffices.

Note that (3.13) is a composition of several sub-constraints. It is thus convenient to introduce 0-1

auxiliary decision variables to convert (3.13) into a series of linear constraints. Let αi1i2j1j2 be such a

variable, so that the following sub-constraint results

αi1i2j1j2 = xi1j1 ∧ xi2j2 (3.14)

for a corresponding mapping, meaning that the variable is 1 only when the two communicating tasks

are mapped on different processors. The linear transformation of the logical constraint according to

the technique described by Guret et al. [77] yields two inequalities

αi1i2j1j2 ≥ xi1j1 + xi2j2 − 1 (3.15)

αi1i2j1j2 ≤
xi1j1 + xi2j2

2
(3.16)

Substituting for αi1i2j1j2 in (3.13), we obtain

αi1i2j0j1 ∨ αi1i2j0j2 ∨ · · · ∨ αi1i2jmjm−2
∨ αi1i2jmjm−1

= y0 ⊕ y1 ⊕ · · · ⊕ yK (3.17)
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Note that αi1i2j1j2 6= αi1i2j2j1 . This distinction is required for these reasons:

1. Memory or scheduling constraints may allow xij1 , but not xij2 .

2. It may be cheaper to map Ii on Jj1 rather than Jj2 from a computation, communication or

scheduling perspective.

Moreover, if the application graph is cyclic, then αi1i2j1j2 6= αi2i1j1j2 , otherwise αi2i1j1j2 does not

exist in the ILP model. For cyclic application graphs, processor indices and order must be the same

for both αi1i2j∗j∗ and αi2i1j∗j∗ , else constraint (3.1) cannot be fulfilled.

Next we introduce an auxiliary 0-1 decision variable λi1i2 for the LHS of (3.17). As mentioned above,

only one of the αi1i2j∗j∗ can be true. At formulation time, it is not known which exactly. Therefore,

λi1i2 is a linking variable which is used later to formulate a logical constraint with reduced variables,

whose linear transformation is easier to handle. A linear form for this linking variable which satisfies

the LHS of (3.17) is simply

λi1i2 = αi1i2j0j1 + αi1i2j0j2 + · · ·+ αi1i2jmjm−2
+ αi1i2jmjm−1

(3.18)

so that the following simpler logical constraint results from (3.17)

λi1i2 = y0 ⊕ y1 ⊕ · · · ⊕ yK (3.19)

The linking variable equals 1 only when the two communicating tasks are mapped on different pro-

cessors. Note that if there are more than one pair of communicating tasks, then the formulation has

the following undesirable property that if at least two communicating tasks are mapped on the same

processor, then either:

i All tasks must be mapped on the same processor, and hence enforcing sharing. This is because,

in such a case, every yk must equal zero; i.e. if a λi1i2 = 0, then no network can be allocated in

order to fulfil the RHS of (3.19). Or,

ii All networks must be used, because every yk must equal one to fulfill the RHS.

To lift the previously made restriction on the number of communicating tasks, and to eliminate the

above mentioned property in the formulation, we need to specify that either of the following two

conditions must be fulfilled (but not necessarily both); if λi1i2 = 0, then we don’t have a bound

on a summation over yk ,i.e., yk can be arbitrarily set to accommodate other communicating tasks,

completely ignoring the current pair

λi1i2 = 0→

K
∑

k=0

yk ≤M
′

(3.20)

or if λi1i2 = 1, then at least one yk must be 1 to insure that a resource will be allocated for the pair

λi1i2 = 1→
K
∑

k=0

yk ≥ 1 (3.21)

where M
′

is a “very large” number. However, we have not yet stated which resource will be used, i.e.,

when more than one of the linking variable λi1i2 equals one, and more than one resource is allocated,

we have no way of telling which pair should use which resource. Therefore, an additional binary

decision variable zki1i2 is introduced. Its value is 1, if Ii1 and Ii2 | Ii1 ⋖ Ii2 will communicate over
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a topology Ck. With the variable, a set of constraints that insures that exactly one topology is used

without the above restriction is thus

K
∑

k=0

zki1i2 = λi1i2 ∀ Ii1 , Ii2 | Ii1 ⋖ Ii2 (3.22)

yk ≥ zki1i2 ∀ Ck and Ii1 , Ii2 | Ii1 ⋖ Ii2 (3.23)

The first constraint forces one of the variables zki1i2 to take the value 1 when the communicating

tasks are mapped on different processors, effectively making the allocation choice according to (3.21),

while granting freedom according to (3.20). However, we still need the variable yk to formulate area

constraint to allow us to count the area only once, because more than one of the variables zki∗i∗ can

equal one so that these cannot be used for counting the area. Therefore, the second constraint forces

yk = 1 when at least one of the zki∗i∗ equals 1.

Since a processor can support several but not necessarily all of the available networks, we specify that

αi1i2j1j2 + zki1i2 ≤ Vj1j2k ∀ Ck and, Ii1 , Ii2 | Ii1 ⋖ Ii2 , Jj1 , Jj2 ∈ {J0, . . . , Jm} | Jj1 6= Jj2

Vj1j2k =

{

2 if both Jj1 and Jj2 support yk

1 otherwise
(3.24)

where Vj1j2k is a parameter which insures that a selected network is supported by both processors

to which the communicating task pair is mapped to. If αi1i2j1j2 is 1, then so is λi1i2 because of

(3.18), from which follows one z∗i1i2 must equal one because of (3.22). If Vj1j2k is 1, then either

αi1i2j1j2 or zki1i2 or both must equal zero. If αi1i2j1j2 = 0, then zki1i2 can be freely selected for a

different mapping through another αi1i2j∗j∗ , in which case λi1i2 still equals one. If zki1i2 = 0, then

a different network can be allocated through another z∗i1i2 , provided there is an αi1i2j∗j∗ that equals

one. Therefore, Vj1j2k = 1 rules out invalid network allocations without constraining the mapping. If

on the other hand Vj1j2k = 2, then both αi1i2j1j2 and zki1i2 can equal one, which implies the network

allocation for the communicating pair.

3.2.1.6 Network Capacity Constraint and Area Cost

Since some communication topologies have a maximum capacity with respect to the number of pro-

cessors which can be attached to it, we additionally formulate the following constraint:

yk +
∑

Ii1
,Ii2

|Ii1
⋖Ii2

zki1i2 ≤Mk ∀Ck (3.25)

where Mk is the maximum number of processors which can use a topology Ck. If Anet is the area

constraint for routing resources on FPGA, and Ak is the area cost of a topology Ck, and A is the total

FPGA area, then we additionally have

K
∑

k=0

Akyk ≤ Anet (3.26)

APE + Anet ≤ A (3.27)

3.2.1.7 Network Communication Cost

Next we need to formulate the cost of the topology in terms of computation time. For a given topology

and a pair of communicating tasks, the cost should consider the inherent latency of the topology, and

the amount of data transfer between the tasks. If we select a topology Ck for a pair of communicating
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tasks Ii1 and Ii2 | Ii1 ⋖ Ii2 , then we also must pay for the communication cost over that topology.

The variable zki1i2 captures the decision to pay for that cost.

The cost should also include the latencies through network bridges or adaptors which are attached to

processors as exemplified in Figure 3.2 if these are significant. Since there are generally more than

one such bridges or adaptors, an auxiliary binary decision variable is required to distinguish which

pair of adaptors or bridges is being used at both ends of the processor. If βki1i2j1j2 is the variables,

then the following set of constraints are required to properly set its value:

βki1i2j1j2 ≥ αi1i2j1j2 + zki1i2 − 1 (3.28)

βki1i2j1j2 ≤
αi1i2j1j2 + zki1i2

2
(3.29)

∀ Ck and, Ii1 , Ii2 | Ii1 ⋖ Ii2 , Jj1 , Jj2 ∈ {J0, . . . , Jm} | Jj1 6= Jj2

The total cost of communication between all tasks for the duration of the program (or for an iteration)

Tnet is thus given by

Tnet =
∑

Ii1
,Ii2

|Ii1
⋖Ii2





K
∑

k=0



(LkDi1i2 + τkpkBi1,i2) · zki1i2 +
∑

j1,j2|j1 6=j2

Lkj1j2Di1i2βki1i2j1j2









(3.30)

Here, Di1i2 is the total amount of data transferred between the two communicating tasks as obtained

from functional simulations of the parallel program, and Lk is the transfer latency for network Ck

for a word. Therefore, the first term in the innermost bracket captures the net communication cost.

The overhead due to arbitration (including routing effects) is captured by the second term. Therein,

pk is the probability that network arbitration will be incurred when a task wants to communicate, τk

is the bound on arbitration time as discussed in Section 3.2.1.4, and Bi1,i2 is the number of transfers

of data blocks between the corresponding tasks. Note that the overhead generally increases with the

number of communicating tasks over a network as captured by zki1i2 . The sum over processor indices

captures the latency through network bridges or adaptors, where Lkj1j2 is the sum of the latency of

the two ends.

3.2.1.8 Objective Function

Initially, the objective is to minimize the overall computation time of the parallel program, and there-

fore we assume that programs either terminate or its tasks are periodic. Formulation for makespan

optimization is described in Section 3.2.3.

min





n
∑

i=0

m
∑

j=0

xij · Tij + Tnet + Tswitch



 (3.31)

3.2.1.9 Problem Size

Tables 3.1 and 3.2 summarize the problem size with respect to the number of constraints and variables

respectively. Here, N = n+1, M = m+1 and K
′

= K +1 are the number of tasks, processors and

communication networks respectively. Therefore, a directed graph modeling a parallel application

has N nodes. Let E be the number of edges. A non-linear increase in problem size is caused by

formulating the cost for communication network (zki1i2 in (3.22) and (3.23)), and by arbitrary task

mapping (xij in ( 3.1)), and βki1i2j1j2 in (3.28) and (3.29). Therefore, it is unlikely that problems with

hundreds of processors and hundreds of different networks will be practically solvable. While such

problems are currently unlikely in the embedded domain, it is desirable to address this problem for

future systems which could be huge.



38 Chapter 3: Problem Formulation

Table 3.1: Number of constraints

From inequality Number

(3.1),(3.3),(3.10),(3.11),(3.12),

(3.15),(3.18),(3.22), (3.25),(3.26),(3.27)

N + 3M + K
′

+ 3E + 3

(3.23),(3.24) 2K
′

E + MN

(3.28),(3.28) 2K
′

EM

Table 3.2: Number of decision variables

From inequality Number

(3.1) MN

(3.10),(3.15),(3.18),(3.23) M + K
′

+ 2E

(3.22) K
′

E

(3.28),(3.28) K
′

EM

3.2.1.10 Experimental Results

This section presents experimental results aimed at studying the feasibility of ILP-based synthesis by

analyzing both the synthesis time and quality of results produced. With the preceding ILP formulation,

suitable applications for the experiment are those which do not have finishing deadlines, and which

exhibit the same communication pattern for the same input data. This is because up to now we are

considering non-realtime applications whose tasks are statically mapped. No requirement is otherwise

made with respect to the structure of the parallel programs.

Six parallel programs which implement algorithms for common mathematical and physical problems

were selected. The implementation style chosen is message passing using the Message Passing In-

terface (MPI) standard [78]. The choice is arbitrary: the formulation supports all styles. Table 3.3

summarizes the applications. The last column in the table describes the communication topologies

from the perspective of tasks. The topology were arbitrarily selected for the programs. A selected

topology determines the data traffic pattern and the work load in each task, and is thus a determining

factor for the structure of the constraint matrix in the ILP instance, and consequently the run time.

Following MPI convention, each of the applications has a “master” task that distributes the compu-

tation between itself and “slave” tasks, depending on the number of parallel tasks and the topology.

Figure 3.3 depicts the topologies. In the star topology, the master task is at the center, and distributes

the load equally among the slaves. If a load remains after equal distribution among the slaves, it is

processed by the master. The farming topology is similar to the star, but the load is not evenly dis-

tributed among the slaves: a slave is assigned a new load as soon as it is done processing its previously

Table 3.3: MPI applications in the experiment

Application Description Topology

FIR 100,000-point FIR-filter kernel star

Derivation Numerical derivation of functions using finite element

method

farming

Simpons Numerical integration using Simpons’ method star

Jacobi Jacobi transformation of a 12x12 matrix point2point

N-body 2D N-body problem with 4000 particles centered ring

Inversion 2048x2048 matrix inversion star
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assigned load. The master performs no processing beyond load distribution. The centered ring topol-

ogy has the master at the center, and the slaves arranged in a ring around the master. The master sends

data to one of the slave in the ring. The data is then iteratively processed, and is passed from one slave

to the next in the ring until processing is completed. The result is sent by the last slave in the ring

back to the master. These three implementations are scalable in the sense that a single program can

be used for parallelization with different numbers of tasks. In the point2point topology selected for

Jacobi, each task sends data to other tasks for further processing in an iterative manner, and is thus

not scalable in the MPI sense since the number of tasks must be known beforehand.

Functional simulations were conducted to determine the data traffic between tasks. Functional simu-

lations suffice because the data traffic does not vary with task mapping. Therefore, the MPICH2 [79]

implementation of the MPI standard was used to simulate on a PC. The implementation is distributed

with a library called MPE which can be used to obtain profiling data [79] as outlined in Figure 3.4(a).

An MPE utility is used to convert the binary .clog2 output file containing profiling information into

a textual format which is subsequently parsed to construct the application graph. Both the data traffic

and task precedence information can be extracted from the file, therefore, the file is the input to the

ILP formulation block which is depicted in Figure 3.1.

Figure 3.4(b) shows three types of entries in the file which contain the information used to construct

an application graph. The first line contains information on a created task, in this case, with MPI rank

0. Therefore during construction, a task is created whenever such a line is found. A consequence of

this is that all tasks can be captured even if some tasks do not communicate with others (i.e., when

the application graph is not connected). Example of applications which fall under that category are

trivially parallel Multiple Program Multiple Data. The second and third entries contain information

on send and receive events. The MPI rank in the lines are associated to the sending and receiving

ranks respectively. The size is given in bytes. Therefore during construction, the file is scanned to

match send and receiving entries by comparing tag and size entries. Communicating tasks are thus

identified by rank fields in matching lines. If multiple matching lines are found, then the edge between

the nodes representing the tasks is weighted. The weight is the parameter Di1i2 , and the number of

matches is the parameter Bi1i2 in Tnet (3.30).

Task durations on processors Tij were approximated by comparing MIPS parameters of processors

through the following simple extrapolation

Tij ≈
MIPSJj

MIPST5500
· CyclesT5500 (3.32)

where cycles on an Intel T5500 processor were obtained by direct execution on a PC. Ideally, cy-

cle accurate simulations should be used to obtained this parameter. However, while inaccurate, this

approximation does not affect much the general trend obtained for synthesis time.

The size sij of tasks on processors were similarly approximated by comparing word sizes of memories

and extrapolating. A precise approach is to compile a task for each processor type. This estimation

does not impact constraints (3.10) and (3.11) because the size of memories of the processors in the

experiment were large enough to fit all tasks. However, using more accurate figures will change

the run time because the constraint matrix will change. Nevertheless, the general trend observed is

expected to be the same (i.e. the trend with respect to the solver runtime, not with respect to the

solutions obtained).

Parameters on available processors and networks are read into the formulator from text files represent-

ing the IP library. Two types of general purpose RISC processor cores were used in this experiment:

Xilinx Microblaze (MB) and PowerPC 405 (PPC). Because the PowerPC is a hard micro on the tar-

get Xilinx Virtex IV-FX FPGA, only two instances are usable. For networks, Xilinx’s Fast Simplex

Link (FSL) and On-chip Peripheral Bus (OPB) were used. Tables 3.4 and 3.5 show the parameters of

processors and networks for the target FPGA.

The task switch time per scheduling interval tj/Tclockj
is derived from the number of registers which
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(a) Star (b) Farming (c) Centered Ring

(d) Point to Point

Figure 3.3: Application topologies

(a) Procedure (b) Text File Format

Figure 3.4: Extracting application traffic from simulations

Table 3.4: Parameters of used processors

Name tj Aj (slices) Prog. mem size (MB)

microblaze 0.70 480 64

PowerPC 0.625 0 16
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need to be saved during a context switch. For microblaze, it was assumed that all 32 General Purpose

and all writable 12 Special Purpose Registers (GPR and SPR) are saved and restored during each

context switch. Because the SPRs need to be moved to the GPRs first before loading or storing, the

resulting cycles for context switching are 2x(32+12)+2x12=112. Similarly, for PowerPC, 32 GPRs

and 18 writable SFRs need saving and restoration. However, because the SFRs can be directly loaded

and stored, the resulting cycles for context switch are 2x(32+18)=100. The task switch time is given

by

tj
Tclockj

=
switch cycles

clock frequency ∗ scheduling interval
(3.33)

In each case, the clock frequency is arbitrarily set to 160MHz, and the interval is 1µs. The interval is

for a simple kernel performing round-robin scheduling. Because the PowerPC is a hard-core, the area

is taken to be zero. All applications can fit into either program memory.

Because FSL is a direct link, the capacity Mk equals 2. For the same reason, both the arbitration

probability pk and bound τk are zero. OPB can support up to 16 processors. The arbitration probability

and bound are given for the worst case when 16 processors share a bus. In contrast to FSL with

its documented slice consumption, the size of OPB as used in this experiment is approximated for

16 processors. Since no adaptors are required, adaptor/bridge latencies Lkj1j2 are zero so that the

optimizations are conducted without constraints (3.28) and (3.29).

Up to 5 networks were used (i.e. K ∈ {1, 2, 3, 4}). Where the number of networks is even, the same

number of OPB and FSL was used. Otherwise, the number of FSL used exceed that of OPB by one.

Since both MB and PPC cores can be connected to either OPB or FSL, the parameters Vj1j2k equal 2

in each combination so that the constraint (3.24) is left out from optimizations.

Given all of the preceding parameters, the formulator generates an ILP instance in the GNU MathProg

format [80]. The ILP model is statically described in a MathProg file, whereas the model data is

generated by the formulator into a MathProg data file during synthesis. The synthesis flow in Figure

(3.1) uses the lp solve library version 5.5 [81] to solve generated ILP instances. The synthesis was

done on a machine with an Intel T5500 1.66GHz processor and 2048M of memory. Even though

the processor has two cores, only one of them was utilized during optimizations, probably because

lp solve implementation is single-threaded. Experiments with several solver settings were conducted,

of which a combination of “most feasible basis crash” and the “ordering” of branch & bound variables

[81] appear to significantly speed-up the solving of the proposed ILP formulation. The “most feasible

basis crash” is a heuristic used to select the initial basis matrix for the simplex algorithm[81].

Because the size of the problem and hence the feasibility of the synthesis is determined by the number

of processors, networks and tasks, three different runs of experiments were conducted, where two

of the three parameters were fixed, and the other varied. Initially, the number of processors in the

processor set was increased from 2 to 16, starting with a MB and a PPC, adding a further MB and a

PPC, and adding 2 MBs in subsequent scenarios. The number of tasks and of networks was fixed at 4

and 2 respectively (1 OPB and 1 FSL). In the second run, the number of networks was increased to 5,

while using 16 processors. Finally, the number of tasks was stepwise increased to 22 while using 16

processors and 5 networks. In total, synthesis was conducted for 117 different scenarios.

Table 3.6 summarizes application characteristics in terms of data traffic (total volume in KBytes and

number of transfers), and in terms of the number of edges E as obtained from MPI simulations

Table 3.5: Parameters of used networks

Type Mk Lk (µs) pk τk (µs) Ak (slices)

link 2 6.25 0 0 451

bus 16 8.00 0.0625 16 451
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with different number of tasks N . As previously noted, synthesis for the Jacobi implementation was

conducted for 4 tasks only because of its non-scalable point-to-point topology. Figure 3.5 shows the

estimated run time of tasks on MB for scalable implementations for different number of tasks.

A qualitative inspection of the table and of the figure reveals that synthesized architectures will tend to

have a few number of processors to minimize communication cost, i.e. solutions use fewer processors

than available to minimize communication costs.

FIR implementation has a constant amount of total data transferred, but the run time of individual

tasks decay with higher degree of parallelism. As a result, inter-task communication becomes more

expensive with a higher number of tasks. The situation is the same for derivation even though the

runtime does not decay as fast. For the other three implementations, the data traffic increases with a

higher degree of parallelism, while the runtime of tasks decay as seen in figure 3.5, thus leading to a

much steeper increase in inter-task communications. Table 3.8 which shows synthesized architectures

confirm this conclusion.

The implication of this result is that a designer maybe able to reduce synthesis runtime during explo-

rations with different number of tasks by comparing the traffic against task runtime. By so doing, the

number of processors in the IP library can be kept small, thereby reducing the complexity of the ILP

instance. The usefulness of the reduction is apparent in Figure 3.6 which shows the solver CPU time

when the number of processors in the IP library is increased. A general exponential increase can be

observed for all six parallel programs. Such a reduction may however not be possible if all processors

were different since that would limit the design space.

In contrast to processors, the number of networks should not be reduced because inter-task commu-

nication can be reduced by deploying more networks. That is evident from synthesized architectures,

where the optimization tends to allocate several networks even when the number of allocated pro-

cessors is only two. Surprisingly though, the number of networks appears not to have a significant

influence on solver runtime as is evident in Figure 3.7. This may however not be the general case.

Figure 3.8 shows the solver runtime in log scale as the number of tasks is increased. As we would

expect from Tables 3.1 and 3.2, the solver runtime increases significantly with a large number of tasks

since the problem size increases non-linearly. In this run, an arbitrarily selected timeout of 28800

seconds was set to limit the solver runtime. In the figure, the 9 columns which exceed the time limit

represent runs which did not find a feasible solution by timeout. Columns which terminate at timeout

value represents runs for which feasible solutions were found, but the search was not completed so

that synthesized architectures are possibly suboptimum. Therefore, it is interesting to examine the

quality of those results. Figure 3.9 shows the gaps in percentage of the found solutions over relaxed

solutions4. The gap is calculated by evaluating the objective function, and is given as

Gap =
|si − sr|

sr
(3.34)

where sr is the value of the objective function after evaluating a relaxed solution, and si the value

obtained by evaluating a feasible (or optimum) integer solution.

The figure shows that the gaps of feasible results obtained before the completion of search were not

significantly large in every case. For instance, suboptimum architectures were obtained for Simpsons

for 14 ≤ N ≤ 22, but the gap was only 0.1%. Also, for Derivation, gaps obtained for 12 ≤ N ≤ 20
are approximately the same, even though there was a timeout for N = 18 and N = 24. This result

indicate that useful architectures can be obtained even under solver timeout. The gaps give a measure

of the usefulness of the results in such cases.

Moreover, FIR results demonstrate that the combinatorial nature of the problem can lead to solutions

for which the value of the objective is significantly large compared to that of the relaxed solution. This

can potentially offset the benefits of additional number of tasks: when a higher degree of parallelism

4Relaxed solution in the context of Branch & Bound algorithm.
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(a) FIR

(b) Derivation

(c) Simpsons

Figure 3.5: Continued on the next page
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(a) Inversion

(b) N-Body

Figure 3.5: Estimated task run time on MB for different number of tasks

Table 3.7: Integer solutions (in seconds, suboptimum solutions in bold)

# Tasks FIR Derivation Simpsons N-Body Inversion

4 1.88 0.42 0.24 1.58 43.44

6 3.12 0.41 0.23 8.66 253.76

8 3.86 - - 21.11 256.50

10 5.09 0.54 0.36 - 257.71

12 2.98 0.68 1.15 261.61

14 2.52 0.72 0.67 24.67 267.47

16 2.21 0.89 0.74 - 270.75

18 5.73 0.90 0.81 - -

20 2.49 0.93 0.82 - -

22 - 0.86 - - -
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Figure 3.6: Solver runtime versus number of processors available

Figure 3.7: Solver runtime versus number of networks available
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Figure 3.8: Solver runtime versus number of tasks

Figure 3.9: Gaps of found combinatorial solutions over relaxed solutions

is used so that the resulting relaxed solution is lower, then a sufficiently large gap indicates a much

worse integer solution. For instance, in the FIR case, optimum architectures were obtained for N = 6
and for N = 8. However, the objective for the latter case worsened by 22% to 3.863 seconds (Table

3.7). The gaps for the two cases were 94% and 169% respectively. This behavior cannot be explained

by the increase in inter-task communication and an increase in scheduling cost alone: the objective

for N = 12 is less by 21% compared with N = 8, and the gap is only 4.5%, where, in contrast, all

tasks are mapped on a single core.

These counter intuitive results underscore the need for an automated synthesis to explore the design

space as proposed in this thesis. Such trends are difficult to predict so that even a skilled designer can

easily miss a vastly superior design point.
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Table 3.8: Synthesized architectures for non-realtime parallel programs (time out = 28800 seconds;

solid lines are buses, dashed lines are FSL)

Parameters Program Architecture

K
′

N M

2 4 {2, 4, · · · , 16} All All tasks mapped on a single PPC

{2, 3, 4, 5} 4 16 All All tasks mapped on a single PPC

5 6 16 Inversion, N-Body All tasks mapped on a single MB

Derivation

Simpsons

FIR

5 8 16 Inversion, N-Body All tasks mapped on a single MB

FIR

5 10 16 Derivation

Inversion All tasks mapped on a single MB

FIR (suboptimum)

N-Body Timed out

Simpsons

5 12 16 derivation

Inversion, FIR All tasks mapped on a single MB

N-Body Timeout

Continued on Next Page. . .
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Table 3.8 – Continued

K
′

N M Program Architecture

Simpsons (suboptimum)

5 14 16 derivation

Inversion, FIR All tasks mapped on a single MB

N-Body (suboptimum)

Simpsons (suboptimum)

5 16 16 Derivation

Inversion, FIR All tasks mapped on a single MB

N-Body Timeout

Simpsons (suboptimum)

5 18 16 Derivation (suboptimum)

Inversion Timeout

Continued on Next Page. . .
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Table 3.8 – Continued

K
′

N M Program Architecture

FIR (suboptimum)

N-Body Timeout

Simpsons (suboptimum)

5 20 16 Derivation (suboptimum)

Inversion Timeout

FIR (suboptimum)

N-Body Timeout

Simpsons (suboptimum)

5 22 16 Derivation Timeout

Inversion -

FIR -

N-Body -

Continued on Next Page. . .
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Table 3.8 – Continued

K
′

N M Program Architecture

Simpsons
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3.2.2 Scheduling

This section presents an extension to the ILP model to fully include scheduling effects, particulary,

so as to synthesize architectures for realtime applications. As discussed in Section 2.2.2, only local

schedules are considered because almost always preemption is the preferred method. The extension

involves replacing the switching time (3.5) by

Tswitch =
2n−2
∑

l=0

m
∑

j=0

γlj · Flj · (Tslj
· tj + Oj) (3.35)

This model captures influences from several design parameters, each of which is described in a sub-

section below.

3.2.2.1 The Processor Architecture

This is the actual cost of switching context, which depends on the memory and on the micro ar-

chitecture, as well as on the mechanism for context switching (i.e. under software or with hardware

support). The coefficient tj captures this cost, and can always be reliably pre-computed for processors

of interest. Whether this cost is actually incurred, depends on task mapping as discussed in Section

3.2.2.4.

3.2.2.2 The Kernel/OS

The kernel or realtime OS introduces a control overhead due to scheduling (polling, moving tasks

between run and delay ques, etc.). In this formulation, it is assumed that kernel/OS is already se-

lected and is fixed for each of the processor in the design space (i.e. OS selection is not a part of the

optimization problem so that the associated cost is coupled to the selected processor). This is not a

limitation because when desired, instances of the same processor running different operating systems

or micro-kernels can be specified in the ILP problem to extend the design space.

The overhead is caused by the clock interrupt handler interfering with the execution of application

tasks because of its higher priority. This increases the number of task switching and the response time

of application tasks. The coefficient Oj in (3.35) captures the increase in response time caused by the

clock-handler.

3.2.2.3 The Schedule/Task Switching

The schedule determines how often task switching takes place as captured by the coefficient Tslj
in

(3.5). Tslj
is the number of task switching that is incurred for the duration of the application, or for

one period, when a particular group of tasks with the index l is mapped on a processor J .

In simple cooperative schedulers (e.g. cyclic executives), there is no preemption, so that Tslj
= 0. The

overhead incurred when a task begins and ends is already captured by Tij in (3.31) as part of function

call overhead (prologue and epilogue). For preemptive schedulers, Tslj
is equal to the number of

interferences due to higher priority tasks. Section 3.2.2.6 discusses how the parameter is obtained.

3.2.2.4 Task Mapping

Task mapping influence the switching costs in two ways : (1) by selecting the processor, the switching

mechanism, and thus the cost, is determined, and (2) by grouping tasks on one processor, the optimum

schedule that can be applied, and thus the number of task switching, is determined. Consequently,

scheduling and task-mapping influence each other during optimization.



3.2: ILP Formulation 53

To include this cross-effect during optimization, two strategies can be followed:

i Integrate scheduling in optimization loop such that a schedule is computed prior to cost calcula-

tion for a candidate mapping. Applicable where the optimizer is an integral part of the synthesis

flow. This approach is used in Chapter 5.

ii Pre-compute optimum schedules for all possible mappings, and integrate the schedules in the

ILP formulation. Applicable where the solver is an independent module as is the case in this

ILP-based synthesis. This approach has the advantage that, by pre-computing the schedules,

infeasible mappings can be eliminated to reduce the size of the ILP instance. The drawback

is the explosion of variables when all task combinations are feasible on every processor. Pre-

computation is used in this and in Chapter 4.

The coefficient Flj in (3.5) specifies feasible mappings following pre-computed schedules. Its value

is 1 if there is a feasible schedule for a group of tasks with the index l on processor J , 0 otherwise.

We next describe how Flj is used to enforce feasibility constraints in the formulation.

Let P(I) be a power set of the task sets I = {I0, . . . , In}. Let Gl be an element in the power set

excluding the empty set, with l = {0, 1, · · · , 2n − 2}. Let Imapped ⊂ P(I) be a set, so that each

element contain one or more tasks that will be mapped on the same processor. The solution to the

combinatorial optimization problem consists of the set Imapped. Each element in Imapped is associated

with a task switching overhead as dictated by its schedule.

Now since Imapped is not known at formulation time, an auxiliary binary decision variable Mlj is

introduced for each element Gl in the power set P(I). If Mlj = 1, then Gl ∈ P(I), and Gl ∈
Imapped. IfMlj = 0, then Gl is not an element of Imapped. Therefore, we insist that

Mlj ≤ Flj ∀Mlj (3.36)

so that if, and only if, the mapping is feasible, then Mlj constitutes a degree of freedom during

synthesis where the variable can take any value. We next describe how the decision variables Mlj

and xij are linked through ILP constraints.

Recalling that xij = 1 implies that a task Ii is mapped on a processor Jj , it follows for any group Gl,

Mlj = 1 if and only if xij = 1 ∀ Ii ∈ Gl. This results into a logical constraint

Mlj = (xil0j ∧ xil1j ∧ · · · ∧ xilgj) ∀Mlj with

Gl = {Iil0 , Iil1 , · · · , Iilg}, lg = |Gl| − 1 (3.37)

To transform the logical constraint into a linear form, two steps are applied. The first is the specifica-

tion

Mlj = 0 → (xil0j + xil1j + · · ·+ xilgj) < |Gl|

Mlj = 1 → (xil0j + xil1j + · · ·+ xilgj) = |Gl| (3.38)

These two constraints insure that when a schedule is not feasible, then at least one Ii ∈ Gl is not be

mapped on Jj . This implies that other groups which are either proper subsets of Gl, or which are not

super sets of Gl, can be mapped on Jj provided they have a feasible schedule. The second step then

is a set of inequalities that satisfy the specification in (3.38)

xil0j + xil1j + · · ·+ xilgj ≤ |Gl| − 1 +Mlj (3.39)

xil0j + xil1j + · · ·+ xilgj ≥ |Gl| · Mlj (3.40)

With (3.36),(3.39) and (3.40), feasible mappings are guaranteed. The last step is to capture the switch-

ing cost of the groups in the objective. A contribution of a group to the switching cost is given by
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Mlj · Tslj
. However, this contribution cannot be directly used in the objective function by taking the

sum of all contributions from all groups. This is because, as it can be observed from (3.39) and (3.40),

if a group Gl is mapped on a processor Jj , then the value ofMlj for all groups which are subsets of

Gl will also be one. Consequently, taking the sum of contributions directly would erroneously include

the switching cost of subgroups.

To prevent this incorrect inclusion of switching costs, we need to specify that the switching contribu-

tion of a group should be counted only whenMlj = 0 for all of its super sets. This leads to non-linear

terms in the objective function which take the formMlj(1−Mls1j)(1−Mls2j) · · · , where ls1 and

ls2 are indices of super sets for a group with an index l.

To break the non-linearity, a binary decision variable γlj is introduced for each Mlj . Its value is 1

only when the group is mapped, andMlj = 0 for all super sets. To model this property, we note from

(3.40) that the LHS of the inequality for a group Gl1 withMl1j = 1 is greater than the LHS of the

same inequality for a group Gl2 , if Gl2 ⊂ Gl1 . Therefore, the following relationship holds:

0 ≤
1

|I|
(
∑

Ii∈I

xij −
∑

Ii∈Gl

xij) < 1 ∀ Gl, Jj (3.41)

The first sum in the above relationship is the total number of tasks that have been mapped on Jj . The

second sum is the size of a group, which is the same as the LHS of (3.40). The difference of the two

sums is zero in two cases (1) if nothing is mapped on Jj (2) if a mapped group has no superset Gls for

whichMlsj = 1 for that specific mapping. The sum is greater than zero, if, for Gl, there is a superset

Gls withMlsj = 1. This is because there is then at least one decision variable xij with value 1 in the

first sum, which is not present in the second. The largest value that the difference of the two sums can

have is |I| − 1, so that the upper limit in (3.41) is 1.

We next exploit this relationship by specifying that

γlj +
1

|I|
(
∑

Ii∈I

xij −
∑

Ii∈Gl

xij) ≤ 1 (3.42)

γlj +
1

|I|
(
∑

Ii∈I

xij −
∑

Ii∈Gl

xij) ≥ Mlj − 1 +
1

|I|
(3.43)

Table 3.9 shows that the decision variable γlj can only take the value 1 when:

1. No grouped is mapped on Jj (line 1 in the table). In that case, optimizations will force the value

0 to minimize Tswitch in (3.35).

2. When Gl has no super set mapped on Jj (line 2), since the variable will assume the more

constraining value.

3.2.2.5 Processor-External Factors

Processor-external factors such as interrupts and data availability have a direct runtime impact on the

schedule. The foregoing formulation has the limitation that it is based on worst case assumptions. In

Table 3.9: Truth table for inequalities ( 3.42) and ( 3.43)

Mlj weighted diff. γlj in eq.(3.42) γlj in eq.(3.43)

0 0 0,1 0,1

1 0 0,1 1

1 > 0 0 0,1
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particular, it is assumed that tasks in a group Gl with no precedence relationship can become ready at

the same time.

With respect to data availability, the worst case assumptions can be relaxed by considering when data

can actually arrive depending on source-task-destination-task mapping, and depending on the selected

communication network.

A possible relaxing solution is to compute offsets between release times of tasks with indirect prece-

dence. For example, if there are three tasks such that the first sends data to the second, and the second

to the third, and the mapping is such that the first and third are mapped on one processor, and the

second on another, then there is an offset between release times of the first and third tasks. This offset

is equal to the time needed for data to be sent to the second task, plus the response time of the second

task, plus the time for the resulting data to be sent from the second to the third task. A suitable ILP

formulation that will not significantly increase the problem size needs to be found in future work.

3.2.2.6 Experimental Results

This section presents experimental results aimed at studying the feasibility of ILP-based synthesis

after extending the scheduling aspect of the model. Also in this case, selected applications exhibit the

same communication pattern for the same input data, but the individual tasks have finishing deadlines

requiring realtime scheduling. Again, the parallelization style uses the MPI standard.

Two applications were used. The first implements a signal processing chain for IEEE 802.11g WLAN

standard. The implementation performs, in the order, the following : timing synchronization, coarse

and fine frequency offset estimation and compensation, symbol demapping, FFT (OFDM demod-

ulation), pilot extraction, channel estimation and compensation, carrier phase offset estimation and

compensation, and finally timing drift estimation and compensation. These algorithms are described

in [82, 83, 84, 85]. The second application implements baseband signal processing for WCDMA, and

performs, in the order, the following: matched filtering in frequency domain (using overlap-add), PN

code tracking using a coherent Delay Locked Loop (DLL), channel estimation and compensation, de-

scrambling and despreading, and finally maximum ratio combining. These algorithms are described

in [86, 87, 88].

The applications were first written in sequential C, and were then converted into non-scalable MPI

programs with point-to-point topology. Tables 3.10 and 3.11 show the parallel tasks and their dead-

lines in nanoseconds. In this implementation, the deadlines are equal to the periods. The latter were

obtained from the standards. The three last columns in Table 3.10 show approximated execution time

in nanoseconds of the tasks on 3 different processors with loosely coupled accelerators. Similarly,

the two last columns in Table 3.11 show the approximated time for WCDMA tasks on two other

processors.

Table 3.10: WLAN tasks(all time units in ns)

Function Index Deadline P1 P2 P3

Master control task I0 19 6032 1034 11

Carrier phase offset est. & compensation I1 988 3504 601 601

Channel estimation and compensation I2 988 909 156 156

Timing synchronization I3 19 33781 5791 17

OFDM symbol demapping I4 1216 598 102 102

FFT (OFDM demodulation) I5 1216 534 534 534

Fine freq. offset estimation & compensation I6 19 11 11 11

Coarse freq. offset estimation & compensation I7 19 13 13 13
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Table 3.11: WCDMA tasks (all time units in ns)

Function Index Deadline P4 P5

Master control task I0 65 4376 43

FFT (frequency domain filtering) I1 4160 3788 3788

Vector multiplication (freq. domain filtering) I2 4160 3082 3082

FFT (frequency domain filtering) I3 4160 3788 3788

Overlap-Add (frequency domain filtering) I4 4160 3665 3665

Long code generation I5 1040 3784 147

DLL (delay accusation & tracking) I6 1040 8746 1000

Short code generation I7 1040 835 143

Rake receiver I8 1040 16204 686

Maximum ratio combiner I9 16640 383 383

Tables 3.12 and 3.13 show the communication traffic between tasks for the two applications. These

were obtained from MPI simulations for 27 OFDM symbols for WLAN, and for 1 slot for WCDMA.

The third and fourth columns show the amount and number of data transfers respectively. Also in this

case, comparing the estimated execution time of tasks on processors with the data traffic, it become

apparent that inter-task communications are expensive so that processors sharing is favored.

The same networks were used as in the previous section, however the number of instances was se-

lected to be 12 for each type to cater for more number of edges. Table 3.14 show the parameters of

used processors which are based on MB with loosely coupled accelerators. This selection reflect the

fact that these tasks are very data intensive so that highly specialized processor cores are required.

The use of less specialized processors is possible through the use of finer grained tasks. However, that

option was not pursued in this experiment because FPGA slice estimates for the MB suggests that

only a maximum of 16 cores can fit in the target Virtex 2 FPGA.

Since it is interesting to see the impact of scheduling constraints, synthesis was conducted with and

without fixed-priority preemptive scheduling by using two configurations with a basic cyclic executive

and with a preemptive kernel respectively. For the cyclic executive, the switching overhead due to

preemption is zero.

For fixed-priority preemptive schedulers, the number of context switching Tslj
is equal to the number

of interferences due to higher priority tasks, and is obtained from Rate Monotonic Analysis (RMA)

Table 3.12: Traffic pattern for WLAN for 27 OFDM symbols

Src (i1) Dst (i2) Di1i2 (bytes) Bi1i2

I0 I2 220 55

I0 I7 2339608 2242

I0 I1 220 55

I4 I2 5824 28

I4 I1 5824 28

I6 I5 7168 28

I2 I1 5824 28

I7 I6 2913300 2241

I5 I4 7168 28

I1 I3 5824 56
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Table 3.13: Traffic pattern for WCDMA for one slot

Src (i1) Dst (i2) Di1i2 (bytes) Bi1i2

I8 I9 40948 2560

I1 I2 81924 161

I0 I1 81412 160

I5 I8 10236 2559

I5 I6 40960 10240

I4 I6 40964 10241

I3 I4 81924 161

I2 I3 81924 161

I6 I8 81892 5119

I7 I8 10236 2559

Table 3.14: Parameters of used processors

Name tj (µs) Aj (slices) # instances

P1 0.70 450 5

P2 0.93 526 6

P3 1.20 605 8

P4 1.20 553 6

P5 1.19 724 7

[89] within the ILP formulator (Figure 3.1). The RMA in the ILP formulator currently support tasks

with single deadlines, and which have fixed durations and non-varying periods. However, the im-

plementation is easily extensible to support flexible RMA models. Such models can be adapted to

applications with arbitrary, multiple or internal deadlines [90]. Future extensions will affect the com-

putation of Tslj
only. The ILP model for synthesis remains unaffected.

In the implemented flow, RMA is conducted for all possible task groups and mappings. The output of

RMA, the response r, is used to estimate Tslj
. Algorithm 1 shows how the parameter is computed.

1: Table T = createSchedulingTable(Gl, Jj , task time Tij , task deadlines Di, task periods Ti)
2: for all Ii ∈ Gl do

3: Response ri = computeResponse(Ii,T )

4: Flj = 1

5: if r > Di then

6: Flj = 0

7: end if

8: end for

9: r = computeLargestResponse(Gl,T )

10: Tslj
=
⌈

r
period of highest priority task in Gl

⌉

Algorithm 1: Determining context switching cost using RMA

The first line computes a scheduling table for a group Gl of tasks, if the group would be mapped on

a processor Jj . The rows in the scheduling table contain the priority of a task in the group, together

with its deadlines, period and execution time on the processor, one row for each task. The priorities

are computed according to [89].
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In this implementation, the table is initially filled in arbitrary order with task information, but the

priorities are initially zero. The rows are then sorted in two passes according to periods and deadlines.

Prior to sorting, deadlines are relaxed according to Algorithm 2 in order to avoid pessimistic schedu-

lability analysis. The analysis assumes that all tasks are released at the same time. If the response of

a task is then greater than the deadline as shown in Algorithm 1, the schedule is declared infeasible.

However, if there is a precedence relationship, not all tasks are released at the same time. In particu-

lar, if there is an edge between Ii1 and Ii2 , then Ii2 cannot start until Ii1 has finished. Therefore, the

deadline Di2 needs to be relaxed to Di2 = Di2 +Di1 to reflect the fact that there is an offset from the

release time of its parent task.

1: For each Ii ∈ Gl, set parent deadline to zero

2: while Gl is not empty do

3: if Gl is circular then

4: select Ii ∈ Gl | ∀Ii2 ∈ Gl, Ti < Ti2
5: else

6: select Ii ∈ Gl with no parent in Gl

7: end if

8: for each child Ii2 of Ii in Gl do

9: if parent deadline < Di then

10: set parent deadline to Di

11: end if

12: end for

13: if Ii has a parent in Gl then

14: Di+ = parent’s deadline

15: end if

16: remove Ii from Gl

17: end while

Algorithm 2: Deadline relaxation during RMA

Relaxation proceeds by selecting the most critical task. If the subgraph Gl of the application graph

G is circular, it is not immediately obvious which task is most critical because of circular producer-

consumer relationships. Therefore, the algorithm selects the task in Gl with the shortest deadline.

Because a critical task is eliminated from Gl at the end of each iteration, this selection has the effect

of introducing cuts in Gl which removes circular paths. Otherwise, if Gl has no cycles, the most

critical task in Gl is the one that doesn’t consume data from other tasks in the subset. Before a task

is removed from Gl, its deadline is relaxed by adding the deadline of its already removed parent, if

the task had one. If the task had multiple parents, then the largest of its parents’ deadlines is selected

according to lines 8-12. This relaxation does not pose any limitation to the type of application graph

that can be handled by the synthesis flow.

After relaxation, sorting begins. The first pass sorts according to task periods in ascending order. If

the tasks do have differing periods, and Gl is at least partially connected, then a critical assumption

is made that if there is a node in Gl with a period less than that of any of its parent, then the edge

between the node and the parent represents a weak precedence meaning that the corresponding task

can execute without receiving data from its parent. An example would be a task that infrequently

obtains new parameters from another task for its internal computations. Otherwise, the application

graph is faulty, and the resulting schedule is meaningless. Partial connectedness in this context means

Gl is partially connected if Gl is not connected, and there exist at least one non-trivial subgraph of Gl

that is connected.

The second pass sorts the table again according to deadlines, but the sorting is done only within rows

containing the same period. Since deadlines have been previously relaxed, no distinction with respect
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to precedence relationship between tasks needs to be made: if tasks Ii1 and Ii2 have no direct or

indirect precedence, then Ii1 must finish before Ii2 if Di1 < Di2 , because Ii1 needs to finish earlier;

if there is a precedence relationship, then Di1 < Di2 because of the relaxation step, and Ii1 must

appear before Ii2 . Indirect precedence in this context means there is a path from Ii1 to Ii2 via one or

more intermediate tasks. Therefore, because second sorting is only done within rows with the same

priority, tasks with shorter periods appear before those with longer periods regardless of whether or

not latter tasks have shorter deadlines.

The sorting is topological, and is thus not unique. Moreover, if the group represents a non-connected

graph, then the result after sorting is a partial order. The final order after sorting reflects the priorities

in descending order, which are assigned by a simple enumeration.

With the table in place, the algorithm proceeds to compute the response time of each task in the group

Gl according to the scheduling table. The response is computed recursively according to [89] as

ri = Tij +
∑

∀Iih
∈Gl|priority(Iih

)>priority(Ii)

⌈
ri

Tih
⌉ · Tihj (3.44)

This model of response time differs slightly from that of Liu and Layland [89] in that no bound

in task blocking time due to safeguarding against priority inversion is included. This is because the

programming model used here is message passing so that tasks do not share protected data so that

semaphore-based synchronization for variables or memory locations is not required.

The analysis then concludes by comparing the response time against the execution time in lines 5-7

of Algorithm 1. The schedule feasibility parameter Flj in (3.5) is set to zero if the response time is

larger. Finally, the number of task switching is estimated in line (10) from the response time of the

lowest priority task and from the period of the highest priority task. This estimate is conservative in

that it is for the worst case by making the assumption that all tasks in the group are always ready when

released so that the lowest priority task experiences maximum interference. The use of the parameter

Flj is explained in the following subsection.

The last parameter that is required before the ILP model data can be completely generated is the

kernel/OS overhead Oj due to the clock interrupt handler. For cyclic executive, the overhead is zero.

For fixed priority schedulers, the overhead can be estimated according to the analysis by Burns et. al

[91]. However, since the analysis is not yet implemented, the overhead was set to zero.

With all of the preceding parameters in place, the model data was generated as in the previous section

for use with the solver lp solve. Again, for both cases (cyclic and preemptive, WLAN and WCMDA),

the same solver settings were used (node auto-ordering, most feasible basis crash, automatic branch

& bound branching, and pre-solving of rows and columns).

The non-shaded rows in Table 3.15 summarizes the results, which were obtained on a machine with a

T5500 processor and 2GB of memory. Therein, columns under “Cyclic” and “Priority-based Preemp-

tive Scheduler” show the results under realtime and non-realtime constraints. The two columns under

“problem size” show the number of constraints and decision variables of the ILP problem instance.

The columns under “run time” show the time spent formulating and solving the problem respectively.

The other two columns show the value of the objective function and the corresponding gap from the

relaxed solution.

As expected, the additional time spent in formulation due to fixed priority scheduling is small com-

pared to that spent in solver. The number of constraints and variables is still significant. The solver

timed out in 3 out of 4 cases. Still, two of the 3 cases have gaps less than 18% so that synthesized ar-

chitectures in those cases can be considered to be very good5. This result stresses again the importance

of examining gaps as obtained from (3.34).

518% is not a hard threshold through which one can state that solutions are good. A simple rule is that the smaller the

gap the better.
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Figure 3.10 depicts the architectures. Also in this case the impact of expensive inter-task communica-

tion is evident: only a few processors are allocated. This cements the argument made in the previous

section that examining traffic pattern versus task execution time is an effective tool for trimming the

design space by reducing the number of processors without limiting the design space. For compari-

son, the shaded rows in the table shows the complexity when the number of processors instances is

reduced to 2 for cores P1 to P2 each, and to 3 for cores P4 and P5 each, while the number of networks

instances is 3 each for FSL and OPB. For WLAN, the solver run time was improved, and better values

for the objective function were obtained.
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(a) WLAN with cyclic scheduler

(b) WCDMA with cyclic scheduler

(c) WLAN with priority-based scheduler

(d) WCDMA with priority-based scheduler

Figure 3.10: Synthesized architectures under scheduling extension (all networks are FSLs)
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3.2.3 Makespan

This section presents a generalization of the model to optimize for the overall computation time or

for the makespan of the parallel program.

Because the structure of targeted parallel programs as well as task deadlines, if any, are known a

priori, tasks can be statically scheduled. The central problem in such situations is to schedule tasks

such that the last finishing time of the computation to be performed (the makespan) is minimized.

The determining factor during the process is the Critical Path (CP) of the Directed Acyclic Graph

(DAG) representing the target parallel program. The CP in a DAG is the one with the largest sum

of computation and communication costs. In contrast to the formulation up to this point, makespan

minimization requires that the parallel program can be represented as a DAG, since otherwise a CP is

not defined.

Scheduling algorithms which base on CP-mapping [92, 93] have been proposed for such problems.

However, these cannot be applied to the automated synthesis problem for the following reasons:

1. Constituent components of the (heterogeneous) architecture are not known a priori since the

makespan is minimized simultaneously with architecture determination. Consequently, for each

node and edge in the DAG, there is generally more than one possible cost associated with

feasible mapping and resource allocation. Consequently, the CP is generally not distinct.

2. Often, an optimum solution will require the sharing of processor resources between tasks, ne-

cessitating the use of a task-scheduler on processors, whose impact on the overall solution must

be considered. This means that there is generally more than one possible mapping-dependent

overhead cost that adds to task execution time, particularly when preemptive schedulers are

used on processors.

To minimize the makespan, the objective function must capture the cost of the critical path only,

which is not distinct. To solve that problem, we introduce a multi-pass combinatorial optimization

technique which initially minimizes an arbitrary path. Algorithm 3 outlines the solution which has

been implemented in the ILP formulator.

1: Fixed Paths F = {}
2: Path current, CP = {}
3: Path last = longestPath(G,J ,C)

4: ILP solution sol = {}
5: repeat

6: F = F ∪ current
7: CP = last
8: ILP instance ins = formulate(CP ,G,J ,C,F ,sol)
9: sol = solve(ins)

10: current = longestPath(sol)
11: last = current
12: until delay(current) > delay(CP )

13: return solution

Algorithm 3: Multi-pass optimization for makespan minimization

Starting with any path in a DAG, the intent is to capture the cost of the path in the objective function

for minimization. With subsequent passes, the longest path is extracted from a previous pass, and

is minimized in the current one. Synthesis stops when the longest path does not change. The ratio-

nale behind the method is that the total delay of the longest path after the last pass is the minimum

makespan of the parallel program for given resources, provided that the solution is optimum. The
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resulting task-mapping and architecture are thus the best one for the parallel program under the given

resources.

In practise, a path may be the longest after a pass purely by chance because any feasible mapping for

the path would suffice to fulfil the constraints in the pass if the path is not in the objective function.

Therefore, it is possible that a multi-pass scheme would blindly jump to optimize one path after

another, until an overall optimum architecture is found. This may lead to unpredictably long synthesis

runs in the general case. It is thus desirable to somehow start with a good guess about the initial path

to optimize, and quickly converge in subsequent passes.

For this purpose, the algorithm speculates by starting with the hypothetically longest path. This is

the path with the longest delay, when for each node and edge in the DAG, the best possible resource

is allocated out of the set of available processors P and networks C. A longest path problem is then

solved after the initial allocation (Line 3). The CP obtained in this way is purely hypothetical because

1. All resource constraints are ignored in the allocation

2. It is assumed that each task in the DAG will exclusively occupy a processor, ignoring possible

i.) Scheduling overheads on processors

ii.) Reduction in path length due to processor sharing by eliminating network latencies

To converge to a solution without blindly jumping between paths, previous longest paths are fixed

in subsequent passes. For this purpose, a set F of fixed paths is used. The set, which is initially

empty, specifies for ILP formulation the mapping of tasks on processors and the corresponding allo-

cation of networks (Line 8). Therefore, fixing constrain the design space ahead of each pass. Since

consequently sub-optimum architectures may result, this synthesis procedure essentially trades run-

time against architecture optimality. Without fixing, optimality would be traded against uncertainty

in runtime: the algorithm may never terminate in extreme cases.

The hypothetically longest path for the application graph is computed by way of a variation of the

Dijkstra’s algorithm for the shortest path problem [94]. The variation is that the algorithm starts by

assigning an initial distance of negative infinity, and updates the distance and predecessor if, using

the conventional notation for source and destination nodes u and v, dist between(u, v) + dist(u) >
dist(v), rather than dist between(u, v) + dist(u) < dist(v).

Longest path problem is NP-complete. The heuristic above is intended to reduce the runtime for very

large graphs, but has the property that under unfavorable weights in the graph it can return a path much

shorter than the actual longest one, thereby leading to wrong decisions during makespan optimization.

During longest path computation in the first hypothetical pass, the task execution time Tij on a best

processor Jj is added to all incident edges of task Ii going to adjacent tasks in order to capture both

the computation and the communication cost for longest path computation.

In contrast, the longest path after a pass is computed from the ILP solution by extraction and back

annotation. The execution time Tij is not that of the best processor, but that of allocated processor.

Similarly, the communication cost results from allocated network. The computation cost is also added

to incident edges going to adjacent tasks, but in this case, scheduling-related overhead is also added to

the edges. Therefore, the longest path includes all actual time-related costs. The overhead is computed

as shown below based on (3.35)

Tswitchi
=

(

Tsij
· tj +

Oj

|Gl|

)

(3.45)
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where the number of switching Tsij
for a task Ii ∈ Gl on a processor Jj is

Tsij
=



















⌈

ri

Tih

⌉

if there exist Iih ∈ Gl| priority(Ii) = priority(Iih)+1
⌈

Tij

Tclockj

⌉

for a round robin scheduler

0 otherwise

(3.46)

and Ti is the period of a task in Gl. The switching overhead is differently computed depending on

whether Tij is defined for one period or for the whole duration of the program as discussed in Ap-

pendix B. The OS overhead is evenly distributed among all tasks in this model, but is zero for all

experiments as mentioned in Section 3.2.2.

Three outcomes are possible with this algorithm. First, synthesis can terminate after a single pass

with an optimum solution. Second, synthesis can terminate after several passes with a suboptimum

solution due to fixing. This would occur if critical resources would be occupied by non-critical paths.

Otherwise, synthesis would terminate with an optimum solution after several passes. For the latter two

cases, it is not obvious after synthesis whether a solution is optimum. In such situations, repeating

the synthesis with the last path as the initial CP will lead to the answer on optimality because the

algorithm would terminate after one pass.

With the preceding discussion, the objective function for a terminating parallel program, or for one

period of a non-terminating program, is the sum of the total execution time along the CP for the pass.

The sum has three components, as given by

min





n
∑

i=0

m
∑

j=0

xij · Tij ·Xi + T
′

net + T
′

switch



 (3.47)

This objective function has the same structure as (3.31). There are three differences. The first is that

for each task Ii, there is a coefficient Xi whose value is 1 if the task is on the CP for a pass. This

coefficient is specified in the ILP instance returned in Line 8 in Algorithm 3. For general application

graphs when the objective is to minimize the total execution time of all tasks, each coefficient Xi is

set to 1. The second difference is that an additional coefficient Zi1i2 is added in (3.30), leading to T
′

net

in the objective function.

T
′

net =
∑

Ii1
,Ii2

|Ii1
⋖Ii2





K
∑

k=0



(LkDi1i2Zi1i2 + τkpkBi1,i2)zki1i2 +
∑

j1,j2|j1 6=j2

Lkj1j2Di1i2βki1i2j1j2









(3.48)

The coefficient is 1 if the corresponding edge in the DAG is on the CP for the pass. Only the latency

term is weighted by the coefficient because if the edge is not on the CP then we do not wish to consider

its cost, however mapping the edge to that specific resource would still lead to contention that may

prolong data transfers for edges in a critical path.

Equation 3.48 is not accurate when an allocated network does not carry traffic for critical edges

because the contention overhead within that resource would be included in the objective. A more

accurate model would replace the variable zki1i2 in the overhead with another 0-1 decision variable

z
′

k which becomes 1 when a critical edge is mapped to that resource:

z
′

k ≥
1

E′

∑

Ii1
,Ii2

|Ii1
⋖Ii2

zki1i2Zi1i2 (3.49)
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where E
′

is the number of edges in the CP. The accurate model for T
′

net is thus

T
′

net =
∑

Ii1
,Ii2

|Ii1
⋖Ii2

K
∑

k=0



(LkDi1i2Zi1i2zki1i2 + τkpkBi1,i2z
′

k) +
∑

j1,j2|j1 6=j2

Lkj1j2Di1i2βki1i2j1j2





(3.50)

When the contention overhead is much smaller than actual latencies, (3.48) can be used in place of

(3.49) and (3.50) to trade model size, and hence runtime, against accuracy.

The third difference is on the computation of context switching cost, where an extension to the RMA-

based estimation Algorithm 1 is made. The extension is made because Tslj
out of Line 10 in the

algorithm cannot be directly used in the objective to minimize the makespan because a task in the CP

cannot experience interference from lower priority tasks which are in the same group, but not on the

CP. Since we only want to minimize interference for tasks on the CP, we cannot simply compute the

response based on the lowest priority task in Gl. We need instead to compute the response based on

the task with the lowest priority in the CP. This assumes that appropriate measures against priority

inversion are in place. Therefore, in the proposed method, the switching cost is computed with a

conditionally reduced number of tasks in the group to obtain T
′

slj
. The condition is based on the

priorities of non-critical tasks in the group.

Algorithm 4 shows how T
′

slj
is now computed. If the makespan is to be minimized, this reduced

switching cost is used in (3.35), resulting to T
′

switch in the objective. Otherwise, the complete re-

sponses of groups are used to minimize the total execution time of all tasks. Line 9 in the modified

algorithm returns the priority of the task that is the lowest among the tasks in the CP based on the

scheduling table. The priority in Line 10 is used to select tasks out of Gl that should be used to com-

pute the largest response in line 11. Note that the selection includes all tasks from Gl which have

higher priorities than the lowest priority task on the CP, even when a higher priority task is not in the

CP. The reason is that, while such a higher priority task is not on the CP, its presence in the group

contributes to switching overhead incurred by tasks with lower priority on the CP.

1: Table T = createSchedulingTable(Gl, Jj , task time Tij , task deadlines Di, task periods Ti)
2: for all Ii ∈ Gl do

3: Response ri = computeResponse(Ii,T )

4: Flj = 1

5: if r > Di then

6: Flj = 0

7: end if

8: end for

9: Priority p = lowestPriorityTask(CP, T )

10: Select G
′

l ⊆ Gl | ∀ Ii ∈ Gl, priority(Ii)≥ p
11: r = computeLargestResponse(G

′

l,T )

12: T
′

slj
=
⌈

r
period of highest priority task in Gl

⌉

Algorithm 4: Determining context switching cost using RMA with makespan extension

The switching cost is thus given by

T
′

switch =

2n−2
∑

l=0

m
∑

j=0

γlj · Flj · (T
′

slj
· tj + Oj) · gl (3.51)

where gl is 1 if the group Gl contains a task in the critical path, 0 otherwise. In non-makespan mode,

gl equals 1 for all groups.
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Finally, since paths are fixed after each pass, the solution at the end of a pass is used to specify two

further constraints that stipulate resource allocation for tasks and edges in the current longest path so

that these are excluded from optimizations in subsequent passes. The values of parameters ǫij and εij

in constraints (3.52) and (3.53) are thus set according to the solution depending on whether or not

the node and the edge is on the critical path. The value is 1 if the corresponding node or edge has a

fixed allocation for that particular resource. The allocation of processors and networks is annotated in

nodes and edges of the application graph so that the fixed allocation can be used for ILP formulations

during subsequent passes. In non-makespan mode, all of these two type of parameters carry the value

0.

xij ≥ ǫij ∀ Ii ∈ I, Jj ∈ J (3.52)

zki1i2 ≥ εij ∀ C and Ii1 , Ii2 ∈ I | Ii1 ⋖ Ii2 (3.53)

3.2.3.1 Experimental Results

This section presents experimental results aimed at studying the feasibility of ILP-based synthesis

after extending the model to include makespan minimization. The WLAN application from Sec-

tion 3.2.2 is used with same processors and networks, with the same reduced number of instances.

WCDMA and the six other applications cannot be used because their implementations are such that

they are not presentable as DAGs.

Also in this case, two runs with and without realtime scheduling were conducted. The same synthesis

machine was used. Figure 3.11 shows the DAG representing the application graph to assist with

understanding results from various paths.

Hypothetical path lengths were computed based on Tables 3.12, 3.10 and 3.5. The results are given in

the 3rd column of Table 3.16, which shows that p1 is the hypothetically longest one. Each row in the

table shows the length of a particular path in the application DAG when certain paths are optimized.

Even though the makespan was much less without real time scheduling in each run as compared

to optimizing under preemptive scheduling, the resulting architectures could not meet real time re-

quirements for the application. This is because, without deadline guarantees for any of the tasks,

the implementation must be fast enough to complete all processing before the deadline of any task.

However, from Table 3.10, we note that no deadline can be guaranteed. Under preemptive schedul-

ing, all deadlines are guaranteed because of scheduling constraints. If it is desired to just meet the

deadlines and minimize the system area instead, the roles of (3.27) and (3.47) can be swapped during

optimizations.

With p1 as the initial pass, the synthesis terminated with optimum results after one pass in each case.

The minimum makespan is significantly shorter in each case (columns p1) compared to hypothet-

ical lengths in the third column because of processor sharing. This is expected because inter-task

communications are expensive in this parallel program so that optimizing for p1 tends to minimize

inter-processor communications.

To compare results with and without makespan minimization, synthesis runs were conducted in which

all paths were included in the objective (columns “all”). Because path p1 is dominant, the same

results were obtained as with makespan minimization with p1. However, we expect different results

in general, because optimizing for all paths could proceed at the expense of the CP.

Finally, to demonstrate what happens with multiple synthesis passes, two further sets of synthesis runs

were conducted with p0 and p8 as initial paths (rather than the hypothetically longest p1). Starting

with p0, non-realtime synthesis terminated with optimum results after one pass (length of p1 under

p0 = length of p1 under p1 = 159 ns). For the realtime case, the synthesis also terminated after one
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Figure 3.11: WLAN Program Graph

pass, but with suboptimum results (length of p1 under p0 (95294 ns) > length of p1 under p1 (93031

ns) ).

Starting with p8, the first pass ended with suboptimum results, indicating that p1 needs to be optimized

instead. In the second pass, p8 was fixed, and p1 was optimized (column p1∗). For the non-realtime

case, the second pass again ended with optimum results (length of p1 under p1∗ = length of p1 under

p1 = 159 ns). For the other case, p0 became the longest path (94911 ns) after the second pass. Fixing

p8 and p1 while optimizing p0 in the third pass did not improve the results. These results demonstrates

that starting with paths other than the hypothetically longest one can lead to suboptimum results as

suggested earlier.

To conclude this section, Table 3.17 shows problem sizes, run times and gaps for each of the above

synthesis pass.

3.3 Chapter Summary

This chapter introduced an ILP model to enable an automatic synthesis of flexible CMP systems

where emphasis was placed in inclusiveness of problem dimensions and joint optimization of design

subspaces so as to guarantee globally optimum solutions.

Since this model is not pre-constraining, multiple communication resources can be allocated between

any pair of processors as observed in experimental results. Such allocation schemes minimize ex-

pensive inter-task communications. Thus, the generated architecture description includes not only the

netlist, but also information on which communication libraries a task should use to communicate

with any other task. This is different from other proposed synthesis and exploration methodologies

in related work where there are no multiple allocations, and all tasks on a given processor are often

required to share networks a priori.

In all experiments, the message passing paradigm was used. The assumption for the physical imple-

mentation of messaging passing interfaces is that FIFOs are used to queue messages. This means

that, once a task has initiated a data transfer by calling the appropriate function, the task is free to
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do further processing and to initiate or wait for data via another communication resource. Obviously,

communication latencies can be hidden through overlapping. However, this effect is not accounted

for in the objective function because temporal information is not used. Consequently, the actual cost

in total computation time can be smaller than what the value of the objective function after synthesis

would indicate.

Accounting for temporal information is not a feasible prospect because a far greater number of vari-

ables would need to be considered to model and capture all possible moments in which communica-

tions can be initiated. This aspect is not unique for automated synthesis: workbench based method-

ologies require simulations, but these simply represent a specific scenario.

Evaluation results of ILP-based synthesis lead to the following conclusions:

Solver runtime is a challenge. The number of tasks and that of processors in an ILP instance sig-

nificantly influence the runtime. It is thus important that alternative synthesis approaches based

on this ILP model are investigated.

ILP complexity can be reduced without limiting the design space. This can be achieved by re-

ducing the number of processors by comparing traffic pattern and task execution time so that

the number of processors can be potentially reduced. Nevertheless, when problem sizes become

huge as one would expect for future systems, the effectiveness of this technique will be limited.

Useful results can be obtained even when the solver times out. A designer should always exam-

ine gaps between relaxed and integer solutions when an ILP-based synthesis is conducted to

get a measure on the quality of results obtained.

Automated synthesis is absolutely important. The combinatorial nature of the problem can lead to

counter intuitive results. Without an automated approach, even a skilled designer can easily

miss superior design points.

The approach presented herein enables a wide and disciplined coverage of the design space provided

each synthesis run during exploration is fast. Next chapter presents an alternate synthesis method

based on SAT techniques to address runtime problems. The ILP model presented in this chapter is the

foundation for the work in next chapters.
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4 SAT-Based Synthesis

Evaluation results for ILP-based synthesis in the previous chapter showed that solver runtime is very

long for large problem instances. Thus, motivated by recent advances in resolving Boolean Satisfia-

bility (SAT) problems [95, 96, 97], this chapter discusses how well methods used in the SAT domain

can be exploited to solve the synthesis problem.

A SAT problem is a decision problem of determining whether variables of a given boolean formula

can be assigned such that the formula evaluates to logical value true, or whether such an assignment

does not exist. Section 4.1 presents a summary of techniques used in modern SAT solvers.

0-1 ILP problems can be solved using SAT techniques, and even using existing SAT tools, provided

the problems are appropriately translated. Since translation leads to a huge number of literals and

SAT-clauses [98], we opted to search for reportedly good solvers with native support for 0-1 ILP

problems. One such solver is clasp [95] from the domain of Answer Set Programming (ASP) which

is closely related to the SAT domain. This solver is a part of a suite called Potassco for Answer

Set Programming. While clasp is strictly not a SAT solver, it uses standard SAT techniques for ASP

solving. Therefore, the discussion in section 4.1 is equally relevant to clasp.

Following the discussion on modern SAT techniques, section 4.2 briefly introduces ASP and Potassco

tools, and describes how the synthesis problem formulated in the previous chapter is encoded using

ASP semantics. Finally, section 4.4 presents a comparison of synthesis results obtained using ASP

versus results obtained in the foregoing chapter. Concluding remarks in section 4.5 provide a moti-

vation for greedy-like synthesis heuristics which were developed in this research to address runtime

problems for large problem instances.

4.1 Methods for Solving SAT Problems

Given a boolean formula, a SAT solver determines whether there exist as assignment of true/false
values to variables in the formula, for which the formula evaluates to true. The formula is usually

represented in a Conjunctive Normal Form (CNF). In the form, a formula ϕ is represented as a con-

junction of clauses ci, each of which is a disjunction of literals pi. Literals denote either a variable x
or its complement x.

4.1.1 The Resolution Proof System and the DP Algorithm

The unsatisfiability of a formula can be proven through a Resolution Proof System (RPS) introduced

by Robinson in 1965 [99]. RPS is based on the resolution operation. If c1 and c2 are two clauses, the

resolution operation creates a clause c, the resolvent, such that c1 ∧ c2 → c, meaning that if c1 and c2

are satisfied, then c is also satisfied. The resolution operation works as follows:

1. If c1 and c2 have a pair of opposite literals p and ¬p, then c = {c1 ∪ c2}\{p,¬p}, i.e. the

resolvent contains all literals from the two clauses without the opposing pair of literals.

2. If c1 and c2 do not have a pair of opposite literals, then c = {c1 ∪ c2}.
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It is intuitive why c1∧ c2 → c: noting that a clause is satisfied when at least one literal in it has a true
assignment, it is obvious that a satisfiable assignment of c is also a (partial) satisfiable assignment of

c1 and c2.

RPS proceeds by appying the resolution operation to all possible pairs of clauses containing opposing

literals. The resolvents are added by conjuction to the boolean formula if they are not tautologies,

and resolution is applied to the new formula. If an empty clause is derived, then the original formula

is unsatisfiable, because, by definition, an empty clause cannot be satisfied. If the formula is not

satisfiable, then the RPS procedure always terminates. However the procedure does not terminate for

the general SAT problem because satisfiability is not a decidable problem for predicate logic [99].

The Davis Putnam (DP) algorithm that was introduced in 1960 [100], earlier than Robinson’s work,

is based on resolution. The algorithm works as follows:

1. Choose a literal p out of ϕ

2. Find all resolvents of ϕ on p

3. Remove from ϕ all clauses of ϕ that contain the literal p, add the resolvents to ϕ and simplify

4. If ϕ becomes an empty clause, then the original formula is not satisfied, else if no clauses are

left, the original formula is satisfied, else the procedure is repeated on the new formula.

Because in step 3 clauses are removed and new ones are added, the resulting formula in each iteration

is not equivalent to the one before it. Still, satisfiability is preserved because the added resolvents are

satisfied if and only if removed clauses are satisfied.

The major weakness of the DP algorithm results from step 3 because the number of added clauses can

grow exponentially. A refinement of the algorithm was introduced in 1962, and is commonly known

as the Davis-Putnam-Logemann-Loveland (DPLL) algorithm.

4.1.2 The DPLL Algorithm

In contrast to the DP algorithm, the DPLL algorithm searches for truth assignments while performing

propagation of unit clauses and backtracking. Unit clauses are those which contain only a single

unassigned literal, and thus can always be satisfied by assigning an appropriate value to the literal.

During propagation, all clauses that contain the literal are eliminated because they can be satisfied

by the assignment. All clauses that contain the opposing literal are shortened by removing the literal.

As with the DP algorithm, this procedure preserves satisfiability even though the resulting formula is

not equivalent. Similarly, if a formula becomes empty, then the original formula is satisfied, or if an

empty clause is derived, then the original formula is not satisfied.

The backtracking part is performed by assigning a value to a literal, and proceeding with unit propa-

gation. If an empty clause is derived, the literal is assigned the complementary value followed by unit

propagation as follows:

1. Perform unit propagation for all unit clauses.

2. If ϕ is empty, then the formula is satisfied, else

3. If an empty clause is derived, then the formula is not satisfied, else

i.) Select a literal p out of ϕ

ii.) Go back to step 1 with p = 1, if not satisfied

iii.) Go back to step 1 with p = 0
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Modern efficient SAT solvers are based on the DPLL algorithm. Significant improvements have been

achieved through a technique called clause learning, and through efficient unit propagation. These

two improvements are the base of state of the art solvers, including the ASP solver clasp.

4.1.2.1 Clause Learning

Clause learning is a technique that improves the DPLL algorithm by analyzing reasons leading to a

conflict, and exploiting the knowledge learned. A conflict occurs in the DPLL algorithm when a vari-

able needs to be assigned opposing truth values during unit propagation. Conflicts can be illustrated

through a decision graph. Figure 4.1 is a decision graph for an example formula

ϕ = (p1 ∨ p2) ∧ (¬p1 ∨ ¬p3 ∨ p4) ∧ (p2 ∨ ¬p3) ∧ (¬p2 ∨ ¬p3 ∨ ¬p4)

Figure 4.1: A decision graph for the DPLL algorithm

A node in the decision graph represents the assignment of a truth value to a literal in an iteration of

the DPLL algorithm, and is thus a decision point. A literal that is assigned a value in this manner is

called a decision literal. The truth value assigned to a decision literal is indicated on the edges, so that

an edge represents a path from one iteration to another in the algorithm. Unit propagation is indicated

by brackets next to decision literals. If the assignment of a value to a decision variable followed by

unit propagation leads to the implication that a certain literal must be assigned a particular truth value

to satisfy a given clause, then that assignment is indicated in the brackets. For example, assigning the

value false to the decision literal p1 implies the assignment true to the literal p2 in order to satisfy the

first clause in ϕ. Literals which are assigned values following unit propagations are called implied

literals.

Unit propagations can lead to conflicts in the assignment of implied literals. For instance, assigning

the value true to literals p1 and p2 do not lead to implied assignments. This partial assignment satisfies

the first and the third clause. However, further assigning the value true to p3 implies the values true

and false for p4 in order to satisfy the second and the fourth clause respectively. Such a conflict is

indicated by X in the figure, and the cause is called a conflict literal. Thus the DPLL algorithm will

have to backtrack to the last decision point, and assign the opposite value to the decision literal. A

tick in the figure indicates a complete satisfying assignment. The dotted line marks a path that the

algorithm could take in a run. Contrary to this illustration, a decision graph usually indicates the

actual path that the algorithm has taken.

The decision graph reflects the iterative nature of the DPLL algorithm, and thus contains the infor-

mation on assignment decisions made. However, information on partial assignments that lead to a

particular conflict is not readily available, therefore, a complimentary data structure called an im-

plication graph is used for that purpose. Figure 4.2 shows the implication graph for the foregoing

example.

A node in an implication graph represents an assignment decision for the corresponding literal. Each

decision is associated with a level which is indicated in a bracket next to the literal. Edges between

nodes signify assignment implications due to unit propagation. In the example, the implication graph

is constructed as follows: p1 and p2 are assigned in the first two decision levels, so corresponding
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Figure 4.2: Implication graph for the foregoing example

nodes are created. p3 is then assigned in level three. To satisfy the second clause, p4 is assigned true

in level three. This assignment is implied by decision for p1 in level 1, and p3 in level three, therefore,

edges are created to the node for p4. Similarly, edges are created to the node for ¬p4.

The procedure for determining a partial assignment for a conflict based on an implication graph

proceeds by partitioning the graph in two [101]. The partition has all decision literals on one side,

called the decision side, and the conflict literal on the other, called the conflict side. All vertices on

the decision side that have at least one edge crossing over to the conflict side constitute a partial

assignment leading to the conflict, whose disjunction is called the conflict clause. This process is

known as conflict analysis, and adding clauses to the formula is called learning [101].

Satisfying a conflict clause has the effect of preventing the conflict assignment from occurring, thus

effectively pruning the search space. This is equivalent to backtracking more than one level in the

decision graph in contrast to the original DPLL algorithm, therefore, the technique is called non-

chronological backtracking [101].

4.1.2.2 Fast Unit Propagation

Significant improvements can be achieved by employing efficient mechanisms for unit clause prop-

agation because the operation is used extensively in DPLL-based SAT solvers [102]. An efficient

mechanism was first introduced for the SATO [102] solver.

A key aspect to the mechanism is a data structure that reduces the work that needs to be performed

during unit clause propagation. During propagation, when a variable is assigned a value, there is a

need to determine whether a clause that contains a literal of the variable becomes satisfied, unsatisfied,

or unit. Consequently, data structures are implemented such that there are references from variables

to clauses containing their literals. With a large number of variables and clauses, traversing such

references is an expensive operation. The method introduced with the SATO solver speeds up this

operation by keeping a reduced number of references.

The reduction makes use of the fact that not all clauses which contain a literal of a variable require

updating when the variable is assigned a value. To conclude whether a clause has become satisfied,

unsatisfied, or unit, one only needs to examine the last unassigned literal. Thus, in order to efficiently

determine the assignment of the last literal, SATO maintains two references to clauses, called the head

and the tail, which initially point to the first and last literal in the clause so that a clause is referenced

to from two variables only. The order of literals in clauses is arbitrary.

Whenever a variable that references to the head or tail is assigned a false value, the head/tail is moved

in the list in search of the next unassigned literal. In case an unassigned literal is reached, then a new

reference is created from its corresponding variable to the literal, and the new reference becomes the
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head/tail. If a satisfied literal is found, then the clause becomes satisfied. If the head/tail reaches the

other reference, then they point to the only unassigned literal so that the clause becomes unit. The

advantage of this data structure is that the status of a clause is updated only when the head/tail is

assigned a false value, eliminating unnecessary updates when other literals in it are updated.

SATO maintains a sense of order between the two references: all literals before the head and all

literals after the tail must be assigned the value false. During a search, one only needs to move the

two references towards each other. When the search process backtracks, the previous head and tail

references needs to be restored, implying additional work in the process. The data structure used in the

Chaff solver [103] trades efficiency in searching for unassigned clauses for backtracking efficiency.

That is achieved by eliminating the sense of order between the two references. As a consequence, all

literals needs to be traversed in search of the next unassigned literal. However, since no order needs

to be preserved during backtracking, the two references can remain intact in the process.

4.2 Answer Set Programming and the Potassco Suite

Answer Set Programming (ASP) is form of declarative logic programming oriented towards difficult

search problems. ASP is different from procedural programming in that a problem is described using

a formal language, and a solver finds a solution. A problem is presented as a logic program which

consists of a set of atoms and rules [104].

An atom is a Boolean proposition about the problem universe, whereas rules specify relationships

between the atoms. A solution to a program is called a stable model and tells which atoms are true

[104]. This is similar to SAT problems if rules and stable models are perceived to be clauses and

satisfying assignments respectively.

Besides atoms and rules, logic programming languages contain two further elements: constants and

variables. The former are either numeric or symbols, whereas the latter are strings used for general-

ization. When writing a logic program, variables are not assigned values, but rather, the solver finds

values for them. Atoms consist of symbols followed by a parenthesized list of constants or variables:

for instance, in processor(risc, ppc), risc and ppc are constants, and the atom processor might tell

us if ppc is a risc architecture provided we have specified rules from which the solver can derive

the truth value of the atom. Rules consist of a head and tail separated by the connective “:-” which

corresponds to a reversed implication “←′′, i.e., the atom in the head is derived (to be true) if all

comma-separated atoms in the tail are derived.

ASP problems are typically solved by first removing variables from programs through substitutions,

and then passing the resulting equivalent variable-free program to the solver. The former part is called

grounding, and is either done using a separate tool or in an integrated grounder-solver. Grounding is

required because current ASP solvers work on variable-free programs only.

Potassco, the Potsdam Answer Set Solving Collection, is a suite of tools developed at the University

of Potsdam which consists of the solver clasp, a grounder Gringo, a combination of clasp and Gringo

called Clingo, and an incremental version of Clingo called iClingo [105]. The solver clasp uses,

among others, conflict-driven learning and unit propagation. We opted to use this tool to study how

well SAT-based techniques can be exploited for this synthesis problem because benchmark results

have shown that learning solvers do perform well at least for structured problems [106], as is the case

with synthesis problems at hand. The next section discusses how the automated synthesis problem as

modeled in Chapter 3 is specified using the language supported by Gringo.
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4.3 Encoding the Synthesis Problem as ASP Programs

The language natively supported by Gringo can express linear constraints for 0-1 ILP problems.

Linear inequalities are coded into rules whose general form is

b [ v0 = a0, v1 = a1, · · · , vn = an ] c. (4.1)

where the syntax vi = ai, ai ∈ N denotes the weight ai of a variable vi in a linear (in)equality, and

the syntax b [· · · ] c, b, c ∈ N is a general form for constraining such that a coded constraint represents

an equality if b = c, a less-than inequality if b is not specified (is absent), and a greater than inequality

if c is not specified [105]. Since weights in the ILP model are generally out of R whereas ai, b, c ∈ N,

rounding is required. We therefore round ai and b up, and c is rounded down. Consequently, more

restrictive constraints result which can theoretically exclude a solution that otherwise does not violate

constraints of the original problem instance.

The rest of this section uses the same notation for variables and parameters as in Chapter 3.

4.3.1 Task Mapping

Task mapping constraint (3.1) is coded for each Ii as

1 [ xi0 = 1, xi1 = 1, · · · , xim = 1 ] 1. (4.2)

This is is a “constrained choice rule” which says: choose at least one, but at most one, of the atoms

xi0, xi0, · · · , xim, so that each task is be mapped to one processor only.

4.3.2 Processor Sharing

The processor sharing constraint (3.3) is coded by setting the upper bound c to the size of the program

memory sj

[ x0j = s0j , x1j = s1j , · · · , xnj = snj ] sj . (4.3)

The sizes sij of the tasks in program memories of processors are rounded up, whereas the sizes sj

are rounded down. The omission b in (4.3) reflects the fact that we do not wish to specify a lower

bound so that a processor Jj may remain unallocated. This rule insures that mappings do not exceed

the capacity of any processor.

4.3.3 Processor Area Constraints

The area constraint for processors on the FPGA is specified by three constraints. The first (3.10)

which insures that a variable vj for a virtual processor is greater than one when at least one task is

mapped on a processor Jj is coded as

[ x0j = 1, x1j = 1, · · · , xnj = 1, vj = −(n + 1) ] 0. (4.4)

The second constraint (3.11) which forces vj to zero when Jj is not allocated is coded as

[ x0j = −1, x1j = −1, · · · , xnj = −1, vj = 1 ] 0. (4.5)

The last constraint (3.12) involves non-integral processor area (coefficients aj) and FPGA area for

processing elements APE . These are rounded up and down respectively in the following coding

[ v0 = a0, v1 = a1, · · · , vm = am ] APE . (4.6)
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4.3.4 Network Usage Constraints

A number of linear constraints were introduced in Section 3.2.1.4 in order to decompose constraint

(3.13) into a series of simpler linear constraints. The purpose of the constraint is to insure that if two

communicating tasks are mapped on different processors, then a network resource is allocated for the

two tasks.

The introduction of the auxiliary variable αi1i2j1j2 was the first step in the decomposition process.

We therefore wish to encode resulting constraints in ASP semantics. But since (3.14) is already a

conjunction of variables xi,j , we can encode (3.14) directly as a rule so that (3.15) and (3.16) can be

dropped to reduce the number of constraints:

αi1i2j1j2 ← xi1j1 , xi2j2 . (4.7)

The next constraint (3.18) in the decomposition process is coded as

0 [ λi1i2 = −1, αi1i2j0j1 = 1, αi1i2j0j2 = 1, · · · , αi1i2jmjm−2
= 1, αi1i2jmjm−1

= 1 ] 0. (4.8)

so that λi1i2 is derived when two corresponding communicating tasks are mapped on different pro-

cessors. Similarly, constraints (3.22), (3.23) and (3.24) are coded as

0 [ λi1i2 = −1, zki1i2 = 1, zki1i3 = 1, . . . , zkinin−2
= 1, zkinin−1

= 1 ] 0. (4.9)

[ yk = −1, zki1i2 = 1 ] 0. (4.10)

[ αi1i2j1j2 = −1, zki1i2 = 1 ] Vj1j2k. (4.11)

4.3.5 Network Capacity and Area Constraints

Constraints for network capacity (3.25) and FPGA area for the communication infrastructure (3.26)

are coded as

[ yk = 1, z0i1i2 = 1, z1i1i2 = 1, · · · , zki1i2 = 1 ] Mk. (4.12)

[ y0 = A0, y1 = A1, · · · , yk = Ak ] Anet. (4.13)

The parameters Mk are integers and require no further consideration. However, as in previous subsec-

tions, the coefficients Ak and the parameter Anet are rounded up and down respectively so that (4.13)

is more constraining compared to (3.26).

The auxiliary variable βki1i2j1j2 that captures latencies through network bridges is essentially a con-

junction of variables αi1i2j1j2 and zki1i2 so that (3.28) and (3.29) can be coded using one rule

βki1i2j1j2 ← αi1i2j1j2 , zki1i2 . (4.14)

4.3.6 Scheduling Constraints

The scheduling feasibility constraint for a group of tasks on a particular processor (3.36) is coded as

[Mlj = 1 ] Flj (4.15)

The link between the auxiliary variableMlj for a group of tasks and mapping decision variables xij

(3.37) is already a conjunction of variables so that the constraint can be specified directly as a rule

Mlj ← xil0j , xil1j , · · · , xilgj (4.16)
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thereby dropping (3.39) and (3.40) to reduce the problem size. However, (4.16) represents a logical

implication, whereas (3.37) is a logical equality. Without further measures, a stable model can poten-

tially haveMlj as true when one or several of the atoms xilgj are false. We therefore additionally add

the rule

←Mlj , 1[ not xil0j , not xil1j , · · · , not xilgj ]. (4.17)

as an integrity constraint [105] such thatMlj is not derived if any of associated atoms is not derived.

Constraints (3.42) and (3.43) which together set the value of the auxiliary variable γlj such that

scheduling cost is captured for the largest group on a processor only cannot be directly translated to

equivalent ASP facts since rounding up the weights 1/|I| to meet integrality requirement destroys

the property of the two constraints. However, a closer look reveals that the two constraints essentially

stand for logical conjunctions which can be represented by the rule

γlj ←Mlj , notMls0j , notMls1j , · · · (4.18)

whereMlsi
j is the ith super set of a group Gl. The implication is that γlj is derived when the corre-

sponding groupMlj is derived, but none of the atoms for associated super groups are derived.

4.3.7 Makespan

For makespan mode, we need to specify rules which govern whether or not a node or an edge in the

application graph is on the critical path. This is done in the objective function in the following sub-

section. Additionally, we need to specify if a node or an edge is fixed in any given pass of Algorithm

3, therefore, the following two rules are added based on (3.52) and (3.53) respectively:

ǫlj [ xij = 1 ]. (4.19)

εij [ zki1i2 = 1 ]. (4.20)

Here, the less expensive model (3.48) is used so that (3.49) remains unspecified.

4.3.8 Objective Function

The objective function (3.47) is coded using an optimization statement by way of the “minimize[ ] ”

syntax [105]:

minimize [ · · · , γlj = (T
′

slj
·tj +Oj), · · · , xij = Tij , · · · , zki1i2 = (LkDi1i2 +τkpkBi1,i2) ]. (4.21)

The weights Tij for task execution times are set to zero when optimizing in makespan mode if the

corresponding task is not on a critical path. Similarly, weights for the sum of scheduling T
′

slj
· tj and

OS overhead Oj are set to zero when the corresponding group contains no critical task. Finally, as

discussed in Section 3.2.3, only the communication latency LkDi1i2 is zero when the corresponding

edge is not on critical path, whereas its contribution τkpkBi1,i2 to network arbitration overhead is

always captured independent of the synthesis mode.

The weights in (4.21) cannot be simply rounded up as was the case for constraints because doing so

disrupts the cost structure of a problem unless small time units are used. Using such units can result

into huge numbers which can easily overflow the computation of the value of the objective function.

Ignoring the contribution of small weights before rounding can avoid severe disruptions of the cost

structure. A problem with this approach is that leaving large weights only in (4.21) most likely will

lead to bad problem formulations. For instance, if a problem instance has a very slow network result-

ing into a weight with a large magnitude, then ignoring much smaller weights for execution times on
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processors is meaningless because we can easily have a case where that slow network is not allocated

at all. That would lead to poor architectures because task mappings would be insensitive to execution

costs.

A better approach would be to eliminate large weights instead under the assumption that those will

not appear in the optimum solution anyway, effectively allowing us to prune the design space before

resolution. However, that requires us to prove before hand that eliminating a weight will not constrain

the design space. It is currently not clear how that could be done generally in presence of various

mapping constraints.

Therefore, the weights are converted into processor cycles so that (4.21) matches (3.47) as close as

possible. In order to avoid large numbers, these weights are expressed in terms of cycles that would

have been spent on the slowest processor, normalized by the number of cycles on the same processor

that would have been consumed for the smallest weight in the objective.

Even with this measure, overflows can still occur if the problem has a sufficiently large number of

variables. Unfortunately, one cannot determine at formulation time with absolute certainty if over-

flows can occur because it is not known a priori if a particular truth-value assignment that is known

to overflow will actually be encountered during resolution. This is a major limitation of this method.

4.4 Comparison of Synthesis Results

The same design flow of Figure 3.1 was used to study the effectiveness of this SAT-based synthesis

after extending the implemented tool (problem formulator in Figure 3.1) to support Clingo and its

language. This section compares synthesis results obtained, against those in Chapter 3, starting with

the six non-realtime applications, followed by preemptive scheduling for WLAN and WCDMA, and

finally makespan optimizations for WLAN.

Whereas good solver settings for lp solve were obtained and used through try and error in chapter

3 (node auto-ordering, most feasible basis crash, automatic branch & bound branching, and pre-

solving of rows and columns), no options were specified for ASP/Clingo. Still, we determined that

splitting the objective into its three constituent parts for execution, communication and scheduling

cost significantly speeds up clasp runtime by up to two orders of magnitude. This circumstance was

exploited subsequently since the speed up was not accompanied by any penalty in quality of the

solution. Splitting the objective function is a feature in the language supported by Clingo that was

conceived to avoid possible overflows when computing the value of the objective function because of

integrality constraint for weights [105].

4.4.1 Non-Realtime Applications

As in Chapter 3, we started with 4 tasks and 2 networks, and then progressively increased the number

of processors from 2 to 16. Then the number of processors was fixed at 16, and that of networks was

progressively increased to 5. Finally, the number of tasks was increased to 22. The parameters of used

processors and networks were the same as given in Tables 3.4 and 3.5 respectively. Also in this case,

the synthesis machine had a 1.66GHz T5500 processor and 2048M of memory.

Figure 4.3(a) gives the comparison of ASP-based synthesis versus ILP for the six applications when

the number of processors is increased. For small number of processors, ILP outperforms ASP-based

synthesis. However, considering that those are rather simple problems, the difference is really in-

significant. As problems become more complex, the runtime for ASP-based synthesis does not grow

exponentially, thereby outperforming ILP. This evidence that the ASP-based synthesis is better is

further cemented in other parts of this section.

Figure 4.4(a) shows what happens when the number of network is increased. While both methods
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(a) FIR

(b) Derivation

(c) Simpsons

Figure 4.3: Continued on next page
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(a) Jacobi

(b) N-Body

(c) Inversion

Figure 4.3: ASP-ILP Comparison : Increasing the number of processors
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have nearly a constant runtime, ASP-based synthesis was up to 8 times faster with only one exception

where the runtime between the two was comparable.

Increasing the number of tasks on the other hand disproportionately increases the problem size,

thereby posing a challenge for both approaches. Figure 4.5(a) depicts the result. As in Chapter 3, a

timeout value of 28800 seconds was used. All columns which terminate at that boundary in the figure

indicate that a suboptimum solution was found. Columns which exceed the boundary, i.e. those which

touch the 100,000 seconds line, indicate that no solution was found by timeout. Otherwise, optimum

solutions were obtained. As before, the Jacobi application is missing because its MPI implementation

is not scalable with the number of tasks.

The figure shows that ASP-based synthesis outperforms ILP for 4 ≤ N ≤ 12. Beyond that region,

ILP-based synthesis is either faster, or at least finds a suboptimum result by timeout. A closer look

however showed that when ASP-based synthesis performs badly, then most of the time is spent read-

ing ASP programs. In fact, in all cases where Clingo timed out, clasp did not get any chance to execute

at all.

The reason was that, when reading large ASP programs generated for higher number of tasks, the

system was running out of memory resulting to heavy thrashing to the extent that the machine became

unresponsive. It was thus not possible to conclude in these cases whether core SAT-based methods

(i.e. conflict-driven learning, unit propagation, etc) were actually effective.

Because scheduling analysis carries the largest share of responsibility for problem size explosion, it is

likely that integrating this step in the solver would reduce memory requirements, probably exposing

that SAT-methods are indeed very effective given the evidence elsewhere in this section. Without such

an integration, N > 14 appears to mark the limit where problems become impractical to solve. This

is the reason as to why it is vital to consider application-specific heuristic which do not require a full

schedulability analysis, a topic which is discussed in detail in Chapter 5.

4.4.2 Realtime Preemptive Scheduling

This subsection gives a comparison of synthesis results obtained for ASP and ILP-based synthe-

sis flow. As in section 3.2.2, the applications used are the signal processing chains for WLAN and

WCDMA for the same processors and networks as detailed in Tables 3.4 and 3.5.

As in Section 3.2.2.6, we additionally compare the synthesis run time with and without fixed-priority

preemptive scheduling using configurations with a basic cyclic executive and with a preemptive ker-

nel. Table 4.1 summarizes the comparison.

The columns “# Cons.” show the number of constraints and the number of inference rules for ILP

and ASP modes respectively. Similarly, the columns “# Var.” show the number of decision variables

and atoms for the two modes. These numbers give a measure for the complexity of the problem

instances. The number of variables for ILP mode was much less than the number of atoms for ASP

mode because lp solve has a pre-solve option that can reduce the size of the problem by eliminating

redundant constraints1. This option was exploited because pre-solving tends to reduce the solver time.

The columns “Form.” and “Solver” show synthesis runtime spent formulating and solving the problem

respectively. Formulator time is rather large where a large percent of the time is spent reading text

files generated from MPI simulations2. The sizes of these files in these experiments were 4.8GB and

6.4GB for WCDMA and WLAN respectively. They contain, among others, time stamps for each data

packet transmitted between tasks. This large time is not a limitation for automated exploration: much

faster time can be achieved by using compressed binary files and/or usage of cache files to store

1This comparison was omitted in the previous subsection due to the large number synthesis scenarios. The general trend

was the same.
2The formulator time was excluded in the comparison in the previous subsection. These are given here for a more

complete picture.
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(a) FIR

(b) Derivation

(c) Simpsons

Figure 4.4: Continued on next page
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(a) Jacobi

(b) N-Body

(c) Inversion

Figure 4.4: ASP-ILP Comparison : Increasing the number of networks
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(a) FIR

(b) Derivation

(c) Simpsons

Figure 4.5: Continued on next page
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(a) N-Body

(b) Inversion

Figure 4.5: ASP-ILP Comparison : Increasing the number of tasks
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frequently used information only. The latter technique is typically used in synthesis tools to avoid

expensive redundant computations or analysis.

As is evident from the table, the solver times for ASP-based synthesis are dramatically shorter by up

to three order of magnitude, again cementing the evidence that core SAT-techniques are effective for

this synthesis problem. Note that, as before, the value 28811 for WCDMA under cyclic scheduling

indicates a timeout.

The columns “Obj.” show the value of the objective function after optimizations. Comparing the

value of the objectives for the two modes, the differences before rounding are insignificant with the

exception of the timeout case where ASP mode found a better solution. The impact of more restrictive

constraints for ASP-based synthesis due to rounding as previously discussed was not apparent in

these experiments. While these particular results are suggestive, experiments with a much larger set

of parallel programs are still required to characterize the potential impact, particularly when the issue

around the thrashing problem has been resolved.

Figure 4.6 shows synthesized architectures under the two modes for preemptive scheduling. These

architectures are very similar for WLAN, and the same architecture was obtained for WCDMA. This

result emphasizes the potential for ASP-based synthesis, since the quality of results was not traded

against solver runtime. The difference between these figures and those in Figure 3.10 is that the former

are for the case of reduced number of processors in order to take advantage of a pruned design space

as discussed in Section 3.2.2.6.

4.4.3 Makespan Optimization

Finally, Table 4.2 summarizes the comparison of the two synthesis approaches for makespan op-

timizations. The comparison is for the case of reduced number of processors to take advantage of

design space pruning as previously discussed.

Also in this case, ASP-based synthesis was much faster by up to three order of magnitude. As dis-

cussed in Section 3.2.3, the limitation for heuristics for the longest path problem is a pitfall: since

the computation of the longest path could go wrong, makespan optimizations can proceed under false

assumptions concerning what is the critical path.

Only a slight deviation in the computation of the critical paths was obtained for the two approaches

under cyclic scheduling as shown in the table. Under preemptive scheduling, the final critical path was

the same in both cases. Therefore, the comparison in the table is conclusive in favor of ASP-based

synthesis.

Table 4.1: ASP-ILP Comparison under Scheduling (Non-shaded rows for ILP, Shaded rows for ASP)

Cyclic Preemptive

Problem size Run time (sec) Obj. Problem size Run time (sec) Obj.

Appl. # Cons. # Var. Form. Solver (sec) # Cons. # Var. Form. Solver (sec)

WLAN 7089 3638 497 636 0.0001 5901 2538 552 1010 0.10

WCDMA 32261 13320 701 28811 18.25 25394 12792 704 19567 16.90

WLAN 7033 207412 1467 2.421 0.0002 7033 207412 1477 16.797 0.08

WCDMA 25631 21806 977 6.781 16.898 25631 21806 1125 10.219 16.90
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(a) WLAN ILP

(b) WLAN ASP

(c) WCDMA ILP & ASP

Figure 4.6: Synthesized architectures under preemptive scheduling ( dashed lines links, full lines

buses)

Table 4.2: ASP-ILP comparison for makespan optimizations (non-shaded row for ILP, shaded row for

ASP)

Cyclic Preemptive

Final CP Run time (sec) Obj. Problem size Run time (sec) Obj.

form. solver (sec) form. solver (sec)

I0 I7 I6 I5 I4 I2 I1 I3 2360 808.688 32.9932 I0 I7 I6 I5 I4 I1 I3 7093 5020.72 32.9932

I0 I7 I6 I5 I4 I1 I3 2385 4.656 33.0501 I0 I7 I6 I5 I4 I1 I3 2493 7.296 32.9932

4.5 Chapter Summary

This chapter presented a synthesis approach based on Answer Set Programming with the intent of

studying how well techniques from the SAT domain can be used to solve large problem instances.

Evaluation results have shown a great potential for this approach, with a demonstrated speed up of up

to three orders of magnitude.

There are two open areas that need to be addressed before this method can be adopted for large

problem instances:

Memory requirements is a challenge. The need for a full schedulability analysis leads to huge tex-

tual ASP programs with the consequence that it becomes impractical to solve very large in-

stances because of system memory limitations. This is not a problem with the solver itself

because in all instances where synthesis timed out, the solver did not get a chance to execute

at all. It is likely that a method that integrates schedulability analysis in the engine will lead to

significant improvements.
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Integrality constraints is a problem. The need to meet this constraint means that weights in the

objective function can have rather large magnitudes. That, coupled with a sufficiently large

number of variables, can overflow the computation of the value of the objective value during

resolutions, possibly leading to suboptimum architectures.

These open areas should be addressed in future work. The following chapter presents a synthesis

method based on application-specific heuristics which do not rely on a full schedulability analysis.

The intent is still the same: to find fast way of conducting explorations in presence of very large

problem instances.
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5 Greedy-Like Heuristics

Experimental results from Chapter 4 provide the evidence that ASP-based synthesis is superior to

ILP-based synthesis in terms of runtime without penalties in quality of results. Nevertheless, we face

two limitations:

• When the number of tasks N exceeds 14, ASP-based synthesis too takes too long to finish. The

fundamental challenge in both cases is the explosion of the number of variables and constraints

(atom and rules for ASP-mode) which is accentuated by the need to pre-compute feasible sched-

ules for all possible combinations of task mappings. One possible solution is the integration of

problem formulation and resolution as mentioned in Section 3.2.2.4, an approach that requires

the development of suitable synthesis algorithms.

• There is an uncertainty as to whether overflows can occur when problem instances contain a

certain unknown number of decision variables or atoms due to integrality constraints. While

overflows can be detected after synthesis by post computing the value of the objective based

on the stable model, it is hard to tell if the solver missed better architectures because of false

impressions that certain assignments are low cost.

Therefore, given the need for fast resolutions for large problem instances in order to facilitate explo-

rations, this chapter presents three heuristics and contrasts their runtime and quality of results against

ILP-based synthesis. These heuristics allow fast synthesis even for very large problems thereby lifting

the first limitation mentioned above. The second limitation remains however for the general synthesis

case because heuristics do not necessarily lead to optimum results.

These three heuristics attempt to exploit certain characteristics of the automated synthesis problem

which are discussed in subsequent subsections. All three however are rooted to a common idea stem-

ming from experimental results on makespan optimizations in Chapter 3.2.3.

Table 3.16 showed that the value of the objective function after hypothetical allocation of resources is

very high even though each node and each edge in the application graph is mapped to the best possible

resource for it from the IP library. Further reductions in this value are only possible by minimizing

inter-task communication cost through processor sharing. This is not a surprising result because we

know that wire delays do not scale down as fast as gate delays so that, in general, inter-task communi-

cation costs are dominant. The implication is that, starting with an hypothetical assignment, we cannot

further improve task execution and scheduling cost. Further improvements in the overall solution, if

any, can only be achieved by eliminating inter-task communication over network resources, implying

that a suitable algorithm can arrive at a globally optimum solution beginning with an hypothetical

solution by making correct processor sharing decisions. The ideas presented in this chapter attempt

to exploit this characteristic of the synthesis problem.

The proposal that a globally optimum solution can be found by making correct sharing decisions sug-

gests that if we can find a way to make a correct decision at each step, then we probably can efficiently

solve the synthesis problem using a linear-time greedy algorithm. It is therefore both interesting and

important to examine in detail if the synthesis problem does exhibit greedy properties. This is the

subject of Section 5.1. Conclusions from the section are used to derive three different heuristics in
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Sections 5.2, 5.3 and 5.4. Section 5.5 finally compares synthesis results obtained using the three al-

gorithms in terms of runtime and quality of results, where ILP-based results from chapter 3 are taken

as a baseline.

Throughout this chapter, the term “allocation” means that a processor or a network resource is selected

to be used for task execution or data transfer, similar to its classical usage in digital circuits synthesis

[107]. The term “assignment” signifies that a mapping decision is made, for instance, to map a task

on a certain processor. The two processes are equivalent, the distinction is sorely made to emphasize

that a decision is being made from the perspective of the IP library and from the perspective of the

application graph respectively. The notion of “edge elimination” refers to deassigning an edge, and

assigning the two corresponding tasks to the same processor. The term “deallocation” is exclusively

used to mean that a particular resource is completely removed from the solution set.

5.1 Substructure of the Synthesis Problem

Greedy algorithms solve optimization problems by making best decisions at any given resolution

step based on information available at that step, effectively selecting locally optimum choices. Such

algorithms are fast because they do not need to backtrack. They may find globally optimum solutions,

very good suboptimal solutions, or very bad solutions. Problems which can be well solved are those

which have two properties: optimal substructure, and greedy choice property[2].

A problem has optimal substructure if the problem consists of subproblems such that an optimum

solution to the problem contains optimal solutions to the subproblems. A solution to such problems

consists of making choices. When a choice is made, one or more subproblems remain for which

choices needs to be made. The greedy choice property is exhibited when at each decision step the best

choice can be selected without considering results from subproblems such that a globally optimum

solution results[2].

Our synthesis problem at hand is solved by making mapping and allocation decisions. Each choice

affect either the total execution time
∑

Tij , the switching overhead Tswitch or the communication

overhead Tnet according to (3.47). If a decision is made to allocate a certain processor, then resulting

subproblems are

1. Which group of tasks should be mapped to that processor,

2. How the tasks should be scheduled, and

3. Which communication resources should be used for exchanging data between tasks on that

processor and others on different processors.

However, in order to fulfill the first greedy requirement, if at any step a processor Jj is allocated, then

a) Jj must be a constituent component of the optimum architecture,

b) A group Gl mapped to Jj must have the lowest contribution to the sum
∑

tij and to Tswitch

compared to any other group that can be mapped to that processor, and

c) The group Gl must result to the lowest contribution to Tnet in the overall solution due to edges

incident on its tasks.

If we were to modify the formulation of the synthesis problem in Chapter 3 to allow the presence

of an empty group, and to allow multiple mappings for that empty group, then we could guarantee

these three conditions as long as we compute both the sum
∑

Tij , Tswitch and Tnet before committing

a mapping decision: i.e. allocate all processors, map empty groups to them, sort tasks according to
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normalized execution times, decide where to map each task, allocate the best available communication

resource for it if required, and finally remove processors with empty groups only.

Unfortunately, subproblems in this synthesis problem are generally not independent because of con-

straints. Optimum substructure requires subproblems to be independent in the sense that decisions

made for any subproblem cannot affect decisions made in any other subproblem [2]. When a map-

ping decision is committed at any given step, resources are occupied. Generally, the occupation affects

decisions for other subproblems, because constraints which needs to be observed now dictates that

certain choices cannot be made because of previous choices. Consequently, while a criteria for mak-

ing best decisions exists, the non-optimum substructure limits its effectiveness. The implication is that

we cannot design a greedy algorithm for the general problem, and by extension, not even a dynamic

programming algorithm.

Therefore, going back to the original problem at the beginning of this chapter, the interesting question

is how we can make edge elimination decisions such that we can at least reach a good solution starting

from a hypothetical assignment.

It would be interesting at this juncture to examine how well general-purpose optimization methods

such as evolutionary (e.g. genetic) and local search algorithms (e.g. simulated annealing, tabu search)

can be employed for synthesis. However, selecting any of such algorithms is only meaningful if the

structure of the problem is evaluated in the context of the algorithms, and if experiments with a large

number of problem instances are conducted [108]. This is an important activity which is here deferred

for future work.

Special-purpose algorithms offer another alternative for searching the design space. Such algorithms

are specifically designed to exploit the structure of a problem at hand. In the context of the synthe-

sis problem from hypothetical assignment, the question is how edges should be eliminated given the

knowledge that making such decisions effectively constrain the design space for dependent subprob-

lems. The rest of this chapter addresses this question.

5.1.1 Instances Without Resource Constraints

When a problem instance has resources with adequate capacity and there is a feasible schedule for all

groups on any processor, then we have a special case where the problem exhibits optimum substruc-

ture. We begin by defining the notions of resources and adequate capacities as used in the context of

this chapter.

Definition 1. A resource in the synthesis problem is either a physical FPGA, or a processor Jj ∈ J
or a “communication resource” Ck ∈ C.

Definition 2. A resource has “adequate capacity” if it is used in an optimum solution, and if the

usage either does not exhaust its capacity, or if the resource is fully utilized, then the solution would

be the same if the resource had a larger capacity.

In such scenarios, best decisions can be made at each step, meaning that a greedy algorithm exists.

Since many problem instances fall under this category, this section provides the proof for greedy

characteristics of this special case as a prerequisite for further discussions in this chapter.

For some optimization problems, matroids can be used to determine when greedy algorithms yield

optimum solutions [2]. Matroids are combinatorial structures which are defined as follows: a matroid

M = (S, L) is an ordered pair such that

1. S is a finite nonempty set.

2. L is a nonempty set of subsets of S such that if B ∈ L and A ⊆ B, then A ∈ L. The set L is

known as independent subsets of S, whereas the condition is known as hereditary.
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3. M satisfies the exchange property, meaning that if A ∈ L, B ∈ L, and |A| < |B|, then there is

an element χ ∈ B − A such that A ∪ {χ} ∈ L. This means that when χ which is in B but not

in A is added to A, then the result is an independent set. In that case, we say that A has been

extended by χ.

The independent subset is defined such that a specific property over S is valid. A subset A ∈ L is

called maximal if it has no extensions. The implication is that if an χ ∈ S is added to A, then the

subset becomes dependent, meaning that the subset loses that specifically defined property.

If there is a function w that assigns a positive weight w(χ) for each χ ∈ S, then M is known as a

weighted matroid (in analog to a weighted graph). Some optimization problems can be formulated as a

problem of finding a maximum-weight independent subset in a weighted matroid. For such problems,

greedy algorithms lead to optimum solutions [2]. It can be shown that matroids exhibits greedy-choice

and optimal substructure properties [2]. Conversely, if we can show that a problem can be defined as

a matroid, then we have a proof for these two properties for that problem. This is what we do next.

Using the notation from Chapter 3, we note that a solution to the synthesis problem is fully charac-

terized by decision variables xi,j and zki1i2 . Let SG be a set containing these decision variables, and

LG be the independent subset such that A ∈ LG is a valid full or partial solution. A valid A ∈ LG

represents a full solution to a problem instance if the mapping for every task and for every edge in the

application graph G is covered by a decision variable in the subset. Otherwise, A represent a partial

solution. The term “valid” signifies the following:

i A decision variable xi,j or zki1i2 is an element of A if and only if its value is 1 in the solution

represented by A.

ii A solution presented by A does not violate the mapping constraint (3.1) in that a task is mapped

only once in A. For instance, the decision variables x1,2 and x1,7 cannot both be elements of

A. However, LG is independent if A ∈ LG, B ∈ LG, x1,2 ∈ A and x1,7 ∈ B.

iii If A ∈ LG and zki1i2 ∈ A, then there exists a full solution C ∈ LG such that A ⊆ C,

xi1,j1 ∈ C and xi2,j2 ∈ C, meaning that C contains a mapping for the edge between i1 and i2
such that (3.13) is satisfied. However, (3.13) is relaxed to include intra-processor communica-

tion resources so that the condition Jj1 6= Jj2 is dropped. The relaxation does not distort the

synthesis problem because the cost of intra-processor communication resources can be appro-

priately defined.

iv Similarly to (ii) above, only one zki1i2 can exists in A ∈ L for any given edge. However, LG is

independent if for example A ∈ LG, B ∈ LG, z112 ∈ A and z212 ∈ B.

Theorem 1. If resources in a synthesis problem have adequate capacity and there is a feasible sched-

ule for a group Gl = I on any processor in J , then MG = (SG, LG) is a matroid.

Proof. With the foregoing definition, it follows that SG is non-empty provided there is a solution to

the synthesis problem. Also, LG is hereditary because if B ∈ LG is a valid full or partial solution,

then A ⊆ B is also a valid full or partial solution because A necessarily contains decision variables

from B such that (i)-(iv) above are satisfied.

Furthermore, suppose A ∈ LG, B ∈ LG and |A| < |B|. To satisfy the exchange property, there must

exists a decision variable χ ∈ B − A that can extend A such that LG remains independent. The case

where A ⊂ B is trivial. If on the other hand that is not the case, we distinguish between the following

cases:

• Both A and B contain decision variables for tasks only. Since B is larger, then B contains

a decision variable for a task not covered in A because of definition (ii) above. It also follows
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from this definition that A can be extended by the variable such that the result is an independent

subset.

• Both A and B contain decision variables for edges only. Similarly to the case above, A can be

extended by some zki1i2 from B.

• For all other cases, the minimum difference between A and B is either

– A contains a single decision variable xi1j1 , and B contains two decision variables xi1j2

and zki1i2 . Here, A can be extended by zki1i2 . This is illustrated as follows:

∗ The two task-mapping decision variables must be different, otherwise A ⊂ B holds.

∗ The two task-mapping decision variables must be for the same task, otherwise we

have a simple extension of the first case.

∗ The minimum difference must thus be for two candidate processors for the same task,

therefore A can be extended by a decision variable for an edge (or equally well for

another task).

– A contains a single decision variable zk1i1i2 , and B contains two decision variables zk2i1i2

and either xi1j or xi2j . Here, A can be extended by xi1j (or xi2j) similarly to the case

above.

In either case, mapping constraints according to definitions (ii) and (iv) are not violated, and

LG remains independent.

• A and B exhibit more differences than the minimal case above. The extension above trivially

applies.

Therefore, MG satisfies the exchange property, completing the proof that MG is a matroid.

Corollary 1. If A is a full solution, then A is a maximal independent subset in MG.

Proof. This readily follows from the theorem above. If A is a full solution, there is no extension for

A that will not violate mapping constraints. Also, note that because of the relaxation for (3.13) above,

all maximal independent subsets of MG have the same size, which agrees with the theorem that all

maximal independent subsets in a matroid M have the same size [2].

A generic greedy algorithm for finding a maximum-weight independent subset in a matroid proceeds

by sorting weights of the elements in S in a monotonically decreasing order [2] as shown in Algorithm

5. Then, for each element in the sorted order, the algorithm extends an initially empty subset A by the

element if the result is an independent subset.

1: GREEDY(M, w)

2: A = {}
3: sort S[M] into monotonically decreasing order by weight w
4: for each χ ∈ S[M], taken in monotonically decreasing order by weight w(χ) do

5: if A ∪ {χ} ∈ L[M] then

6: A = A ∪ {χ}
7: end if

8: end for

9: return A

Algorithm 5: Generic greedy Algorithm [2]
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Thus, a greedy algorithm maximizes the quantity w(A)

w(A) =
∑

χ∈A

w(χ) (5.1)

In a synthesis problem corresponding to MG, the weights w(χ) are the quantities (Tij + Tswitchi
)

and (LkDi1i2 + τkpkBi1i2) for χ = xij and χ = zki1i2 respectively according to (3.47), (3.45) and

(3.48). Since we want to minimize rather than maximize w(A), the inverse of the weights should be

taken to find a lowest cost solution. Therefore, a greedy algorithm can find an optimum solution for a

synthesis problem with no resource constraints.

5.1.2 Practical Challenges and Solutions

Note that Tswitchi
is not a static value when synthesizing in realtime mode because it depends on the

response ri of a task which in turn depends on which other tasks are mapped on the same processor.

This raises the question on how we can sort SG[MG] when the values of Tswitchi
are not known a

priori.

One possible solution is to redefine SG and LG to include the parameters γlj , and to define weights

w(χ = γlj) based on (3.51). The downside of this approach is that schedules for all possible group

mappings needs to be pre-computed. As noted in previous chapters, we need to avoid a full schedula-

bility analysis.

In order to avoid the expensive full analysis, the heuristics described herein do the following:

• It is assumed that if Ti1j > Ti2j , then the task I1 has a larger response compared to I2, with

responses in the sense of (3.44). This is a reasonable assumption because tasks with shorter

durations tend to have higher periods, and thus higher priorities and shorter responses. Under

these circumstances, it is sufficient to sort weights associated with I1 and I2 using parameters

Tij only ignoring Tswitch1
and Tswitch2

according to (3.45), because the relative order of the

weights remains the same when scheduling overhead is ignored (i.e. xi1j would still appear

before xi2j).

• It is assumed that the overhead Tswitchi
for any task on any processor is small compared to the

execution time of the task on any processor. This is also a reasonable assumption because it

would otherwise be impractical to preempt the task. Under these circumstances, the order be-

tween xij1 and xij2 is arbitrary when the overhead is ignored. Consequently, if the overhead on

J1 is larger, but xij2 appears before xij1 in the sorted list, and Line 5 in Algorithm 5 evaluates to

true for xij2 , then the algorithm makes the wrong decision. Nevertheless, because the assump-

tion is that the overhead is small, the overall impact to the solution should be insignificant.

• It is speculated that when I1 and I2 with Ti1j1 > Ti2j2 are mapped on different processors, then

the response ri1ji
of I1 on a processor J1 is large enough compared to the response ri2j2 of I2

on another processor J2 such that Tswitch1
> Tswitch2

. This again allows us to sort according to

parameters Tij only. However, there is a real possibility that inequality above does not hold for

a certain pair of tasks with the consequence that a bad decision can be made if xi2j2 wrongly

appears before xi1j1 in the list. Similarly to the case above, the impact should be minimum

assuming relatively small scheduling overhead.

The result is that SG[MG] is a partial list which excludes some elements. Algorithm operating on this

partial list are greedy-like heuristics, trading optimality for space efficiency. We show later that while

such heuristics can lead to poor architectures, a combination of measures from different heuristics

does lead to good results.
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5.1.3 Instances with Resource Constraints

When a problem instance has resources with inadequate capacity, or when Gl = I has no feasi-

ble schedule for any processor in J , then the problem lacks optimum substructure as previously

discussed. Committing a choice at any decision step may prevent a heuristic from finding an overall

better solution due to dependent subproblems. Since it is not known a priori how any edge elimination

decision impacts the overall solution, the heuristic must monitor changes in the value of the objective

value and backtrack when necessary. Backtracking is the second ingredient in the first heuristic pre-

sented in Section 5.2. Because the cost in runtime for backtracking is high, we limit the procedure to

one step.

Since there is no strict mapping order, an alternative to backtracking is to restart local searching. In

this case, restarting is akin to “jumping” in the design space, potentially undoing bad decisions for

a chance of making better ones. Jumping has a random character, and can be beneficial since the

heuristic cannot know if making elimination decisions in a different order is wiser. This strategy is

employed in the second heuristic which is presented in Section 5.3. Learning which sequences of

decisions lead to bad solutions is a better strategy. However, we can expect the runtime for a learning

strategy to be comparable to that obtained by ASP-based synthesis since the technique would be

similar in nature to conflict-driven learning employed in the solver clasp.

Figure 5.1 depicts the overall structure of the three heuristics, which we discuss below.

5.2 Replace and Search Heuristic

The main idea behind this heuristic is to use a combination of finding a maximum-weight independent

subset in a matroid MG and a backtracking strategy.

The implementation begins with an hypothetical allocation of resources in order to obtain the lowest

possible cost for each node and edge as shown in Algorithm 6. The hypothetical assignment proceeds

in the same way as in the makespan algorithm in Chapter 3.2.3. This allocation is used to determine

which nodes and edges are more critical in initial actual resource assignments in Lines 4 and 6. The

actual assignments allocates resources according to their availability and capacity in a greedy fashion.

The sorting in lines 3 and 5 corresponds to considering weights in a monotonically decreasing order

as described in Section 5.1.1.

Since the going assumption is that synthesis needs to be approached from a communication-centric

perspective as mentioned at the beginning of this chapter, processors are allocated first followed by

network resources. Initial assignments are followed by an optimization loop that attempts to perform

edge eliminations, also in a greedy fashion. There is finally a pass that attempts to fit the design into

an FPGA. These steps are explained in detail in subsequent subsections.

The heuristic as a whole is however not strictly greedy in the sense of the generic Algorithm 5 because

tasks are assigned first, followed by edges, meaning that weights are not considered in a monotonically

decreasing order. The rationale is that the optimization loop leads to good solutions by searching for

better solutions starting with initial assignments, where the latter are local optima. Comparison of

synthesis results in Section 5.5 demonstrates that this approach is superior to considering all weights

in a monotonically decreasing order. Here, the heuristic attempts to exploit Corollary 2 below by edge

elimination for the first problem class:

Corollary 2. If A is a maximal independent subset in MG, and B is any maximum-weight inde-

pendent subset in MG such that w(A) < w(B), then there exist one or several elements χ ∈ SG

which when substituted into A such that A remains a maximal independent subset, the quantity w(A)
approaches or becomes equal to w(B).

Proof. The proof follows readily from the definition of MG. If no such element χ ∈ SG can be
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(a) “Replace and Search”

and “Group Growing”

(b) Priority Assignment

Figure 5.1: Overall structure of synthesis heuristics

found, then A must be a maximum-weight independent subset which contradicts the statement that

w(A) < w(B).

It therefore follows that we can always arrive at an optimum solution starting with an hypothetical one

through incremental substitutions provided the problem instance has no resource constraints. Whereas

searching for elements for substitutions is by itself trivial because we know associated weights w(χ),
actual substitutions most likely require backtracking because one cannot simply swap elements since

we need a valid solution at the end of each substitution. As a result, we need to perform a local search.

If backtracking is limited in depth to achieve good runtime, some bad decisions may still remain in

the final solution, thereby leading to inferior architectures despite Corollary 2 above.

Because the heuristic maybe called iteratively in makespan mode, we need to prevent previous as-

signments from getting overwritten. Therefore, hypothetical assignment is conducted only once, and

actual resource assignments skip nodes and edges that have been fixed according to Algorithm 3.

Note that if the first makespan pass has no resource constraints, then subsequent iterations also don’t

so that fixing does not ruin optimum substructure property.

This heuristic sits at the heart of the makespan synthesis loop, i.e. at Line 9 in Algorithm 3, replacing

the ILP/ASP solver.

1: synthesize( G,J , C,CP ,APE ,Anet )

2: sol = hypotheticalAssignment(G,J , C)

3: cost = sortNodeCosts(sol)
4: sol = initialTaskAssignment(G,J ,cost,CP )

5: cost = sortEdgeCosts(sol)
6: sol = initialEdgeAssignment(sol,C, cost, CP )

7: sol = optimizeBacktrack(sol, CP,J , C)

8: sol = satisfyArea(sol, APE , Anet,J , C, CP )

9: return sol

Algorithm 6: Heuristic synthesis main steps
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5.2.1 Processor Assignment

Algorithm 7 assign tasks one after the other in order of monotonically decreasing weights, where

weights are hypothetical task execution times. Since during hypothetical assignment the best pro-

cessor is allocated for each task, this order considers the most expensive tasks first independent of

variations in parameters Tij for execution time on different processors. If synthesis is in makespan

mode, fixed tasks are skipped to facilitate multi-pass synthesis. Furthermore, tasks in a critical path

CP are considered first even when they have lower execution cost compared to non-critical tasks in

order to avoid having latter tasks block best resources which are desired for critical path tasks. Line

5 performs the actual allocation as explained below. A problem is declared infeasible if the allocation

fails for one of two reasons as shown in Algorithm 8.

1: initialTaskAssignment( G,J ,cost,CP )

2: for each element in cost corresponding to task Ii ∈ G in CP do

3: remove the element from cost
4: if corresponding task is not fixed then

5: allocateProcessorForGroup(Ii,J ,CP )

6: if Ii is not mapped then

7: report problem not feasible

8: end if

9: end if

10: end for

11: repeat lines 3-9 for each remaining element in cost corresponding to non-critical task

12: return sol

Algorithm 7: Initial processor assignment

Therein, allocation of a processor for a group of tasks Gl (including for groups with one task only)

proceeds by finding a processor in the set J for which the sum of execution time of all tasks and the

scheduling overhead due to Gl and other tasks already mapped on the processor is the smallest.

Line 4 in the algorithm computes the sum of execution time, taking the critical path into account

according to (3.47): the coefficient Xi has the value one when the task is in CP , or when synthesiz-

ing in non-makespan mode. Line 5 computes the scheduling overhead according to (3.35) using the

number of task switching T
′

sl∗j
, context switching overhead tj , and the OS overhead Oj . The number

of switching is computed for a group Gl∗ = Gl ∪Glp , where Gl is the group for which the allocation

is being conducted, and Glp is a group which is already mapped on Jj . The number of switching

is determined for a reduced group if synthesis is in makespan mode in order to capture scheduling

overhead for tasks on CP only, otherwise the complete overhead due to the group Gl∗ is used as

discussed in Section 3.2.3.

5.2.2 Network Assignment

Algorithm 9 for initial edge assignment is structurally similar to initial task assignment presented in

the previous subsection: edges in the critical path CP are considered first in order of monotonically

decreasing hypothetical costs. The first condition in the if-block safeguards against ruining previously

assigned edges in case of a multi-pass makespan synthesis mode. The actual assignment in Line 5

is outlined in detail in Algorithm 11 which takes as arguments an edge to be assigned, the set C
containing network resources, the list of non-assigned edges excluding the current one, and the critical

path. We first explain how a network resource is allocated, because this is used in other algorithms,

including Algorithm 11.

Allocation of a network resources is conducted by searching for a best resource as shown in Algorithm
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1: allocateProcessorForGroup( Gl,J ,CP )

2: time = −∞
3: for each processor Jj ∈ J do

4: t =
∑

Ii∈Gl

Tij ·Xi

5: t = t + (T
′

sl∗j
· tj + Oj)

6: if (t < time) AND (capacity not exceeded) AND (schedule is feasible) then

7: time = t
8: temporary assignment for Gl is Jj

9: end if

10: end for

11: if Gl is not temporarily assigned then

12: report group not feasible

13: else

14: make assignment permanent

15: end if

16: return sol

Algorithm 8: Allocating a processor for a group of tasks

1: initialEdgeAssignment( G,C, list, CP )

2: for each element in list corresponding to an edge Ii1 ⋖ Ii2 in CP do

3: remove the element from list
4: if (Ii1 ⋖ Ii2 is not fixed) AND (Ii1 and Ii2 are not on same processor) then

5: netAssign( Ii1 ⋖ Ii2 ,C, list, CP )

6: end if

7: end for

8: repeat 3-6 for all other edges

9: return sol

Algorithm 9: Initial network assignment

10. Therein, Line 4 calculates the cost for the edge if it would be mapped on a specific network based

on (3.48). The cost is the transfer latency for that edge on the network plus the contention overhead

due to the edge and all other edges already mapped on the network. The edge is reported to be

non-mapped if there is no network resource for which the capacity is already exhausted. Note that,

in contrast to processor allocation, a failure to allocate an edge does not immediately mean that a

problem is infeasible because the two tasks maybe mapped on the same processor, eliminating a need

for a network resource. Moreover, a failure does not necessarily imply that there are no adequate

resources for the problem instance since mapping the two tasks to the same processor may lead to a

better solution.

Edge assignment in Algorithm 11 begins by an attempt to allocate a resource. If there is no free re-

source, the allocation fails, the algorithm deassigns the two tasks and attempt to assign them as a

group using Algorithm 8. If no processor can be allocated for the group, then the problem is declared

infeasible. Otherwise, the algorithm searches for edges incident on Ii1 or Ii2 which originate or termi-

nate to tasks on the same processor. When found, those edges are either deassigned or removed from

the list containing non-mapped edges. This situation may arise because Ii1 and Ii2 have been moved

to another processor.
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1: allocateNetwork( Ii1 ⋖ Ii2 , C )

2: time = −∞
3: for each network yk ∈ C do

4: t = LkDi1i2Zi1i2 +
∑

Ii3
,Ii4

|Ii3
⋖Ii4

τkpkBi3,i4z
′

k where Ii4 ⋖ Ii3 is on yk

5: if (t < time) AND (capacity of yk is not exceeded) then

6: time = t
7: temporary assignment for the edge Ii1 ⋖ Ii2 is yk

8: end if

9: end for

10: if edge Ii1 ⋖ Ii2 is not assigned then

11: report edge not mapped

12: else

13: make assignment permanent

14: end if

15: return sol

Algorithm 10: Allocating a network resource for an edge

1: netAssign( Ii1 ⋖ Ii2 ,C, list, CP )

2: allocateNetwork(Ii1 ⋖ Ii2 , C)

3: if Ii1 ⋖ Ii2 is not mapped then

4: deassign Ii1 and Ii2

5: Gl = {Ii1 , Ii2}
6: allocateProcessorForGroup(Gl,J , CP )

7: if Gl is not mapped then

8: report problem not feasible

9: else

10: for each task Ii on the processor where Gl is mapped do

11: if there is an edge between Ii and Ii1 or Ii2 then

12: if edge is mapped to a network then

13: deassign the edge

14: else

15: remove the edge from list
16: end if

17: end if

18: end for

19: end if

20: end if

21: return sol

Algorithm 11: Assigning an edge to a network
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5.2.3 Optimization Loop

Initial task and edge assignment attempt to find best resources. The result is a local optimum which

can be further improved upon through edge elimination. The optimization loop in Algorithm 12 is

designed for that purpose. Edge elimination is also greedy-like, where the weights are inter-task

communication costs consisting of the sum of data transfer latency and associated overhead for each

edge as shown in Line 2. The cost model is derived from (3.48).

The main loop iteratively attempt to eliminate edges in order of monotonically decreasing costs and

terminates when the value of the objective function remains unchanged, when there is no edge left

that has not been considered, or when an arbitrarily set number of iterations has been set.

The the first termination criteria is for cases in which the problem instance has resource constraints,

either because of schedulability constraints, or because of inadequate resource capacities. Therefore,

the optimization loop is effectively a local search algorithm which terminates when a local minimum

is detected, the latter being either the initial assignment, or a better solution. The search itself is

conducted in the neighborhood of a current step in the iteration as discussed below. The starting point

is either the value of the longest path in G or the sum of all costs going into the optimization loop

depending on whether the synthesis is in makespan mode. The computation of the longest path is the

same as the one described in Section 3.2.3. The third termination criteria prevents endless trials which

can otherwise occur because of task movements as it will become apparent in the discussion below.

An attempt to eliminate an edge begins by deassigning the edge and corresponding tasks. Because the

intent is to map the two tasks on one processor, an attempt is made to allocate a processor for a group

consisting of the two tasks based on Algorithm 8. Two things can happen during the attempt:

• The two tasks cannot be mapped, meaning that the problem instance has resource constraints.

Therefore, the iteration proceeds with the next edge not yet considered. Effectively, the search

backtracks to a previously found solution and attempts to follow a different path.

• A mapping for the two tasks has been found, either because the problem instance has no re-

source constraints, or because local search has found a potentially feasible solution. In either

case, we must consider what happens to other edges as exemplified in Figure 5.2.

In the example, the algorithm attempts to eliminate the expensive edge I2 ⋖ I3, and finds a potentially

feasible mapping for the two tasks on processor c. In so doing, the edge I0 ⋖I2 now crosses processor

boundaries from a to c. Line 20 in the algorithm attempts to assign edges that became free because of

such movements according to Algorithm 10. Two things may go wrong in this new attempt:

• New edges cannot be assigned because of inadequate capacity, meaning that eliminating a

specific edge is not feasible in the current step (but not necessarily generally infeasible).

Figure 5.2: Moving tasks eliminates edges and exposes new ones
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1: optimizeBacktrack( sol, CP,J , C )

2: for each non-mapped edge, compute t = LkDi1i2Zi1i2 + τkpkBi3,i4z
′

k and store in list
3: last =∞
4: if makespan mode then

5: current =longestPathValue(G,J , C)

6: else

7: current =
n
∑

i=0

m
∑

j=0
xij · Tij + Tswitch + Tnet

8: end if

9: while current ≤ last AND (list is not empty) AND (number of trials is not reached) do

10: remove the largest element in list
11: if corresponding edge Ii1 ⋖ Ii2 is not fixed then

12: deassign Ii1 ⋖ Ii2

13: deassign Ii1 and Ii2

14: Gl ={Ii1 , Ii2}
15: allocateProcessorForGroup(Gl,J ,CP )

16: if Ii1 or Ii2 is not mapped then

17: undo edge and task deassignment

18: else

19: if there is an edge incident on Ii1 or Ii2 to tasks on previous processor then

20: assign those edges

21: if failed to assign OR new solution is more expensive then

22: undo edge and task deassignment for Ii1 and Ii2

23: else

24: add the new edges to list
25: end if

26: end if

27: if condition 19 was FALSE OR condition 21 was FALSE then

28: deassign all edges incident on the same processor and remove them from list
29: last = current
30: if makespan mode then

31: current =longestPathValue(G,J , C)

32: else

33: current =
n
∑

i=0

m
∑

j=0
xij · Tij + Tswitch + Tnet

34: end if

35: end if

36: end if

37: end if

38: end while

39: return sol

Algorithm 12: Optimization loop using backtracking
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• New edges can be assigned, but the resulting solution is more expensive.

In either case, the algorithm backtracks. Otherwise, newly exposed and assigned edges (I0 ⋖ I2 in the

example) are added to the list to be considered for elimination in following iterations. This addition is

the reason behind the third termination condition for the main loop: obviously, we can have a situation

where one iteration eliminates an edge exposing a new one, and the next iteration reverses the process.

The third termination safeguards indefinite loops. In this implementation, the maximum number of

trials is arbitrarily selected to equal the total number of edges in the application graph G. Backtracking

and addition of edges to the list means that the optimization loop is generally not greedy, exceptions

being cases in which the heuristic does not take these paths.

If assigning newly exposed edges is successful, the next step is to deassign edges that were previously

assigned, but now no longer cross processor boundaries because of task movements, and to remove

them from the list containing edges to be considered for elimination (in the example, the edges I2⋖I4

and I3 ⋖ I4). This is done from Line 27, where also the value of the objective for the new solution

is computed. Note that we do not consider what happens to the edge I1 ⋖ I2 in the example which is

now mapped to a network resource which connects between another set of processors. The reason is

that the communication cost does not change. What changes is the cost through bridges (see Figure

3.2). While this overhead cost is assumed to be zero in this implementation, the heuristic can be easily

extended to include the cost.

5.2.4 Area Recovery

The optimization loop operates without any regard to FPGA area. Therefore, synthesis is completed

by Algorithm 13 which attempts to fit the optimized solution through resource sharing and dealloca-

tion of resources. Still working under the assumption that inter-task communications are more expen-

sive, area optimization begins by deallocating processors in order to have a minimum impact on the

overall solution (Lines 2-21). The processor deallocation loop is succeeded by a network deallocation

loop if the architecture does not meet network area constraint.

The first loop deallocates processors in order of increasing cost, which is the sum of execution and

scheduling costs of tasks mapped on processors. Doing so increases the cost for affected tasks, and

increases scheduling cost for other tasks which now have to share their processor. Thus, starting

with lowest cost processors minimizes the overall impact. However, deallocation is done only if the

processor contains no fixed tasks when synthesizing in makespan mode.

Each deallocation is followed by an attempt to individually assign each of the affected tasks. If as-

signment fails, the problem is declared infeasible. Mapping the tasks individually reduces the chance

that this process fails.

All edges incident on affected tasks are deassigned, and those which still cross processor boundaries

after task movements are assigned. Because no network has been deallocated at this stage, each new

assignment ends successfully. Moreover, no check for fixed edges is required at this step prior to

deassigning, because the tasks to which the edge is incident are not fixed.

Note that deallocation and reassignment proceed in a greedy-fashion, but that the problem has re-

source constraints so that the iterative deallocation may lead to less critical tasks blocking better

resources which would otherwise be occupied by tasks deassigned through subsequent deallocations.

The second loop for deallocating networks proceeds similarly. As in the first loop, the call for netAs-

sign() additionally leads to task deassignment in order to map affected tasks on the same processor.
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1: satisfyArea(G, APE , Anet,J , C, CP )

2: while
m
∑

j=0,Jj allocated

aj ≥ APE AND (not all processors have been iterated through) do

3: find Jj with the lowest sum of execution and scheduling cost

4: if Jj contains non-fixed task then

5: deallocate Jj so that Gl previously on Jj becomes unmapped

6: deassign all edges incident on each task Ii ∈ Gl and put them in a list
7: for each Ii ∈ Gl do

8: allocateProcessorForGroup(Ii,J , CP )

9: if Ii is not mapped then

10: report problem not feasible

11: end if

12: end for

13: sort list in order of descending costs

14: for each edge Ii1 ⋖ Ii2 in list do

15: if Ii1 and Ii2 are on different processors then

16: netAssign(Ii1 ⋖ Ii2 , C, list, CP )

17: end if

18: end for

19: remove Jj from solution set

20: end if

21: end while

22: if
m
∑

j=0,Jj allocated

aj ≥ APE then

23: report problem not feasible

24: end if

25: while
K
∑

k=0, allocated

Ak ≥ Anet AND (not all networks have been iterated through) do

26: find yk with the lowest sum of latency and arbitration cost

27: if yk contains no fixed edge then

28: deassign all edges mapped on yk and put them in list
29: sort list in descending order

30: repeat steps 14-18 for list
31: remove yk from solution set

32: end if

33: end while

34: if
K
∑

k=0, allocated

Ak ≥ Anet then

35: report problem not feasible

36: end if

37: return sol

Algorithm 13: Area optimization
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5.3 Group Growing Heuristic

Restarting a search rather than backtracking and tracing a different path is an alternative strategy that

can potentially undo bad decisions committed at earlier stages because the heuristic presented in the

previous section only traces one step back in search of better solutions.

The difference between the heuristic presented in this section and the previous one is in the optimiza-

tion loop which is shown in Algorithm 14. As before, if tasks affected by deassigning an edge are

successfully mapped on another processor, an attempt is made to assign newly exposed edges inci-

dent on those tasks, going to tasks on previous processors (edge I0 ⋖ I2 in example of Figure 5.2). If

the edge assignment is successful but the solution is more expensive, then most likely the reason is

additional heavy traffic due to the newly exposed edge. Therefore, the heuristic searches in Line 24

for the most expensive non-fixed edge incident on a task in the newly mapped group Gl, whose other

end is incident on a task Ii∗ not in Gl. When found, the edge is deassigned, and the task not in Gl is

added to the group. An attempt is then made to map the new group so that tasks with expensive edges

between them are mapped on the same processor as exemplified in Figure 5.3.

Effectively, the heuristic jumps back to a step where the task Ii∗ is not yet mapped, and restarts the

search from that point. The growing of the group Gl to encompass expensive edges stops if the group

becomes infeasible to map, or if newly exposed edges do not result into a more expensive solution.

5.4 Priority Assignment Heuristic

This heuristic is implemented to compare how a communication-centric approach as discussed in

the previous two subsections performs relative to a method that makes no assumptions about the

dominance of inter-task communication cost over task execution and scheduling overhead.

The heuristic outlined in Algorithm 15 does not begin with an hypothetical solution, but rather, at-

tempts to map tasks and edges sorely in order of monotonically decreasing cost.

The hypothetical assignment is Line 1 is only used to determine the order of the weights. The main

loop composes a solution from scratch. At any step, assignment is based on what is the most expensive

weight. If the weight is for task execution cost, the assignment attempt between Lines 7-11 is straight

forward: the task is assigned, or if the attempt fails, the problem is declared infeasible. If on the other

hand the most-expensive weight corresponds to an edge, several checks are necessary to insure that

a solution is valid (corresponding to Line 5 in Algorithm 5) to check if extending would maintain

hereditary property in case of problems without resource constraints.

If the two tasks on which the edge is incident have been mapped in a previous step, and are on different

processors, then a network is allocated for the edge. A failure implies that a feasible solution was not

found.

If only one of the task is mapped, then rather than allocating a network for the edge, an attempt is

made to map the other task on the same processor to minimize the cost. In case that is not possible,

another processor is allocated, followed by a network allocation for the edge.

Otherwise, if none of the two tasks are mapped, an attempt is made to map the two as a group, again,

to minimize the cost of inter-task communications. If the attempt fails, then the two tasks are assigned

independently, followed by the edge assignment when successful.

The heuristic is completed with an area recovery step which is the same as in the other two heuristics.

When synthesizing using this method, priorityAssign() sits the heart of the makespan synthesis loop,

rather than the main Algorithm 6.
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1: optimizeGrow( sol, CP,J , C)

2: for each non-mapped edge, compute t = LkDi1i2Zi1i2 + τkpkBi3,i4z
′

k and store in list
3: last =∞
4: if makespan mode then

5: current =longestPathValue(G,J , C)

6: else

7: current =
n
∑

i=0

m
∑

j=0
xij · Tij + Tswitch + Tnet

8: end if

9: while current ≤ last AND (list is not empty) AND (number of trials is not reached) do

10: remove the largest element in list
11: if corresponding edge Ii1 ⋖ Ii2 is not fixed then

12: deassign Ii1 ⋖ Ii2

13: deassign Ii1 and Ii2

14: Gl ={Ii1 , Ii2}
15: repeat

16: allocateProcessorForGroup(Gl,J ,CP )

17: if Gl is not mapped then

18: undo edge and task deassignment

19: else

20: if there is an edge incident on any Ii ∈ Gl to tasks on previous processor then

21: assign those new edges

22: if new solution is more expensive then

23: G
′

l = {I\Gl}
24: find non-fixed Ii∗ ∈ G

′

l | ∀Ii ∈ Gl, Ii1 ∈ G
′

l, cost(Ii∗ ⋖ Ii) ≥ cost(Ii1 ⋖ Ii)

25: Gl = Gl ∪ Ii∗

26: deassign Ii∗

27: else if failed to assign new edges then

28: undo edge and task deassignment for each Ii ∈ Gl

29: else

30: add the new edges to list
31: end if

32: end if

33: if condition 20 was FALSE OR condition 27 was FALSE then

34: deassign all edges incident on the same processor and remove them from list
35: last = current
36: compute current according to 4-8

37: end if

38: end if

39: until Gl fails to map OR new edges are assigned

40: end if

41: end while

42: return sol

Algorithm 14: Optimizing loop using group growing



110 Chapter 5: Greedy-Like Heuristics

1: priorityAssign( G,J , C,CP ,APE ,Anet )

2: sol = hypotheticalAssignment(G,J , C)

3: nCost = sortNodeCosts(sol)
4: eCost = sortEdgeCosts(sol)
5: while nCost AND eCost have elements left do

6: cost =max(nextElement(nCost),nextElement(eCost))
7: if cost corresponds to cost of a non-assigned task Ii then

8: allocateProcessorForGroup({Ii},J ,CP )

9: if Ii is not assigned then

10: report problem not feasible

11: end if

12: else if cost corresponds to non-assigned edge Ii1 ⋖ Ii2 then

13: if Ii1 AND Ii2 are assigned AND are on different processors then

14: allocateNetwork(Ii1 ⋖ Ii2 , C)

15: if Ii1 ⋖ Ii2 is not assigned then

16: report problem not feasible

17: end if

18: else if if only one of Ii1 , Ii2 is assigned to a Jj then

19: try to map the non-assigned task to Jj

20: if assignment fail then

21: allocateProcessorForGroup({the task},J ,CP )

22: if assignment fails then

23: report problem not feasible

24: else

25: allocateNetwork(Ii1 ⋖ Ii2 , C)

26: if Ii1 ⋖ Ii2 is not assigned then

27: report problem not feasible

28: end if

29: end if

30: end if

31: else

32: g = {Ii1 , Ii2}
33: allocateProcessorForGroup(g,J ,CP )

34: if assignment fails then

35: try to assign Ii1 and Ii2 independently

36: if assignment for either Ii1 or Ii2 fails then

37: report problem not feasible

38: else

39: allocateNetwork(Ii1 ⋖ Ii2 , C)

40: if Ii1 ⋖ Ii2 is not assigned then

41: report problem not feasible

42: end if

43: end if

44: end if

45: end if

46: end if

47: end while

48: sol = satisfyArea(sol, APE , Anet,J , C, CP )

49: return sol

Algorithm 15: Priority based assignment
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Figure 5.3: Group growing

5.5 Comparison of Synthesis Results

This section presents a comparison of synthesis results for the three heuristics against ILP-based

synthesis both in terms of runtime and the quality of the solutions obtained. Similarly to Section

4.4, comparison was conducted for the six non-realtime applications, preemptive scheduling and

makespan optimization. The flow of Figure 3.1 was extended once again to support synthesis using

these heuristics. The same set of processors and networks were used.

5.5.1 Non-Realtime Applications

Figure 5.4 compares the runtime when the number of processors is increased from 2 to 16, while that

of tasks and networks is kept at 4 and 2 respectively. As expected, all three heuristics have a nearly

constant time because there is no extensive search. Moreover, all three found the same optimum

solution as ILP-based synthesis1. The latter result does not follow from the fact that problem scenarios

in this case do not have resource constraints, but rather, because the right decisions were made from

the beginning. Since the heuristics are not greedy even when problems have no resource constraints,

bad decisions committed at the beginning could lead to suboptimum results.

Comparing the heuristics against each other, priority-based assignment is much faster because this

is essentially a single-pass resolution as opposed to the other two. The other two have an almost

the same performance because there is no much opportunity to grow groups of tasks. One would

otherwise expect replace-heuristic to perform better from a runtime point of view, the reason being

that searching is limited to single-step backtracking.

1Value of objectives in seconds for FIR, Derivation, Simpsons, N-Body and Inversion respectively: 1.88, 0.42, 0.24,

0.02, 1.58 and 43.44.
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(a) FIR

(b) Derivation

(c) Simpsons

Figure 5.4: Continued on next page
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(a) Jacobi

(b) N-Body

(c) Inversion

Figure 5.4: Greedy-ILP comparison : Increasing the number of processors
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Figure 5.5 shows the comparison when the number of networks is progressively increased to 5. This

figure contains no surprises based on prior observations in this section and in previous two chapters:

nearly flat runtime, heuristics are faster, optimum solutions in each case, priority-based assignment is

the fastest.

As before, increasing the number of tasks is much more revealing. Figure 5.6 shows what happens

when the number of tasks in now increased to 22, while keeping that of processors and networks at

16 and 5 respectively. The trends for ILP are the same as in Figures 3.8 and 4.5: there is a timeout at

28800 seconds with suboptimum solutions for points at that line, failure to find solutions for points

above the line, and otherwise optimum solutions. Not surprising, the heuristics are significantly faster

by several orders of magnitude, where priority-based assignment is the fastest.

Interesting is that, in contrast to the other two heuristics, priority-based assignments appears to gen-

erally fail to find feasible solutions when the number of tasks becomes larger. This is a direct con-

sequence of initial bad decisions: in presence of resource constraints, assignment based on cost can

block resources needed by other tasks and edges. If there is not backtracking or restarts, heuristics

may fail to find solutions. The implication is that, if we were to implement a greedy synthesis al-

gorithm according to Algorithm 5 by doing a full schedulability analysis a priori, but the problem

is resource constrained, we can expect our algorithm to fail to find a solution when the problem is

sufficiently complex.

Comparing the other two heuristics against each other, we note as expected that group growing tends

to take a longer time to finish because of restarts. Otherwise, both exhibit a moderate increase in

runtime with larger number of tasks, which is very promising for automated synthesis provided the

quality of results is acceptable.

Figure 5.7 shows the value of the objectives obtained with each approach. What is observed is that

there is no heuristic that is generally superior. With the exception of synthesis for Inversion, there was

always a heuristic which delivered results close to ILP-based synthesis. Therefore, given that synthesis

time for each heuristic is very short, a reasonable strategy for obtaining good architectures would be

a voting scheme which employ all three heuristics followed by selecting the best architecture.

5.5.2 Realtime Preemptive Scheduling

Table 5.1 summarizes the comparison of synthesis results obtained using the three heuristics against

ILP under realtime preemptive scheduling. As in Section 3.2.2.6, we additionally compare the synthe-

sis run time with and without fixed-priority preemptive scheduling using configurations with a basic

cyclic executive and with a preemptive kernel.

The general picture obtained in this table is the same as the one in the foregoing section: all heuristics

are faster by several orders of magnitude, and priority-based assignment is the fastest of all. Moreover,

it is again noticeable that with the exception of one case for WCDMA under cyclic executive, at least

one heuristic returned a result close to the optimum. This result is in favor of the voting scheme

proposed in the previous subsection.

5.5.3 Makespan Optimization

Finally, Table 5.2 completes the comparison under makespan optimization. Even though as expected

the heuristics are very fast, the computation of the longest path was wrong leading to incorrect deci-

sions. This aspect of makespan optimization is an open problem that needs to be addressed. However,

given the results in the two previous subsections, it is expected that a voting scheme using all heuris-

tics would be an effective strategy for makespan optimizations.
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(a) FIR

(b) Derivation

(c) Simpsons

Figure 5.5: Continued on next page
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(a) Jacobi

(b) N-Body

(c) Inversion

Figure 5.5: Greedy-ILP comparison : Increasing the number of networks
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(a) FIR:Priority failed from n ≥ 22

(b) Derivation:Priority failed from n ≥ 20

(c) Simpsons:Priority failed from n ≥ 22

Figure 5.6: Continued on next page
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(a) N-Body:Priority failed from n ≥ 10

(b) Inversion:Priority failed from n ≥ 10

Figure 5.6: Greedy-ILP comparison : Increasing the number of tasks

Table 5.1: Greedy-ILP comparison under scheduling

Cyclic Preemptive

Alg. Appl. Run time (sec) Obj.(sec.) Run time (sec) Obj.(sec.)

ILP WLAN 636 0.0001 1010 0.10

WCDMA 28811 18.25 19567 16.90

Search WLAN 2.313 14.7972 4.344 14.7543

WCDMA 1.906 64.3659 8.047 18.6025

Grow WLAN 5.500 0.0002 5.656 0.0852

WCDMA 2.062 62.0416 8.687 18.2749

Priority WLAN 0.984 0.1349 1.656 14.7543

WCDMA 1.016 62.8219 2.141 19.2913
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(a) FIR:Priority failed from n ≥ 22

(b) Derivation:Priority failed from n ≥ 20

(c) Simpsons:Priority failed from n ≥ 22

Figure 5.7: Continued on next page
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(a) N-Body:Priority failed from n ≥ 10

(b) Inversion:Priority failed from n ≥ 10

Figure 5.7: Greedy-ILP Comparison : Increasing the number of tasks, objective value

Table 5.2: Greedy-ILP comparison for makespan optimization

Cyclic Preemptive

Alg. Final CP Run Time (sec) Obj.(sec.) Final CP Run Time (sec) Obj.(sec.)

ILP I0 I7 I6 I5

I4 I2 I1 I3

808.688 32.9932 I0 I7 I6 I5

I4 I1 I3

5020.72 32.9932

Search I0 I1 I3 5.758 0.0485 I0 I1 I3 18.484 0.0019

Grow I0 I1 I3 5.282 0.03829 I0 I1 I3 18.484 0.0019

Priority I0 I1 I3 1.899 1.782 I0 I7 I6 I5

I4 I2 I1 I3

0.0136 14.7608
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5.6 Chapter Summary

This chapter presented three heuristics with the intent of enabling fast synthesis for large problems.

It was shown that there exist an optimum linear time greedy algorithm for problem instances without

resource constraints. However, a purely greedy algorithm likely requires a full schedulability analysis,

with similar drawbacks as those faced in ASP-based synthesis. The heuristics introduced avoid a full

analysis by assuming that scheduling overhead can be ignored.

In addition to the assumption above, two of the heuristics exploit an observation made in makespan

optimization in Chapter 3 by assigning best resources for each node and edge, followed by an op-

timization loop based on resource sharing. The latter is a local search heuristic, where backtracking

and restarting are attempted respectively.

Synthesis results showed that all three heuristics are very fast. Further, it was apparent that none

of the heuristic is overall superior in terms of the quality of synthesized architectures. However, in

most synthesis scenarios conducted, at least one one the heuristic delivered results close to or equal

to those obtained using ILP-based synthesis. Since synthesis time is very fast, it appears that a good

synthesis strategy is to employ a voting scheme, where all three heuristics are used, and the best result

is selected.
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6 Conclusion

6.1 Summary

In this thesis, we investigated automated synthesis of flexible chip multiprocessor systems targeted

for reconfigurable devices such as FPGAs. Flexible CMP systems address power and memory wall

challenges by combining advantages from multiprocessing and reconfigurability to exploit both task-

level parallelism and system customization. We showed that the design space of these systems is very

large so that disciplined work-bench based explorations are infeasible, making automatic synthesis

necessary. We used the detailed description of the design space to determine which parameters should

be modeled to facilitate automated synthesis by optimizing a cost function. In the process, emphasis

was placed on inclusive modeling of parameters from application, architectural and physical sub-

spaces, as well as their joint coverage in order to avoid pre-constraining the design space, an aspect

that generally leads to suboptimum architectures. It was shown that inclusiveness and joint coverage

is necessitated by cross-effects between design space dimensions, and between the three subspaces.

Therefore, the high-level automated synthesis problem consists of simultaneous activities of (i) select-

ing processors (ii) mapping and scheduling tasks to them, and (iii) selecting one or several networks

for inter-task communications such that design constraints and optimization objectives are met.

To enable automatic synthesis, we developed an ILP model for the problem, and proposed a design

flow that takes parallel programs as input to produce a high-level netlist and information on which

communication resources a task should use to communicate with any other task. Because the model is

not pre-constraining, multiple communication resources can be allocated between any pair of proces-

sors to minimize expensive inter-task communications, an aspect which is in stark contrast to related

work.

We evaluated the model using non-realtime and realtime applications under preemptive scheduling,

and in the process showed that automated synthesis is absolutely important because the combinatorial

nature of the problem can lead to counter intuitive results so that skilled designers can easily miss

superior design points when conducting manual explorations. Moreover, we showed how designers

can reduce synthesis runtime by comparing task execution time and traffic pattern to eliminate number

of processors from solution space without limiting the design space. Furthermore, we investigated

synthesis via answer set programming and by using application-specific heuristics to address runtime

challenges for large problem instances.

Synthesis through ASP was investigated to determine how well state of the art techniques from the

domain of boolean satisfiability can be exploited to solve difficult problem instances. Using the fact

that 0-1 ILP problems can be encoded into equivalent ASP programs, we used the ASP solver clasp to

show that such techniques are indeed very effective, where the synthesis runtime could be reduced by

up to three orders of magnitude. Not all problems could be solved through ASP, the reason being that

both ILP and ASP-based synthesis currently require a full schedulability analysis for all possible task

mappings on all processors, thereby leading to an explosion of decision variables, linear constraints,

atoms and rules. We determined that where ASP-based synthesis failed, the solver did not execute at

all because of limited computer memory. Thus, while this method has a great potential, we currently

need to develop alternate means of fast synthesis for large problem instances. The above-mentioned
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heuristics were developed for that purpose to exploit the structure of the synthesis problem.

Using results obtained during makespan optimizations through ILP-based synthesis, we determined

that one can optimize architectures by initially allocating best processor and network resources for

each node and edge, followed by making decisions on processor sharing to minimize inter-task com-

munication costs. This being a greedy-like approach, we formally proved using matroid theory that

there exist a linear time greedy algorithm for the automated synthesis problem when then are no re-

source constraints, the latter being defined as cases where larger resource capacities do not lead to

better solutions. Otherwise, dependencies between synthesis subproblems necessitate search heuris-

tics. Nevertheless, we showed that greedy algorithms likely require a full schedulability analysis,

therefore given memory implications, we developed three different heuristics that attempt to optimize

using a partial list. These heuristics differ on whether and how local search is conducted.

The first heuristic uses a one-level backtracking strategy when making processor sharing decisions

when more expensive solutions are encountered. The second uses a restarting scheme to do the same

by un-mapping and re-mapping tasks associated with expensive data traffic. The third heuristic is

a one pass greedy-like allocation which is very similar in nature to a pure greedy algorithm. We

evaluated the heuristics using the same set of applications against ILP-based synthesis both in terms

of runtime and quality of results. All algorithms are up to three orders of magnitude faster versus

ILP-based synthesis, requiring only a few seconds even for the largest problem instances studied.

However, none of them is overall superior in terms of quality of synthesized architectures. In most

synthesis scenarios conducted, at least one of the heuristic delivered results close to or equal to those

obtained using ILP-based synthesis. Therefore, in order to obtain both fast synthesis and acceptable

quality of results, we proposed a voting scheme, where all three heuristics are used, and the best result

is selected.

All synthesis methods developed are integrated is a command line tool whose interface is described

in Appendix B. The integration of this tool in the design platform PinHat enables us to meet research

objectives formulated in Chapter 1 in order to complete the design flow of flexible CMP systems from

parallel programs to FPGA bitstream.

6.2 Outlook

While the tool developed in the course of this research is already useful in its current form, the work

conducted led to a number of open problems which needs to be addressed in future work. The first

is accounting for temporal information with respect to data traffic during synthesis in order to reduce

resource requirements or to achieve better throughput or application runtime. Currently, worst case

scenarios are assumed. Second, it is important to incorporate energy and routing models as described

in Chapter 1 so as to explore energy-performance trade-offs. With respect to ASP-based synthesis, it is

interesting to investigate how schedulability analysis can be integrated in the solver or ASP programs,

because that would alleviate memory limitations. Alternately, improvements in developed heuristics

targeting better local search techniques would be equally effective.

Finally, integration of cycle accurate processor and NoC simulators as well as NoC analysis tools in

the overall design flow is a vital component towards a more mature tool suite, alongside the devel-

opment of a rich IP library. We believe that, with a continued proliferation of better FPGA devices,

the tool and methods developed herein will be useful for coping with increased design complexity in

pursuit of better architectures to meet ever increasing performance requirements.
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A Glossary and Notation

A.1 Glossary

ASIC Application-Specific Integrated Circuit

ASIP Application-Specific Instruction-set Processor

ASP Answer Set Programming

CMP Chip Multi-Processor (systems)

CP Critical Path

DAG Directed Acyclic Graph

DLL Delay Locked Loop

DP Domain-specific Processor

DPLL Davis-Putnam-Logemann-Loveland (algorithm)

DSE Design Space Exploration

FFT Fast Fourier Transform

FIR Finite Impulse Response (filter)

FPGA Field Programmable Gate Array

FSL Fast Simplex Link

GPP General Purpose Processor

ILP Integer Linear Programming

IP Intellectual Property (core)

MB Microblaze (processor)

MPI Message Passing Interface

MPMD Multi-Program Multi-Data

MIPS Million of Instructions per Second

MPSD Multiple Programs Single (Data Stream)

MPSoC Multi-Processors System-On-Chip

NoC Network On-Chip

OPB On-chip Peripheral Bus

PN Pseudo-random Number

PPC Power PC (processor)

QoS Quality of Service

rASIP reconfigurable ASIP

RISC Reduced Instruction-Set Computer

RMA Rate Monotonic Analysis

RPS Resolution Proof System (for SAT problems)

RTL Register Transfer Level
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SAT Boolean Satisfiability (problem)

SDR Software Defined Radio

SIMD Single Instruction Multiple Data

SPMD Single Program Multiple Data (Streams)

VLIW Very Large Instruction Word Processor

WCDMA Wide-band Code Division Multiple Access

WLAN Wireless Local Area Network

A.2 Notation

αi1i2j1j2 An auxiliary decision variable for a pair of communicating tasks mapped on two

processors

aj The area of a processor Jj

APE The maximum area on FPGA for mapping processing elements

Anet The maximum area on FPGA for mapping networks

Ak Area of Ck

A Total FPGA area

Bi1,i2 The number of data blocks transferred between two communicating tasks

χ An element of an independent subset of a matroid

ci A SAT clause

C A set of networks in IP library

Ck A network with an index k

Di1i2 The amount of data transferred between two communicating tasks

Di Deadline of a task

E Number of edges in application graph

Flj Coefficient for schedulability of Gl on Jj

Gl A group of task with an index l

gl Coefficient indicating if a group contains a task on critical path

γlj A decision variable for mapping Gl on Jj where the Gl is the largest mapped

group on Jj

I A set of tasks

Ii A task with an index i

Jj A processor with an index j

J A set of processors in IP library

K
′

K + 1

K C

λi1i2 An auxiliary decision variable for a pair of communicating tasks mapped on dif-

ferent processors

Lk The transfer latency for network Ck

L An independent subset of a matroid
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Mk Capacity of Ck

M |J|

m M − 1

Mlj Decision variable for mapping Gl on Jj

M A matroid

n N − 1

N |I|

Oj Switching overhead due to clock handler on Jj

pk The probability of arbitration in Ck

pi A literal in SAT clause

P(I) Power set of I

r The response of a task in preemptive scheduling

S A finite set

sj The size of the program memory of processor Jj

sij The size of task Ii in the program memory of processor Jj

τk The bound on arbitration time in Ck

Tswitch Task switching overhead

Tslj
The number of task switching for Gl on Jj

Tsij
The number of task switching for a task on Jj

tj The cost of task switching on processor Jj

T
′

net Total cost in time due to networks under makespan extension

T
′

slj
Reduced number of context switchings for Gl on Jj under makespan optimization

T
′

switch Scheduling overhead in makespan mode

Tij Duration of task Ii on Jj

Tclockj
Interval of a clock handler for OS/kernel on Jj

Ti Period of a task

ϕ A Boolean formula

vj Decision variable for a virtual processor for Jj

Xi Coefficient indicating whether a task is on critical path

xij A decision variable for a task Ii mapped on processor Jj

yk Decision variable for a network Ck

zki1i2 A decision variable for Ck allocated for a pair of communicating tasks

Zi1i2 Coefficient indicating whether an edge is on critical path
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B The Synthesis Tool

This is a command line tool implemented in C++. There are four modes: mode 1 is ILP-based synthe-

sis which generates model data and runs the solver lp solve by way of the library lpsolve55, mode

2 accepts previously generated model data and runs the same solver, mode 3 is ASP-based synthesis

which generates ASP programs and externally invoke the solver clasp, and mode 4 uses one of the

three synthesis heuristics. The usage for mode 1, 3 and 4 is:

ilpf [-h] [-d data] [-l log] [-t timeout] -c clog -m model

-p processors -n networks -S sizes -C cycles [-P powerSetFile]

-I taskInfoFile [-M] [-A | -G | -G+r | -G+g | -G+p]

where [] are optional arguments.

-h: Prints help contents.

-d: Specifies the name of the GNU Mathprog ILP data file for output. This file is generated after the

formulation, and can be passed as argument in mode 2. If the file is not specified, a default file

data.ilp is generated instead. The name of the data file (regardless if passed or default) is

post fixed with pass number if in makespan mode (e.g. data.ilp pass 3).

Note: GNU Mathprog format allows an ILP model to be split into a generic model file, and

a problem instance specific data file. Both files are read by the solver using an API defined

in xli MathProg library. Therefore, the synthesis tool requires both dynamically linked

libraries lpsolve55 and xli MathProg.

-l: Specifies the name of the log file for the ILP solver. If the file is not specified, solver output will

be printed to stdout only. A separate log file synthesis.rpt is generated for all other

printouts from the formulator.

-t: Specifies the solver time out in seconds. The solver will abort after this time. If the parameter is

not specified, a default value of 18000 seconds is used. Specifying this parameter influences

the tool in this way:

• If an optimum solution is found, the solution is written out to a file

data.lp solution, where data is the output data file.

• If a user specifies the parameter and a feasible solution is found, then the solution is

written out to a file data.lp solution 0.

• If a default timeout is used, and a feasible solution is found, then the tool attempts to

find an optimum solution by changing solver settings and restarting the solver. A maxi-

mum of three further attempts are done. Suboptimum solutions are written out to a file

data.lp solution n, where n is the number of an attempt (0,1,2 or 3). Solver set-

tings in further attempts are:

Attempt 1:
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set_bb_rule(lp, NODE_PSEUDONONINTSELECT +

NODE_GREEDYMODE +

NODE_DYNAMICMODE +

NODE_RCOSTFIXING);

set_bb_floorfirst(lp, BRANCH_CEILING);

Attempt 2:

set_bb_floorfirst(lp, BRANCH_FLOOR);

Attempt 3:

set_bb_floorfirst(lp, BRANCH_AUTOMATIC);

set_mip_gap(lp, TRUE, 1.0e-8);

-c: Specifies the name of the clog text file dump. This file is generated in PinHat after running MPI

simulations. Alternately, the file can be generated from a binary CLOG2 format, followed by a

conversion into a text file using MPE clog2 extract utility by invoking

mpiexec -log -n <# tasks> -localonly <appl.> [appl. opt.]

to generate the binary clog2 file dump from MPI simulations, and then

java -jar "clog2_extract.jar" <application>.clog2

to convert clog2 into a text format according to Figure 3.4(a).

-m: Specifies the name of the GNU Mathprog ILP model containing equations described in chapter

3. The currently supported version of the model is v10a.

-p: Specifies the name of the file containing processor parameters. This is a text file in which each

line specifies parameters of a single instance of a processor as shown in Listing 1. The interval

// This is a comment line.

P1,450,160e+6,64,112,3,40 // 1st instance of processor P1

P1,450,160e+6,64,112,3,40 // 2nd instance of processor P2

//| | | | | | |_ interval of clock-int. handler.

//| | | | | |____ID code for kernel model.

//| | | | |_______Task switching overhead.

//| | | |___________Size of program memory.

//| | |_______________Clock frequency.

//| |_____________________Processor area on FPGA.

//|_______________________The name of the instance.

Listing 1: Format for processor cost

of the clock interrupt handler in clock cycles. See remarks below for the units in the paragraph

for clock frequency.
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The ID code for the kernel model specifies the type of the kernel used on this processor instance.

The model influences how task switching overhead is computed in the formulator, and whether

there is a feasible schedule for a group of task (see Section 3.2.2 for details on task switch-

ing overhead). Mixing realtime and non-realtime models is not allowed. Currently supported

models are:

The task switching overhead is the actual cost of switching context in clock cycles (the param-

eter tj). See remarks below for units in the paragraph for clock frequency.

The size of the program memory is used to determine during optimizations if a certain task,

or group of tasks, can fit into this processor’s instruction memory. Even though not enforced

by the application, the units given here must be the same as those given in task size file (see

below).

The clock frequency does not go directly into the ILP model, but is used to derive other time

units. For example, if the supplied parameter is in MHz, then other time units (e.g. clock inter-

rupt handler interval) will be converted into µS. While not enforced by the tool, the units must

be consistent for all processor instances.

The processor area on FPGA is used for area constraint. Any appropriate metric and units can

be given as these are not further interpreted. However, units and metrics for all processors must

be consistent, and they also must be consistent to those given under network parameters.

The name of instances are not interpreted in the formulator: their use is to help the designer

differentiate between different instances in generated solutions. There is no restriction other

than that a name must be representable as a C++ string.

Note that the OS overhead Oj in Section 3.2.2 is not yet used because right now the formulator

assumes 0 overhead (subject to future extension).

-n: Specify the name of the file containing network parameters. This is a text file in which each line

specifies parameters of a single instance of a network as shown in Listing 2.

// This is a comment line.

fsl_1,2,451,6.25e-6,0,0,fsl // 1st instance of type FSL

fsl_2,2,451,6.25e-6,0,0,fsl // 2nd instance of type FSL

// | | | | | | |____ network type.

// | | | | | |_______ probability bound.

// | | | | |_________ arbitration probability.

// | | | |_______________ network latency.

// | | |____________________ network area.

// | |_______________________ network capacity.

// |__________________________ instance name.

Listing 2: Format for network file

The type of the network is for readability only. It is not used in the formulator, but must be

specified.

The probability bound is a positive number that specifies the bound on network arbitration time

as discussed in Section 3.2.1.4 (parameter τk). Invalid values will cause the formulator to abort

with an error. See the paragraph below on units.

The arbitration probability is the probability that arbitration will occur due to contention of

network resources as described in Section 3.2.1.4 (parameter pk). This is a number between 0

and 1. Invalid values will cause the formulator to abort with an error.
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Table B.1: Supported Kernel IDs

ID Kernel Remarks

0 Cyclic This is a basic cyclic executive. There is no scheduling,

so all group of tasks can be mapped on the processor, and

there is no switching cost.

1 Timed This model assumes that each task will be activated by in-

terrupts. i.e. if an interrupt occurs, one or more tasks in a

task group will execute. The group has a feasible schedule

if the sum of all task durations
∑

Tij is less than the inter-

rupt interval. The switching cost is zero because there is no

preemption.

2 Fixed-Priority Calculates switching cost and schedule feasibility accord-

ing to Algorithm 1.

3 Round Robin This is a round robin preemptive model. Any group

has a feasible schedule. Switching cost is computed as

⌈
∑

Tij/clock interrupt interval⌉.

The transfer latency for a word for the network is as described in Section 3.2.1.4 (parameter

Lk). See the paragraph below on units.

The network area on FPGA is used for area constraint. Any appropriate metric and units can be

given as these are not further interpreted. However, units and metrics for all networks must be

consistent, and they also must be consistent to those given under processor parameters.

The capacity specifies the maximum number of processors that can be attached to the network

as discussed in Section 3.2.1.4 (parameter Mk).

The name of instances are not interpreted in the formulator: their use is to help the designer

differentiate between different instances. There is no restriction other than that a name must be

representable as a C++ string.

Multi-hop networks are specified using the same format. Parameters given should reflect QoS

guarantees as discussed in Section 3.2.1.4.

All time units must be the same as those that will be derived from the clock frequency in the

processor file. The tool performs no checking. If for instance the time unit for the parameters

given here are in seconds, but the frequency is in MHz, then results will be falsely biased against

network usage.

-S: Specifies the name of the file containing task sizes on processors. Sizes given in this file must be

consistent with the size parameter in the processor file (parameters sij). The tool performs no

checks. The format is as shown in Listing 3. Note that the format is essentially a table, where

each row specifies the size of a given task on a given processor. Following the convention

in ILP formulation in Chapter 3, processor indices are J0, J1, etc, whereas task indices are

I0,I1, etc. Also note that this file specifies two additional parameters: FPGA size constraints

for processing elements APE and for networks Anet. These two constraints must be consistent

with area parameters specified for processors and networks in corresponding files. The tool

performs no checks. The file is automatically generated by PinHat.

-C: Specifies the name of the file containing task durations on processors (parameters Tij) as shown

in Listing 4.

Note that the format is essentially a table, where each row specifies the duration of a task on

a processor. While not enforced, time units must be consistent with those given or implied in
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/* specify the area constraints */

param A_pe := 31584;

param A_net := 31584;

/* specify the table with task size on

each processor */

param taskSize : J0 J1 J2 J3 J4 J5 :=

I0 5 5 5 5 5 5

I1 5 5 5 5 5 5

I2 5 5 5 5 5 5 ;

Listing 3: Format for task sizes on processors

/* specify the table with task durations on

each processor */

param procTime : J0 J1 J2 J3 J4 J5 :=

I0 6032e-9 6032e-9 1034e-9 1034e-9 11e-9 11e-9

I1 3504e-9 3504e-9 601e-9 601e-9 601e-9 601e-9

I2 909e-9 909e-9 909e-9 156e-9 156e-9 156e-9 ;

Listing 4: Format for task cycles on processors

network and processor file. The information in this file is also used for computing task priorities

and in schedulability analysis. The file is automatically generated by PinHat.

-P: Specifies the name of the file containing the power set P(I) of the task set I = {I0, . . . , In}
(see Section 3.2.2.4). Listing 5 shows the format (only the last 5 lines for N = 9 are shown).

This file is automatically generated by PinHat, and is only required for ILP and ASP synthesis

modes.

I0 I1 I2 I4 I5 I6 I7 I8 I9

I0 I1 I3 I4 I5 I6 I7 I8 I9

I0 I2 I3 I4 I5 I6 I7 I8 I9

I1 I2 I3 I4 I5 I6 I7 I8 I9

I0 I1 I2 I3 I4 I5 I6 I7 I8 I9

Listing 5: Format for power set

-I: Specifies the name of the file containing task information (period, rate and deadline) as outlined

in Listing 6. The file is generated by PinHat based on user input.

The number of times a task has ran allows the user to influence if the parameter Tij should be

used for one period, or for the total duration of the application. The formulator always treats

Tij as the time for one period. To obtain the total duration, Tij is multiplied by the number of

times the task has ran. Setting the number of runs to 1 means that the optimization result is

based on one period for that task. Specifying a number less than 1 will cause the formulator to

abort with an error.

The deadline is used in schedulability analysis and in assigning priorities. This parameter is
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I0 65 1 65 10240

I1 4160 1 4160 159

//| | | | |__number of times the task ran

//| | | |______deadline

//| | |__________rate

//| |_____________period

//|_________________task ID

Listing 6: Format for task information

ignored if the kernel model does not consider deadlines. The time unit must be consistent with

those given in network and processor file.

The rate is a reserved parameter currently not in use.

The period is also used in schedulability analysis and in assigning priorities (see Section 3.2.2.

The time units must be consistent with those given in network and processor file.

-M: Toggles the Makespan mode. The application graph must be a DAG, and it must be connected.

Otherwise, the makespan is undefined, and the formulator aborts with an error.

-A : Toggles synthesis in ASP mode.

The sizes should be scaled such that integral numbers can be specified when synthesizing in

ASP mode because the tool will round up the figures entered in order to meet solver’s integrality

restrictions (see Section 4.3).

In this mode, the synthesis tool generates ASP programs and invokes Clingo for grounding

and resolution. No options are used. ASP programs are written out to <data file base

name>.lp pass n, where the base name of the data file is optionally specified by [-d], and n

is the pass number when synthesizing in makespan mode. Clingo enumerates found stable mod-

els, which are piped to <data file name> pass n.asp solution. The last model in

the file is the best one. Additionally, a report file synthesis.rpt is generated.

-G Toggles greedy heuristic mode. All options apply as in -A mode, but in this case, the powerset

file can be omitted since scheduling analysis is computed as needed, rather than completely in

advance. This mode produces the report file synthesis.rpt only, which in this case also

contains the solution.

Greedy mode can optionally be supplemented by “plus” options which further specify one of

the three heuristics.

-G+r This is the default mode, equivalent to -G. The default mode uses the “replace and search”

heuristic (see Section 5.2).

-G+g This uses the “group growing” heuristic (see Section 5.3).

-G+p This uses the “priority” heuristic (see Section 5.4).

The usage for mode 2 is:

ilpf -s -d data -m model

where switches -d and -m have the same meaning as discussed above. The switch -s toggles mode 2.
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[104] P. Simons, I. Niemelá, and T. Soininen, “Extending and implementing the stable model seman-

tics,” Artif. Intell., vol. 138, no. 1-2, pp. 181–234, 2002. 77



142 BIBLIOGRAPHY

[105] M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub, and S. Thiele, “A user’s

guide to gringo, clasp, clingo, and iclingo,” November 2008. 77, 78, 80, 81

[106] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub, “T.: Conflict-driven answer set solv-

ing,” in In: Twentieth International Joint Conference on Artificial Intelligence (IJCAI-07,

pp. 386–392, MIT Press, 2007. 77

[107] G. D. Micheli, Synthesis and Optimization of Digital Circuits. McGraw-Hill Higher Education,

1994. 94

[108] D. H. Wolpert and W. G. Macready, “No free lunch theorems for optimization,” IEEE Trans-

actions on Evolutionary Computation, vol. 1, pp. 67–82, 1997. 95


	Title page
	Imprint

	List of Figures
	Abstract
	Contents
	List of Tables
	List of Algorithms
	Introduction
	Design Phases for Flexible CMP Systems
	Research Objective
	Architecture Optimality
	Efficiency of a Design Flow

	Main Contributions
	Organization

	Design Space of CMP Systems
	System Architecture Subspace
	Peripherals
	Processing Elements
	Communication Infrastructure
	Memory Architecture

	Application Subspace
	Task Mapping
	Scheduling
	Network-Services
	Reconfigurability
	Programming Paradigm

	Physical Subspace
	Design Space Exploration
	Related Work
	Processor Design and Exploration
	NoC Design and Exploration
	CMP Design Tools and Methodologies
	Mapping Applications to Fixed CMP
	Domain-Specific Exploration

	Chapter Summary

	Problem Formulation
	Proposed Design Flow for Flexible CMP Systems
	ILP Formulation
	Basic Formulation
	Scheduling
	Makespan

	Chapter Summary

	SAT-Based Synthesis
	Methods for Solving SAT Problems
	The Resolution Proof System and the DP Algorithm
	The DPLL Algorithm

	Answer Set Programming and the Potassco Suite
	Encoding the Synthesis Problem as ASP Programs
	Task Mapping
	Processor Sharing
	Processor Area Constraints
	Network Usage Constraints
	Network Capacity and Area Constraints
	Scheduling Constraints
	Makespan
	Objective Function

	Comparison of Synthesis Results
	Non-Realtime Applications
	Realtime Preemptive Scheduling
	Makespan Optimization

	Chapter Summary

	Greedy-Like Heuristics
	Substructure of the Synthesis Problem
	Instances Without Resource Constraints
	Practical Challenges and Solutions
	Instances with Resource Constraints

	Replace and Search Heuristic
	Processor Assignment
	Network Assignment
	Optimization Loop
	Area Recovery

	Group Growing Heuristic
	Priority Assignment Heuristic
	Comparison of Synthesis Results
	Non-Realtime Applications
	Realtime Preemptive Scheduling
	Makespan Optimization

	Chapter Summary

	Conclusion
	Summary
	Outlook

	Glossary and Notation
	Glossary
	Notation

	The Synthesis Tool
	Bibliography



