A Tool for Generating Partition Schedules of
Multiprocessor Systems

Hans-Joachim Goltz and Norbert Pieth

Fraunhofer FIRST, Berlin, Germany
{hans-joachim.goltz,nobert.pieth}@first.fraunhofer.de

Abstract. A deterministic cycle scheduling of partitions at the operat-
ing system level is supposed for a multiprocessor system. In this paper,
we propose a tool for generating such schedules. We use constraint based
programming and develop methods and concepts for a combined inter-
active and automatic partition scheduling system. This paper is also
devoted to basic methods and techniques for modeling and solving this
partition scheduling problem. Initial application of our partition schedul-
ing tool has proved successful and demonstrated the suitability of the
methods used.

1 Introduction

Particularly in safety-critical areas such as medical applications and the aerospace
and automotive industries, the behavior of both simple and highly complex em-
bedded systems must be exactly known. This is achieved by defining the workflow
patterns of the individual subtasks, so-called scheduling. In many computer ap-
plications a dynamic scheduling of the processes is used. By contrast, systems
operating in safety-critical areas execute defined and sequenced work steps, with
execution being continuously repeated (see also [8], [9]). Often, the execution of
a workflow pattern takes only a few seconds.

In this paper, we suppose a deterministic cycle scheduling of partitions at
the operating system level and a given scheduling method among tasks within
each partition. The tasks in one partition can only be executed during the fixed
time slices allocated to this partition. When constructing such a scheduling of
partitions, the execution sequence of the individual work packages is often de-
fined manually. Here, developers soon encounter problems, given the very large
number of possible variations and constraints that have to be taken into account.
For instance, a specific sequence of work steps must be taken into consideration
in the scheduling process. At the same time, a component such as a processor
should, if possible, be able to execute a work step in one piece to avoid unnec-
essary switching overhead.

We developed a scheduling tool that generates the partitions schedules for
such a multiprocessor system using constraint based programming methods.
Here, all the constraints of these complex scheduling tasks are taken into account
even before the actual systems control program - the scheduler - is configured.

167

The basic idea is to avoid conflicts and optimize schedules beforehand rather
than troubleshooting after the event.

Our research is concerned with the development of methods, techniques and
concepts for a combination of interactive and automatic scheduling. The au-
tomated solution search will be implemented in such a way that it normally
allows a solution to be found in a relatively short time, if such a solution exists.
The scheduling tool will be flexible enough to take into account special user re-
quirements and to allow constraints to be modified easily, if no basic conceptual
change in the problem specification is necessary. An essential component is the
automatic heuristic solution search with an interactive user-intervention facil-
ity. The user will, however, only be able to alter a schedule such that no hard
constraints are violated.

An exemplary application of a combined interactive and automatic parti-
tion scheduling system was developed. The first test phase has been successfully
completed. The scheduling tool is designed to be user-friendly. Its graphical in-
terface and combined automatic and interactive solution search component allow
the quick generation of schedules, which can be individually tweaked within the
given ranges.

2 Problem Description

In this section, we explain the used notions and describe the problem. It is
assumed that a multiprocessor system and a set of applications are given. Each
application consists of a set of tasks. Each application will be located in one
partition on one processor. The dedicated processor may be statically configured
or one part of the scheduling process.

A time slice is the non-preemptive (i.e. uninterrupted) usage of processor
time, solely allocated for one partition. A partition consists of a set of time
slices, which have to follow the given constraints and which in total will be
repeated periodically. Note that we do not consider the operation or inherent
schedule of the tasks within a partition. This is outside of the scope of this paper.
A period is specified by the time distance between beginning of cycle N until

Fig. 1. periods of partitions

beginning of cycle N+1 of a partition allocation of the processor time. Since a
period may have also other properties, we call this distance by period length,

168

too. The duration per period is the duration (sum of time slices) the processor
is allocated to the partition per period. A partition may get one or several time
slice(s) per period. In Figure 1 the periods of two partitions are marked. One
partition consists of one time slice per period while the other partition consists
of two time slices per period.

Furthermore an overall time interval is given for which the partition schedul-
ing will be generated. In the following this time interval is called scheduling
period (also known as hyper period). The goal is the generation of a determin-
istic partition scheduling for this given scheduling period such that the given
constraints described below are satisfied. This generated scheduling will be re-
peated continuously on the discrete processors.

For each partition there are constraints on the period and the duration per
period. There may exist partitions which have to follow strong defined periods,
so called fized periods. Variations are not allowed in these cases. We distinguish
between those and fiexible periods, which allow certain variations. These flexible
periods are very useful during solution search, in particular when the processor
load reaches the limit of the period capacity.

A special focus must be held on the situation at the end of each period and
the entry situation for the following period. All constraints must still be met in
this intersection. For a coupled system some synchronization activities will take
place and have to be considered. It should be aimed to allow larger variants in
period and duration for these overall scheduling periods from one to its follower.
These special aspects are not presented in depth in this paper.

If one application should be spread over different processors than in our
system there should be used one copy of this application for each processor
involved and there must be specifications of the relations of the processes.

Between two partitions on different processors there may be definitions of
relations of various kinds. These relations always reference to the beginning of
one period or the end of the last time slice belonging to that period. The pattern
of these relations may be e.g.:

begin(...) +X < begin(...)
end(...) +X = begin(...)
begin(...) +X < begin(...)
end(...) > begin(...) +X
end(...) +X < end(...)

A problem is specified by an amount of special definitions and constraints.
The important components of a complete problem specification consist of:

1. a definition of the basic problem parameters:
(a) the length of the scheduling period,
(b) the basic time unit such that all time values are integers (for instance
1 ms or 1/10 ms),
(c) the worst case waiting time at the end of a scheduling period (time, which
may be necessary for the synchronization of loosely coupled processors);
2. a set of definitions for each processor:
(a) the time for changing a partition on this processor,

169

(b) the general time for writing data after the end of a time slice (commu-
nication activity);
3. a set of definitions and constraints for each partition (application):
(a) the processor allocation or constraints for that (e.g.: not processor X;
another processor than the processor dealing with partition Y')
(b) the period length of the partition,
(¢) for the period length, the allowed difference is specified by its minimum
and its maximum,
(d) the duration of a period,
(e) for the duration of a period, the allowed difference is specified by its
minimum and its maximum,
) the minimal CPU load (e.g. per mill) within the scheduling period,
(g) the maximal number of time slices within a period,
(h) the minimal duration of a time slice,
(i) special constraints on the end of the scheduling period;
4. a set of definitions for the relations between the partitions; the relations
can be of different kind and related to the begin and/or the periods of two
partitions belonging to different processors.

o

—~
-

3 Problem Modeling

The problem of generating partition scheduling for multiprocessor systems can
be suitably modeled in terms of a set of constraints and a constraint based
programming language can be used for solution search. Constraint Logic Pro-
gramming with constraints over finite integer domains, CLP(FD), has been es-
tablished as a practical tool for solving discrete combinatorial problems (e.g. [4],
[10], [11]). The success of the search often depends directly on the chosen model
and the modeling options on the chosen constraint solver. Global constraints use
domain-specific knowledge and specialized consistency methods to obtain better
propagations results. They can be applied to large problem instances and in gen-
eral improve the efficiency for solving real-life problems. The global constraints
built into the Constraint Logic Programming language CHIP are particularly
useful for problem modeling. Examples of global constraints are cumulative
and diffn (see e.g. [1], [2]). Note that global constraints which are similar to
diffn exist also in other constraint based programming languages with other
names.

The basic method for the problem representation by constraint programming
is described in the following and refers to the problem specification given in
Section 2. Note that the special constraints related to the end of the scheduling
are not considered in this paper. Concerning the definition of the basic problem
parameters it is supposed that a scheduling horizon (hyper period) is given and
that all values are integers (see (1) of the specification). The given processors are
numbered by natural numbers 1,2, Let A;,..., A, , be the given applications
(we identify these also with the partitions they are belonging to). For each Ay
we define a domain variable proc(Ay) for the allocation of the processor. The

170

domain of this variable is equal to the numbers of the allowed processors (see
(3a) of the specification). If a processor allocation is given then proc(Ay) is equal
to the corresponding number of the processor.

A sequence of periods p¥,p§, . .. ,pfnk is defined for each Ay . The length of the
sequence depends on the scheduling period and the sum of the periods belonging
to a partition. For each period p¥ domain variables for the length of the period
I(p¥) and the duration of the period d(p¥) are defined by the given values and
the allowed differences (see (3b,c,d,e) of the specification). If differences of the
period length and the duration per period are not allowed then I(p¥) and d(pF)
are integers.

Furthermore, a sequence of time slices s} |, sF5,..., s is defined for each

PRI
period pf . The length of such a sequence ny ; is given the maximal number of
time within a period (see (3g) of the specification). For each time slice sfj we
define domain variables start(s} ;) for the starting time and d(s}';) for duration
of this slice. Firstly, the domain of start(sf’ j) is given by the scheduling period
(from 0 to Maz, the scheduling period). Let mins be the minimal duration
of a time slice and maz, be the maximal duration of a period (see (3h,e) of
the specification). The domain of d(sfj) is defined by the union of {0} and the
interval [min,, maz,]. A time slice s} ; is only relevant if d(s ;) is different from
0. Since one time slice of each period has to be relevant we can suppose that the
first time slice of each period d(s},) is different from 0. Furthermore, we can

suppose that

start(sy ;) + d(sf;) < start(sf;,,)

start(sy) + d(pf) < start(sf,, ;)

for all the corresponding time slices and periods. Then the following equation is
to be satisfied for the period length:

I(pF) = start(s§+1,1) — start(sifl)
The duration of a period d(p¥) is equal to the sum of the durations of time slices
within this period:

d(pF) = d(sfl) + ...+ d(sfn}“)

The minimal CPU load within the scheduling period (see (3f) of the specification)
corresponds an integer minDy. Then, for each partition Ay, this constraint can
be modeled by the inequality

dip¥) + ... + d(pfnk) > minDy

It is important to state by a constraint that all time slices must not overlap. Since
the time for changing a partition has to be integrated into such a constraint we
define the extended duration dy (s¥ ;) of arelevant time slice by the sum of d(s¥ ;)
and the time for changing a partition. If a processor allocation is not given and
the time for changing is different on the processors then the symbolic element-
constraint can used for computing this duration. In the case of a time slice with

d(sf]) = 0, the extended duration dl(sﬁj) is also equal to 0.

171

We consider a time slice as a ”two-dimensional rectangle” with the dimensions
“time” and “processor”. Such a rectangle can be represented by

[start(sf ;), proc(Ay), di (s} ;,1] .

The use of the global diffn-constraint ensures that these rectangles must not
overlap. For our problem we need only one diffn-constraint. Note that time
slices with duration of 0 are not relevant for the diffn-constraint. If for each
application the processor allocation is given and is fixed then a non-overlapping
constraint can generated for each processor separately. In this case, the diffn-
constraint with ”one-dimensional rectangle” can be considered or the global
constraint cumulative-constraint can be used with a resource limit of 1.

The relations between the periods of the partitions (see (4) of the specifica-
tion) can be easily represented by arithmetic constraints (equalities, disequali-
ties, inequalities). The time for writing data after the end of a time slice (see
(2b) of the specification) has to be integrated into these constraints.

4 Solution Search

A solution of a constraint problem is an assignment of the domain variables to
values of their domains such that all the constraints are satisfied. A constraint
solver over finite domains is not complete because consistency is only proved
locally. Thus, a search is generally necessary to find a solution. Often, this search
is called “labeling”. The basic idea behind this procedure is to select a variable
from the set of problem variables considered, choose a value from the domain of
this variable and then assign this value to the variable; if the constraint solver
detects a contradiction backtracking is used to choose another value. This is
repeat until values are assigned to all problem variables such that the constraints
are satisfied or until it is proven that there is no solution. In our scheduling
system, the domain-reducing strategy is also used for the search. This strategy
is a generalization of the labeling method and was presented in [5]:

— The assignment of a value to the selected variable is replaced by a reduction
of the domain of this variable.

— If backtracking occurs, the not yet considered part of the domain is taken
as the new domain for a repeated application of this method.

Practical applications have shown that a reduced domain should be neither too
small nor too large. A solution is narrowed down by this reduction procedure,
but it does not normally generate a solution for the problem. Thus, after domain
reduction, assignment of values to the variables must be performed, which may
also include a search. The main part of the search, however, is carried out by the
domain-reducing procedure. A conventional labeling algorithm can be used for
the final value assignment. If a contradiction is detected during the final value
assignment, the search backtracks into the reducing procedure.

Since a constraint solver is used for the partition scheduling tool the search
space is reduced before the solution search begins. In each search step the search

172

space is further reduced by the constraint solver. Nevertheless, in most cases,
the search spaces of relevant problems are too large and it is not possible to use
a complete solution search within an acceptable time amount. Therefore, the
complete search spaces cannot be investigated and heuristics are needed for a
successful solution search.

The search includes two kinds of nondeterminism: selection of a domain vari-
able and choice of a reduced domain concerning the selected variable. If label-
ing is used, the reduced domain consists of a single value. The success of the
domain-reducing strategy depends on the chosen heuristics for the order of vari-
able selection and for the determination of the reduced domain.

Our experience has shown that in many cases either a solution can be found
within only a few backtracking steps, or a large number of backtracking steps
are needed. We therefore use the following basic search method: the number
of backtracking steps is restricted, and different heuristics are tried out. This
means that backtracking is carried out on different heuristics. With regard to
the problems discussed in this paper, the user can choose between different
methods for the solution search. In particular, the user can control the following
parameters: the number of attempts with different heuristics, the number of
permitted backtracking steps for one attempt, and the priorities of the partitions.

In the recent partition scheduling tool, a static ordering is used for the heuris-
tic of variable selection. This ordering is defined by the priorities of the partitions
and the following ordering of the relevant domain variables related to the selected
partition Ay:

pT‘OC(Ak)7 l(p]f)v d(plf)a
Start(s]f,l)v d(sllc,l)v start(s’fg), d(slf,2)7 RS

l(pIQC)v d(pg)v Sta’rt(sg,l)v d(5§,1)7 et

The domain-reducing strategy is used for the following domain variables: the
length of a period l(pf), the duration of a period cl(pf)7 and the starting time
of a time slice start(sﬁ ;) - The used search strategy prefers the allocation of the
domain maximum to the domain variable d(s ;) (duration of a time slice). The
goal of this strategy is to minimize the number of time slices of a period. Thus
the switching overhead can be reduced.

The following properties should be taken into consideration for the determi-

nation of priorities of the partitions:

— the allowed difference of the period length (partitions with fixed periods
should be scheduled firstly),

— the number of allowed time slices per period (if this number is equal to 1
then this partition should be scheduled earlier);

— the durations per period;

— the desired period length;

— the relations between partitions.

173

If a domain variable of period length is selected then the heuristics for the
choice of a reduced domain or a value can be controlled by a parameter such
that one of the following heuristic is used:

— the given value of the period length is preferred,
— the minimum of the domain value is preferred,
— the maximum of the domain value is preferred.

Furthermore, there is a parameter such that the choice of a reduced domain (or
a value) for the starting time variable of a time slice can be controlled by the
parameter values: minimum, maximum, middle. Additionally, there is a heuristic
for minimizing the number of time slices per period.

m [| [l (- | |/ 0L
=i ="

[[[¥
L] T

Fig. 2. Example of a partition scheduling, excerpt of approx. 200 ms

5 Graphical Interface

The scheduling tool is designed to be user-friendly by its graphical interface. The
generated schedule can be graphically displayed in a clear form with a flexible
layout and a user-defined level of detail. Figure 2 shows a part of an exemplary
partition schedule for three processors. This partition schedule is generated by
our tool and displayed by the graphical interface. For each application the par-
tition schedule is represented in one row of this figure. Moreover, for each pro-
cessor, all partitions of the processor are graphical represented in one row. The

174

relations between two partitions are marked by lines. The following interactive-
scheduling actions are possible with the help of the graphical interface:

— scheduling an individual partition,

— scheduling marked partitions automatically,

— removing marked partitions from the schedule,

— moving time slices of a partition within the schedule,
— scheduling the remaining partitions automatically.

These actions can be performed in any order or combination, and no automatic
backtracking is caused by such user actions. The user can, however, only alter a
schedule in such as way that no hard constraints are violated.

The user interface and the combined automatic and interactive solution
search component allow the quick generation of schedules, which can be in-
dividually tweaked. For instance, different scenarios can be easily tried out and
changes swiftly implemented, consistency with respect to the specifications be-
ing guaranteed at all times. The targeted development of variants enables the
solution process to be made far more flexible and efficient, even when adopting
an iterative approach and when the initial tolerance limits are exceeded. With
the help of the graphical interface the user can interactively generate and evalu-
ate different variants, depending on the optimization criterion. This enables the
user to incorporate his expertise.

6 Implementation and Results

The Constraint Logic Programming language CHIP ([3]) was selected as the
implementation language. The global constraints and the object oriented com-
ponent built into CHIP are particularly useful for problem modeling.

For the representation of the problem, we used three phases: the definition
of the problem, the internal relational representation, and the internal object
oriented representation. For the first phase, the definition of the problem, we
developed a declarative language for problem descriptions. All components of
a partition scheduling problem can be easily defined using this declarative lan-
guage. Thus, the graphical user interface is only needed to set the parameters. In
the second phase, the problem definition is transformed into an internal relational
representation. In the third phase, the internal object-oriented representation is
generated from the internal relational representation. The definition data are
converted into a structure that is suitable for finite integer domains. The object-
oriented representation is used for the solution search and the graphical user
interface.

Our scheduling tool can generate in less than a minute a consistent sched-
ule for complex multiprocessor systems with many thousands of time slices for
an arbitrary interval. Additionally, the generated schedule is guaranteed to be
error-free and executable. Even extreme optimizations are properly manageable
because it is possible to generate schedules that allow over 90 per cent CPU
load. In addition, the results of the scheduling process can easily be converted

175

into other formats, enabling them to be integrated into the overall system de-
velopment process. It should be noted that the currently implemented version
of our partition scheduling tool supposes that an allocation of the partitions to
the processors is given.

7 Conclusions and Future Work

The initial application of our partition scheduling system has been proved suc-
cessful and has demonstrated the suitability of the used methods. From this
application, we were able to obtain useful information for our future work. Our
future research on partition scheduling problems will include investigations of
heuristics for variable and value selection and continued study of the influence
of different modeling techniques on the solution search. Furthermore we will ex-
tend our implementation of a partition scheduling system such that scheduling
process can also allocate partitions to processors. The development of special
search methods is necessary for this goal. Moreover, a graphical interface for the
problem specification will be implemented. The methods, techniques and con-
cepts developed or under development will also be tested on other applications.

References

1. A. Aggoun and N. Beldiceanu,” Extending CHIP in order to solve complex schedul-
ing and placement problems”, Math. Comput. Modelling, 17(7):57-73, 1993.

2. E. Beldiceanu and E. Contejean, ” Introducing global constraints in CHIP”, J. Math-
ematical and Computer Modelling, 20(12):97-123, 1994.

3. M. Dincbas, P. van Hentenryck, H. Simonis, A. Aggoun, T. Graf, and F. Berthier,
”The constraint logic programming language CHIP”, in Int. Conf. Fifth Generation
Computer Systems (FGCS’88), pages 693-702, Tokyo, 1988.

4. M. Dincbas, H. Simonis, and P. van Hentenryck, ”Solving large combinatorial prob-
lems in logic programming”, J. Logic Programming, 8:75-93, 1990.

5. H.-J. Goltz, "Reducing domains for search in CLP(FD) and its application to job-
shop scheduling”, in U. Montanari and F. Rossi, editors, Principles and Practice
of Constraint Programming — CP’95, volume 976 of Lecture Notes in Computer
Science, pages 549-562, Springer-Verlag, 1995.

6. J. Jaffar and M. J. Maher, ”Constraint logic programming: A survey”, J. Logic
Programming, 19/20:503-581, 1994.

7. K. Marriott and P. J. Stuckey, " Programming with Constraints: An Introduction”,
The MIT Press, Cambridge (MA), London, 1998.

8. Y. Lee, D. Kim, M. Younis, and J. Zhou, ”Partition Scheduling in APEX Runtime
Environment for Embedded Avionics Software”, in Proc. IEEE Real-Time Comput-
ing Systems and Applications, pages 103109, Oct. 1998.

9. Y. Lee, D. Kim, M. Younis, and J. Zhou, ”Scheduling Tool and Algorithm for
Integrated Modular Avionics Systems”, in Proc. Digital Avonics Systems Conference
(DASC), Oct. 2000.

10. P. J. Stuckey (editor), ”Principles and Practice of Constraint Programming — CP
2008”, volume 5202 of Lecture Notes in Computer Science, Springer-Verlag, 2008.

11. M. Wallace, ”Practical Applications of Contraint Programming”, Constraints, An
International Journal, 1:139-168, 1996.

176

	Practice of Logic Programming
	A Tool for Generating Partition Schedules of Multiprocessor Systems (Hans-Joachim Goltz and Norbert Pieth)
	Abstract
	1 Introduction
	2 Problem Description
	3 Problem Modeling
	4 Solution Search
	5 Graphical Interface
	6 Implementation and Results
	7 Conclusions and Future Work
	References

