Transforming Imperative Algorithms to
Constraint Handling Rules

Slim Abdennadher, Haythem Ismail, and Frederick Khoury

Department of Computer Science, German University in Cairo
[slim.abdennadher, haythem.ismail, frederick.nabil]@guc.edu.eg
http://met.guc.edu.eg

Abstract. Different properties of programs, implemented in Constraint
Handling Rules (CHR), have already been investigated. Proving these
properties in CHR is fairly simpler than proving them in any type of
imperative programming language, which triggered the proposal of a
methodology to map imperative programs into equivalent CHR. The
equivalence of both programs implies that if a property is satisfied for
one, then it is satisfied for the other.

The mapping methodology could be put to other beneficial uses. One
such use is the automatic generation of global constraints, at an attempt
to demonstrate the benefits of having a rule-based implementation for
constraint solvers.

1 Introduction

Algorithms have properties that define their operation and their results, such as
correctness and confluence which can be illustrated and proven in programs of
various languages. Due to the differences between languages, proofs differ from
one to another, and could therefore be easier in some than in others. The aim of
the paper is to present an approach to map imperative programs to equivalent
rule-based ones. Thus, a technique to prove a property in an imperative program
would be to prove this same property in the corresponding rule-based version.
In this paper, a mapping from an imperative programming language to Con-
straint Handling Rules (CHR) is presented. CHR is a concurrent, committed-
choice constraint logic programming language especially designed to implement
constraint solvers. CHR, which was developed as an enhancement to the con-
straint programming paradigm, is declarative and rule-based, and is the language
of choice in this paper due to the already existing results to prove several prop-
erties, such as correctness, confluence, and termination.

Other areas of research could also benefit from the previously mentioned trans-
formation, such as the development of rule-based solvers for global constraints.
The mapping schematic in this work could be applied in the translation of im-
perative constraint solvers to declarative rule-based solvers, with a purpose of
analyzing these constraints through CHR. With the flexibility and expressiv-
ity of CHR, such a translation could have benefits on the functionality of the
involved constraint-handlers.

139

This paper is structured as follows. In Section 2 we briefly present the syntax
and semantics of a subset of CHR. In Section 3, we give a formal presentation
of the mapping and prove the equivalence of the imperative algorithm and the
corresponding generated CHR program. In Section 4, we present using examples
the methodology for transforming imperative algorithms into CHR. Finally, we
conclude in Section 5 with a summary and a discussion of future work.

2 Constraint Handling Rules

This section presents the syntax and the operational semantics of a subset of
CHR, namely simpagation rules. We use two disjoint sorts of predicate sym-
bols for two different classes of constraints: built-in constraint symbols and user-
defined constraint symbols (CHR symbols). Built-in constraints are those handled
by a predefined constraint solver that already exists. User-defined constraints are
those defined by a CHR program. Simpagation rules are of the form

Rulename @ Hi{\Hs <=>C' | B,

where Rulename is an optional unique identifier of a rule. The head H;\Ho
consists of two parts H; and Hy. Both parts consist of a conjunction of user-
defined constraints. The guard C' is a conjunction of built-in constraints, and
the body B is a conjunction of built-in and user-defined constraints. If H; is
an empty conjunction, then we omit the symbol “\” and the rule is called a
simplification rule.

The operational semantics of a simpagation rule is based on an underlying theory
CT for the built-in constraints and a state G which is a conjunction of built-in
and user-defined constraints. A simpagation rule of the form H;\Hs < C | B is
applicable to a state H{ AHL,AG if CT |= Gp — 32((Hy = H{ ANHy = H))NC),
where Z are the variables in Hy and Hs,, and G g is a conjunction of the built-in
constraints in G. The state transition is defined as follows:

H ANH,NGw— HANGANBACA (Hy=H{ AN Hy = H})

3 Operational Equivalence

In Section 4, we gave a quasi formal description of the mapping from Z to
CHR programs. We now turn to a more formal presentation of the mapping,
ending this section with a proof of equivalence between Z and corresponding
CHR programs.

3.1 The Language 7

To simplify the exposition, we impose two simple restrictions on Z programs. It
should be clear that the following restrictions are only syntactic; the expressive
power of 7 is preserved.

140

1. The identifier on the left-hand side of an assignment statement does not
occur on the right-hand side and is not declared in the same statement.
This can easily be enforced by the careful use of temporary variables and
the separation of declaration from initialization.

2. No array variables are used.

Assuming that all arrays have fixed sizes, an 7 program with an array A
indexed from 0 to n may be replaced by n+1 variables Ay, ... A,,. Naturally,
several other changes will need to be made. In particular, some loops will
need to be unwrapped.

The set of thus restricted Z programs may be defined recursively as follows,
where we assume the standard imperative syntax of identifiers and expressions.

Definition 1. The set 7 is the smallest set containing all of the following forms.

dt x;, where dt is a data type and = an identifier

x = e;, where z is an 7 identifier and e is an Z expression

if e {P1} else { P}, where e is a Boolean expression and Py, P, € 7
while e {P}, where e is a Boolean expression and P € T

Py Py, where P, P, € T.

CU L

We can provide standard operational semantics for Z in the spirit of [2]. A store
o is a partial function from 7 identifiers to Z values. We denote by X' the set of
all possible 7 stores. Usually, the semantics is given by a transition system on
the set I" of program configurations, where I' C (Z x X) U X. A configuration ~y
is terminal if v € Y. Given that Z programs are deterministic, every terminating
program P and initial store o; have a unique terminal configuration [P](¢). To
define the semantics of Z, it thus suffices to define the function [P]. A recursive
definition (on the structure of Z programs) of [P] is given in Figure 1.1

v

In what follows, x is an Z identifier, e is an Z expression, and ¢*~" is identical to o

except that o(z) = v.

1. [dt x;](0) = g~ Pefault(@t)
where Default(dt) is the default value for the Z data type dt.
2. [z=e;](0) = o= [eI”
where [e]? is the value of the Z expression e with respect to the store o.
3. [if e {P1} else {P:}](0) = [P](0)
where P = P if [e]? is true and P = P, otherwise.
4. [while e {P}|(c) =~
where v = [while e {P}]([P](0)) if [e]? is true, and v = o otherwise.
5. [AP)(o) = [P]([P1](0))

Fig. 1. Operational semantics of Z.

! Note that [P](c) is undefined for nonterminating configurations.

141

3.2 The CHR Fragment

In Section 3.3, we present a mapping from Z to CHR. Naturally, the mapping
is not onto, and the image thereof is comprised of CHR programs with only two
constraint symbols: var/2 and state/2. The constraint var was satisfactorily
discussed in Section 4. In this section, we examine the constraint state/2 and
some features of CHR programs employing it. For the purpose of the formal
construction, we take state to be a binary constraint.

A constraint state(b,n) intuitively indicates that the current CHR state cor-
responds to the state of the Z program following the execution of a statement
uniquely identified by the pair (b,n). As per Definition 4, b is a nonempty string
over the alphabet Y12 = {0, 1, 2} starting with a 0, and n is a non-empty string
over the alphabet X'p composed of the set of decimal digits and the separator #.
According to Definition 1, an Z program is a sequence of statements. Each of
these statements corresponds to a pair (b,n), where b = 0 and n is a nonempty
string that does not contain the # (i.e., a numeral); the number represented
by n indicates the order of the statement in the Z program. The special pair
(0, 0) corresponds to the state before any statement has been executed. If the
statement corresponding to a pair (b,n) is a while loop, then a statement in
the body of the loop will correspond to the pair (b, n#m), where m is a numeral
denoting the order of the statement within the body of the loop. Similarly, if an
if-then-else statement corresponds to the pair (b,n), then a statement within
the then block corresponds to the pair (b1, n#m). A statement within the else
block corresponds to the pair (b2, n#m). In both cases, m is a numeral denoting
the order of the statement within the block.

In order to facilitate the definition of the transformation from Z to CHR, we
need some terminology to succinctly talk about CHR programs with state con-
straints. We start with two properties of these constraints.

In the sequel, if m and n are numerals, then m,, is the numeral denoting the
number [m] + [n], where [z] is the number denoted by the numeral x.

Definition 2. Let P be a CHR program and let s = state(b,n) be a constraint
in P.

1. sis terminal if there is a rule r = Hy \ s, Hy <=> C' | B in P, such that no
state constraints appear in B. Such a rule r is a terminal rule.

2. s is maximal if n = wv, where v is the longest numeral suffix of n, and
for every other constraint state(d’,u/v’) in P, with v/ the longest numeral
suffix of v/v’; b is a substring of ¥’ and either v is a proper substring of u’ or
uw=1u"and [v] > [v'].

It is easy to show that if a CHR program has a maximal constraint, then it is
unique.

Definition 3. In what follows P, P1 and P2 are CHR programs, b € X,,, and
n e EB

1. The n-translation of P is the CHR program P,,, which is identical to P with
every constraint state (', n'#m) replaced by a constraint state (b', n'#m.,,).

142

2. The (b,n)-nesting of P is the CHR program (b, n)>P which is identical to P
with every constraint state (0b’,n') replaced by a constraint state (bb', n#n’).

3. The (b, n)-termination of P is the CHR program (b, n)V P which is identical
to P with every terminal rule

H, \ state(¥,n'),Hy<=> C|B

replaced by the rule
H;, \ state(',n'), Hy<=> C|B,state(b,n)

4. Let state(0,n’) be a maximal constraint in P;. The concatenation of P;
and P, is the CHR program

PloP2=(0,n)VP1U P2,

— !
where n = n/ ;.

3.3 The Z-CHR Transformation

We can now give the mapping from Z to CHR programs a more formal guise,
defining it as a system 7 of functions from syntactic Z constructs to syntactic
CHR constructs.

Definition 4. An Z-CHR transformation is a quadruple 7 = (N, V, &, F),
where

— N is an injection from the set of Z identifiers into the set of CHR constants.

— V is an injection from the set of Z identifiers into the set of CHR variables.

— & is an injection from the set of Z expressions into the set of CHR expres-
sions, such that £(e) is similar to e with every identifier replaced by V(x),
every constant replaced by the equivalent CHR constant, and every operator
replaced by the equivalent CHR operator.?

— F : 7 — CHR is an injection defined recursively as shown in Figure 2.

The following proposition states some syntactic properties of CHR programs
resulting from the above transformation.

Proposition 1. In what follows P is an T program and (b,n) € Earm X Eg.

1. Every rule in F(P) has exactly one state constraint in the head and at most
one different state constraint in the body.

2. Every state constraint occurring in F(P) occurs in the head of at least one
rule.

3. F(P) has a unique mazimal constraint.

2 Note the implicit, yet crucial, assumption here. We are assuming that there are
constant- and operator- bijections between Z and CHR.

143

In what follows, x is an Z identifier, e is an Z expression, and V is a (possibly empty)
conjunction of CHR constraints of the form var (N (y),V(y)), one for each identifier y
occurring in e.

1. F(dt x;) = {state(0,0) <=> var(N(z), Default(dt))}
where Default(dt) is the default value for the Z data type dt.

2. F(z=e;) ={V \ state(0,0), var(N(z),_) <=> V(x)=E(e), var(N(z),V(z))}

3. F(if e {P1} else {P>}) = (01,0) > F(P1) U (02,00 > F(P2)U S

where S = {V \ state(0,0) <=> £(e) | state(01,040),
V \ state(0,0) <=> \+&(e) | state(02,0#0) }

4. F(while e {P}) = (0,0)V((0,0) > F(P))US

where S = {V \ state(0,0) <=> £(e) | state(0,0#0),
V \ state(0,0) <=> \+&(e) | true}

5. F(P1P) = F(Pr) o F(P2)

Fig. 2. Definition of the function F from 7 to CHR programs

Note that, had the last statement of the proposition been false, case 5 in Fig-
ure 2 would not have made sense. The following important result follows from
Definition 4 and Proposition 1.

Theorem 1. Let P be an T program. If G is a state containing a single state
constraint that occurs in F(P), then exactly one rule in F(P) is applicable to

G.
Corollary 1. If P is an T program, then F(P) is confluent.

Corollary 2. If P is an T program and state(0,0) ’_)j"-'(P) G, then G contains
at most one state constraint.

Given Corollary 1, we will henceforth denote the unique final state of F(P)
when started in state G by [F(P)](G). Note that, given Proposition 1, [F(P)]|(G)

contains no state constraints.

Proposition 2. In what follows P is an I program, (b,n) € Earu X E]S, and G
18 a state containing no state constraints.

1. [F(P)4n)(G Astate(0,n)) = [F(P)](G Astate(0,0)), for any numeral n.

2. [(b,n) > F(P)](G A state(b,n#0)) = [F(P)](G A state(0,0)).

3. [(b,n)VF(P)(G A s) = [F(P)](G A s) A state(b,n), where s is a state
constraint that occurs in F(P).

Intuitively, P is equivalent to F(P) if they have the same effect; that is, if they
map equivalent states to equivalent states.

144

Definition 5. Let 7 = (M, V, &, F) be an Z-CHR transformation.

1. An 7T store o is equivalent to a CHR state GG, denoted o = G, whenever
o(x) = v if and only if G = G’ A var(N(z),v), where G’ is a state that
contains no state constraints.

2. An 7 configuration v is equivalent to a CHR state G, denoted v = G, if
either v = (P,0) and G = G’ A state(0,0) where c =G, or vy =0 =G.

3. An 7 program P is equivalent to a CHR program Ps, denoted P, = P, if
for every o and G where (Py,0) = G, [P1](0) = [P](G).

Theorem 2. For every I program P and every I-CHR transformation T =
N,V EF), P=F(P).

Proof. See the appendix.

4 Methodology for the Conversion of Imperative
Algorithms to CHR

In this section, we will informally discuss the methodology to convert an al-
gorithm written in a mini imperative programming language, called Z, to an
equivalent CHR program.

The basic features of the language 7 are:

— Variable declaration and assignment

— Alternation using the if-then-else commands
— Iteration using the while-do command

— Fixed-size arrays

In the following, we present the implementation of each of these features of
imperative programming with the intent of implementing an equivalent program
in CHR.

4.1 Variable Declaration

In order to create a storage location for a variable, whenever one is declared, a
constraint is added to the constraint store and is given the initial value of this
variable as a parameter.

The fragment of code

int x = 0;
int y 7;

will be transformed into the following CHR rules:

rl @ state(0, 0) <=> var(x,0), state(0, 1).
r2 @ state(0, 1) <=> var(y,7).

145

The constraint var/2 is used to store the value of the variables. The head of
rule r1 describes the start of the execution of the program by using a constraint
state/1. Rule r1 replaces the first state constraint by a var/2 constraint and
a new state constraint that triggers the execution of the second rule r2.

In general, a variable declaration in an imperative programming language can
be expressed in CHR, using a simplification rule of the form:

Ccurrent <=> V; Cnezt

where Ceyrrent and Cheqr are each a constraint state/1 with a constant unique
parameter. V is a constraint used for the purpose of storing the value of the
variable being declared. A constraint V' is of the form var (variable,value).

4.2 Variable Assignment

Assigning a value to an already declared variable in CHR is quite similar to the
declaration of the variable. However, instead of adding a constraint with the
initial value of the variable, we replace the already existing constraint resulting
from the last assignment of a value to the variable with a new var constraint
with the new assignment.

The fragment of code

int x = 0; // asgl
int y = x + 3; // asg2

will be transformed into the following CHR rules:

asgl @ state(0, 0) <=> var(x,0), state(0, 1).
asg2 @ var(x,V) \ state(0, 1) <=>Y =V + 3, var(y,Y).

Rule asgl performs a variable declaration with an initial value of 0. Rule asg?2
uses the value of x to compute the value of y keeping the same information about
x in the constraint store.

A wvariable assignment in an imperative programming language can be expressed
in CHR using a simpagation rule of the form:

|4 \ Ccurrenh Vora <=> 07 Vnewa Onea:t

where V' is a conjunction of var constraints needed to calculate the new value to
be assigned. Ceyprent and Cheye are the same as in the variable declaration rule.
V14 is the constraint with the old value of the variable which is being assigned
a new value, and V., is the same constraint but passed the new value being
assigned. C' is a conjunction of built-in constraints calculating the new value
which is to be assigned. In case the new value being assigned does not depend
on values of other variables, both V' and C are discarded from the rule and it
becomes a simplification rule.

146

4.3 Alternation

For the fragment of code

int a = 10; // declaration
if(a % 2 == 0)

a=a *x 2; // statement 1
else

a=a/ 2; // statement 2

the statements declaration, statement 1, and statement 2 are transformed
into the following CHR rules:

declaration @ state(0, 0) <=> var(a,10), state(0, 1).
statementl @ state(01, 1#0), var(a,A) <=> NewA = A * 2, var(a,Newh).
statement2 @ state(02, 1#0), var(a,A) <=> NewA = A // 2, var(a,NewA).

To allow the CHR program to choose whether to execute statement1 or statement?2
after the declaration, we add two rules that are responsible for this choice.

gotol @ var(a,A) \ state(0, 1) <=>

Tmp = A mod 2, Tmp = O | state(01, 1#0).
goto2 @ var(a,A) \ state(0, 1) <=>

Tmp = A mod 2, \+(Tmp = 0) | state(02, 1#0).

Alternation in imperative programming, achieved using if-then-else expres-
sions can be expressed in CHR using two simpagation rules of the form:

% \ Ccurrent <=>C | Cifbranch
Vv \ Ccurrem‘, <=>-C ‘ Celsebranch

where V' is a conjunction of var constraints needed to evaluate the condition
of the if-then-else expression. Ceyrrent is the state constraint holding the
current state, the state that an if-then-else expression is to be executed.
Cifbranch is a state constraint indicating that the next state is the beginning
of the body of the if block. Cesepranch 1S @ state constraint indicating that
the next state is the beginning of the body of the else block. C'is a guard that
evaluates the condition of the if statement and —C'is a guard that evaluates to
the negation of C.

4.4 Tteration
Consider the following code fragment

int a = 0; // declaration
while(a < 10)
a=a+ 1; // while block

The statements declaration and while block are transformed into the follow-
ing CHR rules:

147

declaration @ state(0, 0) <=> var(a,0), state(0, 1).
while_block @ state(0, 1#0), var(a,A) <=>
NewA = A + 1, var(a,NewA), state(0, 1).

To evaluate the while-do condition and add a repetition mechanism for the
block of while-do as long as this condition holds and to terminate the iteration
otherwise, we add the following rules:

continue @ var(a,A) \ state(0, 1) <=> A < 10 | state(0, 1#0).
terminate @ var(a,A) \ state(0, 1) <=> \+(A < 10) | true.

Iteration in imperative programming, achieved using while-do expressions, can
be expressed in CHR using the following rules:

V \ Cstartwhile <=>(C l Cewecutebody
V \ Cstartwhile <=> _‘C ‘ Cterminatewhile

where V' is a conjunction of var constraints needed to evaluate the condition
of the while-do expression. Csiqrtwhile 1S @ state constraint holding the cur-
rent state, the state indicating that a while-do expression is to be executed.
Cezecutebody 1S @ state constraint indicating that the next state is the beginning
of the body of the while block. Cierminatewnile 1S @ state constraint indicating
that the next state is the beginning of the code following the while-do ex-
pression, i.e. the termination of the while-do expression. Copgwniie 1S @ state
constraint indicating that the block of the while-do has ended and that the
condition of the loop needs to be checked again. C' is a guard that evaluates the
condition of while-do and —C' is a guard that evaluates to the negation of C.

4.5 Arrays

To simulate arrays in CHR, we represent them using lists and make use of built-
in constraints to either access or modify an element of the list. We assume the
existence of the predicate nthO(N, List, Element) that holds if Element is the
Nth value of the list List.

Given nth0/3, an access to an array element of the form x = a[3] is performed
in CHR using a rule of the form:

arraysRl @ var(a,A) \ state(B, N), var(x,_) <=>
nth0(3, A, Element), var(x,Element), state(B, N+1).

where A is the list containing the values of the array. arraysR1 is written ac-
cording to the rule for variable assignment except that nth0/3 is used to obtain
the value of the element to be assigned to x.

We also add the following implementation of replace0/4 to allow for array
element assignment:

replace0O(List, Index, Value, Result):-
nthO(Index, List, _, Rest), nthO(Index, Result, Value, Rest).

148

replace0/4 makes use of nthO(N, List, Element, Rest), which behaves sim-
ilarly to nth0/3 except that Rest is all elements in List other than the Nth
element. The resulting predicate replace0/4 sets the element at index Index
of List to the value Value and gives the list Result as the new list with the
modified element.

We then represent an assignment of the form a[3] = x using a CHR rule of the
form:

arraysR2 @ var_x(X) \ state(B, N), var(a,A) <=>
replaceO(A, 3, X, NewA), var(a,NewA), state(B, N+1).

arraysR2 is written according to the rule for variable assignment except that
replace0/4 is used to obtain the new list NewA which is the new status of the
variable a.

Ezample 1. The following imperative code fragment finds the minimum value in
an array a of length n and stores it in a variable min:

int temp; int min; int i;

min = al[0];

i=1;

while(i<n){
temp = alil;
if (temp<min){

min = temp;
}
i = i+1;

3

Note that there are no declarations for both a and n as they are expected to be
given as input to the program.

Using the conversion method represented above, the following CHR rules are
generated.

minl @ state(0, 0) <=> var(temp,0), state(0, 1).

min2 @ state(0, 1) <=> var(min,0), state(0, 2).

min3 @ state(0, 2) <=> var(i,0), state(0, 3).

min4 @ var(a,A) \ state(0, 3), var(min,MIN) <=>
nth0(0,A,Newmin), var(min,Newmin), state(0, 4).

min5 @ state(0, 4), var(i,I) <=> Newl = 1, var(i,NewlI), state(0, 5).
min6é @ var(i,I), var(n,N) \ state(0, 5) <=> (I < N) | state(0, 5#0).
min7 @ var(i,I), var(an,N) \ state(0, 5) <=> \+(I < N) | true.
min8 @ var(i,I), var(a,A) \ state(0, 5#0), var(temp,TEMP) <=>

nthO(I,A,NewTemp), var(temp,NewTemp), state(0, 5#1).
min9 @ var(temp,TEMP), var(min,MIN) \ state(0, 5#1) <=>
(TEMP < MIN) | state(O01, 5#1#0).
minl0 @ var(temp,TEMP), var(min,MIN) \ state(0, 5#1) <=>
\+(TEMP < MIN) | state(0, 5#2).

149

minll @ var(temp,TEMP) \ state(01, 5#1#0), var(min,MIN) <=>
NewMIN = TEMP, var(min,NewMIN), state(0, 5#2).
minl2 @ state(0, 5#2), var(i,I) <=> NewI = I + 1, var(i,NewI), state(0, 5).

To run the CHR program, the following goal is used to pass the necessary con-
straints and trigger the first rule:

var(a, A), length(A, N), var(n, N), state(0, 0).

5 Conclusion and Future Work

The context of this paper was a presentation of a conversion methodology to gen-
erate rule-based programs from imperative programs. Given a proof of equiva-
lence between both programs, it can be implied that both programs will function
alike. The purpose of this generation is to use the rule-based programs in proving
properties such as correctness and confluence, which subsequently proves these
properties for the imperative programs. We selected CHR as a rule-based lan-
guage due to the existence of results for proving several properties of programs.
There are several implementations of global constraint solvers which are of an im-
perative nature. An additional use for the implemented conversion methodology
could be to automatically generate solvers for these global constraints instead
of their manual implementation. The benefit of this conversion is to exploit the
flexibility and expressivity of CHR.

An interesting direction for future work is to investigate how the proposed ap-
proach can be combined with previous approaches, e.g. [3,4]. To improve the
efficiency of the generated solvers the set of rules should be reduced. The oper-
ational equivalence results of CHR programs [1] can be applied to find out the
redundant rules. However, in most of the cases, the rules are not redundant but
they can be reduced by merging two or more rules in one.

References

1. S. Abdennadher and T. Frithwirth. Operational equivalence of CHR programs and
constraints. In 5th International Conference on Principles and Practice of Con-
straint Programming, CP99, LNCS 1713, 1999.

2. G. D. Plotkin. A structural approach to operational semantics. Technical report,
Aarhus University, 1981.

3. F. Raiser. Semi-automatic generation of chr solvers for global constraints. In 14th
International Conference on Principles and Practice of Constraint Programming,
2008.

4. 1. Sobhi, S. Abdennadher, and H. Betz. Constructing rule-based solvers for
intentionally-defined constraints. In Special Issue on Recent Advances in Constraint
Handling Rules. 2008.

150

Appendix: Proof of Theorem 2

Let o be an Z store and let G = G’ A state(0,0) be a CHR state, such that
(P, o) = G. Given Definition 5, it suffices to show that [P](c) = [F(P)|(G). We
shall prove this result by structural induction on the structure of P.

Basis. We have two base cases.

1. P=dt z;
Given the semantics of Z, [P](c) = g%~ Pefault(d) By Definition 4,

[F(P)(G) = G' Avar (N (z), De fault(dt)}

It follows from Definition 5 that [P](o) = [F(P)|(G).

2. P=z=c¢;
From the semantics of Z, [P](¢) = o ~l1”. By Definition 4, if G’ = G" A
var(V(z),o(x)) then

[F(P)|(G) = G" Avar (N (z), [E(e)])

Since (P, o) = G, it follows that, for every identifier y in e, var (N (y), o(y))
is a constraint in G”. Hence, given the conjunction V' of constraints in the
head of the only rule in F(P) (case 2 in Figure 2), the variable V(y) is bound
to o(y), for every identifier y in e. Thus, from the definition of &, it follows
that [e]” = [€(e)]¢. Consequently, [P](c) = [F(P)](G).

Induction hypothesis. P, and P are Z programs with P, = F(P;) and
PQ = .7:(P2)

Induction step. We have three recursive rules in the definition of P.

1. P=1if e {P,} else {P»}
Suppose that [e]? is true. In this case, [P](c) = [P;](o) as per the operational
semantics of Z. Now, consider the rule

V' \ state(0,0) <=> £(e) | state(01,0#0)

in F(P) (case 3 in Figure 2). Similar to case 2 in the proof of the basis,
[e]o = [E(e)]€. Thus, the above rule is applicable to G. Furthermore, from
Theorem 1, the above rule is the only rule applicable to G. Hence, G' +— #(p)
G4, where

G1 = G A state(01,0#0)

Since the set of state constraints occurring in (01,0)>F(P;) is disjoint from
the set of state constraints in the rest of F(p), and since state(01,0#0)
occurs in (01,0) > F(P;), then

[F(P)(G) = [F(P)|(G1) = [(01,0) > F(P1)](G1) (1)

151

From Proposition 2 it follows that
[(01,0) > F(P)](G1) = [F(P)](G" A state(0,0))

But G’ A state(0,0) = G. Therefore, given (1), [F(P)|(G) = [F(P)](G).
From the induction hypothesis it follows that

[F(P)I(G) = [P1](0) = [P](0)
The proof is similar, mutatis mutandis, in case [e]? is false.
. P=vwhilee {P}
We prove the equivalence by induction on the number ¢ of iterations of the
loop. If i = 0, then it must be that [e]” is false. According to the semantics
of I, [P](c) = 0. We can show (in a fashion similar to that of proving case
2 of the basis) that [e]” = [€(e)]¢. Thus, the only rule in F(P) applicable
to G is the rule

V \ state(0,0) <=> \+&(e) | true

Since this is a terminal rule, then [F(P)](G) = G'. By Definition 5, G' = 0.
Thus, [P](0) = [F(P))(G).

As an induction hypothesis, suppose that whenever o is such that i = k,
[P](0) = [F(P)|(G). Now, let o be a store, such that i = k+ 1. Clearly, [e]?
is true. Thus, [P](c) = [P]([1](0)), where [P1](0) is a store for which i = k.
It could be shown that [E(e)]]G [e]?. Thus, the only rule in F(P) applicable
to G is the rule

V \ state(0,0) <=> £(e) | state(0,0#0)
Thus, G — xpy G1, where

G1 = G’ A state(0,0#0)

Now, state(0,0) is the only state constraint occurring both in (0,0) v((0,0)>
F(Py)) and the rest of F(P). Moreover, according to the definition of v,
state(0,0) occurs only in the bodies of rules in (0,0)V((0,0) > F(Fy)).
Hence,

[F(P)(G) = [F(P)(G1) = [F(P)]([€0,00v(€0,0) > F(P))I(G1)) (2)

From Proposition 2 it follows that

[€0,0)V((0,0) > F(P1))|(G1) = [F(P1)](G' A state(0,0)) A state(0,0)
But G’ A state(0,0) = G. Therefore, given (2), it follows that

[F(P)(G) = [F(P)([F(P)](G) A state(0,0)) (3)
By the induction hypothesis, [F(Py)](G) = [P1](o). Thus, from Definition 5,
[F(P))(G) A state(0,0) = (P, [P](0)). Since [P;](0) is a store for which

i = k then [Pl(0) = [P([P)(0)) = [F(P(F(PI(G) A state(0,0)).
Consequently, given (3), [P](o) = [F(P)|(G).

152

3. P=P P,
Let state(0,n’) be the unique maximal constraint in F(P;). Given Def-
inition 3, state(0,0) occurs only in the head of a rule in (0,n) VF(P),
where n = n/, ;. The only constraint occurring both in (0,n) VF(P;) and
F(Ps2)4n is state(0, n). However, it only occurs in the bodies of rules of
(0,n) VF(Py). Hence,

[F(P)G) = [F(P)I([C0,m) VF(P))(G)) (4)
By Proposition 2,

[0,) VF(P)](G) = [F(P)|(G) A state(0,n)

Hence,
[F(P(G) = [F(P)([F(P)(G) A state(0,n)) (5)

Now, the constraint state (0,n) occurs only in the head of rules in F(Py) .
In addition, other state constraints in F(P2)4, do not occur elsewhere in
F(P). Hence,

[F(P)([F(P)](G) A state(0,n)) = [F(Ps)n] (F(P)](G) A state(0,n))

By Proposition 2,

[F(P2)4n]([F(P1)](s) Astate(0,n)) = [F(P)]([F(P1)|(G) A state(0,0))
From (5) it follows that

[F(P)G) = [F(P)I([F(P))(G) A state(0,0))
) =

But, given the induction hypothesis, [F(P1)](G) = [P1](o). Thus, from Defi-
nition 5, [F(P1)](G) Astate(0,0) = (P, [P1](0)). It, thus, also follows from
the induction hypothesis that

[F(P)G) = [Po]([P1](0))

Hence, given the semantics of Z,

[F(PNG) = [P)o)
O

Acknowledgments. We would like to thank Abdellatif Olama for preliminary
work done in the same field.

153

	Constraint Handling Rules
	Transforming Imperative Algorithms to Constraint Handling Rules (Slim Abdennadher, Haythem Ismail and Frederick Khoury)
	Abstract
	1 Introduction
	2 Constraint Handling Rules
	3 Operational Equivalence
	3.1 The Language I
	3.2 The CHR Fragment
	3.3 The I-CHR Transformation

	4 Methodology for the Conversion of Imperative Algorithms to CHR
	4.1 Variable Declaration
	4.2 Variable Assignment
	4.3 Alternation
	4.4 Iteration
	4.5 Arrays

	5 Conclusion and Future Work
	References
	Appendix: Proof of Theorem 2

