
Stationary Generated Models
of Generalized Logic Programs

Heinrich Herre1,2 and Axel Hummel1,2

1 Department of Computer Science, Faculty of Mathematics and Computer Science,
University of Leipzig, Johannisgasse 26, 04103 Leipzig, Germany,

heinrich.herre@imise.uni-leipzig.de, hummel@informatik.uni-leipzig.de
2 Institute of Medical Informatics, Statistics and Epidemiology, University of Leipzig,

Härtelstrasse 16-18, 04107 Leipzig, Germany

Abstract. The interest in extensions of the logic programming paradigm
beyond the class of normal logic programs is motivated by the need of an
adequate representation and processing of knowledge. One of the most
difficult problems in this area is to find an adequate declarative semantics
for logic programs. In the present paper a general preference criterion is
proposed that selects the ‘intended’ partial models of generalized logic
programs which is a conservative extension of the stationary semantics
for normal logic programs of [Prz91]. The presented preference criterion
defines a partial model of a generalized logic program as intended if it is
generated by a stationary chain. It turns out that the stationary gener-
ated models coincide with the stationary models on the class of normal
logic programs. The general wellfounded semantics of such a program
is defined as the set-theoretical intersection of its stationary generated
models. For normal logic programs the general wellfounded semantics
equals the wellfounded semantics.

Keywords: Extensions of logic programs, semantics, knowledge represen-
tation

1 Introduction

Declarative semantics provides a mathematical precise definition of the
meaning of a program in a manner, which is independent of procedu-
ral considerations, context-free, and easy to manipulate, exchange and
reason about. Finding a suitable declarative or intended semantics is an
important and difficult problem in logic programming and deductive data
bases. Logic programs and deductive data bases must be as easy to write
and comprehend as possible and as close to natural discourse as possible.
Research in the area of logic programming and non-monotonic reason-
ing made a significant contribution towards the better understanding of

95

relations existing between various formalizations of non-monotonic rea-
soning and the discovery of deeper underlying principles of non-monotonic
reasoning and logic programming. Standard logic programs are not suf-
ficiently expressive for the representation of large classes of knowledge
bases. In particular, the inability of logic programs to deal with arbitrary
open formulas is an obstacle to use logic programming as a declarative
specification language for software engineering and knowledge representa-
tion. Formalisms admitting more complex formulas are more expressive
and natural to use since they permit in many cases easier translation
from natural language expressions and from informal specifications. The
additional expressive power of generalized logic programs significantly
simplifies the problem of translation of non-monotonic formalisms into
logic programs, and, consequently facilitates using logic programming as
an inference engine for non-monotonic reasoning.

A set of facts can be viewed as a database whose semantics is de-
termined by its minimal models. In the case of logic programs, minimal
models are not adequate because they are not able to capture the di-
rectedness of rules, i.e. they do not satisfy the groundedness requirement.
Therefore, stable models in the form of certain fixpoints have been pro-
posed by Gelfond and Lifschitz [GL88] as the intended models of normal
logic programs. We generalize this notion by presenting a definition which
is neither fixpoint-based nor dependent on any specific rule syntax. We
call our preferred models stationary generated because they are generated
by a stationary chain, i.e. a stratified sequence of rule applications where
all applied rules remain (in a certain sense) applicable throughout the
model computation. The notion of a stationary model of a normal logic
program was introduced in [Prz91] and further elaborated in [Prz94].
Stationary generated models - as expounded in the current paper - are
defined in a different way. This notion can be easily extended to gener-
alized logic programs which include several types of programs as special
cases, among them disjunctive programs [Prz91] and super-logic programs
[Prz96]. Lifschitz, Tang and Turner propose in [LTT99] a semantics for
logic programs allowing for nested expressions in the heads and the body
of the rules. The syntax is similar to our generalized logic programs, but
the semantics differs.

In [AHP00] the notion of stationary generated AP-models was intro-
duced. This notion differs from the stationary generated models as defined
in the present paper. Stationary generated AP-models and stationary
generated models are based on different truth-relations for three-valued

96

partial models. Hence, the current paper closes a gap that remained open
in [AHP00].

The paper has the following structure. After introducing some basic
notation in section 2, we recall some facts about Herbrand model theory
and sequents in section 3. In section 4, we define the general concept of a
stationary generated model, and then, in section 5 we investigate the re-
lationship of this general concept to the original fixpoint-based definitions
for normal programs as in [Prz91]. It turns out that for normal programs
the stationary generated models coincide with the stationary models in
the sense of [Prz91]. This fact motivates the introduction of the notion of
a general well-founded semantics for a generalized logic program which
is defined as the set-theoretical intersection of its stationary generated
models. We believe that the notion of general well-founded semantic is
the most natural generalization of well-founded semantics to generalized
logic programs.

2 Preliminaries

A signature σ = 〈Rel ,Const ,Fun〉 consists of a set Rel of relation symbols,
a set Const of constant symbols, and a set Fun of function symbols. Uσ

denotes the set of all ground terms of σ. For a tuple t1, . . . , tn we will
also write t when its length is of no relevance. The logical functors are
not ,∧,∨,→, ∀, ∃. L(σ) is the smallest set containing the atomic formulas
of σ, and being closed with respect to the following conditions: if F, G ∈
L(σ), then {notF, F ∧ G, F ∨ G, F → G, ∃xF, ∀xF} ⊆ L(σ).

L0(σ) denotes the corresponding set of sentences (closed formulas).
For sublanguages of L(σ) formed by means of a subset F of the logical
functors, we write L(σ;F). With respect to a signature σ we define the
following sublanguages: At(σ) = L(σ; ∅), the set of all atomic formulas
(also called atoms). The set GAt(σ) of all ground atoms over σ is defined
as GAt(σ) = At(σ) ∩ L0(σ). Lit(σ) = L(σ; not), the set of all literals;
for a set X of formulas let X = {notF | F ∈ X}. Then, the set of all
ground literals over σ is defined as GAt(σ) ∪ GAt(σ). {t, f ,u} exhibit
particular ground atoms with the meaning true (value 1), false (value 0),
undetermined (value 1

2).
We introduce the following conventions. When L⊆L(σ) is some sub-

language, L0 denotes the corresponding set of sentences. If the signature σ
does not matter, we omit it and write, e.g., L instead of L(σ). Let L∗(σ) =
L(σ; not ,∧,∨, ∀,∃), and PL(σ) = L∗(σ)∪{F → G|F, G ∈ L∗(σ)}. PL(σ)
is called the set of program formulas of signature σ. If Y is a partially

97

ordered set, then Min(Y) denotes the set of all minimal elements of Y ,
i.e. Min(Y) = {a ∈ Y | ¬∃a′ ∈ Y : a′ < a}. A Herbrand interpretation
of the language L(σ) is one for which the universe equals Uσ, and the
function symbols are interpreted canonically.

Definition 1 (Partial Herbrand Interpretation) Let be σ =
〈Rel ,Const ,Fun〉 a signature. A partial Herbrand interpretation I of σ is
defined as follows I = (U(σ), (f I)f∈Fun, (rI)r∈Rel). Its universe U(σ) is
equal to the set of all ground terms Uσ; its canonical interpretation of
ground terms is the identity mapping. The relation symbols r ∈ Rel(σ)
are interpreted by functions rI defined by rI : Ua(r) −→ {0, 1

2 , 1} for every
relation symbol r ∈ Rel, where a(r) denotes the arity of r. Obviously,
every Herbrand interpretation is determined by a function iI : At(σ) −→
{0, 1

2 , 1}.
A partial Herbrand σ-interpretation I can be represented as a set

of ground literals I ⊆ GAt(σ) ∪ GAt(σ) such that there is no ground
atom a ∈ GAt satisfying {a, not a} ⊆ I. For a partial Herbrand σ-
interpretation I let Pos(I) = I ∩ GAt and Neg(I) = I ∩ GAt. A partial
Herbrand interpretation I is two-valued (or total) if for every a ∈ GAt
holds {a, not a} ∩ I �= ∅. I is a partial interpretation over {t, f ,u} if
{u, notu} ∩ I = ∅, and {t, not f} ⊆ I.

The class of all partial Herbrand σ-interpretations is denoted byIH(σ).
In the sequel we shall also simply say ‘interpretation’ instead of ‘partial
Herbrand interpretation’. A valuation over an interpretation I is a func-
tion ν from the set of all variables Var into the Herbrand universe Uσ,
which can be naturally extended to arbitrary terms by ν(f(t1, . . . , tn)) =
f(ν(t1), . . . , ν(tn)). Analogously, a valuation ν can be canonically ex-
tended to arbitrary formulas F , where we write Fν instead of ν(F). Note
that for a constant c, being a 0-ary function, we have ν(c) = c. The model
relation |= ⊆ IH(σ) × L0(σ) between an interpretation and a sentence is
defined inductively as follows.

Definition 2 (Model Relation) Let I ∈ IH(σ). Then the mapping iI

can be extended to a function
∼
I from the set of all sentences from PL(σ)

into {0, 1
2 , 1}.

1.
∼
I (a) = iI(a) for atomic sentences a.

2.
∼
I (notF) = 1− ∼

I (F).
3.

∼
I (F ∧ G) = min{∼I (F),

∼
I (G)}.

4.
∼
I (F ∨ G) = max{∼I (F),

∼
I (G)}.

98

5.
∼
I (F → G) = 1 if

∼
I (F) ≤∼

I (G).
6.

∼
I (F → G) = 0 if

∼
I (F) �≤∼

I (G).
7.

∼
I (∃xF (x)) = sup{∼I (F (x/t)) | t ∈ U(σ)}.

8.
∼
I (∀xF (x)) = inf{∼I (F (x/t)) | t ∈ U(σ)}.

We write I |= F ⇐⇒ ∼
I (F) = 1 for sentences F and for arbitrary

formulas F :
I |= F ⇐⇒ I |= Fν for all ν : V ar → Uσ. I is called a model of
F , and for sets X of formulas I |= X if and only if for all F ∈ X it
holds I |= F . To simplify the notation we don’t distinguish between I

and
∼
I in the following. Two formulas F, G ∈ L(σ) are said to be logical

equivalent iff for every instantiation ν and every partial interpretation I
the condition I(Fν) = I(Gν) is satisfied.

ModH(X) = {I ∈ IH : I |= X} denotes the Herbrand model operator,
and |=H denotes the corresponding consequence relation, i.e. X |=H F iff
ModH(X) ⊆ ModH(F). In the following we omit the subscript H.

Let L∧,∨(Lit(σ)) the smallest subset of L(σ) containing the set Lit(σ)
and closed with respect to the connectives ∧,∨.

Proposition 1 [HJW95] For every formula F ∈ L1(σ) there is a formula
G ∈ L∧,∨(Lit(σ)) such that F and G are logical equivalent.

Definition 3 (Partial Orderings between Interpretations) Let be
I, I1 ∈ IH two interpretations. We define the following orderings between
I and I1.

1. Let I � I1 if and only if Pos(I) ⊆ Pos(I1) and Neg(I1) ⊆ Neg(I). �
is called the truth-ordering between interpretations, and I1 is said to
be a truth-extension (briefly t-extension) of I.

2. I1 is informationally greater or equal to I iff I ⊆ I1. The partial
ordering ⊆ between Herbrand interpretations is called information-
ordering. I1 is said to be an information-extension (briefly i-extension)
of I.

3. Let I, I1 be two-valued Herbrand interpretations. Define I ≤ I1 if and
only if Pos(I) ⊆ Pos(I1).

Obviously, if I, I1 are two-valued models then I � I1 iff Pos(I) ⊆ Pos(I1).

Proposition 2 The system C = (IH ,�) of consistent partial interpreta-
tions is a complete lattice.

99

Proof: Let Ω ⊆ IH be an arbitrary non-empty subset. Define I =df⋃{Pos(K) | K ∈ Ω} ∪ ⋂{Neg(K) | K ∈ Ω}, then I is the least upper
bound of Ω, i.e. I = supΩ. Analogously, the infimum of Ω, denoted by
infΩ is defined by infΩ =

⋂{Pos(K) | K ∈ Ω} ∪ ⋃{Neg(K) | K ∈
Ω}. �

3 Sequents and Programs

Here, we propose to use sequents for the purpose of representing rule
knowledge. A sequent, then, is a concrete expression representing some
piece of knowledge.

Definition 4 (Sequent) A sequent s = F1, . . . , Fm ⇒ G1, . . . , Gn is
an expression where Fi, Gj ∈ L(σ, {∧,∨, not }) for i = 1, . . . , m and j =
1, . . . , n. The body of s, denoted by B(s), is given by {F1, . . . , Fm}, and
the head of s, denoted by H(s), is given by {G1, . . . , Gn}. Seq(σ) denotes
the class of all sequents s such that H(s), B(s) ⊆ L(σ), and for a given
set S ⊆ Seq(σ), [S] denotes the set of all ground instances of sequences
from S.

Definition 5 (Model of a Sequent) Let I ∈ IH . Then we define, I |=
F1, . . . , Fm ⇒ G1, . . . , Gn iff for all ground substitutions the following
condition is satisfied: I |= ∧

i≤m Fiν → ∨
j≤n Gjν. I is said to be a model

of F1, . . . , Fm ⇒ G1, . . . , Gn.

We define the following classes of sequents corresponding to non-
negative, positive disjunctive, normal, normal disjunctive, and generalized
logic programs, respectively.

1. PLP(σ) = {s ∈ Seq(σ) : H(s) ∈ At(σ), B(s) ⊆ At(σ) ∪ {u, t, f}.
2. PDLP(σ) = {s ∈ Seq(σ) : B(s),H(s) ⊆ At(σ),H(s) �= ∅}.
3. NLP(σ) = {s ∈ Seq(σ) : H(s) ∈ At(σ), B(s) ⊆ Lit(σ)}.
4. NDLP(σ) = {s ∈ Seq(σ) : H(s) ⊆ At(σ), B(s) ⊆ Lit(σ),H(s) �= ∅}.
5. GLP(σ) = {s ∈ Seq(σ) : H(s), B(s) ⊆ L(σ; not ,∧,∨)}.

Subsets of PLP are called non-negative logic programs, programs asso-
ciated to PDLP are called positive disjunctive logic programs. NLP relates
to normal logic programs, NDLP to normal disjunctive logic programs,
and GLP to generalized logic programs.

Lemma 3 1. Let J0 � J1 � . . . Jn � . . . be an infinite t-decreasing
sequence of partial interpretations and J = inf{Jn | n < ω}. Let

100

F ∈ L(∧,∨, not)∪{G → H | F, G ∈ L(∧,∨, not)}. Then there exists
a number k such that for all s > k the condition J(F) = Js(F) is
satisfied.

2. Let J0 � J1 � . . . Jn � . . . be an infinite t-increasing sequence of par-
tial interpretations and J = sup{Jn | n < ω}. Let F ∈ L(∧,∨, not) ∪
{G → H | F,G ∈ L(∧,∨, not)}. Then there exists a number k such
that for all s > k the condition J(F) = Js(F) is satisfied.

Let X be an interpretation and P ⊆ GLP. X is said to be upward-
consistent with respect to P if there is a model I |= P such that X � I.

Proposition 4 Let P ⊆ GLP and K an interpretation being upward-
consistent with respect to P . Let I be a model of P such that K � I.
Then there exists a model J |= P satisfying the following conditions:

1. K � J � I;
2. for every J1 ∈ IH the conditions K � J1 � J and J1 |= P imply

J = J1.

Corollary 5 Let P ⊆ GLP. Every partial model of P is an t-extension
of a t-minimal partial model and can be t-extended to a t-maximal partial
model of P.

Proposition 6 Every non-negative logic program has a t-least partial
model.

4 Stationary Generated Models

Definition 6 (Truth Interval of Interpretations) Let I1, I2 ∈ IH .
Then, [I1, I2] = {I ∈ IH : I1 � I � I2}. Let P ⊆ GLP and let F be
a sentence. We introduce the following notions.

– [I, J](F) = inf{K(F)|K ∈ [I, J]}
– P[I,J] = {r | r ∈ [P] and [I, J](B(r)) ≥ 1

2}
– P [I,J] = {r | r ∈ [P] and [I, J](B(r)) = 1}

The following notion of a stationary generated or stable generated par-
tial model is a refinement of the notion of a stable generated (two-valued)
model which was introduced in [HW97].

Definition 7 (Stationary Generated Model) Let be P ⊆ GLP. A
model I of P is called stationary generated or partial stable generated if
there is a sequence {Iα : α < κ} of interpretations satisfying the following
conditions:

101

1. I0 = GAt (is the t-least interpretation)
2. α < β < κ implies Iα � Iβ

3. supα<κIα = I
4. For all α < κ: Iα+1 ∈ Mintm{J | Iα � J � I and (a) for all r ∈ P [Iα,I]

it holds Iα+1(H(r)) = 1 and (b) for all r ∈ P[Iα,I] : Iα+1(H(r)) ≥ 1
2}.

5. Iλ = supβ<λIβ for every limit ordinal λ < κ.

We also say that I is generated by the P-stationary chain {Iα | α < κ}.
The set of all stationary generated models of P is denoted by Modstatg(P).
The resp. stationary generated entailment relations are defined as follows:
P |=statg F iff Modstatg(P) ⊆ Mod(F).

Notice that our definition of stationary generated models also accom-
modates negation in the head of a rule and nested negations, such as in
p(x) ∧ not (q(x) ∧ not r(x)) ⇒ s(x) which would be the result of folding
p(x) ∧ not ab(x) ⇒ s(x) and q(x) ∧ not r(x) ⇒ ab(x).

We continue this section with the investigations of some fundamental
properties of the introduced concepts.

Lemma 7 Let {In | n < ω} a t-increasing sequence of partial interpreta-
tions, i.e. In � In+1 for all n < ω, and let be sup{In | n < ω} = Iω, and
Iω � I. Let F be a quantifier free sentence.

1. If [Iω, I](F) ≥ 1
2 , then there is a number n < ω such that [In, I](F) ≥

1
2 .

2. If [Iω, I](F) = 1, then there is a number n < ω such that [In, I](F) =
1.

Proposition 8 Let P ⊆ GLP and let I ∈ Modstatg(P) which is generated
by the sequence {Iα : α < κ}. Then there is an ordinal β ≤ ω such that
Iβ = I.

Corollary 9 If P ⊆ GLP and I ∈ Modstatg(P), then there is either a
finite P -stationary chain, or a P -stationary chain of length ω, generating
I.

We now relate the stationary generated models to the stable generated
two-valued models as introduced in [HW97]. We recall the definition of
[HW97].

Definition 8 (Stable Generated Model) [HW97] Let P ⊆ GLP. A
two-valued model M of P is called stable generated, symbolically M ∈
Modsg(P), if there is a chain {Iα : α < ω} of two-valued Herbrand inter-
pretations such that

102

1. m ≤ n implies Im ⊆ In and I0 = ∅.
2. In+1 is a minimal two-valued extension of In which is contained in M

and which satisfies all sequents whose body is true in every two-valued
interpretation from the set {J | In ⊆ M}.

3. M =
⋃{In | n < ω}.

We also say that M is generated by the P -stable chain {In | n < ω}.

Proposition 10 Let P ⊆ GLP. A two-valued model I of P is stable
generated if and only if it is a stationary generated model of P .

Corollary 11 Let P ⊆ GLP. Then Modsg(P) ⊆ Modstatg(P).

Example 1 Let S = {⇒ a, b; a ⇒ b}. Then M = {a, b} is not minimal
since {b} is a model of S. But {a, b} is stable: I0 = ∅, S[∅,{a,b}] = {⇒ a, b};
and since {a} ∈ Min{I | ∅ ≤ I ≤ M, I |= a ∨ b}, we obtain S[{a},{a,b}] =
{⇒ a, b; a ⇒ b}. Obviously, {a, b} is a minimal extension of {a} satisfying
a ∨ b and b.

5 Stationary Generated Models of Normal Logic Programs

The aim of this section is to prove that for normal logic programs the
stationary models introduced in [Prz91] coincides with our stationary
generated models. To make the paper self-contained we recall the main
notions. Let P be a normal logic program, i.e. the rules r have the form:
r := a1, . . . , am, not b1, . . . , not bn ⇒ c, where ai, bj , c are atomic. Let
I ⊆ B ∪ B be a (consistent) partial interpretation. The transformation
trI(r) is defined as follows.

– trI(B+(r)) = B+(r) (positive literals are not changed);
– trI(not bi) = f , if bi ∈ I; trI(not bi) = t, if not bi ∈ I; trI(not bi) = u,

if {bi, not bi} ∩ I = ∅. Then trI(B−(r)) = trI(not b1), . . . , trI(not bn);
– trI(r) = B+(r), trI(B−(r)) ⇒ H(r).

The resulting program P/I which is called the I − reduction of P
is defined by P/I := {trI(r) | r ∈ [P]}. P/I is an example of a so-
called non-negative program [Prz91]. A normal logic program P is said
to be non-negative, symbolically P ⊆ PLP, if for every rule r ∈ P the
body B(r) of r satisfies the condition B(r) ⊆ At(σ) ∪ {t, f ,u}. Every
interpretation I contains t and not f , and satisfied {u, notu} ∩ I = ∅.
Every non-negative logic program has a t-least partial model that can be
constructed as follows [Prz91].

103

Definition 9 Let P ⊆ PLP. The operator TP : 2I → 2I is defined as
follows.
TP (I) = {a | there is a rule B(r) ⇒ a ∈ [P] such that I(

∧
B(r)) = t} ∪

{not a | for every rule r ∈ [P] satisfying H(r) = a it is I(
∧

B(r)) = f}.

The operator TP is monotonic with respect to the truth-ordering �. Since
(2I ,�) is a complete partial ordering the operator TP has a least fixpoint
I being a model of P . I is defined as follows. Let I0 = {not a | a ∈ GAt},
i.e. I0 is the t-least interpretation. We define an t-increasing sequence
of partial interpretations: I0 � I1 � . . . � In � . . . by In+1 = TP (In).
Obviously, In � In+1, for n < ω. Then sup{In : n < ω} is the least partial
model of P ; we denote it by lpm(P).

Definition 10 Let P ⊆ NLP and I a partial interpretation. I is said to
be a stationary model of P if and only if lpm(P/I) = I.

Lemma 12 Let P ⊆ NLP and let I be a stationary model of P with the
generating sequence {In | n < ω}, sup{In : n < ω} = I. Then for every
r ∈ [P], and every n < ω, the following conditions are equivalent:
1) In(

∧
B(trI(r))) ≥ u;

2) for all J satisfying the condition In � J � I it holds J(
∧

B(r)) ≥ u.

Proof: 1) → 2). Let r := a1, . . . , am, not b1, . . . , not bn ⇒ c, and trI(r) =
a1, . . . , am, v1, . . . , vm ⇒ c, where vi ∈ {f, u, t}. Now we assume, that
In(

∧
B(trI(r))) ≥ u, then In(a1 ∧ . . . ∧ am ∧ v1 ∧ . . . ∧ vn) ≥ u. Then, for

every J : In � J � I we have {a1, . . . , am} ∩ J = ∅. Assume this is not
the case. Then there is a not aj ∈ J , and since Neg(J) ⊆ Neg(In) this
implies not aj ∈ In, hence In(aj) = f which yields In(

∧
B(trI(r)) = f ,

which is a contradiction. This implies J(ai) ≥ u for every J : In � J � I.
Furthermore, it holds J(not bj) ≥ u for every J : In � J � I. Assume,
there is such an interpretation J satisfying J(not bj) = f . Then bj ∈
Pos(J) and this implies by J � I the condition bj ∈ Pos(I). By definition
of the translation trI this would imply trI(not bj) = f , a contradiction to
In(

∧
B(trI(r))) ≥ u.

2) → 1). Now we assume, that for all J : In � J � I: J(
∧

B(r)) ≥ u We
show that then In(

∧
B(trI(r))) ≥ u. Obviously, In(a1 ∧ . . . ∧ an) ≥ u. It

remains to show that In(v1 ∧ . . . ∧ vn) ≥ u. Assume this is not the case,
then there is a number j ≤ n such that In(vj) = f . This implies bj ∈ I.
But then there is an extension J : In � J � I such that bj ∈ Pos(J), hence
J(not bj) = f , and this yields J(

∧
B(r)) = f , which is a contradiction. �

104

We shall show below that the stationary generated models of a nor-
mal logic program S agree with the fixpoints of ΓS , i.e. with stationary
models as defined in [Prz91]. Since the definition of the extended Gelfond-
Lifschitz transformation requires a specific rule syntax, the definition of
stationary models based on it is not very general; as a consequence, Gel-
fond and Lifschitz are not able to treat negation-as-failure as a standard
connective, and to allow for arbitrary formulas in the body of a rule.
The interpretation of negation-as-failure according the stationary (gener-
ated) semantics seems to be the first general standard logical treatment
of non-monotonic logic programs.

Proposition 13 Let P be a normal logic program and I a stationary
model of P . Then I is a stationary generated model of P.

Proof: By assumption we have I = lpm(P/I), and let I0 � I1 � . . . � In

the defining t-increasing sequence for I. Then I = sup{In | n < ω}. We
show that {In : n < ω} is a stationary chain generating I. By definition
is I0 = GAt(σ). We show that for every n < ω the interpretation In+1 is
a t-minimal extension of In satisfying the set P[In,I] = {r ∈ [P] | for all
J : In � J � I it is J(

∧
B(r)) ≥ u}. Firstly, we prove for all r ∈ P[In,I]

the condition In+1(r) = t. Then we show: if K is a partial interpretation
satisfying the condition In � K � In+1, and if K(r) = t for all r ∈ P[In,I],
then K = In+1.
By definition it is In+1 = {a | B(r) ⇒ a ∈ trI([P]) and In(

∧
B(r)) =

t} ∪ {not a : for all B(r) ⇒ a ∈ trI([P]) it is In(
∧

B(r)) = f}. Let
r ∈ P[In,I], we show that In+1(

∧
B(r)) ≤ In+1(H(r)). By lemma 12 it

is In(
∧

B(r)) ≥ u. If In(
∧

B(r) = t, then In+1(H(r)) = t (by definition
of In+1 and we are ready. Now assume In(

∧
B(trI(r))) = u. It is suf-

ficient to show that In+1(H(r)) ≥ u. Assume this is not the case, then
In+1(H(r)) = In+1(a) = f , hence not a ∈ In+1. But then not a ∈ In,
hence In(a) = f . By definition of In+1 for all B(s) ⇒ a ∈ trI([P]) is
In(

∧
B(s)) = f , in particular In(

∧
B(trI(r))) = f , this is a contradiction.

Hence In+1 |= P[In,I]. Now let K be satisfy the condition In � K � In+1.
Obviously, if K |= P[In,I], then Pos(K) ⊆ Pos(In+1). It remains to show
that Neg(K) = Neg(In+1). Assume this is not the case, then there is
an element not a ∈ Neg(K) − Neg(In+1). Then a does not satisfy the
condition for Neg(In+1), i.e. there is a rule B(s) ⇒ a ∈ trI([P]) such
that In(

∧
B(s)) ≥ u (o.w. not a ∈ Neg(In+1). Let be B(s) = tr(B(r)).

Then, by lemma 12 for all J : In � J � I we have J(
∧

B(r)) ≥ u, in par-
ticular K(

∧
B(r)) ≥ u. Since K(a) = f it follows K �|= B(r) ⇒ a. From

this follows that Neg(K) − Neg(In+1) = ∅, hence Neg(K) = Neg(In+1),

105

then In+1 satisfies the conditions according to the definition of stationary
generated model. �

Proposition 14 Let I be a stationary generated model of the normal
logic program P . Then I is a stationary model of P .

Proof: Let {In : n < ω} be a stationary chain generating I. We show that
this sequence coincides with the sequence associated to the least model
of trI(P) = P/I. Let Q = P/I. We show that TQ(In) = In+1 for every
n < ω, and we have to prove the following conditions:
a) Pos(TQ(In)) = Pos(In+1), and b) Neg(TQ(In)) = Neg(In+1).
a) To show: Pos(TQ(In)) ⊆ Pos(In+1). Let be a ∈ Pos(TQ(In)), then
there is a rule B(r) ⇒ a ∈ trI([P]) such that In(

∧
B(r)) = t. Let s ∈ [P]

the rule satisfying trI(s) = r, and B(s) = a1, . . . , am, not b1, . . . , not bn.
Then {a1, . . . , am} ⊆ In. Furthermore, trI(not bj) = t for all j ≤ n.
That means not bj ∈ I, and this implies the condition s ∈ P[In,I]. Since
In+1 |= s and In+1(

∧
B(s)) = t this yields a ∈ In+1, hence finally

Pos(TQ(In)) ⊆ In+1. By induction hypothesis we assume TQ(In−1) = In.
Let a ∈ Pos(In+1) − Pos(In), then there is a rule B(r) ⇒ a ∈ P[In,I], i.e.
[In, I](

∧
B(r)) ≥ u. But then there must be a rule of this kind satisfying

In(
∧

B(r)) = t (otherwise In+1 − {a} would be a model P[In,I]). This
shows that a ∈ Pos(TQ(In)).
b) This condition follows immediately from the following claim:
(∗): not a ∈ Neg(In+1) iff for all B(r) ⇒ a ∈ [P] it holds In(

∧
B(trI(r))) =

f . To prove (∗), let not a ∈ Neg(In+1), and assume there is a rule
B(r) ⇒ a ∈ [P] such that In(

∧
B(trI(r))) ≥ u. Then by lemma 12 we

have K(
∧

B(r)) ≥ u for every K : In � K � I, hence B(r) ⇒ a ∈ P[In,I].
But then In+1 �|= B(r) ⇒ a, because In+1(

∧
B(r)) ≥ u and In+1(a) = f .

Hence In+1 �|= P [In, I], a contradiction.
Assume for all r ∈ trI([P]) with B(r) ⇒ a the condition In(

∧
B(r)) =

f . We have to show that not a ∈ Neg(In+1). Assume, this is not the case,
then not a �∈ Neg(In+1), then not a ∈ Neg(In) − Neg(In+1). From this
follows that In+1 ∪{not a} |= P[In,I], which gives a contradiction, because
In+1 is a minimal extension of In satisfying P[In,I]. Let I ′ = In+1∪{a}. We
show: for all r ∈ P[In,I] the condition I ′(

∧
B(r)) ≤ I ′(H(r)). If H(r) �= a,

then this is clear. Now let be B(r) ⇒ a ∈ [P] and trI(r) = B(s) ⇒ a.
By assumption is In(

∧
B(s)) = f . We show that In(

∧
B(r)) = f (this is

indeed sufficient). Let be B(s) = a1, . . . , am, v1, . . . , vn, trI(not bj) = vj .
If In(ai) = f , then In(

∧
B(r)) = f and we are ready. Assume In(ai) ≥ u

for every ai, i ≤ m. Then there is a not bj such that trI(not bj) = f ,

106

which means bj ∈ I. Then there is an J : In � J � I such that bj ∈ J ,
hence J(

∧
B(r)) = f , and this means r ∈ P[In,I]. �

6 Conclusion and Future Research

By introducing a new general definition of stationary generated mod-
els, we have established the foundation of a theory of partial models for
generalized logic programs. As a special case we get a model-theoretic
interpretation of the well-founded semantics for normal logic programs.
The consequence operator for generalized logic programs P - based on
stationary generated models - exhibits a form of non-monotonic rea-
soning which is determined by the following definition: P |=statg φ iff
Modstatg(P) ⊆ ModH(φ), φ a quantifier-free sentence. The corresponding
closure operator of |=statg is defined by: Cstatg(P) = {φ|φ quantifier-free
and P |=statg φ}. We believe that only cumulative consequence relations
allow the development of a reasonable proof theory. Hence, it is an inter-
esting task to find natural cumulative approximations of Cstatg. In [HL07]
non-monotonic reasoning was successfully applied to the integration prob-
lem for ontologies. We will explore the expressive power of generalized
logic programs with stationary generated semantics for the representa-
tion and processing of knowledge in the field of clinical medicine.

Acknowledgment
Thanks due to the anonymous referees for their criticism and useful com-
ments.

References

[AHP00] J. Alferes, H. Herre, L. M. Pereira. Partial Models of Extended Generalized
Logic Programs. Int. Conference Computational Logic 2000, Springer LNAI
1861, 2000, pages 149-163

[AP1996] J. Alferes, L. M. Pereira. Reasoning with Logic Programming. Springer LNAI
vol. 111, 1996

[EH99] J. Engelfriet, H. Herre. Stable Generated Models, Partial Temporal Logic and
Disjunctive Defaults, Journal of Logic Programming 41 (1): 1-25, 1999

[GL88] M. Gelfond and V. Lifschitz. The stable model semantics for logic program-
ming. In R. A. Kowalski and K. A. Bowen, editors, Proc. of ICLP, pages
1070-1080. MIT Press, 1988

[HJW95] H. Herre, J. Jaspars and G. Wagner. Partial logics with two kinds of negation
as a foundation for knowledge-based reasoning, in D. Gabbay and H. Wansing
(Eds.), What is negation ?, pages 121-159. Kluwer Academic Publishers, 1999

[HW97] H. Herre and G. Wagner. Stable Models Are Generated by a Stable Chain,
Journal of Logic Programming, 30 (2): 166-177, 1997

107

[HL07] R. Hoehndorf, F. Loebe, J. Kelso and H. Herre. Representing default knowl-
edge in biomedical ontologies: Application to the integration of anatomy and
phenotype ontologies. BMC Bioinformatics Vol. 8, pp. 377.1-377.12, 2007

[LTT99] V. Lifschitz, L. R. Tang, H. Turner. Nested Expressions in Logic Programs
Annals of Mathematics and Artificial Intelligence 1999

[Prz90] T.C. Przymusinski. Well-founded semantics coincides with three-valued
stable-semantics. Fundamenta Informaticae 13 (1990), 445-463

[Prz91] T.C. Przymusinski. Stable semantics for disjunctive programs. New Genera-
tion Computing, 9:401-424, 1991

[Prz94] T.C. Przymusinsksi. Well-founded and stationary models of logic programs.
Annals of Mathematics and Artificial Intelligence 12 (1994) 141-187

[Prz96] T.C. Przymusinski. Super Logic Programs and Negation as Belief. In: R. Dy-
ckhoff, H. Herre, P. Schroeder-Heister, editors, Proc. of the 5th Int. Workshop
on Extensions of Logic Programming, Springer LNAI 1050, 229–236

108

	Theory of Logic Programming
	Stationary Generated Models of Generalized Logic Programs (Heinrich Herre and Axel Hummel)
	Abstract
	1 Introduction
	2 Preliminaries
	4 Stationary Generated Models
	5 Stationary Generated Models of Normal Logic Programs
	6 Conclusion and Future Research
	References

