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Abstract. We propose a paraconsistent declarative semantics of pos-
sibly inconsistent generalized logic programs which allows for arbitrary
formulas in the body and in the head of a rule (i.e. does not depend on
the presence of any specific connective, such as negation(-as-failure), nor
on any specific syntax of rules). For consistent generalized logic programs
this semantics coincides with the stable generated models introduced in
[HW97], and for normal logic programs it yields the stable models in the
sense of [GL88].
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1 Introduction

Declarative semantics provides a mathematical precise definition of the
meaning of a program in a way, which is independent of procedural con-
siderations, easy to manipulate, and reason about. Logic programs and
deductive databases should be as easy to write and comprehend as possi-
ble and as close to natural discourse as possible. Standard logic programs,
in particular definite programs, seems to not be sufficiently expressive for
a comprehensible representation of large knowledge bases and of infor-
mal descriptions. In recent years there has been an increasing interest
in extensions of the classical logic programming paradigm beyond the
class of normal logic programs. Generalized logic programs, introduced
and studied in [HW97], admit more complex formulas in the rules and
thus are more expressive and natural to use since they permit in many
cases easier translation from natural language expressions and from in-
formal specifications. The expressive power of generalized logic programs
also simplifies the problem of translation of non-monotonic formalisms
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into logic programs, [EH97], [EH99]. In many of the traditional logic pro-
gramming semantics local inconsistency might spoil the whole program,
because a contradictory statement F ∧¬F implies every formula, i.e. the
whole program would be trivialized. This is also the case for the semantics
of stable generated models introduced and studied in [HW97].

In this paper we represent a declarative semantics of possibly incon-
sistent generalized logic programs. This paraconsistent semantics is an
extension of the semantics of stable generated models, which agree on
normal logic programs with the stable models of Gelfond and Lifschitz
[GL88]. We assume the following leading principles for a well-behaved
paraconsistent extension of logic programs.

1. The proposed syntax of rules in such programs resembles the syntax
of normal logic programs but it applies to a significantly broader class
of programs;

2. The proposed semantics of such programs constitutes an intuitively
natural extension of the stable semantics of normal logic programs.

3. For consistent generalized logic programs the semantics coincides with
the semantics of stable generated models.

The paper has the following structure. After introducing some basic
notation in section 2, we introduce in section 3 several kinds of minimal
models. From this we derive an adequate paraconsistent semantics for
arbitrary theories in predicate logic. In section 4 we discuss the notion of
a generalized program. In section 5, we define the concept of a paracon-
sistent stable generated model and show that the semantics satisfies the
before mentioned principles 1.- 3. Section 6 contains the conclusion and
a discussion of the related work.

2 Preliminaries

A signature σ = 〈Rel ,Const ,Fun〉 consists of a set of relation symbols,
a set of constant symbols, and a set of function symbols. Uσ denotes the
set of all ground terms of σ. For a tuple t1, . . . , tn we will also write t
when its length is of no relevance. The logical functors are ¬,∧,∨,→
,∀, ∃. L(σ) is the smallest set containing the atomic formulas of σ, and
being closed with respect to the following conditions: if F, G ∈ L(σ), then
{¬F, F ∧ G, F ∨ G, F → G, ∃xF, ∀xF} ⊆ L(σ).

L0(σ) denotes the corresponding set of sentences (closed formulas).
For sublanguages of L(σ) formed by means of a subset F of the logical
functors, we write L(σ;F). Formulas from L(σ; {¬,∧,∨,→}) are called

82



quantifier-free and a quantifier-free theory is a set of quantifier-free for-
mulas. With respect to a signature σ we define At(σ) = L(σ; ∅), the
set of all atomic formulas (also called atoms). For a set X of formu-
las let X = {¬F | F ∈ X}. Then the set of all literals is defined as
Lit(σ) = At(σ) ∪ At(σ). We introduce the following conventions. When
L ⊆ L(σ) is some sublanguage, L0 denotes the corresponding set of sen-
tences. If the signature σ does not matter, we omit it and write, e.g., L
instead of L(σ). ω denotes the least infinite ordinal number, and Pow(X)
or 2X denotes the set of all subsets of X.

A logic L = (L,C) over the language L can be understood as an
operator C : Pow(L) → Pow(L) determining the consequences of a set
X ⊆ L of formulas. Cn denotes the closure operator of classical logic, i.e.
Cn(X) is the set of all classical logical consequences of X. Obviously, if
X is classically inconsistent then Cn(X) = L. A logic (L,C) is said to be
a paraconsistent approximation of (L,Cn) if the following conditions are
satisfied.

1. C({F,¬F}) 
= L for every formula F ∈ L (Paraconsistency).
2. If Cn(X) 
= L then Cn(X) = C(X) (Conservativity).
3. C(X) = C(C(X)).

Definition 1 (Interpretation) Let σ = 〈Rel ,Const ,Fun〉 be a signa-
ture. A Herbrand σ-interpretation is a set of literals I ⊆ Lit0(σ) satis-
fying the condition {a,¬a} ∩ I 
= ∅ for every ground atom a ∈ At0(σ)
(interpretations with this property are also called total). Its universe is
equal to the set of all ground terms Uσ; its canonical interpretation of
ground terms is the identity mapping.

The class of all Herbrand σ-interpretations is denoted by I(σ). In the
sequel we shall also simply say ‘interpretation’ instead of ‘Herbrand in-
terpretation’. An interpretation I can be represented as a truth-value
function from At0(σ) to {t, f,�} by the following stipulation: I(a) = � if
{a,¬a} ⊆ I, I(a) = t if a ∈ I∧¬a 
∈ I, and I(a) = f if ¬a ∈ I∧a 
∈ I. Con-
versely, every truth-value function I : At0 → {t, f,�} can be understood
as an interpretation. In the sequel we use the notion of an interpretation
simultaneously as a set of literals and as a truth-value function.

A valuation over an interpretation I is a function ν from the set of all
variables Var into the Herbrand universe Uσ, which can be naturally ex-
tended to arbitrary terms by ν(f(t1, . . . , tn)) = f(ν(t1), . . . , ν(tn)). Anal-
ogously, a valuation ν can be canonically extended to arbitrary formulas
F , where we write Fν instead of ν(F ). Furthermore the truth-value func-
tion I can be extended to a function I which is defined for every formula
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F ∈ L. In order to be in a position to give a formal definition of I we
fix a linear ordering f < � < t and a unary function neg defined by
neg(t) = f, neg(f) = t, neg(�) = �.

Definition 2 (Model Relation) Let I be an interpretation of signature
σ. The extension I of I is a function from the set of all sentences F from
L(σ) into the set {t, f,�}, and it is defined inductively by the following
conditions.

1. I(F ) = I(F ) for every F ∈ At0(σ)
2. I(¬F ) = neg(I(F ))
3. I(F ∧ G) = min{I(F ), I(G)}
4. I(F ∨ G) = max{I(F ), I(G)}
5. I(F → G) = I(¬F ∨ G)
6. I(∃xF (x))= sup{I(F (x/t)) : t ∈ U(σ)}
7. I(∀xF (x))= inf{I(F (t)) : t ∈ U(σ)}

Let be {t,�} the set of designated truth values. We say that an in-
terpretation I is a model of a set X of sentences, denoted by I |= X,
if for every sentence F ∈ X holds: I(F ) ∈ {t,�}. The model relation
between an interpretation I ∈ I(σ) and a formula F ∈ L(σ) is defined
by I |= F iff I |= Fν for every valuation ν : Var → Uσ. Mod(X) = {I ∈
I : I |= X} denotes the Herbrand model operator, and |= denotes the
corresponding consequence relation, i.e. X |= F iff Mod(X) ⊆ Mod(F ).
For a set K ⊆ I(σ) and F ∈ L(σ) define K |= F iff for all I ∈ K holds
I |= F . The set Th(K) = {F | K |= F} is called the theory of K.

Proposition 1 [We97] Let C(X) be the operator defined by C(X) =
{F | X |= F}. Then C satisfies paraconsistency, inclusion, idempotence
and compactness, but not conservativity.

An example which illustrates that the operator C violates the conser-
vativity can be found in [We97, page 14].

Example 1 Consider the set X = {a, a → b}. Then the following inter-
pretations are models of X: I1 = {a, b}, I2 = {a, b,¬b}, I3 = {a,¬a, b},
I4 = {a,¬a,¬b}, I5 = {a,¬a, b,¬b}. Because of I4 we obtain b /∈ C(X).

3 Minimal Models

Our aim is to define a semantics for logic programs which defines for
classical consistent programs the (two-valued) stable generated models,
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but in case of inconsistent programs yields suitable three-valued models
assuring paraconsistency. The class of models Mod(X) is not suitable
because conservativity does not hold, i.e. there are consistent theories
T such that C(T ) 
= Cn(T ). An adequate solution of this problem uses
different types of minimal models, one of them, minimizing inconsistency,
was introduced in [Pr91] and studied in [We97]. Let ≤ be a transitive
and reflexive relation on the set K. An element M ∈ K is said to be ≤-
minimal if and only if there is no N ∈ K such that N ≤ M and N 
= M .
Let Min≤(K) be denote the set of ≤-minimal elements of K. In this section
we analyze several forms of minimal models of a paraconsistent theory.
Let I be an interpretation, then Pos(I) = I ∩At0 and Neg(I) = I ∩{¬a :
a ∈ At0}. Let be inc(I) = {a : {a,¬a} ⊆ I}.
Definition 3 Let I, J be interpretations. Then

1. I � J if and only if Pos(I) ⊆ Pos(J) and Neg(J) ⊆ Neg(I);
2. I � J if and only if inc(I) ⊆ inc(J).

Using the relations �,�,⊆ we introduce the following forms of minimal-
ity.

Definition 4 Let X be a set of formulas and I be an interpretation.

1. I is a t-minimal model of X iff I ∈ Min�(Mod(X)).
2. I is an inc-minimal model of X iff I ∈ Min�(Mod(X)).
3. I is an i-minimal model of X iff I ∈ Min⊆(Mod(X)).

We introduce following model operators: Modincm(X) = {I | I is an
inc-minimal model of X}, Modim(X) = {I | I is an i-minimal model of
X}, and Modtm(X) = {I | I is a t-minimal model of X}. Using these
different notions of minimality we get following consequence operations,
for ∗ ∈ {incm, tm, im}: X |=∗ F iff Mod∗(X) ⊆ Mod({F}).
Proposition 2 Every inc-minimal model of a set X of formulas is i-
minimal.

Proof: Let I be an inc-minimal model of X and assume that I is not
i-minimal. Then there is a model J ⊆ I, J |= X, and J 
= I. This implies
the existence of a literal l ∈ I − J , assume that l = a is a ground atom.
Since J is a total interpretation this yields ¬a ∈ J , but then {a,¬a} ⊆ I,
which contradicts the inc-minimality of I. �

There are t-minimal models not being inc-minimal and inc-minimal mod-
els not being t-minimal.
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Example 2 For clarification, we discuss the following examples:

1. Consider the program P1 = {¬b → a}. Obviously, I = {a,¬a,¬b} is a
t-minimal model of P , but I is not inc-minimal because I = {a,¬b} is
a model of P satisfying inc(J) = ∅. There are, trivially inc-minimal
models not being t-minimal (note that every two-valued model is inc-
minimal).

2. Let P2 = {b → ¬a;→ a}. Then I = {¬a, a, b} is an i-minimal model
not being inc-minimal, since {a,¬b} is a model of P.

3. Every two-valued model is i-minimal (among the total models), but
not, in general t-minimal. There are also t-minimal models not being
i-minimal: the interpretation {¬a, a,¬b} is a t-minimal model of P1,
but it is not i-minimal.

We recall the following result from [We97].

Proposition 3 1. Let T be a quantifier-free theory. Then the theory T
has an inc-minimal model.

2. The consequence operation Cincm(X) = {F | X |=incm F} is a para-
consistent, non-monotonic approximation of Cn.

The main result of this section is the following.

Proposition 4 Let T be a quantifier-free theory and I an inc-minimal
model of T. Then there exists a model J of T such that

1. inc(I) = inc(J)
2. J � I
3. for all J0 � J such that J0 
= J either inc(J0) 
= inc(I) or J0 
|= T .

Proof: We may assume that T is a set of clauses, these are formulas of the
form a1∨. . .∨am∨¬b1∨. . .∨¬bn, where ai, bj are atomic formulas. Let be
Δ(I) = {J | J � I and J |= T and inc(I) = inc(J)}. We consider decreas-
ing sequences within the system (Δ(I),�). Let be J0 � . . . � Jn � . . . a
decreasing sequence, Jn ∈ Δ(I), n < ω. Obviously, the sequence {Jn | n <
ω} has a lower bound J∗, defined by Pos(J∗) =

⋂{Pos(Jn)|n < ω}, and
Neg(J∗) =

⋃{Neg(Jn)|n < ω}. We show that J∗ ∈ Δ(I). By Zorn’s
lemma this implies the result of the theorem. Since inc(J∗) = inc(I), it
remains to show that J∗ |= T . Assume, this is not the case; then there is a
formula F (x) = a1(x)∨. . .∨am(x)∨¬b1(x)∨. . .∨¬bn(x) from T such that
J∗ 
|= ∀xF (x), which implies J∗(∀xF (x)) 
∈ {�, t}, hence J∗(∀xF (x)) = f
which yields J∗(¬∀xF (x)) = J∗(∃x¬F (x)) = t. Hence, there are variable-
free terms t such that {¬a1(t), . . . ,¬am(t), b1(t), . . . , bn(t)} ⊆ J∗. This
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condition implies {b1(t), . . . , bn(t)} ⊆ Jn for every n < ω. But, there must
be also a number k < ω such that {¬a1(t), . . . ,¬am(t)} ⊆ Jk, and this
implies Jk(

∧
i≤m ¬ai(t)∧

∧
j≤n bj(t)) = t (the value � is not possible, oth-

erwise this would imply inc(Jk) 
= inc(J∗)). This gives a contradiction. �

Proposition 4 shows that for every model I of a quantifier-free theory T
the set Min� ({J | inc(J) = inc(I), J ∈ Mod(T )}) is non-empty.

Corollary 5 Let T be a universal theory, I a model of T and let J be
a set of literals such that J � I and inc(J) = inc(I). Then the set
{K | J � K � I and K |= T and inc(K) = inc(I)} contains a �-
minimal element.

Proof: Follows immediately from proposition 4.

4 Sequents and Logic Programs

In the sequel we use Gentzen-sequents to represent rule knowledge as
proposed in [HW97]. A sequent, then, is not a schematic but a concrete
expression representing some piece of knowledge.3

Definition 5 (Sequent) A sequent s is an expression of the form

F1, . . . , Fm ⇒ G1, . . . , Gn

where Fi, Gj ∈ L(σ) for i = 1, . . . , m and j = 1, . . . , n. The body of s,
denoted by B(s), is given by {F1, . . . , Fm}, and the head of s, denoted by
H(s), is given by {G1, . . . , Gn}. Seq(σ) denotes the class of all sequents s
such that H(s), B(s) ⊆ L(σ), and for a given set S ⊆ Seq(σ), [S] denotes
the set of all ground instances of sequences from S.

The satisfaction set of a formula F ∈ L(σ) with respect to an interpreta-
tion I ∈ I(σ) is defined as SatI(F ) = {ν ∈ UI

Var : I |= Fν}

Definition 6 (Model of a Sequent) Let I ∈ I. Then,

I |= F1, . . . , Fm ⇒ G1, . . . , Gn iff
⋂

i≤m

SatI(Fi) ⊆
⋃

j≤n

SatI(Gj)

3 The use of sequents is mainly technico-methodological, the sequent-arrow ⇒ should
be distinguished from the implication connective →.
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Obviously for every sequent B ⇒ H and I ∈ I we have I |= B ⇒
H iff I |= ∧

B → ∨
H. Sometimes, we represent the latter formula by

the expression
∨

H ← ∧
B. We define the following classes of sequents

corresponding normal, normal disjunctive and generalized logic programs,
respectively.

1. NLP(σ) = {s ∈ Seq(σ) : H(s) ∈ At(σ), B(s) ⊆ Lit(σ)}.
2. NDLP(σ) = {s ∈ Seq(σ) : H(s) ⊆ At(σ), B(s) ⊆ Lit(σ),H(s) 
= ∅}.
3. GLP(σ) = {s ∈ Seq(σ) : H(s), B(s) ⊆ L(σ;¬,∧,∨,→)}.

For P ⊆ GLP(σ), the model operators Mod∗(P ), ∗ ∈ {inc, i, t} are defined
as in section 3. The associated entailment relations are defined by P |=∗ F
iff Mod∗(P ) ⊆ Mod(F ), where ∗ = inc, i, t, and F ∈ L(σ). The ground
instantiation of a generalized logic program P is denoted by [P ], and
defined by [P ] = {θ(r) | r ∈ P, θ is a ground substitution}. Obviously, if
P ⊆ GLP, then Mod(P ) = Mod([P ]).

A preferential semantics for sequents is given by a preferred model
operator Φ : 2Seq → 2I, satisfying the condition Φ(P ) ⊆ Mod(P ) and
selecting suitable preferred models. Our intuitive understanding of rules
suggests a meaning which interprets a sequent as a rule for generating in-
formation. We may consider a model I of a set P of sequents as intended
if I can be generated bottom-up starting from a suitable least interpre-
tation by an iterated application of the sequents r ∈ [P ]. A model of P
which can be generated in this way is said to be grounded in P . The fol-
lowing examples show that even the following strong form of minimality
is not sufficient to satisfy this condition. A model I of P is said to be
inc-t-minimal if I is inc-minimal and there is no model J of P satisfying
the conditions inc(J) = inc(I), J � I, and J 
= I.

Example 3 1. Let P = {¬p(a) ⇒ q(a)}. Every intended model of P
should contain q(a). But M = {p(a),¬q(a)} is also an inc-t-minimal
model of P .

2. This observation is also valid if P has no two-valued model.
Let P = {⇒ r(c); ⇒ ¬p(a); ⇒ ¬p(b); ⇒ p(a), p(b); ¬p(x) ⇒ q(x)}.
Every intended model of P should contain q(c). Assume I |= P is
inc-minimal, but q(c) 
∈ I. Then, ¬q(c) ∈ I, which implies p(c) ∈ I
(note that I is total). But p(c) cannot be generated by applying the
sequents from [P ] because p(c) does not appear in the head of any rule
s ∈ [P ]. 4

4 Application of a rule r means, roughly, to make the body B(r) true and then to
detach the head H(r).
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But M1 = {¬p(a),¬p(b), p(a), q(a), q(b),¬q(c), p(c), r(c),¬r(a),¬r(b)}
is an inc-t-minimal model of P .

5 Paraconsistent Stable Generated Models

Definition 7 (Interpretation Interval) Let I1, I2 ∈ I and inc(I1) =
inc(I2). Then, [I1, I2] = {I ∈ I : I1 � I � I2 and inc(I) = inc(I1)}. For
a program P ⊆ GLP let be P[I1,I2] = {r | r ∈ [P ], [I1, I2] |= B(r)}.

The following definition of a paraconsistent stable generated model com-
bines the construction of a generated model in [HW97] with the notion
of inc-minimality.

Definition 8 (Paraconsistent Stable Generated Model) Let P ⊆
GLP(σ). An inc-minimal model M of P is called paraconsistent stable
generated, symbolically M ∈ Modps(P ), if there is a chain of Herbrand
interpretations I0 � . . . � Iκ such that M = Iκ, and

1. M is inc-minimal
2. I0 = inc(M) ∪ {¬a | a ∈ At0(σ)}.
3. For successor ordinals α with 0 < α ≤ κ, Iα is a �-minimal ex-

tension of Iα−1 satisfying the heads of all sequents whose bodies hold
in [Iα−1,M ], i.e. Iα ∈ Min�{I ∈ I(σ) : M � I � Iα−1, inc(M) =
inc(I), I |= ∨

H(s), for all s ∈ P[Iα−1,M ] }
4. For limit ordinals λ ≤ κ, Iλ = supα<λ Iα.

We also say that M is generated by the P -stable chain I0 � . . . � Iκ.

Intuitive, we define that an inc-minimal model M of a generalized
logic program P is a paraconsistent stable generated model of P if M is
created bottom-up by an iterative application of the rules of P starting
with the state of no information (that means every atom is negated) and
the inconsistency of M . In every step of the construction the model is
extended in that way that the inconsistency is preserved and the head of
every applicable sequent is satisfied.

Example 4 Let P be the second logic program of Example 3. Because of
the rules {⇒ ¬p(a); ⇒ ¬p(b); ⇒ p(a), p(b)} it is easy to see that P has
no two-valued model. But there are two paraconsistent stable generated
models:
M2 = {¬r(a),¬r(b), r(c),¬p(a),¬p(b), p(a),¬p(c), q(a), q(b), q(c)} and
M3 = {¬r(a),¬r(b), r(c),¬p(a),¬p(b), p(b),¬p(c), q(a), q(b), q(c)}.
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The model M2 is constructed by the chain I2
0 � I2

1 = M2.
In detail we obtain:
I2
0 = {p(a)}∪{¬r(a),¬r(b),¬r(c),¬p(a),¬p(b),¬p(c),¬q(a),¬q(b),¬q(c)}.

So P[I2
0 ,M2] = {⇒ r(c); ⇒ ¬p(a); ⇒ ¬p(b); ⇒ p(a), p(b); ¬p(a) ⇒

q(a); ¬p(b) ⇒ q(b); ¬p(c) ⇒ q(c)}. Therefore I2
1 = M2 with

I2
1 = {¬r(a),¬r(b), r(c),¬p(a),¬p(b), p(a),¬p(c), q(a), q(b), q(c)}.

For M3 we obtain:
I3
0 = {p(b)}∪{¬r(a),¬r(b),¬r(c),¬p(a),¬p(b),¬p(c),¬q(a),¬q(b),¬q(c)}.

So P[I3
0 ,M3] = {⇒ r(c); ⇒ ¬p(a); ⇒ ¬p(b); ⇒ p(a), p(b); ¬p(a) ⇒

q(a); ¬p(b) ⇒ q(b); ¬p(c) ⇒ q(c)} and therefore I3
1 = M3 with

I3
1 = {¬r(a),¬r(b), r(c),¬p(a),¬p(b), p(b),¬p(c), q(a), q(b), q(c)}.

Hence it follows: P |=ps q(c).

Remark: If we assume in definition 8 that the set inc(M) is empty then
we get the notion of a stable generated model as introduced and studied
in [HW97].

Notice that the notion of stable generated models applies to programs
admitting negation(-as-failure) in the head of a rule and nested negations,
such as in p(x) ∧ ¬(q(x) ∧ ¬r(x)) ⇒ s(x) which would be the result of
folding p(x) ∧ ¬ab(x) ⇒ s(x) and q(x) ∧ ¬r(x) ⇒ ab(x).
It turns out that the length of the generated sequence of a stable generated
model can be restricted by ω.

Proposition 6 Let P ⊆ GLP, and let M be a paraconsistent stable gen-
erated model of P generated by the sequence M0 � . . . � Mκ. Then there
is an ordinal β ≤ ω such that Mβ = Mκ.

Proof: We show that every sequence stabilizes at an ordinal β ≤ ω.
Obviously, if Mα = Mα+1 then Mα = Mγ for all α < γ ≤ κ. It is
sufficient to prove Mω = Mω+1. Analogously to [HW97], we proceed in
two steps:

(1) First we show that if s ∈ [P ] and [Mω,M ] |= B(s) then there
is a number n < ω such that [Mn,M ] |= B(s). Without loss of gen-
erality, we may assume that B(s) is a set of clauses (disjunction of
ground literals), i.e. B(s) = {C1, . . . , Ck}, Ci = ai

1 ∨ . . . ∨ ai
mi

∨ ¬bi
1 ∨

. . . ∨ ¬bi
ni

, i ∈ {1, 2, ..., k}. A clause Ci is said to be positive if the set
P (i) := Mω ∩ {ai

1, . . . , a
i
mi

} is nonempty, otherwise it is called negative.
Let {C1, . . . , Cs} be the set of positive and {Cs+1, . . . , Ck} the set of nega-
tive clauses. Because the set P :=

⋃
1≤i≤s P (i) is finite, there is a number

j < ω such that P ⊆ Mj . Then, trivially, [Mj ,M ] |= C1, . . . , Cs. It re-
mains to show: if Mj � J � M then J |= Cs+1, . . . , Ck. We proof this
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fact indirectly. Assume J 
|= Cs+1, . . . , Ck. Then, there exists a number j,
s + 1 ≤ j ≤ k, such that J 
|= Cj with the following form Cj = aj

1 ∨ . . . ∨
aj

mj ∨ ¬bj
1 ∨ . . . ∨ ¬bj

nj . Because of J(Cj) = f , we obtain neg(J(Cj)) = t

and therefore J |= ¬Cj . So J |= ¬aj
1 ∧ . . . ∧ ¬aj

mj ∧ bj
1 ∧ . . . ∧ bj

nj since
De Morgan’s laws are valid in our paraconsistent semantics. We may as-
sume that the elements in the set {aj

1, . . . , a
j
mj , b

j
1, . . . , b

j
nj} are pairwise

distinct. Now, we define M∗
ω = (Mω \ {¬bj

1, . . . ,¬bj
nj}) ∪ {bj

1, . . . , b
j
nj}.

Then Pos(Mω) ⊆ Pos(M∗
ω) and Neg(M∗

ω) ⊆ Neg(Mω). So Mω � M∗
ω.

Furthermore it holds M∗
ω � M and therefore we obtain M∗

ω ∈ [Mω,M ].
Because of M∗

ω ∩{aj
1, . . . , a

j
mj ,¬bj

1, . . . ,¬bj
nj} = ∅ and {bj

1, . . . , b
j
nj} ⊆ M∗

ω

it follows M∗
ω 
|= Cj . This is a contradiction to [Mω, M ] |= Cj .

(2) Now, we show that Mω = Mω+1. It is sufficient to prove: if s ∈
P[Mω ,M ], then Mω |= ∨

H(s). By (1), the condition s ∈ P[Mω ,M ] implies
that s ∈ P[Mn,M ] for a certain number n < ω, and hence for every j > n :
s ∈ P[Mj ,M ]. Hence, Mj |= ∨

H(s) for every j, n < j < ω. Again, we may
assume that

∨
H(s) is given as a set of clauses {C1, . . . , Cn}. We have to

check that Mω |= C1, . . . , Cn. Assume, there is a j, 1 ≤ j ≤ n, such that
Mω 
|= Cj , then Mω |= ¬Cj , Cj = aj

1 ∨ . . . ∨ aj
mj ∨ ¬bj

1 ∨ . . . ∨ ¬bj
nj , and

Mω |= ¬aj
1 ∧ . . .∧¬aj

mj ∧ bj
1 ∧ . . .∧ bj

nj . It is easy to show that there exists
a number m < ω such that {bj

1, . . . , b
j
nj} ⊆ Mm, and from this follows

Mm 
|= Cj , which is a contradiction. �

Corollary 7 If M is a paraconsistent stable generated model of P ⊆
GLP, then there is either a finite P -stable chain, or a P -stable chain of
length ω, generating M .

The following example shows that stable generated entailment is not
cumulative, i.e. adding derivable formulas to programs may change their
consequence set.

Example 5 (Observation 18, [HJW99]) Let P be the following logic
program: P = {¬r(a) ⇒ q(a);¬q(a) ⇒ r(a);¬p(a) ⇒ p(a);¬r(a) ⇒
p(a); }. Then Modps(P ) = {{p(a), q(a)}}. Therefore P |=ps p(a), q(a).
But Modps(P ∪ {p(a)}) = {{p(a), q(a)}, {p(a), r(a)}} and hence P ∪
p(a) 
|= q(a).

The relation to consistent generalized programs is captured by the
following proposition.

Proposition 8 Let P be a generalized logic program, and assume P is
consistent, i.e. has a two-valued classical interpretation. Then a model I
of P is paraconsistent stable generated if and only if it is stable generated.
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Proof: By proposition 3 every inc-minimal model is two-valued. �

Corollary 9 Let P be a normal logic program. Then a model I of P is
paraconsistent stable generated if and only if it is stable (in the sense of
[GL88]).

Proof: P is always a two-valued model, since the negation ¬ does not
appear in the heads of the rules. Now we may apply the preceding propo-
sition and the result in [HW97] (stating that the stable generated models
coincide with the stable models for normal logic programs). �

6 Conclusion and Related Work

A framework of paraconsistent logic programs was firstly developed by
Blair and Subrahmanian in [BS89]; they employ Belnap’s four-valued logic
[Be77] as a theoretical basis, but this framework does not treat default
negation in a program. Kifer and Lozinskii in [KL92] extend Blair’s frame-
work to theories possibly containing default negation. Sakama and Inoue
are studying programs in [SI95] whose rules admit disjunction in the
head and default negation in the bodies of the rules. Our approach gives
a declarative semantics to logic programs whose rules admit arbitrary
quantifier-free formulas in the heads and bodies containing negation that
can be interpreted as default negation. This semantics coincides on nor-
mal logic programs with the stable models in [GL88]. Note, that stable
models I satisfies the condition I∩{a,¬a} 
= ∅ for every ground atom, and
that any adequate generalization of this notion to paraconsistent models
should preserve this property. This is the reason, why we assume that the
considered interpretations to be total. Our semantics uses the concept of
minimal inconsistent interpretations as introduced by Priest in [Pr91], the
results in [We97] and the notion of a stable generated model introduced
and studied in [HW97].

By introducing a general definition of paraconsistent stable generated
models, we have continued the foundation of a stable model theory for
possibly inconsistent logic programs. It seems to be possible to analyze
further extensions of normal logic programs within a similar framework,
such as admitting quantifiers in the bodies and the heads of rules. As
a consequence of the rapid growth of the Semantic Web, powerful on-
tology languages like Extended RDF [AADW08] were developed which
use the logic programming paradigm. Therefore the application of the
stable model theory to that family of languages is a beneficial challenge
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for the near future. In [Hu09] a paraconsistent stable generated seman-
tics for a four-valued logic is proposed which depends on the minimally
inconsistent models too. Another interesting step is to develop a para-
consistent declarative semantics for generalized logic programs with two
kinds of negation satisfying the coherency condition, i.e. ∼F implies ¬F ,
where ∼ represents strong negation, and ¬ means weak negation which
is assumed to be total.

Since the stable models in the sense of [GL88] correspond to the stable
models of [FLL07] for normal logic programs, the stable models in the
sense of [FLL07] agree also with the two-valued stable generated models
if normal logic programs are considered. Because of the fact that the
semantics of [FLL07] is also defined for generalized logic programs, a
detailed characterization of the relationship between this semantics and
the stable generated models belongs to our future plans.
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