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Abstract  

During the last decade, high intensity interval training (HIIT) has been used as an 

alternative to endurance (END) exercise, since it requires less time to produce similar 

physiological adaptations. Previous literature has focused on HIIT changes in aerobic 

metabolism and cardiorespiratory fitness, however, there are currently no studies focusing 

on its neuromuscular adaptations.  

Therefore, this thesis aimed to compare the neuromuscular adaptations of both HIIT 

and END after a two-week training intervention, by using a novel technology called high-

density surface electromyography (HDEMG) motor unit decomposition. This project 

consisted in two experiments, where healthy young men were recruited (aged between 18 to 

35 years). In experiment one, the reliability of HDEMG motor unit variables (mean 

discharge rate, peak-to-peak amplitude, conduction velocity and discharge rate variability) 

was tested (Study 1), a new method to track the same motor units longitudinally was 

proposed (Study 2), and the level of low (<5Hz) and high (>5Hz) frequency motor unit 

coherence between vastus medialis (VM) and lateralis (VL) knee extensor muscles was 

measured (Study 4). In experiment two, a two-week HIIT and END intervention was 

conducted where cardiorespiratory fitness parameters (e.g. peak oxygen uptake) and motor 

unit variables from the VM and VL muscles were assessed pre and post intervention (Study 

3).  

The results showed that HDEMG is reliable to monitor changes in motor unit 

activity and also allows the tracking of the same motor units across different testing 

sessions. As expected, both HIIT and END improved cardiorespiratory fitness parameters 

similarly. However, the neuromuscular adaptations of both types of training differed after 

the intervention, with HIIT showing a significant increase in knee extensor muscle strength 

that was accompanied by increased VM and VL motor unit discharge rates and HDEMG 

amplitude at the highest force levels [(50 and 70% of the maximum voluntary contraction 

force (MVC)], while END training induced a marked increase in time to task failure at 

lower force levels (30% MVC), without any influence on HDEMG amplitude and 

discharge rates. Additionally, the results showed that VM and VL muscles share most of 

their synaptic input since they present a large amount of low and high frequency motor unit 
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coherence, which can explain the findings of the training intervention where both muscles 

showed similar changes in HDEMG amplitude and discharge rates. 

 Taken together, the findings of the current thesis show that despite similar 

improvements in cardiopulmonary fitness, HIIT and END induced opposite adjustments in 

motor unit behavior. These results suggest that HIIT and END show specific 

neuromuscular adaptations, possibly related to their differences in exercise load intensity 

and training volume.  
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Zusammenfassung 

Als Alternative zu Ausdauertraining (END) wurde während des letzten Jahrzehnts 

hochintensives Intervalltraining (HIIT) eingesetzt, da es weniger Zeit in Anspruch nimmt 

um ähnliche physiologische Anpassungen herbeizuführen. Die Literatur hat sich bislang auf 

Veränderungen des aeroben Stoffwechsels und der kardiorespiratorischen Fitness durch 

HIIT konzentriert, es fehlt jedoch an Studien, die sich mit der neuromuskulären Anpassung 

auseinandersetzen. Deswegen war das Ziel dieser Thesis die neuromuskulären 

Anpassungserscheinungen durch HIIT und END nach einer 2-wöchigen 

Trainingsintervention zu vergleichen. 

Dafür wurde eine neuartige Technik, die sogenannte High-Density Oberflächen 

Elektromyographie Motoreinheiten Zersetzung (HDEMG) genutzt. Dieses Projekt bestand 

aus zwei Experimenten, für die junge gesunde Männer zwischen 18 und 35 Jahren 

rekrutiert wurden. Im Rahmen des ersten Experiments wurde die Reliabilität der HDEMG 

Variablen (Entladungsrate, Amplitude, Weiterleitungsgeschwindigkeit und die Variabilität 

der Entladungsrate) untersucht (Studie 1), eine neue Methode zur longitudinalen 

Verfolgung der Motoreinheiten entwickelt (Studie 2) und die Kohärenz niedriger- (<5Hz) 

und hoher Frequenzen (>5Hz) der Knieextensoren vastus medialis (VM) und vastus 

lateralis (VL) gemessen (Studie 4). Das zweite Experiment beinhaltete eine zweiwöchige 

HIIT und END Intervention, bei der Parameter der kardiorespiratorischen Fitness 

(beispielsweise die maximale Sauerstoffaufnahme) und Parameter der Motoreinheiten des 

VM und VL vor- und nach der Intervention erfasst wurden (Studie 3).  

Die Ergebnisse bestätigen, dass HDEMG eine zuverlässige Methode zur Erkennung 

von Veränderungen der Motoreinheit-Aktivitäten ist, sowie zur Verfolgung der selben 

Motoreinheiten in verschiedenen Messungen. Wie erwartet haben HIIT und END die 

kardiorespiratorische Fitness gleichermaßen verbessert. Trotzdem unterscheiden sich die 

neuromuskulären Anpassungserscheinungen beider Trainingsinterventionen insofern, als 

dass durch HIIT ein signifikanter Kraftzuwachs der Knieextensoren hervorgerufen wurde, 

der durch eine erhöhte Entladungsrate der VM und VL Motoreinheiten und eine erhöhte 

HDEMG Amplitude bei größter Kraft [50 und 70% der Maximalkraft (MVC)] begleitet 

wurde. END hingegen bewirkte einen deutlichen Anstieg der „time to task failure“ bei 
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niedrigeren Kraftintensitäten (30% MVC), ohne dabei die HDEMG Amplitude oder 

Entladungsrate zu beeinflussen. Außerdem konnten die Ergebnisse belegen, dass VM und 

VL einen Großteil des synaptischen Inputs teilen, da beide Muskeln eine hohe Kohärenz 

bei niedrigen- (<5Hz) und höheren Frequenzen (>5Hz) zeigen. Dies könnte eine mögliche 

Erklärung für die Ergebnisse der Trainingsintervention sein, bei der beide Muskeln 

ähnliche Veränderungen in der HDEMG Amplitude und der Entladungsrate vorwiesen.  

Zusammenfassend zeigen die Ergebnisse dieser Thesis, dass HIIT und END trotz 

ähnlicher Verbesserungen der kardiorespiratorischen Fitness unterschiedliche Anpassungen 

des Verhaltens der Motoreinheiten hervorrufen. Die Ergebnisse unterstreichen, dass HIIT 

und END spezifische Adaptionen  auslösen, die möglicherweise auf den Unterschieden von 

Trainingsintensität und - volumen basieren.  
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1. Introduction  

Physical inactivity has been associated with an increased risk of cardiovascular, 

metabolic, cognitive and musculoskeletal disorders, which can lead to higher mortality and 

worsened quality of life (Pedersen & Saltin, 2006; Garber et al., 2011). Endurance exercise 

(END) has been widely regarded as a powerful preventive and treatment tool for such 

diseases, due to favorable physiological adaptations for health and fitness (Garber et al., 

2011). However, to produce any significant physiological adaptation, END must be 

performed for at least 150 min/week at an intensity of 3 to 6 metabolic equivalents 

(METS) or 50-70% of maximum heart rate (HRmax) (Garber et al., 2011). As “lack of 

time” has been referred as one of the main reasons of low compliance to this type of 

training (Brownson et al., 2001; Gibala & Little, 2010), many studies were performed in 

order to observe if decreasing the exercise volume, while increasing the intensity (thus, 

decreasing time-commitment), led to similar adaptations to those found in conventional 

END.  

High intensity interval training (HIIT) describes physical exercise that is 

characterized by brief, intermittent bursts of vigorous physical activity, interspersed by 

periods of rest or low-intensity exercise (Gibala et al., 2012). Subjects perform short 

periods of training (from 30 seconds to 1 minute) at intensities from 90% HRmax and above, 

interspersed with a passive or active rest, achieving an exercise volume of maximum 10 to 

20 minutes/session (30-60 minutes/week). In comparison to traditional END, several 

authors have studied HIIT adaptations and found similar or superior changes in a range of 

physiological, performance and health-related markers in both healthy individuals and 

diseased populations (Gibala et al., 2012). Moreover, as little as 6 sessions of training (2 

weeks) produce significant adaptations in muscle oxidative capacity, cardiorespiratory 

fitness and exercise performance (e.g., increased endurance time and reduced time to 

complete a set amount of work) (Burgomaster et al., 2005; Burgomaster et al., 2006; 

McKay et al., 2009; Little et al., 2010), reduce hyperglycemia and increase muscle 

mitochondrial capacity in patients with type 2 diabetes (Little et al., 2011). Furthermore, 

longer HIIT interventions (6 weeks) showed increased resting glycogen content, reduced 

rate of oxygen utilization and lactate production during matched-work exercise, increased 
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capacity for whole-body and skeletal muscle lipid oxidation and enhanced peripheral 

vascular structure/function (Burgomaster et al., 2008; Rakobowchuk et al., 2008; Gibala et 

al., 2012). Together, the evidence supports HIIT as an attractive alternative to traditional 

END training, not only for those that have less time to do exercise, but also for patients 

who require fast metabolic and functional adaptations to improve their health and quality 

of life. 

In relation to the fast functional adaptations seen in HIIT, no efforts have been 

made to clarify its neural contributions. For instance, increases in power output and 

endurance time are reported in as little as 6 sessions of HIIT training (Burgomaster et al., 

2005; Little et al., 2010). Even when the increases in aerobic and metabolic capacity had 

been attributed to those changes, neural adaptations should play a role as well, since motor 

performance is enhanced by repeated exposure to exercise training (Vila-Cha et al., 2010). 

Moreover, as those functional outcomes might have a direct impact on strength and 

resistance to fatigue of healthy and diseased subjects, it is indeed relevant to study the 

neural mechanisms involved in such fast adaptations.  

 Thus, the main purpose of the present thesis was to study the neuromuscular 

changes occurring after two weeks of either HIIT or END training by using novel methods 

of high-density surface electromyography (HDEMG) motor unit decomposition. This work 

begins with a short review of the literature pertaining to the following: (1) motor unit basic 

properties (2) motor units and the regulation of muscle force (3) motor unit adaptations to 

training and (4) methodology of motor unit decomposition. Following the review, the aims 

and hypothesis of this dissertation will be presented and followed by 4 complete studies 

showing: (1) the reliability of HDEMG to monitor changes in motor unit behavior (2) a 

new technique for longitudinal tracking of motor units (3) motor unit behavioral changes 

after HIIT and END interventions and (4) the characteristics of the neural input received by 

the synergistic thigh muscles studied during the training intervention.  
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 2. Literature review  

 2.1. Motor Unit basic properties  
 

Motor units are regarded as the final common pathway of the central nervous 

system (CNS) to the muscles (Sherrington, 1925). Therefore, the study of motor unit 

behavior can improve our understanding about how the CNS adapts to training. A motor 

unit is comprised by an alpha-motor neuron in the ventral horn of the spinal cord, its axon 

and the muscle fibers that the axon innervates (Sherrington, 1925). Motor units convert the 

neural information sent by the CNS motor centers (e.g., brain cortex, brain stem, spinal 

cord) into muscle forces that are ultimately responsible for the generation of movement 

(Heckman & Enoka, 2012). 

 Anatomically, muscles comprise from few tens of motor units up to several 

thousand. Each motor neuron innervates an average of 300 muscle fibers, however, the 

range also extends from tens to thousands depending on the muscle’s size (Enoka & 

Fuglevand, 2001). The group of muscle fibers belonging to the same motor unit is called 

muscle unit and its territory usually extends up to the 15% of the muscle’s volume 

(Heckman & Enoka, 2012).   

Action potentials fired by the motor neuron cause the contraction of all the fibers 

innervated by the motor unit (muscle unit). This response is called “twitch” and 

corresponds to the force produced by the muscle fibers in response to a single action 

potential (Enoka, 2015). A twitch is regarded as the basic contractile property of a motor 

unit. Action potentials fired by the motor neuron produce a sharp fluctuation in voltage that 

can be recorded by electrodes placed on the surface of the skin or inside the muscle belly. 

This voltage fluctuation is called motor unit action potential or “spike”.  

When contractions are sustained in time, a number of motor unit action potentials 

(summation of spikes) are sent to the muscles in order to produce a series of overlapping 

twitches. The degree of overlap between successive twitches depends on the rate at which 

the action potentials are generated and the time-course of the twitch response (Enoka, 

2015). This summation of action potentials is commonly called “spike train” or 

“innervation pulse train”.  From these spike trains motor unit behavioral properties such as 

mean discharge rate (frequency of discharges) and discharge rate variability (regularity of 
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discharges) are calculated (central properties of the motor unit).  

Once an action potential arrives to the neuromuscular junction, it will propagate 

through the innervated muscle fibers in the longitudinal direction. The velocity of 

propagation of this action potential can be quantified by a group of surface 

electromyography (EMG) electrodes (e.g., array of at least 4 electrodes placed parallel to 

the muscle fibers), simply by dividing the distance between electrodes and the time it took 

to the action potential to travel that distance (Farina et al., 2001). This measurement is 

called muscle fiber conduction velocity and gives information about the properties of the 

muscle fiber membrane (motor unit peripheral property) (Farina et al., 2001). This variable 

has been also used to measure the size of the motor units, since action potentials from big 

motor units propagate faster than action potentials from smaller motor units (Farina et al., 

2002). Figure 1 shows a schematic representation of motor unit central and peripheral 

properties.     

 

Figure 1. Schematic representation of motor units (motor neurons, their axons and muscle fibers 

that each axon innervates) behavior. Three motor neurons send neural information through their 

axons as motor unit spike trains (sum of action potentials) with different discharge rates and 

discharge rate variability (central motor unit properties) (left and center). Each of these axons then 

branch to innervate different muscle fibers (muscle unit) (right). Action potentials propagate 

through the muscle fiber membranes (dashed arrows) in order to produce a contraction of the 

muscle fibers (conduction velocity, peripheral property). CV, conduction velocity. 
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2.2. Motor Units and force 
 

There are several ways in which motor units can produce/control force. For 

instance, the force that a muscle exerts depends on motor unit activity (Adrian & Bronk, 

1929), changing with the number of motor units that are active (motor unit recruitment) 

and the rates at which motor neurons discharge action potentials (rate coding or discharge 

rate) (Duchateau et al., 2006). Therefore, increases in muscle force are attributed to both 

increases in motor unit recruitment and discharge rate (Duchateau et al., 2006).  Regarding 

motor unit recruitment, motor units are recruited in an orderly fashion according to the size 

principle (motor unit size is quantified by measuring the diameter, surface area, number of 

dendrites, and capacitance of the cell body) (Henneman et al., 1965). Thus, smaller motor 

units are recruited first at low force levels (low threshold motor units) while the biggest 

motor units are recruited last (high threshold motor units) at higher force levels. 

Accordingly, larger motor units typically present greater twitch tension than smaller motor 

units (higher force capacity) (Milner-Brown et al., 1973). The size principle has been 

believed to have functional advantages in force production (e.g., optimization of force 

gradation) (Heckman & Enoka, 2012), however, this observation has been recently 

questioned (Dideriksen & Farina, 2013).  

Finally, and regarding force control, the muscle can increase the force precision 

(steadiness) by regulating the number of recruited motor units (Duchateau et al., 2006) and 

also by decreasing discharge rate variability (Moritz et al., 2005), however, the latter 

argument has been also recently challenged (Negro et al., 2009). Recent studies have 

documented the role of low (<5Hz) and high (>5Hz) frequency motor unit coherence 

(correlated oscillatory activity among motor units) for the production/control of muscle 

force [see (Farina & Negro, 2015) for review]. Indeed, the correlated activity between 

motor unit discharge rates in low frequencies (<5 Hz) has been considered to determine the 

effective neural drive to the muscles (Farina et al., 2014). This correlated activity suggests 

that most of the motor units within a muscle are controlled by common synaptic input. 

Therefore, low-frequency correlation between motor units is needed for force control. 

Despite that high correlated motor unit activity has been shown in several individual 

muscles (within-muscle or intra-muscular motor unit coherence) (Negro et al., 2009; 

Negro et al., 2016b), the magnitude of motor unit coherence between synergistic muscles 
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(inter-muscular coherence) is not known.  

2.3. Motor Unit adaptations to training 
 

Previous studies about resistance (strength) training, have documented changes in 

motor unit features like recruitment, discharge rate, discharge rate variability, low and high 

frequency motor unit coherence, and conduction velocity (Semmler, 2004; Duchateau et 

al., 2006; Vila-Cha et al., 2010; Vila-Cha & Falla, 2016). For instance, changes in 

maximum voluntary contraction (MVC) force after resistance training have been attributed 

to adaptations in the force capacity of the muscle fibers and the activation characteristics of 

the involved motor units (Duchateau et al., 2006). Therefore, it has been observed that 

increases in muscle strength are accompanied by increases in motor unit discharge rate 

(Kamen & Knight, 2004; Vila-Cha et al., 2010), low and high frequency motor unit 

coherence (Semmler, 2004), conduction velocity (Vila-Cha et al., 2010) and changes in 

recruitment threshold during explosive contractions (Van Cutsem et al., 1998; Duchateau 

et al., 2006). While the observed increase in force steadiness (force control) during 

sustained submaximal contractions after strength training has been associated with a 

decrease in discharge rate variability (Vila-Cha & Falla, 2016).  

In contrast to resistance-training investigations, the number of studies documenting 

changes in motor unit behavior after END training is scarce. Most recent investigations 

focused on comparing changes in motor unit behavior between END and resistance 

training. These studies showed opposite adaptations regarding motor unit behavior (mean 

discharge rate and discharge rate variability) (Vila-Cha et al., 2010; Vila-Cha & Falla, 

2016), motor unit peripheral properties (motor unit conduction velocity) (Vila-Cha et al., 

2012) and functional outcomes such as MVC force (Vila-Cha et al., 2010) and time to task 

failure (Vila-Cha et al., 2012). In summary, these investigations showed that END training 

decreases discharge rate, does not change discharge rate variability, reduces the rate of 

decline in conduction velocity during fatiguing contractions and increases the time to task 

failure without changing the MVC force. These results are not surprising since the 

muscular and neural adaptations induced by each type of exercise are highly specific and 

may vary for different training paradigms (Hakkinen & Komi, 1986; Vila-Cha et al., 

2010). Indeed, and according to the principle of training specificity (Hakkinen & Komi, 
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1986; Morrissey et al., 1995), it is very likely that training protocols analyzing different 

motor tasks, intensities and training volumes show different neuromuscular adaptations.  

Previous investigations comparing physiological adaptations of short-term HIIT 

and END training (2 weeks) have used protocols with load intensities 2 to 4 times higher 

for HIIT, and training volumes 6 to 9 times higher for END (Gibala et al., 2006; McKay et 

al., 2009; Little et al., 2010). Thus, differences in motor unit behavior between these types 

of training should be expected; however, this has not been investigated. 

2.4. Motor unit decomposition techniques 
 

It is not an easy task to extract information about human motor units in vivo. Many 

methods such as concentric needles, quadrifilar and fine wire electrodes have been 

developed and refined over the years. However, all of these procedures are invasive and 

only allow the recording of just a few motor units during low contraction levels (10-30% 

of the MVC) (Merletti et al., 2008). Moreover, they do not allow the tracking of the same 

motor units longitudinally, since it is almost impossible to relocate the electrode across 

testing sessions (Carroll et al., 2011). Since the extracted sample of motor units with these 

methods is small and variable, it is difficult to infer changes in motor unit behavior. 

Indeed, there is a large amount of studies presenting contradictory motor unit changes after 

training interventions. For instance, even when most of the authors have documented 

increases in discharge rate after resistance training (Van Cutsem et al., 1998; Patten et al., 

2001; Kamen & Knight, 2004; Vila-Cha et al., 2010), there are a number of studies not 

being able to find these changes, despite that the training protocols also induced large and 

significant increases in MVC force (Rich & Cafarelli, 2000; Pucci et al., 2006). 

 As an alternative to address those limitations, high-density (multichannel) surface 

electromyography (HDEMG) techniques have been developed to study motor unit 

behavior non-invasively with a method called surface EMG motor unit decomposition 

(Merletti et al., 2008; Holobar et al., 2009; Farina & Holobar, 2016) Figure 2. With this 

technique, spike trains of individual motor units can be extracted from the surface EMG 

interference signal. In order for this method to work, the number of observation sites 

(EMG channels) from the surface EMG should be high enough to discriminate between 

different motor unit action potentials accurately (Farina et al., 2008). Indeed, each motor 
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unit has its own spatial representation over the HDEMG electrode grid (Figure 2c) that can 

be identified with high precision when the number of channels is high (e.g., more than 32 

EMG channels) (Farina et al., 2008). Thus, the extraction of the different sources (motor 

units) from the surface electromyography signals can be performed with algorithms based 

on blind source separation, which are able to identify and discriminate between different 

motor unit action potential shapes, and later on extract the times that each motor unit was 

active (Figure 2d) (Holobar & Zazula, 2007; Farina & Holobar, 2016; Negro et al., 2016a).  

 

 

Figure 2. HDEMG motor unit decomposition procedure. (a) Surface EMG signals recorded from 

the biceps brachii muscle with a 13 x 5 electrode grid (corner electrodes are absent), electrode 

columns are parallel to fiber direction. (b) Segment of 500 ms duration of bipolar EMG detected by 

each column of the grid. Action potentials show propagation along the columns. (c) Multi-channel 

action potentials for three motor units extracted from the interference signal with the 

decomposition algorithm described by (Holobar & Zazula, 2007). (d) Estimated discharge patterns 

(motor unit spike trains) for the three motor units (horizontal bars). MU: motor unit. Figure 

extracted from (Merletti et al., 2008). 
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HDEMG presents numerous advantages compared to previous methods: first, the 

number of detected units is increased (Merletti et al., 2008); second, a wider range of force 

levels can be analyzed (from 1% up to 75% of the MVC) (Holobar et al., 2014); third, 

allows the study of the properties of the muscle fiber membrane (muscle fiber conduction 

velocity) (Farina et al., 2001) and fourth, it might allow the tracking of the same motor 

units after an exercise intervention, since HDEMG electrodes can be easily repositioned 

across sessions (Cescon & Gazzoni, 2010).    

Several study groups have been developing techniques to improve the accuracy of 

HDEMG to detect MU activity (Kleine et al., 2007; Farina et al., 2008; De Luca & 

Hostage, 2010; Negro et al., 2016a). However, and quite surprisingly, none of these groups 

has measured the reliability of the variables obtained through HDEMG motor unit 

decomposition. This information is very important since training interventions require 

methods showing high reliability in order to interpret changes in motor unit behavior 

accurately.  

2.5. Conclusion  
 

 This literature review presented the basic properties of motor units, their different 

adaptations to training and a new technique for the extraction of motor unit variables from 

HDEMG. In summary, motor units are highly sensitive to different training paradigms, 

showing contrasting adaptations between END and resistance training. Previous 

investigations about motor unit behavior following training interventions involved invasive 

methods of motor unit decomposition with many limitations (e.g., low number of detected 

motor units at low force levels). These limitations could be solved with HDEMG motor 

unit decomposition systems, which allow the extraction of a larger number of motor units 

in a wide range of force levels. However, the reliability of HDEMG for training 

interventions and the possibility of tracking single motor units longitudinally has not been 

examined. If confirmed, such advances in technology will undoubtedly help to improve our 

understanding of motor unit adaptations to different types of training.  
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3. Research objectives  

High intensity interval training has been used as an alternative to END since 

previous research suggested that HIIT produces similar physiological adaptations but with 

much lower time commitment. However, there are no studies comparing the 

neuromuscular changes induced by these types of training. Therefore, the major aim of the 

present thesis is to compare the neuromuscular effects of two weeks of either HIIT or END 

training by the study of motor unit behavior.  

For this purpose, the following four consecutive studies were conducted: first, the 

within and between sessions reliability of HDEMG motor unit decomposition variables 

(mean discharge rate, peak-to-peak amplitude, conduction velocity and discharge rate 

variability), extracted from motor unit population samples of VM and VL muscles, was 

assessed at various contraction intensities (Study 1); second, it was tested if HDEMG 

recordings would allow the tracking of the same motor units across different testing 

sessions (Study 2); third, it was examined if two weeks of conventional END exercise 

would produce similar neuromuscular (motor unit) adaptations to those of HIIT (Study 3), 

and fourth, the magnitude of low and high frequency motor unit coherence between VM 

and VL synergistic muscles were measured (Study 4).    

 

Each of these studies objectives and hypothesis can be summarized as follows: 

 

Studies 1 and 2 were planned in order to check the validity of HDEMG for training 

interventions since there is a total lack of knowledge about the reliability of HDEMG 

motor unit decomposition variables within and across different testing sessions.  

Furthermore, it is important to know if HDEMG would also allow the tracking of the same 

motor units across several days. Therefore and as a first aim, this thesis is going to address 

the question of whether the motor unit variables obtained from HDEMG are reliable or not, 

and second, it will confirm if HDEMG recordings would allow the tracking of the same 

motor units longitudinally. Such knowledge is extremely important for intervention studies 

since the amount of measurement variability obtained with HDEMG systems remains 

unknown. Moreover, if the possibility to track motor units across different trials is 
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confirmed, both the reliability and sensitivity of HDEMG to study motor unit adaptations 

should improve drastically and it will be possible to investigate other motor unit properties 

that are not possible to assess with population samples (e.g., recruitment threshold in 

absolute force values). Together, this would place HDEMG as the best method to study 

motor unit adaptations after training. In fact, there are currently no other 

electromyographic methods able to track the same motor units longitudinally during 

voluntary contractions. For study 1 it was hypothesized that motor unit variables (mean 

discharge rate, peak-to-peak amplitude, conduction velocity and discharge rate variability) 

obtained from HDEMG motor unit population samples of VM and VL muscles during 

isometric knee extension contractions at 10, 30, 50 and 70% of the MVC force will have a 

low variability within and between sessions, producing accurate and repeatable results, 

while for study 2 the hypothesis was that HDEMG motor unit decomposition will allow the 

tracking of the same VM and VL motor units across different testing sessions in a wide 

range of isometric force levels (from 10% up to 70%  MVC force). Therefore, it is 

expected that the reliability and sensitivity of the variables extracted from tracked motor 

units (recruitment, de-recruitment threshold, mean discharge rate and conduction velocity) 

will be higher than the variables obtained from averaged motor unit population samples. 

 

Study 3 aimed to investigate low and high threshold motor unit adaptations 

between END and HIIT as well as their possible differences in functional (motor output) 

outcomes such as time to task failure, force steadiness (force control), MVC force 

(strength) and rate of force development (ballistic contractions). The END and HIIT 

training programs analyzed in study 3 were specifically chosen because they previously 

showed similar changes in aerobic metabolism and performance, despite their differences 

in training intensity and volume (Gibala et al., 2006; Little et al., 2010). These protocols 

will help to elucidate if the similarities observed in metabolic and cardiopulmonary 

systems are also observed at a neuromuscular level. It was hypothesized that despite that 

both types of training will show a similar increase in cardiorespiratory fitness (peak 

oxygen uptake and submaximal ventilation thresholds), HIIT and END will also show 

opposite adaptations in motor output (MVC force, rate of force development, time to task 

failure and force steadiness) that will be related to different adjustments in VM and VL 
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motor units discharge rates. Therefore, it is expected that the short and high loads used for 

HIIT will induce an increase in knee extension MVC force and increased discharge rates 

for VM and VL high threshold motor units (at 50 and 70% of the MVC), while the long 

and moderate loads used for END will induce an increase in time to task failure during a 

sustained low-force (30% MVC) knee extension contraction without any change in knee 

extension MVC force and, VM and VL motor unit discharge rates 

 

Study 4 was finally performed to understand and explain possible differences in 

motor unit behavior between the two synergistic knee extensor muscles (VM and VL) that 

were assessed during the training intervention. Synergistic muscles usually act 

synchronously during motor tasks, therefore, it can be expected that the motor unit activity 

of these muscles change similarly after training.  Synchronous activity can be due to shared 

synaptic inputs between muscles. One way to measure if muscles are controlled by shared 

or independent synaptic inputs is through the study of motor unit coherence. Since the 

level of motor unit coherence between synergistic muscles is unknown, study 4 will aim to 

investigate if VM and VL muscles are controlled by a common synaptic input, or by 

independent inputs, with an analysis called partial coherence. This method examines and 

compares the amount of motor unit correlation (low and high frequency motor unit 

coherence) within and between synergistic muscles (intra and inter-muscular coherence). 

The results obtained with this study will clarify if these muscles share their neural drive, or 

if the CNS controls them independently. It was hypothesized that the vasti muscles would 

be controlled primarily by a shared neural drive with relatively little unique drive to each 

muscle (inter-muscular motor unit coherence will be higher than intra-muscular motor unit 

coherence). Therefore, it is expected that VM and VL muscles will change similarly after 

training. 
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The four studies included in this document have been accepted for publication in a 

peer-reviewed journal (chapters 4.1, 4.2, 4.3 and 4.4). Further details about the journals, 

study-design, participants and measurements performed on each of the studies can be 

found in table 1. Thus, the following chapters will present the full articles (introduction, 

methods, results and discussion) that are related to the present dissertation.  

 

Table 1: Studies presented in the thesis 

Study Journal Design Participants Measures Chapter 

1 Clin 

Neurophysiol 
(peer-

reviewed) 

Cross-

sectional  
Male (n=10) Isom. Knee extension, 

HDEMG activity 
4.1 

2 J Physiol 
(peer- 

reviewed) 

Cross- 

sectional & 

Longitudinal 

CS: Male 

(n=10) 
Long: Male 

(n=7) 

Isom. Knee extension, 

HEMG activity, 

cycling performance, 

gas exchange 

4.2 

3 Med Sci 

Sports Exerc 
(peer-

reviewed) 

Longitudinal Male (n=16) Isom. Knee extension, 

HDEMG activity, 

cycling performance, 

gas exchange 

4.3 

4 J Neurosci 
(peer-

reviewed) 

Cross-

sectional 
Male (n=10) Isom. Knee extension, 

HDEMG activity 
4.4 

CS: cross sectional, Isom: isometric, Long: longitudinal 
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4.1.1. ABSTRACT  
  

Objective: To assess the intra-and inter-session reliability of estimates of motor unit 

behaviour and muscle fiber properties derived from high-density surface electromyography 

(HDEMG). Methods: Ten healthy subjects performed submaximal isometric knee 

extensions during three recording sessions (separate days) at 10, 30, 50 and 70% of their 

maximum voluntary effort. The discharge timings of motor units of the vastus lateralis and 

medialis muscles were automatically identified from HDEMG by a decomposition 

algorithm. We characterized the number of detected motor units, their discharge rates, the 

coefficient of variation of their inter-spike intervals (CoVisi), the action potential 

conduction velocity and peak-to-peak amplitude. Reliability was assessed for each motor 

unit characteristics by intra-class correlation coefficient (ICC). Additionally, a pulse-to-

noise ratio (PNR) was calculated, to verify the accuracy of the decomposition. Results: 

Good to excellent reliability within and between sessions was found for all motor unit 

characteristics at all force levels (ICCs > 0.8), with the exception of CoVisi that presented 

poor reliability (ICC < 0.6). PNR was high and similar for both muscles with values 

ranging between 45.1- 47.6 dB (accuracy >95%). Conclusion: Motor unit features can be 

assessed non-invasively and reliably within and across sessions over a wide range of force 

levels. Significance: These results suggest that it is possible to characterize motor units in 

longitudinal intervention studies. 
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4.1.2. INTRODUCTION 
 

Motor neurons are the common final pathway to muscle (Sherrington, 1925) and 

analysis of their behavior provides a direct indication of changes occurring within the 

central nervous system (CNS). The assessment of the firing patterns of motor units 

provides the opportunity to evaluate the mechanisms of muscle control utilized by the CNS 

(De Luca & Erim, 1994). Classically, motor unit activities have been recorded from human 

muscles in-vivo via intramuscular electromyography (EMG) (e.g., concentric needle or 

fine wire electrodes). However, this is an invasive procedure and, because of the high 

selectivity, it allows the concurrent detection of only a few motor units (Merletti et al., 

2008), usually during low force isometric contractions. As an alternative, high-density 

surface EMG (HDEMG) techniques have been developed to study motor unit behavior 

non-invasively. Using these techniques, the number of detectable motor units has increased 

(Holobar et al., 2009) with respect to invasive methods, a wider range of force levels can 

be analyzed, and peripheral properties of the motor units, such as muscle fiber conduction 

velocity, can be assessed together with the motor unit behavior (Merletti et al., 2008; 

Holobar et al., 2009).  

The application of HDEMG to evaluate motor unit properties may be especially 

relevant for monitoring changes in muscle properties and neuromuscular control following 

an intervention, such as training. Indeed, the relatively large motor unit sample identified 

may be representative enough to provide reliable information on the properties of the 

motor unit pool under multiple measurement sessions. For this purpose, there is the need to 

test whether motor unit decomposition methods are accurate (e.g., correct detection of 

motor unit action potentials and quantification of errors) and reliable (e.g., provide 

comparable results in different measurement sessions). Despite the fact that several efforts 

have been made to enhance the accuracy of HDEMG in detecting motor unit activity 

(Kleine et al., 2007; Farina et al., 2008; Holobar et al., 2009; De Luca & Hostage, 2010; 

Holobar et al., 2014), the reliability of the information extracted from these methods 

remains largely unknown. Relatively few studies have attempted to monitor changes in 

motor unit behavior over long time periods, as would be necessary for characterizing 

neuromuscular adaptations to training. While some authors have reported training-related 
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changes in motor units characteristics such as recruitment thresholds (Duchateau et al., 

2006), discharge rate (Vila-Cha et al., 2010), conduction velocity (Hedayatpour et al., 

2009) and motor unit  synchronization (Semmler, 2002), the relevance of these changes is 

difficult to fully assess because of the unknown measurement variability.  

In this study we assessed the intra and inter-session reliability of motor unit 

properties estimated from the decomposition of HDEMG. Specifically, we investigated 

features of motor unit behavior (number of detected motor units, discharge rate, discharge 

rate variability) and muscle fiber properties (conduction velocity, amplitude of motor unit 

action potentials). Additionally, the accuracy of the decomposed set of motor unit 

discharge timings was determined. 

4.1.3. METHODS 
 

4.1.3.1.Participants 

Ten healthy and physically active men (mean (SD) age: 27 (4) years, height: 180 

(8) cm, mass: 78 (10) kg) participated in the study. All subjects were right leg dominant 

(determined by asking which leg they would use to naturally kick a ball). Exclusion criteria 

included any neuromuscular disorders, current or previous history of knee pain and age < 

18 or > 35 years. Participants were asked to avoid any strenuous activity 24 h prior to the 

measurements. The ethics committee of the Universitaetsmedizin Goettingen approved the 

study (approval number 24/1/14), according to the declaration of Helsinki (2004). All 

participants gave written, informed consent. 

4.1.3.2. Experimental Protocol 

Participants attended the laboratory on three occasions. The three sessions were 7 

days apart and were conducted at the same time of the day for each subject. In each 

experimental session, subjects were seated comfortably on an isokinetic dynamometer 

(Biodex System 3, Biodex Medical Systems Inc., Shirley, NY, USA) in an adjustable chair 

with their trunk reclined to 15° and their hip and distal thigh firmly strapped to the chair. 

The rotational axis of the dynamometer was aligned with the right lateral femoral 

epicondyle while the lower leg was secured to the dynamometer lever arm above the lateral 

malleolus. Maximal and submaximal isometric knee extensions were exerted with the knee 

flexed by 90°. Subjects performed two maximum voluntary contractions (MVC) of knee 
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extension each over a period of 5 s. These trials were separated by 2 min of rest. The 

highest MVC value was used as a reference for the definition of the submaximal force 

levels. In each of the three experimental sessions, the submaximal forces were expressed as 

a percent of the MVC measured during the same session. Five minutes of rest were 

provided after the MVC measurement. Then, following a few familiarization trials at low 

force levels, subjects performed submaximal isometric knee extension contractions at 10, 

30, 50 and 70% MVC in a randomized order. The contractions at 10-30% were sustained  

for 20 s, while the contractions at 50 and 70% MVC lasted 15 and 10 s respectively. In 

each trial, the subjects received visual feedback of their knee extension force, which was 

displayed as a trapezoid (5 s ramps with hold-phase durations as specified above). Each 

contraction level was performed 3 times per session and 2, 3, 4 and 5 minutes of rest were 

allowed after the 10, 30, 50 and 70% MVC contractions respectively. To evaluate whether 

the protocol induced fatigue, one MVC was performed at the end of each testing session.  

4.1.3.3. Data Acquisition  

Surface EMG was recorded in monopolar derivation with two-dimensional (2D) 

adhesive grids (SPES Medica, Salerno, Italy) of 13 × 5 equally spaced electrodes (each of 

1 mm diameter, with an inter-electrode distance of 8 mm) (Fig. 3). First, the skin of the 

participants was marked according to the Atlas of muscle innervation zones guidelines 

(Barbero et al., 2012). Thus, for vastus medialis (VM), a line on the distal portion of the 

muscle belly oriented 50º with respect to the reference line between the medial side of the 

patella and the anterior superior iliac spine was drawn, while for vastus lateralis (VL), a 

line on the distal portion of the muscle belly oriented 20º with respect to the reference line 

between the lateral side of the patella and the anterior superior iliac spine was marked. 

Furthermore, and to ensure optimal electrode placement, EMG signals were initially 

recorded during a brief voluntary contraction during which a linear non-adhesive electrode 

array was moved over the skin to detect the location of the innervation zone and tendon 

regions, as described previously (Masuda et al., 1985; Farina et al., 2001). After skin 

preparation (shaving, abrasion and alcohol), the electrode cavities were filled with 

conductive paste (SPES Medica, Salerno, Italy) and the electrode grid was positioned 

between the proximal and distal tendons of the VM and VL muscles with the electrode 

columns (comprising 13 electrodes) oriented along the muscle fibers. Reference electrodes 
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were positioned at the right wrist and patella. The location of the electrodes was marked on 

the skin of the participants using a permanent ink marker, allowing similar electrode 

placement across the experimental sessions. 

Force and EMG signals were sampled at 2048 Hz and converted to digital data by a 

12-bit analogue to digital converter (EMG-USB 2, 256-channel EMG amplifier, OT 

Bioelettronica, Torino, Italy, 3dB, bandwidth 10-500 Hz).  EMG signals were amplified by 

a factor of 2000, 1000, 500 and 500 for the 10, 30, 50 and 70% MVC contractions, 

respectively. These gains were used to avoid EMG signal saturation, which could influence 

decomposition results. All data were stored on a computer hard disk and analyzed with 

Matlab (The Mathworks Inc., Natick, Massachusetts, USA).  

4.1.3.4. Signal Analysis 

The recorded EMG signals were decomposed offline with the convolution kernel 

compensation (CKC) method (Holobar & Zazula, 2007) which is based on a blind source 

separation algorithm that has been previously validated on simulated signals (Farina et al., 

2008; Farina et al., 2009; Holobar et al., 2010) as well as experimental recordings from 

muscles with complex architecture (Marateb et al., 2011), in pathological conditions 

(Holobar et al., 2012), and high force levels (up to 70% MVC) (Holobar et al., 2014). The 

submaximal contractions were decomposed only from the stable plateau region of force in 

order to minimize the effects of force variation on motor unit discharges. The results of the 

decomposition were checked manually and only motor units that were active during the 

whole duration of the decomposition were considered for further analysis, therefore, motor 

units presenting pauses larger than 500 ms were excluded.    

The discharge times of single motor units were used to create binary spike trains in 

which each data sample was assigned a value of 0 or 1, depending on whether or not the 

data sample marked the onset of an action potential for a given motor unit. The mean 

discharge rate, inter-spike interval (ISI) and coefficient of variation of inter-spike interval 

(CoVisi, standard deviation of ISI divided by the mean ISI), were calculated from the binary 

spike trains. Discharges that were separated from the next for <33.3 ms or >200 ms (5 and 

30 Hz discharges, respectively) were excluded from the mean discharge rate calculation 

since such discharges are extremely rare for the vasti muscles during submaximal isometric 

contractions (Enoka & Fuglevand, 2001; Duchateau et al., 2006) and are therefore likely to 
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be due to decomposition errors (Watanabe et al., 2013), all motor units with a CoVisi > 

30% were also discarded (Holobar et al., 2014; Laine et al., in press). Finally, a signal-

based performance metric called pulse-to-noise ratio (PNR), was used to test the accuracy 

of the decomposed MUs. PNR is a reliable indicator of the mean square error between the 

true discharge pattern of each identified motor unit and its CKC-based estimation, where 

motor units with PNR > 30dB, exhibit a sensitivity > 90% and a false alarm rate < 2% [see 

(Holobar et al., 2014) for details]. Therefore, only motor units with a PNR > 30dB were 

included in the analysis. 

The mean multi-channel surface action potential of each identified motor unit was 

obtained by averaging the multichannel EMG signals over 40 ms long rectangular 

windows, triggered by all the motor unit discharge times identified over the time in which 

the force was stable (Fig. 4). Peak-to-peak amplitude (p2p amplitude) of multi-channel 

surface action potentials was then calculated for each identified motor unit and averaged 

over all the channels of the grid (Piitulainen et al., 2012). Motor unit conduction velocity 

was estimated from triplets of double differential derivations of the averaged surface multi-

channel action potentials in the longitudinal direction by using the maximum likelihood 

estimator as presented previously (Farina et al., 2001). Visual selection of the channels 

used to estimate conduction velocity was based on the criterion of a minimal change in 

shape of the action potential. The criterion for acceptance of conduction velocity 

estimation was based on the correlation coefficient of motor unit action potential shapes 

(threshold set to ≥ 0.9). Additionally, values beyond the physiological range (2–6 m/s) 

were excluded (Andreassen & Arendt-Nielsen, 1987). Therefore, the triplet that showed 

the minimum change in action potential propagation and with the highest cross-correlation 

coefficient was selected. However, in case that the highest cross-correlated triplet 

presented a clearly erroneous value, the second highest cross-correlated triplet with 

conduction velocity between 2-6 m/s was selected. Finally, the coefficient of variation of 

force [(SD ÷ mean) x 100, CoV force] was calculated for the whole duration of the 

contractions to identify if fluctuations in knee extension force were different across 

contraction levels.    
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Figure 3. High-density surface EMG (HDEMG) signals (64 channels) were recorded from the vastus 

medialis (VM) and vastus lateralis (VL) muscles of healthy participants during the production of isometric 

knee extension force. A schematic representation of one participant’s leg attached to the isokinetic 

dynamometer lever arm with the HDEMG electrodes mounted over the vasti muscles is presented on the left 

side of the figure. Surface EMG signals from one column of the HDEMG electrode grid (11 channels) over 

the VM are shown on the upper right half of the figure. Visual force feedback was displayed as a trapezoid at 

10, 30, 50 and 70% of the maximum voluntary contraction (MVC). Only the hold-phase of the contractions 

(grey area under the trapezoid) was used to decompose the vasti motor units (lower right half of the figure).  
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Figure 4. (a) One channel of surface EMG from the Vastus Medialis (VM) and Vastus Lateralis (VL) 

muscles of one subject during a steady 10 s contraction (70% of the maximum voluntary contraction 

(MVC)). The surface EMG was recorded with a grid of 5 x 13 electrodes (8 mm interelectrode distance). (b) 

Discharge times of 11 (VM) and 14 (VL) motor units that were identified from the decomposition of the 

surface EMG. (c) Multichannel surface action potentials of two motor units (VM left, VL right) with their 

mean conduction velocities (CV).  

 

4.1.3.5. Statistical Analysis 

          All the results are expressed as mean and standard deviation (SD) unless stated. 

Before comparisons, all variables were tested for normality using the Shapiro-Wilk test. 

The assumption of sphericity was checked by Mauchley’s test and, if violated, the 

Greenhouse-Geisser correction was made to the degrees of freedom. Statistical 

significance was set at p < 0.05. All decomposition variables (discharge rate, CoVisi, ISI, 

conduction velocity, p2p amplitude and number of correctly identified motor units) were 

analyzed at each force level (10, 30, 50 and 70% MVC) for each muscle (VM and VL) 

independently. To determine the level of reliability of these variables, the intra-class 

correlation coefficient (ICC 2,1) was used. ICC scores between 0.8-1 were interpreted as 

“excellent”, 0.6-0.8 as “good”, and < 0.6 as “poor” (Bartko, 1966). Additionally, a one-
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way repeated measures analysis of variance (ANOVA) was performed to determine if there 

were significant differences within a testing session or between the three sessions. Within-

subject variability was calculated using the mean intra-participant coefficient of variation 

[(SD ÷ mean) x 100, CoV] and the standard error of the measurement [square root of the 

mean square error term in repeated measures ANOVA, SEM] to augment the ICC and 

ANOVA results (Atkinson & Nevill, 1998). ICC indicates the percentage of global 

variance that can be attributed to the variability between subjects (relative reliability), 

while CoV and SEM are measures of within-subject reliability, which provides a measure 

of variability of an individual’s value (absolute reliability). SEM is expressed in the actual 

units of the measurement, and therefore, the smaller the SEM the more reliable the 

measurements. Typically, a change smaller than the identified SEM, is the likely result of 

measurement error rather than a “true” observed change (Copay et al., 2007). Meanwhile 

for CoV, values of less than 20% were regarded as “acceptable” variability (Albertus-

Kajee et al., 2010).  

4.1.3.6. Intra and inter-session reliability 

             Intra-session reliability was determined by comparing the three repetitions at each 

force level within a session (e.g., discharge rate from repetitions 1, 2 and 3 at 10% MVC 

from session 1). For the sake of clarity, intra-session reliability statistical results (ICC, 

SEM and CoV) were averaged for the three sessions and presented for each force level 

independently. For inter-session reliability, the three repetitions performed at each force 

level during a session were averaged and then compared between sessions (e.g., discharge 

rate from the three repetitions at 10% MVC from session 1 were averaged and then 

compared with averaged repetitions at 10% MVC from sessions 2 and 3 respectively).  

4.1.3.7. Force 

            To check the effects of fatigue, MVCs from the beginning and end of each session 

were compared using a paired t-test. To examine if there was a significant difference in 

MVC force between sessions, all MVCs performed at the beginning of each session were 

compared by one-way ANOVA. Finally, CoV force values were averaged for each level 

(10, 30, 50, 70% MVC) and compared by two-way repeated measures ANOVA with 

factors: %MVC force level (4 levels: 10, 30, 50 and 70% MVC) and session (3 levels: 

Sessions 1, 2 and 3) followed by Bonferroni corrected t-tests if significant. 
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4.1.3.8. Accuracy (pulse-to-noise ratio) 

To check for differences in motor unit decomposition accuracy between sessions, 

PNR values from the three repetitions performed at each force level during a session were 

averaged and then compared between sessions by one-way repeated measures ANOVA. 

Moreover, to test whether there was an influence of force on accuracy, PNR values from 

the three sessions were averaged for each force level and then compared by one-way 

repeated measures ANOVA followed by Bonferroni corrected t-tests if significant.    

4.1.4. RESULTS 

4.1.4.1. Force 

Maximal voluntary knee extension force performed at the start of each session did 

not differ between sessions (p = 0.099). There was no significant change in MVC across 

each experimental session (p = 0.55, 0.13 and 0.08, for sessions 1, 2 and 3, respectively). 

The CoV of force significantly increased across force levels [2.0 (0.4), 2.0 (0.4), 2.4 (0.6) 

and 2.5 (0.5)% for 10, 30, 50 and 70% MVC respectively] (p = 0.038). Post-hoc analysis 

showed a significant difference in the CoV of force between 30 and 70% MVC (p = 0.01).  

4.1.4.2. Motor unit decomposition accuracy (pulse-to noise ratio) 

Overall, PNRs from selected motor units (motor units with CoVisi < 30% and PNR 

> 30dB) were high for both muscles. Throughout the sessions, average PNRs were 46.1

(0.8) and 45.2 (1.7) [10% MVC], 45.5 (1.8) and 45.03 (2.3) [30% MVC], 46.4 (1.8) and 

44.9 (2) [50% MVC] and 47.1 (1.6) and 45.7 (2.3) [70% MVC] for VM and VL, 

respectively. For both muscles, the PNRs did not significantly differ between sessions at 

each force level (p= 0.26, 0.28, 0.16, 0.8 for 10, 30, 50 and 70% MVC, respectively) and 

were not significantly influenced by force (p= 0.26, 0.93 and 0.51, in sessions 1, 2 and 3, 

respectively).  

4.1.4.3. Motor unit characterization 

The absolute values of each motor unit behavioral and peripheral properties, 

measured during each session are presented in Figures 5 and 6, respectively. Note that 

VM and VL showed similar results for all variables except p2p amplitude. The number of 

correctly identified motor units for each subject was in the range 2-13 and 3-14 (10% 
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MVC), 2-13 and 2-15 (30% MVC), 1-16 and 1-15 (50% MVC) and 3-14 and 1-19 (70% 

MVC) for VM and VL, respectively.  

 

 
 

Figure 5. Individual values for motor unit (MU) behavioral properties: (A) discharge rate, (B) inter-spike 

interval (ISI) and (C) coefficient of variation of inter-spike interval (CoVisi). Values are presented for both 

muscles at all force levels [10, 30, 50 and 70% of the maximum voluntary contraction (MVC)] across the 

three sessions (1,2,3). Horizontal lines show the mean. Whiskers represent the 95% confidence interval. Note 

the change of scale between panels depicting 10-30% MVC variables and 50-70% MVC variables. 
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Figure 6. Individual values for motor unit (MU) peripheral properties: (A) MU conduction velocity, (B) MU 

peak-to-peak amplitude and (C) MU number. Values are presented for both muscles at all force levels [10, 

30, 50 and 70% of the maximum voluntary contraction (MVC)] across the three sessions (1,2,3). Horizontal 

lines show the mean. Whiskers represent the 95% confidence interval. Note the change of scale between 

panels depicting 10-30% MVC variables and 50-70% MVC variables (except for MU peak-to-peak 

amplitude). 

 

 

4.1.4.4. Intra-session Reliability   

Overall, good to excellent reliability was found for motor unit discharge rate, ISI, 

conduction velocity, p2p amplitude, and the number of correctly identified motor units for 

both muscles and across all force levels, with the data extracted from VM and VL showing 

similar levels of reliability (Table 2). However, there was a significant within-session 

difference for MU discharge rates and ISIs at 70% MVC in all three sessions for both 

muscles (p < 0.05). CoVisi measured for VM at 70% MVC and VL at 10% MVC was the 

only variable with poor reliability (ICC: .517, SEM: 1.5 and ICC: .49, SEM 2.4 for VM 

and VL respectively). Nevertheless, good reliability and low variability of CoVisi was 

found at the other force levels for both muscles.  

  

V
M

 1

V
M

 2

V
M

 3
V
L 
1

V
L 
2

V
L 
3

3.0

3.5

4.0

4.5

5.0

5.5

A)

C
o
n
d
u
c
ti
o
n
 v

e
lo

c
it
y
 (

m
/s

)

10% MVC

V
M

 1

V
M

 2

V
M

 3
V
L 
1

V
L 
2

V
L 
3

0.0

0.1

0.2

0.3

0.4

B)

p
e
a
k
-t

o
-p

e
a
k
 A

m
p
lit

u
d
e
 (

m
V

)

V
M

 1

V
M

 2

V
M

 3
V
L 

1
V
L 

2
V
L 

3
0

5

10

15

20

C)

M
U

 n
u
m

b
e
r 

V
M

 1

V
M

 2

V
M

 3
V
L 
1

V
L 
2

V
L 
3

3.0

3.5

4.0

4.5

5.0

5.5

30% MVC

V
M

 1

V
M

 2

V
M

 3
V
L 
1

V
L 
2

V
L 
3

0.0

0.1

0.2

0.3

0.4

V
M

 1

V
M

 2

V
M

 3
V
L 

1
V
L 

2
V
L 

3
0

5

10

15

20

V
M

 1

V
M

 2

V
M

 3
V
L 
1

V
L 
2

V
L 
3

3.5

4.0

4.5

5.0

5.5

6.0

50% MVC

V
M

 1

V
M

 2

V
M

 3
V
L 
1

V
L 

2
V
L 
3

0.0

0.1

0.2

0.3

0.4

0.5

V
M

 1

V
M

 2

V
M

 3
V
L 
1

V
L 
2

V
L 
3

0

5

10

15

20

V
M

 1

V
M

 2

V
M

 3
V
L 
1

V
L 
2

V
L 

3
3.5

4.0

4.5

5.0

5.5

6.0

70% MVC

V
M

 1

V
M

 2

V
M

 3
V
L 
1

V
L 
2

V
L 
3

0.0

0.1

0.2

0.3

0.4

0.5

V
M

 1

V
M

 2

V
M

 3
V
L 

1
V
L 
2

V
L 

3
0

5

10

15

20



 

28 
 

Table 2. Intra-session reliability of motor units parameters. Averaged intra-session reliability values are 

presented for each variable, muscle (vastus medialis, vastus lateralis) and force level [10, 30, 50 and 70% of the 

maximum voluntary contraction, MVC]. ICC, intraclass correlation coefficient; SEM, standard error of the 

measurement; CoV, coefficient of variation (CoV%); pps, pulses per second; ISI, inter-spike interval. * 

Significant difference between repetitions (p < 0.05). 

Variable Force Level (% MVC) Vastus Medialis 

 

Vastus Lateralis 

    ICC SEM CoV (%) 

 

ICC SEM CoV (%) 

Discharge Rate (pps) 10% .92 0.35 3.3 

 

.92 0.29 2.8 

 

30% .89 0.54 4.1 

 

.91 0.44 3.8 

 

50% .89 0.69 4.4 

 

.93 0.59 4.4 

 

70%* .85 1.05 6.2 

 

.89 0.88 6.2 

Interspike interval (ms) 10% .92 4.41 3.3 

 

.92 3.86 2.9 

 

30% .92 4.44 4.2 

 

.91 4.18 4.0 

 

50% .90 4.24 4.7 

 

.94 3.83 3.6 

 

70%* .88 4.71 6.4 

 

.88 4.77 6.0 

Conduction Velocity (m/s) 10% .94 0.07 1.3 

 

.89 0.07 1.5 

 

30% .88 0.09 1.9 

 

.85 0.09 1.7 

 

50% .95 0.09 1.5 

 

.92 0.1 1.8 

 

70% .97 0.09 1.5 

 

.93 0.11 1.6 

p2p Amplitude (mV) 10% .93 0.012 8.7 

 

.95 0.012 8.7 

 

30% .84 0.031 11.7 

 

.93 0.014 9.0 

 

50% .98 0.010 5.2 

 

.93 0.011 8.4 

 

70% .96 0.018 7.6 

 

.84 0.015 8.5 

Coefficient of variation ISI (%) 10% .71 1.26 6.9 

 

.49 2.37 7.6 

 

30% .69 1.43 6.6 

 

.79 1.62 6.9 

 

50% .78 1.51 5.5 

 

.71 1.69 6.8 

 

70% .52 1.52 5.5 

 

.65 1.95 7.2 

MU number 10% .83 1.3 15.4 

 

.65 1.6 16.4 

 

30% .92 1.4 17.5 

 

.89 1.2 24.4 

 

50% .87 1.5 18.9 

 

.88 1.2 22.3 

 

70% .60 1.7 21.9 

 

.94 1.2 24.8 

 

4.1.4.5. Inter-session Reliability   

Good to excellent reliability was found between sessions for measures of motor unit 

discharge rate, ISI, conduction velocity and p2p amplitude for both muscles and across all 

force levels, with similar results for both VM and VL (Table 3). No significant between-

session difference was found for any variable (p > 0.05). Nevertheless, the reliability of 

CoVisi was again poor at 10 and 70% MVC for VM and at 50 and 70% MVC for VL (see 

Table 3).  
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Of the number of correctly identified motor units, poor reliability was only observed for 

the VM muscle at 70% MVC (ICC = .44). Nevertheless, the number of correctly identified 

motor units remained relatively constant across the remaining force levels of VM and all 

force levels of VL (see Tables 2 and 3). 

 

Table 3. Inter-session reliability of motor units parameters. Reliabiility values between the three sessions are 

presented for each variable, muscle (vastus medialis, vastus lateralis) and force level [10, 30, 50 and 70% of the 

maximum voluntary contraction, MVC]. ICC, intraclass correlation coefficient; SEM, standard error of the 

measurement; CoV, coefficient of variation (CoV%); pps, pulses per second; ISI, inter-spike-interval. 

Variable 

Force Level (% 

MVC) Vastus Medialis 

 

Vastus Lateralis 

  

 

ICC SEM CoV (%) 

 

ICC SEM CoV (%) 

Discharge Rate (pps) 10% .81 0.58 5.0 

 

.86 0.38 3.7 

 

30% .92 0.45 3.7 

 

.94 0.36 2.8 

 

50% .83 0.93 5.0 

 

.91 0.8 5.4 

 

70% .87 1.03 4.9 

 

.91 0.86 6.1 

Interspike interval (ms) 10% .83 6.7 5.0 

 

.87 4.99 3.9 

 

30% .94 4.06 3.4 

 

.96 2.99 2.8 

 

50% .84 5.8 5.3 

 

.88 6.04 5.8 

 

70% .86 4.88 4.9 

 

.83 6.13 7.1 

Conduction Velocity (m/s) 10% .95 0.06 1.3 

 

.85 0.09 2.0 

 

30% .91 0.09 1.6 

 

.86 0,09 1.8 

 

50% .96 0.08 1.4 

 

.92 0.1 1.8 

 

70% .94 0.11 1.6 

 

.97 0.09 1.7 

p2p Amplitude (mV) 10% .93 0.013 9.7 

 

.92 0.015 10.9 

 

30% .61 0.046 16.8 

 

.90 0.016 11.7 

 

50% .75 0.034 11.1 

 

.92 0.012 10.1 

 

70% .87 0.035 10.4 

 

.89 0.014 11.3 

Coefficient variation of ISI  (%) 10% .52 1.51 9.0 

 

.77 1.75 8.1 

 

30% .70 1.29 5.6 

 

.83 1.35 6.7 

 

50% .65 1.84 6.7 

 

.49 2.23 8.8 

 

70% .49 1.47 5.6 

 

.55 1.95 7.7 

MU number 10% .91 0.9 13.9 

 

.82 1.2 18.2 

 

30% .75 1.8 27.7 

 

.90 1.2 18.4 

 

50% .83 1.5 22.4 

 

.82 1.5 25.8 

 

70% .44 1.9 24.7 

 

.91 1.5 30.1 
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4.1.5. DISCUSSION 
  

Most variables extracted from motor unit pools estimates decomposed through 

HDEMG (CKC method) provide accurate, consistent, and reliable results for the VM and 

VL muscles across a wide range of force levels (up to 70% MVC), both within and 

between sessions. These variables include discharge rate, ISI, conduction velocity, p2p 

amplitude, and the number of identified motor units.  

4.1.5.1. Motor unit accuracy  

After removal of un-physiological discharges and excluding all motor units with 

PNRs < 30dB, accuracy of motor unit decomposition, as tested by PNR, was high for all 

the selected motor units (PNRs ranged from 45.1 to 47.6 dB throughout all sessions). 

Moreover, this parameter was not influenced by repeated measurements (different 

sessions) or force. As PNRs above 30 dB reveal sensitivity > 90% and false alarm rates < 

2% (Holobar et al., 2014), we can conclude that CKC is accurate enough to decompose 

motor units from the vasti muscles across a wide range of force levels (10 to 70% MVC).  

4.1.5.2. Number of correctly identified motor units  

Regardless of the force level, it was possible to identify 2 to 14 motor units for the 

VM and 2 to 16 motor units for the VL. The mean number of motor units per force level 

was greater compared to earlier work [(Vila-Cha et al., 2010) mean of 4 motor units for 

VL and VM], as we were able to correctly identify a mean of 7 motor units for the VM and 

6 motor units for the VL. Although the mean number of correctly identified motor units 

and its upper range is higher than the aforementioned study, it is important to state that the 

number of identified motor units varied considerably between subjects and in some 

participants only 2 to 3 motor units could be detected per force level. As surface EMG 

parameters are influenced by adipose tissue thickness and alignment of muscle fibers 

(Farina et al., 2002), we can speculate that these factors could have influenced the 

decomposition algorithm. It is known, for example, that muscles covered by less adipose 

tissue such as tibialis anterior, usually present a higher number of correctly decomposed 

MUs (Holobar et al., 2014). Nevertheless, as the number of correctly identified motor units 

presented good to excellent reliability, we can affirm that this parameter is subject specific.  
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4.1.5.3 Motor unit behavior 

Mean discharge rates for VM and VL motor units were within the physiological 

range found in previous studies. For instance, Vila-Cha and colleagues (Vila-Cha et al., 

2010) reported mean discharge rates of approximately 9 and 11 pulses per second (pps) for 

VM and VL at 10 and 30% MVC contractions respectively. Moreover, Conwit et al., 

(Conwit et al., 1998) documented mean motor unit discharge rates of approximately 15 pps 

for VM at 75% MVC, which is consistent with our results. Both VM and VL motor unit 

discharge rates showed similar consistency within and between days with ICCs revealing 

excellent levels of reliability at all force levels (from .813 to .941). Also, in terms of 

absolute reliability, SEMs and CoVs were low at all force levels, but as expected, they 

were higher at 50% and 70% MVC, which could be related with increased CoV of force at 

these levels (Moritz et al., 2005) (see Force results). The significant differences found for 

discharge rate and ISI for 70% MVC for intra-session reliability (see Table 1) cannot be 

attributed to the effects of fatigue but rather to the difficulty of matching the target at this 

force level. This is confirmed by the lack of change in MVCs across each experimental 

session and by the fact that motor unit discharge rates increased between repetitions 1-2 

but not between 2-3 at 70% MVC for all sessions [mean discharge rate of 14.1, 15.3 and 

15.3 pps (for VM) and 13.9, 14.5, and 14.4 pps (for VL) for repetitions 1,2 and 3 

respectively]. 

4.1.5.4. Muscle fiber properties 

Values for motor unit conduction velocity were within the physiological range of 2-

6 m/s and comparable to results reported for the vasti muscles in earlier studies at 10-30% 

MVC (Hedayatpour et al., 2009; Vila-Cha et al., 2010). As expected, motor unit 

conduction velocity increased with MVC.  Consistent with the results for motor unit 

discharge rate, the ICC, SEM, and CoV revealed excellent intra and inter-session reliability 

for motor unit conduction velocity for both muscles. Interestingly, the variability of motor 

unit conduction velocity remained constant at all force levels. Excellent intra-session 

reliability was observed for p2p amplitudes, and good to excellent reliability was obtained 

for their inter-session reliability, suggesting that motor unit with similar properties were 

identified within and between sessions. Commonly, factors such as tissue impedance, 

electrode position, and contamination by volume conduction influence EMG amplitude 
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measures, and therefore EMG signals are typically normalized (Farina et al., 2004). Due to 

our strict study design, we were able to place the electrodes in almost the same position in 

every session. Therefore, the reliability results found herein suggest that a similar 

population of motor units can be extracted if the electrode position remains similar 

throughout sessions. In addition, we found that the VM presented higher amplitude values 

compared to the VL. This result is in accordance with previous studies (Rainoldi et al., 

2008; Vila-Cha et al., 2010), where a higher averaged rectified surface EMG amplitude 

was observed for the VM muscle. Since motor unit discharge rate and conduction velocity 

values were not significantly different between muscles, we can assume that other factors, 

such as fiber alignment and subcutaneous tissue thickness (Farina et al., 2002), might have 

contributed to this difference. Nevertheless, we did not measure subcutaneous tissue 

thickness in the current study. 

4.1.5.5. Motor unit CoVisi 

The only parameter that presented low reliability estimates within and between 

sessions across various force levels was motor unit CoVisi. Previously, Vila-Cha and 

colleagues (Vila-Cha et al., 2010) reported motor unit CoVisi values ranging from 11.6 to 

16.5% for VM and 11 to 13.4% for VL at 10-30% MVC, which is lower than the values 

presented herein at similar force levels (15.1 to 20.2% for VM and 15.9 to 20.5% for VL). 

The higher CoVisi found in the present study could be attributed to two factors: first, our 

average number of motor units was greater than that reported by Vila-Cha et al., (26) and 

secondly, HDEMG motor unit decomposition methods can have lower accuracy compared 

to intramuscular decomposition [(Farina et al., 2008) sensitivity of 92-100% compared to 

intramuscular EMG]. Moreover, it is important to note that CoVisi is inherently a highly 

variable parameter that can be influenced by force fluctuations. Manual editing could solve 

this accuracy issue but we preferred to present only objective results obtained by fully 

automatic decomposition.   

4.1.5.6. Data selection and limitations 

Recent advances in signal processing techniques have undoubtedly increased the 

accuracy of HDEMG-based decomposition algorithms. Nevertheless, visual and manual 

checking of the decomposition results are still needed, as automatic decomposition could 

still contain erroneous discharges, missed firings or generally unreliable motor units. For 
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this reason, we used several criteria in the selection of our data (MUs with CoVisi > 30% 

and PNR < 30dB were discarded, while firings below 5Hz and above 30Hz were filtered), 

which is similar to the criteria used for intramuscular motor unit decomposition (Negro et 

al., 2009; Vila-Cha et al., 2010). This helped us to find comparable results with previous 

literature in most of the analyzed motor unit properties. Although we did not quantify the 

number of corrections made, they were certainly similar across all force levels, and further, 

the PNRs did not significantly change with force and the number of selected motor units 

was similar across force levels. A similar set of criteria is essential for appropriate 

interpretation of any intervention study utilizing decomposed EMG data in healthy 

participants.  

With respect to studies involving patients, a similar criterion was used in people 

with diabetes (Watanabe et al., 2013) and post-stroke survivors (Li et al., 2015). In those 

studies, authors filtered discharges below 4 Hz and above 30 Hz and they obtained a 

similar amount of motor units as in the present study. Therefore, similar levels of reliability 

to the ones found herein could be expected for those populations. However, it is important 

to acknowledge that in the case of movement disorders with high motor unit firing 

variability such as Parkinson or essential tremor, a more liberal approach is needed. Any 

removal of firings within the range presented herein would discard most of the 

decomposed motor units for these patients. Nevertheless, it is still important to visually 

inspect the motor units innervation pulse trains and use accuracy indexes such as the PNR 

[a PNR ≥ 26dB has been recently used in essential tremor (Gallego et al., 2015) and 

Parkinson (Dideriksen et al., 2015)] to check the accuracy of the decomposed motor units. 

Future studies would help to clarify if the high levels of reliability found for healthy 

subjects could be replicated in patients with such movement disorders.   

4.1.5.7. Conclusions 

This study showed that HDEMG motor unit decomposition by the CKC method 

provides accurate and reliable estimates of the motor unit properties in the vasti muscles, 

both within and across sessions, and over a wide range of forces. These findings suggest 

that HDEMG is appropriate for detecting changes in motor unit properties across multiple 

sessions, as required for longitudinal intervention studies.  
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4.2.1. ABSTRACT  
 
A new method is proposed for tracking individual motor units (MUs) across multiple 

experimental sessions in different days. The technique is based on a novel decomposition 

approach for high-density surface electromyography and was tested with two experimental 

studies for reliability and sensitivity. Experiment I (reliability): ten participants performed 

isometric knee extensions at 10, 30, 50 and 70% of their maximum voluntary contraction 

(MVC) force in three sessions, each separated by one week. Experiment II (sensitivity): 

seven participants performed 2 weeks of endurance training (cycling) and were tested pre-

post intervention during isometric knee extensions at 10 and 30% MVC. The reliability 

(Experiment I) and sensitivity (Experiment II) of the measured MU properties were 

compared for the MUs tracked across sessions, with respect to all MUs identified in each 

session. In Experiment I, on average 38.3% and 40.1% of the identified MUs could be 

tracked across two sessions (one and two weeks apart), for the vastus medialis and vastus 

lateralis, respectively. Moreover, the properties of the tracked MUs were more reliable 

across sessions than those of the full set of identified MUs (intra-class correlation 

coefficients ranged between .63-.99 and .39-.95, respectively). In Experiment II, ~40% of 

the MUs could be tracked before and after the training intervention and training-induced 

changes in MU conduction velocity had an effect size of 2.1 (tracked MUs) and 1.5 (group 

of all identified motor units). These results show the possibility of monitoring MU 

properties longitudinally to document the effect of interventions or the progression of 

neuromuscular disorders. 
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4.2.2. INTRODUCTION 
 

 The neuromuscular system is highly adaptable. Improvements in motor 

performance can be observed after only a few training sessions (Aagaard, 2003; 

Selvanayagam et al., 2011), while impairments in motor performance due to injury, 

inactivity or immobilization occur within a few days (Weibull et al., 2011). Since short-

term improvements in motor performance are usually not accompanied by changes in 

muscle structure (Aagaard, 2003), there has been wide interest to study the neural 

mechanisms underlying adaptations to training. For instance, the effects of strength and 

endurance training on motor performance reflect supraspinal and spinal adjustments 

(Adam & De Luca, 2005; Adkins et al., 2006), which influence the neural drive to the 

muscles, i.e., motor unit behavior (Vila-Cha et al., 2010).  

Investigation of the behavior and properties of motor units provides a unique 

insight into the neural code underlying movements (Farina et al., 2016). Yet, only a few 

studies have specifically analyzed motor unit adaptations to training (Duchateau et al., 

2006). This is mainly due to methodological limitations. Classic intramuscular fine wire or 

concentric needle electromyography only allows recording from few motor units 

concurrently. Moreover, it is not possible to follow the same motor units across 

experimental sessions with these classic methods (Carroll et al., 2011). Therefore, the 

sample detected is too small and too variable across sessions to make inferences on 

adaptations in the motor unit pool of a muscle in longitudinal studies. The problem of a 

small sample, intrinsic to selective intramuscular recordings, has been addressed recently 

with novel multi-channel surface and intramuscular EMG systems that allow for a 

substantial enlargement of the number of concurrently detected motor units (Muceli et al., 

2015).  

High-density surface electromyography (HDEMG) systems may also have the 

potential, not yet exploited, to track motor units across different sessions. This hypothesis 

is based on the observation that HDEMG provides a spatial sampling of the electrical 

activity of motor units over the skin plane and the large number of channels allows precise 

discrimination between different motor units (Farina et al., 2008). This spatial “signature” 

of each motor unit may be used for longitudinal tracking since it can be detected in an 
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almost identical manner once the electrode grid is placed in a similar location over the 

skin.  

The likelihood of this conclusion increases for increasing number of channels since 

the probability that two motor units detected in different sessions present exactly the same 

spatial action potentials over tens of channels is negligible. The possibility of tracking 

motor units longitudinally with HDEMG during voluntary contractions has, however, 

never been verified. 

In this study we aimed to track individual motor units, identified from HDEMG 

decomposition, across recording sessions performed in different days. For this purpose, we 

developed a new decomposition technique, as an extension of the convolutive blind source 

separation approach proposed in (Negro et al., 2016), with the introduction of the 

maximization of the cross-correlation of the motor unit action potential (MUAP) profiles. 

The approach was specifically designed to detect common sources over multiple sessions. 

To test the new method, we compared the motor unit action potentials and properties 

across days as well as pre and post two weeks of endurance training. The results revealed, 

for the first time, the possibility of identifying and studying the same motor units in 

humans over different days (separated by weeks), which opens new perspectives for 

studies on the neuromuscular adaptations to training and disease monitoring.. 

4.2.3. METHODS 
 
4.2.3.1. Motor unit identification and tracking 

The motor unit identification and tracking method is an extension of the 

convolutive blind source separation technique recently described in (Negro et al., 2016), 

derived from the convolution kernel compensation method (CKC) (Holobar & Zazula, 

2007), with a different approach for convergence to the sources [see (Negro et al., 2016) 

for further information]. Here we adapted the convolutive blind source separation method 

to extract motor units with multi-channel action potential shapes maximally similar across 

sessions. 

The convolutive mixture of HDEMG signals can be represented as a linear and 

instantaneous mixture of the spike trains of the individual motor units and their delayed 

versions (see Appendix A). Therefore, using an appropriate extension of the matrix of the 
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measurements (multi-channel EMG signals) and the specific properties of the sources 

(non-gaussianity/sparsity), it is possible to separate the activity of individual motor unit 

spike trains using techniques of linear instantaneous blind source separation (Negro et al., 

2016). Briefly, after a de-correlation/whitening transformation applied to the extended 

measurements, a fixed point algorithm (Hyvarinen & Oja, 2000) is used to find a 

projection vector (linear filter) that maximizes the sparsity of the extracted source. The 

sparsity assumption is well satisfied by the spiking nature of the motor neurons. After a 

motor neuron spike train is correctly identified, its projection vector is removed from the 

solution space and the procedure is repeated to extract the next source. Since the 

measurement matrix is extended, the procedure extracts the original sources and their 

delayed versions. Therefore, the number and the order of extracted sources are not known a 

priori and depend on the number of iterations, the extension factor, and the spatial 

characteristics of the EMG signals..  

In this study, a new method for the reliable extraction of common motor units in 

different recording sessions was implemented. After the full blind decomposition was 

performed on the first recording session, we applied a semi-blind separation procedure for 

the remaining sessions, focusing on finding only the sources that had MUAP profiles 

similar to the ones extracted from session 1. The decomposition procedure converged to 

the matched motor units first and then extracted motor units which could not be matched 

across sessions. In this way, it extracted a population of motor units divided in two groups. 

The first group consisted of the motor units that were tracked across more than one 

experimental session (tracked motor units); the second group included those units that were 

identified in only one experimental session (unmatched motor units). The group of 

unmatched motor units was analyzed across sessions with a sample size similar to the one 

used for the tracked motor units (see statistics and results). The normalized cross-

correlation between the MUAP profiles was used as a measure of similarity. For each 

motor unit identified in session 1, we ran the semi-blind algorithm on the other sessions 

until a motor unit with normalized cross-correlation higher than 0.8 was found. On a 

limited number of trials (~15%) multiple matches with a cross correlation >0.8 were found. 

In such cases, the algorithm matched the highest cross-correlated sources and discarded the 
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other matches. Thus, the algorithm maximized the probability to find the matched motor 

units across different sessions and considerably reduced the computational load.  

In the results presented in this study, we used an extension factor of 16 for the 

decomposition iteration and 50 samples for computing the similarity measures between de-

whitened projection vectors (original multichannel filters or MUAP profiles). The choice 

of extension factor was similar to that in Negro et al., (Negro et al., 2016) for surface EMG 

signals sampled at 2048 Hz. The number of samples for computing similarity measures 

(corresponding to ~25 ms) was chosen to estimate the cross-correlation using the whole 

MUAP representation in each channel.  

The mathematical details of the approach are provided in Appendix A. 

4.2.3.2. Experimental tests 

 Two experiments were designed to test the proposed method and to prove its 

effectiveness at monitoring changes in motor unit properties compared to the classic 

approach of averaging results across the full population of identified units in each 

condition (Vila-Cha et al., 2010; Martinez-Valdes et al., 2016). From now on, the full 

sample of identified motor units (without matching across sessions) will be referred to as 

“total group of identified motor units”. The first experiment (Experiment I) was designed 

to prove the reliability of the motor unit properties when estimated over different sessions 

without interventions on the subjects. This experiment was conducted by measuring motor 

unit properties over three sessions in two weeks. The motor units were tracked by the 

proposed method and their properties were estimated in each session. The reliability of 

these estimates was statistically analyzed when the motor units were tracked with respect 

to the total group of identified motor units and also to the unmatched motor units (subset of 

the total group of motor units that could not be tracked across sessions). The second 

experiment (Experiment II) was designed to test the sensitivity of motor unit tracking when 

measures were separated by a training intervention, which could also influence the shapes 

of the action potentials. Motor unit properties that were expected to change due to training 

were compared pre and post training, with and without tracking (total group of motor 

units). 

The two experiments provide a strong experimental validation of the proposed 

method and of its effectiveness. 
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4.2.3.3. Subjects 

Ten healthy and physically active men (mean (SD) age: 27 (4) years, height: 180 

(8) cm, mass: 78 (10) kg) participated in the first experiment and seven healthy men (age: 

28 (2) years, height: 177 (7) cm, mass 78 (9) kg) took part in the second longitudinal 

experiment (endurance training). All subjects were right leg dominant (determined by 

asking the subjects which leg they would use to naturally kick a ball). Exclusion criteria 

included any neuromuscular disorder as well as any current or previous history of knee 

pain and age < 18 or > 35 years. Participants were asked to avoid any strenuous activity 24 

h prior to the measurements. The ethics committee of the Universitaetsmedizin Goettingen 

approved the first experiment (approval number 24/1/14), performed in Goettingen, and 

the ethics committee of the Universität Potsdam approved the training intervention 

(approval number 26/2015), performed in Potsdam, both in accordance with the 

declaration of Helsinki (2004). All participants gave written, informed consent. 

4.2.3.4. Experiment I (Repeated measurements) 

Participants attended the laboratory on three occasions. Consecutive sessions were 

7 days apart and were conducted at the same time of the day for each subject on each 

occasion. In each experimental session, the participant was seated in an isokinetic 

dynamometer (Biodex System 3, Biodex Medical Systems Inc., Shirley, NY, USA), with 

the trunk reclined to 15° in an adjustable chair while the hip and distal thigh were secured 

to the chair. The rotational axis of the dynamometer was aligned with the right lateral 

femoral epicondyle and the lower leg was secured to the dynamometer lever arm above the 

lateral malleolus. Maximal and submaximal isometric knee extensions were exerted with 

the knee flexed to 90°. Subjects performed two maximal voluntary contractions (MVC) of 

knee extension each over a period of 5 s. These trials were separated by 2 min of rest. The 

highest MVC value was used as a reference for the definition of the submaximal force 

levels. In each of the three experimental sessions, the submaximal forces were expressed as 

a percent of the MVC measured during the same session. Five minutes of rest were 

provided after the MVC measurement. Then, following a few familiarization trials at low 

force levels, subjects performed submaximal ramped-isometric knee extension contractions 

to 10, 30, 50 and 70% MVC in a randomized order. In each trial, subjects received visual 

feedback of their knee extension force, which was displayed as a template that had a 
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triangular waveform [e.g., increased isometric leg extension force (ramp-up) from 0 to 

50% MVC in 10 s and decrease of isometric extension force (ramp-down) from 50% to 0% 

in 10 s]. The contractions at 10% and 70% MVC lasted 14 s (ramp-up and ramp-down over 

7 s, respectively) while the contractions at 30% and 50% MVC lasted 20 s (ramp-up and 

ramp-down over 10 s, respectively). In this study, we chose to decompose variable-force 

contractions, contrary to a previous study where we investigated constant force 

contractions (Martinez-Valdes et al., 2016). This was done to maximize the impact of 

tracking units on the reliability of the estimates of motor unit properties. Each force level 

was performed twice consecutively (with 30 s of rest between repetitions), however, only 

the second repetition was considered for further analysis. Rest periods of 2, 3, 4 and 5 

minutes were allowed after the 10, 30, 50 and 70% MVC contractions, respectively. One 

additional MVC was performed at the end of each testing session to evaluate whether the 

protocol induced fatigue. 

4.2.3.5. Experiment II (Endurance Training)  

The experimental protocol consisted of a baseline session [i.e., HDEMG 

recordings, peak oxygen uptake (VO2peak) determination], a 2-week intervention of 

endurance training, and post-training session. For the baseline testing, prior to training, the 

subjects performed submaximal isometric knee extensions at 10 and 30% MVC (random 

order) on an isokinetic dynamometer (CON-TREX MJ, PHYSIOMED, Regensdorf, 

Switzerland), following the same procedure presented above (see Experiment I), with the 

only difference that visual feedback of knee extension force was displayed as a template 

that had a trapezoidal waveform (5 s ramps with a hold-phase duration of 20 s). Then, 24 h 

after the HDEMG-force measurements, the subjects performed an incremental test to 

exhaustion on an electronically braked cycle ergometer (Lode Excalibur Sport V2.0, 

Groningen, the Netherlands) to determine VO2peak using a gas analysis system (ZAN 600, 

Nspire Health, Oberthulba, Germany). Following a 3-min warm-up at 30 W, the test began 

with the workload increasing by 6 W every 12 s until volitional exhaustion. The 

revolutions per minute were maintained between 80 and 90, throughout the incremental 

test and training sessions. The value used for VO2peak corresponded to the highest value 

achieved over a 30 s collection period.  

The training protocol commenced approximately 72 h after the incremental test and 
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consisted of six training sessions over 14 days. Each training session was performed on 

Mondays, Wednesdays, and Fridays. Training consisted of 90-120 min of continuous 

cycling at 65% of VO2peak (166.4 (20.1) W). The duration of exercise increased from 90 

min during sessions 1 and 2 to 105 min during sessions 3 and 4, and to 120 min during 

sessions 5 and 6. This protocol has previously been determined to be sufficient to produce 

an increase in endurance performance and aerobic capacity (Gibala et al., 2006). An 

investigator of the study (E.M-V) supervised all training sessions. The post-training 

session (HDEMG recordings and incremental test) was identical to the baseline-testing 

procedures and was performed approximately 72 h post training to reduce the effects of 

post-training fatigue in all measurements (Gibala et al., 2006).  

This training regime has been shown to enhance muscle fiber membrane 

excitability through changes in Na+ -K+ -ATPase activity (Green et al., 2004). Therefore, 

we hypothesized that the current protocol would also induce changes in motor unit 

conduction velocity of the vasti muscles, which have only been previously reported in a 

longer endurance training intervention (6 weeks) with much lower weekly training volume 

(Vila-Cha et al., 2010; Vila-Cha et al., 2012)..  

4.2.3.6. Data Acquisition 

Surface EMG signals were recorded in monopolar derivation with a two-

dimensional (2D) adhesive grid (SPES Medica, Salerno, Italy) of 13 × 5 equally spaced 

electrodes (each of 1 mm diameter, with an inter-electrode distance of 8 mm), with one 

electrode absent from the upper right corner. First, the skin of the participants was marked 

according to guidelines [see (Barbero et al., 2012) for details], for appropriate electrode 

orientation. Furthermore, to ensure optimal electrode placement, EMG signals were 

initially recorded during a brief voluntary contraction during which a linear non-adhesive 

electrode array was moved over the skin to detect the location of the innervation zone and 

tendon regions, as previously described (Masuda et al., 1985; Farina et al., 2001). After 

skin preparation (shaving, abrasion and alcohol), the electrode cavities of the grids were 

filled with conductive paste (SPES Medica, Salerno, Italy) and the grids positioned 

between the proximal and distal tendons of the Vastus Lateralis (VL) and Vastus Medialis 

(VM) muscles with the electrode columns (comprising 13 electrodes) oriented along the 

muscle fibers. Reference electrodes were positioned at the right ankle and patella. The 
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location of the electrodes was marked on the skin of the participants using a surgical pen, 

allowing similar electrode positioning across the experimental sessions. 

Force and EMG signals were sampled at 2048 Hz and converted to digital data by a 

12-bit analogue to digital converter (EMG-USB 2, 256-channel EMG amplifier, OT 

Bioelettronica, Torino, Italy, 3dB, bandwidth 10-500 Hz).  EMG signals were amplified by 

a factor of 2000, 1000, 500 and 500 for the 10, 30, 50 and 70% MVC contractions, 

respectively. Data were stored on a computer hard disk and offline analyzed with Matlab 

(The Mathworks Inc., Natick, Massachusetts, USA). Finally, before decomposition, the 64-

monopolar EMG channels were re-referenced offline to form 59 bipolar derivations, as the 

differences between adjacent electrodes in the direction of the muscle fibers.  

4.2.3.7. Signal analysis 

 The new method for motor unit identification and maximization of the common 

sources across sessions described in Motor unit identification and tracking was applied to 

extract the MUAPs from the acquired HDEMG data. The discharge times of the identified 

motor units were converted in binary spike trains in which each data sample was assigned 

a value of 0 or 1, depending on whether or not the data sample marked the onset of an 

action potential for a given motor unit. Recruitment and de-recruitment thresholds for each 

motor unit were defined as the torque (Nm) at the times when the motor unit began and 

stopped repetitively discharging action potentials. Discharge times that were separated 

from the next by >200 ms were excluded from the estimation of recruitment and de-

recruitment thresholds to avoid aligning the thresholds with noise-generated discharges 

(Farina et al., 2009). The mean discharge rate was defined as the average discharge rate 

during the interval of time of activation.  

As a quality control, only motor units with a coefficient of variation for the inter-

spike interval (CoVisi) <30% (Laine et al., 2015), with a silhouette (SIL) > 0.90 [see 

(Negro et al., 2016) for details] were considered for further analysis. SIL is the difference 

between the within- and between-cluster sums of point-to-centroid distances, normalized 

dividing by the maximum of the two values. SIL is an accuracy index for EMG 

decomposition similar to the pulse-to-noise ratio [see (Holobar et al., 2014) for details]. 

However, since SIL is a normalized measure, it can be directly associated to the accuracy 

of the decomposition (Negro et al., 2016). Finally, discharges that were separated from the 
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next by <33.3 ms or >200 ms (30 and 5 Hz, respectively) were excluded from the mean 

discharge rate and the coefficient of variation of inter-spike interval (CoVisi) calculations 

because these discharges are rare for the vasti muscles at submaximal contraction forces 

and therefore are likely to be due to decomposition errors (Martinez-Valdes et al., 2016).  

Motor unit conduction velocity was estimated from double differential derivations 

of the single motor unit surface multi-channel action potentials in the longitudinal direction 

(Farina et al., 2001). The channels selected for conduction velocity estimates were based 

on the criterion of a minimal change in shape of the action potential during propagation. 

The acceptance criterion for conduction velocity estimates was based on the correlation 

coefficient of the delayed action potentials (threshold set to 90%). Since the accuracy of 

motor unit conduction velocity estimates increases with the number of channels used 

(Farina & Mesin, 2005), we selected the largest amount of channels that showed a cross-

correlation >90% (3 to 8 double differential channels were used). Additionally, values 

beyond the physiological range (2–6 m/s) were excluded (Andreassen & Arendt-Nielsen, 

1987). Finally, peak-to-peak (p2p) amplitude values were averaged across all the channels 

of the electrode grid, as presented previously (Martinez-Valdes et al., 2016). 

4.2.3.8. Statistical Analysis: General 

Results are expressed as mean and standard deviation (SD) unless otherwise stated. 

Before comparisons, all variables were tested for normality using the Shapiro-Wilk test. 

The assumption of sphericity was checked by the Mauchley’s test and, if violated, the 

Greenhouse-Geisser correction was made to the degrees of freedom. Statistical 

significance was set at p < 0.05.  

4.2.3.9. Statistical analysis: Experiment I   

 MVCs from the beginning and end of each session were compared using a paired t-

test and the MVCs performed at the beginning of each session were compared by one-way 

analysis of variance (ANOVA). Paired t-tests were used to check the effect of time on the 

number of tracked motor units (sessions 1-2 vs. 1-3 and 2-3 vs. 1-3). Therefore, we 

compared the number of tracked motor units between sessions that were one (sessions 1-2 

and 2-3) and two weeks apart (sessions 1-3), at each force level (10, 30, 50 and 70% MVC) 

and muscle (VM and VL), independently.   

 All motor unit variables (recruitment-de-recruitment threshold, mean discharge rate 
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and conduction velocity) were analyzed for reliability at each force level (10, 30, 50 and 

70% MVC) and muscle (VM and VL), independently. The level of reliability of the 

variables extracted from matched motor units (proposed method), from the total group of 

identified motor units (independent decompositions using averaged motor unit population 

samples, including both matched and unmatched motor units), and unmatched motor units 

(random sample of motor units that could not be tracked across sessions, with a sample 

size similar to the ones used for tracked motor units) between sessions 1 and 3 was 

determined by the intra-class correlation coefficient (ICC 2,1). ICC scores between 0.8-1 

were interpreted as “excellent”, 0.6-0.8 “good” and <0.6 “poor” (Bartko, 1966). 

Additionally, a paired t-test was performed to detect significant differences between 

sessions. The absolute reliability was obtained by the standard error of the measurement 

(SEM=SD √(1-ICC)). The level of reliability of motor units that were matched across the 

three sessions was determined by ICC2,1, while a one-way repeated measures ANOVA 

was used to detect any significant differences between sessions. For the sake of clarity, 

results are presented only for motor units tracked between sessions 1-3 and 1-2-3. 

Reliability results (ICC and SEM) were averaged between all force levels (10, 30, 50 and 

70% MVC) and presented for each variable and muscle independently.  

 Finally, the motor unit tracking procedure was also applied across the different 

force levels within each session. Motor units were tracked between 10 vs. 30, 30 vs. 50 and 

50 vs. 70% MVC. The ICC2,1 was used to evaluate the reliability of conduction velocity 

and p2p amplitude values of motor units that were tracked between the different force 

levels on each session. 

4.2.3.10. Statistical analysis: Experiment II 

 The estimate of single motor unit conduction velocity was chosen as representative 

variable to compare pre and post training. The values of this variable estimated for 

matched and unmatched motor units, pre and post intervention, were compared by paired t-

test. Additionally, the Cohen’s d was used to estimate the effect size (ES). A Cohen’s d 

less than 0.2 was classified as “trivial”, 0.2-0.5 as “small”, 0.5-0.8 as “moderate”, and 

greater than 0.8 as “large” (Cohen, 1988).     
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4.2.4. RESULTS 
 
4.2.4.1. Experiment I 

Maximal voluntary knee extension force performed at the beginning of each session 

did not differ between sessions (p = 0.099). Furthermore, there was no significant change 

in MVC across each experimental session (p = 0.55, 0.13 and 0.08, for sessions 1, 2 and 3, 

respectively). The total and average number of accurately decomposed motor units from 

both muscles (CoVisi < 30% and SIL >0.9) is presented for each session and force level in 

Table 4.  

 

Table 4. Total of accurately decomposed motor units. 

 

Force Level (% MVC) Vastus Medialis Vastus Lateralis 

  

Session 1 Session 2 Session 3 Session 1 Session 2 Session 3 

Total MUs 10% 50 57 49 66 67 72 

 
30% 74 83 69 67 75 73 

 
50% 62 56 59 62 58 59 

 
70% 31 35 42 23 26 25 

        
Average MU p/subject 10% 5.0 (1.3) 5.7 (2.3) 5.4 (1.5) 7.2 (3.5) 7.4 (3.4) 7.2 (3.0) 

 
30% 7.4 (2.7) 8.3 (3.1) 6.8 (2.7) 6.7 (3.1) 7.5 (3.9) 7.3 (4.1) 

 
50% 6.0 (3.1) 5.5 (2.7) 6.3 (3.7) 6.0 (3.7) 5.7 (3.1) 6.2 (3.1) 

 
70% 3.4 (1.7) 3.6 (2.1) 4.9 (2.9) 3.3 (2.2) 3.3 (2) 3.3 (2.3) 

Total and average number of accurately decomposed motor units (MU) [mean (SD)]. Results are presented for each muscle 

(vastus medialis, vastus lateralis), session (1,2 and 3) and force level [10, 30, 50 and 70% of the maximum voluntary 

contraction (MVC)], independently. 

 

Figure 7 shows an example of the motor unit decomposition and tracking 

procedure for VM and VL during ramped isometric contractions at 50% of MVC (Fig. 1a). 

The MUAPs shown in Figure 1 [which correspond to a motor unit identified in session 1 

(blue) and 3 (red)] had a similarity measure (cross-correlation coefficient) greater than 

90% (Fig 7b), and therefore, they were associated to the same unit. The visual inspection 

of the action potential shapes confirms the correct automatic identification of the same 

motor unit. Following the automatic procedure, the number of tracked motor units across 

two sessions varied between [mean (range)] 21 (6 - 34) and 23 (6 – 40), while for three 

sessions it was possible to track 11 (8 -17) and 11 (1-16) motor units for VM and VL, 

respectively, across all force levels (from 10 to 70% MVC), in the 10 subjects (mean 

number of tracked motor units per subject was 2.2 (0.1) and 1.4 (0.5) for VM, and 2.3 (0.4) 
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and 1.3 (0.1) for VL, across two and three sessions, respectively). Therefore, a mean 

(range) of 38.3 (16.5 – 46.5)% and 40.1 (24.5 – 54.1)% of motor units from those 

identified by decomposition could be tracked across two sessions, while 21.0 (13.6 – 

25.0)% and 16.3 (4.1 – 23.4)% could be tracked across the three sessions for VM and VL, 

respectively. Overall, the number of tracked motor units remained relatively constant at 10, 

30 and 50% MVC between all sessions comparisons; however, it decreased at 70% MVC 

(Table 5), where only 1 motor unit could be tracked across the three sessions for VL. 

Finally, the number of tracked motor units remained consistent in time since there were no 

significant differences in the number of tracked motor units between sessions separated by 

one (1-2 and 2-3) or two weeks (1-3), in both muscles and at all force levels (p > 0.05) 

(Table 5). Further details regarding the total number of matched motor units, the cross 

correlation coefficients between tracked and unmatched motor units (average cross 

correlation coefficient was calculated from the maximum cross correlation coefficient 

obtained from all possible unmatched motor unit comparisons) and the percentage of 

tracked motor units from the total across 2 and 3 sessions comparisons are shown in Table 

5.  
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Figure 7. A) High-density surface EMG signals (64 channels) were recorded from the vastus medialis (VM) 

and vastus lateralis (VL) muscles during a ramp isometric knee extension [50% of the maximum voluntary 

contraction (MVC)]. The EMG signals were decomposed to reveal the firing activities of single motor units. 

A schematic representation of the task and motor unit (MU) recording methodology is shown in the left half 

of the figure. B) The procedure developed in the study was then used to identify two matched MUs between 

the first and the last session of experiment I. The cross-correlation between the projecting vectors of the 

identified MUs was higher than 90%. Multichannel action potentials (59 bipolar channels) of the original 

(blue) and matched (red) MUs are shown to confirm their similar MU action potential shapes. Two matched 

MUs are being shown on the right side of the figure (1 for VM, up and 1 for VL, down). For clarity, MU 

action potentials inside the dashed boxes are zoomed in the right half of the figure. Those matched MUs had 

cross correlation coefficients > 0.9. 

  

Time [s] 2 4 6 8 10 12 14 16 18 20 
1 

2 

3 

4 

5 

6 

7 

8 

M
U

 n
u

m
b

e
r 

2 4 6 8 10 12 14 16 18 20 
1 

2 

3 

4 

5 

Time [s] 

M
U

 n
u
m

b
e

r 

Vastus medialis (VM) 

Vastus lateralis (VL) 

Single MUs, VM  

Matched Motor Units (MUs) 

Single MUs, VL  

VM MU 1 

VL MU 1 

50% MVC 

50% MVC 

Force 

Force 

A) B) 



 

52 
 

Table 5. Number, percentage of tracked motor units and cross correlation coefficients from tracked and unmatched motor units across sessions. 

 

 

Force 

Level 
(% MVC) 

Vastus Medialis Vastus Lateralis 

Sessions 1-2 Sessions 2-3 Sessions 1-3 Sessions 1,2,3 Sessions 1-2 Sessions 2-3 Sessions 1-3 Sessions 1,2,3 

Tracked MU (N, %) 10% 23 (43%) 22 (42%) 23 (47%) 11 (21%) 22 (33%) 30 (43%) 26 (38%) 16 (23%) 

 

30% 34 (45%) 31 (41%) 25 (35%) 17 (23%) 28 (39%) 40 (54%) 31 (44%) 16 (22%) 

 

50% 19 (32%) 22 (38%) 20 (33%) 8 (14%) 25 (42%) 24 (41%) 16 (26%) 9 (15%) 

 

70% 15 (46%) 16 (42%) 9 (17%) 9 (25%) 6 (25%) 15 (58%) 9 (38%) 1 (4%) 

                  CCC Tracked (%) 10% 88.3 (3.9) 87.4 (3.2) 83.2 (3.1) 87.9 (2.6) 84.8 (3.7) 86 (4.1) 84.4 (6) 86 (2.4) 

 

30% 84.8 (3.8) 84.4 (4.6) 83.3 (3.3) 86.8 (3.4) 86.2 (4.6) 86.4 (3) 81 (3.7) 87.4 (3.6) 

 

50% 84.2 (3.5) 83.9 (4.5) 83.6 (5.8) 85.1 (3.7) 85.1 (4.9) 86.9 (3.3) 81 (3.9) 85.4 (4.5) 

 
70% 83.2 (4.2) 85.6 (2.5) 81 (3.9) 85.6 (1.4) 83.3 (4.2) 85.6 (2.5) 81 (3.9) 80 

          

CCC Unmatched (%) 10% 58.7 (4.7) 59.3 (3.7) 59.9 (4.6) 59.3 (4.2) 53.6 (5.7) 55.1 (4.2) 55.9 (4.8) 54.9 (4.7) 

 30% 65.6 (6.7) 64.5 (7.3) 64.4 (6.9) 64.8 (6.7) 59.6 (6.1) 59.4 (5.2) 57.2 (5.5) 58.7 (4.3) 

 50% 68.5 (2.6) 68.4 (2.8) 68.2 (3.9) 68.9 (2.5) 62.3 (5.2) 66.5 (4.8) 62.8 (6.5) 63.9 (3.7) 

 70% 68.6 (4.4) 68.7 (4.9) 63.7 (7.9) 67.1 (4.3) 63.6 (8.4) 66.9 (8.3) 62.6 (7.4) 63.9 (7.4) 

Total number (N) and percentage of tracked motor units (MUs). Cross correlation coefficients (CCC) [mean (SD)] are presented for each session 

comparisons at each force level for matched and unmatched motor units (sample of units that could not be tracked across sessions). The number of 

tracked MUs (%) represents the percentage of MUs that could be tracked from the total number of accurately identified MUs between sessions. 

Percentages of tracked MUs from sessions 1,2,3 were obtained by averaging the total number of decomposed MUs across the 3 sessions (Table1). 

Note that (SD) for vastus lateralis at 70% MVC (Sessions 1,2,3) is not shown, as only 1 MU could be matched across the 3 sessions. 

  

 

The absolute values of the variables extracted from the motor units that were 

matched between the three sessions are presented in Table 6. Overall, mean discharge 

rates and conduction velocity increased with force and presented values within 

physiological range, while the recruitment thresholds were similar to the de-recruitment 

thresholds (Table 6). A representative example of MUAPs corresponding to three different 

VM motor units (identified from session 1) that could be tracked across the three sessions 

with a high similarity measure (cross-correlation coefficients > 80%) is shown in Figure 

8a. The discharge timings of each matched motor unit, with their corresponding 

recruitment and de-recruitment thresholds (expressed as Nm torque) for each session are 

shown in Fig. 8b.  Across sessions, the estimates of recruitment and de-recruitment 

thresholds for these matched motor units were stable, as expected. These results were 

confirmed by the good to excellent levels of reliability (ICCs > .60) found for the 

recruitment-de-recruitment thresholds, mean discharge rate and conduction velocity of all 

the tracked motor units in both muscles and across all force levels (see Tables 7 and 8). 

These results were consistent when variables were compared between two (session 1 vs. 3, 

Table 7) or three sessions (sessions 1,2,3, Table 8). These reliability indexes were 

substantially greater than those computed from the total group of identified motor units and 
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from the unmatched motor units (see Tables 4 and 5), strongly supporting (together with 

the shape similarity over all channels) the matching performed by the proposed method. 

None of the variables (from matched, total and unmatched motor units) changed 

significantly across sessions (p > 0.05).  

Finally, for VM and VL, an average of 14 (3) motor units could be tracked between 

the different force levels within each session (10 vs. 30, 30 vs. 50 and 50 vs. 70% MVC). 

This represented 24 (6) % of the motor units identified between those force levels. As 

expected, the tracked motor units showed high cross correlation coefficients (average 91.1 

(1.1) %) and good to excellent levels (ICCs>0.60) of reliability for conduction velocity and 

p2p amplitude (Table 9). 

 

Table 6. Motor unit variables in absolute values 

 

 

Force 
(% MVC) 

Vastus Medialis Vastus Lateralis 

Session 1 Session 2 Session 3 Session 1 Session 2 Session 3 

Recruitment 

threshold (Nm) 

10% 14.8 (3.9) 14.9 (5.4) 14.2 (5.6) 9.5 (5.2) 9.8 (5.4) 10.3 (5.6) 

30% 32.0 (15.2) 32.6 (14.4) 32.6 (13.0) 23.6 (16.9) 23.9 (15.0) 24.1 (16.4) 

 
50% 71.6 (33.3) 72.7 (36.3) 69.5 (29.1) 70.0 (29.5) 71.6 (34.8) 70.2 (28.2) 

 
70% 105.0 (22.9) 104.7(30.8) 110.3(33.6) 77.1 81.1 78.7 

        

De-recruitment 

threshold (Nm) 

10% 11.2 (4.9) 12.0 (3.9) 11.4 (4.5) 9.0 (4.2) 9.0 (4.8) 10.0 (4.1) 

30% 35.4 (12.4) 37.6 (12.3) 37.3 (10.4) 24.9 (15.6) 25.2 (16.3) 25.1 (14.1) 

 
50% 75.9 (33.2) 76.4 (27.5) 75.5 (36.5) 73.9 (27.1) 79.6 (29.8) 76.9 (32.2) 

 
70% 117.9 (32.6) 120.7(37.3) 120.7(39.8) 113.0 110.7 115.6 

        

Mean discharge 

rate (Hz) 

10% 9.4 (1.3) 9.3 (1.3) 9.2 (1.4) 9.7 (1.6) 9.7 (1.8) 9.6 (1.7) 

30% 10.5 (1.0) 10.7 (1.1) 10.3 (0.7) 10.6 (1.1) 10.7 (1.2) 10.7 (1.1) 

 
50% 12.0 (2.3) 12.0 (2.3) 11.9 (2.0) 10.8 (1.4) 11.2 (1.9) 11 (1.6) 

 
70% 15.0 (3.1) 14.9 (2.8) 14.7 (2.1) 11.1 11.7 11.6 

        

Conduction 

velocity (m/s) 

10% 4.4 (0.4) 4.4 (0.4) 4.3 (0.3) 4.2 (0.3) 4.2 (0.3) 4.3 (0.3) 

30% 4.5 (0.2) 4.5 (0.2) 4.5 (0.3) 4.3 (0.2) 4.4 (0.3) 4.4 (0.2) 

 
50% 4.8 (0.6) 4.8 (0.5) 4.7 (0.3) 4.7 (0.4) 4.7 (0.4) 4.7 (0.4) 

 
70% 4.9 (0.5) 4.9 (0.4) 4.7 (0.4) 4.3 4.4 4.4 

Motor unit (MU) variables results [mean (SD)] for MUs matched between sessions 1-2-3. Results are presented for 

each muscle (vastus medialis, vastus lateralis) and force level [10, 30, 50 and 70% of the maximum voluntary 

contraction (MVC)], independently. Note that (SD) for vastus lateralis variables at 70% MVC is not shown, as only 

1 MU could be matched across the 3 sessions. 
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Figure 8. A) Multichannel surface action potentials of 3 different vastus medialis motor units (MUs) that 

were tracked across the three sessions. The cross correlation coefficients (CCCs) of the MU action potential 

projecting vectors between the three sessions can be seen above. For sake of clarity MU action potential 

matching is presented between two sessions only. MU action potentials extracted from the first session are 

presented in blue while matched action potentials from the second session are presented in red. B) Discharge 

times of each matched MU during ramped contractions at 30% MVC during the 3 sessions, note the 

similarity of their recruitment and de-recruitment thresholds. 
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Table 7. Reliability of tracked, total and unmatched motor units from sessions 1 and 3  

 
Matched MUs Total MUs Unmatched MUs 

 
Vastus Medialis Vastus Lateralis Vastus Medialis Vastus Lateralis Vastus Medialis Vastus Lateralis 

 
ICC SEM ICC SEM ICC SEM ICC SEM ICC SEM ICC SEM 

Recruitment 
Threshold 

(Nm) 

.92 (.89 - 

.96) 

5.1 (1.8 - 

8.5) 

.92 
(.88 - 

.94) 

4.5 (1.5 

- 6.3) 

.75 
(.54 - 

.95) 

5.8 (1.6 

– 10.2) 

.63 
(0.41 - 

.92) 

7.0 (1.5 

– 11.5) 

.29 
(.15 - 

.73) 

14 (4.2 

-21.3) 

.44 
(.34 - 

.49) 

14.5 
(3.4 -

22.7 

De-
recruitment 

Threshold 

(Nm) 

.86 (.71 - 

.95) 

6.3 (2.4 - 

8.8) 

.87 

(.82 - 
.92) 

6.6 (2.0 

- 12.4) 

.57 

(.43 - 
.70) 

10.1 

(2.2 -
14.4) 

.66 (.52 

- .93) 

7.1 (2.7 

– 13.7) 

.36 

(.21 - 
.50) 

16.3 

(4.2 – 
24.1) 

.46 

(.41 - 
.60) 

15.3 

(4.7 – 
24.8) 

Mean 

discharge rate 

(Hz) 

.77 (.72 - 
.83) 

0.8 (0.6 – 
0.9) 

.87 

(.78 - 

.91) 

0.6 (0.6 
– 0.7) 

.56 

(.39 - 

.73) 

1.1 (0.8 
– 1.4) 

.61 (.42 
- .89) 

1.0 (0.7 
– 1.5) 

.31 (-

.11 - 

.59) 

1.6 (1.1 
– 2.3) 

.38 

(.21 - 

.54) 

1.5 (1.0 
– 2.5) 

Conduction 

Velocity 

(m/s) 

.84 (.83 - 
.87) 

0.18 (0.16 – 
0.21) 

.88 

(.84 - 

.99) 

0.12 

(0.07 –

0.12) 

.66 

(.43 - 

.86) 

0.21 

(0.16 –

0.25) 

.56 (.51 
- .67) 

0.22 

(0.14 -

0.27) 

.25 

(.05 - 

.45) 

0.35 

(0.3 – 

0.39) 

.30 

(.15 - 

.57) 

0.64 

(0.44 – 

0.95) 

Reliability values are averaged across all contraction levels (10, 30, 50 and 70% of the maximum voluntary contraction) and presented as mean 

(range) for each variable and muscle (vastus medialis, vastus lateralis). Between sessions comparisons were non- statistically significant for all 

variables at all force levels, for both muscles (p > 0.05). ICC, intra-class correlation coefficient; SEM, standard error of the measurement.  

 

 

 

Table 8. Reliability of tracked, total and unmatched motor units from all sessions 

 
Matched MUs Total MUs Unmatched MUs 

 
Vastus Medialis Vastus Lateralis Vastus Medialis Vastus Lateralis Vastus Medialis Vastus Lateralis 

 
ICC SEM ICC SEM ICC SEM ICC SEM ICC SEM ICC SEM 

Recruitment 

Threshold 
(Nm) 

.92 (.89 - 

.97) 

5.2 (1.7 - 

9.6) 

.93 (.91 - 

.96) 

4.8 (1.4 - 

9.7) 

.81 (.73 - 

.94) 

6.4 (1.9 – 

9.6) 

.73 (.65 

- .74) 

6.2 (2.0 

– 9.7) 

.29 (.16 

- .39) 

14.5 

(5.2 – 
19.8) 

.42 (.13 

- .66) 

14.6 

(3.6 – 
22.4) 

De-

recruitment 
Threshold 

(Nm) 

.81 (.75 - 
.92) 

7.1 (2.2 - 
17.6) 

.89 (.83 - 
.93) 

4.8 (1.7 - 
8.4) 

.70 (.67 - 
.82) 

9.3 (3.9 – 
14.4) 

.73 (.62 
- .88) 

7.2 (1.6 
– 13.5) 

.38 (.27 
- .49) 

16.2 

(3.9 – 

25.8) 

.47 (.27 
- .59) 

15.5 

(3.8 – 

25.2) 

Mean 
discharge rate 

(Hz) 

.83 (.63 - 

.94) 

0.6 (0.6 – 

0.7) 

.84 (.74 - 

.90) 

0.6 (0.5 – 

0.6) 

.70 (.58 - 

.82) 

0.9 (0.6 – 

1.1) 

.76 (.64 

- .87) 

0.8 (0.5 

– 1.1) 

.30 (.07 

- .59) 

1.5 (1.1 

– 2.4) 

.48 (.26 

- .62) 

1.4 (0.8 

– 2.0) 

Conduction 
Velocity 

(m/s) 

.83 (.78 - 

.87) 

0.16 (0.12 – 

0.21) 

.88 (.83 - 

.94) 

0.10 (0.10 – 

0.11) 

.73 (.61 - 

.85) 

0.32 (0.17 – 

0.21) 

.66 (.57 

- .77) 

0.2 
(0.13 –

0.28) 

.16 (-
.29 - 

.36) 

0.4 
(0.35 - 

0.58) 

.39 (.32 

- .46) 

0.44 
(0.35 – 

0.56) 

Reliability values are averaged across all contraction levels (10, 30, 50 and 70% of the maximum voluntary contraction) and presented as mean 

(range) for each variable and muscle (vastus medialis, vastus lateralis). Between sessions comparisons were non-statistically significant at all 

force force levels, for both muscles (p > 0.05). ICC, intra-class correlation coefficient; SEM, standard error of the measurement. Note that 

reliability for VL at 70% MVC was not calculated (for matched motor units results), since only one motor unit could be tracked across the three 

sessions.  
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Table 9. Number, percentage and reliability of tracked motor units across the different force levels within a session 

Force levels 

MVC% 

Vastus Medialis  Vastus Lateralis 

Motor 
Units (N,%) 

CCC (%) 
CV 
ICC 

p2p amp. 
ICC  

Motor 
Units (N,%) 

CCC (%) 
CV 
ICC 

p2p amp. 
ICC 

10 vs. 30 13 (21%) 90.7 (0.3) .88 (.81-.93) .82 (.78-.84) 
 

12 (17%) 93.2 (0.7) .94 (.89-.95) .82 (.69-.93) 

30 vs. 50 13 (19%) 90.2 (0.8) .72 (.60-.95) .73 (.59-.84) 
 

19 (29%) 91.4 (0.1) .88 (.80-.92) .93 (.91-.94) 

50 vs. 70 15 (31%) 90.0 (0.4) .91 (.88-.94) .77 (.64-.96) 
 

11 (26%) 91.0 (0.1) .92 (.83-.97) .87 (.74-.96) 

Total number (N) and percentage (extracted from the total number of motor units identified between force levels) of tracked motor 

units across the different force levels (10 vs. 30, 30 vs. 50 and 50 vs. 70% MVC) within each session. The cross correlation 

coefficients (CCC) [mean (SD)] and intra-class correlation coefficients [mean (range)] for conduction velocity (CV) and peak-to-

peak (p2p) amplitude are also presented. For sake of clarity, results are averaged across all sessions. 

 

 
 
4.2.4.2. Endurance training  

After the intervention, incremental cycling peak power output significantly 

increased from 347.4 (63.2) W to 370.3 (56.9) W, p=0.0004, ES=2.6. VO2peak also 

increased significantly after intervention from 45.1 (6.7) ml/kg/min to 48.4 (4.6) 

ml/kg/min, p=0.031, ES=1.1. Peak torque did not differ pre and post intervention (pre: 

249.4 (71.6) Nm vs. post: 245.7 (59.6) Nm, p=0.5008, ES=0.3).  

For VM, a total of 57 and 77 motor units could be decomposed (CoVisi < 30% and 

SIL >0.9), while for VL a total of 59 and 52 units were decomposed at 10% and 30% 

MVC, respectively. From these units, 44.1% and 41.4% could be tracked post-training for 

VM and, 66.7% and 42.5% could be tracked for VL at 10% and 30% MVC, respectively 

(average cross-correlation coefficient of 87.0%). Figure 9 shows the motor unit tracking 

procedure from a representative subject at 30% MVC pre and post intervention. Even 

though both VM (fig. 9a) and VL (fig. 9b) showed a large increase in conduction velocity 

(10.2% and 11.5% increase, respectively), the shape of their MUAPs remained consistent 

between pre and post testing sessions as confirmed by the large cross correlation 

coefficients between MUAPs (91.0% and 90.3% for VM and VL, respectively). 

Finally, conduction velocity was compared pre-post training to check for the 

sensitivity of the proposed motor unit tracking method to changes induced by training. For 

VM, motor unit conduction velocity increased significantly with training when computed 

for the matched motor units at both 10% (pre: 4.19 (0.27) vs. post: 4.37 (0.28) m/s, p= 
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0.013, ES=1.3) and 30% MVC (pre: 4.51 (0.32) vs. post: 4.71 (0.25) m/s, p=0.003, 

ES=1.9). These differences were smaller for the total group of identified motor units at 

both 10% (pre: 4.22 (0.28) vs. post: 4.31 (0.22) m/s, p=0.0585, ES=0.9) and 30% MVC 

(pre: 4.54 (0.31) vs. post: 4.65 (0.24) m/s, p=0.0514, ES=0.9), for which significant 

differences were not found. To explain the difference in the results for the matched and 

total group of identified motor units, Figure 10 shows individual motor unit conduction 

velocity results (pre and post training) of the 7 participants when using matched (Figure 

10a, left) and total group of identified units (Figure 10a, right) at 30% MVC (VM). The 

data from all subjects presented in Figure 10a (left) show a clear intervention effect when 

tracking the same motor units that was masked when the motor units were not matched 

[Figure 10a (right)], with 2 subjects showing no effect of the intervention without tracking. 

One of these subjects is highlighted in red (Fig. 10a and 10b). The results for the 

highlighted subject can be seen in Figure 4b. The twelve matched motor units (Fig. 10b, 

left) of this subject showed a clear intervention effect with a large effect size (p=0.004, 

ES=1.0). However, this difference could no longer be observed when using all motor units 

[p=0.595 (unpaired t-test), ES=0.1, Fig. 10b, right]. Similarly, for VL, conduction velocity 

increased significantly at 10% (pre: 4.14 (0.22) vs. 4.35 (0.19) m/s, p=0.0006, ES=2.5) and 

30% MVC (pre: 4.37 (0.27) vs. 4.59 (0.28) m/s, p=0.0004, ES=2.7) for the matched motor 

units as well as for the total group of motor units at 10% (pre: 4.17 (0.21) vs. post: 4.34 

(0.19) m/s, p=0.0008, ES=2.3) and 30% MVC (pre: 4.39 (0.27) vs. post: 4.58 (0.26) m/s, 

p=0.0018, ES=2.0).         
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Figure 9. A) Motor unit conduction velocity (CV) values from the vastus medialis (VM) at 30% of the 

maximum voluntary contraction (MVC) from n=7 subjects, previously (PRE) and after (POST) an endurance 

training intervention. Left graph shows results obtained with tracked motor units, while right graph shows the 

results obtained using unmatched motor units (CV values were averaged per subject and compared PRE and 

POST intervention). The effect size and p-values of the two procedures are shown in the lower right corner of 

all graphs. The dashed line depicts an example of one subject that showed an increase in CV of matched 

motor units (left), which is masked when using unmatched motor units (right). B) Matched (left) and 

unmatched (right) motor units (mean and 95% confidence interval), from the same subject depicted in A 

(dashed line). The 12 matched motor units from this subject show a clear intervention effect (left graph), 

which is not possible to distinguish when using all decomposed motor units [CV values are extracted from all 

the motor units decomposed pre and post intervention (two repetitions per session)]. 
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Figure 10. A) Motor unit conduction velocity (CV) values from the vastus medialis (VM) at 30% of the 

maximum voluntary contraction (MVC) from n=7 subjects, previously (PRE) and after (POST) an endurance 

training intervention. Left graph shows results obtained with tracked motor units, while right graph shows the 

results obtained using the total group of identified motor units (CV values were averaged per subject and 

compared PRE and POST intervention). The effect size and p-values of the two procedures are shown in the 

lower right corner of all graphs. The red line depicts an example of one subject that showed an increase in 

CV of matched motor units (left), which is masked when using unmatched motor units (right). B) Matched 

(left) and unmatched (right) motor units (mean and 95% confidence interval), from the same subject depicted 

in A (red line). The 12 matched motor units from this subject show a clear intervention effect (left graph), 

which is not possible to distinguish when using all decomposed motor units [CV values are extracted from all 

the motor units decomposed pre and post intervention (two repetitions per session)].   

 

4.2.5. DISCUSSION 
 

This study demonstrates the possibility of tracking individual motor units across 

different days, in humans during voluntary contractions with HDEMG. In Experiment I, 

without intervention, we were able to effectively track 38.3 % and 40.1 % of the identified 

motor units across two sessions and 21 (4.9)% and 16.3 (8.9)% across three sessions in the 

VM and VL, respectively. Moreover, the reliability indexes obtained from tracked motor 

units were larger than those calculated from the total group of identified motor units and 
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      p: 0.0514
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4.0
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4.5
4.6
4.7
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4.9
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5.1
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      p: 0.5949

m
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from the unmatched motor units, which strongly confirms a correct tracking. Additionally, 

the results showed that tracking motor units improved the sensitivity to changes in motor 

unit conduction velocity following an endurance training intervention, since the changes of 

conduction velocity of the matched motor units showed a larger effect size compared to the 

total group of motor units. Taken together, these findings are the first to demonstrate 

successful tracking of individual motor units recruited during voluntary contractions across 

several days.  

Previous methods have focused on identifying groups of motor units across 

sessions by using percutaneous electrical stimulation of motor axons (Doherty and Brown 

1994, Maathuis et al., 2008). This method involves the application of a low-intensity 

transcutaneous electrical impulse to the efferent nerve fibers, producing a compound 

MUAP that can be followed longitudinally. This method has been successfully employed 

for motor unit number estimation (MUNE) during the progression of neuromuscular 

disorders, such as amyotrophic lateral sclerosis (Gooch & Harati, 1997). However, this 

technique does not provide information about central (e.g., discharge behavior) or 

peripheral properties (e.g., conduction velocity) of the recorded motor units activated 

during voluntary contractions (Carroll et al., 2011). Thus, the stimulation method is not 

appropriate for the study of motor unit adjustments during training or other interventions.  

The alternative to tracking individual motor units across recordings is to extract a 

representative sample of motor units and infer population-behavior from them (Duchateau 

et al., 2006; Vila-Cha et al., 2010). However, this approach requires a sample large enough 

to provide reliable information about the properties and behavior of the motor unit pool 

(Martinez-Valdes et al., 2016). Moreover, with this approach, a large number of subjects 

are needed to reach high sensitivity. The method proposed in the current study, conversely, 

showed the possibility of detecting and monitoring the same motor units across days (up to 

two weeks) with high reliability and sensitivity, which opens new possibilities and 

opportunities for longitudinal studies.   

 In comparison to previous single-channel or intramuscular recordings, HDEMG has 

the advantage that it provides spatial information as well as time varying aspects of the 

EMG signal (Blok et al., 2002). The likelihood for different motor units to have the same 

spatial action potential representation decreases fast with the number of recording channels 
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(Farina et al., 2008). Cescon and Gazzoni (Cescon & Gazzoni, 2010) attempted to track 

motor units during voluntary contractions using EMG recordings before and after a short-

term bed rest period. The authors analyzed motor unit conduction velocity and used a 

distance measure to discriminate among the different motor units found between trials. 

However, due to the small number of EMG channels used (7 in the longitudinal direction) 

and the incomplete decomposition, it was not possible to assure that matched MUAPs 

corresponded to the same motor unit, as the authors acknowledged. 

In this study, we used a large number of channels in order to exclude the possibility 

that, due to the volume conductor properties, different motor units showed MUAPs of 

identical shape (Farina et al., 2008). In fact, placing the EMG arrays accurately in the same 

position for each session and using a relatively large number of channels, it is extremely 

unlikely that the MUAPs for the decomposition identified in different sessions would show 

high similarity if they do not correspond to the same motor unit. This property was 

strongly verified by the reliability and sensitivity analysis which were found both superior 

for the tracked motor units with respect to the average of all identified motor units, despite 

the greater sample size of all units. If the motor units were not tracked correctly, the 

probability of improving reliability and sensitivity of their estimated properties by 

choosing a smaller subsample of all units would have indeed been negligible. To prove this 

point further, we also conducted a reliability analysis between random samples of 

unmatched motor units (the sample size used was similar to the one used for tracked motor 

units). As expected, the reliability indices decreased even more than those found for the 

total group of identified motor units, which strongly confirms the accuracy of the tracking.  

With our new analysis we were able to identify highly correlated MUAPs for 

approximately 40-50% of the motor units identified in two sessions and 15-25% of the 

motor units identified across 3 sessions, when no intervention was applied. The time-gap 

between the different measurement sessions did not influence the number of tracked motor 

units since the number remained consistent between all two-sessions comparisons (1-2, 1-3 

and 2-3), regardless if they were conducted one or two weeks apart (See Results and Table 

5). This highlights the applicability of the current method for training interventions, since 

training studies typically last several weeks. However, the number of matched motor units 

decreased when the procedure was conducted including more than two sessions (e.g. 
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sessions 1-2-3). Finally, we also checked the possibility of tracking motor units across 

different force levels within a session. Approximately 25% of the motor units identified at 

each force level (10, 30, 50 and 70% MVC) could be identified at a force level 20% higher 

(e.g., 10 vs. 30% MVC), despite large differences in motor unit recruitment. This shows 

that the current approach is robust to monitor the properties of the same motor units at 

different activation levels within a session. Consequently, it is expected that the current 

approach would still be able to follow motor units when MVC force changes ~20%. 

In terms of reliability, both VM and VL recruitment/de-recruitment thresholds, 

mean discharge rates, and conduction velocities showed greater consistency across 

sessions for the matched motor units compared to the total group of identified motor units. 

Specifically, ICCs from matched motor units for all variables were substantially greater 

compared to the ICCs of the total group of identified motor units and unmatched motor 

units (see Tables 7 and 8), in accordance with the results on SEM (Tables 7 and 8). These 

observations can be confirmed further by the fact that these reliability indices were as large 

(or even larger) than the reliability indices obtained from a population of motor units 

during a sustained isometric contraction (Martinez-Valdes et al., 2016). It is important to 

note that during ramped contractions, as analyzed in this study, motor unit firing behavior 

is inherently more variable across the population than during constant-force isometric 

contractions (Enoka, 1995). For example, discharge rates of motor units (within a subject) 

are less correlated during ramped contractions than during constant force contractions 

(Tenan et al., 2014). Therefore, the fact that we still found high cross-session reliability in 

the present study would be extremely difficult to explain unless matched MUAPs belonged 

to the same motor units. In fact, there would be no reason for an increase in reliability of 

measures of motor unit properties when selecting a subset of these units unless they are 

correctly tracked across sessions, as confirmed by the low reliability levels observed for 

unmatched motor units. 

To show a potential application of the method as well as its sensitivity, we 

conducted a short-term high volume endurance training intervention (Experiment II), using 

a protocol that previously showed an increase of endurance performance, vasti muscle 

oxidative capacity (Gibala et al., 2006) and Na
+ 

-K
+ 

-ATPase activity (Green et al., 2004), 

in just two weeks. Since changes in oxidative capacity and Na
+ 

-K
+ 

-ATPase activity have 
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been suggested as one of the main factors influencing motor unit conduction velocity 

during submaximal isometric contractions following endurance training (Vila-Cha et al., 

2012), it was hypothesized that our protocol would result in an increase in motor unit 

conduction velocity. Indeed, motor unit conduction velocity increased for both muscles 

(VM and VL) after the training intervention. However, the magnitude and significance of 

the detected change differed according to the approach used to assess the motor units. For 

instance, when matched motor units were used, all the subjects showed a systematic and 

clear increase in motor unit conduction velocity at 10% and 30% MVC for VM, with high 

statistical significance and a large effect size (Fig. 10a). However, no statistical difference 

was observed when using the total group of motor units (Fig. 10a and 10b), with one 

subject even showing an effect in the opposite direction (Fig. 10a, right). Even though the 

total group of identified motor unit results for VM were close to reaching statistical 

significance, it is worth to note that the results for the matched motor units presented an 

effect size which was almost double than that of the total motor units (matched units ES: 

1.8 and 2.4, averaged units ES: 1.2 and 1.1, at 10% and 30% MVC, respectively). Taken 

together, these results show the impact of the proposed tracking method in sensitivity to 

track longitudinal changes in motor unit properties. The large number of identified and 

tracked motor units made available by our technique is critical for obtaining the statistical 

power needed to support conclusions about motor unit adaptations to training, 

rehabilitation, or disease (Carroll et al., 2011; Button et al., 2013; Heroux & Gandevia, 

2013).  

As representatively shown in the present study, the current method can be applied 

to the study of motor unit adaptations to training interventions (e.g., resistance or 

endurance training), but could also be extended to monitor different stages of rehabilitation 

within the context of injury or disease. For example, the tracking of individual motor unit 

properties (from low to high threshold motor units) could be of great benefit in 

characterizing discharge characteristics and muscle-fiber membrane properties during the 

progression of neuromuscular disorders (which has not yet been possible with any of the 

currently available methods). Furthermore, our tracking procedure allows the absolute 

recruitment threshold force to be measured across sessions without the need of normalizing 

it to %MVC force, providing accurate information about the force capacity of each motor 
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unit. Regarding resistance training, many authors have used surface EMG recordings to 

attribute early strength gains to neuromuscular adaptations (Folland & Williams, 2007). 

However, due to the many factors influencing surface EMG amplitude measures [see 

(Farina et al., 2004) for review], the evidence is equivocal (Folland & Williams, 2007). 

Although there are some studies reporting changes in motor unit behavior following 

training, demonstrated through intramuscular EMG recordings, the results are not in 

agreement between studies (Rich & Cafarelli, 2000; Kamen & Knight, 2004; Pucci et al., 

2006; Vila-Cha et al., 2010), probably due to the small number of motor units that can be 

identified with this technique and the impossibility to track them. Conversely, the current 

approach could provide clearer evidence of motor unit changes occurring after training 

interventions since the same motor units can be followed across the intervention. A number 

of studies have successfully used HDEMG to accurately extract motor unit activity in a 

number of neuromuscular disorders in single experimental sessions (Holobar et al., 2012; 

Dideriksen et al., 2015; Li et al., 2015). Our study suggests that these investigations can be 

extended to include longitudinal characterization of individual motor unit properties in 

clinical populations.  

Some limitations of the proposed approach need to be discussed. In the current 

study, the motor unit tracking procedure was only applied across sessions that were 2-2.5 

weeks apart, during which changes in muscle morphology were not expected. Since 

changes in muscle morphology (e.g., muscle architecture and cross-sectional area) 

influence MUAP shapes, the number of motor units tracked by the algorithm would 

presumably decrease if the muscle structure changes considerably. However, muscle 

structural changes, i.e., following resistance exercise (Narici et al., 1996; Aagaard et al., 

2001; McCarthy et al., 2002)] may not always impact the MUAP shape substantially. As 

shown in Figure 3, the present method can successfully track motor units showing large 

changes in conduction velocity (>10%). Moreover, the algorithm can also track motor units 

between force levels that differ by ~20% (Table 9). Since motor unit conduction velocity 

adjustments >10% and increases in MVC force >20% are only expected after 

approximately 6-8 weeks of resistance training (McCarthy et al., 2002; Aagaard, 2003; 

Vila-Cha et al., 2010), it is very likely that the present method can successfully track motor 

units during longer training interventions than the one shown in this study. A direct 
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evaluation of the method for longer interventions is however needed. Similarly, future tests 

should analyze the possibility of tracking motor units in pathological conditions, such as 

during the progression of amyotrophic lateral sclerosis (ALS) over long periods of time 

(van Dijk et al., 2010).  

 The lower number of motor units identified for the vasti muscles with respect to 

other muscles [e.g., tibialis anterior (Castronovo et al., 2015)] has been reported previously 

with a similar blind source separation decomposition method (Watanabe et al., 2013; 

Martinez-Valdes et al., 2016). Differences in muscle fiber architecture across muscles may 

explain the variability of the identified motor unit sample size across muscles. For 

example, the tibialis anterior and the gastrocnemius muscles have signal characteristics 

(Barbero et al., 2012) that positively influence the decomposition (less spatially correlated 

recordings), with respect to muscles such as the vasti or biceps bracchi (Piitulainen et al., 

2012) that present EMG signals with a higher spatial correlation.  

 Finally, although occasional, there were a small number of trials (~15%) where 

motor units presented multiple matches with a cross correlation coefficient >0.8. As 

commented above, this can be due to the high spatial correlation that the vasti muscles 

present. However, the algorithm always selected the highest cross-correlated source, which 

prevented the chance of having double matches. The observation of this high correlation 

between multiple pairs of identified MUAPs indicated the occasional similarity of MUAPs 

belonging to different motor units. Some degree of similarity is expected and decreases 

consistently with the number of channels, being negligible for a large number of channels 

and/or for muscles resulting in low spatial correlation in EMG recordings (Farina et al., 

2008). 

 

4.2.5.1. Conclusion 

This study presents and validates, for the first time, a method for processing 

HDEMG in humans that allows the tracking of the same motor units longitudinally during 

voluntary contractions performed in different sessions, separated by weeks. This method 

provides new opportunities to track adaptations of the same motor units over time in vivo, 

as it would be required in longitudinal interventions or during the progression of 

neuromuscular disorders.     
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4.2.6. APPENDIX A 
 

Multichannel EMG signals can be described mathematically as convolutive 

mixtures with finite impulse response filters (motor unit action potentials). They can be 

represented as a linear and an instantaneous mixture of an extended vector of sources 

(motor unit spike trains) that include the original sources and their L-1 delayed versions, 

where L is the length of the filters (Negro et al. 2016). This leads to the following extended 

observation vector for channel i: 

     

After the extension of the observations, we also have: 

    

and 

     

Where k is the discrete time, xi is the EMG signal recorded at channel i, sj(k) the j-

th source (motor unit spike train) and ni the additive noise at channel i-th. Therefore, the 

extended model becomes: 

      x(k) = [Hs (k) + n (k)]     (3) 

with 

                s(k) = [s1(k), s2(k),…,sn(k)]
T 

 

                        
x(k) = [x1(k),x2(k),…,xm(k)]

T 

 

                        
n(k) = [n1(k),n2(k),…,nm(k)]

T 

 

 

 

Where Dr is the duration of the recording and hij the action potential of the j-th motor unit 

recorded at the channel i. In order to solve the inverse problem, the number of extended 

measurements R should be higher than the number of sources n multiplied by the length of 

the filters L (MUAP shapes).  
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The instantaneous model described by Eq. 3 can be inverted to recover the matrix 

of the extended sources using the fixed point optimization procedure and an appropriate 

cost function following the spatial whitening procedure [Negro et al. 2016]. Since the 

inverse of Eq. 3 may have a relatively large space of possible solutions, the procedure aims 

to find the sources wi
Tz, where z are the whitened extended measurements and wi the 

projection vector (filter) of the i-th source, that maximize the non-Gaussianity measure 

employed by the selected cost function. In this study, this method, that we call here “full 

decomposition”, was applied to the first (A) recording session. In the following sessions, 

we modified the algorithm to identify projection vectors wi that would maximize both the 

non-gaussianity of the extracted i-th source and the similarity with the previously identified 

motor units in the first session. The similarity was estimated by cross-correlation between 

the de-whitened projecting vectors with a threshold of 0.8. Each time the threshold was 

crossed, the discharge times of the identified source were removed from the following 

iterations. The approach is called Sparse Deflation (Natora & Obermayer, 2011) and 

provides an optimal extraction scheme for sparse signals (e.g., motor unit spike trains) that 

avoids the convergence to the same solution multiple times. In the tracking application, 

indeed, the subtraction of the sources in the spike train space resulted more efficient. 

Among all matched sources, we selected those with the highest similarity measures.     
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4.3.1. ABSTRACT 

 

Purpose: Using a novel technique of high-density surface electromyography (HDEMG) 

decomposition and motor unit (MU) tracking, we compared changes in the properties of 

vastus medialis (VM) and vastus lateralis (VL) MUs following endurance (END) and high-

intensity interval training (HIIT). Methods: Sixteen men were assigned to an END or HIIT 

group (n=8 each) and performed six training sessions over 14 days. Each session consisted 

of 8-12×60s intervals at 100% peak power output (PPO) separated by 75s of recovery 

(HIIT) or 90-120min continuous cycling at ~65% VO2peak (END). Pre and post 

intervention, participants performed: 1) incremental cycling to determine VO2peak and PPO 

and 2) maximal (MVC), submaximal (10, 30, 50 and 70% MVC) and sustained (until task 

failure at 30% MVC) isometric knee extensions while HDEMG signals were recorded 

from the VM and VL. EMG signals were decomposed (submaximal contractions) into 

individual MUs by convolutive blind source separation. Finally, MUs were tracked across 

sessions by semi-blind source separation. Results: After training, END and HIIT improved 

VO2peak similarly (by 5.0 and 6.7%, respectively). The HIIT group showed enhanced 

maximal knee extension torque by ~7% (p=0.02) and was accompanied by an increase in 

discharge rate for high-threshold MUs (≥50% knee extension MVC) (p<0.05). In contrast, 

the END group increased their time to task failure by ~17%, but showed no change in MU 

discharge rates (p>0.05). Conclusions: HIIT and END induce different adjustments in MU 

discharge rate despite similar improvements in cardiopulmonary fitness. Moreover, the 

changes induced by HIIT are specific for high-threshold motor units. For the first time we 

show that HIIT and END induce specific neuromuscular adaptations, possibly related to 

differences in exercise load intensity and training volume.  
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4.3.2. INTRODUCTION 

 

High intensity interval training (HIIT) describes physical exercise that is 

characterized by brief, intermittent bursts of vigorous physical activity, interspersed by 

periods of rest or low-intensity exercise (Gibala et al., 2012). Subjects perform short 

periods of training (from 30 seconds to 1 minute) at intensities from 90% of maximum 

heart rate and above, interspersed with a passive or active rest, achieving a maximum 

exercise volume of 10 to 20 min/session (30-60 min/week). In comparison to traditional 

high-volume endurance training (END), HIIT induces similar changes in a range of 

physiological (e.g., enhanced aerobic metabolism), performance (e.g., faster completion of 

a certain amount of work), and health-related markers (e.g., increased flow-mediated 

dilation) (Burgomaster et al., 2005; Gibala et al., 2006; Rakobowchuk et al., 2008; Little et 

al., 2010), but with a much lower time commitment. Therefore, HIIT is typically offered as 

an alternative to END. However, no study has evaluated the neuromuscular adaptations 

induced by HIIT. Since neuromuscular adaptations to training are highly specific and vary 

according to the training regime (Vila-Cha et al., 2010), differences in neuromuscular 

adaptations to HIIT and END might be expected since the training protocols differ in load 

intensity and exercise volume.  

Recordings of motor units provide a window to the central nervous system, 

allowing analysis of the way in which the central nervous system controls muscle force 

(Farina et al., 2016). In one of the few studies assessing motor unit adaptations following 

training, Vila-Cha et al. (Vila-Cha et al., 2010) observed different changes in low-

threshold motor unit discharge rates (average discharge rate and discharge rate variability) 

between END and strength training. These findings suggested a specific adaptation in 

motor unit discharge rate according to the training regime applied. However, these 

differences could not be assessed for high threshold motor units due to previous technical 

limitations. Indeed, there is a lack of knowledge about changes in discharge rate of high 

threshold motor units (Duchateau et al., 2006), since classic methods for electromyography 

(EMG) signal decomposition are limited to the identification of a few motor units 

concurrently, at low forces (Duchateau & Enoka, 2011). Nonetheless, high-density surface 

electromyography (HDEMG) has recently emerged as an alternative to overcome this 

limitation. The availability of many (tens) observation sites allows for automatic methods 
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of source separation to reliably identify a large number of motor units, for a wide range of 

forces (close to the maximum voluntary contraction, MVC, force) (Farina & Holobar, 

2016; Martinez-Valdes et al., 2016b; Negro et al., 2016). Moreover, several observation 

channels can be used to track the same motor units across different sessions, therefore 

allowing longitudinal studies of the same motor units in humans over long periods of time 

(weeks) (Martinez-Valdes et al., 2016c). This achievement has opened new possibilities to 

study the neuromuscular adaptions to training. 

The purpose of the study was to evaluate, for the first time, changes in muscle 

activity and motor unit properties (discharge rate, discharge rate variability and recruitment 

threshold) of synergistic knee extensor muscles, following short-term low-volume HIIT 

and high-volume END training interventions, utilizing a novel technique of HDEMG 

motor unit tracking. It was hypothesized that, despite similar increases in cardiorespiratory 

fitness parameters (e.g., peak oxygen uptake, VO2peak (McKay et al., 2009)), these two 

training protocols will induce different changes in motor output (maximal strength, rate of 

torque development, time to task failure) that will be related to different adjustments in 

motor unit discharge rates. Moreover, we hypothesized that these adjustments will vary 

across the motor unit pool, with low-threshold motor units showing different changes 

compared to high threshold motor units, given the differences in load intensity and training 

volume between the two types of training. 

 

4.3.3. METHODS 

 

4.3.3.1. Participants 

Eighteen healthy men (mean (SD) age: 29 (3) years, height: 178 (6) cm, mass: 79 

(9) kg) participated. All subjects were physically active and took part in some form of 

recreational exercise at least two to three times per week (e.g. soccer, running, etc.). None 

of the subjects were engaged in regular training for a particular sporting event or 

competition. Exclusion criteria included any neuromuscular disorder as well as any current 

or previous history of knee pain and age < 18 or > 35 years. Participants were asked to 

avoid any strenuous activity 24 h prior to the measurements. Nine subjects were randomly 

assigned to a HIIT group and the other nine were assigned to an END group. A control 
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group was not implemented since we previously reported no changes in motor output and 

vasti muscles motor unit behavior, in control subjects measured in the space of two weeks 

(Martinez-Valdes et al., 2016b). The ethics committee of the Universität Potsdam 

approved the study (approval number 26/2015), in accordance with the declaration of 

Helsinki (2004). All participants gave written, informed consent. 

4.3.3.2. Experimental protocol 

The experimental protocol consisted of baseline measurements (i.e., isometric knee 

extension torque, EMG recordings, peak oxygen uptake (VO2peak) determination), a 2-week 

intervention of END or HIIT training and post-training measurements. 

Baseline measurements (Torque and EMG measurements). The participant was 

seated in an isokinetic dynamometer (CON-TREX MJ, PHYSIOMED, Regensdorf, 

Switzerland), with the trunk reclined to 15° in an adjustable chair while the hip and distal 

thigh were secured to the chair. The rotational axis of the dynamometer was aligned with 

the lateral femoral epicondyle of the dominant leg and the lower leg was secured to the 

dynamometer lever arm above the lateral malleolus. Maximal and submaximal isometric 

knee extensions were exerted with the knee flexed to 90°. After placement of the surface 

electrodes (as described in Data acquisition below), subjects performed three maximal 

voluntary contractions (MVC) of knee extension each over a period of 5 s. These trials 

were separated by 2 min of rest. The highest MVC value was used as a reference for the 

definition of the submaximal torque levels. Five minutes of rest were provided after the 

MVC measurement. In each of the baseline and post-intervention sessions, the submaximal 

torques were expressed as a percent of the MVC measured during the same session. After 

the MVCs, the participants performed three maximal-ballistic isometric contractions, each 

separated by 30 s of rest. They were encouraged to exert their maximal torque as fast as 

possible in response to a visual signal shown on a computer monitor. Then, after 5 minutes 

of rest, and following a few familiarization trials at low torque levels (10 and 30% MVC), 

subjects performed submaximal isometric knee extension contractions at 10, 30, 50 and 

70% MVC in a randomized order. The contractions at 10-30% were sustained for 20 s, 

while the contractions at 50 and 70% MVC lasted 15 and 10 s respectively. In each trial, 

the subjects received visual feedback of the torque applied by the leg to the dynamometer, 

which was displayed as a trapezoid (5 s ramps with hold-phase durations as specified 
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above). Each contraction level was performed twice per session and 2 minutes of rest were 

allowed after each contraction. The randomization order of these contractions was kept the 

same for each subject in the pre and post intervention sessions, to minimize the possible 

influence of cumulative fatigue in the results of the motor unit data when studying the 

training-induced adaptations. Finally, the subjects performed a further isometric knee 

extension contraction at 30% MVC, maintaining the torque level for as long as possible. 

Time to task failure was defined as the time instant when the subject exerted a force 10% 

MVC below the target force for an interval of time of 2 s (Castronovo et al., 2015).  

Then, 24 h after these measurements, the subjects returned to the laboratory to 

perform an incremental test to exhaustion on an electronically braked cycle ergometer 

(Lode Excalibur Sport V2.0, Groningen, the Netherlands). VO2peak and the submaximal 

ventilation thresholds were determined using a gas analysis system (ZAN 600, Nspire 

Health, Oberthulba, Germany), which was calibrated before each test with known values of 

oxygen (O2), carbon dioxide (CO2), and volume. Following a 3-min warm-up at 30 W, the 

test began with the workload increasing by 6 W every 12 s until volitional exhaustion. The 

revolutions per minute were maintained between 80 and 90 throughout the incremental test 

and training sessions. The value used for VO2peak corresponded to the highest value 

achieved over a 30 s collection period. Peak power output was defined as the maximal 

power (W) achieved at the end of the ramp VO2peak cycle-ergometer test. Finally, the first 

ventilatory threshold (VT1) was identified by the ventilatory equivalent method, where 

VT1 corresponded to the power output and VO2 value at which the ventilatory equivalent 

for O2 (VE/VO2) exhibited a systematic increase without a concomitant increase in the 

ventilatory equivalent for CO2 (VE/VCO2) (WASSERMAN, 2012). The respiratory 

compensation point (VT2) was identified by using the criterion of an increase in both 

VE/VO2 and VE/VCO2 and by using the first decrease in the end-tidal pressure of CO2 

(PETCO2) as a confirmatory indicator (Wasserman, 2012). 

Training Protocols. The training interventions were performed using two protocols 

that have shown similar improvements in cardio-respiratory fitness (VO2peak) and aerobic 

capacity, despite differences in total training volume and intensity (Gibala et al., 2006; 

Little et al., 2010). The training protocol commenced approximately 72 h after the 

incremental test and consisted of six training sessions over 14 days. Each session was 
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performed on Mondays, Wednesdays, and Fridays. An investigator of the study (E.M-V) 

supervised all training sessions. For the END group, training consisted of 90-120 min of 

continuous cycling at 65% of VO2peak using a protocol described previously (Gibala et al., 

2006). The duration of exercise increased from 90 min during sessions 1 and 2 to 105 min 

during sessions 3 and 4, and finally to 120 min during sessions 5 and 6. For the HIIT 

group, training consisted of 60 s bouts of high-intensity cycling at 100% peak power 

output as described previously (Little et al., 2010). These bouts were interspersed by 75 s 

of cycling at 30 W for recovery (Little et al., 2010). Participants completed 8 high-

intensity intervals during sessions 1 and 2, 10 intervals during sessions 3 and 4, and 12 

intervals on the final two sessions. A warm-up period of 3 min at 30 W was performed 

each session prior to training.  

In summary, the HIIT group performed the exercise at an intensity of ~335 W, with a total 

training commitment of 8-12 min per session (18-27 min including recovery). The total 

training commitment for HIIT over the two weeks was 60 min (135 min including 

recovery), reaching a total exercise volume of ~1205 kJ (~1375 kJ including recovery). In 

contrast, the END group performed the exercise at an intensity of ~165 W, with a total 

training commitment of 90-120 min per session. The total training commitment for END 

over the two weeks was 630 min, achieving a total exercise volume of ~6250 kJ. 

Post-training measurements. The post-training sessions (torque, EMG recordings and 

incremental test) were identical to the baseline-testing procedures and were performed 

approximately 72 h post training. 

4.3.3.3. Data Acquisition 

EMG signals were acquired from the vastus medialis (VM), vastus lateralis (VL) 

and biceps femoris (BF) muscles during maximal and submaximal isometric contractions 

as described above. For the VM and VL, surface EMG signals were recorded in monopolar 

derivation with a two-dimensional (2D) adhesive grid (SPES Medica, Salerno, Italy) of 13 

× 5 equally spaced electrodes (each of 1 mm diameter, with an inter-electrode distance of 8 

mm), with one electrode absent from the upper right corner. The electrode grids were 

positioned as described previously (Laine et al., 2015; Martinez-Valdes et al., 2016b). 

EMG signals were initially recorded during a brief voluntary contraction during which a 

linear non-adhesive electrode array was moved over the skin to detect the location of the 
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innervation zone and tendon regions (Martinez-Valdes et al., 2016a). After skin 

preparation (shaving, abrasion and water), the electrode cavities of the grids were filled 

with conductive paste (SPES Medica, Salerno, Italy) and the grids positioned between the 

proximal and distal tendons of the VL and VM muscles with the electrode columns 

(comprising 13 electrodes) oriented along the muscle fibers. Reference electrodes were 

positioned over the malleoli and patella of the dominant leg. Signals from the BF were 

recorded in bipolar mode with Ag-AgCl electrodes (Ambu Neuroline 720, Ballerup, 

Denmark; conductive area 28 mm
2
) and were positioned according to guidelines (Barbero 

et al., 2012). The location of the electrodes was marked on the skin of the participants 

using a surgical pen (subjects were instructed to re-mark the electrode zone daily). Also, 

the position of the electrodes was further reported on a transparent sheet by using 

anatomical landmarks. These procedures allowed a similar electrode positioning across 

sessions. 

Torque and EMG signals were sampled at 2048 Hz, converted to digital data by a 12-bit 

analogue to digital converter (EMG-USB 2, 256-channel EMG amplifier, OT 

Bioelettronica, Torino, Italy, 3dB, bandwidth 10-500 Hz).  EMG signals were amplified by 

a factor of 2000, 1000, 500, 500 and 500 for the 10, 30, 50, 70 and 100% MVC 

contractions, respectively. Data were stored on a computer hard disk and analyzed in 

Matlab offline (The Mathworks Inc., Natick, Massachusetts, USA). Finally, before 

decomposition, the 64-monopolar EMG channels were re-referenced offline to form 59 bi-

polar channels using the difference between the adjacent electrodes in the direction of the 

muscle fibers. 

4.3.3.4. Signal analysis 

Torque. The torque signal was low-pass filtered offline at 15 Hz. The coefficient of 

variation (CoV) of torque (SD torque/mean torque) was calculated from the stable-torque 

region during the submaximal contractions. Rate of torque development (RTD) was 

calculated from the ballistic contractions as the maximum slope of the torque-time curve 

(∆torque/∆time) as presented previously (Vila-Cha et al., 2010). Briefly, for RTD 

calculation, the torque signal that was originally sampled at 2048 Hz was low pass filtered 

at 15 Hz and then resampled at 30 Hz, the peak slope was detected from the derivative of 

this torque signal. The onset of torque during the ballistic contractions was defined as the 
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time instant when torque exceeded 7.5 Nm (Aagaard et al., 2002).  

Interference EMG. The average rectified values (ARV) obtained from submaximal, 

maximal and explosive contractions, were averaged over all channels of the electrode grid 

to increase its repeatability between pre-post intervention trials (Gallina et al., 2016). 

During the submaximal isometric contractions, the ARV was computed from the HDEMG 

and bipolar (for BF) signals in intervals of 1 s. These values were extracted from the 

stable-torque region of the contractions (e.g., hold-phase of 20 seconds at 30% MVC). 

ARVs of the maximal (MVC) contractions were analyzed in a time window of 250 ms 

centered at the peak EMG activity. During the explosive contractions, ARV was calculated 

in a 50 ms interval centered at the time instant of the maximal slope in torque (Vila-Cha et 

al., 2010). Finally, co-activation was quantified as the average of VM and VL ARV 

divided by the BF ARV (33). 

Motor unit analysis. The EMG signals recorded during the submaximal isometric 

contractions (from 10 to 70% MVC) were decomposed offline with a method that has been 

extensively validated (Negro et al., 2016). The signals were decomposed throughout the 

whole duration of the submaximal contractions and the discharge times of the identified 

motor units were converted in binary spike trains (Martinez-Valdes et al., 2016b). The 

mean discharge rate and discharge rate variability (coefficient of variation of the inter-

spike-interval, CoVisi, see below for details), were calculated during the stable plateau 

torque region. Recruitment thresholds for each motor unit were defined as the knee 

extension torque (Nm) at the times when the motor unit began discharging action 

potentials. Discharge times that were separated from the next by > 200 ms were excluded 

from the estimation of recruitment thresholds to avoid aligning the thresholds with noise-

generated discharges. Only motor units with a coefficient of variation for the inter-spike 

interval (CoVisi) <30% which satisfied the constrains described in (Negro et al., 2016), 

during the stable torque portion of the contraction were considered for further analysis. 

Finally, discharges that were separated from the next by <33.3 ms or >200 ms (30 and 5 

Hz, respectively) were excluded from the mean discharge rate and CoVisi estimates because 

these discharges are likely due to decomposition errors (Martinez-Valdes et al., 2016b). A 

representative schematic summarizing the HDEMG recordings and motor unit 

decomposition procedures can be found in Figure 11. 
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Motor unit tracking. A motor unit tracking procedure was applied using a method 

that has been recently presented (Martinez-Valdes et al., 2016c). The motor unit 

identification and tracking method is an extension of the convolutive blind source 

separation technique described by Negro et al. (Negro et al., 2016) and it was adapted to 

extract motor units with multi-channel action potential shapes maximally similar across 

sessions. After the full blind HDEMG decomposition was performed on the baseline 

recording session, we applied a semi-blind separation procedure on the post-training 

session, focusing on finding only the sources that had de-whitened projection vectors 

(original multichannel filters or motor unit action potential profiles) similar to the ones 

extracted from session 1. The normalized cross-correlation between the extended 

projection vectors was used as a measure of similarity. For each motor unit identified in the 

pre-intervention trial, we ran the semi-blind algorithm on the post-intervention trial until a 

motor unit with normalized cross-correlation >0.8 was found. The algorithm maximized 

the probability to find the matched motor units across different trials (Martinez-Valdes et 

al., 2016c). In this study, we used an extension factor of 16 for the decomposition iteration 

and 50 samples for computing the similarity measures between de-whitened projection 

vectors (motor unit action potential profiles). These parameters have been validated in 

(Martinez-Valdes et al., 2016c).  
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Figure 11. Schematic summarizing high density surface EMG (HDEMG) recordings and motor unit 

decomposition. A) Two HDEMG electrodes (64 channels each) were positioned over the vastus medialis and 

vastus lateralis muscles. HDEMG activity was recorded during the production of isometric knee extension 

force. On the upper right corner of the figure, EMG activity from 1 column of the vastus medialis HDEMG 

electrode (11channels) is shown. HDEMG data was then decomposed to reveal the firings of 5 individual 

motor units, which are represented as innervation pulse trains (horizontal bars). The firings from motor unit 

number 1 were used to trigger surface EMG signals that are presented as motor unit action potentials 

(MUAPs) across the whole electrode grid (49 double differential channels). 

 

4.3.3.5. Statistical Analysis 

Before comparisons, all variables were tested for normality using the Shapiro-Wilk 

test. The assumption of sphericity was checked by Mauchley’s test and, if violated, the 

Greenhouse-Geisser correction was made to the degrees of freedom. Statistical 

significance was set at p < 0.05. Results are expressed as mean and standard deviation 

(SD) unless stated otherwise.  

The effects of the two training programs on peak torque (MVC), RTD, time to task 

failure, CoV of torque and co-activation, as well as cardiopulmonary fitness parameters 

(VO2peak, peak power output, VT1 and VT2) were assessed with a two-way repeated 

measures analysis of variance (ANOVA) with factors group (END and HIIT) and time (pre 

and post). Changes in ARV parameters during MVC, RTD and the submaximal 

contractions as well as mean discharge rate and CoVisi, were evaluated with three-way 

repeated measures ANOVA with factors group (END and HIIT), time (pre and post) and 
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muscle (VM and VL) at each torque level (10, 30, 50 and 70% MVC) independently. 

Pairwise comparisons were made with the Student-Newman-Keuls post hoc test when 

ANOVA was significant. A four-way repeated measures ANOVA was performed 

[(factors: group, time, muscle and torque level (10, 30, 50, 70% MVC)] to check whether 

the recruitment thresholds (knee extension torque at which motor units began discharging 

action potentials) of the identified motor units, at each submaximal MVC level, increased 

with torque and also to evaluate if this parameter changed after the intervention. The intra-

class correlation coefficient (ICC2,1) was also computed in each of the groups (HIIT and 

END) at all submaximal torque levels, in order to check the consistency of the recruitment 

thresholds from the motor units tracked between pre and post training sessions. Finally, the 

partial eta-squared (ηp²) for ANOVA was used to examine the effect size of changes in all 

the aforementioned parameters after the training intervention. A ηp² less than 0.06 was 

classified as “small”, 0.07-0.14 as “moderate”, and greater than 0.14 as “large” (Cohen, 

1988). 

 

4.3.4. RESULTS 

 

The two groups initially consisted of 9 subjects each; however, 1 subject from the 

END group and 1 subject from the HIIT group did not complete the full training protocol 

and were excluded from the analysis. Therefore, results are presented for 8 participants in 

the END group (mean (SD) age: 29 (2) years, height: 177 (6) cm, mass: 77 (8) kg) and 8 

participants in the HIIT group (mean (SD) age: 29 (3) years, height: 177 (7) cm, mass: 79 

(7) kg). No differences were observed between groups for age, height and weight (P > 

0.51). Moreover, there were no differences between the groups for any of the motor output 

(peak torque, time to task failure, rate of torque development and CoV of torque), 

cardiopulmonary fitness (VO2peak, peak power output and submaximal ventilation 

thresholds) or electrophysiological (surface EMG amplitude, vasti-BF co-activation, motor 

unit discharge rate, CoVisi and recruitment threshold) parameters assessed during the 

baseline sessions (prior to training) (P > 0.32 in all cases).  
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4.3.4.1. Cardiorespiratory fitness 

Table 10 summarizes cardiorespiratory fitness changes assessed pre and post 

intervention for the HIIT and END protocols. Overall, all the variables changed similarly 

in both groups and none of the parameters showed a between-group interaction effect (P > 

0.56). VO2peak increased after training by 6.7 (4.1)% and 5.0 (7.8)% in HIIT and END 

group, respectively (main effect for time; p=0.001, ηp²= 0.54). Peak power output also 

increased by 7.4 (3.3)% in HIIT and by 6.3 (3.0)% in END (main effect for time; p<0.001, 

ηp²= 0.88). Regarding the submaximal ventilation thresholds, HIIT and END training only 

induced a significant increase of VT2 work intensity (W) of 9.1 (8.3)% and 9.0 (8.2)% in 

HIIT and END, respectively (main effect for time; p<0.001, ηp²= 0.58). Further results for 

the cardiorespiratory fitness parameters and post-hoc tests can be found in Table 10 

 

Table 10. Training response for aerobic parameters assessed during incremental cycling in the HIIT and END training 

groups 

 HIIT END 

Parameter Pre Post P-value Pre Post P-value 

VO2peak (ml/kg/min) 44.2 (7.1) 47.5 (8.0)*           0.02 44.9 (6.3) 47.2 (4.9)* 0.03 

Peak power output (W) 334.8 (57.8) 360.3 (53.1)* <0.001 339.6 (62.5) 361.5 (58.3)* <0.001 

VT1 (ml/kg/min) 28.0 (6.9) 32.5 (7.8) 0.14 28.7 (6.6) 32.0 (4.9) 0.17 

VT1 (W) 198.5 (38.9) 222.4 (43.6) 0.07 196.8 (40.5) 227.5 (36.3) 0.05 

VT 2 (ml/kg/min) 38.0 (6.0) 41.2 (6.8) 0.07 38.4 (6.9) 41.4 (5.9) 0.10 

VT2 (W) 267.8 (39.3) 295.0 (35.4)* 0.03 269.3 (53.3) 294.0 (41.4)* 0.01 

Values are means (SD). VT1, first ventilatory threshold; VT2, second ventilatory threshold or respiratory compensation 

point. Pre, pre-training; Post, post-training. There were no significant differences for any variable between HIIT and END 

(no interaction effects P>0.05).*Significant difference from Pre (P<0.05), according to post hoc analysis (Student-

Newman-Keuls test). 

 

4.3.4.2. Motor output 

HIIT and END training induced specific changes in motor performance after the 

intervention (Fig. 12). Two weeks of HIIT produced a significant increase in peak torque 

(MVC) of 6.7 (6.6)% that contrasted to the response of END, which showed similar peak 

torques across pre and post testing sessions (interaction: time × group; p=0.01, ηp²= 0.38).  

On the contrary, END showed a significant increase in time to task failure of 16.9% (14.4) 
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that contrasted to the response of HIIT, which showed similar times to task failure across 

testing sessions (interaction: time x group; p=0.01, ηp²= 0.33). Neither HIIT nor END 

induced any significant change in RTD (interaction: time × group; p=0.09, ηp²= 0.087). 

Finally, CoV of torque increased significantly from 2.2 (0.4)% to 2.5 (0.6)% after training 

for the submaximal contractions at 10% MVC in the HIIT group (interaction: time × 

group; p=0.033, ηp²= 0.28) (Fig. 12). Conversely, CoV of torque at the other force levels 

(30, 50 and 70% MVC) showed no significant changes after the intervention for either 

group (P > 0.25) (Fig. 13). 

 

Figure 12. Results show changes [mean (SD)] in motor performance across the 2-wk training intervention. 

A: peak torque assessed during isometric maximal voluntary contractions (MVC). B: time to task failure 

assessed during sustained isometric contractions at 30% MVC. C: rate of force development during maximal 

explosive contractions (maximum slope). Bars represent the mean of each group. *P<0.05.  

 

 
Figure 13. Values are means (SD) of the coefficient of variation of torque (CoV torque) at 10, 30, 50 and 

70% of the maximum voluntary contraction (MVC). A: CoV force values for the high intensity interval-

training group (HIIT). B: CoV force values for the endurance (END) group. *P<0.05. 
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4.3.4.3. Surface EMG 

Figure 14 shows the EMG amplitude (ARV) of the VM and VL during 

submaximal (10, 30, 50 and 70% MVC), maximal (MVC) and ballistic isometric knee 

extension contractions for each testing session (pre-post). Overall, both vasti muscles 

showed similar changes of EMG amplitude over the training period (interaction: time × 

muscle; P > 0.15 for all isometric contractions). Regarding submaximal contractions (Fig. 

14a and 14b), EMG amplitude at 10 and 30% MVC did not change after the intervention 

for any training group or muscle (VM, VL) (P > 0.14). However, the ARV of VM and VL 

during the 50% MVC contractions increased significantly for HIIT [11.4 (7.6)% and 11.3 

(5.2)% increase in VM and VL, respectively] but not for END (interaction: time × group; 

P=0.007, ηp²= 0.44). These differences were maintained at 70% MVC (interaction: time × 

group; P=0.02, ηp²= 0.35), where ARV from the HIIT group increased by 13.0 (10.9)% and 

14.1 (10.6)% in VM and VL, respectively. A similar result was observed for ARV during 

the maximal contractions (Fig. 14c), since VM and VL activity only increased in the HIIT 

group by 17.3 (12.6)% and 14.1 (10.2)%, respectively (interaction: time × group; P=0.001, 

ηp²= 0.55). Neither HIIT nor END training induced any significant change in ARV during 

the ballistic contractions (Fig. 14d) (P > 0.16). Finally, the amount of vasti-BF co-

activation did not differ across sessions in either group (P > 0.50 for all isometric 

contractions). 

 

 

Figure 14. Values are means (SE) for the average rectified value (ARV) of the vastus medialis (VM) and 

vastus lateralis (VL) obtained during submaximal [10, 30, 50 and 70% of the maximum voluntary contraction 

(MVC)], maximal (MVC) and explosive isometric knee extension contractions before and after training (pre-

post). A: high intensity interval training (HIIT) submaximal ARVs. B: endurance (END) training 

submaximal ARVs. C: ARV values during MVC for HIIT and END. D: ARV values during explosive 

contractions for HIIT and END. ARV was assessed during a time interval of 50 ms centered at the time 

instant of the maximum slope. *P<0.05.     
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4.3.4.4. Motor unit decomposition and tracking  

The total number of decomposed motor units across the different torque levels and 

sessions was between [mean (range)] 134 (116 - 154) and 122 (95 – 141) for VM and VL, 

respectively. An example of the motor unit tracking procedure is reported in Figure 15. 

Figure 14a shows three motor units of the VM muscle that were identified at 70% MVC 

can be seen in the upper left corner. A de-whitened projection vector (motor unit action 

potential profile) from motor unit 1 (MU 1 PRE, blue) was extracted. This vector was then 

used to find a source that was maximally similar after the intervention (MU 1 POST, red). 

Finally, both projection vectors were visually inspected and matched by cross-correlation 

in order to confirm that the automatic tracking was correct (cross correlation between both 

projected vectors was 0.86, Figure 15a, right). This procedure was then repeated for motor 

units 2 and 3 (not shown in the figure). Figure 15b shows instantaneous discharge rates 

during the stable force part of the isometric contraction at 70% MVC (motor unit firings 

were low-pass filtered at 2 Hz) from the same 3 tracked motor units presented in Figure 

15a PRE (left) and POST (right) HIIT. A clear increase from 19.0 (1.7) to 22.0 (2.1) pps 

was observed for these units after the intervention (see Motor unit properties results). 

Following this procedure, the number of tracked motor units across pre and post 

intervention testing sessions varied between 60 (46 - 69) and 50 (33 - 74) for VM and VL, 

respectively (across all submaximal force levels, in all 16 subjects). Therefore, 44.8 (39.5 – 

50.9)% and 41.0 (33.7 – 49.7)% of motor units from those identified by decomposition 

could be tracked across sessions (average number of tracked motor units per subject was 4 

(1) and 3 (1), for the VM and VL, respectively). The cross correlation values from the 

projecting vectors of the tracked motor units (from VM and VL) ranged between 0.80 and 

0.96 (average: 0.86).  

 

4.3.4.5. Motor unit properties  

Figure 16 depicts the mean motor unit discharge rate for the VM and VL during 

the submaximal contractions at 10, 30, 50 and 70% MVC. No differences in the mean 

motor unit discharge rate were observed between the VM and VL in each testing session 

(interaction: time × muscle; P > 0.30 for all submaximal contractions). However, VM 

showed significantly greater mean motor unit discharge rates at 50 and 70% MVC (effect: 
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muscle; P=0.006, ηp²= 0.45 and P=0.016, ηp²= 0.37, at 50 and 70% MVC, respectively). 

For the contractions at 10 and 30% MVC (low threshold motor units, Fig. 16a), the average 

discharge rate for both vasti muscles was not influenced by either training (interaction: 

time × group; P=0.30 and 0.1, at 10 and 30% MVC, respectively). However, at both 50 and 

70% MVC (high threshold motor units, Fig. 16b) the VM and VL increased their discharge 

rates (by 8.5 (9.0) and 9.5 (7.1)% at 50% MVC and by 12.1 (7.6) and 9.5 (6.6)% at 70% 

MVC in VM and VL, respectively) in the HIIT group but not in the END group 

(interaction: time × group; P=0.036, ηp²= 0.29 and P=0.015, ηp²= 0.38, at 50 and 70% 

MVC, respectively). The recruitment thresholds of the identified motor units increased 

with torque (effect: torque; P<0.001, ηp²= 0.88), similarly for both muscles (interaction: 

torque x muscle; P=0.2, ηp²= 0.12) and did not change after the intervention (interaction: 

time x group x torque; P=0.16, ηp²= 0.14). These results are confirmed by the high ICCs 

found for the recruitment thresholds pre and post intervention at all force levels (average 

ICCs of 0.90 and 0.95 for HIIT and END, respectively) (Fig. 17). Finally, neither training 

induced change in CoVisi (Table 11).     
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Figure 15. Procedure for motor unit tracking from one representative subject in the HIIT group. A) Three 

vastus medialis (VM) motor unit spike trains decomposed with convolutive blind source separation at 70% of 

the maximum voluntary contraction (MVC) before (PRE) the intervention can be seen in the left half of the 

figure. A de-whitened projection vector (motor unit action potential shapes across the electrode grid in 59 

single differential channels) from the first motor unit is shown in blue. Semi-blind source separation was 

applied after the intervention to extract the source that was maximally similar to the projecting vector of 

motor unit one (center half of the figure, red). Finally, these two projecting vectors were compared by cross-

correlation (right half of the figure), and were regarded as the same motor unit since they had a cross 

correlation of 86%. This procedure was repeated for motor units 2 and 3 (not shown). B) Instantaneous firing 

rates (motor unit firings were low pass filtered at 2Hz) from the same three motor units presented in A, 

during the stable force region before (PRE, left half of the figure) and after (POST, right half of the figure) 

the intervention. Note the increase in firing rates from 19 (1.7) pulses per second (pps) to 22.0 (2.1) pps.  
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Figure 16. Values are means (SE) for motor unit discharge rates (in pulses per second, PPS) of the vastus 

medialis (VM) and vastus lateralis (VL) obtained during submaximal [10, 30, 50 and 70% of the maximum 

voluntary contraction (MVC)] contractions. A: Low threshold motor units discharge rate results (10 and 30% 

MVC) of endurance (END) and high intensity interval training (HIIT). B: High threshold motor unit 

discharge rate results (50 and 70% MVC) of END and HIIT. *P<0.05.    

 

 

 

 

 

Figure 17. Motor unit recruitment threshold individual values (whiskers represent the 95% confidence 

interval) for vastus medialis (VM) and vastus lateralis (VL), before (PRE, filled circles) and after (POST, 

open circles) high intensity interval training (HIIT) and endurance training (END) at all force levels (10, 30, 

50 and 70% MVC).   
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Table 11. Coefficient of variation for inter-spike interval (CoVisi)% for motor units identified for each group, muscle, 

load and session 

 
HIIT END 

 
PRE POST PRE POST 

Torque 

level 

%MVC 

VM VL VM VL VM VL VM VL 

10% 16.8 (1.4) 17.7 (2.9) 16.9 (3.7) 18.9 (5.8) 18.8 (1.9) 15.9 (3.4) 18.6 (3.4) 16.2 (4.5) 

30% 20.5 (4.1) 24.4 (5.5) 21.2 (2.6) 23.0 (5.2) 24.4 (5.5) 23.2 (6.1) 22.9 (5.3) 24.2 (7.7) 

50% 25.4 (3.6) 27.1 (6.9) 26.3 (4.2) 28.2 (4.4) 26.5 (4.5) 21.5 (5.2) 26.5 (3.6) 22.8 (6.6) 

70% 28.3 (7.3) 29.0 (4.2) 27.3 (5.2) 29.8 (3.2) 27.4 (4.8) 27.5 (4.8) 27.2 (4.2) 26.1 (6.8) 

Coefficient of variation for the inter-spike interval (CoVisi) of motor units from each group, muscle [vastus medialis 

(VM) and vastus lateralis (VL)], force level [10, 30, 50 and 70% of the maximum voluntary contraction (MVC)], and 

session (pre and post).   

 

4.3.5. DISCUSSION 

 

This is the first study to show that HIIT and END training elicit distinct adjustments 

in motor output and motor unit behavior despite similar changes in cardio-respiratory 

fitness. HIIT determined an increase in MVC peak torque, with an increase in EMG 

amplitude and motor unit discharge rate at the highest force levels (from 50% MVC and 

above). Conversely, END induced an increase in time to task failure for a sustained 

contraction at 30% MVC and no changes in isometric knee extension strength or motor 

unit discharge rate. Taken together, these findings suggest that HIIT and END induce 

specific neuromuscular adaptations, which likely relate to their differences in exercise 

intensity and training volume. 

4.3.5.1. Training protocols and motor output 

 Previous studies have reported that HIIT can be used as an alternative to endurance 

training. Studies comparing short-term low-volume HIIT and high-volume END have 

found similar physiological adaptations in aerobic metabolism (Gibala et al., 2006; Little et 

al., 2010), exercise performance (Gibala et al., 2006; McKay et al., 2009) and 

cardiorespiratory fitness (McKay et al., 2009; Gibala et al., 2012), despite large differences 

in exercise volume and exercise intensity. Therefore, we used previously validated 

protocols that differed in both time commitment and intensity, but were known to induce 

similar metabolic and cardiorespiratory fitness adaptations (Gibala et al., 2006; Little et al., 
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2010). These protocols were selected in order to verify whether similar adaptations were 

also observed at the neuromuscular level, despite the divergent nature of both training 

regimes (HIIT: low-volume, high-load vs. END: high-volume, low-load). As expected, the 

two trainings resulted in a similar increase in VO2peak, peak power output and submaximal 

ventilation thresholds (Table 10), in agreement with previous reports (McKay et al., 2009; 

Gibala et al., 2012). However, HIIT and END induced different changes in motor 

performance that can be related to their different training characteristics. Currently there 

are no other studies that have detailed changes in neuromuscular performance following 

HIIT. In the only study that examined changes in muscle function, the authors did not 

observe changes in isometric knee extension strength after a 4-week HIIT intervention (de 

Oliveira et al., 2015), in contrast with our results. However, the training consisted of lower 

loads (average peak power output of 236 W vs. 335 W, in the current study). Moreover, 

peak power output was estimated with a stepwise incremental cycling protocol with 

relatively long steps of 3 min, which is known to underestimate the peak power (Zuniga et 

al., 2012). The current results suggest that HIIT training must be performed at the 

maximum (or supra maximum) power output achieved during an incremental ramp test in 

order to induce a significant increase in knee extensor strength. Indeed, the repetitive 

muscle activity at high loads was presumably responsible for the increase in MVC peak 

torque after HIIT. 

Previous studies have also reported a significant increase in isometric knee 

extension endurance time (time to task failure) during low-level submaximal contractions 

after an END training intervention (Vila-Cha et al., 2010; Vila-Cha et al., 2012). For 

instance, Vila-Cha et al. (Vila-Cha et al., 2010) observed a 30% increase in time to task 

failure after a 6-week END cycling intervention. In the same study, the authors did not find 

any increase in time to task failure following strength training. These results are 

comparable to our findings. Again, these different adaptations are presumably due to the 

differences in training volume and exercise intensity between the two interventions (HIIT: 

short periods of activity at high intensity vs. END: long periods of activity at moderate 

intensity).   

  Even though HIIT was associated with increased MVC peak torque, no change in 

RTD was observed (Fig. 12c). Small to moderate increases in knee extensor strength 
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(approximately 7% in the current study) are not typically associated with increased RTD. 

Both Vila-Cha et al. (Vila-Cha et al., 2010) and Aagaard et al. (Aagaard et al., 2002) only 

observed an increase in RTD after the isometric knee extension strength (following 

resistance training) increased by 18% and 17%, respectively. Nevertheless, it is possible 

that more ballistic HIIT protocols, such as the Wingate-based sprint interval training, may 

induce changes in RTD. 

4.3.5.2. Maximal and submaximal contractions and global EMG parameters 

Changes of VM and VL EMG amplitude showed similar behavior in the HIIT and 

END groups at the lowest torque levels (10 and 30% MVC), where no significant change 

in EMG amplitude was observed. However, only HIIT showed a significant increase in 

EMG amplitude for both vasti muscles in contractions at 50, 70 and 100% MVC (Fig. 14). 

Previous studies have documented that both increases in muscle cross sectional area and 

neural factors are responsible for increases in maximal muscle strength (Duchateau et al., 

2006). Since changes in muscle-fiber architecture have not been documented after only 

two weeks of training, the surface EMG results in the current study strongly suggest that 

the observed changes in maximal isometric muscle torque after HIIT are mainly of neural 

origin. Increased agonist muscle activation and decreased antagonist activation have been 

suggested as important factors influencing increases in muscle strength (Duchateau et al., 

2006). However, we did not identify changes in vasti/BF co-activation (at all torque 

levels). Therefore, the increased maximal torque was presumably due to factors that also 

influenced the EMG-torque relation in the agonist, such as changes in motor unit discharge 

rates or peripheral factors (e.g., muscle fiber conduction velocity), as also shown in a 

recent study (Vila-Cha et al., 2010). These early adaptations likely involve changes in 

supraspinal excitability, spinal pathways or changes in the membrane properties in the 

motoneurons (Duchateau et al., 2006). Nevertheless, the exact nature of these early neural 

adaptations is not yet known (Duchateau et al., 2006). Regarding the submaximal 

contractions, the observed changes in surface EMG amplitude in HIIT were markedly 

greater among the highest contraction levels (Fig. 14a), which ultimately suggest a 

preferential change in the discharge rates of high threshold motor units (see Submaximal 

contractions and motor unit properties). Indeed, it is likely that the high loads placed on 

the subjects during HIIT increased the activity of these units. In support of this 
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observation, Vila-Cha et al. (Vila-Cha et al., 2010) previously reported an increase in 

EMG amplitude at 30 and 100% MVC, but not at 10% MVC, after 3 weeks of resistance 

training. However, this earlier work also showed an increase of EMG amplitude at 10 and 

30% MVC after 3 weeks of END training. Since a decrease in motor unit discharge rate 

was simultaneously observed after END training, this result was interpreted as an increase 

of motor unit recruitment at these force levels, although EMG amplitude depends on 

multiple influencing factors (Farina et al., 2004, 2014). In this study, we attempted to limit 

the variability in EMG amplitude estimates by averaging across all electrodes of the grid 

(Gallina et al., 2016; Martinez-Valdes et al., 2016b). 

4.3.5.3. Submaximal contractions and motor unit properties 

In accordance with the surface EMG results, the HIIT and END groups showed 

similar motor unit discharge rates pre-and post-training for VM and VL at 10 and 30% 

MVC. However, only HIIT induced an increase in motor unit discharge rate at 50 and 70% 

MVC, which is also in agreement with surface EMG results (Fig. 16). Together, these 

findings suggest that changes in motor unit discharge rate are not only specific to the 

training protocol, but also to the size (Henneman et al., 1965) and threshold of the motor 

units recruited during the exercise. Indeed, the main differences between HIIT and END 

are the volume of training and the loads at which the subjects perform the exercise. Even 

though we did not measure motor unit recruitment during cycling (this is not technically 

possible), the HIIT protocol, that involved short exercise bouts at the maximal power 

output, likely required the recruitment of most motor units (Vollestad & Blom, 1985; 

Krustrup et al., 2004) whereas the END training, that was performed at a much lower load, 

likely involved lower threshold units with greater aerobic capacity (Vollestad & Blom, 

1985; Krustrup et al., 2004). In accordance with size-specific adjustments in motor units, 

Kamen and Knight (Kamen & Knight, 2004) previously observed an increase in VL 

discharge rates at 100% MVC, but not at 10 or 50% MVC, after 6 weeks of resistance 

training involving maximal knee-extension isometric contractions. For END, we did not 

find training-induced changes in motor unit discharge rates in the torque range investigated 

(Fig. 16). This observation is in accordance with Mettler et al. (Mettler & Griffin, 2016) 

but contrasts with the results of Vila-Cha et al. (Vila-Cha et al., 2010). However, the latter 

study differed with respect to ours for training intensity (50 to 75% of heart rate reserve vs. 
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65% VO2peak), volume (60 to 150 min/week vs. 285 to 345 min/week) and duration (3 to 6 

weeks vs. two weeks) (Vila-Cha et al., 2010). Collectively, these findings suggest that 

END would lead to either maintained or decreased discharge rates, since MVC torque is 

not expected to change after this type of training (Glowacki et al., 2004). Maintained or 

decreased motor unit discharge rates after END training interventions (at the same relative 

torque level) are thought to be important factors for longer times to task failure during 

submaximal, isometric fatiguing contractions (Vila-Cha et al., 2010; Vila-Cha et al., 2012; 

Mettler & Griffin, 2016).  

The tracking technique applied in this study allowed for the first time to compare 

individual motor unit recruitment thresholds before and after training. The Recruitment 

thresholds of the tracked motor units were similar before and after the intervention for both 

muscles and groups (Fig. 17), suggesting that the observed changes in discharge rate after 

HIIT were mainly due to an increased neural drive to the muscle, and not to changes in 

intrinsic motor neuron properties. Previous studies documenting changes in motor unit 

discharge rates have used unmatched population samples to infer adaptations to a particular 

motor unit pool (Kamen & Knight, 2004; Pucci et al., 2006; Vila-Cha et al., 2010; Stock & 

Thompson, 2014; Mettler & Griffin, 2016). However, these previous approaches are 

limited by the possibility of comparing different motor units, with different recruitment 

thresholds, in the pre and post training sessions. Conversely, we could record and follow 

the same motor units across sessions, providing an accurate interpretation of changes in 

discharge rate and recruitment threshold. Finally, no change in discharge rate variability 

(CoVisi) was observed for any of the groups after the intervention, despite that there was a 

significant increase in CoV of torque for the HIIT group at 10% MVC. A recent study 

showed that 6 weeks of resistance training increases force/torque steadiness (reduction in 

CoV of force/torque) and reduces motor unit discharge rate variability (CoVisi) in 

submaximal contractions at 20 and 30% MVC (Vila-Cha & Falla, 2016). However, an 

increase in force steadiness following resistance training has not been observed in all 

studies (Beck et al., 2011) and the association between enhanced force steadiness and the 

reduction of CoVisi is poor (Negro et al., 2009). Therefore, the increase in CoV of torque at 

10% MVC for the HIIT group in the present study could be related to other factors rather 

than an increase in CoVisi. Although the high loads performed during HIIT might have 
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induced a reduction in the accuracy to maintain the required steadiness at low torque 

levels, torque steadiness remained similar at all torque levels following END training 

despite of the low to moderate loads used for this type of training. Therefore, the 

observations of training-induced changes in torque steadiness require further investigation. 

4.3.5.4. Methodological implications 

In this study, for the very first time, we applied motor unit tracking across sessions 

to study training interventions (Martinez-Valdes et al., 2016a; Negro et al., 2016a). With 

this approach, all differences in motor unit discharge rate between END and HIIT groups 

had a large effect size and showed a clear intervention effect. Previous investigations of 

this type but without motor unit tracking have shown contradicting results (Kamen & 

Knight, 2004; Vila-Cha et al., 2010; Stock & Thompson, 2014; Mettler & Griffin, 2016). 

Some studies have even failed to report an effect in discharge rates despite clear increases 

in muscle strength and surface EMG amplitude (Pucci et al., 2006). We suggest that these 

changes could have been masked because of the low number of identified motor units 

(usually low-threshold) and the un-matched motor units across sessions. Accordingly, we 

have previously shown that the effect size in longitudinal investigations is substantially 

increased with our technique (Martinez-Valdes et al., 2016a; Negro et al., 2016a), which 

opens new possibilities for further research.  

4.3.5.5. Conclusion 

Two weeks of HIIT and END showed similar improvement in cardiorespiratory 

fitness but different adjustments in motor unit behavior. HIIT enhanced maximum torque 

output and was accompanied by an increase in motor unit discharge rate at the highest 

torque levels (50 and 70% MVC). In contrast, END increased the time to task failure, but 

did not influence motor unit discharge rates. These findings reveal that HIIT and END 

induce differential adaptations among low and high threshold motor units. The study also 

shows the first results on training-induced changes in motor unit discharge rate by tracking 

the same individual units before and after training. This methodology may open new 

perspectives in the study of neural adaptations to training.  
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4.4.1. ABSTRACT 

 

Neural control of synergist muscles is not well understood.  Presumably, each muscle in a 

synergistic group receives some unique neural drive and some drive which is also shared in 

common with other muscles in the group.  In this investigation, we sought to characterize 

the strength, frequency spectrum, and force dependence of the neural drive to the human 

vastus lateralis and vastus medialis muscles during the production of isometric knee 

extension forces at 10% and 30% of maximum voluntary effort.  High-density surface 

electromyography (EMG) recordings were decomposed into motor unit action potentials in 

order to examine the neural drive to each muscle.  Motor unit coherence analysis was used 

to characterize the total neural drive to each muscle as well as the drive shared between 

muscles.  Using a novel approach based on partial coherence analysis, we were also able to 

specifically study the neural drive unique to each muscle (not shared).  The results showed 

that the majority of neural drive to the vasti muscles was a cross-muscle drive 

characterized by a force-dependent strength and bandwidth.   Muscle-specific neural drive 

was at low frequencies (< 5 Hz) and relatively weak.  Frequencies of neural drive 

associated with afferent feedback (6-12 Hz) and with descending cortical input (~20 Hz) 

were almost entirely shared by the two muscles, while low frequency (< 5 Hz) drive 

comprised shared (primary) and muscle-specific (secondary) components. This study is the 

first to directly investigate the extent of shared vs. independent control of synergist 

muscles at the motor neuron level. 
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4.4.2. INTRODUCTION 

 
It has long been suspected that actions involving multiple muscles are controlled 

through a simplified set of high-level commands, the fingerprints of which can be observed 

as coordinated activity among muscles, i.e., ‘muscle synergies’ (for reviews see: Tresch 

and Jarc, 2009; Bizzi and Cheung, 2013).  There is an important controversy, however, as 

to whether such activity implies that multiple muscles are controlled together by shared 

neural input, or if it simply reflects the mechanical constraints of a given task (Tresch and 

Jarc, 2009; Kutch and Valero-Cuevas, 2012; Bizzi and Cheung, 2013). In several species, 

stimulation of cutaneous (Tresch et al., 1999), spinal (Giszter et al., 1993; Levine et al., 

2014), or cortical (Graziano et al., 2002; Overduin et al., 2012, 2014) neurons produces 

coordinated muscle activities, strongly suggesting the construction of muscle synergies by 

the nervous system.  However, many questions remain related to the usage of such 

circuitry in man, and in particular, the extent to which muscles of a synergy are driven by 

shared vs. independent inputs.  The most common methods used to characterize muscle 

synergies in man cannot assess the distribution/delivery of neural drive to the activated 

muscles.  

For decades, neuromuscular control signals have been investigated by examining 

correlated activity among motor units (Sears and Stagg, 1976; De Luca et al., 1982; 

Rosenberg et al., 1989; Farmer et al., 1993; Halliday et al., 1995), since this reflects their 

shared (and ‘effective’) neural drive (Farina and Negro, 2014; Farina et al., 2014).  The 

strategy has not generally been applied to the analysis of groups of muscles.  It has been 

exceedingly rare in past studies for both within-muscle and across-muscle motor unit 

correlations to be evaluated during execution of a motor task.  Even with such 

measurements, it is not possible to determine the relative strength/proportion of neural 

drive that is unique to a given muscle vs. shared with other simultaneously activated 

muscles. 

In this study, we have overcome these limitations to investigate a simple synergy.  

Specifically, we investigated two synergist muscles of the quadriceps, the vastus lateralis 

(VL) and vastus medialis (VM), during production of two isometric knee extension forces 

(10% and 30% of maximum voluntary effort).   To comprehensively evaluate within-

muscle and across-muscle neural drive, we used the well-established technique of motor 
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unit coherence analysis (Rosenberg et al., 1989; Farmer et al., 1993; Halliday et al., 1995; 

Amjad et al., 1997),  which describes the frequency spectrum of neural input.  We then 

applied a novel method based on partial coherence analysis to separate the total neural 

drive to each muscle into shared (cross-muscle) and unique (muscle-specific) components, 

as well as evaluate the relative strength of each.    

Our overall hypothesis was that the two vasti muscles would be controlled 

primarily by a shared neural drive, with relatively little unique drive to each muscle.  This 

prediction was motivated by the high degree of synchronized motor unit discharges 

(Mellor and Hodges, 2005) and firing rate fluctuations (Beck et al., 2012) across the two 

vasti muscles, which attain magnitudes similar to what has been reported for within-muscle 

motor unit correlations (De Luca et al., 2008; Beck et al., 2011).      

 The idea that multiple muscles can be controlled mainly through shared input is of 

great importance for understanding ‘muscle synergies’.  Our study represents the first 

direct test (and direct support) of this concept at the level of neural drive in man, for a 

simple task and synergy.  We also present the most comprehensive characterization of 

neural drive to the vasti muscles to date. 

4.4.3. METHODS 
  

All procedures were approved by the Universitaetsmedizin Goettingen (ref # 

24/1/14), and were conducted in accordance with the Declaration of Helsinki.  Written 

consent was obtained from all study participants. Ten healthy adult males (mean (SD) age 

27(4)) participated in the study, all free from musculoskeletal or neurological conditions 

affecting the lower extremities, and all without history of lower limb surgery.   

4.4.3.1. Task 

Participants were seated upright in the chair of a Biodex System 3 (Biodex Medical 

Systems Inc., Shirley, NY, USA), which enabled stable fixation of the torso, right thigh 

and lower leg.  The knee was flexed at an angle of 90 degrees, and isometric knee 

extension force was exerted on a dynamometer fixed to the lower leg just above the lateral 

malleolus.  Knee extension forces were quantified for each individual as a percentage of 

their maximum voluntary contraction (%MVC) level, established at the beginning of each 

recording session.   During each recording session, the participants used visual feedback of 
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their exerted force (displayed on a computer screen) to maintain 20s contractions at 10% or 

30 % MVC.  Three contractions at each force level were accomplished per session, 

separated by at least 2 min, and in randomized order.  Each individual participated in 3 

sessions, resulting in a total of 9 contractions per force level for each subject.   

4.4.3.2. Electromyography (EMG) 

Surface EMG signals were recorded over the VM and VL of each subject using 

high-density, 64-channel surface EMG arrays (LISiN-OT Bioelettronica, Torino, Italy).  

Each electrode array consists of a 5 x 13 grid of electrodes (1mm diam., 8mm 

interelectrode distance), with one electrode absent from the upper right corner.  The arrays 

were located centrally between the proximal and distal tendons of the muscles, with the 

long axis of each rectangular array aligned with the muscle fibers (Figure 2).  The proper 

positioning of the electrodes was confirmed by moving a non-adhesive linear electrode 

array over the skin during a voluntary muscle contraction, allowing the innervation zone, 

tendon regions, and appropriate orientation angle to be determined (Masuda et al., 1985; 

Farina et al., 2001).  Signals were amplified and recorded (sampling rate 2048 Hz) using 

an OT Bioelettronica USB2 amplifier and associated OT Biolab software (LISiN-OT 

Bioelettronica).  The EMG data was processed and analyzed offline using Matlab (The 

Mathworks Inc., Natick, Massachusetts, USA).  Prior to decomposition, the 64-monopolar 

EMG channels (referenced at the knee) were re-referenced offline to form 59 bipolar 

channels (i.e. using the difference between adjacent electrodes in the direction of the 

muscle fibers).   

4.4.3.3.Motor unit decomposition 

EMG signals were decomposed into single motor unit activity using an automatic 

blind source separation algorithm which has undergone extensive validation (Holobar and 

Zazula, 2004, 2007; Farina et al., 2008, 2009).  The algorithm reconstructs signals as 

outputs of a convolutive mixing model.  In this model, spike trains represent the motor unit 

activity, whereas the motor unit action potential (MUAP) shapes are treated as mixing 

coefficients.  The model can account for arbitrary differences in MUAP shapes observed 

from different EMG channels (see Holobar and Farina, 2014 for review).  The method is 

fundamentally different from common template-matching procedures, which are typically 

used for decomposing multi-unit signals recorded from a single spatial location.  
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Since the decomposition algorithm is automatic, each output spike train must be 

evaluated for quality prior to use. Only units whose firing rates were stable over the entire 

contraction (no pauses > 500 ms) were utilized in further analysis.  Also, motor units were 

discarded if the coefficient of variation of their inter-spike-intervals was > 30%, as this 

would indicate a high number of erroneously classified or missed action potentials 

(Holobar et al., 2014). Mean discharge rates were required to fall between 5 and 30 Hz 

(Enoka and Fuglevand, 2001). Additionally, a signal-based performance metric called 

pulse-to-noise ratio (PNR), was used to test the accuracy of the decomposed units. PNR is 

an indicator of the mean square error between the true discharge pattern of each identified 

unit and its estimation, where units with PNR > 30dB, exhibit a sensitivity > 90% and a 

false alarm rate < 2% (Holobar et al., 2014). For the present study, only motor units with a 

PNR > 30dB were used. 

For further analysis, the activity of each motor unit was expressed as a binary spike 

train in which each time sample (sampling frequency = 2048 Hz) was assigned either a 0 or 

1, depending on whether the particular time sample marked the beginning of a motor unit 

action potential.   Trials in which fewer than 3 motor units were decomposed were 

excluded from further analysis.  This left a total of 80 trials for each force level, spread 

over 9 subjects. 

4.4.3.4. Motor unit coherence analysis 

Much of the input to a motor neuron pool is widely distributed, and it can be argued 

that this ‘shared’ or ‘common’ input is the effective neural drive to muscles (Farina et al., 

2014).  Because this neural drive entrains the activity of the motor unit population, it can 

be characterized by examining correlated/synchronized activity between pairs of motor 

units.  For example, simultaneous (within a few ms) firing between two units occurs more 

often than expected by chance when premotor axons branch onto both motor neurons 

(Sears and Stagg, 1976).  On a longer time scale, motor units show concurrent fluctuations 

in their firing rates, also termed ‘common drive’ (De Luca et al., 1982).  A more complete 

picture can be obtained by extending correlation procedures into the frequency domain 

using coherence analysis (Rosenberg et al., 1989). This method provides the most 

comprehensive description of common input (Myers et al., 2004; Negro and Farina, 2012) 

in use, and is especially popular because different frequencies of neural drive can be 
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attributed to different sources of input, for example, the stretch reflex loop (e.g. Erimaki 

and Christakos, 1999, 2008; Christakos et al., 2006), or the motor cortex (e.g. Farmer et 

al., 1993, 1997; Conway et al., 1995; Salenius et al., 1997; Brown et al., 1998).  

In derivation, coherence analysis is a frequency domain extension of Pearson’s 

product moment correlation.  The coherence calculated at a given frequency represents the 

linear correlation between the two signals at that frequency, with a value of 0 representing 

no correlation and a value of 1 representing perfect correlation.  For interpretation, it is 

important to note that coherence is primarily a measure of phase locking, with signal 

power being a less important factor.  This is ideal for measuring motor unit 

synchronization because the power spectra of single motor unit spike trains are not 

themselves very informative, as they tend to be dominated by their mean firing rates, and 

do not faithfully reflect the frequency content of their neural input (Negro and Farina, 

2012).   

To assess the frequency content of common synaptic input to the motor units within 

each muscle, we calculated the pooled coherence (Amjad et al., 1997) between all unique 

pairs of simultaneously active motor unit spike trains.  The method essentially 

concatenates all unique pairs of spike trains into two long trains, which are then subjected 

to coherence analysis. The mathematical details of this procedure are described at the end 

of this section.  To characterize unique drive to each muscle we conducted a novel type of 

pooled partial coherence analysis.  Partial coherence evaluates synchrony between two 

signals after statistically removing any components which are also synchronous with a 

third ‘reference’ signal (Halliday et al., 1995, 1999; Rosenberg et al., 1998; Ward et al., 

2013).  The remaining ‘residual’ coherence profile has the same interpretation as standard 

coherence.  In the present case, the ‘reference’ signal was the sum of all motor unit spike 

trains recorded from one muscle, repeated to reach the length of the concatenated motor 

unit spike trains derived from the other muscle.  Using this technique, any activity in the 

reference muscle which was synchronous with the motor units of the other muscle is 

removed from their coherence, leaving a pooled residual coherence profile that reflects 

only the muscle-specific portion of the neural drive.  Finally, to understand the extent to 

which cross-muscle neural drive reflected fluctuations in knee extension force, we 

calculated the partial motor unit coherence across muscles using force as the reference 
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signal.  The residual cross-muscle motor unit coherence in this case represents the cross-

muscle drive which is uncorrelated with knee extension force. Figure 18 depicts a 

graphical representation of the above logic, and how each method of coherence analysis 

relates to a specific type of neural drive.  Figure 19 shows an example of motor unit 

decomposition and subsequent coherence analysis for a single trial.    

 

 

Figure 18. General methods. The motor units of the vastus lateralis and vastus medialis muscles are shown 

here as receiving a mixture of shared (black) and unique (yellow, red) neural command signals.  Both sources 

of input are assumed to be widely distributed, and would therefore synchronize/entrain the activities of each 

targeted motor unit population.  In this study, we characterized such synchronous activity among motor units 

in the frequency domain using coherence analysis.  The technique reveals the frequency spectrum of 

synchronous activity between the spike trains of simultaneously active motor units.  When coherence 

analysis is conducted on pairs of motor units recorded from the same muscle, the resulting spectrum 

describes the total common input to that muscle.  The total input includes contributions from both muscle-

specific and shared (cross-muscle) sources of drive.  For this reason, the blocks representing within-muscle 

coherence are colored with stripes representing both the shared and unique sources of input influencing 

motor unit behavior.  When coherence analysis is conducted using motor units recorded from different 

muscles, the common input to both muscles is revealed.  This input does not include muscle-specific 

components and is therefore represented in the diagram using a single color (black).  We then used partial 

coherence analysis to reveal the unique input to each muscle.  The technique of calculating partial coherence 

involves removing any coherence between two signals which could be explained by a common third signal.  

The resulting ‘residual’ coherence therefore describes the correlation between two signals that is independent 

of the third signal.  In this study, the method was used to remove any components of within-muscle 

coherence which could be explained by activity in the other muscle.  We were therefore able to assess the 

strength of unique/independent drive to each muscle, and determine the relative contribution of cross-muscle 

drive to the total within-muscle coherence. 
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Figure 19. Recordings and data analysis. High-density surface EMG signals (64 channels) were recorded 

from the vastus lateralis and vastus medialis muscles of healthy participants during production of isometric 

knee extension force (10% and 30% of maximum force).  The EMG signals were then decomposed to reveal 

the firing activities of single motor units.  A schematic representation of the task and motor unit recording 

methodology is shown in the left half of the figure.  A total of 80 trials (20 s each) were recorded across 9 

subjects.  For each trial, neural drive to the vasti muscles was characterized using the decomposed motor unit 

data.  First, the pooled coherence between all concurrently active pairs of single motor units was derived for 

each muscle.  The red traces in the top and bottom right panels show this analysis for a single trial at 30% 

maximum force.  Motor unit coherence reveals the frequency content of neural drive to each muscle.  The 

major component occurred in the 1-5 Hz range for both muscles, with smaller peaks present at ~10 Hz 

(mainly in the vastus lateralis in this trial) and just below 20 Hz.   In addition, the pooled coherence of motor 

units recorded from opposite muscles was calculated to derive the frequency content of cross-muscle neural 

drive (red trace, middle right panel).  The profile of cross-muscle coherence appears very similar to that 

observed within each muscle.  The brown traces in the top and bottom right panels show a ‘residual’ 

coherence representing the within-muscle motor unit coherence that remains after removing any components 

that can be explained by cross-muscle neural drive.  The residual therefore represents the frequency content 

of independent (muscle-specific) neural drive.  In the trial depicted, the greatly reduced magnitudes of the 

brown (residual) coherence traces in comparison with the red traces suggest that majority of within-muscle 

motor unit coherence stems from cross-muscle drive.  The brown trace in the middle right panel represents a 

similar analysis in which the effects of knee extension force are removed from the cross-muscle motor unit 

coherence.  The residual in this case characterizes the frequency content of any cross-muscle drive that is 

uncorrelated with total knee extension force.  In this trial, cross-muscle neural drive above about 5 Hz 

(especially near 20 Hz) appears to be uncorrelated with force, while lower frequencies are highly correlated 

with force.   

 

4.4.3.5. Mathematical  procedures 

Coherence analysis: 

As previously described, each signal was first divided into consecutive time 

segments, 3s in duration. The FFT was then calculated for each segment using the 

spectrogram function in Matlab, specifying that time segments be non-overlapping and 

weighted by a rectangular window function.  For each frequency, the complex values 

obtained across N time segments were used to derive the auto spectra and cross spectra of 

the signals x and y (xx, yy, and xy, respectively) as follows: 
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xx = ∑ 𝑋𝑖 ∙ 𝑐𝑜𝑛𝑗(𝑋𝑖)𝑖=𝑁
𝑖=1  

yy = ∑ 𝑌𝑖 ∙ 𝑐𝑜𝑛𝑗(𝑌𝑖)𝑖=𝑁
𝑖=1  

xy = ∑ 𝑋𝑖 ∙ 𝑐𝑜𝑛𝑗(𝑌𝑖)𝑖=𝑁
𝑖=1  

 

where conj () refers to the complex conjugate of 𝑋𝑖 or 𝑌𝑖.  

The magnitude squared coherence (typically referred to as ‘coherence’) for each frequency 

was then calculated as follows: 

 

CohXY = | 𝑥𝑦 |
2
 / ( 𝑥𝑥 ∙ 𝑦𝑦) 

 

Each coherence profile was then smoothed in the frequency domain using a 3-point (0.5 

Hz) running median.  To assess the frequency content of the neural drive shared by both 

muscles, we repeated the same procedure using all combinations of motor unit pairs 

recorded from different muscles. 

 

Partial coherence analysis:  

To calculate partial coherence, we first derived the auto spectra for the reference 

signal z as described for x and y above.  Then, the cross spectra of signal z with signal x 

were calculated as below: 

xz = ∑ 𝑋𝑖 ∙ 𝑐𝑜𝑛𝑗(𝑍𝑖)𝑖=𝑁
𝑖=1  

zx = ∑ 𝑍𝑖 ∙ 𝑐𝑜𝑛𝑗(𝑋𝑖)𝑖=𝑁
𝑖=1  

 

The cross spectra yz and zy were calculated similarly.  From these, the cross and auto 

spectra between x and y accounting for signal z were calculated as follows: 

xx_z = 𝑥𝑥 − (𝑥𝑧 ∙ 𝑧𝑥)/𝑧𝑧 

yy_z = 𝑦𝑦 − (𝑦𝑧 ∙ 𝑧𝑦)/𝑧𝑧 

xy_z = 𝑥𝑦 − (𝑥𝑧 ∙ 𝑧𝑦)/𝑧𝑧 

Finally, the residual coherence between x and y after accounting for signal z can was 

calculated as: 

CohXY_z = | 𝑥𝑦 _z|
2
 / ( 𝑥𝑥_𝑧 ∙ 𝑦𝑦_𝑧) 
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In this study, we were interested in removing the effects of shared drive from the 

total drive to a given muscle.  Therefore, the signals x and y represent the concatenated 

pairs of motor unit spike trains recorded from one muscle, while the reference signal was 

formed from the summation of all individual motor unit spike trains recorded 

simultaneously from the other muscle.  The reference signal, as a composite spike train, 

will strongly reflect the activity which is common to all units.  The reference signal was 

repeated to reach the length of the concatenated spike trains.  In this way, each unique pair 

of units from a given trial was referenced to the same signal within the pooled partial 

coherence analysis.   

4.4.3.6. Statistical comparisons 

For each coherence profile, a 95% confidence level (CL) can be derived (Carter, 

1987; Rosenberg et al., 1989) as follows: 

 

CL= 1 – 0.05^( 1/(N-1)) 

 

Where N is the number of data segments used to calculate the coherence profile.  For 

residual coherence profiles, the “N-1” in the above equation is replaced by “N-2”.  We 

then calculated the proportion of total trials showing significant coherence at each 

frequency.  Under the assumption that no true motor unit coherence exists at a given 

frequency, the use of a 95% confidence level will result in a false positive rate of about 

5%.  Therefore, a binomial test was used to determine if the proportion of trials showing 

significant coherence exceeded the expected error rate.  The test provided a conservative 

evaluation of the relevant frequency content of neural drive within and between muscles.   

To compare the strength/frequency content of neural drive between force levels, we 

first converted the coherence values at each frequency to standard Z-scores as follows: 

 

COH_zscore  = [ atanh ( √COH ) / √(1/ (2N) ) ] – bias 

 

Where N is the number of segments used to calculate coherence (COH), and the bias is 

derived empirically as the mean COH_zscore calculated between 250 and 500 Hz, since 

this frequency band should contain no actual coherence (Baker et al., 2003).  This 
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conversion was necessary prior to statistical testing since it sets coherence values on an 

interval (and ratio) scale and accounts for any differences in the number of units used in 

each pooled coherence calculation.  To test differences in coherence at a given frequency 

across force levels, a randomization test on medians was used.  In this test, the median 

difference in coherence across conditions was first calculated and then compared against a 

set of 10,000 median differences that had been derived after randomly shuffling the force 

level designations of each paired trial (80 pairs in total).  By paired trials, we mean that the 

Nth 10% MVC contraction recorded for a given subject was always compared with the Nth 

30% MVC contraction for the same subject.  In the randomization test, the sign of their 

difference was randomly assigned in each of the 10,000 iterations.  Shuffling paired trials 

controlled for any cross-subject or over-time effects that might complicate the statistics.   

The final p-value was calculated directly as the proportion of shuffled median-differences 

exceeding the original in absolute magnitude.  This test was ideal for our purposes because 

it makes no assumptions concerning distribution shapes or the partitioning of variance 

across subjects and trials.  The test was run on every frequency which showed a significant 

degree of coherence across the population (according to the binomial test) in at least one of 

the conditions being compared.  In this way, we limited analysis to frequencies which were 

consistently present in the neural drive to the muscles.   

Finally, we estimated the relative proportion of total within-muscle motor unit 

coherence not explainable by shared (cross-muscle) neural drive.  To do this, we calculated 

the total area of significant coherence for each coherence profile and its associated residual 

coherence profile.  The area of significant coherence was the summation, across all 

frequencies, of COH_zscores > 1.65.  The ratio of significant coherence area 

(residual/total) was calculated for each trial and averaged per subject.  This analysis 

yielded a per-subject estimate of the proportion of total common input that was unique to 

each muscle. 

4.4.4. RESULTS 
 

4.4.4.1. Motor unit decomposition 

After exclusion of any trials where either muscle had fewer than 3 motor units 

decomposed for either force level, a total data set of 80 trials from across 9 subjects was 
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available for further analysis.  A total of 9 contractions per force level were analyzed from 

each of the first 8 subjects, while 8 trials were analyzed from subject 9.  Subject 10 had too 

few units decomposed at the 10%MVC level to be included in further analysis.  From the 

VL recordings, the mean (SD) number of motor units decomposed was 7.5 (2.3) for 10% 

MVC trials and 7 (3.2) for 30% MVC trials.  The mean (SD) firing rates for these units 

was 8.8 (1.0) Hz at 10% MVC and 10.7 (1.6) Hz at 30% MVC.  From the VM, an average 

of 7.7 (2.8) units were decomposed at 10% MVC and 7.5 (3.5) units at 30% MVC.  The 

mean (SD) firing rates of VM motor units were 9 (0.9) Hz and 10.9 (1.6) Hz for 10 and 

30% MVC, respectively.   

4.4.4.2. Motor unit coherence within and between muscles 

Figure 20, A and B depicts the percent of trials which showed significant 

coherence at each frequency for the VL and VM, respectively.   Proportions greater than 

the marked 95% confidence level indicate that coherence was observed more often than 

expected by chance.  The figures indicate which frequencies were consistently components 

of the overall drive to each muscle, for each force level.  Below the x-axis of each plot are 

the results of a randomization test comparing the magnitude of coherence between the two 

force levels.  The black bars represent frequencies at which the coherence differed 

significantly.  For convenience of interpretation, the p-value for significance in this test 

was set to 0.01, which allows each bar to represent a 1 Hz bin (5 frequency samples).   The 

overall coherence profiles are similar between both muscles, with the main features of 

neural drive comprising a 1-5 Hz component, a ~10 Hz component, and a ~20 Hz 

component, the latter two occurring only at 30% MVC.  Comparing across force levels, 

differences in coherence occurred at frequencies above 5 Hz, and were particularly strong 

in the VM (both ~10 and ~20 Hz components showing strong force-dependence). 

Figure 20, C and D depicts the percent of trials having significant coherence after 

statistically removing the common cross-muscle signal from the total within-muscle motor 

unit coherence.  The resulting residual coherence reflects the unique, ‘muscle-specific’ 

drive to a given muscle.  In general, only a 1-5 Hz component of muscle-specific drive 

appeared to exist for either muscle.  A small peak at 18 Hz was present for the VM (30% 

MVC), although this was weak in terms of strength, bandwidth, and consistency.   There 
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was no difference in muscle-specific drive to the VL across force levels, while for the VM, 

there were some small differences, primarily under 3 Hz.  

  Panels E and F (Figure 20) show the results of a randomization test comparing the 

magnitudes of total coherence to residual (muscle-specific) coherence at 30% MVC (top) 

and 10% MVC (bottom).  At 30% MVC, the muscle-specific component was significantly 

smaller than the total coherence, at nearly every frequency where it existed, and in both 

muscles.  The same was true for 10% MVC. 
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Figure 20. Total within-muscle motor unit coherence and muscle-specific motor unit coherence for the vasti 

muscles. Panels A and B show the proportion of trials (80 total) in which significant within-muscle motor 

unit coherence was observed for the vastus lateralis and vastus medialis, respectively.  The red traces show 

results for muscle contractions held at 30% maximum voluntary contraction force (%MVC) while the brown 

traces show the results for 10% MVC.  The dashed horizontal line indicates the highest proportion that could 

have been observed simply due to chance.  Below the x-axis of each plot are the results of a randomization 

test comparing the coherence values observed at 10% MVC to 30% MVC.  The black bars indicate 

frequencies at which a significant difference existed between coherence magnitudes measured across trials at 

each force level.  The significance level has been set to 0.01, to correct for multiple comparisons and thus 

allow each bar to represent a frequency bin of 1 Hz.  Panels C and D represent the same analysis as in A and 

B, but after removing the effects of cross-muscle drive on within-muscle coherence.  The residuals shown 

therefore represent the frequency content of muscle-specific neural drive.  Panels E and F show the results of 

a randomization test comparing the magnitude of total within-muscle coherence to the residual (muscle-

specific) coherence at 30% MVC (top) and 10% MVC (bottom).  Both muscles show similar profiles of total 
within-muscle coherence, with the primary component of each occurring below 5 Hz, but extending further 

to include components near 10 and 20 Hz when force increases from 10% MVC to 30% MVC.  The 

magnitude of coherence below 5 Hz appeared not to change with force, in contrast to higher frequency 

components which did show force-dependence.  Muscle-specific coherence was weaker, limited primarily to 

frequencies less than 5 Hz, and was not highly dependent on force. 
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Figure 21 depicts the percent of trials showing significant cross-muscle motor unit 

coherence.   In this case, residual coherences represent the remaining coherence after 

subtracting any components which are correlated with force.  Figure 20A shows that the 

cross-muscle coherence contained essentially the same frequency content as within-muscle 

coherence, again with frequencies above ~5 Hz showing significant force-dependence.  

Panel B shows that the component of cross-muscle drive not correlated with temporal 

fluctuations in force depended on the overall force level.  At 30% MVC, frequencies  > 

~8Hz form significant components of the residual coherence, meaning that cross-muscle 

drive at this force level was not faithfully translated into force.  Panel C shows a clear 

reduction in low frequency cross-muscle coherence after removing any components 

synchronized with force fluctuations.  At 10% MVC, essentially every frequency under 6 

Hz was reduced, while at 30% MVC all frequencies under 10 Hz were reduced.  The 

effects above 10 Hz at 30% MVC were less consistent.   
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Figure 21. Cross-muscle coherence and its reflection in knee extension force. Panel A shows the proportion 

of trials having significant cross-muscle motor unit coherence.  As before, red traces show results for 30% 

MVC force, and brown traces show results for 10% MVC.  The overall frequency content of cross-muscle 

drive was very similar to the with-muscle drive, with a primary component from 1-5 Hz which extended to 

include components near 10 and 20 Hz at 30% MVC.  Below the x-axis of panel A, the results of a 

randomization test show that neural drive above ~5 Hz showed clear force-dependence, whereas the lowest 

frequencies (under ~5 Hz) did not.  Panel B shows the same analysis as in A, but after ‘removing’ any 

components of cross-muscle coherence that were synchronized with knee extension force.  The residual 

coherence represents the cross-muscle drive which does not become translated into force fluctuations.  Again, 

frequencies in the 10-20 Hz range were force-dependent while frequency components less than 5 Hz 

generally were not.  Panel C shows the comparison of total to residual coherence at each force level.  The 

removal of force from cross-muscle coherence greatly reduced its magnitude at nearly every frequency under 

10 Hz where coherence was consistently observed.   The reduction of higher frequency (10-20 Hz) coherence 

was less pronounced. 

 

4.4.4.3. The contribution of muscle-specific drive to the total (within-muscle) coherence 

For each muscle and force level, the area of significant within-muscle motor unit 

coherence was calculated before and after removing the effects of cross-muscle drive.  The 

residual coherence represents the unique, ‘muscle-specific’ drive.  In Figure 22, the ratio 

between the residual coherence area and the total within-muscle coherence area is shown 
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per subject for each muscle.   The top row shows results for 30%MVC contractions and the 

bottom shows results for 10% MVC contractions.  The bar heights represent the mean 

proportion calculated across the trials completed by each subject while the error bars 

represent the standard deviation across repeated trials.  These error bars show the 

approximate consistency of this measure across different trials, and are not intended for 

statistical comparisons.  The proportion of total motor unit coherence explained by muscle-

specific drive was low in all cases, with averages lower than 20% in the majority of 

subjects.   

 

Figure 22. Proportion of total within-muscle coherence represented by muscle-specific drive. The proportion 

of total within-muscle motor unit coherence explained by independent drive to the vastus lateralis (left) or 

vastus medialis (right) is shown for each subject.  Each bar represents the mean proportion calculated over all 

trials for a given subject.  The error bars show the standard deviation of proportions calculated across trial 

replicates for each individual and indicate that the measure was relatively stable across trials and recording 

sessions.  At knee extension forces of 30% MVC (top) and 10 % MVC (bottom), nearly all trials showed 

proportions of muscle-specific drive < 20 %.  In other words, more than 80% of the unit-to-unit coherence 

measured in either muscle was due to cross-muscle drive.   

 

4.4.4.4. Proportion of cross-muscle coherence unrelated to force 

Figure 23 shows the proportion of cross-muscle coherence remaining after 

removing any components that were synchronous with force fluctuations over time.  For 

both 30% MVC (top) and 10% MVC (bottom), the proportion of coherence unrelated to 

force was below 20% for all subjects.  This implies that the cross- muscle neural drive is 

tightly coupled with the overall force.  



 

118 
 

4.4.5. DISCUSSION 
 

In this study, we have characterized the frequency content and force-dependence of 

both shared (cross-muscle) and independent (muscle-specific) neural drive to the motor 

units of synergist muscles.  Our findings lend direct neurophysiological support to the 

theory that synergistically-activated muscles are controlled primarily by a shared neural 

drive.  Our study also represents the most comprehensive characterization of neural drive 

to the vasti muscles to date. 

 

Figure 23. Proportion of cross-muscle coherence unrelated to knee extension force. The figure depicts the 

per-subject proportion of cross-muscle motor unit coherence which was uncorrelated with force.  At both 

30% MVC (top) and 10% MVC (bottom), the proportion is very low, suggesting that the majority (>80 %) of 

cross-muscle drive is related to force.  As in Figure 5, the error bars show the standard deviation of 

proportions calculated across trial replicates for each individual. 

 

The frequency content of neural drive to the VL and VM were very similar.  At 

10% MVC, the neural drive to either muscle spanned frequencies up to about 6 Hz, with 

significant coherence <3 Hz in most trials.  In general, motor unit coherence at frequencies 

under 5 Hz reflects ‘common drive’, i.e., concurrent fluctuations in motor unit firing rates 

(De Luca et al., 1982; Myers et al., 2004).   Common drive is of unknown physiological 

origin, but the lowest frequencies (<3 Hz) are unaffected by capsular stroke (Farmer et al., 

1993) and are strengthened in cerebellar stroke (Sauvage et al., 2006).  Common drive 

extends to antagonist muscle pairs if they are functionally linked (De Luca and Mambrito, 
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1987), and may depend on task context (Mochizuki et al., 2006; Laine et al., 2013, 2014) 

and proprioceptive input (De Luca et al., 2008; Laine et al., 2014).   

At 10 % MVC, neural drive at frequencies > 6 Hz was not strongly reflected in the 

motor unit coherence of either muscle.  When contraction force was increased to 30% 

MVC, a 6-12 Hz input (peak between 8 and 10 Hz) was observed, along with a new 

component in the beta band (~15-35 Hz), with a peak at 20 Hz.  The neural drive in the 6-

12 Hz frequency range is associated with physiological tremor, and may partly stem from 

oscillations of excitation around the Ia afferent feedback loop (Sutton and Sykes, 1967; 

Lippold, 1970; Hagbarth and Young, 1979; Young and Hagbarth, 1980; Erimaki and 

Christakos, 1999, 2008; Christakos et al., 2006).   Higher frequency components in the 

neural drive (15-35 Hz) are most often considered to be of cortical origin (Farmer et al., 

1993, 1997; Conway et al., 1995; Salenius et al., 1997; Brown et al., 1998).   If these 

associations are true for the present scenario, it follows that afferent feedback and cortical 

drive were only strong enough to evoke significant motor unit coherence at force levels 

above 10% MVC.  Of course, lack of significant coherence may not indicate complete 

absence of neural drive at high frequencies, given the variety of factors which can limit the 

sensitivity of coherence measures (Negro and Farina, 2012).   

The cross-muscle motor unit coherence was nearly identical to the within-muscle 

motor unit coherence, in terms of both frequency content and force-dependence.  The ~10 

and ~20 Hz peaks in motor unit coherence at 30% MVC are particularly interesting, 

because they suggest that cross-muscle drive contains both Ia feedback and a descending 

cortical component. Surprisingly, our partial coherence analysis showed that these higher 

frequencies of coherence exclusively reflect cross-muscle drive, since the unique drive to 

either muscle contained no significant coherence above ~ 6 Hz.   It is worth noting that if 

cortical drive is essentially a cross-muscle signal, then our findings directly support a core 

principle of the muscle synergy theory, namely, that cortical commands are of lower 

dimensionality than the muscles controlled. 

We found that force fluctuations <6 Hz were well-synchronized with cross-muscle 

drive.  For both force levels, the vast majority (>80%) of cross-muscle motor unit 

coherence was explainable by fluctuations in force.  During visually-guided force control, 

low-frequency fluctuations in force reflect voluntary error corrections and involuntary 
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common firing rate modulation (common drive) among motor units (Sutton and Sykes, 

1967; Allum et al., 1978; De Luca et al., 1982; Miall et al., 1993; Slifkin et al., 2000; 

Squeri et al., 2010).  Due to the low pass filtering effects of muscle tissue, as well as the 

rest of the leg/ leg-fixation system, force fluctuations above ~5 Hz are extremely small and 

are negligible in terms of the overall force control (excluding the scenario of pathological 

tremor).  As expected, cross-muscle drive above 10 Hz was not well correlated with force 

fluctuations. 

The unique neural drive to each muscle appeared to be limited to the common drive 

(1-5 Hz) frequency range.  In this study, ‘muscle-specific’ coherence reflects either an 

actual unique drive to one muscle, or a cross-muscle signal which has been obscured in one 

of the two muscles, for example due to noise.  The 1-5 Hz drive to each vasti muscles 

consistently showed a muscle-specific component.  Though relatively weak, its consistency 

suggests that it does represent a distinct source of 1-5 Hz drive.  Regardless of the source, 

the magnitude of 1-5 Hz coherence was not strongly force-dependent.  That said, the 

relation between coherence strength and neural drive strength may be somewhat complex 

and depends on many factors, including the physical distribution of axonal inputs, as well 

as the firing rates of the motor units in relation to the frequency of shared input (Negro and 

Farina, 2012).   

We also observed a small component of muscle-specific drive to the VM at 18 Hz 

during 30% MVC contractions.  The limited bandwidth (1 Hz) and consistency (2 more 

trials than expected by chance) of this input suggest that  ~20 Hz cross-muscle drive was 

poorly reflected in the VL, making it appear unique to the VM.  The VL itself did not show 

any muscle-specific input above 6 Hz.   

  In terms of proportions, we found that the within-muscle coherence attributable to 

muscle-specific drive was between 5% and 25% of the total within-muscle coherence, 

regardless of the force level or the muscle recorded from.  This ratio was generally 

consistent across subjects, trials, and force levels.  Although the detectable bandwidth of 

cross-muscle drive was larger at higher force levels, the global degree of within-muscle 

motor unit coherence attributable to cross-muscle drive was fairly stable.  While increasing 

force resulted in a larger bandwidth of cross-muscle drive, the acquired high frequency 
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input had little influence on force, and as a result, the proportion of coherent activity not 

correlated with force was found to be larger at 30% MVC than at 10% MVC.  

Because our findings support the theory that synergistically-activated muscles are 

controlled primarily by shared neural drive, it is important to further discuss how this result 

adds to previous literature supporting the notion of muscle synergies.  There is ample 

evidence that synergies, or ‘motor primitives’ do have a neural origin (reviewed in Bizzi 

and Cheung, 2013).  For example, they can be evoked and modified through afferent 

feedback in spinalized frog preparations (Tresch et al., 1999; Kargo and Giszter 2000a,b), 

they can be evoked through stimulation of spinal interneurons in frogs (Giszter et al., 

1993) and mice (Levine et al., 2014), and they can be recruited by intracortical 

microstimulation in rhesus monkeys (Graziano et al., 2002; Overduin et al., 2012, 2014). 

In the frog, spinal interneurons involved in the organization of motor primitives have been 

extensively characterized (Hart and Giszter, 2010).  That said, many questions remain 

unanswered, especially in the context of voluntary motor control in humans.  For one, 

humans (and some higher primates) have direct cortico-motoneuronal cells which may 

have evolved specifically to free voluntary behavior from the constraints of spinal ‘motor 

primitives’ (Rathelot and Strick, 2009).  Of course, these direct cortico-motoneuronal cells 

co-exist with the ‘old’ corticospinal track, where M1 cells project directly onto the spinal 

interneurons which may coordinate muscle activation (Rathelot and Strick, 2009).  

Regardless of the specific level at which ‘motor primitives’ may be prepared (spinal or 

cortical), it is not clear precisely how this signal is delivered to the targeted muscles.  For 

example, multiple muscles could show fixed ratios of activation even if each muscle were 

to receive its own unique input and receive no shared/common drive.  Alternatively, motor 

neurons of synergist muscles might share a low-frequency ‘common drive’ originating at 

the spinal level, but not higher frequency neural drive originating from the cortex.  The 

precise circuitry of synergy formation is not well understood, and our results suggest that 

valuable information can be gained by approaching this problem from the motor neuron 

level. 

It will require further research to fully understand how shared vs. muscle-specific 

drive to synergistically activated muscles changes in relation to task context or disease.  

For example, it is likely that characterization of synergistic muscle activation may yield 
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important information about plasticity and adaptation in the central nervous system 

following injury, for example, stroke (Gizzi et al., 2011).  In addition, the theory of 

coherence and partial coherence contains many variations and extensions which have been 

previously described (Rosenberg et al., 1989, 1998), and which may be of particular 

benefit in studying coordination among larger sets of muscles.  Importantly, our results 

provide the first neural support in man for the assumption that muscles can be controlled 

primarily through shared neural drive (Tresch and Jarc, 2009; Kutch and Valero-Cuevas, 

2012; Bizzi and Cheung, 2013).  Overall, our study has expanded the current 

understanding of vasti muscle activation and has introduced a new approach for 

investigating neural drive to multi-muscle systems. 
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5. General conclusions and discussions 

The main objective of this thesis was to compare the changes in motor unit 

behavior following END and HIIT by using novel surface EMG motor unit decomposition 

techniques. To accomplish this goal, a number of experiments were conducted to validate 

HDEMG as a tool to track changes in motor unit behavior after training. Therefore, this 

dissertation started with two studies showing the reliability and validity of HDEMG for 

training interventions, followed by one study comparing neuromuscular changes after two 

weeks of either END or HIIT. Finally, an additional study was implemented in order to 

understand the neural control of the synergistic muscles investigated during the training 

intervention. Each of the article’s major findings, implications and potential limitations 

will be discussed.  

5.1. Reliability and validity of HDEMG for the study of motor unit behavior 
 

 Before the emergence of HDEMG motor unit decomposition techniques, previous 

studies documenting changes in motor unit behavior after training mainly relied on 

intramuscular EMG recordings. These methods have high accuracy and are typically 

regarded as the “gold standard” of motor unit decomposition (Merletti & Farina, 2009). 

However, and due to their high selectivity, intramuscular EMG only allows the extraction 

of a few number of motor units during low contraction force levels (Holobar et al., 2009). 

Moreover, it is almost impossible to relocate the electrode across sessions since once the 

skin is perforated, there is no way to predict where the electrode(s) will be placed in the 

muscle belly. Indeed, the problem of under sampling motor unit populations without even 

having the chance to track the same motor units across sessions has been considered as two 

of the major limitations of intramuscular EMG recordings for training studies (Carroll et 

al., 2011). Consequently, there is a lack of studies monitoring changes in motor unit 

behavior after any type of training. The results of the few investigations available after 

resistance training show divergent changes in motor unit mean discharge rate and 

discharge rate variability (Rich & Cafarelli, 2000; Kamen & Knight, 2004; Pucci et al., 

2006; Vila-Cha et al., 2010). It is very likely that the low reliability and lack of sensitivity 

of intramuscular EMG recordings were major factors influencing the results of motor unit 
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discharge rates after resistance training interventions. However, and quite surprisingly, 

there are no reliability studies for any motor unit variable extracted with intramuscular 

EMG recordings.  

 In study 1, a reliability study was performed. The most important variables 

extracted from HDEMG motor unit decomposition were analyzed at several force levels 

(10, 30, 50 and 70% of MVC force), with the aim to check if HDEMG motor unit data 

would show the required level of reliability for the planned training intervention (Study 3). 

Therefore, ten subject’s VM and VL muscles were assessed during the production of 

isometric knee extension force across three different testing sessions (each session was 

separated by one week). Most of the variables studied (mean discharge rate, inter-spike 

interval, conduction velocity and motor unit action potential peak-to-peak amplitude) 

presented a high level of reliability across all force levels. Also, the number of extracted 

motor units was consistent across sessions and was higher than previous methods [average 

of 7 motor units vs. 4 (Vila-Cha et al., 2010)]. Together, these results showed that 

HDEMG allowed decomposing a large and similar sample of motor units across sessions, 

which ultimately increased the consistency of motor unit parameters.  

Since during study 1 experiments was possible to locate the HDEMG electrodes in 

a similar position across the different testing sessions (the skin of the participants was 

marked), we moved a step further and checked the possibility of tracking the same motor 

units longitudinally (study 2). For this purpose, a new automatic method that combined 

blind source separation techniques (Negro et al., 2016a) and cross correlation of the motor 

unit action potentials (Maathuis et al., 2008) was designed. This was possible due to the 

large amount of channels that HDEMG-based motor unit decomposition algorithms use to 

identify each of the motor unit action potentials (Farina et al., 2008). In fact, the large 

number of HDEMG channels used in the present thesis (64 channels) allowed the tracking 

method to discriminate between different motor unit action potentials with great accuracy. 

Accordingly, a large number of VM and VL motor units (from 20% to 40% of the 

decomposed motor units) could be tracked across different trials in a wide range of 

contraction levels (from 10% up to 70% of the MVC force). Furthermore, the results  

showed that the tracked motor units presented even higher reliability and sensitivity 

compared to averaged population samples. Consequently, conduction velocity of tracked 
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motor units after a 2-week END training intervention presented an effect size that was 

almost two times higher compared to unmatched motor unit population samples. Taken 

together, these results suggest that motor unit tracking by HDEMG is the best method to 

monitor motor unit adaptations after training interventions and therefore, this was the 

chosen method for study 3.  

5.2. Motor unit changes after HIIT and END 
 

Previous research showed that END and HIIT induced similar metabolic and 

cardiopulmonary fitness adjustments despite of their differences in training volume and 

intensity (Gibala et al., 2006; McKay et al., 2009; Little et al., 2010). Therefore, HIIT was 

offered as an attractive alternative to END since results from previous investigations 

suggested that HIIT physiological adaptations could be achieved with a much lower time 

commitment (Gibala et al., 2012a). Despite that this could be appropriate for the 

enhancement of aerobic performance (e.g., increased maximal oxygen uptake), neural 

adaptations between both types of training were never examined. Therefore, a HIIT and 

END training intervention was performed using training protocols showing similar 

metabolic and cardiopulmonary fitness adaptations (Gibala et al., 2006; Little et al., 2010) 

despite their differences in load intensity and exercise volume. Since previous 

investigations have shown that the neural system adapts differently according to the 

training stimulus (e.g., load intensity, exercise volume and motor task) (Hakkinen & Komi, 

1986; Morrissey et al., 1995; Izquierdo et al., 2002; Vila-Cha et al., 2010; Penzer et al., 

2016), it was hypothesized that both types of training would show different adaptations 

among the motor unit population. Indeed, study 3 showed that six sessions of HIIT or END 

induced opposite adjustments in motor output and motor unit activity. The main findings 

were that HIIT increased muscle strength (isometric knee extension peak torque) while 

END increased the time to task failure during a low-force submaximal sustained 

contraction (30% MVC). These differences in motor output were also accompanied by 

increased vasti muscles discharge rate and surface EMG amplitude at the highest 

submaximal force levels (50 and 70% MVC) for HIIT but not for END. The specific 

changes in motor unit behavior observed in this study were quite interesting because they 

suggest a differential adaptation across the motor unit pool. The results suggest that these 
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differences are directly related to the type of training  (END: low to moderate loads in long 

sessions vs. HIIT: high loads in short sessions), which likely favored the activation of 

motor units of different force thresholds (e.g., HIIT: preferential activation of high 

threshold motor units vs. END: preferential activation of low threshold motor units). 

Although there is some evidence that strength gains are induced by greater adaptation in 

type II fibers (Folland & Williams, 2007), there are currently no studies reporting a 

preferential adaptation of high threshold motor units when strength increases. Many studies 

have assumed that changes in motor unit behavior have been responsible for early strength 

gains since structural changes of the muscle fibers only happen after several weeks of 

training (approximately more than 10 weeks) [see (Folland & Williams, 2007) for review]. 

However, these early neural changes have been only explained by increases in surface 

EMG amplitude, which is a crude and indirect estimate of motor unit behavior (Farina et 

al., 2004). On the contrary, the results in study 3 showed a clear adaptation of high 

threshold motor units in the HIIT group, since the same motor units were followed during 

the training intervention. Therefore, it is very likely that HIIT increased the knee extension 

peak torque due to changes in discharge rate among high threshold motor units. It is also 

very likely that HIIT increased maximal force due to increased motor unit recruitment, 

however, this could be only indirectly measured by increases in surface EMG amplitude in 

the present study.  

5.3. Neural control of synergistic muscles  
 

  When a movement is performed, many muscles and motor units are simultaneously 

activated and coordinated. This poses a big challenge for the CNS since it has to control a 

large number of muscles, each of them comprising hundreds of motor units, around joints 

that possess many degrees of freedom, leading to a wide range of combinations of muscle 

patterns to produce the same movement. One way that the CNS can cope with this 

redundancy is by activating a large number of muscles synchronously rather than 

independently by a scheme called modular organization of movement or muscle synergies 

(Bizzi & Cheung, 2013; Bizzi & Ajemian, 2015). In this way, the CNS simplifies the 

control of movement since it just needs to select a small number of motor modules instead 

of activating many muscles individually to accomplish a particular motor task. Even 



 

131 
 

though this theory has been demonstrated in a number of studies [see (Bizzi & Cheung, 

2013) for review], none of those investigations assessed the control of synergistic muscles 

at the motor unit level. Indeed, it is not known if synergistic muscles would also share their 

neural drive. Motor unit recordings are ideal to examine common synaptic inputs between 

muscles since fluctuations in motor unit discharge rates are closely related to muscle force 

oscillations (Farina et al., 2010). Thus, by using a new approach based on partial 

coherence, we could study the amount of “shared” and “independent” neural input received 

by the VM and VL muscles motor units during the production of isometric knee extension 

force. The results clearly showed that these synergistic muscles shared most of their neural 

drive since inter-muscular coherence was higher than intra-muscular coherence in both low 

(<5 Hz) and high frequencies (>5Hz). This implies that the CNS does not control each 

muscle separately as previously thought, but rather synchronously. These findings can be 

confirmed with the results of the training intervention since the vasti muscles motor unit 

behavioral properties changed similarly after HIIT and END. These results can be expected 

since both muscles were synergistically producing the necessary knee extension force 

during the cycling task (Wakeling & Horn, 2009; Hug et al., 2010).  

 Previous investigations measuring the level of synchronization between muscles 

have used surface EMG amplitude fluctuations to study the presence of common inputs 

(Boonstra et al., 2008; Mohr et al., 2015). Thus, synchronous activity between muscles 

was studied through coherence analysis of the surface EMG (rectified or un-rectified 

signal). However, this approach could be questionable since surface EMG amplitude 

fluctuations are poorly correlated with force oscillations, since several phenomena such as 

amplitude cancellation, signal cross talk and noise may alter surface EMG estimates 

(Negro et al., 2009; Farina et al., 2010).  

 Therefore, the results of study 4 combined with the findings of study 3, provide the 

following conclusions: first, it is very likely that motor unit behavior and properties of 

synergistic muscles to change similarly after a training intervention [result which was also 

observed by (Vila-Cha et al., 2010)] and second, surface EMG amplitude measures do not 

provide the accuracy of motor unit recordings to study common inputs between synergistic 

muscles. This criticism can be extended to studies that use surface EMG amplitude 

parameters [ARV or root mean square (RMS)] as an index of muscle activation. In fact, 
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there is a large number of studies aiming to compare the level of activation between the 

vasti muscles during several knee extension exercises (Mirzabeigi et al., 1999; Edwards et 

al., 2008; Slater & Hart, 2016). These investigations assumed that the vasti muscles are 

controlled independently and therefore tried to find exercises producing a similar level of 

VM and VL activation. However, the present results suggest that synergistic muscles still 

receive a greater amount of common synaptic input compared to independent synaptic 

inputs, even when amplitude measures suggest a different level of between-muscle 

activation.  
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6. Implications  
 

High intensity interval training exists for more than 80 years but its popularity just 

increased during the last decade. This rise in popularity coincides with the vast amount of 

studies documenting similar improvements in aerobic performance compared to END 

exercise (Gibala et al., 2006; Rakobowchuk et al., 2008; McKay et al., 2009; Little et al., 

2011a; Gibala et al., 2012a), which has even led some authors to question the principle of 

training specificity (Hawley, 2008). However, the results of the present thesis suggest that 

the principle of training specificity holds between these two types of training at the 

neuromuscular level. This has strong implications for training prescription since each type 

of training will induce different functional adaptations in motor output. For instance, HIIT 

could be appropriate when aerobic performance gains need to be accompanied by an 

improvement in strength.  In contrast, END training would be more appropriate when 

training goals involve increased resistance to fatigue during contractions at low force 

levels. Consequently, each of these adaptations should be adjusted according to the needs 

of patients, athletes and the general population. 

 The new method to track different motor units across different testing sessions has 

opened up new opportunities to study changes in motor unit behavior after training 

interventions that could not be accomplished before. This method will not only provide the 

chance to re-examine previous inconsistencies in motor unit behavior after training 

interventions, but would also allow researchers to answer new questions about motor unit 

behavior after a particular intervention in different populations (young, adult and elderly), 

in a wide range of force levels (from low to high-threshold motor units) and even after the 

progression of neuromuscular disorders.  

Finally, the proposed motor unit correlation method based on partial coherence will 

allow examining the neural origin of muscle synergies by investigating the presence of 

shared synaptic inputs between a large number of muscles. These investigations would 

help to confirm if the observed shared synaptic input between the VM and VL is also 

found in other groups of muscles during the execution of different tasks.   
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7. Limitations and future work 
 

Although the results of the present dissertation indicate that short-term END and 

HIIT induce distinct changes in motor unit behavior, it is not known if the magnitude of 

these changes would be maintained in longer training interventions. Future investigations 

with longer interventions would help to analyze the long-term neuromuscular effect of the 

training protocols analysed. Also, it is important to acknowledge that several types of HIIT 

exist.  Therefore, comparison with other protocols should be conducted carefully. It would 

be of great interest to see the neuromuscular adaptations of other HIIT protocols with 

different work/rest ratios and intensities (e.g., sprint interval training vs. HIIT).  

In the current study, the motor unit tracking procedure was only applied across 

sessions that were two and two and a half weeks apart, where changes in muscle structure 

were not expected. Future investigations are needed in order to confirm if it is possible to 

track the same motor unit over several weeks during interventions eliciting adaptations at 

the tissue level (e.g., fiber hypertrophy). 

Finally, the current HDEMG motor unit decomposition method was only applied to 

isometric contractions due to limitations of the decomposition algorithm. It is not yet 

possible to extract single motor unit data from dynamic contractions since large variations 

in muscle fiber length can influence decomposition results. Even though clear differences 

in motor output and motor unit behavior between HIIT and END protocols were found, it 

would have been very interesting to analyze those changes during the cycling task or 

during dynamic knee extension exercises similar to cycling. A very recent study suggested 

the possibility of blind source separation motor unit decomposition algorithms to 

decompose motor units during controlled dynamic contractions (Farina & Holobar, 2016), 

however, this is still under development. Future studies should aim to validate HDEMG 

tools for dynamic contractions in order to study the motor unit behavior during functional 

tasks. 
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8. Summary 
  

This thesis demonstrates that HIIT and END elicit different neuromuscular 

adaptations despite similar improvements in cardiopulmonary fitness. Overall, the results 

show that both types of training induce a differential adaptation among the motor unit 

population that might be related to their differences in load intensity and exercise volume. 

These results could be assessed with great accuracy due to the high reliability of HDEMG 

to monitor training adaptations and due to the unprecedented possibility to track individual 

motor units during the intervention. Finally, it could be demonstrated that the two 

synergistic muscles investigated during the intervention (VM and VL) shared most of their 

synaptic input, which provided an explanation for the similar changes in motor unit 

behavior found for both muscles after the training interventions.  
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