Existential Quantifiers in the Rule Body

Pedro Cabalar*

Department of Computer Science,
Corunna University (Corunna, Spain),
cabalar@udc.es

Abstract. In this paper we consider a simple syntactic extension of
Answer Set Programming (ASP) for dealing with (nested) existential
quantifiers and double negation in the rule bodies, in a close way to
the recent proposal RASPL-1. The semantics for this extension just re-
sorts to Equilibrium Logic (or, equivalently, to the General Theory of
Stable Models), which provides a logic-programming interpretation for
any arbitrary theory in the syntax of Predicate Calculus. We present a
translation of this syntactic class into standard logic programs with vari-
ables (either disjunctive or normal, depending on the input rule heads),
as those allowed by current ASP solvers. The translation relies on the
introduction of auxiliary predicates and the main result shows that it
preserves strong equivalence modulo the original signature.

1 Introduction

One of the traditional limitations of Answer Set Programming (ASP) in the
past has been the need of resorting to a ground instantitation of program rules.
Starting from the original definition of Stable Models [1] in terms of a proposi-
tional language, ASP solvers were designed following a two step process: first,
removing variables in favour of all their ground instances; and second, comput-
ing the stable models of the resulting ground program. Variables were somehow
an “external” element that was not directly treated in the semantics. It is not
surprising, in this way, that quantification was not paid too much attention in
the past although, paradoxically, most practical applications of ASP deal in one
way or another with some limited use of quantified variables, using auxiliary
predicates to capture the intended meaning.

This general picture has experienced a drastical change in the last years
thanks to the introduction of Quantified Equilibrium Logic [2] (QEL) or the
equivalent definition of stable models for first-order formulas proposed in [3].
These approaches provide a logic-programming interpretation for any arbitrary
first-order theory, so that syntactic restrictions do not play a role in the semantic
definition any more. Some recent results have been obtained in applying this se-
mantics to programs with variables, without resorting to grounding. For instance,

* This research was partially supported by Spanish MEC project TIN-2006-15455-
C03-02 and Xunta de Galicia project INCITE08-PXIB105159PR.

99

[4] treats the problem of strong equivalence (i.e., programs that have the same
equilibrium models, even when included in a greater, common context), whereas
in [5] QEL is used to analyse rule redundancy and the completeness of rule sub-
sumption under a given substitution. On the other hand, much work remains to
be done yet in exploring the intuition, under a logic-programming perspective,
of the QEL interpretation of formulas with arbitrary syntax or belonging to new
syntactic classes. Several works have followed this direction: we can mention [6],
that has studied the extension of the concept of safety for arbitrary theories; [7],
which considers an extension for dealing with partial functions; or [8], that pro-
poses a logic-programming language RASPL-1 for counting and choice that can
be translated into first-order expressions under QEL by introducing existential
quantifiers and double negations in the rule bodies.

In this paper we analyse an extension of logic programs with variables where,
similarly to first-order theories resulting from the RASPL-1 translation, we in-
troduce existential quantifiers and double negations in the rule bodies, further
allowing a way of nesting these new constructs (something not considered in [8]).
We provide some intutitions of the utility of this extension and explain how these
features are already used in the current ASP programming style by a suitable in-
troduction of auxiliary predicates. In fact, we propose an automated translation
that relies on this technique of auxiliary predicates and reduces the proposed
extension to regular logic programs with variables as those accepted by current
ASP grounding tools. This translation is shown to be strongly equivalent, that
is, the original set of rules and the result of the translation will yield the same
(non-monotonic) consequences, even when they are part of a greater context or
program (of course, in the original language without the auxiliary predicates).
Apart from providing a more readable and compact representation, the advan-
tage of dealing with the extended syntax is avoiding a potential source of errors in
the introduction of auxiliary predicates, not only due to a possible programmer’s
mistake in the formulation, but especially because auxiliary predicates must be
guaranteed to be hidden and limited to their original use.

The rest of the paper is organised as follows. In the next section we introduce
some motivating examples and explain the paper goals. In Section 3 we provide
an overview of Quantified Equilibrium Logic to proceed in the next section with
the introduction of the syntactic subclass we study in this paper. Section 5
presents the translation of this class into regular logic programs, proving its
correctnes. Section 6 discusses some related work and finally, Section 7 concludes
the paper.

2 DMotivation

Consider the following example. Given the extent of predicates person(X), parent(X,Y’)
(X is a parent of V) and married(X,Y) which is a symmetric relation, suppose
we want to represent that a person is happy when all his/her offsprings are
married. A typical piece of program representing this problem in ASP would

60

probably look like:

has_spouse(Y') «— married(Y, Z)
has_single_offs(X) < parent(X,Y), not has_spouse(Y)
happy(X) «— person(X), not has_single_offs(X)

Notice how predicates has_spouse and has_single_offs are not in the problem
enunciate. Their name suggest that we are capturing an existential quantifier:
note also the occurrence of free variables in the bodies that do not occur in the
heads. A more compact way of representing this program could just be:

happy(X) < person(X), not Y (parent(X,Y), not 3Z married(Y,Z)) (1)

We will show that, in fact, both representations are strongly equivalent under
QEL if we restrict the use of the auxiliary predicates has_spouse and has_single_offs
to the above mentioned rules. Notice, however, the importance of this second
representation. We, not only, get a more readable formula and avoid auxiliary
predicates not included in the original problem: we also avoid a possible mis-
take in the use of these predicates in another part or module of the program,
something that could radically change their intended meaning for the example.

As another typical example of an implicit existential quantifier, consider the
frequent formalisation of the inertia default in ASP:

holds(F,V,do(A, S)) < holds(F,V,S), not ab(F,V, A, S) (2)
ab(F,V, A, S) — holds(F,W,do(A, S)),W # V. (3)

where the complete rule bodies would also include the atoms action(A), situation(S),
fluent(F), range(F, V) and range(F, W) to specify the sorts of each variable
Again, predicate ab is introduced to capture the meaning: “there exists a value

for F other than V.” That is, the formula could have been written instead as:

holds(F,V,do(A, S)) < holds(F,V,S), not IW (holds(F, W, do(A,S)), W £ V)

Something similar happens with choice-like pairs of rules for generating pos-
sible solutions. They typically have the form of even negative loops, like in the
example:

in(X) «— vertex(X), not out(X)
out(X) «— vertex(X), not in(X)
1 —in(X),in(Y),X #Y,not edge(X,Y), not edge(Y, X)
intended for generating a clique® in terms of predicate in(X). It seems clear

that predicate out(X) is auxiliary and thus its use should be limited to this pair
of rules (adding other rules with out(X) as a head may change the intended

LA clique is a set of vertices that are pairwise adjacent.

61

meaning). In fact, if the use of out is limited in that way, the first two rules
become strongly equivalent (wrt the language without out) to the rule:

n(X) V oin(X) «— vertex(X) (4)

Once again, the interest of the extended syntax is that it can be translated into
traditional logic programs while it avoids the explicit use of auxiliary predicates
which become hidden in the translation.

3 Overview of Quantified Equilibrium Logic

Following [5], Quantified Equilibirum Logic (QEL) is defined in terms of a models
selection criterion for the intermediate logic of Quantified Here-and-There. In the
paper, we will deal with a version of this logic dealing with static domains and
decidable equality, calling it QHT for short.

Let £ = (C, F, P) be a first-order language where C is a set of constants,
F a set of functions and P a set of predicates. First-order formulae for £ are
built up in the usual way, with the same syntax of classical predicate calculus.
As in Intuitionistic Calculus, the formula —¢ will actually stand for ¢ — L.
We write Atoms(C, P) to stand for the set of atoms built with predicates in P
and constants in C. Similarly, Terms(C, F') denote the set of ground terms built
from functions in F' and constants in C.

We will adopt a logical writing for logic programming connectives, so that
constructions like («,), (not o) and (a < [3) are respectively written as (aA3),
(ma) and (8 — «). We also adopt lower-case letters for variables and functions,
and upper-case for predicates and constants. In this way, a rule like (2) becomes
the formula: Holds(f,v,s) A —=Ab(f,v,a,s) — Holds(f,v,do(a,s))

We use boldface letters x,y to denote tuples of variables, and similarly d for
tuples of domain elements.

Definition 1 (QHT-interpretation). A QHT-interpretation for a language
L= (C,F,P) is a tuple (D,o), H,T) where:

1. D is a nonempty set of constant names identifying each element in the inter-
pretation universe. For simplicity, we take the same name for the constant
and the universe element.

2. 0 : Terms(DUC, F) — D assigns a constant in D to any term built with
functions in F' and constants in the extended set of constants C'UD. It must
satisfy: o(d) =d for alld € D.

3. H and T are sets of atoms such that H CT C Atoms(D, P). O

An interpretation of the form ((D, o), T, T) is said to be total and can be seen
as the classical first-order interpretation ((D,o),T). In fact, we will indistinctly
use both notations. Furthermore, given any arbitrary M = ((D, o), H, T) we will

define a corresponding total (or classical) interpretation M e ((D,0),T).
Satisfaction of formulas is recursively defined as follows. Given an interpre-
tation M = ((D, o), H,T), the following statements are true:

62

=
L
EaAnpfif M aand M | S. Disjunction V is analogous.
= o — [if both:

) M aor ME 3 and

i) Mr = o — (in classical logic

— M [=Vx a(z) if both: (i) M | a(d), for each d € D;
and (ii) My = Vo a(z) in classical logic.

— M | 3z a(z) if for some d € D, M = a(d). O
In the proofs, we will make use of the following property:
Proposition 1. If M | ¢ then Mrp = . O

Nonmonotonic entailment is obtained by introducing a models-minimisation
criterion. Let us define the following ordering relation among interpretations:

Definition 2. An interpretation M = ((D,0), H,T) is said to be smaller than
an interpretation M’ = ((D, o), H',T), written M X M', when H C H’'. O

That is, to be comparable, M and M’ must only differ in their H component, so
that M < M’ iff H C H’. Notice that, as a consequence, M =< M. As usual,
we write M < M’ when M < M’ and M # M’ (that is H C H').

We say that M is a model of a theory I' if M satisfies all the formulas in
I'. If M is total, it is easy to check that: M = I'" iff My |=I' in classical logic.
The next definition introduces the idea of minimal models for QHT.

Definition 3 (Equilibrium model). A total model M of a theory I' is an
equilibrium model if there is no smaller model M’ < M of T. O

Note that an equilibrium model is a total model, i.e., a classical model of
I'. We name Quantified Equilibrium Logic (QEL) the logic induced by equilib-
rium models. As said in the Introduction, equilibrium models coincide with the
concept of stable models (usually defined in terms of program reducts) for all
syntactic classes of programs. In fact, Equilibrium Logic has inspired the General
Theory of Stable Models (introduced and shown to be equivalent in [3]) which
extends the definition of stable model to any first order theory.

Given an interpretation M for a given language, and a sublanguage L, we
write M|z to denote the projection of M modulo £. We say that two theories
I, I; for language £’ are strongly equivalent with respect to a given sublanguage
L of L', written I ES‘C I, when for any theory I'" in £, the sets of equilibrium
models (modulo £) for It UT" and I'; U I' coincide. When £ = L' we just write
IN =; Iy and, in fact, this has been proved [9] to correspond to the QHT-
equivalence of I} and I%.

A Herbrand QHT-interpretation M = ((D,o),H,T) is such that D corre-
sponds to Terms(C, F) and o = id, where id is the identity relation. In [9] it
was shown that M is a Herbrand equilibrium model of a logic program IT iff T
is a stable model of the (possibly infinite) ground program grp(I1) obtained by
replacing all variables by all terms in D in all possible ways.

63

4 Bodies with Existential Quantifiers

In this section we introduce the syntactic extension of logic programs we are
interested in. We define a body as conjunction of conditions, where a condition,
in its turn, recursively defined as:

i) a predicate atom P(t) where t is a tuple of terms;

i) an equality atom t =t' with ¢, ¢’ terms;

ili) 3x (¢) where x is a tuple of Varlables and 1 is a body in its turn;
iv) =C where C is a condition;

Conditions of the form i) and ii) are called atoms: the former are predicate
atoms and the latter, equality atoms. A literal is also a condition, with the form
of an atom or its negation; the rest of conditions are called non-literal. A literal
like —(t = t’) will be abbreviated as t # t'. Without loss of generality, we can
assume that we handle two consecutive negations at most, since =——C' < —C'is a
QHT-tautology. Conditions beginning (resp. not beginning) with — are said to be
negative (resp. positive). Given a body B, we define its positive (resp. negative)
part, BT (resp. B™) as the conjunction of positive (resp. negative) conditions in
B. We assume that dx; ...z, 1 is a shorthand notation for 3x; ... 3z, .

A rule is an expression like B — Hd where Hd is a (possibly empty) disjunc-
tion of predicate atoms (called the rule head) and B is a body. We assume that
an empty disjunction corresponds to L. All free variables in a rule are implicitly
universally quantified. The following are examples of rules:

P(z) A ==Q(x) A =3y (R(z,y) A3z ~R(y, 2)) — S(z) V R(z,z) (5)
Person(x) A =Jy(Parent(x,y) AN -3z Married(y, z)) — Happy(x) (6)
Vertex(x) A —~—In(x) — In(x) (7)

Rules (6) and (7) are just different ways of writing (1) and (4) respectively.
A rule is said to be normal if Hd just contains one atom. If Hd = 1 the rule
is called a constraint. A rule is said to be regular if its body is a conjunction of
literals (i.e. it does not contain double negations or existential quantifiers). A set
of rules of the general form above will be called a logic program with existential
quantifiers in the body or 3-logic program, for short. A program is said to be
normal when all its rules are normal. The same applies for a regular program.

5 A Translation into Regular Logic Programs

The translation of a rule r : B — Hd into a regular logic program r* will consist
in recursively translating all the negative conditions in the rule body B with
respect to its positive part BT. This will possibly generate a set of additional
rules dealing with new auxiliary predicates.

Definition 4 (Translation of conditions). We define the translation of a
condition C with respect to a positive body Bt as a pair (C®, I1(C, B%)) where
C*® is a formula and II(C, B*) a set of rules.

64

1. If C is a literal or has the form 3x a(x) then C* = C, II(C, B™) = .

2. Otherwise, the condition has the form C' = —a(x) being x the free variables
in C. Then C* = ~Aux(x) and II(C,B*) = (BT Aa(x) — Aux(x))* where
Auzx is a new fresh predicate and * is the translation of rules in Def. 5. O

The translation of a conjunction of conditions D with respect to a positive
body BT is defined as expected (D®, I1(D, B*)) where D*® is the conjunction of
all C* for each C in D, and II(D, B*) the union of all rules II(C, B™) for each
Cin D.

Definition 5 (Translation of a rule). The translation of a rule r, written r*
is done in two steps:

i) We begin replacing all the positive conditions 3x ¢ in the body of r by p[x/y]
being y a tuple of new fresh variables® and repeat this step until no condition
of this form is left. Let B — Hd denote the resulting rule.

il) We then obtain the set of rules:

r* € {Hd « BT A (B7)*}UII(B~,B") O

The translation of an J-logic program II is denoted IT* and corresponds
to the logic program (J,.,; 7" as expected. As an example of this translation,
consider the rule r; = (6). We would have:

ri = {Person(x) A ~Auxy(z) — Happy(x)} UII(B(r1)~, Person(x))

where B(r1)” = —-3y(Parent(x,y) A =Iz(Married(y, z))) and so,
II(B(r1)~, Person(z)) contains the translation of the rule:

Person(z) A Jy(Parent(z,y) A —3z(Married(y, z))) — Auxy(z)
We remove the positive existential quantifier to obtain ro:
Parent(xz,y) A =Iz(Married(y, z)) A Person(x) — Auz(z)
and now

ry = {Parent(z,y) A Person(z) A mAuxs(z,y) — Auxq(z)}
U II(B(r2)”, Parent(z,y) A Person(x))

This yields the rule
Parent(x,y) A Person(z) A Jz(Married(y, z)) — Auxa(z,y)

in which, again, we would just remove the positive existential quantifier. To sum
up, the final complete translation r would be the (regular) logic program:

Person(z) AN = Auxi(x) — Happy(z)
Parent(x,y) A Person(z) A mAuzs(x,y) — Auzi(x)
Parent(z,y) A Person(z) A Married(y, z) — Auxzs(z,y)

2 The introduction of new variables y can be omitted when x does not occur free in
the rest of the rule.

65

We can informally read Auxs(x,y) as “y is a married child of @ and Auxy(z)
as “x has some single child.”

It is easy to see that the translation is modular (we translate each rule inde-
pendently) and that its size is polynomial with respect to the original input.

Proposition 2. Given a rule r containing A atoms in its body and N subfor-
mulas of one of the forms (-3x «) or (——a), the translation r* contains N + 1
reqular rules whose bodies contain at most A+ N atoms. a

It might be thought that, as we always have a way of removing positive
existential quantifiers, these are unnecessary. However, we must take into account
that they are useful when nested in another expression.

As an example with double negation, it can be easily checked that the trans-
lation of rule (7) becomes the program:

Vertex(x) N ~Auz(xz) — In(x) Vertex(xz) A —In(x) — Auz(x)
Theorem 1 (Main result). Let IT be an 3-logic program for language L. Then
I =~ 1. O
Theorem 2. If II is a disjunctive (resp. normal) 3-logic program then II* is a

disjunctive (resp. normal) regular logic program. a

The reason for making the definition of new auxiliary predicates depend on
the positive body of the original rule has to do with the following property, that
will guarantee a correct grounding of the program resulting from the translation.

Definition 6 (Restricted variable). A variable X is said to be restricted by
some positive literal p(t) occurring in a conjunction of literals 8 when:

1. either X directly occurs in p(t);
2. or there exists a positive literal X =Y orY = X in 8 and Y is restricted

by p(t) in G.
We just say that X is restricted in [if it is restricted by some p(t) in (. a
Definition 7 (Safe rule). A rule r : B — Hd is said to be safe when both:

a) Any free variable occurring in r also occurs free and restricted in B.
b) For any condition 3z ¢ in B, x occurs free and restricted in . O

For instance, rule (6) is safe: its only free variable z occurs in the positive body
Person(z). In fact, all the rules we used in the previous sections are safe. How-
ever, rules like:

-~ Mark(x) — Mark(zx) Jy Q(y) — P(x) Jz —-P(x) — A

are not safe. Notice that, for regular programs (i.e. those exclusively containing
literal conditions) only case a) of Definition 7 is applicable and, in fact, this
coincides with the usual concept of safe rule in ASP.

Theorem 3. If IT is safe then IT* is safe. O

66

6 Related Work

The technique of replacing quantifiers by auxiliary predicates was already intro-
duced in Lloyd and Topor’s paper [10] for Prolog extended programs. That work
contained a closely similar translation® for removing existential quantifiers. In
the case of ASP, however, many of Lloyd and Topor’s transformations are not
valid: for instance treating implications as disjunctions, removing double nega-
tions or replacing Vg by —3x—¢p, cannot be done in ASP, as it can be expected
from the intuitionistic nature of its logical characterisation in terms of QHT. So,
in principle, Lloyd and Topor’s treatment of existential quantifiers needed not
to be correct in the case of ASP — we have proved it is so.

In fact, the correctness of this technique for ASP has also been independently
found in the recent work [11] where, moreover, they implemented a system called
F2LP for dealing with quantifiers. This system allows computing answer sets for
first order theories that satisfy some syntactic restrictions: informally speaking,
existential* quantifiers must be in the antecedent of an implication or in the scope
of negation. In fact, the current approach deals with a syntactic subclass of that
of F2LP where we do not nest conjunctions, disjunctions and implications. On the
other hand, although F2LP handles a more general syntax, no safety condition
has been defined for it (until now) in such a way that an arbitrary theory results
in a (quantifier-free) logic program that is safe in the format accepted by current
solvers, as happens with the syntactic subclass proposed in the current work.

As commented in the Introduction, this work is directly related to the recently
introduced language RASPL-1 [8]. In fact, that language is defined in terms of a
translation into first order sentences that fit into the syntax extension we study
here (existential quantifiers and double negations in the body).

The use of 3-logic programs was actually forwarded in [7] where an extension
of QEL for dealing with partial functions was introduced (in fact, the main result
of the current paper was conjectured in that work). A less related approach that
has also considered the use of body quantifiers is [12], although the semantics
was only defined for stratified programs.

7 Conclusions

We have presented an extension of logic programming that allows dealing with
(possibly nested) existential quantifiers and double negations in the rule bodies.
We have shown how this new syntactic class captures several typical represen-
tation problems in ASP allowing a more compact and readable formulation and
avoiding the use of auxiliary predicates. In fact, we presented a translation that
reduces this new syntax to that of regular logic programs by automatically gen-
erating these auxiliary predicates, which are kept hidden to avoid programmer’s
erTors.

3 The main difference is that, in our case, the rule for the auxiliary predicate inherits
the body where the existential quantifier occurred, so that safety can be preserved.

4 F2LP also allows universal quantifiers, but only when they are strongly equivalent to
negations of existential quantifiers.

67

Acknowledgements Many thanks to anonymous reviewers for their helpful sug-
gestions and for pointing out some clearly missing references to related work.

References

10.

11.

12.

13.

14.

Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
Proc. of the 5th Intl. Conf. on Logic Programming. (1988) 1070-1080

Pearce, D., Valverde, A.: Towards a first order equilibrium logic for nonmonotonic
reasoning. In: Proc. of the 9th European Conf. on Logics in AI (JELIA’04). (2004)
147-160

Ferraris, P., Lee, J., Lifschitz, V.: A new perspective on stable models. In: Proc.
of the International Joint Conference on Artificial Intelligence (IJCAT’07). (2004)
372-379

. Lifschitz, V., Pearce, D., Valverde, A.: A characterization of strong equivalence for

logic programs with variables. In: Proc. of the 9th Intl. Conf. on Logic Programming
and Nonmonotonic Reasoning (LPNMR’07). (2007) 188-200

Pearce, D., Valverde, A.: Quantified equilibrium logic and foundations for answer
set programs. In: Proc. of the 24th Intl. Conf. on Logic Programming (ICLP’08).
(2008) 547-560

Lee, J., Lifschitz, V., Palla, R.: Safe formulas in the general theory of stable models
(preliminary report). In: Proc. of the 24th Intl. Conf. on Logic Programming
(ICLP’08). (2008) 672-676

Cabalar, P.: Partial functions and equality in answer set programming. In: Proc.
of the 24th Intl. Conf. on Logic Programming (ICLP’08). (2008) 392-406

Lee, J., Lifschitz, V., Palla, R.: A reductive semantics for counting and choice
in answer set programming. In: Proc. of the 23rd AAAI Conference on Artificial
Intelligence. (2008) 472-479

Pearce, D., Valverde, A.: Quantified equilibrium logic and the first order logic of
here-and-there. Technical Report MA-06-02, University of Malaga, Spain (2006)
Lloyd, J., Topor, R.: Making PROLOG more expressive. Journal of Logic Pro-
gramming 1(3) (1984) 225-240

Lee, J., Palla, R.: System F2LP - computing answer sets of first-order formulas. In:
Proc. of the 10th Intl. Conf. on Logic Programming and Nonmonotonic Reasoning
(LPNMR’09). (2009) to appear.

Eiter, T., Gottlob, G., Veith, H.: Modular logic programming and generalized quan-
tifiers. In: Proc. of the 4th Intl. Conf. on Logic Programming and Nonmonotonic
Reasoning (LPNMR’97). (1997) 290-309

Cabalar, P., Pearce, D., Valverde, A.: Reducing propositional theories in equilib-
rium logic to logic programs. In: 12th Portuguese Conference on Artificial Intelli-
gence (EPIA 2005). (2005) 4-17

Lifschitz, V., Tang, L.R., Turner, H.: Nested expressions in logic programs. Ann.
Math. Artif. Intell. 25(3-4) (1999) 369-389

68

Appendix. Proofs

Proof (Proposition 2). It is easy to see that, excepting for the first step, in
which the original rule r is considered, each time we introduce a new rule is
for univoquely defining an auxiliary predicate Auz(x) that corresponds to one
of the subexpressions of the form —3dx « or ==« that occurred in r. So, the
total number of rules is N + 1. As for the body size of each rule, we always go
keeping a (usually strict) subset of the original number of atoms A occurring in
r, plus additional literals = Auz(x) corresponding to replaced conditions of the
form —3x « or —=—a. As a result, we get the upper bound N + A. O

To prove our main result, we will use several QHT valid equivalences (many
of them already commented in [13]) and introduce several lemmas. For instance,
we will frequently make use of the following QHT valid formula (see [13])

a—(B—=7)=(@nf—7) (®)
Similarly, the following is a QHT-theorem:
aAN=(aNf) - an-p 9)
whose proof can be obtained from transformations in [14, 13].

Lemma 1. Let M be an equilibrium model of I', and M |= a. Then M is an
equilibrium model of I' U {a}. O

Theorem 4 (Equivalent subformula replacement). Given the equivalence:
Vx(a(x) < B(x)) (10)

where x is the set of free variables in a or 3, and a given formula v containing
a subformula a(t), then (10) implies v < ~[a(t)/5(t)]. O

Theorem 5 (Defined predicate removal). Let I'y be a theory for language
L, a a formula in that signature and Aux a predicate not in L. If Iy is I'y plus

Vx(Aux(z) < a(x)) (11)
then I Ef Is. O
Lemma 2. Let My = ((D,0),H,T) be a model of the formulas

Vx(a(x) — Aux(x)) (12)
Vx(—Auz(x) — [(x)) (13)

where o and B do not contain predicate Aux, and let My = ((D,o),H',T) be
such that H\ H' = {Auxz(d) | d € D} for some set of tuples of domain elements
D # 0 satisfying My E Auxz(d) and My £ a(d). Then Mo = (12) U (13). O

69

Theorem 6. Let £ denote a signature not containing predicate Aux, and let
a(x), B(x) be a pair of formulas for L. Given I't = (12) U (13) and Iy consisting
of Iy plus:

Vx(Aux(x) — a(x)) (14)
then Iy Esﬁ Is. O
Theorem 7. Let I'y be a theory consisting of the single formula

vx(a(x) A =B(x) — y(x)) (15)

for language L, being x a tuple with all the variables that occur free in the an-
tecedent or in the consequent. Then Iy =~ I'y where I'y is the pair of formulas:

vx(a(x) A —Auz(x) — y(x)) (16)
vx(a(x) A B(x) — Auz(x)) (17)
and Auxz(x) is a fresh auxiliary predicate not included in L. O

Lemma 3. Let x be a variable that does not occur free in 3. Then, the following
is a QHT-tautology:

(Fz a(z) — B) « Ve(a(z) —) (18)

Proof (Lemma 1). Obviously, M |= I U {a}. There cannot be a smaller model
M < M for I U {a}, because it would also be a model of I" and this would
contradict minimality of M for I. O

Proof (Theorem 4). It is easy to check that, given any tuple d of domain elements
and any model M = ((D, o), H,T), M = (10) implies that:

1. M k= a(d) iff M = B(d)
2. My = a(d) iff My = G(d)

Looking at the satisfaction of formulas, this means that for any model of (10),
a(t) and B(t) for any tuple of terms t are semantically equivalent and can be
interchanged. a

Proof (Theorem 5). Let I' denote an arbitrary theory for £ and take M an
equilibrium model of I" U I} and signature £. We will show that there exists
an equilibrium model M’ of I' U I'; such that M'|; = M. Tt is clear we can
take M’ equal to M for all predicates in £ and fix the extent of Aux such
that M’ E Auz(d) it M | «a(d) for any tuple of elements d. Obviously, by
construction, M’ = I' U I';. Tt must also be minimal, since any M” < M’ that
M" = I'U Ty is also a model of I"'U Iy and this would contradict the minimality
of M for that theory.

70

For the other direction, take some M’ = ((D,0),T") equilibrium model of

I' U Iy. Clearly, M’ = I' U I} and, since this theory does not contain Auz,
its projection M'|, = M = ((D,0),T) must also be a model for I"U I';. Take
another model of this theory, My = ((D, o), H,T) with H C T', that is My < M.
But then, we can construct M5 = ((D, o), H',T') such that H’ consists of H and
the set of atoms Aux(d) for which My |= «(d). Notice that H' must be a subset
of T' because Mz = «(d) implies M = a(d) and this implies M’ E «(d),
that together with M’ |= (11) implies and M’ = Auz(d). But as H C T we
get H' C T" and so M} < M'’. On the other hand, by construction of M}
together with M’ |= (11), we obtain M4 = (11). In this way, M} = ' U I
while M, < M’ reaching a contradiction with minimality of M’ for this theory.
O

Proof (Lemma 2). Note first that, for any tuple d € D, M; and Ms coincide
both for Auz(d), a(d) and 8(d). Then M; = (12) and M; [= (13) allow us
to conclude My | a(d) — Aux(d) and My = —Auzx(d) — 3(d), respectively.
We remain to prove that the same holds for tuples d € D. Consider Mr =
((D,0),T), that is, the total model above M; and M. For any d € D, we
have M; = Auz(d) and thus My = Auz(d), but then My = —=Aux(d). On
the other hand, M; = (13) also implies My |= (13) and, in particular, My =
—Aux(d) — ((d). The latter, together with My & —Auz(d), implies M |=
—Auz(d) — B(d), for any d € D.

Similarly, M; = (12) implies M7 = (12) and, in particular, M7 = a(d) —
Auz(d) for d € D. On the other hand, as M; and Ms do not differ for a(d),
we conclude My £~ a(d), and thus, Ms E a(d) — Auz(d). 0

Proof (Theorem 6). Let I' denote an arbitrary theory for £ and take M =
((D,0),T) an equilibrium model of I U I';. For proving that M is equilibrium
model of I' U I's, by Lemma 1, it suffices to show that M |= (14). Assume this
does not hold. As M is a total model, this just means that for some tuple of
domain elements d, M = Auz(d) and M }= a(d). Let us take now a model
M’ ={((D,o),H,T) where H is equal to T excepting that the extension of Auz
does not include the tuple d. Notice that H C T and M’ < M. In fact, we can
observe that Lemma 2 is applicable taking M; = M, My = M’ and D = {d} to
conclude M’ |= (12) U (13), i.e., M’ |= I';. Furthermore, as M’ only differs from
M in Auz, M’ |= I'. But this contradicts the minimality of M as equilibrium
model of " U I7.

For the other direction, let M be an equilibrium model of I' U I's. Since
Il C I, obviously M = I'UT} . We remain to prove that M is minimal. Suppose
we had some other model M’ < M of I'U I. If M’ |= (14) we would have
M’ |= I'U T3 and this would contradict the minimality of M for that theory. So,
assume M’ £ (14). Let D be the set of tuples d for which M’ £ Auxz(d) — «(d)
(note that this set cannot be empty). As M = (14) we must have M’ = Aux(d)
and M’ [~ a(d) for all d € D. Now take M” equal to M’ excepting that, for all

71

d € D, M" £ Auz(d). We can apply Lemma 2 taking M; = M', My = M”
and D to conclude M” = (12) U (13), i.e., M” = I. Furthermore, as M"
only differs from M’ in the extent of Aux, we obtain M” = I' U I';. Now, as
M" [Auz(d) and we have M |= (14) we conclude M” |= Auz(d) — a(d). For
tuples ¢ € D we had M’ = Auz(c) — «a(c) by definition of D, but M’ and M”
coincide in Aux(c) and a(c). As a result, M” |= (14) too, and since M" < M
we obtain a contradiction with minimality of M for I" U I's. O

Proof (Theorem 7). By (8), the formula (16) is strongly equivalent to:
vx(—Auz(x) — (a(x) — v(x))) (19)

so that, we can apply Theorem 6 on I to transform the implication in (17) into
a double implication:

vx(ax) A B(x) < Auz(x)) (20)

As a result, I's is strongly equivalent (modulo £) to the theory consisting of (16)
and (20). By Theorem 4, this is strongly equivalent, in its turn, to (20) plus:

Vx(a(x) A =(a(x) A B(x)) — (x)) (21)

Due to (9), the latter is strongly equivalent to (15). Finally, by Theorem 5, we
can remove (20), since it is a definition for predicate Aux which does not belong
to L. O

Proof (Lemma 3). As (18) is a classical tautology, we remain to prove that,
for any interpretation M = ((D,o),H,T), M E Jz a(z) — pif M |
Va(a(x) — (). For the left to right direction, assume M = 3z a(x) — S but
M}~ Vo(a(x) — (). The latter means there exists some element d for which
M £ a(d) — B. Since M = Jz a(x) — [we have that M also satisfies that
formula and so Mr = Va(a(x) — B) since it is a classically equivalent formula.
Therefore, the only possibility is M = a(d) and M [~ 5. But from the former
we get M |= 3z a(z) and this contradicts M = Jz a(z) — (.

For the right to left direction, suppose M = Va(a(z) — 3). As My also satis-
fies that formula it must also satisfy the classically equivalent formula 3z a(z) —
(. We remain to prove that M = 3z a(x) implies M = 5. Assume that the
former holds. Then, for some element d, M = a(d). As M = Vz(a(z) — (), in
particular, M = a(d) — (3, but this together with M = «(d) implies M |= (.

O

Proof (Theorem 1. Main result). We prove the result by induction on the suc-
cessive application of -* in each group of newly generated rules. If a rule r is
regular it can be easily checked that r* = r and the result of strong equivalence
is straightforward. If » contains a double negation or an existential quantifier,

72

we will show that the two steps in Definition 5 preserve strong equivalence. Step
i) is the result of the successive application of Lemma 3, that allows us to re-
move a positive existential quantifier in the body, provided that the quantified
variable does not occur free in the rest of the formula. Notice that this lemma
can be applied to a larger body like 3z a(z) A v — [(again, with x not free
in) because the latter is QHT-equivalent to 3z a(x) — (v —). For Step ii),
consider any rule r : B — Hd with some non-literal negative condition —f (x).
We can write r as BT (x) A —31(x) A B'(x) — Hd(x), being B’(x) the rest of
conjuncts in the negative body, that is, B~ (x) excepting =31 (x). This expression
can be equivalently written as BT (x) A =f31(x) — (B'(x) — Hd(x)) and so, we
can apply Theorem 7 taking a(x) to be the positive body BT (x), and ~(x) the
implication B'(x) — Hd(x) to conclude that r is strongly equivalent (modulo its
original language £) to the conjunction of B¥(x) A =Auz(x) A B'(x) — Hd(x)
plus BT (x)AB1(x) — Auz(x) being Aux;y a new fresh predicate. We can repeat
this step for the rest of non-literal negative conditions in B~ until the original
rule becomes Bt (x) A mAuzi(x) A -+ A —Auzx,(x) A B’ (x) — Hd(x), i.e., what
we called BT A (B7)®* — Hd in Definition 5. Finally, the correctness of the
translation of the newly generated rules BT (x) A 3;(x) — Auw;(x) follows from
the induction hypothesis. Note that termination of this inductive transformation
-* is guaranteed by observing that in each step, we reduce the size of new rule
bodies, replacing negative non-literal conditions by smaller expressions. a

Proof (Theorem 2). First, observe that all the rules generated in the transla-
tion either repeat one of the original rule heads in I or just contain one atom
Auz(x). Thus, if the original program was disjunctive (resp. normal) then IT*
will be disjunctive (resp. normal). Second, just notice that the translation is re-
cursively repeated until rule bodies exclusively contain literal conditions, so the
final program will be a regular logic program in the usual sense. a

Proof (Theorem 3). It suffices to observe that the rules generated in each trans-
lation step preserves safety with respect to Definition 7. Assume we start from
a safe rule and obtain its translation following the steps in Definition 5. In Step
i) of that definition, each time we remove Jz¢ and replace it by ¢[x/y] we are
introducing a new free variable y in the rule that must satisfy condition a) in
Definition 7 to maintain safety. But this is guaranteed because the original rule
was safe and so, x occurred free and outside the scope of negation in . There-
fore, y will occur free and outside the scope of negation in ¢[z/y], which is part
of the resulting rule body. This means that the resulting rule satisfies a) in Def-
inition 7 for variable y while the status of the rest of variables in the rule has
not changed.

Now, take the rule : B — Hd that results from iterating Step i) which, as we
have seen, preserves safety. Notice that does not contain quantified expressions
outside the scope of negation, so that BT is just a conjunction of atoms. It can be
easily observed that each rule 7’ : BY A(B~)® — Hd does not introduce new free

73

variables with respect to B — Hd (it just replaced any negative condition like
- (x) in B~ by a new atom —Aux(x)) while it maintains the original positive
body BY. So, as the original rule r was safe, all free variables in 7’ also satisfy
condition @) in Definition 7, while b) is not applicable because ' is regular (its
body exclusively consists of literals). Similarly, rules like 7/ : BT A a(x) —
Auz(x) in II(B~,B") do not introduce new free variables with respect to r
either, while they maintain the same positive body B, so they will satisfy a) in
Definition 7. On the other hand, any quantified condition like Jy ¢ that occurs
in a(x) also occurred in a condition —a(x) in 7. As r was safe, Jy ¢ will satisfy
b) in Definition 7, so that rule »” is safe too. O

74

	Answer Set Programming
	Existential Quantifiers in the Rule Body (Pedro Cabalar)
	Abstract
	1 Introduction
	2 Motivation
	3 Overview of Quantified Equilibrium Logic
	4 Bodies with Existential Quantifiers
	5 A Translation into Regular Logic Programs
	6 Related Work
	References
	Appendix. Proofs

