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0Abstract

Complex networks are ubiquitous in nature and society. They appear in vastly di�erent
domains, for instance as social networks, biological interactions or communication
networks. Yet in spite of their di�erent origins, these networks share many structural
characteristics. For instance, their degree distribution typically follows a power law.
This means that the fraction of vertices of degree k is proportional to k−β for some
constant β ; making these networks highly inhomogeneous. Furthermore, they also
typically have high clustering, meaning that links between two nodes are more likely
to appear if they have a neighbor in common.

To mathematically study the behavior of such networks, they are often modeled as
random graphs. Many of the popular models like inhomogeneous random graphs or
Preferential Attachment excel at producing a power law degree distribution. Clustering,
on the other hand, is in these models either not present or arti�cially enforced.

Hyperbolic random graphs bridge this gap by assuming an underlying geometry
to the graph: Each vertex is assigned coordinates in the hyperbolic plane, and two
vertices are connected if they are nearby. Clustering then emerges as a natural conse-
quence: Two nodes joined by an edge are close by and therefore have many neighbors
in common. On the other hand, the exponential expansion of space in the hyperbolic
plane naturally produces a power law degree sequence. Due to the hyperbolic geom-
etry, however, rigorous mathematical treatment of this model can quickly become
mathematically challenging.

In this thesis, we improve upon the understanding of hyperbolic random graphs by
studying its structural and algorithmical properties. Our main contribution is threefold.
First, we analyze the emergence of cliques in this model. We �nd that whenever the
power law exponent β is 2 < β < 3, there exists a clique of polynomial size in n. On
the other hand, for β > 3, the size of the largest clique is logarithmic; which severely
contrasts previous models with a constant size clique in this case. We also provide
e�cient algorithms for �nding cliques if the hyperbolic node coordinates are known.
Second, we analyze the diameter, i. e., the longest shortest path in the graph. We �nd
that it is of order O (log

2
3−β n) if 2 < β < 3 and O (logn) if β > 3. To complement

these �ndings, we also show that the diameter is of order at least Ω(logn). Third,
we provide an algorithm for embedding a real-world graph into the hyperbolic plane
using only its graph structure. To ensure good quality of the embedding, we perform
extensive computational experiments on generated hyperbolic random graphs. Further,
as a proof of concept, we embed the Amazon product recommendation network and
observe that products from the same category are mapped close together.
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0Zusammenfassung

Komplexe Netzwerke sind in Natur und Gesellschaft allgegenwärtig. Sie tauchen in
unterschiedlichsten Domänen auf, wie zum Beispiel als soziale Netzwerke, biologische
Interaktionen oder Kommunikationsnetzwerke. Trotz ihrer verschiedenen Ursprünge
haben diese Netzwerke jedoch viele strukturelle Gemeinsamkeiten. So sind die Grade
der Knoten typischerweise Pareto-verteilt. Das heißt, der Anteil an Knoten mit k
Nachbarn ist proportional zu k−β , wobei β eine beliebige Konstante ist. Weiterhin
haben solche Netzwerke einen hohen Clusterkoe�zienten, was bedeutet, dass zwei
benachbarte Knoten viele gemeinsame Nachbarn haben.

Um das Verhalten solcher Netzwerke mathematisch zu studieren, werden sie häu�g
als Zufallsgraphen modelliert. Klassische Modelle wie inhomogene Zufallsgraphen
oder das Preferential-Attachment-Modell erzeugen Graphen mit Pareto-verteilten
Knotengraden. Cluster sind darin jedoch häu�g nicht vorhanden, oder werden durch
das Hinzufügen unnatürlicher Strukturen künstlich erzeugt.

Hyperbolische Zufallsgraphen lösen dieses Problem, indem sie dem Graphen eine
Geometrie zugrunde legen. Jeder Knoten erhält hyperbolische Koordinaten, und zwei
Knoten sind verbunden, wenn ihre hyperbolische Distanz klein ist. Cluster entstehen
dann natürlich, da benachbarte Knoten samt ihrer Nachbarschaften in der Geometrie
nah beieinander liegen, und die Pareto-Verteilung der Knotengrade folgt aus der expo-
nentiellen Expansion des hyperbolischen Raumes. Durch die hyperbolische Geometrie
wird jedoch auch die mathematische Analyse des Modells schnell kompliziert.

In dieser Arbeit studieren wir die strukturellen und algorithmischen Eigenschaften
von hyperbolischen Zufallsgraphen. Wir beginnen mit der Analyse von Cliquen. Wir
beobachten, dass wenn der Pareto-Exponent β zwischen 2 und 3 liegt, es Cliquen von
polynomieller Größe in n gibt. Mit β > 3 ist die größte Clique noch logarithmisch groß,
was früheren Modellen mit konstanter Cliquengröße stark widerspricht. Wir geben
auch einen e�zienten Algorithmus zur Cliquen�ndung an, wenn die Koordinaten
der Knoten bekannt sind. Als Zweites analysieren wir den Durchmesser, also den
längsten kürzesten Pfad in hyperbolischen Zufallsgraphen. Wir beweisen, dass er
O (log

2
3−β n) lang ist, wenn 2 < β < 3, und O (logn) falls β > 3. Komplementär dazu

zeigen wir, dass der Durchmesser mindestens Ω(logn) beträgt. Als Drittes entwickeln
wir einen Algorithmus, der reale Netzwerke in die hyperbolische Ebene einbettet. Um
eine gute Qualität zu gewährleisten, evaluieren wir den Algorithmus auf über 6000
zufällig generierten hyperbolischen Graphen. Weiterhin betten wir exemplarisch den
Produktempfehlungsgraphen von Amazon ein und beobachten, dass Produkte aus
gleichen Kategorien in der Einbettung nah beieinander liegen.
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1 Introduction

Most relational data can be expressed as a network. Cities are connected by roads
in road networks; users form friendships in social networks; authors collaborate in
co-author networks; and autonomous systems communicate in the Internet network.
Understanding the structure and behavior of such systems has therefore become a
crucial task in industry and applied sciences.

Such networks are typically modeled as graphs. A graph G is a fundamental com-
binatorial object, consisting of a set of nodes V and a set of edges E ⊆

(
V
2

)
, where

each edge {u,v} ∈ E joins two nodes u,v ∈ V . Due to their importance, algorithmic
problems on these structures have been intensely studied in the last decades and their
behavior is theoretically well-understood.

Nevertheless, considering general graphs for algorithm analysis poses several draw-
backs. For instance, many fundamental algorithmic problems like Clique, Independent
Set or Traveling Salesman are known to be NP-hard on general graphs. For such
problems, it is therefore highly unlikely that an e�cient worst-case algorithm will
be developed any time in the future. The desire to solve them e�ciently in practice,
however, remains. This gave rise to a myriad of heuristic approaches that work well
for many problems despite their hard worst-case complexity. To convincingly explain
why this is the case, the theoretical computer science community devised several more
�ne-grained approaches that go beyond NP-hardness.

Instead of �nding the optimum, approximation algorithms try to �nd solutions that
are provably close to the optimum in quality. Many notoriously hard problems like
Vertex Cover or Metric Traveling Salesman can be approximated within a factor of 2
in polynomial time using this approach. Another possibility is to re�ne the worst-case
analysis of an algorithm. Typically, the runtime of an algorithm is measured in the size
of the input n. The more �ne-grained parameterized complexity, however, attempts
to �nd underlying structures in the input that make an algorithmic problem hard.
These structures are then quanti�ed in an extra parameter k . Then, one may express
the runtime of an algorithm in the size of the input and the parameter k . For some
problems like k-VertexCover, this makes it possible to achieve runtimes polynomial in
n but exponential (or worse) in k .

Another approach is to assume that real-world problem instances are drawn from
some probability distribution. Instead of analyzing worst-case complexity, one may
then look at average-case behavior of these structures. Random graphs, for example,
were modeled for a long time as so-called Erdős-Rényi random graphs G (n,p). To
sample a graph of size n, every edge {u,v} ⊆ (

V
2

)
is independently added with

1



Chapter 1 Introduction

probability p. This uniform model quickly became popular since it captures “almost all
graphs”: If a property P holds with probability x for the G (n,p) model, then P holds
for a fraction of x of all 2(

n
2 ) graphs of size n. Therefore, if one can show that P holds

with a probability approaching 1 as n → ∞ in the G (n,p) model, this means that P
holds for essentially all graphs for large n.

It is easy to see that in this model, every node has p · (n−1) neighbors in expectation.
The degree sequence—i. e., the fraction of nodes f (k ) having k neighbors—is thus
strongly concentrated around a single value p · (n − 1) in the G (n,p). Recent research
suggests, however, that for many real-world networks this is not the case. Rather,
these networks seem to have a degree distribution following a power law sequence,
i. e., f (k ) ∼ k−β for some constant β depending on the network [New03]. For most of
these networks, β lies between 2 and 3, but networks with larger power law exponents
exist.

A power law degree distribution implies that these networks are inhomogeneous:
Most nodes have a small (constant size) neighborhood; but there exist nodes in the
graph with an extremely large (polynomial size) neighborhood. These �ndings suggest
that the G (n,p) does not capture all properties of real-world complex networks; and
other models should be considered.

Scale-Free Networks. For many real-world networks stemming from vastly di�er-
ent �elds, it has been observed that along with a power law degree distribution, they
share more structural characteristics. They have hub nodes (nodes that interconnect
the graph), community structures (subgraphs with high edge density), very low diame-
ter (longest shortest path) and a giant component (a connected component containing
a constant fraction of all vertices). Such networks are also often called scale-free even
though there is no universally agreed-upon de�nition of this term [Li+05].

Over the course of the last decade, research has been striving to produce generative
models for these types of networks that are able to accurately predict properties of
real-world graphs. Popular models include the preferential attachment graphs [BA99;
Bol+01] and variants of inhomogeneous random graphs [Hof16; Söd02; BJR07]. The
latter generalizes the Erdős-Rényi random graphs Gn,p by using non-uniform—but
independent—edge probabilities. These models excel at producing a power-law degree
distribution; and they have a giant component, hub nodes and low diameter. Due
to their independent edge probabilities, they are also accessible to rigorous studies.
Independent edge probabilities also imply, however, that the graphs have low clustering,
meaning that there exist no community structures.

In contrast, most real-world graphs do have high clustering, see e. g. [LK14]. In
the case of social networks this is easy to envision: Two people are more likely to be
connected if they already have a friend in common. A number of �xes to the above
models have been proposed to incorporate that intuition [Váz03; New01; LK07] (e.g.

2



Related Work Section 1.1

�rst construct a random graph, and then replace all nodes with k-cliques). Often times,
however, these �xes seem arti�cial and introduce structural artifacts that are unlikely
to appear as such in nature.

Hyperbolic Random Graphs. Boguñá, Cla�y, Krioukov and Serrano [BKC09;
SKB08] took a di�erent approach by assuming an underlying geometric space to
the graph. Each node is equipped with a weight and a set of coordinates; and two
nodes are connected if they are either close by, or have large enough weights. One
may interpret this as comparing similarity and popularity of two individuals: Two
individuals are connected if they are either similar or popular enough.

While this approach more satisfyingly explained the occurrence of clustering, the
conjunction of geometry and weights still seemed arti�cial. This was resolved, however,
by considering the right underlying geometry. Krioukov, Papadopoulos, Kitsak, Vahdat,
and Boguñá [Kri+10] introduced hyperbolic random graphs, where nodes are sampled
in the hyperbolic plane and connected if they are close by. High clustering and a
power law degree distribution emerge in this model as a natural re�ection of the
underlying hyperbolic plane. Since space expands exponentially in the hyperbolic
plane (as opposed to polynomially in euclidean spaces), sampling nodes uniformly in
a hyperbolic circle places most of them close to the boundary of said circle. On the
other hand, again due to the exponential space expansion, these nodes have very few
neighbors. Figure 1.1 shows an example of a hyperbolic random graph.

The result is a natural model that explains many characteristics observed in real-
world networks. Further, the geometric representation of these graphs in the hyperbolic
plane can be used for visualization and can even be algorithmically exploited. For
instance, Boguñá, Papadopoulos, and Krioukov [BPK10] use a hyperbolic embedding
of the Internet graph for greedy routing. There, nodes forward packets to the neighbor
that is geographically closest in the hyperbolic plane to the packet’s destination. They
show that using their embedding, this method is near optimal. Without backtrack-
ing, 97% of packets reach their destination; and the average path length is just 10%
longer than optimal. Due to this exceptional performance, a proposed replacement
for the IP protocol, the Named Data Network [Zha+14], adopted its routing technique
to use greedy routing in the hyperbolic plane. Following this example, metabolic
networks [SBS12] and trade networks [Gar+16] have been successfully embedded
into the hyperbolic plane as well. Taken together, these results suggest that multiple
real-world networks seem to have an underlying hyperbolic geometry.

1.1 Related Work

Even though the topic of sale-free networks is relatively new, a vast amount of research
already exists upon which we can build. Since the focus of this work lies on hyperbolic

3



Figure 1.1: An example of a hyperbolic random graph, sampled with parameters n = 2 500,
α = 0.6, R = 19,T = 0.3. See Chapter 3 for a thorough explanation of these parameters. Due to
the exponential expansion of space, most nodes are sampled close to the boundary of the disk
and have few neighbors. Nodes close to the center are rare, but due to their centrality they
are connected to a signi�cantly larger amount of vertices. This results in a power law degree
distribution. The center of the graph (often called the core) is usually tightly connected. Due
to the geometric closeness of joined nodes, their neighborhoods have a large overlap. This
yields a high clustering coe�cient as observed in real-world networks.

4



Related Work Section 1.1

random graphs, we refer the interested reader to [Bar16] for a a general introduction
to complex networks. Alternatively, the lecture notes of van der Hofstad [Hof16]
are more mathematical in nature but provide an excellent overview over existing
theoretical results.

Model. Hyperbolic random graphs were �rst suggested by Krioukov, Papadopoulos,
Kitsak, Vahdat, and Boguñá [Kri+10]. Their work builds upon earlier research on the
underlying geometry of complex networks [SKB08; BKC09; Pap+10]. Gugelmann,
Panagiotou, and Peter [GPP12] examine the hyperbolic random graph model more
closely and rigorously prove that it has a power law degree distribution, and a constant
clustering coe�cient. Fountoulakis [Fou15] bridges this model with the well-known
Chung-Lu random graphs [ACL01; CL02a; CL02b] by showing that one can relate
the radius of a vertex in hyperbolic random graphs to the weight of a vertex in
Chung-Lu random graphs. Conditioned on knowing only the radius or weight of a
vertex, respectively, the connection probabilities in both models are asymptotically
equal. This, however, does not hold once (parts of) the neighborhoods of u and v
are revealed, since hyperbolic random graphs have constant clustering whereas in
Chung-Lu random graphs all edges are sampled independently. Bringmann, Keusch,
and Lengler [BKL15] recently used this to generalize hyperbolic random graphs to
geometric inhomogeneous random graphs (GIRGs) that also capture other kinds of
underlying geometric spaces. A modi�ed version of hyperbolic random graphs was also
proposed by Papadopoulos, Kitsak, Serrano, Boguñá, and Krioukov [Pap+12]. Similar
to preferential attachment, they consider an individual node arriving to an existing
network. The node is equipped with hyperbolic coordinates, and it then connects
preferably either to nodes with high degree (as in the preferential attachment), or to
nodes that are close by (as in the hyperbolic random graph).

As of today, most fundamental structural properties of hyperbolic random graphs
are well understood. Whenever the power law exponent β is between 2 and 3—which is
typically the case in real-world graphs [New03]—these graphs have a giant component
of size Ω(n) [BFM13], whereas all other components have at most polylogarithmic
size [KM15]. If β > 3, the largest component is of polynomial sizeO (nc ) with c < 1; and
for β = 2 the graph is connected [BFM14]. For β = 3, there is a phase transition, i. e., the
component structure depends on the average degree of the graph. The average distance
between two nodes in hyperbolic random graphs is of order Θ(log logn) [BKL15;
ABF15], and all shortest paths are at most of polylogarithmic length [KM15; BKL15].
For the case 2 < β < 3, Kiwi and Mitsche [KM16] also show that the conductance and
spectral gap of the giant component of hyperbolic random graphs is Θ(n2−β ) up to a
polylogarithmic factor. All of the aforementioned results hold with probability at least
1 − o(1).

5



Chapter 1 Introduction

Applications. Hyperbolic random graphs have small balanced separators and there-
fore a sublinear treewidth [BFK16]. This strongly di�ers from previous models. For
instance, inhomogeneous random graphs have balanced separators of at least linear
size, due to their independent edge probabilities [BJR07]. Classical hard problems like
Independent Set in hyperbolic random graphs can thus be solved in subexponential
time and admit a PTAS, if the geometry is known.

The naive generation of a hyperbolic random graph takes Θ(n2) time [AOK15].
Using a polar quadtree adapted to hyperbolic space, von Looz et al. [LMP15] achieved
a time complexity of O ((n3/2 +m) logn); and by a more sophisticated partitioning of
the space, Bringmann et al. [BKL15] obtained an optimal expected linear runtime for
generation, which is crucial for large-scale experiments. Furthermore, they showed
that such graphs can be stored using a linear number of bits instead of the O (n logn)
bits needed for general graphs. Candellero and Fountoulakis [CF16] also analyze
bootstrap percolation in this model and show that already a sublinear number of
infected nodes su�ces for the infection to spread to Ω(n) nodes.

Finally, as already pointed out in the introduction, there is an ongoing interest to
�nd a good embedding algorithm that achieves the following. Given a graph G, one
seeks to �nd hyperbolic coordinates for the vertices such that neighboring nodes are
placed nearby and disconnected nodes are placed far apart. Such embeddings have
been found for the Internet graph [BPK10], metabolic networks [SBS12] and trade
networks [Gar+16]. All present embedding algorithms are heuristics with runtimes of
order Ω(n2) [PPK15; PAK15; Wan+16a; AMA16]. Such embeddings have been used
for visualization, greedy routing and ad allocation in social networks [GMB14].

1.2 Contribution & Outline

The thesis is structured as follows.

• In Chapter 2, we introduce basic notations and general techniques that will often
be used throughout the thesis. To demonstrate the usefulness of the presented
methods, we also prove a novel tail bound on the sum of power-law distributed
random variables.

• In Chapter 3, we formally de�ne the hyperbolic random graph model. We also
restate some known results about the model which will often be used in this
thesis. For the sake of completeness, we also reprove them. Many of our proofs
are much shorter and simpler than in the available literature.

• In Chapter 4, we analyze the emergence of cliques in the hyperbolic random
graph model. We prove that when β > 3, the largest clique is of order Θ( logn

log logn );
and for 2 < β < 3 the largest clique is of order Θ(n(3−β )/2). For a given k , we

6



Contribution & Outline Section 1.2

also compute the expected number of k-cliques. Finally, we present an algorithm
for �nding these cliques in polynomial time when the geometry of the graph is
known. The results in this section appeared in part in [FK15a].

• In Chapter 5, we analyze the diameter of hyperbolic random graphs. We show
that the giant component has a diameter of orderO (log2/(3−β ) n) when 2 < β < 3.
When β > 3, a giant component does not exist and we show that all components
have diameterO (logn). We complement this result by showing a lower bound of
Ω(logn) for both cases. The results in this section appeared in part in [FK15b].

• In Chapter 6, we present a new algorithm for embedding graphs into the hyper-
bolic plane. Our algorithm uses only the graph structure (i. e., an edge list) and
no further meta-information. It is the �rst to run in quasilinear time and thus
manages to embed even large-scale real-world graphs like the Amazon product
network (n = 300 000) in under one hour on commodity hardware. To evaluate
our algorithm, we perform large-scale experiments on over 6 000 generated
hyperbolic random graphs. This makes it possible to make statistically valid
statements on the quality and time performance of our algorithm compared to
previous results that were only able to examine very few graphs due to time
constraints. We �nd that our algorithm performs well on all inputs; and its
quality increases with the number of nodes and the average degree of the graph.
The results in this section appeared in part in [Blä+16].

• In Chapter 7, we conclude and give an outlook on open problems and future
directions for research on this topic.

7





2 Preliminaries

In this thesis, we mostly work with probability distributions on graphs. In this chapter,
we give a short overview over these topics to introduce notation and often used
methods. We assume, however, that the reader is already familiar with the basics of
stochastics and graph theory. For a more in-depth introduction, we refer the reader
to standard textbooks [Die12; MU05]. That said, we point out that our approach to
probability theory does have a slightly di�erent paradigm than presented in most of
these books.

In fact, over the past decades, the analysis of stochastic processes has been re�ned
to yield numerous powerful tools. Entire books have been written on proof techniques
like tail bounds [DA09], inequalities [Bul15], Markov chains [LPW08], the probabilistic
method [AS15a] and many more. Obtaining an overview over all of these methods
can seem to be a daunting task. Many of these tools are also very sharp. They
require an exact description of the underlying probability space and yield results with
tight constant factors. Our setting, however, is more relaxed. We usually assume a
distribution that follows roughly a power-law (we de�ne what this means later on),
and we are content with asymptotic results that hold in the limit.

Assume, for example, thatX is a positive discrete random variable that is distributed
as Pr[X > i] = O (i1−β ), where β is some constant larger than 2. Note that the
asymptotic termO (·) hides the exact distribution function and we therefore are unable
to access the individual probabilities Pr[X = i]. Thus, it becomes di�cult to compute
the expectation of X using the common approach

E [X ] =
∑
i

i · Pr[X = i].

To resolve this, one might be tempted to reconstruct the individual probabilities
Pr[X = i] by considering Pr[X = i] = Pr[X > i]−Pr[X > i + 1]. Note that this method
is, however, too exact: We have no information on the leading constants of Pr[X > i];
and thereby, we cannot solve above di�erence. It may even be equal to 0: Consider
the probability distribution

Pr[X = i] =

δi−β : if i is even
0 : if i is odd.

(2.1)

For an appropriately chosen constant δ , this probability distribution sums to 1 and
ful�lls the above property of Pr[X > i] = O (i1−β ). Yet, half of the image of X has

9
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probability 0. While this may seem like an arti�cial example, similar distributions may
occur in the real world. For example, one may require that a generated random graph
has a Euler tour which is only possible if all degrees are even.

While precise methods certainly have many applications, they are sometimes un-
suitable for trying to understand the asymptotic behavior of random structures and
algorithms. They require too many assumptions on the distribution and yield results
with a precision we are not interested in. It thus is helpful to have a collection of tools
that are applicable even when the underlying probability distribution is only “roughly
known”. One such counterpart for the example above is for instance the formula

E [X ] =
∑
i

Pr[X > i] =
∑
i

O (i1−β ) = O (1), (2.2)

if β > 2. The �rst equation E [X ] = ∑
i Pr[X > i] is a classical result and can be

proven by reordering elements of the sum. The last equation can be computed by
approximating sums via integrals, which we explain in Section 2.5. In light of the
asymptotic analysis, we have thus gained the intuition that to compute the (asymptotic)
expectation we do not need to know the exact probability distribution of the random
variable X .

To be more precise, our setting is often of the kind Pr[X > i] 6 O ( f (i )), where f is
some function. In this chapter we present techniques that are still applicable in this
setting. We also give a few preliminary examples on how to use these methods, along
with a more involved derivation of a tail bound on power-law distributed random
variables.

2.1 Graph Theory

Before we introduce the relevant probabilistic notions, let us brie�y revisit key concepts
of graph theory. We note that in order to keep this section brief, we refer the interested
reader for a more thorough introduction to standard textbooks, e. g. [Die12].

An (undirected) graphG = (V ,E) consists of a �nite set of nodes (also called vertices)
V and a set of edges E ⊆

(
V
2

)
. Typically, a graph represents a network like a social or

computer network, where nodes represent individuals and edges represent some kind
of relation between those individuals (e. g. friendship or connection). We typically
denote n = |V | andm = |E |. To avoid confusion, we require that E ∩V = ∅, i. e., there
exists no node that is also an edge.

Whenever {x ,y} ∈ E, we say that x is adjacent to y. Equivalently, we say that x and
y are neighbors. The set of all neighbors of x is denoted by Γ(x ), and the degree of x
is deg(x ) := |Γ(x ) |. A clique is a set C ⊆ V of pairwise adjacent vertices. We call π =
[v1, . . . ,vk ] a path fromv1 tovk of length |π | = k −1, if for all 1 6 i < k ,vi is adjacent
to vi+1. The distance between two nodes u,v is de�ned as dist(u,v ) := min{|π | |

10
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π is a path from u to v}. If there is no such path, we set dist(u,v ) := ∞. The diameter
of a graph G is then de�ned as diam(G ) := max{dist(u,v ) | u,v ∈ V , dist(u,v ) < ∞}.
We say that the graph G is connected, if for every pair of vertices u,v ∈ V there exists
a path from u to v .

The considered graphs in this thesis are usually disconnected. Following text
book notation, we de�ne the induced subgraph G[S] on a set of nodes S ⊆ V as
G[S] = (S, {e ∈ E | e ⊆ S}). Then, we say that S ⊆ V is a connected component if the
induced subgraph G[S] is connected and S is maximal. Finally, we say that a sequence
of graphs (Gn )

∞
n=1 has a giant component, if the graphs have a connected component of

size Ω(n). If all other components have sublinear size o(n), we say that it has a unique
giant component.

Finally, we de�ne the clustering coe�cient cc(G ) of a graphG as follows. For a single
node v , its clustering cc(v ) is given by the fraction of closed triangles that are formed
by its neighbors. Formally,

cc(v ) := |{e ∈ E | e ⊆ Γ(v )}|(deg(v )
2

) .

For the whole graph, we average over these values with cc(G ) := 1
n
∑
v ∈V cc(v ).

2.2 Probability Theory

In this section, we introduce the basic concepts of probability theory that are often
(implicitly) used throughout the thesis. For a thorough introduction, we again refer to
standard textbooks [Bol98; AS15a; MU05].

A probability space is a triple (Ω,F , P ), where Ω describes the set of possible
outcomesω ∈ Ω; F is a σ -Algebra on Ω describing the set of events; and P : F → [0, 1]
is a probability measure that describes the probability of an event to occur. Throughout
this thesis, we are mostly concerned with the probability space of graphs of size n.1
Since the number of such graphs is �nite, we simply obtain that the set of outcomes
Ωn is the set of all graphs of size n. An event then encodes whether a certain property
holds for a given outcome (e. g., the graph is a tree). This is achieved by setting Fn = 2Ω .
The probability that an event occurs is then simply the sum of all probabilities of the
outcomes in the event, i. e. for E ∈ Fn , Pn (E) =

∑
ω ∈E Pn (ω).

These properties hold for all random graph models in this thesis. They di�er only
in the de�nition of Pn (ω), which assigns sampling probabilities to di�erent graphs. In
an e�ort to keep notation terse, we omit the probability space and the dependence on
n whenever it is clear from context. We note that the asymptotic notation throughout
the thesis is in the parameter n, i. e., we may assume that n is large. To this end, we

1One can also interpret this dependence on n as a sequence of probability spaces.

11
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say that an event E holds with high probability (w. h. p.), if there exists a constant c
(independent of n) such that Pr[E] > 1 −O (n−c ).

A function X : Ω → R is called a random variable. As we are usually interested in
the value of some random variable, we de�ne

Pr[X = x] :=
∑
ω ∈Ω

X (ω )=x

P (ω).

Following standard notation, we denote by E [X ] the expectation of X , i.e.

E [X ] :=
∑
ω ∈Ω

P (ω) · X (ω) =
∑
x

x · Pr[X = x],

and by Var [X ] the variance of X , i.e.

Var [X ] := E
[
X 2

]
− E [X ]2 .

We are often concerned with the distribution of a random variable X (e. g. the degree
distribution of a random graph). To this end, we de�ne the complementary cumulative
distribution function (CCDF) as

FX (x ) := Pr[X > x].

We omit the subscript X whenever the random variable X is clear from the context.
Note that this does not follow standard textbook notation, as F (x ) is classically de�ned
as the cumulative distribution function (CDF) Pr[X < x]. We deviate from this notion
since we almost exclusively need Pr[X > x] and writing [1 − F ](x ) throughout the
whole thesis becomes rather verbose.

Finally, we de�ne the notion of a power law degree distribution. Since the formal
de�nition has to deal with some technicalities, let us �rst describe the naive approach
that explains why these technicalities occur.

Intuitively, we would like to write that the fraction of nodes of degree exactly k is
roughly k−β . By counting the exact number of occurrences of degrees, however, this
forbids degree distributions with “gaps” as in Equation (2.1). To make the de�nition
more general and robust, it is therefore usual to consider the CCDF and require that
the number of nodes with degree larger than k is roughly k1−β . To make this formal,
we would like to write

α1k
1−β 6 1

n |{v | deg(v ) > k}| 6 α2k1−β ,
where α1,α2 are some constants depending on the network. This requires us, however,
to keep track of these constants and parameterize the de�nition not only by β , but also

12
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by α1,α2. We circumvent this issue by giving the de�nition for a sequence of graphs,
as we typically are interested in the asymptotic behavior, i. e., when n = |V | → ∞.
Then, we may simply require that there exist constants α1,α2.

Another issue is that the lower bound on the degree distribution α1k1−β is larger
than 0 for all k . Finite graphs can not ful�ll such a de�nition. We therefore introduce
a cuto� for the lower bound on the power law degree distribution. The choice of
the cuto� is somewhat arbitrary (other than that it should increase with n), which is
why we set it as large as possible such that hyperbolic random graphs still ful�ll this
property. This leads us to the following formal de�nition.

De�nition 1. Let (Gn )
∞
n=1 be a sequence of graphs. We say that these graphs have a

power law degree distribution with exponent β , if there exist constants α1,α2 > 0 such
that for all n, the following holds.

1. 1
n |{v | deg(v ) > k}| > α1k1−β for k 6 n

1
β−1 / logn, and

2. 1
n |{v | deg(v ) > k}| 6 α2k1−β for k > 1.

The cuto� for �rst condition stems from the fact that the largest degree in such
graphs is of order Θ(n

1
β−1 ). We note that in practice, however, the second condition is

used much more often as it upper bounds the number of nodes in the graph with too
large degree.

2.3 Taylor Approximation

Almost all inequalities that are often applied in probabilistic analysis are consequences
of the Taylor approximation. This is a useful tool for transforming convoluted expres-
sions into simpler ones that are susceptible to further simpli�cations. We �rst state
the method and then give a few examples.

De�nition 2 (Taylor Expansion). Let f : R → R be k > 1 times di�erentiable at
a ∈ R. Then, we call Tf (x ) the degree k Taylor expansion of f around point a with

Tf (x ) =
k∑

n=0

f (n) (a)

n! (x − a)n = f (a) + 1
1! f
′(a) · (x − a) + . . . + 1

k ! f
(k ) (a) · (x − a)k .

The Taylor expansion is useful since it is very accurate around point a. The error is
quanti�ed by the remainder f (x ) −Tf (x ). To compute tight approximation for most
functions, we use the following estimate of the remainder.

Theorem 2.1 ([Kli98]). Let f : R→ R be k + 1 times di�erentiable on the open interval
between a and x ; and f (k ) be continuous on the closed interval between a and x . Consider

13



Chapter 2 Preliminaries

the degree k Taylor expansion Tf around point a. Then, there exists a ξ between a and x
such that

r (x ) := f (x ) −Tf (x ) = f (k+1) (ξ )

(k + 1)! (x − a)
k+1.

Let us now review a few popular inequalities that are often used.

Lemma 2.1. Let x ∈ R. Then, 1 + x 6 ex .

Proof. Let f (x ) = ex and consider the degree-1 Taylor expansion around a = 0 with
Tf (x ) = 1 + x . By Theorem 2.1 there exists a constant ξ between 0 and x such that the
remainder is

r (x ) = 1
2e

ξx2 > 0.

Thus, we can write ex = 1 + x + 1
2e

ξx2 > 1 + x . �

Sometimes, it is useful to have a bound in the other direction on 1 − x , when x → 0.
This is given by the following lemma.

Lemma 2.2. Let 0 < x < 1 and let ε be such that 1 − x = e−ε . Then, 1 − x > e−(1+ε )x .

Proof. Since 1−x = e−ε , it su�ces to show that e−ε > e−(1+ε )x . To see this, we compute

e−ε > e−(1+ε )x

⇔ ε 6 (1 + ε )x
⇔ (1 − x ) 6 1

1+ε .

Thus, by estimating 1 + ε 6 eε using Lemma 2.1, the statement holds if 1 − x 6 e−ε .
But this is true by assumption. �

Notice that when x is very small, i. e., x = o(1), it must hold that ε = o(1). Thus, we
have that 1 − x > e−(1+o (1))x , i. e., the estimation 1 − x ≈ e−x is accurate in that case.

Lemma 2.3. Let x ∈ R with x = ±o(1). Then, 1
1+x = 1 − x + Θ(x2) = 1 − Θ(x ).

Proof. Let f (x ) = 1
1+x and consider the degree-1 Taylor expansion around a = 0. We

have f ′(x ) = −( 1
1+x )

2 and thus Tf (x ) = 1 − x . The remainder is then

r (x ) = f (x ) −Tf (x ) = 1
1+x − 1 + x = 1+x 2−1

1+x = x 2

1+x .

For x = ±o(1) this becomes r (x ) = Θ(x2). �

Lemma 2.4. Let n > 0. Then, n1+ 1
n − n = (1 + o(1)) logn.
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Proof. We consider the degree-1 Taylor expansion at in�nity. To this end, we substitute
x =

logn
n and write д(x ) := ex − 1. Thus, we have f (n) = nд(

logn
n ). We consider the

degree 1 expansion Tд at a = 0, which is

Tд (x ) = 0 + x .

Again, we have that ∃ξ ∈ [0,x] such that r (x ) = 1
2e

ξx2 6 exx2. Thus, д(x ) 6 x + exx2.
By resubstituting x =

logn
n we obtain

f (n) 6 logn +O (
log2 n
n ). �

2.4 Cherno� & Union Bound
The Cherno� and the union bound number among the most important tools in proba-
bilistic analysis. The former states that a sum of random variables in [0, 1] is strongly
concentrated around its expectation. It comes in several variations, we only need the
multiplicative form, which is as follows.

Theorem 2.2 (Cherno� bound). LetX = ∑
i ∈[n]Xi , whereXi , i ∈ [n] are independently

distributed in [0, 1]. Then,

Pr[X > (1 + ε )E [X ]] 6 exp(− ε2
2+εE [X ]) for ε > 0

Pr[X 6 (1 − ε )E [X ]] 6 exp(− 1
2ε

2E [X ]) for 0 < ε < 1.

The proof is folklore and can be found e. g. in [DA09]. Note that the Cherno�
bound requires no precise knowledge of the probability distribution of X ; apart from
it being a sum of independent variables. It can be even further relaxed to only require
submartingales. Note further that this is not the strongest version of the Cherno�
bound. As stated above, however, we are not interested in constants but rather in
the asymptotic behavior. To this end, this bound is tight, see e. g. [KY15, Lemma 4].
As a result of the Cherno� bound, and often used implicitly in this thesis, we obtain
that if E [X ] = Θ(logn), then X is with high probability of order Θ(logn); and if
E [X ] = ω (logn), then X is with high probability of order (1 ± o(1)) · E [X ].

The union bound is used to bound the probability that given a set of events at least
one of them happens. The proof can be found for example in [MU05].

Theorem 2.3 (Union Bound). Let E be a �nite or countable set of events. Then,

Pr[∃E ∈ E] 6
∑
E∈E

Pr[E],

Pr[∃E ∈ E] >
∑
E∈E

Pr[E] −
∑

E,F ∈E
Pr[E ∧ F ].
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2.5 Replacing Sums by Integrals

In this section, we mention a useful technique to approximate sums via integrals.
Even though we do not need this method explicitly within the main chapters of this
thesis, we still believe that this is a crucial method for analyzing random graphs. We
demonstrate the usefulness of this technique in Section 2.6, where we prove a tail
bound on the sum of power law distributed random variables.

Since graphs are discrete structures, most derived values like the expectation appear
in the form of sums, see e. g. Equation (2.2). Unfortunately, these sums can analytically
not be computed when the summands follow a power law as in the above example.
Consider for instance

n∑
i=x

i−1.5.

Computing an exact representation requires the use of the Riemann Zeta function.
Such an expression is undesirable since it is hard to further digest. We can, however, ap-
proximate the sum by an integral. To this end, we observe that i−1.5 is a monotonically
decreasing function in i; and thus

n∑
i=x

i−1.5 6
∫ n

x−1
i−1.5 di =

[
−2i− 1

2
]n
x−1 = Θ(x−

1
2 ).

Bringmann, Keusch, and Lengler [BKL15] recently have shown a tight representation
of sums by integrals, which we restate in the following.

Theorem 2.4 ([BKL15]). Let ~w = (w1, . . . ,wn ) and de�ne F (w ) := 1
n |{i | wi > w}|

and F > (w ) := 1
n |{i | wi > w}|. Let further f : R→ R be a continuously di�erentiable

function. Then, for any 0 6 w 6 w ,

∑
i ∈[n],w6wi6w

1
n f (wi ) = f (w ) · F (w ) − f (w ) · F > (w ) +

∫ w

w
f ′(w ) · F (w ) dw .

Applied to our example from above, we set ~w := (1−1.5, 2−1.5, . . . ,n−1.5); and de�ne
f (w ) := w . Obviously, f is continuously di�erentiable. For F (w ), we obtain

F (w ) = 1
n |{i | i−1.5 > w}| = 1

n |{i | i 6 w− 2
3 }| = Θ( 1nw

− 2
3 ).

The same can be shown for F > (w ). Thus, we have

n∑
i=x

i−1.5 = n
∑

w6x−1.5

1
n f (w ) = Θ(n) · *,n

−1.5 − 1
nx
− 1

2 +

∫ x−1.5

n−1.5
1
nw
− 2

3 dw+- = Θ(x−
1
2 ).
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This technique comes in particularly handy when we deal with weight distributions ~w
of which we only know the complementary cumulative distribution function F (w ).

2.6 Tail Bounds for Sums of Power-Law Variables

In this section, we derive new tail bounds for sums of power-law distributed random
variables using the methods introduced above. If the variables are independent, we
further show that these bounds are tight up to an arbitrary small ε in the exponent. To
the best of our knowledge, such results do not exist to date. We apply our tail bounds
to analyze the size of a random Galton-Watson tree, where the number of children per
node is distributed as a power law.

Theorem 2.5. Let β > 2 and the random variables X1, . . . ,Xn be such that for all x

min{α1x1−β , 1} 6 Pr[Xi > x | X1, . . . ,Xi−1] 6 α2x1−β ,

for some constants α1,α2. LetX := ∑n
i=1Xi and s = (1+δ )E [X ] for some constant δ > 0.

Then, if s is at least a large enough constant,

Pr[X > s] = O (ns1−β logβ−1 s ).

If the Xi ’s are independent and n · Pr[Xi > s] < 1 − ε , for some ε > 0 we further have

Pr[X > s] = Ω(ns1−β ).

Proof. We �rst prove the second, more obvious statement. Let x0 be de�ned such that
α1x

1−β
0 = 1. Since the Xi ’s are independent, we then have Pr[Xi > x] > α1x1−β for all

i and x > x0. By Theorem 2.3,

Pr[X > s] > Pr[∃i,Xi > s] >
∑
i

Pr[Xi > s] −
∑
i, j

Pr[Xi ,X j > s]

>
∑
i

Pr[Xi > s] ·
(
1 −

∑
j

Pr[X j > s]
)
.

By using the assumption n · Pr[Xi > s] < 1 − ε , we can upper bound the second sum
with 1 − ε . Furthermore, because s = (1 + δ )E [X ] > E [X ] and therefore s > x0, we
obtain

Pr[X > s] > εα1ns1−β ,

proving the second statement. To show the �rst statement, consider some value t
(which we choose appropriately later) that is at least some large enough constant.
Then,

Pr[X > s] 6 Pr[∃i : Xi > t] + Pr[X > s | ∀i : Xi < t]. (2.3)
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For the �rst part of the sum, we can immediately follow by the union bound Pr[∃i : Xi >
t] 6 α2 · nt1−β . It thus remains to upper bound the second part of the sum.

To this end, we �rst compute the conditional moments of the Xi ’s.

E
[
X k
i | Xi < t ,X1, . . . ,Xi−1

]
= xk0 +

∫ t

x0
kxk−1 · Pr[Xi > x | Xi < t ,X1, . . . ,Xi−1] dx

6 xk0 +

∫ t

x0

Pr[Xi > x | X1, . . . ,Xi−1]
Pr[Xi < t | X1, . . . ,Xi−1]

· kxk−1 dx

6 xk0 + 2α2k
∫ t

x0
xk−β dx

6 xk0 +



2α2k
k−β+1 · tk−β+1 if β < k + 1,
2α2k log t if β = k + 1,
2α2k
β−k−1 · x

β−k−1
0 if β > k + 1.

In the following, we only need k 6 2. For k = 1 we obtain regardless of t that
E [Xi ] = Θ(1) holds for all i . Thus, for the sum we have E [X ] = Θ(n). For k = 2,
we obtain a bound on the conditional variances that is of order o(t ). The sum of
conditional variances v̂ := ∑n

i=1 Var [Xi | Xi < t ,X1, . . . ,Xi−1 ] is then of order o(nt ).
We are then ready to prove the main result. To this end, we apply a variant of

Bernstein’s inequality for Martingales [McD98, Theorem 3.15]. Recall that s = (1 +
δ )E [X ] for some δ > 0. Observe further that due to the condition, supXi 6 t .

Pr[X > s | ∀Xi : Xi < t] = Pr[X − E [X ] > δE [X ] | ∀Xi : Xi < t]

6 exp *,−
δ 2E [X ]2

2v̂ + 2
3δtE [X ]

+- .
Since v̂ = o(nt ), we have 2v̂ 6 1

3δtE [X ] if t is a large enough constant.

Pr[X > s | ∀Xi : Xi < t] 6 exp
(
−δ

2E [X ]2

δtE [X ]

)
6 exp

(
− 1
t δE [X ]

)
.

It remains to choose an appropriate value for t . By setting t := δE[X ]
(β−1) log s , we have that

if s is a large enough constant, then so is t . Therefore, the above steps were correct
and we write

Pr[X > s | ∀Xi : Xi < t] 6 exp
(
(1 − β ) · log s

δE [X ]δE [X ]
)

6 s1−β .
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By combining this with Equation (2.3), we obtain that

Pr[X > s] 6 α2n
(

δE [X ]
(β − 1) log s

)1−β
+ s1−β = O (ns1−β logβ−1 s ). �

Using this tail bound, we analyze the size of a random Galton-Watson tree T . Such
a tree is obtained as follows: We begin with a single node as root and let Ti denote
the number of nodes in generation i . This means that in generation 0 we have T0 = 1.
Then, for every subsequent generation, we compute

Ti+1 :=
Ti∑
j=1

Cj ,

where all Cj ’s are independent copies of the same random variable C .
This process has been throughly analyzed for various o�spring distributions C

[Lin76; Ald91a; Ald91b; Ald93]. Most notable is the result on the extinction probability
Pr[∃i : Ti = 0] = 1⇔ E [C] 6 1 (if one excludes the trivial case Pr[C = 1] = 1). Many
other results have been derived, but most of them rely on the probability generating
function of C . Unfortunately, if C is power-law distributed, the probability generating
function maps to in�nity and is therefore of limited use. In the following, we bound
the size of a Galton-Watson tree when E [C] 6 1, but C is distributed as a power-law.

Corollary 2.1. Let β > 2 and let T be a Galton-Watson random tree with o�spring
distribution F (c ) = Θ(c1−β ) for c > c0 where c0 = Θ(1). If the expected number of
children is bounded away from 1, i. e., if 1 − E [C] = Ω(1), then for all ε > 0

Pr[|T | > t] = O (t2−β+ε ).

Proof. Observe that in a �nished Galton-Watson tree T of size t , the t nodes produced
t − 1 o�spring in total. Thus, the probability that T has more than t nodes is upper
bounded by the probability that t nodes produce > t − 1 o�spring. By de�nition, all
number of children Ci are power-law distributed and independent. Further, we have
that (t − 1) − t · E [C] = Ω(t ). Thus, all conditions of Theorem 2.5 are ful�lled and we
obtain

Pr[|T | > t] 6 Pr[
t∑
i=1

Ci > t − 1] 6 O (t2−β+ε ). �

Note that since the extinction probability is 1 when E [X ] < 1, the expected size of
such a tree is constant. By applying a Markov bound one obtains Pr[|T | > t] 6 O ( 1t ).
The above bound thus only becomes useful whenever β > 3.
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3 Hyperbolic Random Graphs

In this chapter, we present the de�nition of the hyperbolic random graphs, give an
overview over existing results in the literature and show several important theorems
that will often be referred to in this thesis.

3.1 Model Definition

As pointed out in the introduction, the basic premise of hyperbolic random graphs is
simple. To create a graph, sample nodes randomly in the hyperbolic plane, and connect
them by edges if they are nearby. In this section, we describe the graph generation in
more detail.

For convenience, we use the native representation of the hyperbolic plane H2. Here,
a point x is identi�ed by a radial and an angular coordinate (rx ,φx ), where the radial
coordinate denotes the hyperbolic distance from the coordinate origin. The hyperbolic
space is also typically equipped with some negative curvature. In our case, however, it
has been shown that there exists a coupling between random hyperbolic graphs on
di�erent curvatures [BFM14]. Therefore, using di�erent curvatures is equivalent to
rescaling other model parameters which is why we implicitly set the curvature to −1
in all subsequent considerations.

Then, the hyperbolic distance dist(x ,y) between two points x ,y ∈ H2 is given by

cosh(dist(x ,y)) := cosh(rx ) cosh(ry ) − sinh(rx ) sinh(ry ) cos(∆φx,y ), (3.1)

where ∆φx,y := π − |π − |φx − φy | | is the angular distance between two nodes x ,y.
Furthermore, the area of a hyperbolic circle with radius r is

A(r ) = 2π (cosh(R) − 1).

The hyperbolic sine and cosine which naturally appear often in this model are

sinh(x ) = ex − e−x
2 , cosh(x ) = ex + e−x

2 . (3.2)

Notice that both functions grow exponentially and are equal to (1 ± e−2x )ex/2. Thus,
for large x , these functions essentially behave as ex/2.

Using these notions, we may de�ne the hyperbolic random graph model. Informally,
the positions of n nodes are sampled with uniform density in a hyperbolic circle with
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Figure 3.1: Connection probability of two nodes in the binomial model depending on their
hyperbolic distance. The parameter T adjusts the number of long-range edges. Typically, T is
chosen between 0 and 1. When T → 0, this corresponds to the step model and edges appear if
and only if two nodes have distance 6 R.

radius R = 2 logn +C for some constant C . Two nodes are then connected, if their
distance is at most R. This approach yields a hyperbolic random graph with power
law exponent β = 3. To allow for di�erent power law exponents, one may distort the
node density in the circle. This corresponds to sampling nodes uniformly in the circle
for a hyperbolic plane with di�erent curvature, and then taking the distance of nodes
in the original curvature. For convenience, we stick to the curvature −1, and de�ne
hyperbolic random graphs as follows.

De�nition 3 (Hyperbolic Random Graphs). Let n ∈ N and α ,C ∈ R with α > 1
2 be

given. Consider the disc DR with radius R = 2 logn +C centered in ~0. For each i ∈ [n],
sample a point (ri ,φi ) ∈ DR using the distribution function

f (r ,φ) := f (r ) := 1
2π ·

α sinh(αr )
cosh(αR) − 1 . (3.3)

Then, G = ([n],E) is a hyperbolic random graph drawn from the

1. step model, if E = {{u,v} | dist(u,v ) 6 R}, and

2. binomial model, if for some given T > 0 every edge {u,v} is independently
added to E with probability

puv := p (dist(u,v )) := (1 + exp( 1
2T (dist(u,v ) − R)))−1.

Let us brie�y describe the intuition behind each of the parameters. The value R is
the radius of the hyperbolic disc and is always of order 2 · logn. The deviation of R
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from 2 logn, which is parameterized byC , adjusts the average degree δ of the resulting
hyperbolic random graph:

δ = (1 + o(1)) 2α2e−C/2

(α − 1/2)2
(
lim
t→T

t

sin(πt )

)
.

The value α adjusts the resulting power-law degree exponent β = 2α+1 [GPP12; Pet14;
BKL15] (c. f. De�nition 1). Similarly to R, the radial node coordinate ri prescribes the
expected degree of node i , whereas φi determines the neighborhood of node i . Note
that for brevity, we often identify a node u with its coordinates (ru ,φu ). Finally, T
adjusts the noise in the binomial model: For large values of T , it becomes more likely
that close nodes are disconnected and far apart nodes still have an edge between them.
Figure 3.1 contains an illustration of the connection probability depending on T .

Bode, Fountoulakis, and Müller [BFM13] show that for 1
2 < α < 1 there exists a

unique giant component in the graph. At α = 1 there is a phase transition where the
size of the largest component depends on the average degree, and for α > 1 the largest
component is of polynomial size.

3.2 Auxiliary Lemmas

We now present a handful of Lemmas useful for analyzing the hyperbolic random
graph. Most of them can be found in [GPP12], but we present shorter and simpler
proofs in this thesis. We �rst show a close approximation for f (r ) which allows us to
calculate with a simple exponential function instead of hyperbolic sines and cosines.
We will use this extensively.

Lemma 3.1. The density function f (r ) in Equation (3.3) is approximated by

f (r ) = α
2π e

α (r−R ) · (1 + Θ(e−αR − e−2αr )).

Proof. By applying Lemma 2.3, we obtain

f (r ) =
1
2π ·

α sinh(αr )
cosh(αR) − 1

= α
2π ·

eαr − e−αr
eαR + e−αR − 2

= α
2π ·

eαr (1 − e−2αr )
eαR (1 − Θ(e−αR ))

= α
2π e

α (r−R ) (1 + Θ(e−αR − e−2αr )). �

We next compute an upper bound for the angular distance between two connected
nodes. Consider two nodes with radial coordinates r ,y. Denote by θ (r ,y) the maximal
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angular distance such that these two nodes are connected in the step model. By
Equation (3.1),

θ (r ,y) = max
φ

{dist((r , 0), (y,φ)) 6 R} = arccos
(
cosh(y) cosh(r ) − cosh(R)

sinh(y) sinh(r )

)
. (3.4)

This complicated expression is closely approximated by the following Lemma. Notice
that the second condition in the statement is required as otherwise r + y < R and the
two corresponding nodes are always connected by the triangle inequality.

Lemma 3.2. Let 0 6 r ,y 6 R and y + r > R. Then,

θ (r ,y) = θ (y, r ) = 2e
R−r−y

2 (1 ± Θ(eR−r−y )).

Proof. By de�nition of cosh and sinh we have

θ (r ,y) = arccos
(
cosh(y) cosh(r ) − cosh(R)

sinh(y) sinh(r )

)
= arccos

(
ey+r (1 +O (e−2y + e−2r )) − 2eR (1 +O (e−2R ))

er+y (1 −O (e−2r + e−2y ))

)
= arccos

(
1 − 2eR−r−y +O (e−2r + e−2y )

)
. (3.5)

Observe that by assumption, r + y > R and therefore the inner term is close to 1. We
therefore use the series expansion for arccos around point 1, see e. g. [Olv10, p. 121]:

arccos(1 − x ) = √2x +
√
2

12 x
3
2 +

3
√
2

160 x
5
2 +O (x

7
2 ).

Applying this to Equation (3.5), we get

θ (r ,y) =
√
2
√
2eR−r−y −O (e−2r + e−2y ) + Θ(e

3
2 (R−r−y ) )

= 2e
R−r−y

2 ·
(√

1 −O (e−r+y−R + e−y+r−R ) + Θ(eR−r−y )
)
.

Using that
√
1 − x = 1 − x

2 −O (x2), which again follows from a series expansion, we
conclude

θ (r ,y) = 2e
R−r−y

2 (1 ± Θ(eR−r−y )). �

Note that the error term is (1 + Θ(eR−r−y )) (i. e., we can drop the minus) if either
R − r = ω (1) or R − y = ω (1).

For most computations on hyperbolic random graphs, we need expressions for the
probability that a sampled point falls into a certain area. To this end, we de�ne the
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probability measure of a set S ⊆ DR as

µ (S ) :=
∫
S
f (x ) dx ,

where f is the probability distribution function de�ned in De�nition 3. We further
de�ne the ball with radius x around a point (r ,φ) as

Br,φ (x ) := {(r ′,φ ′) | dist((r ′,φ ′), (r ,φ)) 6 x}.
We shortly write Br (x ) for Br,0 (x ). Note that DR = B0 (R).

Using these de�nitions, we can formulate the following Lemma.

Lemma 3.3. For any 0 6 r ,m 6 R we have

µ (B0 (r )) = e−α (R−r ) (1 − Θ(e−αr )) (3.6)

µ (Br (R) ∩ B0 (R −m)) =

µ (B0 (R −m)) if r 6 m,

4α
π (2α−1)e

m−r
2 −αm · E if r > m,

(3.7)

with error term E = 1±O (e (m−r ) (α−
1
2 ) ) if α , 3

2 and E = 1±O (em−r (r −m)) otherwise.

Proof. For the proof of Equation (3.6), we compute by Lemma 3.1

µ (B0 (r )) =

∫ r

0

∫ 2π

0
f (y) dφ dy

=

∫ r

0
αeα (r−R ) (1 + Θ(e−αR − e−2αr )) dr

=
[
eα (r−R ) (1 + Θ(e−αR + e−2αr ))

]r
0

= eα (r−R ) (1 + Θ(e−αR + e−2αr )) − Θ(e−αR )
= eα (r−R ) · (1 − Θ(e−αr )).

The proof of Equation (3.7) is as follows. Consider �rst the case r 6 m, for which
Figure 3.2a contains an illustration. In that case, the ball Br (R) fully encloses B0 (R−m),
as all points in B0 (R−m) have at most distance R−m to 0; and by the triangle inequality
at most distance R −m + r 6 R to the center of Br (R). Therefore, the intersection
of those two areas has probability measure exactly µ (B0 (R −m)) = e−αm (1 ± o(1)),
proving the �rst case.

We now assume r > m. Figure 3.2b contains an illustration for this case. Then, we
can write

µ (Br (R) ∩ B0 (R −m)) = µ (B0 (R − r )) + 2
∫ R−m

R−r

∫ θ (r,y )

0
f (y) dθ dy,
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where θ (r ,y) = arccos
( cosh(r ) cosh(y )−cosh(R )

sinh(r ) sinh(y )

)
is given by the de�nition of the distance

function, see Equation (3.4). The �rst part of the sum vanishes in the error term E,
since it simpli�es to (1 ± o(1))e−αr = e

m−r
2 −αm ·O (e (m−r ) (α−

1
2 ) ).

For the second part of the sum, have

2
∫ R−m

R−r

∫ θ (r,y )

0
f (y) dθ dy = 2

∫ R−m

R−r
θ (r ,y) · f (y) dy

By simplifying θ (r ,y) using Lemma 3.2 and f (y) using Lemma 3.1, this term can be
transformed to obtain

2α
π

(1 +O (e−αR ))
∫ R−m

R−r
e
R−r−y

2 +αy−αR (1 +O (±eR−r−y − e−2αy )) dy. (3.8)

Observe that the dominant error term isO (±eR−r−y ). This holds since −2αy < R−r −y
follows from (1 − 2α )y < 0 < R − r and thereby O (±eR−r−y − e−2αy ) = O (±eR−r−y ).

We now �rst compute the integral without the error term and later add the error
term. We obtain

2α
π

(1 +O (e−αR ))
∫ R−m

R−r
e
R−r−y

2 +αy−αR dy

=
4α

π (2α − 1) (1 +O (e−αR ))
[
e
R−r−y

2 +αy−αR
]R−m
R−r

=
4α

π (2α − 1) (1 +O (e−αR ))
(
e
m−r
2 −αm − e−αr

)
=

4α
π (2α − 1)e

m−r
2 −αm (1 +O (e−αR − e (m−r ) (α− 1

2 ) ))

=
4α

π (2α − 1)e
m−r
2 −αm (1 +O (e (m−r ) (α−

1
2 ) )),

since again the dominating error term is e (m−r ) (α− 1
2 ) > e−R (α−

1
2 ) > e−αR .

It is left to bound the error term in Equation (3.8). To this end, we compute
∫ R−m

R−r
O (e

3
2 (R−r−y )+αy−αR ) dy

= e
m−r
2 −αm ·


O (em−r ) 6 O (e (m−r ) (α−

1
2 ) ), if α > 3

2 ,
O (em−r (r −m)), if α = 3

2 ,
O (e (m−r ) (α−

1
2 ) ), if α < 3

2 .

Plugging everything together, we obtain the solution as stated in Equation (3.7). �

Let us also restate a useful result from [BFM14]. Consider two vertices u,v in the
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DR Br(R)

R

B0(R−m)

m(r, 0)~0

R
−m

(a) First case in Equation (3.7). Here,
the disk Br (R) fully encloses B0 (R−m),
so their intersection is determined by
the smaller disk B0 (R −m).

R

DR Br(R)

m (r, 0)

R
−m

B0(R− r)

(b) Second case in Equation (3.7). The two disks
Br (R) and B0 (R −m) intersect. The orange circle
B0 (R−r ) is fully enclosed in the intersection. For the
remainder, we integrate over the area as indicated
by the red arrows.

Figure 3.2: Proof illustration for Lemma 3.3. The gray area denotes the disc DR . Note that
these illustrations should only be understood schematically, as the behavior of circles in the
hyperbolic plane is di�erent to the classical euclidean geometry.

hyperbolic random graph. Moving one vertex closer to 0—i. e., decreasing ru—typically
does not result in a monotone behavior of dist(u,v ). In particular, u can �rst move
closer to v; and then farther away again. However, if u, v had distance at most x to
each other and to the origin 0, this fact remains true even when u is moved closer to
the center. In this sense, a node’s neighborhood is monotone in its radial coordinate:
Bu (R) ∩ DR ⊂ Bu′ (R) ∩ DR for u ′ < u. The next lemma formalizes this intuition.

Lemma 3.4 ([BFM14]). Consider two nodes u = (ru ,φu ),v = (rv ,φv ) in the hyperbolic
random graph. If dist(u,v ) 6 x and ru , rv 6 x , then it holds

dist(u ′,v ′) 6 x ,

where u ′ = (r ′u ,φu ),v ′ = (r ′v ,φv ) with r ′u 6 ru and r ′v 6 rv .

Proof. We prove the case for r ′u < ru , r ′v = rv . The statement follows by another
application of the same proof.

Consider Bx (v ). By assumption, it contains both 0 and u. Since circles in the
hyperbolic plane are convex, the geodesic between 0 and u is also fully contained in
Bx (v ). In the native representation of the hyperbolic plane, this geodesic consists of
all points (r ,φu ) with 0 6 r 6 ru . The Lemma thus follows. �
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4 Cliques in Hyperbolic Random Graphs

This chapter is based on joint work with Tobias Friedrich [FK15a]. It contains an in-depth
analysis of algorithms for �nding cliques; and several minor �xes over the conference
version.

4.1 Introduction

In this chapter, we study the emergence of cliques in hyperbolic random graphs.
Cliques were introduced as fully connected subgraphs in the �eld of psychology by
Luce and Perry [LP49]. Originally, they served as a concept to study communities in
social networks. Due to the simplicity of this structure, however, they have quickly
been adopted and well-studied in mathematics and computer science.

Finding a (large enough) clique in a given graph is a notoriously di�cult problem. It
belongs to one of the most prominent examples for NP-hard andW [1]-hard problems,
and e�cient algorithms are therefore unlikely to exist. This presents an interesting
contrast: Even though the structure is very intuitive, it remains elusive to be handled
algorithmically.

In spite of their algorithmic complexity, they play a tremendous role in network
science. Due to their inherent interconnectedness, they are closely related to clustering
and community structures. Most work on extraction of communities from a large given
network usually begins with a de�nition of communities that is strongly reminiscent
of cliques—yet still di�erent enough to o�er an e�cient algorithm [GKT05; Che+11;
Tso+13]. In bioinformatics, many problems like inferring evolutionary trees or protein
structure prediction are often modeled as �nding maximum cliques in a biological
network [DS86; SM98].

In the �eld of random graphs, nearly all research focuses on the uniform G (n,p)
model by Erdős and Rényi [JŁR11], see e. g. [Bol98; Ros08; Ros10a; Ros10b]. This
model, however, shares only few properties with real-world networks, such as those
arising from social interactions. With the recent proliferation of generative social
network models, it is thus only a natural consequence to study cliques in the context in
which they originally appeared. To this end, Janson, Łuczak, and Norros [JŁN10] and
Bianconi and Marsili [BM06] provide asymptotic bounds on the size of the cliques in
inhomogeneous random graphs [Hof16]; and methods to approximate them e�ciently.
Similarly, Friedrich and Krohmer [FK15c] investigate the computational complexity of
�nding the largest clique in these networks.

29



Chapter 4 Cliques in Hyperbolic Random Graphs

Hyperbolic Random Graphs

1
2 < α < 1 α > 1

E [Kk ] 6 n (1−α )k

kk exp(k (α C
2 −1))

( αkck−11
(1−α )k+1 + 1

)
nk−k · αke (c1e−C/2+1 )k−1

(α−1)k+1 · (1 + o(1))
>

(
e−αC/2n1−α (1−o (1))

k

)k
nk−k

(
e−C/2

π

)k−1 · (1 + o(1))
= n(1−α )kΘ(k )−k n · Θ(k )−k

ω (G ) 6 c1e
−α C

2 +1n1−α (1 + o(1)) logn
log logn (1 + o(1))

> e−α
C
2 n1−α (1 − o(1)) logn

log logn (1 − o(1))
= Θ(n1−α ) logn

log logn (1 ± o(1))

Table 4.1: New results on the expected number of k-cliques E [Kk ] and the size of the largest
clique ω (G ) in hyperbolic random graphs drawn from the step model. Sections 4.3 and 4.4
prove the upper and lower bounds on E [Kk ]. Section 4.5 proves the bounds on ω (G ).

4.2 Our Contribution

In this chapter, we extend this work to hyperbolic random graphs sampled from the step
model. In particular, we present bounds on the expected number of k-cliques and the
size of the largest clique. The results are summarized in Table 4.1. We observe a phase
transition at power-law exponent β = 2α + 1 = 3, with smaller exponents yielding
polynomial-size cliques and larger exponents yielding logarithmic-size cliques. While
clique is NP- and W[1]-complete for general graphs, we show that the largest clique
of hyperbolic random graphs (in the step model) can be found in polynomial time, if
the geometry is known. This stands in contrast to previous results on similar models
like Chung-Lu [FK12], which need exponential time for a power-law of 2 < β < 3.

Comparison with other scale-free models. Using the results of Janson, Łuczak,
and Norros [JŁN10], we compare the clique numbers, i.e., the size of the largest clique,
of some popular scale-free network models to hyperbolic random graphs in Table 4.2.

We notice that the (asymptotic) clique number is nearly the same for Chung-
Lu [ACL00], Norros-Reittu [NR06] and hyperbolic random graphs in the case where
the power law exponent is 2 < β < 3. An intuitive explanation for this phenomenon is
that all these models have a tightly connected core: A subgraph of polynomial size in
which the edge probability is 1−o(1) or even 1. Large cliques emerge as a consequence
of this core.

But even when such a core does not exist in the graph (which is the case for β > 3),
one would expect to have small communities and therefore cliques in the graph. In
particular, due to the large clustering coe�cient it is likely that a node’s neighbors
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Power-Law Exponent

Random Graph Model 2 < β < 3 β = 3 β > 3

Hyperbolic (new results) Θ(n(3−β )/2) Θ
( logn
log logn

)
Θ

( logn
log logn

)
Chung-Lu Θ(n(3−β )/2) Θ(1) 3

Norros-Reittu Θ(n(3−β )/2 log−(β−1)/2 n) Θ(1) 3

Generalized RG Ω(n
3−β
1+β ), O (n

3−β
1+β log

β−1
β+1 n) Θ(1) 3

Pref. Attachment Θ(1) Θ(1) Θ(1)

Table 4.2: Comparison of our new results on the clique number ω (G ) of hyperbolic random
graphs to known results by Janson, Łuczak, and Norros [JŁN10] for other scale-free random
graph models. All bounds hold with high probability.

(or a subset of the neighbors) form a clique. Consequently, the hyperbolic random
graph has in this case a largest clique of size Θ(

logn
log logn ). Previous scale-free network

models with independent edge probabilities predict in this case a largest clique of
size 6 3 almost asymptotically surely (i.e., with probability > 1 − o(1)), which seems
counter-intuitive.

Organization. The remainder of this chapter is organized as follows. Section 4.3
shows the upper bounds on E [Kk ] in Table 4.1, while Section 4.4 shows the lower
bounds on E [Kk ]. By applying these results, we obtain in Section 4.5 bounds on the
size of the largest clique ω (G ) in the hyperbolic random graph. Finally, we show in
Section 4.6, given the geometric representation, how to retrieve the largest clique in
the graph in worst-case polynomial time. Section 4.7 concludes.

4.3 Proof of the Upper Bound
The goal of this section is to show the upper bounds for E [Kk ] stated in Table 4.1. The
following theorem summarizes these results in their asymptotic form.

Theorem 4.1. In a hyperbolic random graph, the expected number of k-cliques is at
most n(1−α )kΘ(k )−k and n · Θ(k )−k if 1

2 < α < 1 and α > 1, respectively.

In a clique, each pair of nodes is connected. To compute an upper bound on the
probability that k nodes form a clique, we examine a relaxed condition; namely that
all nodes connect to one speci�c node v .

For a set U of k independently sampled points, let v ∈ U be the node with the
largest radial coordinate, i. e. rv = maxu ∈U {ru}. We begin by computing the proba-
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bility density function of rv which we call ρv (r ). By the de�nition of the cumulative
distribution function, we have

Pr[rv 6 x] = Pr[∀u ∈ U : ru 6 x] =
(∫ x

0

α sinh(αr )
cosh(αR) − 1 dr

)k
=

(
cosh(αx ) − 1
cosh(αR) − 1

)k
.

The resulting probability density function is given by

ρv (r ) =
∂

∂r

(
cosh(αr ) − 1
cosh(αR) − 1

)k
= αk sinh(αr ) (cosh(αr ) − 1)

k−1

(cosh(αR) − 1)k

= αkeαk (r−R ) (1 − e−2αr ) · (1 + e
−2αr − 2e−αr )k−1

(1 + e−2αR − 2e−αR )k
= αkeαk (r−R ) (1 −O (e−αr ))k

6 αkeαk (r−R ),

where we used Lemma 2.3 for bounding the error term. Following the explanation
above, the probability that a set U of k independently sampled nodes forms a clique is
upper bounded by the probability that all nodes are connected to v . Formally,

Pr[U is clique] 6 Pr[∀u ∈ U : dist(u,v ) 6 R]

=

∫ R

0
ρv (r ) · Pr[∀u ∈ U : u ∈ Br (R) | rv = r ]

=

∫ R

0
ρv (r ) ·

(
µ (Br (R) ∩ B0 (r ))

µ (B0 (r ))

)k−1
dr

For the last equality, observe that we condition on the fact that the largest radial
coordinate among the nodes in U is r , i. e., all other radial coordinates are 6 r . Hence,
the probability that a nodeu is connected tov is the probability thatu ∈ Br (R)∩B0 (R),
conditioned on the fact that ru 6 r , i.e. u ∈ B0 (r ).

We split the integral in two parts. If r < R/2, then by triangle inequality it follows
that all k nodes are connected. This agrees with Lemma 3.3, and we obtain

∫ R/2

0
ρv (r ) ·

(
µ (Br (R) ∩ B0 (r ))

µ (B0 (r ))

)k−1
dr

=

∫ R/2

0
ρv (r ) dr 6

(
cosh(αR/2) − 1
cosh(αR) − 1

)k
6 e−αk

R
2 . (4.1)
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When r > R
2 , we estimate again using Lemma 3.3

µ (Br (R) ∩ B0 (r ))

µ (B0 (r ))
= 4α

π (2α−1)e
R
2 −r−α (R−r )+α (R−r ) · E

= 4α
π (2α−1) · e

R
2 −r · E,

where E = (1±O (e (R−2r ) (α−
1
2 )+e−αr )), if α , 3

2 and E = (1±O (e (R−2r ) (2r −R)+e−αr ))
otherwise. Observe that in both cases, since r > R

2 , the error term is upper bounded
by a constant. Thus, we write

µ (Br (R) ∩ B0 (r ))

µ (B0 (r ))
6 c1e

R
2 −r (4.2)

for some large enough constant c1 > 1. Then, we compute for the second part of the
integration

∫ R

R/2
ρv (r ) ·

(
µ (Br (R) ∩ B0 (r ))

µ (B0 (r ))

)k−1
dr

6

∫ R

R/2
αkeαk (r−R )

(
c1e

R/2−r )k−1 dr (4.3)

=
αkck−11

(α − 1)k + 1
[
eαk (r−R )+(k−1) (

R
2 −r )

]R
R/2

(4.4)

=
αkck−11

(α − 1)k + 1
(
e−

R
2 (k−1) − e− R2 αk

)
, (4.5)

where Equations (4.4) and (4.5) hold if α , 1 and k , 1/(1 − α ). In the following,
we consider all possible combinations of α and k . Whenever possible, we continue
computing with Equation (4.5), otherwise we use Equation (4.3). We distinguish the
following cases:

(a) α = 1. In this case, Equation (4.3) evaluates to

(4.3) = kck−11 [e−
R
2 (k+1)+r ]RR/2 6 kck−11 e−

R
2 (k−1) .

(b) α > 1. Then, 0 > 1
1−α , k and thus we may use Equation (4.5):

(4.5) 6
αkck−11

(α − 1)k + 1e
− R2 (k−1) .

(c) 1
2 6 α < 1. In this case, the sign in front of the antiderivative depends on k :
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(c.i) k < 1
1−α . In that case, (α − 1)k > −1, and Equation (4.5) is again upper

bounded by

(4.5) 6
αkck−11

(α − 1)k + 1e
− R2 (k−1) .

(c.ii) k = 1
1−α . Then, we substitute α = k−1

k in Equation (4.3):

(4.3) =
∫ R

R/2
αkck−11 e−

R
2 (k−1) dr = αkck−11

R

2 e
− R2 (k−1)

(c.iii) k > 1
1−α . Here, the sign of the antiderivative is negative, and we obtain

(4.5) 6
αkck−11

(1 − α )k + 1e
−αk R

2 .

Recall that we split the integral into two parts and thus have to add e−αk R
2 to the result,

c. f. Equation (4.1). Cases (a)–(c.ii) only change by a factor of (1+o(1)), and in the case
of (c.iii) we obtain that Pr[U is a clique] 6 (1 + αkck−11

(1−α )k+1 )e
−αkR/2. When α > 1 (i.e.

when the graph has a power law exponent β > 3), the number of cliques is therefore
bounded by

E [Kk ] =
(
n

k

)
Pr[U is clique]

6
(ne
k

)k αkck−11
(α − 1)k + 1e

− R2 (k−1) (1 + o(1))

= nk−k · αke (c1e
−C/2+1)k−1

(α − 1)k + 1 (1 + o(1))

= n · Θ(k )−k ,

since n = e
R−C
2 . For α = 1 we obtain a similar bound E [Kk ] 6 n ·Θ(k )−k+1 = n ·Θ(k )−k .

For networks with a dense core ( 12 6 α < 1), we obtain

E [Kk ] 6
(ne
k

)k *,1 +
αkck−11

(1 − α )k + 1
+- e
−αk R

2

= n(1−α )kk−k *,1 +
αkck−11

(1 − α )k + 1
+- e

(1−α C
2 )k

= n(1−α )kΘ(k )−k ,

if k > 1
1−α . Table 4.1 contains the detailed results for these cases. In the case where
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k 6 1/(1 − α ), which is not shown in the table, our result states that there is at most
a linear number of k-cliques. This agrees, for instance, with the known fact that for
k = 2 6 1

1−α there are Θ(n) many edges in G.

4.4 Proof of the Lower Bound

In this section, we show the lower bounds for E [Kk ] stated in Table 4.1, which
asymptotically match the upper bounds we proved in the previous section.

Theorem 4.2. In a hyperbolic random graph, the expected number of k-cliques is at
least n(1−α )kΘ(k )−k and n · Θ(k )−k if 1

2 < α < 1 and α > 1, respectively.

To obtain these matching lower bounds, we consider two cases. In the case when
1
2 < α < 1, hyperbolic random graphs are known to exhibit a tightly connected core.
We show that, in fact, the high-degree nodes form a clique of polynomial size. The
number of k-cliques inG is then simply dominated by the number of distinct k-subsets
of nodes in the core.

To be more precise, consider the ball B0 (R/2). All nodes in this area have distance
at most R from each other by the triangle inequality. It is therefore left to bound the
number of nodes in B0 (R/2). By Lemma 3.3 we know that

µ (B0 (x )) = e−α (R−x ) (1 −O (e−αx )),

i.e. the probability that a sampled point has at most distance x from the center of DR
is e−α (R−x ) (1 + o(1)). Consequently, we expect ne−αR/2 (1 − o(1)) nodes in B0 (R/2).
Observe that for 1

2 < α < 1 and R = 2 lnn +C this amounts to e−αC/2n1−α (1 − o(1)),
which is polynomial. In Section 4.5, we will also see that this number is close to the
size of the maximum clique.

Let Kk (G ) be the number of k-cliques in G. Clearly, if G ′ ⊆ G, then we have that
Kk (G

′) 6 Kk (G ). Consider for G the hyperbolic random graph and for G ′ the graph
induced on G by only taking vertices v with rv 6 R/2. Then, we get

E [Kk ] = E [Kk (G )] > E
[
Kk (G

′)
]
= E

[(
X

k

)]
,

where X is the random variable describing the number of nodes that drop in B0 (R/2).
To show the lower bound, we use the following well-known lemma, which can e.g. be
found in [WY05, Ex. 1].

Lemma 4.1. The function f (x ) =
(
x
k

)
is convex on x > k .

Therefore, using Jensen’s inequality [Jen06] which says f (E [X ]) 6 E [f (X )] for
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convex functions f , we obtain

E

[(
X

k

)]
>

(
E [X ]
k

)
=

(
e−αC/2n1−α (1 −O (e−αR/2))

k

)
>

(
e−αC/2n1−α (1 − o(1))

k

)k
.

Thus, we have that E [Kk ] > n(1−α )k · Θ(k )−k , which proves the lower bound for the
dense case.

4.4.1 Small Cliques Outside of the Core

So far, we have seen that for 1
2 < α < 1, hyperbolic random graphs contain many

cliques in the core. When α > 1, however, the number of nodes in B0 (R/2) is of order
O (1). We now show that due to the underlying geometry, cliques still emerge outside
of the core.

To this end, we investigate a circular sector of the disk DR with angle θ = a/n, for
some constant a which we choose later. Clearly, there are 2πn

a non-overlapping sectors.
As we show in the following, such a circular sector has a (geometric) diameter of 6 R,
if a is chosen as an appropriate constant. This means that all points in the sector have
pairwise distance at most R and therefore form a complete subgraph.

Since the angular coordinates of nodes are sampled uniformly, the probability
that we sample a node inside one speci�c circular sector of angle a/n is exactly a

2πn .
Therefore, the probability that a set of k independently sampled points U is contained
in one sector is

Pr[U is clique] > 2πn
a
·
( a

2πn

)k
=

( a

2πn

)k−1
.

This probability is maximized by choosing a as large as possible, i.e. such that for any
larger a′ the diameter is > R. It remains to derive a suitable value for a.

Lemma 4.2. Let S be a circular sector of DR of angle a
n = 2e−C/2 (1 −O (n−2)) 1n . Then,

S has a (geometric) diameter of at most R.

Proof. Letu,v be two points inside S with maximal distance. Observe that these points
have to lie on the boundary of S : Otherwise, consider the geodesic that goes through
u,v and intersects S atu ′,v ′. Clearly, dist(u ′,v ′) > dist(u,v ), a contradiction. Observe
further that

cosh(dist(u,v )) := cosh(ru ) cosh(rv ) − sinh(ru ) sinh(rv ) cos(∆φ)
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is monotonously increasing for 0 6 ∆φ 6 π . Since S has an angle of a
n � π , we thus

may assume that u,v have a relative angle of ∆φ = a
n .

We now show that if ru = rv = R, dist(u,v ) 6 R. By Lemma 3.4 it follows that all
other pairs of points with smaller radial coordinates also have distance at most R.

By Lemma 3.2, the maximum angle between u,v such that their distance is at most
R, is

θ (R,R) = 2e−
R
2 (1 ±O (e−R )) = 2e−

R−C
2 −C2 (1 ±O (e−R )) = 2e−C/2 1

n (1 ±O (n−2)).

Thus, we set a = 2e−C/2 (1 ±O (n−2)). �

Finally, the probability that a set U of k nodes is a clique is

Pr[U is clique] >
( a

2πn

)k−1
>

(
e−C/2

πn
(1 −O (n−2))

)k−1
=

(
e−C/2

πn

)k−1
(1 ±O (n−1)),

since (1 −O (n−2))k−1 > (1 −O (n−2))n = (1 −O (n−1)) by Lemmas 2.1 and 2.2. For the
expected number of k-cliques, this implies that

E [Kk ] =
(
n

k

)
Pr[U is k-clique]

>
(n
k

)k (
e−C/2

πn

)k−1
(1 ±O (n−1))

= n · Θ(k )−k .

Taken together with the result from Section 4.4, we conclude

E [Kk ] > max{n,n(1−α )k} · Θ(k )−k .
4.5 Largest Clique

In this section, we present the bounds on the clique number ω (G ), i.e., the size of the
largest clique in G, as stated in Table 4.1. The asymptotic bounds are summarized in
the following theorem.

Theorem 4.3. The clique number of a hyperbolic random graph is with high probability
Θ(n1−α ) if 1

2 < α < 1, and asymptotically almost surely logn
log logn (1 ± o(1)) if α > 1.
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We use the upper bounds on the number of k-cliques from Theorem 4.1 to obtain
upper bounds for ω (G ) by applying the Markov inequality

Pr[Kk > 1] 6 E [Kk ] .

Let therefore ε be an arbitrarily small constant and solve E [Kk ] 6 n−ε for k . If ε
is constant, we obtain an upper bound on the clique number that holds with high
probability.

4.5.1 Dense Core

Let us �rst consider the case when 1
2 < α < 1 and there exists a dense core in the

center of DR . Due to Theorem 4.1, there exists some constant c such that

Pr[Kk > 1] 6 E [Kk ] 6 n(1−α )k · (ck )−k .

We set k = 2
cn

1−α to obtain

E [Kk ] 6 n(1−α )k · (ck )−k

= n(1−α )
2
c n

1−α · (2n1−α )− 2c n1−α

= 2−
2
c n

1−α
.

This term is asymptotically smaller than n−ε for any constant ε , since

2−
2
c n

1−α
6 n−ε ⇔ 2

cn
1−α > ε log2 n

for large enough n. Therefore, we know that ω (G ) 6 Θ(n1−α ) in this case. The precise
leading constant for this approach depends on c1, see Equation (4.2). Since c1 > 1, we
have for k = ω (1)

E [Kk ] 6 n(1−α )k ( 1
c1
eα

C
2 −1 (1 + o(1)))−k .

By a similar approach as above, we can compute that

ω (G ) 6 c1e
−α C

2 +1n1−α (1 + o(1)) = O (n1−α )

holds with high probability.
To compute a matching lower bound, recall that Section 4.4 states that B0 (R/2)

contains e−αC/2n1−α (1 − o(1)) nodes in expectation. Let X be the number of nodes
in B0 (R/2). Since each node is sampled independently from all others, we may apply
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Theorem 2.2 to obtain that

Pr[X 6 (1 − 1
logn )E [X ]] 6 exp(−Θ(1) · log−2 ne−αC/2n1−α ).

As this tail probability decreases faster than any polynomial, we have that with high
probability, the largest clique is of size

ω (G ) > e−αC/2n1−α (1 − o(1)) = Ω(n1−α ).

4.5.2 Sparse Core

For α > 1, when a dense core is not present, we have proven that E [Kk ] = n · Θ(k )−k .
Thus, there exists a constant c such that E [Kk ] 6 n · (ck )−k . Again, we apply a Markov
bound to upper bound the probability a large clique occurs. Thus, we need to choose
k such that

Pr[Kk > 1] 6 E [Kk ] 6 n · (ck )−k !
6 n−ε ,

which is equivalent to (ck )−k 6 n−1−ε . By taking k := (1 + ε ) logn
log logn , we obtain for

large enough n

(ck )−k =
(
(1 + ε )

c logn
log logn

)−(1+ε ) logn
log logn !

6 n−1−ε

⇐ log
(
(1 + ε )

c logn
log logn

)
·
(
(−1 − ε ) logn

log logn

)
6 (−1 − ε ) logn

⇐ log logn · (1 − o(1)) ·
(
(−1 − ε ) logn

log logn

)
6 (−1 − ε ) logn

⇐ (−1 − ε ) logn 6 (−1 − ε ) logn.

Therefore, there is no larger clique than (1 + ε ) logn
log logn with probability 1 − n−ε .

Setting ε > 0 to any constant yields a result with high probability. We may, however,
obtain an even tighter result by choosing e. g. ε = 1

log logn . Then, n−ε = o(1) and
therefore the largest clique is of size at most logn

log logn (1 + o(1)) almost asymptotically
surely, i. e., with probability 1 − o(1).

To obtain a matching lower bound, observe that the analysis in Section 4.4 corre-
sponds to a balls-into-bins experiment: There are 2πn

a circular sectors (bins), and each
node (ball) is uniformly sampled in one of those. Since there are n balls and Θ(n)
bins, an application of [RS98, Theorem 1] yields the desired result. For reasons of
completeness, we restate the relevant part of the theorem:
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Theorem 4.4 ([RS98]). LetM be the random variable that counts the maximum number
of balls in any bin, if we throw n balls independently and uniformly at random into
m = Θ(n) bins. Then,

Pr
M >

logm
log m logm

n

*,1 + 0.99 ·
log log m logm

n

log m logm
n

+-
 = 1 − o(1).

Observe that sincem = Θ(n), we have logm = (1 ± o(1)) logn. Furthermore,

log m logm
n = log(Θ(logm)) = (1 ± o(1)) log logn.

Plugging this into the theorem, we obtain that with probability 1 − o(1), there is a
clique of size at least

logn
log logn (1 ± o(1))

(
1 + 0.99 log log lognlog logn (1 ± o(1))

)
>

logn
log logn (1 − o(1)).

This proves the lower bound for the maximum clique in Table 4.1.

4.6 Algorithms for Finding Cliques

So far, we showed bounds on the size of cliques in hyperbolic random graphs, but did
not yet investigate on how to �nd them algorithmically. For the case α > 1 we showed
that there are only few cliques in the graph; and therefore, a simple enumeration
algorithm �nds the largest clique in polynomial time. In fact, it is even possible to �nd
the largest clique in linear time, as shown by the following Theorem.

Theorem 4.5. The largest clique of a hyperbolic random graph with power-law exponent
β = 2α + 1 > 3 can be found in expected time O (n).

Proof. Let X be the number of neighbors of a node v with radial coordinate smaller
than rv . By Lemma 3.3, this amounts in expectation to

E [X ] = n · µ (B0 (rv ) ∩ Brv (R))

= Θ(1) · exp
(R
2 +

R − rv − rv
2 − α (R − rv )

)
= Θ(1) · exp ((α − 1)rv − (α − 1)R)
= O (1),

if rv > R
2 , and

E [X ] = Θ(1) · e R
2 −α (R−rv ) 6 Θ(1) · e R

2 −α (R− R2 ) = O (1)
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u

v

d

w

w′

Diameter ≤ d

Half lens

Figure 4.1: Illustration of the clique algorithm. Every two nodesu,v with distance dist(u,v ) =
d 6 R de�ne a lens Bu (d ) ∩ Bv (d ). A half lens has geometric diameter d 6 R and the nodes
within thus form a clique. The union of the two half lenses is not necessarily a clique, since
some nodes w,w ′ might have a distance > d .

otherwise. Thus, every node only has (in expectation) a constant number of neighbors
with larger degree. Thus, the largest clique can be found by exhaustively searching all
node neighborhoods as follows. In each step, pick the node v of smallest degree in the
graph, and �nd the largest clique that v is a part of. Then, delete v and recurse. The
technical analysis of this process is the same as in [FK12, Theorem 1], which reveals
that the largest clique can be determined in O (n) expected time. �

This algorithm is the same as in the Chung-Lu model with β > 3 [FK12]. In this
model, however, no algorithm is known for �nding the largest clique in polynomial
time when 2 < β < 3. In contrast to this, we now show that due to the underlying
geometry in hyperbolic random graphs sampled from the step model, a polynomial
runtime is also achievable for the case 2 6 β < 3, if the geometric representation of
the graph is given. The proof is similar to [CCJ91, Section 3] and works roughly as
follows.

Consider two connected nodes u,v with distance dist(u,v ) = d 6 R. We denote by
Su,v the set of all nodes that have distance at most d to both nodes u,v . By de�nition,
it holds Su,v ⊂ Bu (d ) ∩ Bv (d ). Consider now the largest clique C in the graph, and
let x ,y ∈ C be the two nodes with maximal distance in C . It is then easy to see that
C ⊆ Sx,y . Thus, it su�ces to �nd the largest clique in Su,v for all connected node pairs
u,v ∈ V .

In the following, we prove that the graph induced by the nodes Su,v is complement
to a bipartite graph. Finding the largest clique then boils down to �nding the largest
independent set in a bipartite graph, which is possible in polynomial time.
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u v

p

L1

d

d

(a) The point p has distance at most d to all
points in L1. In particular, the arcs from p to
u,v are fully contained in Bp (d ).

u v

p

x

y

z

(b) Two arbitrary points x ,y ∈ L1 have dis-
tance at most d , which can be deduced from
this construction and the triangle inequality.

Figure 4.2: Proof illustration for Lemma 4.3.

To show that Su,v is a complement of a bipartite graph, we partition the lens
Bu (d ) ∩ Bv (d ) into two symmetrical areas (half lenses) and show that each half lens
has geometric diameter at most d . Thus, both half lenses form complete subgraphs;
while edges crossing the two half lenses may or may not be present. Figure 4.2 contains
an illustration. Without loss of generality, we assume that u = (0, 0) and v = (d, 0).
The statement generalizes to arbitrary positions by a simple coordinate transformation.

Lemma 4.3. Consider a lens of the form L = B0 (d ) ∩ Bd (d ) in the hyperbolic plane.
Then, the half lens L1 = {(r ,φ) ∈ L | 0 6 φ < π} has geometric diameter at most d .

Proof. Let us denote with p the point where the two discs of radius d intersect. We �rst
show that p has distance at most d to all points in the half lens. Figure 4.2a contains
an illustration of this statement.

Consider a circle of radius d around p, i.e. Bp (d ). Since p has distance d to both
u,v , they lie on this circle. Since circles in hyperbolic space are convex, the geodesic
between u,v lies inside the circle as well. It remains to show that the two circular arcs
from p to u,v also lie within Bp (d ). To this end, we use the basic fact that distinct
circles in the hyperbolic plane meet at most twice. Due to symmetry, it su�ces to show
that the arc from p to u is contained in Bp (d ). Since u is on the boundary of Bp (d ), this
leaves at most one more intersection. By symmetry of the lens, every such intersection
in L1 must also occur in L2 = {(r ,φ) ∈ L | π 6 φ < 2π}. Thus, the circular arc from p
to u can not intersect Bp (d ), as otherwise there would be at least three intersections.

Therefore, we know that u,v and p have at most distance d to all nodes in the half
lens L1. Consider now two arbitrary points x ,y ∈ L1. We consider the three triangles
obtained by using xy as base, and u,v or p as the third point, see Figure 4.2b. Since
these three triangles use the same base, at least two of them intersect. W. l. o. g., we
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assume that px intersects vy, the other cases are analog. We call the intersection point
z. We observe now the following:

vy = vz + yz 6 d since v has distance at most d to all points in L1 , (4.6)
px = pz + xz 6 d since p has distance at most d to all points in L1, (4.7)

vz + pz > d by triangle inequality, since vp = d . (4.8)

Adding Equations (4.6) and (4.7) and subtracting Equation (4.8) yields

yz + xz 6 d .

Thus, by triangle inequality, we have xy 6 yz + xz 6 d . �

Using this result, we may show that there exists a polynomial time algorithm for
�nding the maximum clique in a hyperbolic random graph drawn from the step model.
Note that similarly as in the euclidean case, this result holds with probability 1, i. e.
the proof is fully deterministic and does not use the distribution of nodes. Using
Lemma 4.3, the proof is analogous to the euclidean case [CCJ91]. We reprove it here
for completeness.

Theorem 4.6. Let G be a graph sampled from the hyperbolic random graph in the
step model. Given the geographic position of the nodes, the clique number ω (G ) can be
computed in worst-case O (m · n2.5) time.

Proof. LetC be the largest clique inG . Then, there must exist two nodes u,v ∈ C such
thatu,v have maximal geometric distance among all node pairs inC . Letd := dist(u,v ).
Observe that d 6 R, as otherwise u,v are not connected.

Consider now the induced subgraph G[Su,v ] on all nodes Su,v that lie within the
lens Bu (d ) ∩ Bv (d ). This subgraph can be found using the geometric representation,
and, as shown in Lemma 4.3, Su,v may be partitioned in two sets S1, S2, such that both
sets form a clique. Finding the largest clique in G[Su,v ] is then equivalent to �nding
the largest independent set in the complement graph G[Su,v ]. Since S1, S2 both form a
clique in G[Su,v ], they are independent in G[Su,v ] and therefore, G[Su,v ] is a bipartite
graph.

Finding a maximum independent set is again equivalent to �nding a minimum vertex
cover. By Kőnig’s Theorem (see e. g. [Die12]), the size of the maximum matching in a
bipartite graph is equal to the size of the minimum vertex cover. Thus, it su�ces to
compute the size k of a maximum matching in G[Su,v ] and return |Su,v | − k . Using
e. g. the Hopcroft-Karp algorithm [HK73], this may be done in time O ( |Su,v |2.5).

Thus, an algorithm needs to simply check for each connected pair of nodes u,v for
the largest clique in Su,v , which takes time at most O (m · n2.5). �
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4.7 Conclusion
We present an analysis of the emergence of cliques in the hyperbolic random graphs
and suggest how to �nd them algorithmically. We found that the large clustering
coe�cient of these graphs strongly a�ects the clique number when β > 3. Previous
models with independent edge probabilities predicted a clique number of 3 in this case,
whereas the hyperbolic random graph contains a logn

log logn size clique.
Further, we show two algorithms for computing the largest clique in a hyperbolic

random graph drawn form the step model. For graphs with power-law exponent β > 3,
the largest clique can be found in expected linear time. On the other hand, if the node
coordinates are known, the largest clique in any hyperbolic random graph may be
found in time O (n4.5) with probability 1. It is, however, an open problem to �nd the
largest clique when given only the graph structure, but not the geometric locations of
the nodes.
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5Diameter of Hyperbolic Random Graphs

This chapter is based on joint work with Tobias Friedrich [FK15b]. It contains improve-
ments on several proofs and a corrected version of Theorem 5.2 over the published confer-
ence version.

5.1 Introduction

The diameter of a graph G is the longest shortest path between any two nodes in (the
giant component of)G . It is a fundamental structural property of a random graph, as it
sets a worst-case lower bound on the number of steps required for all communication
processes. Assume for instance a simple broadcast protocol in which each activated
node activates all neighbors. Starting with one active node, it takes Ω(D) iterations of
this process to activate all nodes in the giant component, where D is the diameter.

In contrast to the average distance, the diameter is determined by a single—atypical—
long path. Due to this sensitivity to small changes, it is notoriously hard to analyze.
Even subtle changes to the graph model can make an exponential di�erence in the
diameter, as can be seen when comparing Chung-Lu (CL) random graphs [CL02b] and
Preferential Attachment (PA) graphs [BA99] in the range of the power law exponent
2 < β < 3: On the one hand, it has been shown that a CL graph can be embedded in a PA
graph and they behave e�ectively the same [FPS12]. On the other hand, the diameter of
CL graphs is Θ(logn) [CL02b] while for PA graphs it is Θ(log logn) [DHH10]. Table 5.1
provides an overview over existing results in other random graph models. It was open
so far how the diameter of hyperbolic random graphs compares to the aforementioned
bounds for other scale-free graph models. The only known upper bounds on their
diameter are O ((logn)

32
(3−β ) (5−β )+1) by Kiwi and Mitsche [KM15], and a polylogarithm

with no explicit constant by Bringmann, Keusch, and Lengler [BKL15].

5.2 Our Contribution

We improve upon the previous results as follows. First, we present a much simpler
proof which also shows a polylogarithmic upper bound for the diameter, but with a
better (i.e. smaller) exponent.

Theorem 5.1. Let 2 < β < 3. The diameter of the giant component in the hyperbolic
random graph is O ((logn)

2
3−β ) with probability 1 −O (n−2).
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Random Graph Model Diameter

Sparse Erdős-Rényi [Bol98] Θ(logn) [RW10]
d-dim. Euclidean [Pen03] Θ(n1/d ) [FSS13]
Watts-Strogatz [WS98] Θ(logn) [BC88]
Kleinberg [Kle00] Θ(logn) [MN04]

Chung-Lu [CL02b] Θ(logn) [CL02b]
Pref. Attachment [BA99] Θ(log logn) [DHH10]
Hyperbolic [Kri+10] O ((logn)

32
(3−β ) (5−β )+1) [KM15]

power-law graphs

Table 5.1: Known diameter bounds for various random graphs. In all cases the diameter
depends on the choice of the model parameters. Here we consider a constant average degree.
For scale-free networks, we also assume a power law exponent 2 < β < 3.1

The proof of Theorem 5.1 is presented in Section 5.4. It serves as an introduction
to the proof of a logarithmic upper bound for the diameter presented in Section 5.5.
There we show with more advanced techniques that for large power-law exponents
the following theorem holds.

Theorem 5.2. Let β > 3. Then, the diameter of the giant component in the hyperbolic
random graph is O (logn) with probability 1 −O (n−2).

The logarithmic upper bound is best possible. In particular, we show that Theo-
rem 5.2 is tight by presenting the following matching lower bound.

Theorem 5.3. Let β > 2. Then, there exists a component in the hyperbolic random
graph with diameter Ω(logn) with probability 1 −O (n1−

β
2 ). If β < 3, this is the giant

component.

Let us brie�y discuss these results. First, even though we prove all diameter bounds
on the giant component for the case 2 < β < 3, our proofs will make apparent that
the giant component is in fact the component with the largest diameter in the graph.
Second, the statements in Theorems 5.1 and 5.2 hold with probability 1 −O (n−2). It is,
however, straightforward to modify our proofs to show that these statements hold with
probability 1−O (n−c ) for any constant c . Note that this does not hold for Theorem 5.3.
Last, we note that all results in this chapter are for the step model of the hyperbolic
random graph, c. f. De�nition 3.

It is an open problem to close the gap between the lower bound Ω(logn) and the
upper bound O (log

2
3−β n) on the diameter in the case 2 < β < 3. We conjecture that

1Note that the table therefore refers to a non-standard Preferential Attachment version with adjustable
power law exponent 2 < β < 3 (normally, β = 3).
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the diameter in this case is Θ(logn) as well. A major indicator is that the bound
O (log

2
3−β n) becomes worse as β → 3, whereas for β > 3 we have a tight result. On

the other hand, similar to most scale-free random graph models, hyperbolic random
graphs have a distinct phase transition at β = 3. This makes such a behavior unlikely,
but not impossible. We discuss the di�culties in proving a tight bound for the case
2 < β 6 3 in more detail at the end of Section 5.5.

Used techniques. Our formal analysis of the diameter has to deal with a number
of technical challenges. First, in contrast to proving a bound on the average distance,
it is not possible to average over all path lengths. In fact, it is not even su�cient to
exclude a certain kind of path with probability 1 −O (n−c ); as this has to hold for all
possible Ω(n!) paths. This makes a union bound inapplicable.

A second major challenge is the fact that a probabilistic analysis of shortest paths
typically uncovers the probability space in a consecutive fashion. Successively reveal-
ing the positions of nodes on the path introduces strong stochastic dependencies that
are di�cult to handle with probabilistic tail bounds [DA09]. Instead of studying the
stochastic dependence structure in detail, we use the geometry and model the hyper-
bolic random graph as a Poisson point process. This allows us to analyze di�erent
areas in the graph independently, which in turn supports our stochastic analysis of
shortest paths.

We then bound the length of a shortest path by a multiplicative drift argument
known from evolutionary computation [LW13]; and show that the length of O (logn)
shortest paths follows an Erlang distribution and is thereby still O (logn). This result
may be of independent interest, as it relaxes some of the conditions that are usually
required to apply the drift theorem.

Notation. We use the notation and results introduced in Chapters 2 and 3. In
particular, we often use β = 2α + 1 interchangeably.

5.3 The Poisson Point Process
We often want to argue about the probability that an area S ⊆ DR contains one or
more nodes. To this end, we usually apply the simple formula2

Pr[∃v ∈ S] = 1 − (1 − µ (S ))n > 1 − exp(−n · µ (S )). (5.1)

Unfortunately, this formula signi�cantly complicates once the positions of some nodes
are already known. This introduces conditions on Pr[∃v ∈ S] which can be hard to

2Note that we write ∃v ∈ S informally to mean whether S ⊆ DR contains a vertexv ∈ V . To be formally
precise, we would have to write V ∩ S , ∅. Since it is usually clear from the context that v refers to a
node, we chose to keep notation concise.
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grasp analytically. For instance, assume we condition on the event that all nodes are in
some area S ⊂ DR . Then, the probability that a node is sampled in DR \ S is always 0.

To circumvent this technical problem, we use a Poisson point process (PPP) [Pen03]
which describes a di�erent way of distributing nodes inside DR . Let the random
variable Pn = {(r1,φ1), (r2,φ2), . . . , (rN ,φN )} denote the set of nodes produced by
the PPP. Then, Pn is fully characterized by the following two properties:

• If two areas S, S ′ are disjoint, then the number of nodes in Pn that fall within S
and S ′ are independent random variables.

• The expected number of points in Pn that fall within S is
∫
S nµ (S ).

One can show that the above properties imply that the number of nodes inside S
follows a Poisson distribution with mean nµ (S ). In particular, we obtain that the
number of nodes N = |Pn | inside DR is distributed as Po(n), i.e. E [N ] = n and

Pr(N = n) = e−nnn

n! = Θ
(
n−

1
2
)
.

Moreover, by conditioning on N = n, we recover the original distribution of nodes
in DR . Thus, let P be any property that holds with probability at most O (n−c ) on a
hyperbolic random graph whose node set was sampled using Pn . Then, P also holds
with probability at most O (n

1
2−c ) in hyperbolic random graphs. This makes the PPP

an extremely useful tool as any result that holds with a high enough polynomial
probability directly translates to hyperbolic random graphs with an error term of n 1

2 .
We explicitly state whenever we use the PPP instead of the normal hyperbolic

random graph. A useful side e�ect of this model is that Equation (5.1) changes to an
equality, i. e., it holds Pr[∃v ∈ S] = 1 − exp(−n · µ (S )).

5.4 Polylogarithmic Upper Bound
In this section, we show a polylogarithmic upper bound on the diameter of the hy-
perbolic random graph. The proof proceeds in two steps: First, we show that nodes
close to the center form a connected component of diameter O (log logn). This cov-
ers all nodes that are at least bO away from the boundary of DR . We call this area
BI := B0 (R − bO ) the inner band, where bO = Θ(logR) will be chosen suitably later.
See Figure 5.1 for an illustration. Afterwards, we prove that all remaining nodes in the
outer band BO := DR \ BI form components of at most polylogarithmic diameter.

During the proof, it will sometimes be useful to use a discretization of the radial
coordinates. To this end, we partition DR into R layers of constant thickness 1, where
the �rst layer contains all nodes furthest away from the origin. Thus, all nodes
with radial coordinates in (R − i,R − i + 1] are in layer i .3 We denote the layer i by

3Though we never need it explicitly, we remark that the last layer only covers [0,R − bRc].
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OR

R/2

BO

BI

bO

2bO

O(log log n)

O(log log n)

Figure 5.1: The disk DR is separated into an inner band BI = B0 (R − bO ) and an outer band
BO = DR \ BI of thickness bO . All nodes closer than R/2 to the center form a clique and thus
have diameter 1. All nodes closer than R − 2bO to the center have a path of length O (log logn)
to a node in B0 (R/2). All nodes closer than R −bO have a path of length O (log logn) to a node
in B0 (R − 2bO ). Thus, all nodes in BI are connected, and the diameter of the induced graph is
O (log logn).

Li := B0 (R − i + 1) \ B0 (R − i ). The next Lemma gives a bound on the maximal angle
that two nodes in layers i, j may have while still being connected. Recall that for two
nodes u,v with �xed radius ru , rv , the term θ (ru , rv ) describes the maximum angle
∆φu,v such that u,v are still connected, see Equation (3.4).

Lemma 5.1. Let 1 6 i, j 6 R/2, and consider two nodes u ∈ Li ,v ∈ Lj . Then,
2
e
e
i+j−R

2 (1 + Θ(ei+j−R )) 6 θ (ru , rv ) 6 2e
i+j−R

2 (1 + Θ(ei+j−R )),

Proof. By Lemma 3.2, θ (rv , rw ) = 2e
R−rv −rw

2 (1 +O (eR−rv−rw )). Since v ∈ Li , we have
that R − i 6 rv 6 R − i + 1; and similarly R − j 6 rw 6 R − j + 1. Thus, we obtain

2e
i+j−2−R

2 (1 + Θ(ei+j−R )) 6 θ (ru , rv ) 6 2e
i+j−R

2 (1 + Θ(ei+j−R )). �

Furthermore, we require an estimate for the probability that a node u in layer Li
has a neighbor in layer Lj . To this end, the next lemma computes the probability mass
of the area Bu (R) ∩ Lj .
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Lemma 5.2. Let 1 6 i, j 6 R/2, and consider a node u ∈ Li . Then,

µ (Lj ∩ Bu (R)) = Θ(e−α j+
i+j−R

2 ).

If further (i + j )/R < 1 − ε for some constant ε > 0 holds, we obtain the explicit bounds
for large n

α

eπ
e−α j+

i+j−R
2 6 µ (Lj ∩ Bv (R)) 6 eα−1 · αe−α j+ i+j−R2 .

Proof. We have by Lemma 3.2 and Lemma 3.1

µ (Lj ∩ Bv (R)) 6
1
2π µ (Lj )θ (R − i,R − j )

6 f (R − j + 1) · 2e i+j−R
2 (1 + Θ(ei+j−R ))

6 α
π e

i+j−R
2 +α (R−j+1)−αR (1 + Θ(e−αR − e−2α (R−i ) + ei+j−R ))

6 eα α
π e

i+j−R
2 −α j (1 + Θ(e−αR + ei+j−R ))

For the other direction, a similar computation yields

µ (Lj ∩ Bv (R)) > µ (Lj )θ (R − i + 1,R − j + 1)

> f (R − j ) · 2e e
i+j−R

2 (1 + Θ(ei+j−R ))

> α
eπ e

i+j−R
2 +α (R−j )−αR (1 + Θ(e−αR − e−2α (R−i ) + ei+j−R ))

> α
eπ e

i+j−R
2 −α j (1 + Θ(e−αR + ei+j−R )). �

Using Lemmas 5.1 and 5.2, we can now prove that every node v ∈ BI has a path
of length O (log logn) that leads to a node in B0 (R/2). Recall that the inner band was
de�ned as BI := B0 (R − bO ).
Lemma 5.3. Consider a nodev ∈ Li ⊂ BI . If α < 1, it holds with probability 1−O (n−3)

1. if i ∈ [bO , 2bO ], then v has a neighbor in layer Li+1, and

2. if i ∈ [2bO ,R/2], then v has a neighbor in layer Lj for j = α
2α−1i .

Proof. We begin by proving the �rst claim. By combining Equation (5.1) and Lemma 5.2,
the probability that node v ∈ Li does not contain a neighbor in Lj = Li+1 is at most

exp(−nµ (Lj ∩ Bv (R))) 6 exp(−Θ(1) · eR/2 · e−α j+ i+j−R2 )

= exp(−Θ(1) · e−α j+ i+j2 ) (5.2)

= exp(−Θ(1) · e−α (i+1)+i+ 1
2 )

= exp(−Θ(1) · e (1−α )i ).
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We now choose bO appropriately. Since in the �rst case we have i > bO , our goal
is to set bO to a value such that above term is at most O (n−3). This is achieved by
bO := logR

1−α + c for some large enough constant c . Then, we have

exp(−nµ (Lj ∩ Bv (R))) 6 exp(−Θ(1) · e logR+(1−α )c ) 6 exp(−3 logn).

This proves part (1) of the claim. For part (2), we set j = α
2α−1i and i > 2bO in

Equation (5.2). It is then upper bounded by

exp(−Θ(1) · e− α 2
2α−1 i+

i
2+

α
4α−2 i ) = exp(−Θ(1) · e (3α−1−2α 2) i

4α−2 )

= exp(−Θ(1) · e (1−α ) i2 )
6 exp(−Θ(1) · e logR+ 1−α

2 c )

6 exp(−3 logn),

which again holds if the constant c in bO =
logR
1−α + c was chosen large enough. �

Plugging everything together, we obtain that the diameter of the inner band is at
most O (log logn).

Corollary 5.1. Let 1
2 < α < 1. With probability 1−O (n−2), each pair of nodesu,v ∈ BI

in the hyperbolic random graph is connected by a path of length O (log logn).

Proof. By a union bound over at most n nodes in BI , the statement in Lemma 5.3 holds
for every node in BI with probability 1 − O (n−2). Consider thus a node in a layer
[bO , 2bO ]. Since by Lemma 5.3, every such node has a neighbor in the subsequent layer,
we need at most O (log logn) hops to reach a node in layer i ∈ [2bO , R2 ]. Similarly,
every such node has a neighbor in layer j = α

2α−1i = (1 + ε )i for some constant ε > 0.
Thus, we need at most O (logR) = O (log logn) hops to reach some node in B0 (R/2).
Since all nodes in B0 (R/2) form a clique by the triangle inequality, we therefore obtain
that all nodes in BI form a connected component with diameter O (log logn). �

5.4.1 Outer Band

By Corollary 5.1, we obtain that the diameter of the graph induced by nodes in the
inner band BI is at most O (log logn). In particular, since all nodes in B0 (R/2) belong
to the giant component [BFM14], the nodes in the inner band all belong to the giant
component as well. In this section, we prove that each component in the outer band BO
has a polylogarithmic diameter. Then, one can conclude that the overall diameter of
the giant component is at most polylogarithmic, since the diameter is then dominated
by the components in the outer band.
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v

w

u
v

w

u

Figure 5.2: Illustration of the statement in Lemma 5.4. By de�nition, the edge {u,w} passes
under v in both cases.

To argue over sequences of nodes on a path, we introduce the concept of betweenness:
We say that a node v is between two nodes u,w , if ∆φu,v + ∆φv,w = ∆φu,w . As an
example, consider the nodes u = (r1, 0),v = (r2,

π
2 ) and w = (r3,π ). Then, v lies

between u and w , but w does not lie between u and v as ∆φu,v = π/2 but ∆φu,w +
∆φw,v =

3
4π .

If a node v is between two connected nodes u,w and has a small radial coordinate,
it is also connected to u,w as shown by the following lemma. Figure 5.2 contains an
illustration.

Lemma 5.4. Let u,v,w ∈ V be nodes such thatv lies between u andw , and let {u,w} ∈
E. If rv 6 ru , then v is connected tow .

Proof. By Lemma 3.4, we know that if two nodes (r1,φ1), (r2,φ2) are connected, then
so are (r ′1,φ1), (r

′
2,φ2) where r ′1 6 r1 and r ′2 6 r2. Observe that v may only lie between

u,w if ∆φu,w 6 π . Since the distance between nodes increases on 0 6 ∆φ 6 π , this
proves the claim. �

Note that by symmetry, if rv 6 ru and rv 6 rw both hold, then v is connected to
both u,w .

We say that an edge {u,w} passes under v if the requirement of Lemma 5.4 is ful�lled.
Using this, we are ready to show Theorem 5.1. In this argument, we investigate the
angular distance a path can at most traverse until it passes under a node in BI . By
Lemma 5.4, we then have with high probability a short path to the center B0 (R/2) of
the graph.

Theorem 5.1. Let 2 < β < 3. The diameter of the giant component in the hyperbolic
random graph is O ((logn)

2
3−β ) with probability 1 −O (n−2).

Proof. Partition the hyperbolic disc into n disjoint sectors of equal angle Θ(1/n). Recall
that bO = logR

1−α + c for a large enough constant c . By Equations (3.6) and (5.1), the
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probability that k consecutive sectors contain no node in BI is

(1 − Θ(k/n) · µ (B0 (R − bO )))n 6 exp(−Θ(1) · k · e−α logR/(1−α ) )

= exp(−Θ(1) · k · (logn)− α
1−α ).

By choosing k := Θ((logn) 1
1−α ) large enough, we obtain that with probability 1 −

O (n−3), there are no k such consecutive sectors. By a Cherno� bound, the number
of nodes in k such consecutive sectors is Θ((logn) 1

1−α ) with probability 1 −O (n−3).
Applying a union bound, we get that with probability 1 − O (n−2), every sequence
of k consecutive sectors contains at least one node in BI and at most Θ(k ) nodes in
total. Consider now a node v ∈ BO that belongs to the giant component. Any path
(without loops) from v that is longer than Θ(k ) thus must span more than k sectors.
In particular, this path either uses a node in BI ; or it passes under a node in BI . By
Lemma 5.4, there thus must exist a path from v to some node u ∈ BI of length at
most O (k ). From u, there is a path of length O (log logn) to the center B0 (R/2) of the
hyperbolic disc by Corollary 5.1. Since this holds for all nodes and the center forms a
clique, the diameter is therefore O ((logn) 1

1−α ) = O ((logn)
2

3−β ). �

From the proof it follows that every component inhabiting Ω((logn)
2

3−β ) sectors is
connected to the center. We derive the following Corollary.

Corollary 5.2. Let 2 < β < 3. The second largest component of the hyperbolic random
graph is of size at most O ((logn)

2
3−β ) with probability 1 −O (n−3/2).

Proof. The second largest component may not be connected to a node in BI . Otherwise,
as shown above, it belongs (w. h. p.) to the giant component. By the same argument as
in Theorem 5.1, the largest such component can contain at mostO (log

2
3−β n) nodes. �

These bounds improve upon the results in [KM15] who show an upper bound of
O ((logn)

32
(3−β ) (5−β )+1) on the diameter and O ((logn)

64
(3−β ) (5−β )+1) on the second largest

component. As we will see in Theorem 5.3, however, the lower bound on the diameter
is only Ω(logn). It is an open problem to show a tight result for 1

2 < α < 1. For the
case α > 1, we bridge this gap in the next section.

5.5 Logarithmic Upper Bound
In this section, we show that the diameter of the hyperbolic random graph is O (logn),
if β > 3, or, equivalently, α > 1. The intuition behind the analysis in this section is
opposite to the approach in the section before. Instead of showing that there exist
short paths to the center of the graph from all nodes, we show that all shortest paths
terminate afterO (logn) steps since they reach the boundary of DR . This holds because
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for every node v , their largest degree neighbor is (in expectation) of smaller degree
than v itself. Thus, a shortest path visits successively nodes of smaller and smaller
degree, until it cannot continue.

In this section, we prove all intermediate results using the Poisson point process
(PPP), see Section 5.3. We begin by showing that each node’s largest degree neighbor
is of small degree, or, equivalently, is in a small layer. Here, we have to deal with an
additional technicality: When sampling a shortest path, we already have uncovered
a neighbor of the current node. We therefore strengthen our result by conditioning
on this information. Given a node v and a forbidden neighbor f , we denote by the
random variable Y (v, f ) the largest layer in which v has a neighbor that is not f . If v
has no other neighbors than f , we set Y (v, f ) = 0. We show the following.

Lemma 5.5. There exist constants ε,δ > 0 such that for all i > ε

E
[
Y (v, f ) | v ∈ Li , f ∈ Lj

]
6 (1 − δ )i .

Proof. We �rst compute the probability that v has no neighbors in layer x , without
conditioning on f . This happens when no nodes are sampled in the area Lx ∩ Bv (R).
Recall that in the PPP, it holds Pr[∃u ∈ S] = 1 − exp(−nµ (S )), see Section 5.3. Thus,
by Lemma 5.2,

Pr[|Γ(v ) ∩ Lx | = 0] = exp(−nµ (Lx ∩ Bv (R)))

= exp(−Θ(1) · e i
2−(α− 1

2 )x ). (5.3)

We now compute the probability that all neighbors Γ(v ) \ f are below layer m. For
this, we apply the de�nition of conditional probability to obtain

Pr[Y (v, f ) < m | v ∈ Li , f ∈ Lj ] =
Pr[Y (v, f ) < m ∧ f ∈ Lj | v ∈ Li ]

Pr[f ∈ Lj | v ∈ Li ] .

Recall that f ∈ Lj is shorthand for whether v has a neighbor in Lj , and therefore
Pr[f ∈ Lj | v ∈ Li ] = Pr[|Γ(v ) ∩ Lj | > 0]. We now consider the two cases (i) j < m
and (ii) j > m. Since each layer is independent in the PPP, we obtain for case (i)

Pr[Y (v, f ) < m | v ∈ Li , f ∈ Lj ] = Pr[∀x > m : |Γ(v ) ∩ Lx | = 0] · Pr[|Γ(v ) ∩ Lj | > 0]
Pr[|Γ(v ) ∩ Lj | > 0]

=
∏
x>m

exp(−Θ(1) · e i
2−(α− 1

2 )x ) (5.4)

= exp(−Θ(1) ·
∑
x>m

e
i
2−(α− 1

2 )x )

= exp(−Θ(1) · e i
2−(α− 1

2 )m ),

54



Logarithmic Upper Bound Section 5.5

since the sum is geometric. For case (ii), we condition on the fact that f ∈ Lj for j > m.
This means that v has exactly one neighbor in Lj , and all other neighbors are below
layerm. Thus, we obtain

Pr[Y (v, f ) < m | v ∈ Li , f ∈ Lj ] =
Pr[|Γ(v ) ∩ Lj | = 1]
Pr[|Γ(v ) ∩ Lj | > 0] ·

∏
x>m
x,j

Pr[|Γ(v ) ∩ Lx | = 0].

Recall that the number of nodes in an area S is distributed as Po(nµ (S )) in the PPP.
Thus,

Pr[|Γ(v ) ∩ Lj | = 1] = Pr[Po(nµ (Lj ∩ Bv (R))) = 1]
= nµ (Lj ∩ Bv (R)) · exp(−nµ (Lj ∩ Bv (R)))

= nµ (Lj ∩ Bv (R)) · exp(−Θ(1) · e i
2−(α− 1

2 )j ).

On the other hand, for Pr[|Γ(v ) ∩ Lj | > 0] we apply the inequality 1 − e−x 6 x
(c. f. Lemma 2.1) to obtain

Pr[|Γ(v ) ∩ Lj | > 0] = 1 − exp(−nµ (Lj ∩ Bv (R))) 6 nµ (Lj ∩ Bv (R))

Plugging this together, we have in case (ii)

Pr[Y (v, f ) < m | v ∈ Li , f ∈ Lj ] > exp(−Θ(1) · e i
2−(α− 1

2 )j ) ·
∏
x>m
x,j

Pr[|Γ(v ) ∩ Lx | = 0]

=
∏
x>m

exp(−Θ(1) · e i
2−(α− 1

2 )x ).

Thus, we obtain the same result as in Equation (5.4).

Finally, to compute the expectation of Y (v, f ), we sum over the CCDF as in Equa-
tion (2.2). This yields

E
[
Y (v, f ) | v ∈ Li , f ∈ Lj

]
=

∞∑
m=1

Pr[Y (v, f ) > m | v ∈ Li , f ∈ Lj ]

=

∞∑
m=1

(1 − Pr[Y (v, f ) < m | v ∈ Li , f ∈ Lj ])

6
∞∑

m=1
(1 − exp(−Θ(1) · e i

2−(α− 1
2 )m )).

Since the �rst 1
2α−1i terms of the sum are close to 1, we simply overestimate them with

1. For the remaining part of the sum, we again apply the inequality 1 − e−x 6 x and
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obtain

E
[
Y (v, f ) | v ∈ Li , f ∈ Lj

]
6

i

2α − 1 +
∞∑

m= 1
2α−1 i

(1 − exp(−Θ(1) · e i
2−(α− 1

2 )m ))

6
i

2α − 1 +
∞∑

m= 1
2α−1 i

Θ(1) · e i
2−(α− 1

2 )m

6
i

2α − 1 + Θ(1).

To prove the claim, we choose ε > 0 as a large enough constant and δ > 0 as
a small enough constant. Then, since i > ε by assumption and α > 1, it holds

1
2α−1 + Θ(

1
i ) 6 1 − δ . �

We note that the same result can be achieved when there is no forbidden node f by
an analogous computation. In this case, we simply write Y (v ) instead of Y (v, f ).

Assume we now �x some vertex u and sample an arbitrary shortest path π = [u =
V0,V1,V2, . . .]. We want to obtain a bound on the length |π | that holds with high
probability. Unfortunately, this process is hard to analyze exactly since it is governed
by many dependencies. For example, V2 may not be connected to V0, as otherwise, π
is not a shortest path. We may, however, analyze an alternative process that is closely
related. To this end, consider the following sequence of random variables, also called
a random walk.

(Yi )i>1, Y1 := Y (V0), Yi := Y (Vi−1,Vi−2) if i > 2

Recall that Y (Vi−1,Vi−2) denotes the largest layer in which Vi−1 has a neighbor that is
not Vi−2. It is therefore immediate that Vi is always in a smaller or equal layer than Yi ,
since Yi denotes the highest layer in which the shortest path can continue. Further, if
Yi = 0, then |π | 6 i asVi−1 has no further neighbors apart fromVi−2. Recall now that a
node’s neighborhood is monotone in its radial coordinate, i. e., the smaller rv , the more
neighbors v has, see Lemma 3.4. Thus, we may overestimate the radial coordinates of
the nodes V0,V1, . . . and obtain an upper bound on |π |, since each node in π may only
gain additional neighbors.

A natural candidate for this overestimation is to use the upper bounds given by
Y (·). For example, we know that V0 has no neighbors in layers above Y (V0), thus we
may overestimate that V1 has radial coordinate R − Y (V0). The next lemma formalizes
this intuition by giving a random walk (Xi )i>1 that dominates (Yi )i>1, i. e., it holds
Pr[Xi > x] > Pr[Yi > x] for all i and x .
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Lemma 5.6. Consider the random walk (Xi )i>1 with Xi ∈ N, X1 := Y1 and distribution

Pr[Xi+1 > j | Xi = `] = 1 − exp(−ce `
2 −(α− 1

2 )j ) if ` > 0, (5.5)
Pr[Xi+1 = 0 | Xi = 0] = 1 otherwise.

If c is a large enough constant, this random walk dominates (Yi )i>1.

Proof. We prove this statement by giving a coupling of the two random walks such
that Xi will always be greater or equal than Yi . By de�nition, this holds for X1 and Y1.
We now assume inductively that such a coupling exists for 1, . . . , i and show how to
produce it for i + 1.

We �rst reveal Γ(Vi ), i. e., all neighbors of Vi . Obviously, the shortest path formed
by the vertices V1, . . . ,Vi will continue on a node from Γ(Vi ) \ Vi−1 or end at Vi .
Consider now a fresh instance of a hyperbolic random graph in which no nodes have
been sampled yet. Assume that in this new instance, we place a node V ′i at position
(R − Xi ,φVi ). Observe that this node has a smaller or equal radius than Vi , since by
induction we know that Xi > Yi . Further, we have that by Lemma 3.4, BV ′i (R) ∩ B0 (R)
is a superset of BVi (R) ∩ B0 (R). Since we are in the PPP, vertices in the additional area
BV ′i (R) ∩ B0 (R) \ BVi (R) may be sampled independently from BVi (R) ∩ B0 (R) since
these regions are disjoint.

Thus, we may couple the neighborhood of V ′i to contain copies of all nodes Γ(Vi )
and possibly more. Therefore, the largest layer containing a neighbor of V ′i that is not
the copy of Vi−1 is Y (V ′i ,Vi−1) > Y (Vi ,Vi−1). And as derived in Lemma 5.5, there is a
constant c such that Y (V ′i ,Vi−1) is distributed as

Pr[Y (V ′i ,Vi−1) > j | Xi = `] 6 1 − exp(−ce `
2 −(α− 1

2 )j ).

This agrees with Equation (5.5), and since Y (V ′i ,Vi−1) > Y (Vi ,Vi−1), so is Xi+1 >
Yi+1. �

Observe that Lemma 5.5 shows that by de�nition of (Xi )i>1, it also holds

E [Xi+1 | Xi ] 6 (1 − δ )Xi ,

if Xi is at least a large enough constant ε . In other words, (Xi )i>1 has a so-called
multiplicative drift towards 0 while it is above some constant layer ε .

We now �nally turn to analyzing the length of the random walk (Xi )i>1 until it
reaches 0, and thus, by our explanations above, the length |π | of a shortest path. Let
T := min{i | Xi = 0} be the random variable describing the number of iterations
until Xi hits 0. We bound T by a multiplicative drift theorem as presented by Lehre
and Witt [LW13, Theorem 7] and originally developed by Doerr and Goldberg [DG10,
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Negative drift

Layer ε

Layer 1

T0

T1

T2

T3

Figure 5.3: A sketch of the diameter proof. Until layer ε , there is a negative drift on the next
node of the random walk. Between layer ε and layer 1, there is a constant probability for the
walk to end. Thus, the overall walk visits the marked area O (logn) times. Naively, the random
walk is thus of length O (log2 n), however, Lemma 5.7 shows that it is with high probability of
length O (logn).

Theorem 1] for the analysis of evolutionary algorithms. For the sake of completeness,
we restate their result.

Theorem 5.4 (from [LW13; DG10]). Let (Xi )i>1 be a stochastic process over some state
space {0} ∪ [xmin,xmax], where xmin > 0. Suppose that there exists some 0 < δ < 1 such
that E [Xi+1 | X0, . . . ,Xi ] 6 (1 − δ )Xi . Then, for the hitting time T := min{i | Xi = 0}
it holds

Pr[T > 1
δ (ln(X0/xmin) + r ) | X0] 6 e−r for all r > 0.

Unfortunately, in our case, the multiplicative drift vanishes once Xi < ε . We are
therefore only interested when the random walk falls below ε . Thus, we map all points
x < ε to 0 and set X0 6 R and xmin = ε . Using Lemma 5.5 this shows that

Pr[T > 1
δ · (log logn − log ε + r )] 6 e−r . (5.6)

Hence, by setting r = 4 logn we obtain that with probability 1 −O (n−4), the random
walk (Xi )i>1 ends after O (logn) steps below ε .

Once Xi crosses ε , we consider two possibilities: Either, the random walk ends; or it
continues at ε . For the latter case, recall that by Lemma 3.4, a node’s neighborhood
is monotone in the radial coordinate. Increasing Xi to ε thus results in a dominating
random walk. Again, by Theorem 5.4, its stopping time T is distributed as

Pr[T > 1
δ · r ] 6 e−r . (5.7)

As we prove later, the probability for Xi to end is constant if it is below ε . By the
Cherno� bound, the random walk therefore visits at mostO (logn) nodes below layer ε
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before stopping w. h. p.. A naive application of Equations (5.6) and (5.7) thus yields that
(Xi )i>1 is w. h. p. of length O (log2 n), see Figure 5.3. It is, however, possible to improve
this result. The reason is that when adding together O (logn) random variables that
are exponentially distributed, most of them will be of constant size. Thus, intuitively,
the main contribution to the sum comes from just one variable achieving a value of
Ω(logn); whereas all others are small. In the following, we prove this intuition and
thereby show that if (Xi )i>1 drops below layer ε not more than O (logn) times, then
the total length of the random walk is still w. h. p. O (logn).

Lemma 5.7. Let (Ti )i=1...x be x = c logn independent random variables, each with
distribution as in Equation (5.7). Then, with probability 1 −O (n−5),

∑x
i=1Ti 6 O (logn).

Proof. As we only know an exponential tail bound but not the exact distribution of Ti ,
we instead investigate the random variables T ′i whose distribution is given by

Pr[T ′i > r ] = exp(−δr ).

Note thatT ′i dominatesTi , therefore it su�ces to �nd a tail bound onT ∗ := ∑
i T
′
i . Since

T ∗ is a sum of X exponentially distributed variables with equal mean, the distribution
of T ∗ is an Erlang distribution [EHP00] and we have

Pr[T ∗ > t] =
x−1∑
i=0

1
i!e
−δt (δt )i . (5.8)

To estimate this term, we observe that a random variable P that is Poisson distributed
with mean δt has probability mass function Pr[P = i] = (δt )ie−δt 1

i ! . This term equals
the summands in Equation (5.8), and we can therefore write

Pr[T ∗ > t] =
x−1∑
i=0

Pr[P = i] = Pr[P < x].

By a Cherno� bound for Poisson variables [MU05], we can estimate this with

Pr[P < x] 6 e−δt (eδt )x

xx
,

as long as x = c logn 6 δt . Choosing t = c ′ logn large enough, we obtain

Pr[T ∗ > t] 6 e−δc ′ logn (eδc ′ logn)c logn

(c logn)c logn

= n−δc
′
( eδc

′
c )c logn

= n−δc
′+c log( eδc′c ) 6 n−5. �
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Using our auxiliary lemmas, we can prove that the diameter of the hyperbolic
random graph is O (logn) if β > 3, or, equivalently, α > 1.

Theorem 5.2. Let β > 3. Then, the diameter of the giant component in the hyperbolic
random graph is O (logn) with probability 1 −O (n−2).

Proof. Consider any node v and a shortest path beginning in v . The length of the
shortest path is dominated by the length of the random walk (Xi )i>1 as de�ned in
Equation (5.5). Let s = c logn for some large enough constant c , and let ε be a large
enough constant. By Lemma 5.5 and Equation (5.6), Xs < ε with probability 1−O (n−4).
The probability that Xs+1 = 0 is then by Equation (5.5)

Pr[Xs+1 = 0 | Xs < ε] = Pr[Xs+1 < 1 | Xs < ε]

> exp(−ce ε2 −(α− 1
2 ) )

= Θ(1).

Thus, for a large enough constant c ′, the probability that the random walk (Xi )i>1
returns more than c ′ logn times to a value < ε is at most n−5. Consequently, we may
apply Lemma 5.7 and obtain that with probability 1 −O (n−5), the length of the walk
(Xi )i>1 is O (logn). Thereby, the length of a shortest path from any node v in the
Poisson point model is at most O (logn) with a probability of at least 1 −O (n−5). By
the union bound, it thus holds that all O (n2) shortest paths in the graph have length
at most O (logn) with probability 1 −O (n−3). Finally, since we have done the analysis
in the Poisson point model, we have that the probability that the shortest path in the
hyperbolic random graph is O (logn) with probability at least 1 −O (n−2). �

Let us conclude this section by mentioning that the case 2 < β 6 3 remains an open
problem: Even though we provided a better polylogarithmic bound on the diameter,
the lower bound in the next section only produces a path of length Ω(logn). These
bounds leave an open gap, and as of today it remains unclear whether the diameter is
truly logarithmic or in fact polylogarithmic.

The main problem in proving a better bound in that case lies within the outer band
BO . Consider a similar approach as in Theorem 5.2: If β < 3, then the random walk
Yi has a multiplicative drift towards the center of DR . While this sounds promising,
there is a signi�cant problem. In our case, we may simply discard the dependencies
of previously visited nodes. After all, they only may exclude potential areas of DR
to contain neighbors and discarding them increases the (expected) layer of the next
vertex.

This estimation does not hold the other way around: If the random walk is to
reach the center of the graph, we may not discard these dependencies as doing so
decreases the length of the random walk. Thus, one has to consider the dependencies
of previously visited nodes. This is di�cult, since the in�uence of an earlier node
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depends on its (angular) distance from the current node, and its radial coordinate.
Imagine, for instance, that X1 = R/2, and X2 = 1. We would now like to sample X3
only depending on X2. We know, however, that X3 cannot be in a large layer like R/2.
Otherwise, the node represented by X3 would likely have been connected to the node
represented by X1, and thus X2 cannot be the layer containing the largest neighbor of
the node in X1.

What makes matters even worse is that one needs to consider these conditions of
all preceding nodes, not only the last. This combination of factors makes an analysis
technically challenging. Comparing to other random graph models (see Table 5.1),
however, it would seem highly surprising if the diameter is indeed polylogarithmic.
Furthermore, the upper bound on the diameterO ((logn)

2
3−β ) in Theorem 5.1 increases

as β → 3; however, for β > 3, the diameter is O (logn) by Theorem 5.2. While such an
abrupt phase transition seems unnatural, however, it is not completely unreasonable:
The largest component in hyperbolic random graphs for 2 < β < 3 is of linear size,
whereas for β > 3 it is only of polynomial order. The lower connectivity might
disconnect long paths and therefore decrease the diameter overall. Nevertheless, we
believe this unlikely and conclude this section with the following conjecture.

Conjecture 1. The diameter of the hyperbolic random graph with power-law exponent
2 < β 6 3 is O (logn) with high probability.

5.6 Logarithmic Lower Bound

Kiwi and Mitsche [KM15] provide a proof for the existence of a path component of
length Θ(logn) with high probability. In this section, we present a slightly simpler
proof that there exists a component with diameter of Ω(logn). We achieve this by
considering Θ(logn) subsequent sectors of angle Θ( 1n ), such that each sector contains
exactly one node in layer L1, and no further nodes. We can show that such a sequence
of sectors occurs at least once in the graph w. h. p., and that it forms a path of length
Ω(logn) without shortcuts. In the case where 2 < β < 3, we can further show that this
path component is connected to BI . This proves the intuition that the giant component
has a diameter of at least Ω(logn), which is not obvious a priori.

Theorem 5.3. Let β > 2. Then, there exists a component in the hyperbolic random
graph with diameter Ω(logn) with probability 1 −O (n1−

β
2 ). If β < 3, this is the giant

component.

Proof. Let ε := ( 12 − 1
4α ). Observe that for α > 1

2 , we have ε > 0. Consider the
hyperbolic random graph model, i.e. not the Poisson point process. We �rst show
that with high probability, there are no nodes in B0 (εR). For this, we observe that
µ (B0 (εR)) = Θ(1) · exp(−( α2 + 1

4 )R) = o(1) by Equation (3.6). Thus, we may apply

61



Chapter 5 Diameter of Hyperbolic Random Graphs

Lemma 2.2 to obtain

Pr[@v ∈ B0 (εR)] = (1 − µ (B0 (εR)))
n

> exp(−Θ(1) · eR/2 · e−( α2 + 1
4 )R ) )

> 1 − Θ(1) · e ( 14− α2 )R

= 1 − Θ(n−(α− 1
2 ) ).

It is important to perform this computation in the hyperbolic random graph model, as
the probability that there are no nodes in B0 (εR) , ∅ is smaller than 1 − n− 1

2 for some
values of α . Thus, a direct application of the Poisson point process will result in a
useless tail bound. Instead, we condition in the Poisson point process on the fact that
there are no nodes in B0 (εR). Then, if the same holds in the hyperbolic random graph,
we again recover the same distribution of nodes by simply applying the Poisson point
process to the area DR \ B0 (εR) instead of DR . The expected number of nodes in the
PPP is then

E [|Pn \ B0 (εR) |] = n · µ (B0 (R) \ B0 (εR))

= n · (1 − Θ(eα (εR−R ) ))
= n · (1 − Θ(e−αR ( 12+ 1

4α ) ))

= n · (1 − Θ(e−α R
2 − R4 ) ))

= n · (1 − Θ(n−(α+ 1
2 ) ))

= n − o(1).

Thus, the penalty term is still equal to Θ(n
1
2 ):

Pr[|Pn \ B0 (εR) | = n] = (n − o(1))n exp(−n + o(1)) 1
n!

> Θ(1) · (n − o(1))n exp(−n + o(1))n−n− 1
2en

= Θ(n−
1
2 ) · (1 − o( 1n ))n

> Θ(n−
1
2 ).

In the following, we therefore may condition on the fact that there are no nodes in
B0 (εR); and switch to the Poisson point process. Next, we compute the probability that
a shortest path of length Ω(logn) appears in a certain area. At the end, we amplify
this probability by repeating the experiment independently multiple times to arrive at
our desired result.

To this end, similarly to Theorem 5.1, we now partition the disk DR into Θ(n) sectors
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L1

v1

v2

. . .

vk

u1

u2 . . .

ulogR/(1−α)

Figure 5.4: Proof illustration for Theorem 5.3. The disk DR is partitioned into sectors of angle
1
n . Nodes v1, . . . ,vk in neighboring sectors form a path component of length Θ(k ). If α < 1,
the path is also connected via the nodes u1, . . . ,u logR

1−α +c
to BI .

of equal angle φ := e−R/2 = Θ( 1n ). Then, two nodes u,v ∈ L1 in neighboring sectors
have angular distance at most 2e−R/2 and are therefore by Lemma 3.2 connected. On
the �ip side, if two nodes are at least 6 sectors apart, they are not connected, since
their angle is 6e−R/2 > 2e−R/2+1 (1 +O (e−R )).

Consider now k consecutive sectors, where k is to be �xed later. Let p1 be the
probability that such a sector contains exactly one node in L1. Then, p1 > (e−R/2 ·
ne−α ) = e−Θ(1) , i.e. a constant bounded away from 0. Let p2 be the probability that all
neighbors of this node lie in L1 as well. This is again e−Θ(1) by Lemma 3.3. We name
these nodes v1, . . . ,vk . As argued above, k such nodes form a shortest path of length
Ω(k ). We now argue that when β < 3, this path is also connected to the core of the
hyperbolic random graph by exposing a path u1, . . . ,uh to the inner band BI , where
h = O (log logn). Figure 5.4 contains an illustration of the proof.

The probability that sectors k + 1 to k + c + 1 also each contain exactly one node in
L1 is again e−Θ(1) , if c is constant. From here, we expose a path to the inner band BI as
follows. Assume we have a node ui ∈ Li in sector k + c + i . Assume further ui is to the
right of all previous sectors. Then, we consider the probability that ui has a neighbor
to the right in layer Li+1, while we still condition on the fact that all nodes v1, . . . ,vk
have no neighbors above L1 as stated before. By Lemma 5.1, a node ui+1 ∈ Li+1 is not
connected to any of the nodesv1, . . . ,vk if ∆φui+1,vk > 6e i−R

2 . Similarly, it is connected
to ui if ∆φui ,ui+1 6 2

e e
2i−R
2 . Since all nodes v1, . . . ,vk are to the left of ui and there are
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c sectors between, ui+1 may fall into an angular range of

2
e e

2i−R
2 − 6e i−R

2 + ce−R/2 > Θ(1) · ei− R2 ,

if c is large enough. Therefore, the probability that node ui has a neighbor in layer
Li+1 that is not connected to v1, . . . ,vk , is at least

1 − exp(−Θ(1) · n · e−αiei− R2 ) = 1 − exp(−Θ(1) · e (1−α )i ) = Θ(1).

Such a path to BI is of length at most logR
1−α + c = O (log logn). In total, the probability

that v1, . . . ,vk exist as described above; and that they are connected to BI is thereby
e−Θ(k+log logn) ; or just e−Θ(k ) in the case where β > 3.

It remains to compute how often we can repeat this experiment independently.
Consider a node in the outermost layer v ∈ L1. Since we assumed that v1, . . . ,vk have
no neighbors in layers above 1, we have uncovered the whole area B0 (R) ∩ Bvi (R) for
all i . The largest angular distance such a node v can have to one of its neighbors is by
Lemma 3.2

∆φ 6 2e−
εR
2 (1 ±O (e−εR )) 6 O (n−ε ), (5.9)

where ε = ( 12 − 1
4α ) as chosen in the beginning. This holds since we condition on the

fact that there are no nodes in B0 (εR).
We thus expose at most an angle of O ( kn + n

−ε + log logn · 1n (logn)1/(1−α ) ) of the
graph. Therefore, if k

n < n−ε , we can repeat this experiment independently Ω(nε )
times. The probability that all of them fail is at most

(1 − e−Θ(k+log logn) )Ω(nε ) 6 exp(−e−Θ(k )Ω(nε )) = exp(−nΩ(1) ),

if k = Θ(logn) is chosen small enough. This proves the claim. �

5.7 Conclusion

We derive a new polylogarithmic upper bound on the diameter of hyperbolic random
graphs for the case 2 < β < 3; and show that it isO (logn) if β > 3. We further prove a
logarithmic lower bound. This immediately yields lower bounds for any broadcasting
protocol that has to reach all nodes. Processes such as bootstrap percolation or rumor
spreading therefore must run at least Ω(logn) steps until they inform all nodes in the
giant component. In particular, this result stands in contrast to the average distance
of two nodes in the hyperbolic random graph, which is of order Θ(log logn) [BKL15;
ABF15]. This implies the existence of a path that is exponentially longer than the
average path.

It remains an open problem to �nd a matching upper bound on the diameter in the
case 2 < β 6 3, but we conjecture that it is of orderO (logn) as well. A natural direction
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to expand this research is to investigate rumor spreading on hyperbolic random graphs.
Even though there exists a signi�cant body of research on rumor spreading in other
social network models, hyperbolic random graphs are largely unexplored in this
context. The only work known to us in this direction is by Candellero and Fountoulakis
[CF16], who study bootstrap percolation in this model. An interesting question in
this context is whether the constant clustering of this model a�ects rumor spreading
protocols in a positive or negative way. Previously inspected scale-free graph models
have subconstant clustering.
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6 E�icient Hyperbolic Embeddings

This chapter is based on joint work with Thomas Bläsius, Tobias Friedrich and Sören
Laue [Blä+16]. It contains a more detailed discussion of possible improvements of the
algorithm over the conference version.

6.1 Introduction
In this chapter, we construct and implement a new maximum likelihood estimation
algorithm that embeds scale-free graphs in the hyperbolic space. That is, given a list of
edges, we seek hyperbolic coordinates of nodes such that close pairs in the embedding
are likely to have an edge. All previous approaches of similar embedding algorithms
require a runtime of Ω(n2). Our algorithm achieves quasilinear runtime, which makes
it the �rst algorithm that can embed networks with hundreds of thousands of nodes in
less than one hour on commodity hardware. We demonstrate the performance of our
algorithm on arti�cial and real networks. In all typical metrics like Log-likelihood and
greedy routing our algorithm discovers embeddings that are very close to the ground
truth.

It is well known in the visualization community that hierarchical or tree-like struc-
tures can be well represented in a hyperbolic space [SKP16]. There are three general
approaches to embed a network in the hyperbolic space:

• A popular way to obtain hyperbolic coordinates for the nodes of a network is
embedding a spanning tree of the network in hyperbolic space [WR02; Wal04;
Mun98]. As trees can be embedded perfectly, this is a very e�cient way to map
a network and has been used for interactive network browsers, which allow
assigning more display space to the interesting portions of a network [LRP95;
LR96]. The result might reduce visual clutter and help focus, but it ignores
most structural details of the network. Nodes which are close in graph distance
are not necessarily close in hyperbolic space. In fact, clusters and most local
structures are not preserved.

• Another approach is determining shortest path distances and �nding an em-
bedding where metric distances match the graph distances. Computing the
all-pair-shortest-path matrix can be done with the well established Euclidean
data analysis method Multidimensional Scaling (MDS) [CC00], which has been
translated to hyperbolic geometry [CE16]. Due to the quadratic size of the
distance matrix, this approach only works in practice for graphs with a few
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hundred nodes [AS15b]. To reduce the runtime, it is possible to (randomly)
select a small subset of the pairwise distances [ST08; VS14; Zha+11].

• Our objective is slightly di�erent. Instead of preserving distances between
nodes, we aim at inferring the popularity (re�ected by radial coordinates) and
similarity (re�ected by angular coordinates) of all nodes [Pap+12]. The reason
why connections between vertices exist can be twofold: Either, the two vertices
are similar, which holds e. g. for close friends in social networks; or for geo-
graphically close autonomous systems (AS) in the Internet graph. On the other
hand, a connection may be present due to the popularity of one end vertex: For
instance, many people follow Lady Gaga on Twitter; but most are arguably not
very similar to her. Embedded shortest path distances lose this information.
Our goal is to recover these details using the most likely embedding assuming a
hyperbolic nature of the graph in the �rst place. For this, we use the random
network model of Krioukov et al. [Kri+10].

Maximum Likelihood Estimation Embedding of Graphs in Hyperbolic Space.
We focus on the last-mentioned approach of maximum likelihood estimation (MLE)
algorithms, i.e., we want to �nd the node coordinates in the network by maximizing
the probability that the network is produced by some underlying hyperbolic model.
Boguñá et al. [BPK10] were the �rst to �nd such an embedding for the Internet graph
(m = 58 416 connections between n = 23 752 autonomous systems) in the hyperbolic
space. It is impressive that greedy navigation along these hyperbolic coordinates
is almost maximally e�cient. On average, such greedy paths are just 10% longer
than the shortest path found in the network. However, the described method to
discover the hyperbolic coordinates “require[s] substantial manual intervention and
do[es] not scale to large networks” [Kri+10]. A general algorithm for embedding a
network in a hyperbolic space was later presented by Papadopoulos et al. [PPK15].
Their HyperMap algorithm is an approximate maximum likelihood estimation (MLE)
algorithm. They demonstrate their algorithm on synthetic networks with n = 5 000
nodes andm = 20 000 edges and a subset of the aforementioned Internet graph with
n = 8 220 nodes. The asymptotic runtime was improved in a subsequent paper from
O (n3) to O (n2) [PAK15]. The authors present no runtime measurements [PPK15;
PAK15], but their HyperMap code on our machine requires more than 1.5 hours for a
graph of size 2 000 (cf. Section 6.6.3).

Improvements to HyperMap have been suggested. For instance, Wang, Li, Jin, Xiong,
and Wu [Wan+16a] use a community detection algorithm for the coarse layout of
the nodes; and an MLE to �nd precise positions. Alanis-Lobato, Mier, and Andrade-
Navarro [AMA16] take a di�erent approach by embedding the graph using their
Laplacian. Both these methods, however, still require a running time of Ω(n2).
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Our New Hyperbolic Embedder. We design and implement a new algorithm for
computing hyperbolic MLE embeddings of massive networks (Section 6.5).1 Compared
to previous approaches that need Ω(n2) runtime, our algorithm runs in quasilinear
runtime. To this end, we developed several new techniques. First, we use an analytical
approach to compute the expected angles between pairs of high-degree nodes based
on their number of common neighbors. In contrast to [PAK15], this approach does not
rely on expensive numerical computations, making it fast in practice. The resulting
angle distance matrix is then fed to a spring embedder that �nds good positions for
high-degree nodes in linear time. For small degree nodes, we substantially improve
runtime by using the geometric data structure of Bringmann et al. [BKL15] that allows
traversing nodes of close proximity in expected amortized constant time.

This enables us to embed signi�cantly larger graphs than before. For instance, we
computed on commodity hardware in under one hour a hyperbolic embedding of the
Amazon product recommendation network which has over 300 000 nodes. To evaluate
the quality of our embedding, we conduct large-scale experiments on 6 250 generated
graphs and compare our embedding with the ground truth data (Section 6.6). We
observe that in typical metrics like Log-likelihood and greedy routing, our algorithm
achieves embeddings that are competitive with the original.

Furthermore, we investigate the performance of two classical methods of embedding
graphs in the Euclidean space, namely spring embedders and maximum variance
unfolding, when applied to the hyperbolic space (Sections 6.3 and 6.4). We �nd that
both of them can work under some strong assumptions, but generally fail to translate
to large real-world graphs.

6.2 Preliminaries
We rely on the notion and results introduced in Chapters 2 and 3. Recall that the
distance between two nodes x ,y in the hyperbolic plane is

dist(x ,y) := cosh−1 (cosh(rx ) cosh(ry ) − sinh(rx ) sinh(ry ) cos(φx − φy )).

In this chapter, we steer away from the step model and consider the binomial model
of the hyperbolic random graph. There, every two vertices u,v are connected with a
probability p depending on their distance:

puv := p (dist(u,v )) =
(
1 + exp( 1

2T · (dist(u,v ) − R))
)−1
. (6.1)

Here, T is a parameter regulating the importance of the underlying geometry: When
T → 0, we again recover the step model, where an edge {u,v} is present if and only if
dist(u,v ) 6 R. For T > 0, long-range edges are possible (but unlikely). Typically, one

1Our code is available at https://hpi.de/friedrich/research/hyperbolic.
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assumes 0 6 T < 1. This yields a random graph depending on 4 parameters: n,R (or
C), α , and T . Recall further that Γ(v ) is the set of neighbors of v , and δ refers to the
average degree of G.

Further, given a graph G = (V ,E) and any mapping from nodes to hyperbolic
coordinates {ri ,φi}ni=1, we judge the quality of this embedding using the Log-likelihood

L ({ri ,φi}ni=1 | G ) :=
∑

{u,v}∈E
log(p (dist(u,v ))) +

∑
{u,v}<E

log(1 − p (dist(u,v ))),

where the hyperbolic distances dist are taken with respect to the coordinates {ri ,φi}ni=1.
To determine the quality of a speci�c node v , we write

L (v ) :=
∑

u ∈Γ(v )
log(p (dist(u,v ))) +

∑
u<Γ(v )

log(1 − p (dist(u,v ))), (6.2)

so that we have L ({ri ,φi}ni=1 | G ) = 1
2
∑
v ∈V L (v ).

Our goal is to devise an algorithm which, given only the network structure (i.e. a list
of edges) of a generated hyperbolic random graph, can output hyperbolic coordinates
close to the original embedding. As an additional requirement, we would like that the
algorithm is robust to noise (i.e. works reasonably well even if the supplied graph was
not hyperbolic).

Before presenting our algorithm, we revisit two popular embedding techniques in
the Euclidean plane and investigate their performance when applied to the hyperbolic
setting.

6.3 Spring Embedder

A heavily used technique to embed graphs in the Euclidean plane is the force-directed
method (also called spring embedder) [Kob13], which works roughly as follows. For
every edge one assumes an attractive force pulling its end vertices toward each other,
and for every pair of vertices one assumes a repulsive force pushing them away. The
algorithm starts with some initial drawing (e.g., by choosing random positions) and
computes for each vertex the total force acting on it. Then, all vertices are moved by
a small step according to these forces. This is iterated until a stable con�guration is
reached.

In a drawing generated by a spring embedder, edges are usually short and non-
adjacent vertices are usually far away from each other. Moreover, the repulsive forces
lead to a somewhat uniform distribution of the vertices in the available space. Note
that these are exactly the properties we wish to obtain for our embeddings in the
hyperbolic plane. It thus seems natural to adapt spring embedders to the hyperbolic
geometry, which actually has been done before by Kobourov and Wampler [KW05].
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In the following we discuss why the straight-forward way of implementing a spring
embedder in the hyperbolic plane does not work in our setting. In Section 6.3.2, we
present several adaptations that lead to good results at least for smaller graphs.

6.3.1 Di�iculties in the Hyperbolic Plane

To understand the di�culties in the hyperbolic plane, �rst consider the following
arti�cial situation in the Euclidean plane. Assume v is a vertex only connected to u;
and assume the current drawing is stable except that v is far away from u. Now when
v moves towards u, it also approaches other vertices it is not connected to, which then
push v back towards the direction it came from. This is not a problem, however, as
there are usually only few vertices close enough to v for their force to be noticeable.
Moreover, vertices on the opposite side of v support the movement towards u.

In the hyperbolic plane, an analogous situation works out di�erently. The geodesic
line between v and u contains points with smaller radius, such that v �rst moves
almost directly towards the origin. In turn, the distance to all other nodes decreases,
which immediately pushes v back to a position with larger radius. Thus, even bad
embeddings are stable.

Judging from the pictures presented by Kobourov and Wampler [KW05], it seems
that they did not encounter these issues in their spring embedder. This can be explained
by the fact that the radii they use are all rather small, which can be deduced from the
presented drawings by observing that the vertices are very well separated from the
boundary of the Poincaré disk (which is only true for very small radii). However, for
such small radii the hyperbolic plane behaves very similar to the Euclidean plane. We
note that using small radii is reasonable for visualizing small graphs using a �sh-eye
view. However, as the radii in a hyperbolic random graph grow logarithmically with
an increasing number of vertices, this is not suitable for our purpose.

6.3.2 Fixing the Spring Embedder

We circumvent the above described problems by treating the two components of a
coordinate, i.e., the radius and the angle, more or less independently. More precisely,
let u and v be two vertices. Assume without loss of generality that 0 6 φu < φv 6 π ,
i.e., increasing φu moves u towards v . We de�ne the forces Fuφ (v ) and Fur (v ) acting on
the angle and on the radius, respectively, as

Fuφ (v ) =

1 − p (dist(u,v )) if {u,v} ∈ E,
−p (dist(u,v )) otherwise, and

Fur (v ) =

−(1 − p (dist(u,v ))) if {u,v} ∈ E,
p (dist(u,v )) otherwise.
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Recall that p (dist(u,v )) denotes the probability that u and v with hyperbolic distance
dist(u,v ) are adjacent. The total forces Fuφ and Fur for the vertex u are de�ned as

Fuφ =
∑

v ∈V \{u}
Fuφ (v ), and Fur =

∑
v ∈V \{u}

Fur (v ).

After computing these forces for each vertex u ∈ V , it is moved from (ru ,φu ) to
(ru +cr F

u
r ,φu +cφF

u
φ ). The values for cφ and cr are chosen such that maxu ∈V {cφFuφ } =

φmax andmaxu ∈V {cr Fur } = rmax holds for the parametersφmax and rmax, which basically
ensures that no angle and no radius is changed by more thanφmax and rmax, respectively.

Note that Fuφ (v ) is positive if u and v are adjacent and thus Fuφ (v ) contributes to
decreasing the angle between u and v (as we assumed 0 6 φu < φv 6 π ), which
coincides with the desired behaviour. On the other hand Fur (v ) is always negative if u
and v are connected and positive otherwise. This can have the counter-intuitive e�ect
that v contributes to moving u towards the origin although u and v are connected
and v is farther away from the origin than u, which increases the di�erence between
their radii. However, unless u and v have almost the same angle, this actually moves u
closer to v (with respect to hyperbolic distance) and thus has the desired e�ect.

Before we discuss the choices for the parameters φmax and rmax, we want to point out
some potential issues (and how to �x them). First note that edge probability p (d (u,v ))
depends on the radius R and on the parameterT , which we both estimate as described
in Section 6.5.1. Note that for T → 0 (or for constant T with increasing R), the edge
probability converges to the step function, i.e., p (d (u,v )) → 1 if d (u,v ) 6 R and
p (d (u,v )) → 0 otherwise. This has two undesirable e�ects. First, if u and v are only
just close enough (in case they are adjacent) or only just su�ciently far apart (in case
they are not connected), then there are no forces that work towards keeping it like
that. Second, vertices that are way too close (but not adjacent) or way too far apart
(but adjacent) have roughly the same in�uence as vertices that are only slightly too
close or slightly too far apart. Both e�ects are in particular bad in the early stages of
the algorithm. To resolve this issue, we start with the rather large value T = 0.3R in
the �rst iteration and decrease it linearly. More precisely, in the ith iteration out of I
iterations in total, we set T = 0.3R ×max{0.05, (1 − i/I )}. We note that using a linear
dependency on R is reasonable as this leads to roughly the same shape of the function
p (xR) for x ∈ [0, 2] independent of R.

As a second potential issue, note that handling the angle independently from the
radius leads to huge jumps in terms of hyperbolic distance for vertices with large radius
(unless φmax is unreasonably small). Such large jumps are usually undesirable in the
Euclidean plane (and do not occur without a large change to at least one coordinate).
In the hyperbolic plane, we however allow these large jumps, as forbidding them leads
to exactly the problems described in Section 6.3.1.

For the �nal issue, that also leads us to the parameters φmax and rmax, �rst consider
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a vertex u moving through the Euclidean plane towards its desired location. If there is
another non-adjacent vertex v on its way, then getting close to v leads to potentially
large repulsive forces. However, u usually does not get stuck because of these forces
as u and v can get around each other by a slight movement in opposite directions
orthogonally to the actual movement of u. In the hyperbolic plane, two vertices with
the same angle are close to each other no matter what their radius is. Thus, while
changing the angle of u to get it to its desired value, u necessarily comes close to
every other vertex whose angle is between φu and the position u aims for. Thus, the
algorithm is much more likely to get stuck in a local minimum than a spring embedder
in the Euclidean plane.

We use two strategies to circumvent this issue. The �rst is to simply allow rather
large changes to the coordinates (i.e., use large values for φmax and rmax), which makes
it possible to jump out of local minima. To make sure that the algorithm still converges
to a stable position, we decrease φmax and rmax for later iterations. More precisely,
we use φmax = π and rmax = R in the �rst iteration and decrease both values linearly
down to 0.

The second strategy is to simulate some kind of velocity. In the above example,
this can help u to get past v as the repulsive force of v may slow u down instead of
actually pushing it back to where it came from. A simple way to achieve such a notion
of velocity is as follows. Assume Fuφ is the force acting on u in iteration i . Then in
iteration i + 1, we compute the new force as before and add cFuφ to it, where c is 1 in
the �rst iteration and decreases linearly down to 0.2 in the last iteration.

To conclude this section, we have seen that there are several reasons why spring
embedders work less well in the hyperbolic plane than in the Euclidean plane. We
suggested potential solutions for these problems and we see in Section 6.6 that our
spring embedder actually performs reasonably well at least on small to medium sized
instances. Moreover, we see in Section 6.5.2 how techniques described above can be
reused to embed the core of a larger graph.

6.4 Maximum Variance Unfolding

Another popular method for embedding graphs into the Euclidean plane is maximum
variance unfolding (MVU) [WS06]. This is essentially a semide�nite program whose
objective function spreads out nodes while using constraints to keep neighbors close
together. In the one-dimensional case it is equivalent to an LP.

The use-case in the hyperbolic geometry is similar: Nodes shall have distance < R
if they have an edge, and distance > R otherwise. It is possible to encode this into the
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(a) Original Points (edges not shown) of a hy-
perbolic random with T = 0.

(b) Embedded nodes using the LP. All parame-
ters except the angular coordinates were given
as additional information. The embedding is
almost equivalent to the original.

(c) Embedded nodes using the LP with esti-
mated radial coordinates (See Section 6.5.1).
The quality of the LP solution quickly de-
grades.

(d) Embedded nodes using the LP with all
other parameters given. The graph was gen-
erated using T = 0.5. The embedding is essen-
tially unusable.

Figure 6.1: First phase of the LP. Since nodes are placed in [0,π ], half of Dn is hidden.

following LP:

maximize
n∑
j=1

φ j

subject to φi − φ j 6 θ (ri , r j ), i, j = 1, . . . ,n, if {i, j} ∈ E
φ j − φi 6 θ (ri , r j ), i, j = 1, . . . ,n, if {i, j} ∈ E
0 6 φi 6 π i = 1, . . . ,n
φv = 0, for some starting node v

where θ (ri , r j ) is the maximal angular distance such that nodes dist(i, j ) 6 R, i. e.

θ (ri , r j ) = arccos
( cosh(ri ) cosh(r j ) − cosh(R)

sinh(ri ) sinh(r j )

)
. (6.3)

The LP has a caveat: It is only able to spread nodes on the half circle [0,π ]; since for
larger angular coordinates the hyperbolic distances start decreasing again, which is
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Algorithm 1 Fast Embedding Algorithm
Input: Undirected connected Graph G = (V ,E)
Output: Hyperbolic coordinates (ri ,φi )ni=1

1: Estimate global parameters n,R,α ,T ; and radial coordinates ri . See Section 6.5.1
2: Partition nodes into layers such that v ∈ Li ⇔ deg(v ) ∈ [2i , 2i+1 − 1]
3: Embed Core (all nodes in layers > logn

2 ) . See Section 6.5.2
4: for i = logn

2 − 1 . . . 0 do
5: for r = 1 . . . logn do
6: for all v ∈ ⋃

j>i Lj do
7: Embed v by optimizing its Log-likelihood . See Sections 6.5.3 and 6.5.4

not encodable in the LP. This can be �xed, however, using a small trick: First, embed
all nodes on a half-circle with an arbitrary starting node v . Then, pick the node u in
the embedding with angular coordinate closest to π

2 ; and embed the graph again using
u as the starting node.

This yields all nodes that belong in the lower half of Dn : If w has angular distance
at least π

2 from u in the second embedding, we set φw = φw + π in the �rst embedding.
This simple method works surprisingly well on generated hyperbolic random graphs

that are drawn from the step model, when given all global parameters and radial
coordinates, see Figures 6.1a and 6.1b. It is, however, extremely volatile to the quality
of the estimated parameters; and it fails completely when used on a real graph or even
a graph generated by the binomial model, see Figures 6.1c and 6.1d. The reason is that
the LP has a constraint for each edge in the graph: If there is just one long-range edge,
the MVU can no longer unfold the graph and all nodes are mapped to an extremely
small range of angular coordinates. This behavior persists even after adding di�erent
error terms for edges; and we were not able to make this approach work on noisy data.

6.5 The Embedder

Our embedding algorithm is inspired by the Metropolis-Hastings Algorithm from
[BPK10]. Algorithm 1 contains a bird’s eye view over the whole algorithm. Detailed
description of individual steps follow in the next sections.

The algorithm proceeds in three phases: First, it estimates all parameters that
are computationally easy to guess. This includes the radial coordinates of all nodes,
see Section 6.5.1.

In the second phase, high-degree nodes are embedded by considering their common
neighbors. Producing a good initial ordering of nodes in inner layers is crucial for the
success of the algorithm since nodes in all subsequent layers are typically placed close
to their neighbors in higher layers. This step is described in Section 6.5.2.
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In the third phase, the algorithm embeds the rest of the graph layer-wise. To
embed a layer Li , we iterate over all nodes v ∈ Li . In each iteration, O (logn) angular
coordinates for v are sampled; and v is moved to the position with the best Log-
likelihood, see Sections 6.5.3 and 6.5.4. This is repeated logn times per layer. While
this step is similar to HyperMap [BPK10; PAK15; PPK15], we improve upon their
algorithm by achieving an amortized polylogarithmic runtime per node as compared
to their linear runtime. Our overall algorithm thus runs in O (n · polylog(n)).

6.5.1 Parameter Estimation

To bootstrap the embedding algorithm, the global graph parameters have to be known:
The original number of nodes n, the radius R of the disk DR , the parameter α adjusting
the power-law exponent; and the parameter T adjusting the clustering. These values
are required for instance for evaluating the probability that two nodes are connected
(c. f. Equation (6.1)) which in turn is needed to produce the Log-likelihood. In the
following, we give some brief explanations on how each parameter is guessed.

Estimating n. Algorithm 1 expects a connected graph as input, since disconnected
components can be placed anywhere in the graph as there is no adjacency information.

The hyperbolic random graph, however, does typically not produce a connected
graph. For power-law exponents 2 < β < 3, its giant component is of size Θ(n)
[BFM13; BFM14]; and for β > 3 the graph breaks up into components of order o(n).
Unfortunately, the leading constant of the size of the giant component is yet unknown;
and a numerical estimation is hard since it is governed by a non-linear system of
equations together with other parameters [BPK10].

We have found experimentally that the majority of nodes missing from the giant
component are of degree 0. Surprisingly, the most e�ective and robust method for
estimating the number of these nodes was by simply extrapolating from the number
of 1- and 2-degree nodes. Let n̂ · f (k ) be the number of nodes of degree k , where n̂ is
the total number of nodes in the input graph. Then, we estimate n simply by setting
n := n̂(1 +max{0, 2f (1) − f (2)}).
Estimating α . The parameter α adjusts the power-law exponent β of the hyperbolic
random graph via the functional behavior β = 2α + 1 [GPP12]. We estimate β from the
cumulative degree distribution using the classical algorithm by Clauset et al. [CSN09].

EstimatingT . Recall that this parameter adjusts the importance of the underlying
geometric structure. It has recently been observed, however, that T does not have
a big in�uence on the quality of the embedding [PAK15]. For small T , the �tness
landscapes look virtually the same (up to rescaling), see Figures 6.2a and 6.2b. In these
cases, the attractive forces of neighbors dominate and the �tness is high whenever a
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(a) T = 0.001
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(d) T = 10

Figure 6.2: Fitness landscape of a node v for di�erent values of T .

node is close to their neighbors. We found that setting T to a small �xed value like 0.1
produces good results.

IncreasingT emphasizes non-neighbors. The algorithm then places nodes in an area
where there are few non-neighbors, while essentially disregarding the information
from neighbors, see Figure 6.2d. Even though there is a short intermediate transition
of the �tness landscape as can be seen in Figure 6.2c, our experiments suggested that
setting T to a small value—even if the graph was generated using a large T—produced
cleaner embeddings. For instance, Figure 6.3 contains the original vs. embedded angle
of two embeddings where one has been computed using the original value of T = 0.7
and the other with T = 0.1. The algorithm performs better when using T = 0.1, even
though the original T that has been used to generate the graph was large.

Estimating R and ri . We estimate these values using the above determined param-
eters. Good analytical estimates have been derived in previous work [BPK10]:

R = 2 log
(

4n2α2T

|E | · sin(πT ) (2α − 1)2
)
, ri = min

R, 2 log
*,

2nαT
deg(i ) · sin(πT ) (α − 1

2 )
+-

 .
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(a) Our algorithm sets T = 0.1 for any input
and is able to reconstruct the original order-
ing of nodes fairly well.

0 0.5π π 1.5π 2π0
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(b) ChoosingT = 0.7 and scanning the whole
range [0, 2π ) for the best Log-likelihood of a
node results in a much worse embedding.

Figure 6.3: Original angular coordinates vs. embedded angular coordinates for a generated
hyperbolic random graph with T = 0.7.

6.5.2 Embedding the Core

Laying out large-degree nodes (also called the core of the graph) is critical for the
overall performance of the embedding. We consider all nodesv with radial coordinates
rv < R/2 to be in the core, of which there are Θ(n1−α ) w. h. p., see Section 4.4. If the
node ordering of the core is roughly correct, the algorithm yields excellent embeddings.
One the other hand, if the core was embedded poorly, the remaining steps can not
salvage this. We therefore put considerable care into embedding the core correctly.

HyperMap [PPK15] uses the number of common neighbors of large degree nodes
to infer their relative angles: For two nodes u,v they determine cuv = |Γ(u) ∩ Γ(v ) |
and numerically compute the angle φ (cuv , ru , rv ) that maximizes the likelihood that
the nodes u,v have cuv common neighbors. This approach is robust since the number
of common neighbors of large degree nodes is tightly concentrated around its ex-
pected value. Determining the likelihood numerically, however, is a computationally
expensive operation.

To overcome this, we analytically derive an approximate expression for the relative
angle of two nodes up to constant factors. Using this, we present a spring embedder
that embeds the core based on the estimated pair-wise angle di�erences.

Estimating the Angle-Di�erences. To estimate the relative angle between two
nodes, we use their inferred radial coordinates and the number of their common neigh-
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bors. We perform this computation in the step model; however, we have experimentally
found that our results hold up well in the binomial model.

Let u,v be the two nodes whose (expected number of) common neighbors we
wish to compute. They have radii ru and rv , respectively, and a relative angle of
∆φu,v . W. l. o. g., assume that ru 6 rv . Consider now a third node w . We compute the
probability thatw is connected to bothu andv . Under the assumption that ru +rw > R
and rv + rw > R, we know from Lemma 3.2 that this only holds if

∆φu,w 6 2e
1
2 (R−ru−rw ) (1 + Θ(eR−ru−rw )), and

∆φv,w 6 2e
1
2 (R−rv−rw ) (1 + Θ(eR−rv−rw )). (6.4)

Assume rv + rw > R does not hold. In this case, the distance between v and w is
obviously at most R and thus they are connected. Moreover, note that in this case
the right hand side of the above formula increases with increasing R and thus the
inequality is satis�ed for any angle ∆φv,w if R is su�ciently large. Thus, under the
assumption that R is su�ciently large, we may use Equation (6.4).

Observe now that for large enough radii rw , the node w is not connected to either
u or v (unless ∆φu,v 6 O ( 1n )). On the other hand, when R − rv − rw = Ω(1), w is
connected with constant probability to bothu andv . Thus, depending on the radius rw ,
there is a “good” fraction of the angular coordinates [0, 2π ) wherew will be connected
to both nodes, and a “bad” fraction where it will be connected to only one or neither
of u,v . We call the probability to be connected to both nodes pд (rw ).

As discussed, pд (rw ) = 1 ⇔ rw = R − rv ± Θ(1). We label this critical value of
rw with r1. On the other hand, pд (rw ) = 0 holds when θ (ru , rw ) + θ (rv , rw ) 6 ∆φu,v ,
since then there is no possible angle for φw where it is connected to both nodes u,v ,
see Equation (6.3). The critical value r0 for which this number becomes positive is
when θ (ru , rw ) + θ (rv , rw ) = ∆φu,v and thereby

∆φu,v = 2e
1
2 (R−ru−r0) (1 ± Θ(eR−ru−r0 )) + 2e 1

2 (R−rv−r0) (1 ± Θ(eR−rv−r0 ))
= Θ(1) · e 1

2 (R−ru−r0) .

Solving for r0, this holds whenever r0 = min{R,R − ru − 2 log(∆φu,v ) ± Θ(1)}.
For values r1 6 rw 6 r0, the regions in which w connects to u,v both increase as in

Equation (6.4). Thus, the intersection of these regions increases as pд (rw ) ∼ e−rw /2.
To determine the function up to constants, we set

1 = pд (r1) = A · e−r1/2 + B, and 0 = pд (r0) = A · e−r0/2 + B.

Solving this system of equations, we obtain that pд (rw ) = Θ(1) · (e 1
2 (r1−rw ) − e 1

2 (r1−r0) ).
Thus, we may compute the probability that an arbitrary node is connected to both u
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and v using the cumulative distribution function and pд . We thereby have

Pr[w ∼ u,v] =
∫ R

0
ρ (r ) · pд (r ) dr

= Pr[rw 6 r1] + Θ(1) ·
∫ r0

r1
eαr−αR · (e 1

2 (r1−r ) − e 1
2 (r1−r0) ) dr

= eαr1−αR + Θ(1) ·
[
eαr−αR · ( 1

α− 1
2
e

1
2 (r1−r ) − 1

α e
1
2 (r1−r0) )

]r0
r1

= Θ(1) · eαr0−αR+ 1
2 (r1−r0) .

Hence, the expected number of common neighbors of u and v is

cuv = Θ(1) · exp( R2 + ( 12 − α )ru − 1
2rv ) · ∆φ1−2αu,v .

To �nd the angle φ (cuv , ru , rv ) maximizing the Log-likelihood in the step model, we
observe that the number of common neighbors of u,v is a binomial random variable:
There exists a set S ⊆ Dn in which each node is connected to both u,v and each node
in Dn \ S connected to at most one of u,v . Since the maximum likelihood estimator
for binomial random variables is the number of successes divided by the number of
trials, we obtain the maximum likelihood for ∆φu,v by rearranging above equation.

φ (cuv , ru , rv ) = Θ(1) · c
1

1−2α
uv · exp(− 1

2ru + ( 1
2−4α ) (rv − R)).

To obtain actual values for ∆φu,v we �rst simply omit the constant factor hidden by
Θ(1) in the above expression. To obtain reasonable angles, observe that the largest an-
gle should likely be π . To obtain this, one can simply rescale all values of φ (cuv , ru , rv )
with the same constant factor such that the maximum is π . As this is prone to errors if
outliers exist, we instead scale all angles by the same constant such that their median
is π/2. Angles that are larger than π after this scaling are then set to π . Preliminary
experiments showed that using the logarithm of the above expression for initially
computing ∆θ (u,v ) (before the scaling) improved the robustness of our algorithm.

Embedding According to the Estimated Angles. In this section, we assume that
we know the desired angle ∆φu,v between any pair of vertices u and v in the core.
Our goal is to assign an angle to each vertex that realizes these di�erences as good as
possible. To this end, we use a 1-dimensional spring embedder (see Section 6.3 for a
short introduction to spring embedders) that basically works as follows. We start with
random initial angles. Then in each iteration, we consider every pair u,v of vertices.
If the the current angle between u and v is larger than ∆θ (u,v ) we get an attractive
force, otherwise we get a repulsive force. W. l. o. g., we assume 0 6 φu < φv 6 π (the
other cases work symmetrically). Moreover, let err(u,v ) = φv − φu − φ (cuv , ru , rv ).
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The force Fu (v ) acting on u due to v is then given by

Fu (v ) =


−err(u,v )2 if err(u,v ) 6 0,
err(u,v )2 if 0 < err(u,v ) 6 π

2 ,and

(π − err(u,v ))2 if π
2 < err(u,v ) 6 π .

To interpret this formula, �rst note that err(u,v ) < 0 holds if the current angle is too
small. Thus, Fu (v ) is negative (pushing u away from v) and the strength of the force
increases quadratically in the distance to the desired angle. Conversely, if the current
angle is too large, we get a repulsive force increasing quadratically in the distance
to the desired angle as long as this distance is at most π/2. For larger distances, the
strength of the force actually decreases again. This has the following reason. Imagine
the extreme case that u and v have angle π between them but actually want to have a
very small angle. Then it does not really matter whether the angle of u increases or
decreases as it comes closer to v not matter what. Thus, we do not really want a very
strong force in one of the two directions, which is the reason why we decrease the
strength of attractive forces when err(u,v ) becomes very large.

Similar to Section 6.3, the total force acting on u is de�ned as

Fu =
∑

v ∈V \u
Fu (v )

and the new angle of u is obtained by setting φu = φu + cFu . The value for c is
again chosen such that the maximum step size does not exceed a parameter θmax :=
maxu ∈V {cFu}.

Due to the 1-dimensionality of this spring embedder, we encounter a similar problem
as for the hyperbolic spring embedder in Section 6.3: to move a vertex u to a speci�c
position, it necessarily has to pass through all vertices in between and there is no second
dimension that could be used to get around them. This leads to strong repulsive forces
hindering u in getting to the desired position and we observed in our experiments that
the algorithm often gets stuck in a local minimum. As before, we use velocity and a
rather large step size θmax to circumvent this issue. Preliminary experiments showed
that we obtain good results using the following parameters. We set θmax = 0.55π in the
�rst iteration, decreasing it linearly down to 0 in the �nal iteration. For the velocity
assume Fu is the force from iteration i . Then we add cFu to the force in iteration i + 1
where c is 1 in the �rst iteration and linearly decreases down to 0.5 in the last iteration.
Since there are Θ(n1−α ) nodes in the core [FK15a], the total runtime of the spring
embedder is O (k ·n2−2α ), where k is the number of iterations. Choosing k = O (n2α−1),
we achieve a runtime of O (n).

The performance of this algorithm depends on the randomly chosen initial angles.
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To be able to compare core embeddings, we de�ne a score S as

S =
∑
u ∈V

∑
v ∈V \u

|Fu (v ) |

A smaller score then indicates a better embedding. We de�ne sopt as the score that is
obtained when the spring embedder is initialized with the original coordinates. We
then say that a core embedding is good, if it has a score s 6 1.2 · sopt. Each graph
thus has a certain probability that the core embedding is good, depending on the
randomly chosen initial positions. To further increase the probability of getting a
good embedding for the core, we run the spring embedder 5 times with di�erent
initial angles and use the best result, which boosts the probability of getting a good
embedding to 95% for the worst of over 6 000 randomly generated hyperbolic random
graphs (see Section 6.6 for the experimental setup). This suggests that the spring
embedder is rather robust, i.e. we rarely encounter initial drawings that lead to bad
results.

6.5.3 Computing the Log-likelihood e�iciently

A further key ingredient to achieve a quasilinear runtime is to improve the runtime of
the Log-likelihood computation L (v ). Recall that L (v ) was de�ned as

L (v ) :=
∑

u ∈Γ(v )
log(puv ) +

∑
u<Γ(v )

log(1 − puv ),

see Equation (6.2). By a naive implementation, one needs Ω(n) time to compute the
Log-likelihood of a single node and thus at least Ω(n2) for the whole graph. A more
careful inspection, however, allows for a signi�cant speedup.

First, observe that the total number of edges in a hyperbolic random graph is of
orderO (n) in expectation; so the term ∑

u ∈Γ(v ) log(puv ) can be computed in amortized
constant time. To speed up the computation of the second summand, we observe that
the term log(1 − puv ) is very close to 0 whenever dist(u,v ) � R, since

puv := (1 + exp( 1
2T (dist(u,v ) − R)))−1 ≈ exp(− 1

2T (dist(u,v ) − R)),

and by a Taylor series for puv → 0 we get

log(1 − puv ) = −puv −O (p2uv ) ≈ − exp(− 1
2T (dist(u,v ) − R)).

This implies that non-neighbors that are far away from v barely contribute to its
Log-likelihood. If, on the other hand, dist(u,v ) � R, we have by Lemma 2.3

puv ≈ 1 − exp( 1
2T (dist(u,v ) − R)) → 1, (6.5)
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(a) Exemplary �tness landscape for a node
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puting the �tness landscape exhibit no visible
di�erence in the plot.
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dinates at which the e�cient algorithm sam-
ples the �tness. Red points indicate the sam-
pled angles.

Figure 6.4: Fitness landscape of a node v computed with the e�cient algorithm.

and thus

log(1 − puv ) ≈ log(1 − (1 − exp( 1
2T (dist(u,v ) − R)))) = 1

2T (dist(u,v ) − R).

Thus, it su�ces to take into account non-neighbors with low distance from u while
either ignoring or coarsely approximating the in�uence of far away non-neighbors
on the Log-likelihood. To this end, we implemented the geometric data structures
introduced by Bringmann et al. [BKL15]. These were originally used to generate
hyperbolic random graphs in linear time by partitioning the disk Dn into suitably sized
cells. To compute the Log-likelihood of a node, one can then compare it directly with
nodes in neighboring cells (that have a big in�uence on the Log-likelihood); while
averaging over all nodes in far away cells. As shown in [BKL15], this runs in amortized
time O (1). We need an extra O (logn) factor to update the cells whenever a node is
moved during the embedding algorithm.

Figure 6.4a shows the �tness landscapes of a nodev ; computed once via the classical
exact Ω(n) method, and once using our amortized O (logn) method. Both methods
exhibit no visible di�erences in the plot; and we found that the relative error made by
the fast Log-likelihood computation is 6 1.0025 at all coordinates except one, where it
was 6 1.02.

6.5.4 Finding the Optimal Angle

To �nd a good angular coordinate for a node v , previous algorithms typically scan the
whole range [0, 2π ) at resolution 2π

n ; and evaluate at each angle the Log-likelihood
L (v ). This incurs another factor Ω(n) on the overall runtime.
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Figure 6.5: The plots correspond to embeddings with average squared deviation ∆φG = 0.44
(left) and ∆φG = 0.01 (right). For each vertexv the plot contains one point with x-coordinateφv
(angle ofv in the original embedding) and y-coordinate φ̂v (angle in the computed embedding).
The embedding is considered good if the plot resembles the identity function f (x ) = x up to
cyclic shift and rotation.

To save on this, we sample only few points around a region where a node has
their maximum likelihood. To determine this region, we observe that the coarse
likelihood landscape for a node v (for small T ) is governed by the position of v’s
neighbors. Furthermore, neighbors with large radii have a larger in�uence on the
�tness landscape, as the hyperbolic distance to these nodes increases more quickly
than to neighbors with small radial coordinates. Hence, v needs to be placed close to
its embedded low-degree neighbors.

Ignoring non-neighbors for now, we achieve this by computing a weighted average
over the angles of all neighbors of v . Let u1, . . . ,uk be the embedded neighbors of v .
Then, v’s angle is computed as follows.

φv = arctan *,
∑k

i=1 exp(rui ) · sin(φui )∑k
i=1 exp(rui ) · cos(φui )

+-
To take non-neighbors into consideration, we then randomly sample O (log(n)) points
around this angle and use the one with the smallest Log-likelihood. Figure 6.4b shows
the �tness landscape of an exemplary node u, as well as the randomly sampled angles.
As can be seen, the heuristic typically �nds good candidates whose angles are close to
the optimal angle.
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(b) Our hyperbolic spring embedder.

Figure 6.6: Each data point in the box plot represents the value of ∆φG for a single graph G
(y-axis) depending on the average degree a (x-axis). Smaller values are better. The graphs are
grouped by their sizes.

6.6 Experiments

To evaluate the quality of our algorithm, we sampled 10 di�erent hyperbolic random
graphs for every combination of the following parameters: α ∈ {0.55, 0.65, 0.75, 0.85,
0.95}, T ∈ {0.1, 0.3, 0.5, 0.7, 0.9}, δ ∈ {2, 4, 8, 16, 32}, n ∈ {500, 2 000, 8 000, 32 000,
128 000}. This results in a total of 6 250 graphs. For each of these graphs, we computed
the following statistics: Log-likelihood, success ratio of greedy routing and the average
squared deviation in the original angle vs. estimated angle plot. We present the most
insightful statistics in standard box plot form: A box contains 50% of all data points
closest to the median; which is marked black. The size of the box is called interquartile
range (IQR). Data points are considered outliers if they have distance more than 1.5×
IQR to the box. The whiskers depict the closest data point to the box that is not an
outlier.

6.6.1 �ality

A popular way to judge whether an embedding makes sense is to plot the embedded
angular coordinates against the original generated coordinates. If the result resembles
a straight line (that might have a cyclic shift), then the relative ordering of nodes has
been reconstructed well in the embedding. Two examples for such plots are shown
in Figure 6.5. To allow for comparisons that scale to a large amount of graphs, we
derive the following quality measure. For a vertexv let ∆φv be the quadratic di�erence
between φv in the original embedding and φv in the computed embedding. For a
graph G = (V ,E), the value ∆φG =

∑
v ∈V ∆φv/n then describes the average squared

deviation in G.
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(b) Originally generated embeddings.

Figure 6.7: The success ratio of greedy routing (x-axis) depending on the value of T (y-axis)
grouped with respect to the number of vertices (colors).

The box plot in Figure 6.6a plots ∆φG against the average degree δ ; grouped by the
size of the graph. In this and all other plots, we average over all parameters that are not
explicitly grouped by. Observe that ∆φG is high if the average degree is small, as the
few existing edges are not su�cient to uniquely determine the single best embedding.
Thus, several embeddings may be equally good. In fact, for small δ , our algorithm
�nds an embedding with a Log-likelihood very close to the Log-likelihood of the
original embedding (the mean values for large graphs with δ = 2 are −2.39 · 105 for
the embedding and −2.19 · 105 for the original, respectively, while the corresponding
values for δ = 16 are −1.78 · 106 and −1.16 · 106). For an average degree of 8, the mean
value for ∆φG of all medium sized (n = 8 000) and large (n = 128 000) graphs is 0.2
and 0.03, respectively. For comparison, note that the plots in Figure 6.5 correspond to
graphs with values 0.01 and 0.44. Also note that our algorithm performs particularly
well on large graphs, which was the goal we aimed for.

For comparison with the spring embedder, see Figure 6.6b. As the spring embedder is
too slow on larger graphs, we only ran the experiments on graphs up to size n = 8 000.
Note that the quality of the spring embedder decreases for increasing graph size. In
contrast, it performs comparatively well on small graphs (and in some cases actually
better than our main algorithm) while it is heavily outperformed on the medium sized
graphs. Hence, the spring embedder is a reasonable option for graphs with up to 1 000
vertices, while our main algorithm is the better option for larger graphs.

A quality measure previously used for hyperbolic embeddings is the success ratio
of greedy routing. Figure 6.7a shows this ratio for the embeddings generated by our
algorithm depending on the parameter T , grouped by the size of the graph. Observe
that the ratio is close to 100% for small values of T but drops signi�cantly for larger
values. This is unfortunate as real world graphs are considered to have fairly large
values of T , e.g., T = 0.7 was used for the embedding of the Internet graph [BPK10].
Though this particular embedding allows greedy routing with success ratio 97%, the
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(a) When the average degree δ is small for
the graph generation, most nodes (shown red)
are not part of the giant. It becomes hard to
infer the original number of nodes based on
the few that remain in the giant component.

(b) When β → 3, all nodes are pushed away
from the center of DR . The core thus attains
a sparse, circular structure, for which the al-
gorithm is not tailored.

Figure 6.8: Hard corner cases for the embedding algorithm.

ratios of around 80% we obtain for T = 0.7 seem to re�ect the typical behavior of
random hyperbolic graphs much better; see Figure 6.7b.

Note that these observations imply that maximizing the Log-likelihood will not
necessarily lead to the desired result in terms of greedy routing. Conversely, optimizing
the embedding for greedy routing will probably not lead to an embedding that is close
to the original embedding of a hyperbolic random graph. Hence, we do not see the
low success ratios our embeddings achieve for large T as a weakness but rather as a
strength as it matches the behavior of the original embedding.

6.6.2 Further Work

Even though the algorithm produces meaningful embeddings overall, we observed
that certain parameter combinations lead to bad embeddings more often than others.
In particular, this happens when (i) T is close to 1, (ii) δ is small or (iii) β is close to 3.
Case (i) poses an inherent problem: IfT was chosen large during the graph generation,
random edges become more prevalent while the geometry plays a background role.
Thus, it is natural that it is hard to embed these graphs meaningfully.

The other two cases are less intuitive. In case (ii), the average degree is small. This
leads to the generated graph having a small giant component. For instance, when
δ = 2, β = 2.1 andT = 0.1, a generated graph with 5 000 nodes only has 800 in its giant
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Figure 6.9: Reevaluation of the experiments for embeddings, where hard cases δ = 2 and
β = 2.9 were discarded, see Section 6.6.2. This reveals that the embeddings of non-degenerate
instances are of high quality, and most bad embeddings stem from hard corner cases.

component, see Figure 6.8a. Since only the giant is fed to the embedding algorithm,
this results in a severe reduction of information. Consequently, the algorithm infers
wrong parameters R, ri which leads to a signi�cantly di�erent embedding than the
ground truth. Note that when the algorithm is supplied the correct values of R, ri , it
produces again embeddings of high quality. As of now, however, we are not aware of
a robust method that can infer these parameters in this degenerate case.

In the case (iii) when β → 3, a di�erent problem arises: Increasing β corresponds
to shifting all nodes away from the center. Consequently, the core has a ring-like
shape: Most high-degree nodes are only connected to few other nodes in the core;
which results in few common neighbors, see Figure 6.8b. As the core embedder in
Section 6.5.2 relies on a dense matrix of common neighbor information, it fails to
produce a good initialization which leads to a bad embedding in the end. While rings
can in principle be embedded well with classical spring embedders; those fail for dense
cores. Thus, a re�ned core embedding algorithm that switches between these methods
could improve upon the quality in this case. We argue, however, that this case is
degenerate since such a ring-like structure most likely does not appear in the core of
real-world graphs.

Figure 6.9 shows the performance of our algorithm on non-degenerate cases. It is
apparent that on large graphs, our algorithm performs extremely well if the generation
parameters are non-degenerate. On the other hand, this shows a clear road map on
how the algorithm can be improved to achieve even better results overall.
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6.6.3 Runtime
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Figure 6.10: Runtimes for the em-
bedding algorithm. Error bars show
the standard deviation.

A key contribution of our algorithm is its signif-
icant improvement on the runtimes compared to
previous approaches. We performed runtime ex-
periments on commodity hardware, i.e. a 2.7 GHz
Core i7 with 8 GB of RAM. Figure 6.10 shows the
runtimes depending on n. Note that compared
to available algorithms these are fairly quick:
Graphs of size 20 000 can be embedded in un-
der two minutes. We even embedded graphs of
size 330 000 in under one hour, see Section 6.6.4.
For comparison, the reference algorithm Hyper-
Map [PAK15; PPK15] needs over 1.5 hours for a
graph of size 2 000.

6.6.4 Embedding a Real-World Graph

As a proof of concept, we embed the Amazon product recommendation network [YL15].
It has n = 334 863 nodes with an average degree of 5.53, the degree distribution follows
a power-law with exponent β = 3.6 and the average clustering coe�cient is 0.4. The
nodes represent products available on Amazon, and an edge {u,v} is present if product
u is recommended together with product v . Product categories de�ne ground truth
communities in this graph.

The embedding took 50 minutes on a single 2.7 GHz Core i7. While the number of
nodes is too large to visually inspect the whole graph, we have plotted the nine largest
communities in Figure 6.11. Most nodes belonging to a single community are mapped
close together; which suggests that the hyperbolic embedding might be a useful tool
in discovering hidden communities in a large network.

6.7 Conclusion

We designed and implemented a new algorithm for embedding complex networks
into the hyperbolic plane. Connected nodes are typically placed close-by, whereas
disconnected nodes have a large hyperbolic distance. Compared to previous algorithms,
our algorithm is the �rst to achieve a quasilinear runtime. This enables us to embed
signi�cantly larger graphs than before. Further, as we experimentally validated, our
algorithm produces embeddings close to the ground truth; especially when either the
number of nodes n or the average degree δ is large. This is evidenced by the fact that
the average angular error for embedded nodes becomes as small as 0.03 for n = 128 000
and δ = 8.
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Figure 6.11: The nine largest communities in the amazon product recommendation network.
For clarity, only the 893 nodes that belong to a single community are shown. Nodes belonging
to the same community are typically placed nearby, even though the embedding algorithm
had no knowledge of the ground truth communities.

Our work was focused on presenting a proof of concept. The next logical step
is to use this embedding algorithm to learn new information about the behavior of
real-world graphs. Such embeddings were used before to produce e�cient greedy
routing [BPK10], but other applications come to mind. For instance, a geographical
representation of nodes opens new possibilities for �nding clusters [Wan+16b]. In
fact, a di�erent embedding algorithm reverses this idea by �rst computing clusters in
the graph and then inferring node positions based on the found clusters [Wan+16a].

A di�erent direction is to use the embedding for visualization of massive net-
works. In fact, the hyperbolic plane was often used for visualization purposes in the
past [LRP95; LR96; Mun98; WR02; VS14]. Due to their size, classical methods typically
struggle with �nding a visual representation of the network that still conveys mean-
ingful information. While the currently produced plots still only work for medium-size
graphs before they become too cluttered, this may be easily improved by e. g. (i) hid-
ing “unimportant” edges as in [BPK10], or (ii) providing a Focus+Context-like graph
browser that allows for changing the coordinate origin as in [LRP95; LR96]. Such tools
magnify di�erent regions of the graph while still placing the inspected nodes into the
general graph context.

Finally, graph algorithms on hyperbolic random graphs that require knowledge of
the geometrical representation can be invoked once we obtain the graph embedding.
For instance, it has been shown that on hyperbolic random graphs, structures such
as matchings and independent sets may be found more e�ciently than on general
graphs [BFK16].
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In this thesis, we contributed to the understanding of the hyperbolic random graph
model by analyzing various structural properties. We showed that cliques of polyno-
mial size appear when the power law exponent is 2 < β < 3, and of logarithmic size
when β > 3. Moreover, we analyzed the diameter of hyperbolic random graphs and
found that it is at least logarithmic, and at most polylogarithmic when 2 < β < 3. For
the case β > 3, we even computed a tight result on the diameter of Θ(logn).

From an algorithmic perspective, we presented e�cient algorithms for �nding
cliques in this model. Further, we designed and implemented an embedding algorithm
that �nds hyperbolic coordinates for a given graph using only the graph structure.

With most fundamental structural properties of hyperbolic random graphs settled,
there are multiple possible directions for future work. In order to advance the under-
standing of complex networks, one has to relate the structural properties of hyperbolic
random graphs to their real-world counterparts. As of right now, it seems that many
structural properties like power law degree distribution and clustering are similar. It
is crucial, however, to falsify the model by �nding properties in which hyperbolic
random graphs di�er from real-world graphs. Only then is it possible to re�ne this
model (or �nd new models) that re�ect the natural behavior in a more precise manner.

From a more theoretical perspective, setting aside the obvious goal of improving
known bounds, there are many other possible research directions. The notion of
hyperbolicity of networks, for instance, is not new. Gromov hyperbolicity [Gro87;
Bow91] is a measure de�ned on a metric space and used in particular for graphs.
Consider three points (vertices) u,v,w in the metric space (graph). The space (graph)
then has hyperbolicity h, if for every point on a geodesic (shortest path) between
two of the points u,v,w at least one other geodesic (shortest path) can be reached
within distance h. It is immediate that every graph with diameter D has a Gromov
hyperbolicity of at most D/2. The hyperbolic plane, on the other hand, has constant
hyperbolicity due to its constant negative curvature. It is tempting to conjecture that
the same must thus hold for hyperbolic random graphs due to the underlying geometric
space. As has been shown, however, there exist path components of length Ω(logn)
in the hyperbolic random graph. We conjecture that the proof may be extended to
yield cycles of length Ω(logn) that contain no shortcuts. Such a cycle immediately
bounds the Gromov hyperbolicity from below: Consider three equidistant points on
the cycle as vertices u,v,w , and let z be the node that lies between u and v . To reach
the path u → w or v → w from z, one needs at least Ω(logn) hops.
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Conjecture 2. Hyperbolic random graphs have Gromov hyperbolicity Ω(logn) with
high probability.

Since this is close to the diameter of the graph, such a result would essentially state
that hyperbolic random graphs are not (Gromov) hyperbolic.

A di�erent direction is to investigate so-called unit disk graphs (UDGs) [CCJ91].
Their de�nition is essentially a deterministic analog of hyperbolic random graphs in
the step model (c. f. De�nition 3) in the following sense. A graphG is a hyperbolic UDG
if there exist an R ∈ R and an assignment f : V → H2 such that dist( f (u), f (v )) 6
R ⇔ {u,v} ∈ E. Notice that every graph generated by the step model is a hyperbolic
UDG with probability 1. While the behavior of such graphs is well understood in the
euclidean case, they are essentially unstudied in the hyperbolic case. We took the �rst
step with Theorem 4.6 by proving that cliques in hyperbolic UDGs can be found in
polynomial time if the underlying geometry, i. e., the function f is known. Since this
algorithm was inspired by the euclidean analog, it is a natural question to ask which
other results translate to this case.

One of the most fundamental problems is to decide whether a given graph is a
(hyperbolic) UDG. Unfortunately, in the euclidean analog, this is NP-hard to deter-
mine. The NP-hardness proof extensively uses the following fact. In euclidean UDGs,
constant-sized induced cycles can be embedded in the euclidean plane such that they
may geometrically enclose a node not connected to the cycle. Since the hyperbolic
plane behaves locally like the euclidean plane, this result should translate immediately
if R can be chosen small enough. Even when R is chosen as a constant in n, the above
property still holds and we believe that it is possible to adapt the same proof from the
euclidean case. In that case, however, one has to put considerable care into the proof
details.

For the case where R = Ω(logn)—which is the case in the step model of hyperbolic
random graphs—it is not possible to enclose a node in a cycle of length 6 n without
having the node connect to the cycle. Therefore, it is not possible to directly translate
the euclidean NP-hardness proof. This leaves the possibility open that an e�cient
algorithm for detecting hyperbolic UDGs might exist in this case. We believe, however,
that due to the complexity of this problem this is most likely not the case, and that
there likely exists another approach showing NP-hardness of the problem.

Conjecture 3. Given a graphG , it is NP-hard to decide whetherG is a hyperbolic UDG.

Finally, from a practical perspective it would be interesting to apply the embedding
algorithm from Chapter 6 to various real-world networks. Such an embedding might
reveal new information about the data. For instance, close disconnected nodes suggest
missing links in a social network, or hidden dependencies in a biological network.
To this end, it might be helpful to construct a more accessible tool to reach di�erent
research areas working with complex networks.
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