Universitit Potsdam

Ulrich Geske | Armin Wolf (Hrsg.)

Proceedings of the 23" Workshop on
(Constraint) Logic Programming 2009

Universitiatsverlag Potsdam

Proceedings of the 23" Workshop
on (Constraint) Logic Programming 2009

Ulrich Geske | Armin Wolf (Hrsg.)

Proceedings of the 23" Workshop on
(Constraint) Logic Programming 2009

Universitatsverlag Potsdam

Bibliografische Information der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der
Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind
im Internet iiber http://dnb.d-nb.de/ abrufbar.

Universitiatsverlag Potsdam 2010
http://info.ub.uni-potsdam.de/verlag.htm

Am Neuen Palais 10, 14469 Potsdam
Tel.: +49 (0)331 977 4623 / Fax: 3474
E-Mail: verlag@uni-potsdam.de

Das Manuskript ist urheberrechtlich geschiitzt.

Online veréffentlicht auf dem Publikationsserver der
Universitdt Potsdam:

URL http://pub.ub.uni-potsdam.de/volltexte/2010/3797/
URN urn:nbn:de:kobv:517-opus-37977
http://nbn-resolving.org/urn:nbn:de:kobv:517-opus-37977

Zugleich gedruckt erschienen im Universitatsverlag Potsdam:
ISBN 978-3-86956-026-7

Preface

The workshops on (constraint) logic programming (WLP) are the annual meeting of
the Society of Logic Programming (GLP e.V.) and bring together researchers interest-
ed in logic programming, constraint programming, and related areas like databases,
artificial intelligence and operations research. In this decade, previous workshops
took place in Dresden (2008), Wiirzburg (2007), Vienna (2006), Ulm (2005), Potsdam
(2004), Dresden (2002), Kiel (2001), and Wiirzburg (2000). Contributions to work-
shops deal with all theoretical, experimental, and application aspects of constraint
programming (CP) and logic programming (LP), including foundations of con-
straint/logic programming. Some of the special topics are constraint solving and op-
timization, extensions of functional logic programming, deductive databases, data
mining, nonmonotonic reasoning, , interaction of CP/LP with other formalisms like
agents, XML, JAVA, program analysis, program transformation, program verifica-
tion, meta programming, parallelism and concurrency, answer set programming, im-
plementation and software techniques (e.g., types, modularity, design patterns), ap-
plications (e.g., in production, environment, education, internet), constraint/logic
programming for semantic web systems and applications, reasoning on the semantic
web, data modelling for the web, semistructured data, and web query languages.

The topics of the presentations of the 23" WLP (WLP2009) are grouped into the ma-
jor areas: Databases, Answer Set Programming, Theory and Practice of Logic Pro-
gramming as well as Constraints and Constraint Handling Rules.

The topics of the invited talks deal especially with constraint solving. Tom Schrijvers
discusseses the advantages of monadic constraint solving which suplies a framework
for unifying constraint solving over conjunctive constraints and search in a disjunctive
search tree into a common and flexible strategy. Neng-Fa Zhou discusses the impor-
tance of choosing the right modeling and programming technique for an efficient
solving of constraint problems.

In the Database session the declarative aspect of Logic Programming is used to make
saver manipulation of relational databases and to extend relational databases to deduc-
tive databases. Michael Hanus and Sven Koschnike describe in “An ER-based
framework for declarative web programming” a framework which ensures automati-
cally the consistency of a database when the user performs update operations. The ba-
sic idea of this framework is an implementation of the conceptual model of a relation
database in a declarative programming language. Dietmar Seipel proposes in the con-
tribution “Practical applications of extended deductive databases in DATALOG*” a
language DATALOG* for deductive databases which allows - different to classical Da-
talog - program execution in backward chaining manner. The advantages are given
by a greater flexibility formulating programs and requests by using features of the
PROLOG language and having available default negation, aggregation and complex da-
ta structures.

In the session on Answer Set Programming two papers deal with extensions of the
ASP formalism and a further paper is devoted to the problem of program analysis.

In the paper on “xpanda: A (Simple) Preprocessor for Adding Multi-valued Proposi-
tions to ASP” Martin Gebser, Henrik Hinrichs, Torsten Schaub and Sven Thiele de-
scribe a transformation-based approach which makes it possible to model and solve
constraint satisfaction problems in the ASP formalism. The authors discuss the prob-
lems of grounding in ASP which may lead to large search spaces in their first ap-
proach of combing ASP and constraint-solving. The paper on “Existential quantifiers
in the rule body” of Pedro Cabalar deals with the extension of ASP for using existen-
tial quantifiers and double negations in the bodies of rules. The given introduction to
the problem is nice readable and discusses the change over the last years in consider-
ing variables in ASP. The author describes a translation algorithm which uses the
general technique of introduction of auxiliary predicates but which keeps these predi-
cate hidden from the programmer for avoiding confusion. The third paper on “Kato:
A Plagiarism-Detection Tool for Answer-Set Programs” in this session is presented
by Johannes Oetsch, Martin Schwengerer and Hans Tompits. For different reasons
there is a demand for finding similarities in different programs, the plagiarism detec-
tion. The authors present the presumable first such algorithm for ASP programs. Al-
though the algorithm contains language-depended parts, the authors stress the adapta-
bility of the method for other languages (e.g. PROLOG).

The session on Theory of Logic Programming starts with a contribution of Heinrich
Herre and Axel Hummel on “A Para-consistent Semantics for Generalized Logic Pro-
grams”. For using logic as a basis for knowledge representation, generalizations of
standard logic programs with declarative semantics are needed which take into ac-
count the occurrence of contradictions. The authors discuss a generalization where ar-
bitrary quantifier-free formulas in rules, which may contain default negations, may
occur. A next step may be admitting quantifiers in the rules. The paper on “Stationary
generated models of generalized Logic Programs® by the same authors is devoted to
the general problem of finding an adequate declarative semantics for generalized log-
ic programs. The authors introduce for this purpose the notion of a so-called “in-
tended partial model” and prove their properties. Gourinath Banda and John Gallagh-
er present in their paper on a “Constraint-Based Abstraction of a Model Checker for
Infinite State Systems” a new approach to verify properties of infinite-state systems
by going back to the roots of abstract interpretation and exclusively applying standard
techniques for constructing abstractions. The advantage consists in verifying any
property of a system and a better efficieny, which originates partly from the integra-
tion of constraint solving techniques. The authors present implementation details and
demonstrate their approach on two examples. Stefan Brass deals in ,,Range Restric-
tion for General Formulas“ with the gap between the features of SQL and the current
standard of Datalog. Some problems which arise by the use of general logic formulas
are discussed. The basic question is to answer, which formulas should be allowed in
logic rules.

The session Constraint Handling Rules contains a paper describing an application of
CHR programming for program development and a theoretical contribution dealing
with the extension of the CHR paradigm.

Slim Abdennadher, Haythem Ismail and Frederick Khoury discuss in their paper
“Transforming Imperative Algorithms to Constraint Handling Rules” the idea using
the flexibility and expressiveness of CHR for proving properties of imperative pro-
grams. Vice-versa this method could be used for an automatic generation of global
constraint solvers. The authors describe the methodology for the conversion of imper-
ative programs into CHR programs and discuss it with examples.

Hariolf Betz, Frank Raiser and Thom Frithwirth deal in ‘“Persistent Constraints in
Constraint Handling Rules” with the drawback that CHR as a high-level declarative
language has to use a non-declarative token store in its implementation for avoiding
trivial non-termination. A solution of this problem is presented which supplies a new
operational semantics for CHR programs. Advantages are a higher degree of declara-
tivity with avoidance of non-trivial termination and improved behaviour for concur-
rency.

The papers of the last session Practice of Logic Programming deal with a real world
application of (Constraint) Logic Programming and a closer consideration of the dif-
ference list formalism.

Hans-Joachim Goltz and Norbert Pieth describe in their paper “A Tool for Generating
Partition Schedules of Multiprocessor Systems” the application of Constraint-Logic
Programming for modeling and solving a complex scheduling problem. Details for
the derivation of constraints from the problem description and the design of the search
are discussed. The optimization criterion is a high processor load. A graphical inter-
face supports interactive control of the scheduling process by the user who may
change weak constraints. The paper on “Efficiency of Difference-List Programming”
by Ulrich Geske and Hans-Joachim Goltz analyses the use of a program construct in
PROLOG which has a significant effect on the speed of list processing. The intention of
the authors is the promotion of application of this construct, especially for PROLOG
novices. Therefore simple syntactical patterns are derived which allow to control the
order of elements in a list and an append-free insertion of elements into lists.

Finally, we would like to thank all the authors who have submitted papers, all col-
leagues who have presented invited talks, and all members of the program committee
and external referees for reviewing the submissions and for their contributions to the
success of the workshop.

Potsdam, September 15, 2009 Ulrich Geske
Armin Wolf

Organization

Program Chairs

Ulrich Geske (University of Potsdam)
Armin Wolf (Fraunhofer FIRST, Berlin)

Program Committee

Slim Abdennadher (German University Cairo)
Christoph Beierle (FernUniv. Hagen)

Stefan Brass (MLU Halle-Wittenberg)

Jirgen Dix (Clausthal University of Technology)
Tim Furche (LMU Miinchen)

Ulrich Geske (University of Potsdam)
Hans-Joachim Goltz (Fraunhofer FIRST, Berlin)
Michael Hanus (CAU Kiel)

Heinrich Herre (University of Leipzig)

Steffen Holldobler (TU Dresden)

Petra Hofstedt (TU Berlin)

Ulrich John (SIR Plan GmbH)

Michael Leuschel (Univ. Diisseldorf)

Ulrich Neumerkel (TU Wien)

Frank Raiser (University of Ulm)

Georg Ringwelski (Hochschule Zittau/Gorlitz)
Sibylle Schwarz (Hochschule Zwickau)
Dietmar Seipel (University of Wiirzburg)
Michael Thielscher (TU Dresden)

Hans Tompits (TU Wien)

Armin Wolf (Fraunhofer FIRST, Berlin)

Contents

Invited Talks

Overview of the Monadic Constraint Programming Framework
Tom Schrijvers

What I have learned from all these solver competitions
Neng-Fa Zhou
Databases

An ER-based Framework for Declarative Web Programming
Michael Hanus and Sven Koschnicke

Practical Applications of Extended Deductive Databases in DATALOG*
Dietmar Seipel
Answer Set Programming

xpanda: A (Simple) Preprocesser for Adding Multi-valued Propositions to ASP
Martin Gebser, Henrik Hinrichs, Torsten Schaub and Sven Thiele

Existential Quantifiers in the Rule Body
Pedro Cabalar

Kato: A Plagiarism-Detection Tool for Answer-Set Programs
Johannes Oetsch, Martin Schwengerer and Hans Tompits
Theory of Logic Programming

A Paraconsistent Semantics for Generalized Logic Programs
Heinrich Herre and Axel Hummel

Stationary Generated Models of Generalized Logic Programs
Heinrich Herre and Axel Hummel

Constraint-Based Abstraction of a Model Checker for Infinite State Systems
Gourinath Banda and John Gallagher

Range Restriction for General Formulas
Stefan Brass

17

35

37

59

75

81

95

109

125

Constraint Handling Rules

Transforming Imperative Algorithms to Constraint Handling Rules
Slim Abdennadher, Haythem Ismail and Frederick Khoury

Persistent Constraints in Constraint Handling Rules
Hariolf Betz, Frank Raiser and Thom Friihwirth

Practice of Logic Programming

A Tool for Generating Partition Schedules of Multiprocessor Systems
Hans-Joachim Goltz and Norbert Pieth

Efficiency of Difference-List Programming
Ulrich Geske and Hans-Joachim Goltz

139

155

167

177

Overview of the Monadic Constraint
Programming Framework

Tom Schrijvers*

Dept. of Computer Science, K.U.Leuven
Celestijnenlaan 200A
3001 Heverlee, Belgium
tom.schrijvers@cs.kuleuven.be

Abstract. A constraint programming system combines two essential
components: a constraint solver and a search engine. The constraint
solver reasons about satisfiability of conjunctions of constraints, and the
search engine controls the search for solutions by iteratively exploring a
disjunctive search tree defined by the constraint program.

The Monadic Constraint Programming framework gives a monadic defi-
nition of constraint programming where the solver is defined as a monad
threaded through the monadic search tree. Search and search strategies
can then be defined as firstclass objects that can themselves be built or
extended by composable search transformers. Search transformers give a
powerful and unifying approach to viewing search in constraint program-
ming, and the resulting constraint programming system is first class and
extremely flexible.

1 Introduction

A constraint programming (CP) [11] system combines two essential components:
a constraint solver and a search engine. The constraint solver reasons about
conjunctions of constraints and its principal job it to determine unsatisfiability
of a conjunction. The search engine controls the search for solutions by iteratively
exploring an OR search tree defined by the program. Whenever the conjunction
of constraints in one path defined by the search tree is unsatisfiable, search
changes to explore another part of the search tree.

Constraint programming is a declarative programming formalism, where the
constraints are defined declaratively, but the underlying constraint solvers are
highly stateful, and indeed to specify complex search CP programs rely on reflect-
ing state information from the solver. So in that sense constraint programming
is not so declarative after all.

In the Monadic Constraint Programming (MCP) framework we give a monadic
definition of constraint programming where the solver is defined as a monad
threaded through a monadic search tree. We are then able to define search and
search strategies as first class objects that can themselves be built or extended

* Post-doctoral researcher of the Fund for Scientific Research - Flanders.

by composable search transformers. Search transformers give a powerful and
unifying approach to viewing search in constraint programming. The resulting
CP system is first class and extremely flexible.

Our work can be viewed as encapsulating the functional abstractions previ-
ously used in constraint programming in a functional programming language,
and using the power of functional programming to take a further step in the
increasingly abstract view of search and constraint programming. The contribu-
tions of the MCP framework are:

— We show how monads provide a powerful tool for implementing constraint
programming abstractions, which allows us to build a highly generic frame-
work for constraint programming.

— We define search strategy transformers which are composable transformers
of search, and show how we can understand existing search strategies as
constructed from more fundamental transformers.

— We open up a huge space of exploration for search transformers.

— The code is available at http://www.cs.kuleuven.be/~toms/Haskell/.

The remainder of the paper is organized as follows. Section 2 provides a
motivating example of the MCP framework. For those unfamiliar with Haskell
type classes and monads, Section 3 introduces them briefly. Then in Sections 4,
5 & 6 the core parts of the MCP framework are presented, respectively the
modeling language, the solving process and search strategies. An overview of
related work is given in Section 7. Finally, Section 8 concludes.

2 DMotivating Example

The n queens problem requires the placing of n queens on an n X n chessboard,
so that no queen can capture another. Since queens can move vertically, hori-
zontally, and diagonally this means that

1. No two queens share the same column.
2. No two queens share the same row.
3. No two queens share the same diagonal.

A standard model of the n queens problem is as follows. Since we have n
queens to place in n different columns, we are sure that there is exactly one queen
in each column. We can thus denote the row position of the queen in column i
by the integer variable ¢;. These variables are constrained to take values in the
range 1..n. This model automatically ensures the column constraint is satisfied.
We can then express the row constraint as

Vi<i<j<n:g #gqj
and the diagonal constraint as

Vi<i<j<n:¢#q¢G+G—1i) N ¢ #a+(G—1)

since queens 7 and j, with ¢ < j, are on the same descending diagonal iff ¢; = ¢; +
(j—1), and similarly they are on the same ascending diagonal iff ¢; = ¢; + (j —1).

A solution to the 8 queens problem is shown in Figure 1. The solution il-
lustrated has q = 8a q2 = 4; q3 = 17 q4 = 35 45 = 67 d6 = 27 qr = 77 g8 = 5.

94 95 43 94 95 95 97 Ag
w

v
14

e

i

- N W OO

1]

12 3 456 7 8

Fig. 1. A solution to the 8 queens problem

The first role of a constraint programming language is to be able to succinctly
model problems. We will define constraint programming in Haskell which allows
the model of the n queens problem shown in Figure 2. Note how similar it is to
the mathematical model.

nqueens n = exist n $§ \queens -> model queens n

model queens n = queens ‘allin‘ (1,n) /\
alldifferent queens /\
diagonals queens

allin queens range = conj [q ‘in_domain‘ range | q <- queens]
alldifferent queens = conj [gqi @\= qj | gi:qjs <- tails queens,
qj <- qjs]

diagonals queens = conj [qi @\== (qj @+ d) /\ qj @\== (qi @+ d)
| qi:qjs <- tails queens, (qj,d) <- zip qjs [1..]]

Fig. 2. Haskell code for modelling n queens.

The next important part of a constraint programming solution is to be able
to program the search. We will construct a language for search that allows us to
express complex search strategies succinctly, and in a composable manner.

Search is separated into components: specifying the search tree, the basic or-
der for visiting the search tree, and then the search transformers which transform
the search tree or the way it is visited. Examples of search orders are depth-first
search (dfs), breadth-first search (bfs) or best-first search. Examples of search
transformers are depth bounded search (db n never visits nodes at depth be-
low n), node bounded search (nb n visits at most n nodes), limited discrepancy
search (1d n visits only nodes requiring at most n right branches), or branch-
and-bound optimization (bb f applies a tree transformation f for eliminating
non-optimal solutions). These search transformers are composable, so we can
apply multiple transformations in order.

For example, using our search framework we can succinctly define complex
search strategies. The following calls show how to solve 8 queens with:

— depth first search, first applying a node bound of 100, then a depth bound
of 25, then using newBound branch and bound

— breadth first search, first applying a depth bound of 25, then a node bound
of 100, then using newBound branch and bound

— breadth first search, first limited discrepancy of 10, then a node bound of
100, then using newBound branch and bound

can be expressed in our framework as:

> solve dfs (nb 100 :- db 25 :- bb newBound) $ nqueens 8
> solve bfs (db 25 :- nb 100 :- bb newBound) $ nqueens 8
> solve bfs (1d 10 :- nb 100 :- bb newBound) $ nqueens 8

Clearly exploring different search strategies is very straightforward.

3 Haskell Background

The MCP framework relies heavily on Haskell’s type system and abstraction
mechanism for providing a flexible component-based system.

We assume that the reader is already familiar with the basics of Haskell,
such as algebraic data types and (higher-order) functions, but provide a brief
introduction to two of the more advanced features, type classes and monads,
that MCP heavily relies on.

3.1 Type Classes

Type classes [22] are Haskell’s systematic solution to adhoc overloading. Con-
ceptually, a type class C is an n-ary predicate over types that states whether
an implementation of the overloaded methods associated to the type class is
available for a particular combination of types.

For instance, Eq is a unary type class with associated method (==) for equal-

ity:

class Eq a where
(==) :: a -> a -> Bool

The type class constraint Eq 7 holds if type 7 provides an implementation for
the method (==). Implementations are provided through type class instances.
For instance,

instance Eq Bool where

True == True = True
False == False = True
== = False

provides an implementation of equality for booleans. The function (==) has
type Ya.Eq a = a — a — Bool. This signature expresses that (==) applies to
argument of any type a that is an instance of the Eq type class. This suggests a
sequential composition of computations.

Type class constraints propagate from the signature of type class methods to
functions that are defined in terms of them. For instance, the function allEqual
that checks whether all elements of a list are equal inherits the type class con-
straint from its use of (==):

allEqual :: Eq a => [a] -> Bool
allEqual (x:y:zs) = x ==y && allEqual (y:zs)
allEqual _ = True

3.2 Monads

Monads [21] are an abstraction used in functional programming languages to
represent effectful computations. A monad computation m is parametrized in the
type of the computed result a. So m a denotes a monadic computation of type
m that produces a value of type a. Monads are captured in the type class:

class Monad m where
return :: a -> m a
(>>=) ::ma->(@a->mb) -=>mbd

The return function creates a pure computation that simply returns a given
value without any actual effects. The bind operator (>>=) composes two monadic
computations: the first computation produces a value of type a that is consumed
by the second computation to produce a value of type b. Note that the arrow
>>= corresponds to the data flow: the left operand produces data, the right one
consumes it.

Not captured in Haskell code, but also part of the monad specification, are
the monad laws:

returnx >>=f = fuzx
m >>=return = m
(m>=f)>>=g = m>=(\z.f z>=yg)

Any instance of the Monad type class should satisfy these laws, although they
are not enforced by the Haskell language.
Haskell provides syntactic sugar of an imperative style for monads, the do

notation. 4
<- — -
o %2 mi = my >>=\x ->my

do m = =\ -
ms = mp >>=_->mo

There is a wide range of literature and Haskell libraries related to monad
instances, and generic monad infrastructure.

4 Constraint Models

The MCP framework represents constraint models at the core by a separate data
type, called Tree. This has obvious advantages for manipulating and inspecting
the model. On top of this core data type, MCP provides convenient syntac-
tic sugar for expressing models in a higher-level form, closer to mathematical
formulas.

4.1 The Model Tree

The core data type for representing constraint models is defined as follows:

data Tree solver a
= Return a
| NewVar (Term solver -> Tree solver a)
| Add (Constraint solver) (Tree solver a)
| Try (Tree solver a) (Tree solver a)
| Fail
| Dynamic (solver (Tree solver a))

It is parametric in two types: 1) the constraint solver and its associated con-
straint domain, and 2) a computed value of type a. The former makes most
of the constraint model infrastructure independent of the particular constraint
domain, and hence reusable in many settings. The latter makes Tree solver a
monad, and allows Haskell’s monad infrastructure to be reused.

The different constructors of Tree solver a have the following meaning.
Return a is a trivially satisfiable model that returns a value a, while Fail is an

inconsistent model. Acc ¢ m extends a model t with an additional constraint c
at the front. NewVar f represents a model £ with an existentially bound (new)
constraint variable. Try t1 t2 represents a disjunctive model with the alterna-

tives t1 and t2.

Finally, Dynamic m allows the dynamic creation of the model

as a computation in the solver (see later).
Now we can make Tree solver a monad instance:

instance Monad (Tree solver) where

return = Return

(Return x) >>=f =f x

(NewVar g) >>=f = NewVar (\v -> g x >>= f)

(Add c t) >>= f = Add ¢ (t >>= f)

(Try t1 t2) >>=f = Try (t1 >>= f) (t2 >>= f)

Fail >>= f = Fail

Dynamic m >>= f = Dynamic (do { t <~ m ; return (t >>= £)})

By straightforward equational reasoning, we can establish that the monad laws
hold for this monad instance. For example, the first monad law holds as follows:

return x >>= f
(definition of return)
Return x >>= f
(definition of (>>=))
fx

4.2 Syntactic Sugar

On top of the core data type, MCP adds various convenient abstractions:

true = Return ()
false = Fail
t1 /\ t2 = t1 >>= _ -> t2
t1 \/ t2 = Try tl1 t2
conj = foldr (/\) true
disj = foldr (\/) false
exists = NewVar
exist n £ = aux n []

where aux 0 vs = f $ reverse vs

aux n vs = exists $ \v -> aux (n-1) (v:vs)

Note that conj and exist are two domain-independent model combinators we
have used in the n-queens model.

5 Constraint Solving

The constraint model presented in the previous section is a data type. In order
to actually compute solutions for the model, it must be “fed” to a constraint
solver. However, MCP refrains from directly exposing the original model to a
constraint solver directly. Instead, MCP translates the model into a set of core
primitives understood by the solver.

There are several important reasons for this approach:

— It reduces the solver implementor’s burden, who must only provide core
functionality for his solver.

— The MCP framework retains control over the translation process and exposes
it to the framework user.

— Much of the translation logic can be reused for different constraint solvers.

5.1 The Solver Interface

The interface that constraint solvers must support is captured in the Solver
type class:

class Monad solver => Solver solver where
type Constraint solver :: *
type Term solver X
newvar :: solver (Term solver)
add :: Constraint solver -> solver Bool
run :: solver a -> a
type Label solver :: *
mark :: solver (Label solver)
goto :: Label solver -> solver ()

First line states that a solver must be a monad. Indeed, in general we assume that
the solver encapsulates a stateful computation, where the state consists of the
solver’s constraint store. Two associated types of the solver define its constraint
domain: Constraint solver is the type of constraints supported by the solver,
and Term solver is the type of terms that the constraints range over.

The two methods newvar and add are the respective counterparts of the
NewVar and Add constructors of the model tree. The former returns a new con-
straint variable as a solver computation. The latter adds a constraint to the
solver state and returns a boolean indicating whether the constraint store is
still consistent (True) as far as the solver can tell or has become definitely in-
consistent (False). The run method allows extracting the values from a solver
computation.

Finally, the remaining three members of the Solver class are related to dis-
junctions. The solver interface for disjunction is much more primitive than the
high-level Try constructor of the model. The Label solver type represents a la-
bel for a solver state; the label for the current solver state can be requested with

the mark operation. The goto operation restores the solver state of a given label.
On top of these two operations various search strategies can be programmed.

From the side of the solver, different strategies can be used to implement the
primitive operations. In a state copying approach, the labels are simply copies
of the state and the operations obvious. In the case of recomputation, a label is
a trace of the operations that led up to the solver state, and goto replays the
trace. Backtracking involves a more intricate strategy.

5.2 A Simple Finite Domain Solver

To illustrate the solver interface, we present a simple instantiation, without going
into the implementation details.
Our solver type is called FD and its instance of the Solver class is:

instance Solver FD where
type Constraint FD = FDConstraint
type Term FD = FDTerm
newvar = newvarFD

The FDTerm type is abstract, and of course the details of the member func-
tions are not exposed. All the programmer needs to know are the details of the
FDConstraint type. Our small FD solver only supports three constraints:

data FDConstraint = FDIn FDTerm (Int,Int)
| FDEQ FDTerm Int
|

FDNE FDTerm FDTerm Int

Formally, the semantics can be expressed as:

[FDIn t (,w] =[] €{l,..., u}
[FDEQ ¢ d] =[t] =4
[FDNE s t i] = [s] # [t] +
We use Overton’s FD solver [13] for the concrete implementation.

On top of this interface, convenient syntactic sugar such as that used in the
n-queens model, is easily defined.

x @\=y = Add (FDNE x y 0) true

5.3 From Models to Solver Computations

The eval function turns a model into a solver computation.

eval :: Solver solver => Tree solver a -> solver [a]
eval model = eval’ model []

do xs <- continue wl
return (x:xs)
do b <- add c¢
if b then eval’ t wl
else continue wl

eval’ (Return x) wl

eval’ (Add c t) wl

eval’ (NewVar f) wl = do v <- newvar

eval’ (f v) wl
eval’ (Try 1 r) wl = do now <- mark

eval’ 1 ((now,r):wl)
eval’ Fail wl = continue wl

return []
do goto past
eval’ t wl

continue []
continue ((past,t):wl)

The eval’ function is the main workhorse, that has a worklist of labels as an
additional parameter. When a disjunction (Try) is encountered, the label of the
current solver state is pushed onto the worklist together with the right branch for
later processing, while the left branch is processed immediately. The continue
function is invoked whenever the end of a branch is reached, or an inconsistency
is detected by the solver. Then a deferred branch is popped from the worklist,
its state is restored and processing continues until the worklist is empty.

Putting everything together, the list of solutions is extracted from the eval-
uated model with the solver’s run method:

solve :: Solver solver => Tree solver a -> [a]
solve = run . eval
6 Search

MCP makes search much more flexible in a number of ways, summarized in this
section.

6.1 Dynamic Variable Enumeration

Often search is used to complete incomplete propagation strategies of constraint
solvers. In particular, for finite domain (FD) solvers, the possible assignments
for variables are enumerated in disjunctions. For instance, the following code
augments the n-queens model with such enumeration.

nqueens n = exist n $ \queens -> model queens n /\
enumerate queens [1..n]

enumerate gs values = conj [enum q values | q <- gs]

enum var values = disj [var ©@= value | value <- values]

10

Note however, that this enumeration is based on the variable’s static domain.
The generated search tree can be much more compact, if the dynamic domain
of variables, reduced by the solver’s propagation, is used.

If the FD solver exposes a function domain :: Term FD -> FD [Int] to
query a variable’s dynamic domain, the Dynamic model constructor allows gen-
erating the enumeration part of the search tree dynamically.

nqueens n = exist n $ \queens -> model queens n /\
enumerate queens

enumerate = Dynamic . label
label [] = return ()
label (v:vs) = do d <- domain v

return $ enum v d /\ enumerate vs

Many other dynamic enumeration strategies can be captured in a similar way.

6.2 Queueing Strategies

The eval function above implements depth-first search using a stack as the
worklist. The MCP framework generalizes this by means of a Queue type class,
which allows other queue-like data structures to be used to implement strategies
like breadth-first search and best-first search.

class Queue q where
type Elem q :: *

emptyQ 1t q > q

isEmptyQ :: g -> Bool

popQ :: q > (Elem q,q)
pushQ :: Elemq -> q > g

6.3 Search Transformers

Advanced search strategies can be implemented on top of the eval loop and
queueing strategy. For this purpose, MCP introduces the concept of search trans-
formers. Examples of search transformers are various forms of pruning (node-
bounded, depth-bounded, limited discrepancy), randomly flipping branches of
the search tree, iterative deepening, restart optimization and branch-and-bound.
MCP employs the technique of functional mixins to open the recursion of the
eval loop and to allow a search transformer to intercept each recursive call.

In addition to basic search transformers, MCP also provides search trans-
former combinators for building advanced transformers from basic ones. The
most important such combinator is the composition operator (:-), which se-
quentially composes two transformers. For instance, the sequential composition

11

of a node-bounded and a depth-bounded pruner explores the seach tree up to a
certain depth and up to a certain number of nodes. Another example of a com-
binator is an iterative restarting combinator, which generalizes both iterative
deepening and restart optimization.

7 Related Work

Since our approach combines constraint and functional programming there is a
broad spectrum of related work.

Constraint Programming Constraint logic programming languages allow pro-
grammable search using the builtin search of the paradigm. Each system pro-
vides predicates to define search, analogous to the Dynamic nodes in the model
tree. For instancen, ECLIPSE [23] provides a search library which allows: user
programmable variable and value selection as well as different search transform-
ers including depth bounded search, node bounded search, limited discrepancy
search, and others. One transformation cannot be applied to another, although
one can change strategy for example when the depth bound finishes to another
strategy. The user cannot define their own search transformers in the library,
though they could be programmed from scratch.

The Oz [16] language was the first language to truly separate the definition
of the disjunctive constraint model from the search strategy used to explore
it [14]. Here computation spaces capture the solver state, as well as possible
choices (effectively the Dynamic nodes). Search strategies such as DFS, BFS,
LDS, Branch and Bound and Best first search are constructed by copying the
computation space and committing to one of the choices in the space. Search
strategies themselves are monolithic, there is no notion of search transformers.

The closest work to this paper is the search language [19] of Comet [18].
Search trees are specified using try and tryall constructs (analogous to Try
and Dynamic nodes), but the actual exploration is delegated to a search controller
which defines what to do when starting or ending a search, failing or adding a
new choice. The representation of choices is by continuations rather than the
more explicit tree representation we use. The SearchController class of Comet
is roughly equivalent to the Transformer class. Complex search hybrids can
be constructed by building search controllers. The Comet approach shares the
same core idea as our monadic approach, to allow a threading of state through a
complex traversal of the underlying search tree using functional abstractions, and
using that state to control the traversal. The Comet approach does not support
a notion of composable search transformers. Interestingly the Comet approach
to search can also be implemented in C++ using macros and continuations [12].

Functional (Constraint) Logic Programming Several programming languages
have been devoted to the integration of Functional Programming and (Con-
straint) Logic Programming. On the one hand, we have CLP languages with
support for a functional notation of predicates, such as MERCURY [17] and C1AO

12

[4]. MERCURY allows the user to program search strategies by using the underly-
ing depth-first search, much like any CLP language. C1AO offers two alternative
search strategies, breadth-first search and iterative deepening, in terms of depth-
first search by means of program transformation.

On the other hand, we have functional programming languages extended
with logic programming features (non-determinism, logical variables). The most
prominent of these is the CURRY language, or language family. The PACS CURRY
compiler is implemented on top of SICSTUS PROLOG and naturally offers access
to its constraint solver libraries; it has a fixed search strategy. However, the KiCS
CURRY system, implemented in HASKELL, does not offer any constraint solvers;
vet, it does provide reflective access to the program’s search tree [3], allowing
programmed or encapsulated search. As far as we can tell, their implementation
technique prevents this programmed search from being combined with constraint
solving.

Embedding Logic Programming in Functional Programming As far as we know,
Constraint Programming has gotten very little attention from mainstream Func-
tional Programming researchers. Most effort has gone towards the study of the
related domain of Logic Programming, whose built-in unification can be seen as
an equality constraint solver for Herbrand terms.

There are two aspects to Logic Programming, which can and have been
studied either together or separately: logical variables and unification on the one
hand and (backtracking) search on the other hand.

The former matter can be seen as providing an instance of a Herbrand term
equality constraint solver for our Solver type class. However, it remains an open
issue how to fit the works of Claessen and Ljunglof [5] and Jansson and Jeuring
[9] for adding additional type safety to solver terms into our solver-independent
framework.

Logic Programming and Prolog have also inspired work on search strategies
in Functional Programming. That is to say, work on Prolog’s dedicated search
strategy: depth-first search with backtracking. Most notable is the list-based
backtracking monad—which Wadler pioneered before the introduction of monads
[20]—upon which various improvements have been made, e.g. breadth-first search
[15], Prolog’s pruning operator cut [8], and fair interleaving [10].

The Alma-0 [1] has a similar objective in an imperative setting: it adds
Prolog-like depth-first search and pruning features to Modula-2.

FaCiLe is a finite domain constraint library for OCaml, developed as part of
the Ph.D. thesis of Nicolas Barnier [2]. FaCiLe’s fixed search stratgy is depth-first
search; on top of this, optimization is possible by means of both the branch-and-
bound and restart strategies. The implementation relies on mutable state.

8 Conclusion and Future Work

We have given a monadic specification of constraint programming in terms of a
monadic constraint solver threaded through a monadic search tree. We show how

13

the tree can be dynamically constructed through so called labelling methods,
and the order in which the nodes are visited controlled by a search strategy.
The base search strategy can be transformed by search transformers, and indeed
these can be constructed as composable transformations. Our framework allows
the simple specification of complex search strategies, and illustrates how complex
search strategies, like branch-and-bound, or iterative deepening can be built from
smaller components. It also gives great freedom to explore new search strategies
and transformers, for example the optimistic branch-and-bound search.

Overall by trying to be as generic and modular as possible in defining monadic
constraint programming we have a powerful tool for experimentation and un-
derstanding of search in constraint programming.

8.1 Future Work:

There are many challenges ahead of the MCP framework. To name just a few
important ones: 1) to generalize our search framework to arbitrary search prob-
lems, 2) to integrate a Haskell implementation of Constraint Handling Rules [6]
with the framework to provide the combination of programmable search and
programmable solving, and 3) to explore the performance characteristics of the
framework. Currently, we are integrating the Gecode solver [7] in MCP [24].
Moreover, we think it is an important challenge for Prolog implementations
to offer more flexible, programmed search strategies. The stack freezing func-
tionality available in tabulated Prolog systems seems promising to implement
the label and goto methods of the MCP framework and make this possible.

Acknowledgements

I am grateful to the collaborators on the MCP framework: Peter Stuckey, Philip
Wadler and Pieter Wuille. Thanks to Christian Schulte for his feedback on the
Gecode instance of the MCP framework.

References

1. Krzysztof R. Apt, Jacob Brunekreef, Vincent Partington, and Andrea Schaerf.
Alma-o: an imperative language that supports declarative programming. ACM
Trans. Program. Lang. Syst., 20(5):1014-1066, 1998.

2. Nicolas Barnier. Application de la programmation par contraintes a des problémes
de gestion du trafic aérien. PhD thesis, Institut National Polytechnique de
Toulouse, December 2002.

3. Bernd Brassel and Frank Huch. On a tighter integration of Functional and Logic
Programming. In Zhong Shao, editor, 5th Asian Symposium on Programming
Languages and Systems (APLAS’07), volume 4807 of Lecture Notes in Computer
Science, pages 122—-138. Springer, 2007.

4. Amadeo Casas, Daniel Cabeza, and Manuel V. Hermenegildo. A syntactic ap-
proach to combining functional notation, lazy evaluation and higher-order in LP
systems. In 8th International Symposium on Functional and Logic Programming
(FLOPS’06), pages 146-162. Springer, 2006.

14

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Koen Claessen and Peter Ljungléf. Typed logical variables in Haskell. In Proc. of
Haskell Workshop . ACM SIGPLAN, 2000.

Thom Frithwirth. Theory and practice of Constraint Handling Rules. J. Logic Pro-
gramming, Special Issue on Constraint Logic Programming, 37(1-3):95-138, 1998.
Gecode Team. Gecode: Generic constraint development environment, 2006. Avail-
able from http://www.gecode.org.

Ralf Hinze. Prolog’s control constructs in a functional setting - axioms and
implementation. International Journal of Foundations of Computer Science,
(12(2)):125-170, 2001.

Patrik Jansson and Johan Jeuring. Polytypic unification. Journal of Functional
Programming, 8(5):527-536, 1998.

Oleg Kiselyov, Chung chieh Shan, Daniel P. Friedman, and Amr Sabry. Back-
tracking, interleaving, and terminating monad transformers: (functional pearl).
SIGPLAN Not., 40(9):192-203, 2005.

K. Marriott and P.J. Stuckey. Programming with Constraints: an Introduction.
MIT Press, 1998.

Laurent Michel, Andrew See, and Pascal Van Hentenryck. High-level nondetermin-
istic abstractions in. In Frédéric Benhamou, editor, CP, volume 4204 of Lecture
Notes in Computer Science, pages 359-374. Springer, 2006.

David Overton. Haskell FD library. http://overtond.blogspot.com/2008/07/
pre.html, 2008.

Christian Schulte. Programming constraint inference engines. In Principles and
Practice of Constraint Programming - CP97, Proceedings, volume 1330 of Lecture
Notes in Computer Science, pages 519-533. Springer, 1997.

Silvija Seres and Michael J. Spivey. Embedding Prolog into Haskell. In Haskell
Workshop’99, Septembr 1999.

Gert Smolka. The Oz programming model. In Computer Science Today, volume
1000 of LNC'S, pages 324-343. Springer, 1995.

Zoltan Somogyi, Fergus Henderson, and Thomas Conway. The execution algorithm
of Mercury: an efficient purely declarative logic programming language. Journal
of Logic Programming, 1996.

Pascal Van Hentenryck and Laurent Michel. Constraint-Based Local Search. MIT
Press, 2005.

Pascal Van Hentenryck and Laurent Michel. Nondeterministic control for hybrid
search. Constraints, 11(4):353-373, 2006.

Philip Wadler. How to replace failure by a list of successes. In Proc. of a conference
on Functional programming languages and computer architecture, pages 113-128,
New York, NY, USA, 1985. Springer-Verlag New York, Inc.

Philip Wadler. Monads for functional programming. In Advanced Functional Pro-
gramming, pages 24-52, London, UK, 1995.

Philip Wadler and Stephen Blott. How to make ad-hoc polymorphism less ad
hoc. In POPL ’89: Proceedings of the 16th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, pages 6076, New York, NY, USA, 1989.
ACM.

Mark Wallace, Stefano Novello, and Joachim Schimpf. ECLiPSe: A platform for
constraint logic programming, 1997.

Pieter Wuille and Tom Schrijvers. The FD-MCP framework. Report CW 562,
Departement of Computer Science, K.U.Leuven, August 2009.

15

What I Have Learned From All These Solver
Competitions

Neng-Fa Zhou

CUNY Brooklyn College & Graduate Center
zhou@sci.brooklyn.cuny.edu

In this talk, I would like to share my experiences gained from participat-
ing in four CSP solver competitions and the second ASP solver competition.
In particular, I'll talk about how various programming techniques can make
huge differences in solving some of the benchmark problems used in the com-
petitions. These techniques include global constraints, table constraints, and
problem-specific propagators and labeling strategies for selecting variables and

values. I'll present these techniques with experimental results from B-Prolog and
other CLP(FD) systems.

17

What | Have Learned From All
These Solver Competitions

Neng-Fa Zhou

CUNY Brooklyn College and Graduate
Center

Outline

* Preparations
— CSP and CLP(FD)
— Global constraints
— Table constraints
— Action rules
* Programming techniques
— Using global constraints
— Using table constraints
— Using specialized propagators
— Using problem-specific labeling strategies
« Conclusion

18

Constraint Satisfaction Problems

 CSP
— Aset of variables V={V,...,V,}
— Each variable has a domain V; :: D,
— A set of constraints
* Example
* A:{0,1}, B:{0,1}, C:{0,1}
e C=AandB
* Solution to CSP

— An assignment of values to the variables that satisfies
all the constraints

CLP(FD)

e CLP(FD) language

— An extension of Prolog that provides built-ins for
describing and solving CSPs

e CLP(FD) systems

— B-Prolog, CHIP, ECLiPSe, GNU-Prolog, IF/Prolog,
Prolog-1V, SICStus, SWI-Prolog, YAP, ...

19

CLP(FD) - B-Prolog

Domain constraints
e XinD
* XnotinD
Unification and arithmetic constraints
* Exp R Exp
— Ris one of the following: #=, #\=, #>, #>=, #<, #=
— Exp may contain+, -, *, /, //, mod, sum, min, max

Boolean constraints
— Exp R Exp
* Risone of the following: #/\, #\/, #=>, #i<=>, #\
Global constraints
Labeling built-ins

by Neng-Fa Zhou at WLP'09
go:-
Vars=[X1,X2,...,X16],
Vars:: 1.9,
word([X1,X2],5),

word([X3,X4,X5,X6],17),

word([X10,X14],3),

labeling(Vars),

writeln(Vars).
word(L,Sum):-

sum(L) #= Sum,

all_different(L).

A Kakuro puzzle

by Neng-Fa Zhou at WLP'09

20

Global Constraints

* all_different(L)

* all_distinct(L)

* circuit(L)

* cumulative(Starts,Durations,Resources,Limit)

all_different(L) and all_distinct(L)

« all_different(L)
— Let L=[X,,..., X,]
For each i,jel..n (i<j) X; # X
* all_distinct(L)
— Maintains some sort of hyper-arc consistency

* Hall-set finding (B-Prolog and ECLiPSe)
* Maximal-matching (SICStus)

21

circuit(L)

e Let L=[X,,...,.X,], where X, €1..n. An assighment
(Xy/ay,--X./a,)
satisfies this constraint if
{1->a;,..n—>a,}
forms a Hamiltonian cycle.
* Propagation algorithms
— Remove non-Hamiltonian arcs as early as possible
* Avoid sub-cycles
— Reachability test

cumulative(Starts,Durations,Resources,Limit)

o Starts = [S1,-,SA],
Durations = [D,,...D,],
Resources = [Ry,--R,],

The resource limit cannot be exceeded at any time
* When Resources=[1,...,1] and Limit=1

U
serialized(Starts,Durations)

— Disjunctive scheduling
* Edge-findingalgorithmsare used

22

Table Constraints

* Positive constraints

(X,Y,2) in [(0,
(1,
(1,
* Negative constraints

(X,Y,2) notin [(0,1,1)

(1,1,0)]

Action Rules

Agent, Condition, {EventSet} => Action

* Events
— Instantiation: ins (X)

— Domain
. bound(X),dom(X),dom(X,E),dom_any(X),and
dom_ any (X, E)
— Time: time (X)
— GUI
* actionPerformed (X),mouseClicked (X, E)..
— General
* event (X, 0)

23

Applications of Action Rules

* Lazy evaluation

freeze (X,G), var(X), {ins(X)} => true.
freeze (X,G) => call(G).

* Constraint propagators

'X in C-Y ac' (X,Y,C),var(X),var(Y),
{dom (Y, Ey) }
=>
Ex is C-Ey,
exclude (X, Ex) .
'X in C-Y ac' (X,Y,C) => true.

Using Global Constraints
all_distinct(L) (1)

e Graph coloring
— Model-1 (neq)
* For each two neighbors i and j, C#C
— Model-2 (all_distinct)

* For each complete subgraph {i,,i,,...,i.}, all_distinct([Ci,,
Ciy,..., CiJ)
* post_neqs(Neqs) in B-Prolog

24

Using Global Constraints
all_distinct(L) (2)

* Benchmarking results (seconds)

Benchmark Model-1(neq) | Model-2 (all distinct)
color-1-Fulllns-5 > 3600 > 3600
color-3-Fulllns-5 > 3600 = 3600
color-4-Fulllns-4 > 3600 10.81
color-4-Fulllns-5 > 3600 2001.74
color-5-Fulllns-4 > 3600 41.59

Source of benchmarks:

Agostino Dovier, Andrea Formisano, and Enrico Pontelli,
A comparison of CLP(FD) and ASP solutions to NP-complete problems,
ICLP’05.

by Neng-Fa Zhou at WLP'09

Using Global Constraints
all_distinct(L) (3)

. N- b
Queens problem * Model-1 (neq)

— Forijel.n(i<j)
Q#Q
Q-Q; # (j-i)
Q-Q; # (j-i)

a b c d e £ g h

* Model-2 (all_distinct)
— all_distinct([Qy,...,Q,]),

all_distinct([Q;,Q,-1,...,Q,-n]),

@b & 2 @ P -g all_distinct([Qy,Q,+1,...,.Q,+n])

H N W a0 v 1 @

by Neng-Fa Zhou at WLP'09 16

25

Using Global Constraints
all_distinct(L) (4)

* Benchmarking results (ms)

Benchmark Model-1(neq) | Model-2 (all_distinct)
blockedqueens. 28.1449787798 46 16
blockedqueens. 28.1449787894 32 31
blockedqueens. 28.1449787934 15 31
blockedqueens. 28.14497T87988 16 16
blockedqueens.28.1449788117 31 62
blockedqueens. 28.1449788237 141 219
blockedqueens.28.1449788307 31 16
blockedqueens.28.1449789281 31 62 | Source ofbenchmarks:
blockedqueens. 28.1449789491 16 31 ..
blackedqueens. 28.1449789900 62 91| 2nd ASP Competition
blockedqueens. 28.1449790187 47 47
blockedqueens.28.1449790413 63 109
blockedqueens. 28.1449790708 172 16
blockedqueens. 28.1449791337 93 156
blockedqueens.28.1449791430 0 16
blockedqueens.28.1449791733 63 7
blockedqueens.28.1449791778 47 it
blockedqueens. 28.1449791905 16 0
blockedqueens. 28.1449792036 15 15
blockedqueens. 28.1449793568 94 110

Using Global Constraints
all_distinct(L) (5)

* Some times all_different(L) is faster than
all_distinct(L)

e An example: Golomb ruler

M1 M2 M3 M4

ot 1 % a1l different([M2-M1,M3-M1,M4-MI,
O s M3-M2, M4-M2,
P M4-M31])
——5——
00—

26

Using Global Constraints
all_distinct(L) (6)

* Benchmarking results (seconds)

Benchmark all different all distinct
golomb-8-positions-100-16 0.03 0.05
golomb-8-positions-50-16 0.03 0.06
golomb-10-positions-100-36 2.20 5.09
golomb-10-positions-125-36 2.20 511
golomb-10-positions-75-36 2.19 5.11
golomb-11-positions-100-35 47.72 125.39
golomb-11-positions-125-35 47.22 125.87
golomb-11-positions-75-35 45.45 121.12
golomb-12-positions-100-48 476.53 > 600
golomb-12-positions-125-48 478.11 > 600
golomb-12-positions-150-48 479.34 = 600

Source of benchmarks: 2nd ASP Competition

Using Global Constraints

circuit(L)

* The Traveling Salesperson Problem

tsp(Vars) : -
Vars=[V1l,V2,.., V8],
V1 [2,3,41,
V2 [1,3,6,71,

V8 [5,6,7],
circuit (Vars).

27

Using Global Constraints
serialized(Starts,Durations) (1)

* Scheduling

— Model-1: use disjunctive constraints

VV5+97#=<VV1T7#\/VV1T7+52#=<VV5,
VV5+97#=<VV26#\/VV26+59#=<VV5,
VV5+97#=<VV32#\/VV32+41#=<VV5,
VV5+97#=<VV49#\ /VV49+63#=<VV5,

— Model-2: use global constraints
* post disjunctive tasks (DisJs) inB-Prolog
Disjs=[disj tasks(S1l,D1l,S2,D2),..]

— converts disjunctive constraintsinto serialized

Using Global Constraints
serialized(Starts,Durations) (2)

e Benchmarking results

Benchmark Model-1(dis) | Model-2 (serialized)
os-taillard-15-95-0 > 600 0.22
os-taillard-15-95-1 = 600 0.22
os-taillard-15-95-2 = 600 0.22
os-taillard-15-95-3 = 600 0.20
os-taillard-15-95-4 = 600 0.20
os-taillard-15-95-5 = 600 0.20
os-taillard-15-95-6 = 600 0.22
os-taillard-15-95-7 = 600 0.20
os-taillard-15-95-8 = 600 = 600
os-taillard-15-95-9 = 600 0.27

Source of benchmarks:

www.cril.univ-artois.fr/~lecoutre/research/benchmarks/benchmarks.html

28

Using Table Constraints (1)

The Schur number problem

— Partition n positive integers into m sets such that all of the
sets are sum-free.

Model-1 (sum-free triplet)

S, = S; = S,y # S,

Mode-2 (use redundant constraints)

S,=S; = S,,;#S,, S.=S;.; — S;#S,, S,=5,,, = S;#5,.

Mode-3 (use table constraints)

(S;,Sy,S::5) notin [(1,1,1),(2,2,2),..]

Using Table Constraints (2)
The Schur number problem

* Benchmarking results (seconds)

Benchmark | Model-1 | Model-2 (redundant) | Model-3 (table)
15.1.schur.lp > 600 > 600 441.72
15.10.schur.lp = 600 = 600 432 .56
15.14.schur.1lp > 600 > 600 > 600
15.16.schur.lp > 600 > 600 > 600
15.19.schur.1p > 600 > 600 > 600
15.20.schur.1p > 600 > 600 328.96
15.3.schur.lp = 600 = 600 252.20
15.4.schur.1lp > 600 > 600 > 600
15.5.schur.1p > 600 > 600 303.90

Source of benchmarks: 2nd ASP Competition

29

Using Table Constraints (3)
The Knights Problem

* Model-1: use disjunctive constraints

(abs (P1//N-P2//N) #=1 #/\ abs (Pl mod N-P2 mod N) #=2) #\/
(abs (P1//N-P2//N) #=2 #/\ abs (Pl mod N-P2 mod N) #=1)

* Model-2: use table constraints

(P1,P2) in [(0,6),(0,9),(1,7), (1,8),(1,10),..]

112(3
567
91011
31415

|~ o

=y
[
—

Using Table Constraints (4)
The Knights Problem

* Benchmarking results (seconds)

Benchmark Model-1 (dis) Model-2(table)
knights-10-5 25.20 0.02
knights-12-5 T4.84 0.03
knights-12-9 > 600 0.09
knights-15-5 283.42 0.09
knights-15-9 > 600 0.28
knights-20-5 = 600 0.28
knights-20-9 = 600 1.00
knights-25-5 > 600 0.67
knights-25-9 > 600 2.64
knights-50-25 > 600 181.51
knights-50-5 > 600 9.35
knights-50-9 > 600 40.53

knights-8-5 G.44 0.02

Source of benchmarks:

www.cril.univ-artois.fr/~lecoutre/research/benchmarks/benchmarks.html

30

Not Using Table Constraints (1)

e The Black Hole problem

(X,Y) notin [(0,0), (1,1),(2,2),..]

* Transform table constraints

(X,Y) notin [(0,0), (1,1),(2,2),..1,

X #\=Y
\

all distinct (..)

Not Using Table Constraints (2)
The Black Hole problem

* Benchmarking results (seconds)

| Benchmark ‘ table | all distinct |
BlackHole-4-13-e-1_ext | =1800 2.641
BlackHole-4-13-e-2_ext | >1800 2.719
BlackHole-4-13-e-3_ext | >1800 2.703
BlackHole-4-13-m-0_ext | >1800 2.735
BlackHole-4-13-m-1_ext | >1800 2.703
BlackHole-4-13-m-2_ext | >1800 2.657
BlackHole-4-4-e-0_ext | >1800 0.051
BlackHole-4-4-e-1_ext =>1800 0.016
BlackHole-4-4-e-2_ext | =>1800 0.032
BlackHole-4-4-e-3_ext | =>1800 0.031
BlackHole-4-4-e-4_ext =1800 0.016
BlackHole-4-4-e-5_ext =1800 0.015
BlackHole-4-4-e-6_ext =1800 0.031

www.cril.univ-artois.fr/~lecoutre/research/benchmarks/benchmarks.html

31

Using Specialized Propagators(1)

* Example 1: abs(X-Y)#=N

fd abs diff ins(X,Y,N),var(X), {ins(X)} => true.
fd abs diff ins(X,Y,N) =>
Eyl is X-N,

Ey2 is X+N,
Y in [Eyl,Ey2].

fd abs diff dom(X,Y,N),var(X),var(Y),
{dom any (X, Ex) }
=> N
Eyl is Ex-N, Ex1l is Eyl-N,
(fd false(X,Ex1)->fd set false(Y,Eyl);true),
Ey2 is Ex+N, Ex2 is Ey2+N,
(fd false(X,Ex2)->fd set false(Y,Ey2);true).

Using Specialized Propagators(2)

The Schur Number Problem
* Model-4 (use specialized propagators)

not the same (X,Y,Z),n vars gt(3,1),
{ins (X),ins (Y),ins (Z)}

=>

true.
not the same (X,Y,Z2),X==Y => fd set false(Z,X).
not the same (X,Y,Z),X==2 => fd set false (Y,X).
not the same (X,Y,Z),Y==2 => fd set false(X,Y).
not the same (X,Y,Z) => true

32

Using Specialized Propagators(3)

* Benchmarking results (seconds)

Benchmark | Model-3 (table) | Model-4 (specialized)
15.1.schur.lp 441.72 155.23
15.10.schur.lp 432.56 256.78
15.14.schur.lp > 600 435.89
15.16.schur.lp > 600 348.46
15.19.schur.lp > 600 486.20
15.20.schur.lp 328.96 128.00
15.3.schur.lp 252.20 106.32
15.4.schur.1lp > 600 > 600
15.5.schur.lp 393.90 138.04

Source of benchmarks: 2nd ASP Competition

Using Problem-Specific Labeling
Strategies

* Variable selection

— queens: labeling([ff],Vars)

— golomb: labeling([],Vars)

e Value selection

— tsp: select an edge with the lowest weight

33

Value Selection

» Select an edge with the lowest weight

tsp(Vars) : -

Vars=[V1l,V2,..,V8],

vl :: [2,3,4],

put attr no hook (Vl,nbs, [3,2,4]),
v2 :: [1,3,6,7],

put attr no hook (V2,nbs, [3,1,6,7]),

v8 :: [5,6,7],
pub attr no book(V8,nbs, [6,7,5]),
circuit (Vars) .

Use get attr (V,nbs,Nbs), member (V,Nbs)
rather than indomain (V) to label V.

Conclusion

» Techniques

— Using global constraints

— Using table constraints

— Using specialized propagators

— Using problem-specific labeling strategies
* More techniques and systems to explore

— Integrating CLP(FD) with SAT and ASP solvers
* Thanks!

— Organizers of the solver competitions

— Program committee of WLP’09

34

An ER-based Framework for
Declarative Web Programming*

Michael Hanus Sven Koschnicke

Institut fiir Informatik, CAU Kiel, D-24098 Kiel, Germany
mh@informatik.uni-kiel.de sven@koschnicke.de

Abstract. We describe a framework to support the implementation of
web-based systems to manipulate data stored in relational databases.
Since the conceptual model of a relational database is often specified
as an entity-relationship (ER) model, we propose to use the ER model
to generate a complete implementation in the declarative programming
language Curry. This implementation contains operations to create and
manipulate entities of the data model, supports authentication, autho-
rization, session handling, and the composition of individual operations
to user processes. Furthermore and most important, the implementation
ensures the consistency of the database w.r.t. the data dependencies
specified in the ER model, i.e., updates initiated by the user cannot
lead to an inconsistent state of the database. In order to generate a
high-level declarative implementation that can be easily adapted to indi-
vidual customer requirements, the framework exploits previous works on
declarative database programming and web user interface construction
in Curry.

Note: The full version of the paper will appear in the Proceedings of the
Twelfth International Symposium on Practical Aspects of Declarative
Languages (PADL 2010), Springer Lecture Notes in Computer Science

* This work was partially supported by the German Research Council (DFG) under
grant Ha 2457/5-2.

35

Practical Applications of Extended Deductive
Databases in DATALOG*

Dietmar Seipel

University of Wiirzburg, Department of Computer Science
Am Hubland, D — 97074 Wiirzburg, Germany
seipel@informatik.uni-wuerzburg.de

Abstract. A wide range of additional forward chaining applications
could be realized with deductive databases, if their rule formalism, their
immediate consequence operator, and their fixpoint iteration process
would be more flexible.

Deductive databases normally represent knowledge using stratified DAT-
ALOG programs with default negation. But many practical applications of
forward chaining require an extensible set of user—defined built—in pred-
icates. Moreover, they often need function symbols for building complex
data structures, and the stratified fixpoint iteration has to be extended
by aggregation operations.

We present an new language DATALOG*, which extends DATALOG by
stratified meta—predicates (including default negation), function sym-
bols, and user—defined built—in predicates, which are implemented and
evaluated top—down in PROLOG. All predicates are subject to the same
backtracking mechanism. The bottom—up fixpoint iteration can aggre-
gate the derived facts after each iteration based on user—defined PROLOG
predicates.

Keywords.
Deductive databases, PROLOG, forward / backward chaining, bottom—up, top—
down, built—in predicates, stratification, function symbols, XML

1 Introduction

Deductive databases allow for efficiently deriving inferences from flat tables using
forward chaining and relational database technology. Most deductive database
systems support the representation language of stratified DATALOG™* [8,13].
Disallowing function symbols and enforcing the condition of range-restrictedness
(safety)! guarantees that the inference process will always terminate for DAT-
ALOG. In principle, the fixpoint interation based on forward chaining can also
be applied to the extension by function symbols, but termination is not always
guaranteed, if function symbols can occur in rule heads. Some DATALOG exten-
sions allow for a very limited set of built—in predicates under an extended safety
condition. In DATALOG", stratified® default negation is possible.

1 all variable symbols of a rule must occur in the positive body
2 there is no cycle including default negation in the predicate dependency graph

37

DATALOG rules extended by existentially quantified variables in rule heads
are known as tuple generating dependencies. They have been used, e.g., for en-
abling ontological knowledge representation and efficient reasoning [7] and for
specifying generalized schema mappings in databases [12]. In the former paper,
also stratified default negation has been considered.

For handling non-stratified default negation and disjunctive rule heads, an-
swer set programming (ASP) can be used [2,11]; the advantage of an efficient
query evaluation for large relational databases is partly lost in ASP, but much
more complex problems — of a high computational complexity — can be encoded
elegantly. Today, even larger graph—theoretic problems, such as graph colouring,
can be encoded in a very compact way and solved by ASP in reasonable time.

On the other hand, logic programming in PROLOG [5,9] is not as declarative
as deductive databases and ASP, but backward chaining and side effects make
it a fully fledged programming language. PROLOG allows for function symbols,
and it can handle stratified default negation. However, recursion can lead to
non-termination, even if there are no function symbols. Although the PrRoLOG
extension XsB can solve this termination problem using tabling (memoing) tech-
niques, there exist many applications where backward chaining is not suitable.

Usually, dedicated special-purpose problem solvers are used for more general
forward chaining problems. Due to their lack of declarativity, these solvers often
are hard to maintain, difficult to extend and port to similar application domains.
Thus, we are proposing extended deductive databases (EDDB) based on a DATA-
LOG extension named DATALOG*, which combines declarative forward chaining
with meta—predicates, function symbols, and built—in predicates implemented
in PROLOG. So far, we have used DATALOG* for the following forward chaining
applications:

— diagnostic reasoning in medical or technical domains, e.g., d3web [14] or root
cause detection in computer networks,

— anomaly detection in ontologies extended by rules, such as the extension
SWRL of the ontology language OwL, and

— meta—interpreters, e.g. for disjunctive reasoning with the hyperresolution
consequence operator 73 in disjunctive deductive databases.

These practical EDDB applications require PROLOG meta-predicates (such as
default negation not/1 and the list predicates findall/3 and maplist/2,3),
recursion on cyclic data, and function symbols for representing complex data
structures, such as lists or semi—structured data and XML [1]. Sometimes, the
standard conjunctive rule bodies are not adequate: the knowledge representation
becomes too complicated, and the evaluation is unnecessarily complex due to
redundancy, if rules with non—conjunctive rule bodies are normalized to sets of
rules with conjunctive rule bodies. Recently, [4] has defined an extended version
of range-restricted DATALOG rules with non—conjunctive rule bodies.

In general, meta—predicates need to be stratified to ensure termination. It
is easy to decide if a DATALOG"" program can be stratified. But DATALOG*

38

programs with arbitrary PROLOG meta—predicates have to be analysed carefully
using heuristics based on extended call graphs to find out which predicates call
which other predicates through meta—predicates. Although this problem is un-
decidable in general, suitable heuristics have been published in [17], even for the
more general context of PROLOG.

The rest of this paper is organized as follows: In Section 2, we indicate how
DATALOG* mixes forward chaining with PROLOG’s backward chaining for built—
in predicates. Section 3 presents three case studies for DATALOG*. In Section 4,
we describe a possible meta—interpreter for DATALOG*, which we have imple-
mented in PROLOG. Finally, we give conclusions and sketch some future work.

2 The General Idea of DATALOG*

We distinguish between DATALOG™ rules and PROLOG rules. Syntactically, DATA-
LOG* rules are PROLOG rules; i.e., they may contain function symbols (in rule
heads and bodies) as well as negation, disjunction, and PROLOG predicates in
rule bodies. As forward chaining rules, DATALOG* rules are evaluated bottom—
up, and all possible conclusions are derived. The supporting PROLOG rules are
evaluated top—down, and — for efficiency reasons — only on demand, and they
can refer to DATALOG™* facts. The PROLOG rules are also necessary for expres-
sivity reasons: they are used for computations on complex terms, and — more
importantly — for computing very general aggregations of DATALOG* facts.

DATALOG* rules cannot be evaluated in PROLOG or DATALOG alone for the
following reasons: Current DATALOG engines cannot handle function symbols
and non-ground facts, and they do not allow for the embedded computations
(arbitrary built-in predicates), which we need for our practical applications.
Standard PROLOG systems may loop in recursion forever (e.g., when computing
the transitive closure of a cyclic graph), and they may be inefficient, if there are
subqueries that are posed and answered multiply. Thus, they have to be extended
by some DATALOG™* facilities (our approach) or memoing/tabling facilities (the
approach of the PROLOG extension XSB).

Since we need forward chaining, and since the embedding system DDK [15]
is developed in SWI-PROLOG, we have implemented a new inference machine
in standard PROLOG that can handle mixed, stratified DATALOG* /PROLOG rule
systems. The evaluation of a DATALOG* program D mixes forward—chained eval-
uation of DATALOG with SLDNF-resolution of PROLOG, see Figure 1. The body
atoms B; of a DATALOG* rule A «— B; A ... A B, are evaluated backward in
PROLOG based on previously derived facts and based on a PROLOG program P
using SLDNF-resolution.

Due to the PROLOG evaluation of rule bodies, variable symbols appearing
only under default negation are implicitely quantified as ezistential. In contrast to
[6], we do not need an explicit program transformation. For range—restrictedness,
we just require that all variable symbols appearing in the head of a rule must
also occur in at least one positive body atom. Moreover, similarly to PROLOG,

39

D 1 A—BiA...ABiA...ABy

Py SLDNF
Fig. 1. Mixing Forward and Backward Chaining.

the programmer has to ensure that the standard left—to-right evaluation of the
rule bodies will be adequate; in our case, on backtracking it should instantiate
all variable symbols of the head in finitely many ways. This will guarantee,
that every single iteration of the fixpoint process for DATALOG* derives only a
finite set of ground facts. In contrast to [4], we do not allow a reordering of the
body literals during the evaluation, since built—in predicates in DATALOG* can
be arbitrary PROLOG predicates including meta—predicates and predicates with
side effects.

Because of the embedded calls to PROLOG, a formal definition of the seman-
tics of DATALOG* would be rather technical and difficult to understand. Instead,
we will describe a compact meta—interpreter for DATALOG* in Section 4.

3 Case Studies for DATALOG*

In the following, we present three case studies for DATALOG* that require for-
ward chaining together with built-in and user—defined PROLOG predicates. These
practical applications could not be implemented so elegantly in DATALOG or
PrOLOG alone.

3.1 Diagnostic Reasoning

Diagnostic reasoning in d%web [14] requires forward chaining and built—in pred-
icates for invoking user dialogs. We have implemented diagnostic reasoning in
a declarative way using DATALOG*, cf. [18]. The DATALOG* rules use meta—
predicates (such as not/1, m_to_n/2, maplist/3, and findall/3), and after
each iteration of the immediate consequence operator, the derived facts are ag-
gregated by combining the scores of different derivations of the same diagnosis.

For example, the first DATALOG* rule below assigns the value 1 to the in-
termediate diagnose I3 by combining the answers to the questions Q1, Q2, and
Q3 during an interactive examination dialog. The second diagnositic rule assigns
a score 16 to the diagnose D2 based on the intermediate diagnose I3 and the
answer to the question Q4.

40

finding(’I3’ = 1) :-

condition(’Q1’ = 2),

(condition(’Q2’ = 3)

; condition(’Q3’ = 2)).
diagnosis(’D2’ = 16) :-

condition(’I3’ = 1),

condition(’Q4’ = 5).

The questions are asked while the DATALOG* rules are evaluated. An example
of an interactive user dialog is given in Figure 2.

Question: | Q23,

Text: | Which case study ?

Answers:

m Diagnostic reasoning

1 Ontology development
() Disjunctive reasoning

Accept| Cancel|

Fig. 2. User Dialog.

If a question Qid has not been asked yet, then a body atom condition(Qid @ V)
in a DATALOG* rule causes the call dialog(Qid = Val) of a suitable PROLOG
dialog for determining the answer Val to the question. This value Val is then
asserted in the PROLOG database as an atom finding(Qid = Val), and it can
be compared with V using the operator @, which is called Comparator below.

condition(C) :-
C =.. [Comparator, Qid, V],
(finding(Qid = Val)
; dialog(Qid = Val),
assert (finding (Qid = Val))),
apply (Comparator, [Val, V]).

We can prevent the same instance of a DATALOG* rule from firing twice.
Given a range-restricted DATALOG* rule Head :- Body, the following modified
rule will fire at most once:

41

Head :-
Body,
not(has_fired(Head, Body)),
assert (has_fired(Head, Body)).

The modified rules can be obtained automatically by a simple program trans-
formation.

For diagnostic reasoning in d3web, all rules are ground, and it is necessary
that each rule can fire at most once. The following aggregation predicate adds
the scores in the list of derived facts for the same diagnosis; the other facts
remain unchanged:

d3_aggregate_facts (I, J) :-
findall(diagnosis(D=S),
(bagof(T, member (diagnosis(D=T), I), Ts),
add(Ts, S)),
J1),
findall(A,
(member (A, I),
not (functor (A, diagnosis, 1)),
J2),
append (J1, J2, J).

3.2 Ontology Development

For the development of practical semantic applications, ontologies are commonly
used with rule extensions. The integration of ontologies creates new challenges
for the design process of such ontologies, but also existing evaluation methods
have to cope with the extension of ontologies by rules. Since the verification
of OWL ontologies with rule extensions is not tractable in general, we propose
to wverify and analyze ontologies at the symbolic level by using a declarative
approach based on DATALOG*, where known anomalies can be easily specified
and tested in a compact manner [3].

Our DATALOG* implementation requires meta—predicates such as setof/3
and maplist/2 for aggregation in rule bodies; moreover, for convenience, the
junctor or (7;7) is used in addition to and (”,”) in rule bodies. The DATA-
LOG* program can be stratified into two layers D; and Dy of DATALOG™ rules;
below, we show a few of the rules. The rules for the predicates anomaly/2 and
tc_derives/2 are part of the upper layer Dy, and the rules for derives/2,
sibling/2, and disjoint/2 are part of the lower layer D;. D; is applied to the
DATALOG* facts for the basic predicates (such as subclass_of/2), which have
to be derived from an underlying rule ontology. The resulting DATALOG* facts

42

are the input for Dy. The stratification is necessary, because Ds refers to Dy
through negation and aggregation.

anomaly (circularity, C) :-
tc_derives(C, C).

anomaly (lonely_disjoint, C) :-
class(C), siblings(_, Cs), disjoints(C, Cs),
not(sibling(C, M), disjoint(C, M)).

Firstly, an obvious equivalence exists between a subclass relationship between
two classes C' and D and a rule A « B with a single body atom B, such that
A and B have the same arguments and the unary predicate symbols D and C,
respectively. Thus, we combine them into the single formalism derives/2 and
compute the transitive closure in DATALOG*. Every class C' contained in a cycle
forms an anomaly, which is detected as tc_derives(C, C).

tc_derives (X, Y) :-
derives (X, Y).
tc_derives (X, Y) :-
derives (X, Z), tc_derives(Z, Y).

Secondly, a class C' is called a lonely disjoint, if it is disjoint to a set of
siblings, and it does not have a sibling M with which it is disjoint. The first of
the following PROLOG rules aggregates the siblings Y of a class X to a list Ys using
the meta—predicate setof/3, and the second PROLOG rule tests if a given class
X is disjoint to all classes in the list Ys using the meta-predicate maplist/2:

siblings (X, Ys) :-
setof (Y, sibling(X, Y), Ys).

disjoints (X, Ys) :-
maplist(disjoint(X), Ys).

The call to setof/3 succeeds for every class X having siblings, and it computes
the list Ys of all siblings Y of X; on backtracking, the siblings of the other classes
X are computed. This means, setof/3 does a grouping on the variable X. The
rule for siblings/2 could also be evaluated as a forward rule, but the rule for
disjoints/2 could not, since it is not range-restricted.

The lower layer D; contains the following rule. We treat it as a DATALOG*
rule, instead of a PROLOG rule, since we want to derive all pairs of siblings.

sibling (X, Y) :-
subclass_of (X, Z), subclass_of(Y, Z), X \= Y.

43

3.3 Disjunctive Reasoning

In disjunctive deductive databases [11], the definite consequence operator 7p has
been generalized to the disjuntive hyperresolution operator 73:

758)={CvCiVv...vC,|C,C,...,Cp € DuBp and there is
arule C«— By A...ABp, € gnd (P):VYie{1l,m): B;vC; €S}

Encoding disjunctive reasoning in DATALOG* requires built—in predicates for
standard operations on disjunctions and disjunctive Herbrand states S C DuBp,
such as disjunction, union, and subsumption. A disjunction can be represented
as a list of atoms. In [16], a disjunctive rule r = C' <« By A ... A By, without
default negation is translated to a definite DATALOG* rule

dis(Cy) « dis(B1,Cy) A ... Ndis(By,, Cry) A merge([C,Cy,...,Cpl, Co),

where By, ..., B, are the body atoms of r, the list C' represents the head of r,
and Co, C4,...,C, are distinct fresh variables.

The PrROLOG calls dis(B;,C;) ground instantiate the atoms B;, and they
instantiate the variables C; to lists of ground atoms. If r is range-restricted —
i.e., all variable symbols in C' occur in at least one of the body atoms B; — then
this will also instantiate C' to a list of ground atoms. The call dis(B;, C;) finds
already derived disjunctions containing the atom B; and returns the list C; of
the remaining atoms as follows:

dis(B, C) :-

dis(D), delete_atom(B, D, C).
delete_atom (B, D, C) :-

append (D1, [B|D2], D), append(D1, D2, C).

The PROLOG predicate merge/2 computes the disjunction of a list of disjunc-
tions. After each iteration of the immediate consequence operator, an aggregation
operator eliminates subsumed disjunctions.

Alternatively, the disjunctive rule r = C' < By A ... A By, can be represented
as a DATALOG* fact of the form rule(C—[By,..., By]); then, a single, generic
DATALOG* rule is sufficient, namely the following rule:

dis (D) :-
rule (C-Bs),
maplist(dis, Bs, Cs),
merge ([C|Cs], D).

In [16] it is shown, that also disjunctive rules with default negation can be
translated while preserving the stable model semantics. It is known that the well—
founded model is a subset of all stable models (considered as sets of literals).
Thus, by computing the well-founded semantics of the resulting program, we
could approximate the stable model semantics based on DATALOG*.

44

4 A Meta—Interpreter for DATALOG*

In the following, we sketch an inference engine for stratified DATALOG*, which
we have used successfully for our particular applications. We have implemented
it as a meta—interpreter using the well-known PROLOG system Sw1 [19]; the user
dialogs have been built with its publicly available graphical API.

4.1 The Immediate Consequence Operator

The generalized immediate consequence operator 7p p operates on a forward
program D and an auxilliary PROLOG program P. In the implementation below,
D is given as a list Datalog of rules, whereas P is stored in the modules M and
user (the standard module) of the PROLOG database. The following predicate
calls all rule bodies of Datalog; the calls are executed in the module M. The set
Facts of derived head facts will be stored in M only afterwards.

tp_operator (Datalog, M, Facts) :-
findall (Head,
(member (Head :- Body, Datalog),
call (M:Body)),
Facts).

For all body predicates of D there have to be either rules (or facts) in DU P
or dynamic declarations in P; otherwise, a call to such a predicate would raise
an exception. And there can be rules in both D and P. A body predicate that
is solely defined by rules in P which do not refer to predicates from D could be
considered as a built—in predicate of D. The rules of P are evaluated top—down
using PROLOG’s SLDNF-resolution.

Since the evaluated forward program D is not part of the PROLOG database,
the forward rules do not call each other recursively within a single 7p p—operator,
and they cannot be called from backward rules. The recursion is only reflected
in the bottom—up fixpoint iteration of 7p p.

4.2 Managing and Aggregating Facts in a Module

We use two elementary predicates for asserting/retracting a given list Facts of
facts in a module Module of the PROLOG database using the predicate do/2 from
the well-known loops package of Schimpf:

assert_facts (Module, Facts) :-

foreach (A, Facts) do assert(Module:A).
retract_facts (Module, Facts) :-

foreach (A, Facts) do retract(Module:A).

45

For adding a list Facts of facts to Module, we need to know the list I of facts that
are already stored in Module. First, these facts are retracted from Module, then
I and Facts are aggregated using a user—defined plugin predicate (if there is no
such predicate, then no aggregation is done), and finally the result is asserted in
Module.

aggregate_facts (Module, I, Facts, J) :-
retract_facts (Module, I),
(aggregate_facts (I, Facts, J)
; ord_union(I, Facts, J)),
assert_facts (Module, J).

aggregate_facts/3 is a plugin predicate that can be specified using application
specific PROLOG rules. For example, for diagnostic reasoning in d3web, we use
the following plugin predicate:

aggregate_facts (I, Facts, J) :-
append (I, Facts, K),
d3_aggregate_facts (K, J).

Also A-iteration with subsumption [10] could be implemented by a suitable
plugin.
4.3 The Fixpoint Iteration with Aggregation

For a given set Datalog of forward rules, tp_iteration/3 derives a set Facts
in module M:

tp_iteration(Datalog, M, Facts) :-
tp_iteration(Datalog, M, [], Facts).

tp_iteration(Datalog, M, I, K) :-
tp_operator(Datalog, M, Facts),
(tp_terminates (I, Facts) -> K = I
; aggregate_facts(M, I, Facts, J),
tp_iteration(Datalog, M, J, K)).

tp_terminates (I, Facts) :-
not (member (A, Facts), not(member (A, I))).

Given a set I of facts, tp_iteration/4 derives a new set K in module M. The
derived facts are stored in M and kept on the argument level (I, J, K). The

46

iteration terminates, if all derived facts have already been known. The derived
facts in M are necessary for tp_operator/3. Since they are mixed with the facts
and the rules of the auxilliary PROLOG program P in M, they cannot be extracted
from M at the end of the iteration; therefore, they also have to be kept on the
argument level.

4.4 Stratification

We have implemented a PROLOG library for the stratification of DATALOG*
programs. Sophisticated, heuristic methods of program analysis, which can also
be extended by the user, are used to determine embedded calls in PROLOG meta—
predicates based on suitably extended call graphs, cf. [17]. Thus, we can partition
a DATALOG* program into strata, which can be evaluated successively.

For stratification, we have to analyze D U P; thus, P has to be available on
the argument level, too. In practice, all PROLOG rules in the system could be
used by the immediate consequence operator; but we only need to analyze the
portion P’ of the rules that access the facts for DATALOG* predicates in the
ProLroc database.

In DATALOG*, most PROLOG meta—predicates require a stratified evaluation
(e.g., not/1, findall/3, setof/3, and maplist/2,3). Only the ASP extension
of deductive databases and logic programming can handle non—stratified default
negation (not/1) as well; but, ASP solvers do not support function symbols and
general built-in predicates.

4.5 Side Effects in Forward Rules

In our current implementation, the forward rules are fired successively, and it
is possible that the forward rules update the PROLOG database module using
assert/1 and retract/1 in rule bodies. We call these updates side effects —
in contrast to the assertions of derived facts done by assert_facts/4, that are
inherent to our approach.

The temporary facts asserted by side effects need not be derived by the
rules, but they can nevertheless be used by other forward rules. These temporary
facts are hidden in the PROLOG database module, they are not derived by the
immediate consequence operator, and normally they will not be part of the
final result of the fixpoint iteration. However, if desired, the user can bring
these hidden facts to the surface by suitable helper rules for deriving them.
For example, the second rule in the DATALOG* program below is a helper rule
for deriving the atom b that was asserted by the first rule:

a :- assert(b).
b :- Db.

47

During fixpoint iteration, DATALOG* makes asserted facts available to further
derivations by subsequent rules within the same iteration. In DATALOG, this
could be simulated by the so—called Gauss—Seidel evaluation of deductive data-
bases, cf. [§]. Consequently, a larger part of the transitive closure is computed
during a single iteration for the following DATALOG* program:

tc(X, Y) :-
arc (X, Y), assert(tc(X, Y)).
tc(X, Y) :-

arc(X, Z), tc(Z, Y), assert(tc(X, Y)).

For example, given a graph containing — amoung others — the two edges arc(a, b)
and arc(b, c), the transitive edge tc(a,c) is already derived in iteration 1, since
the asserted fact tc(b, ¢) of the first rule can be used in the second rule together
with arc(a, b), whereas — without assert — it is only derived in iteration 2 under
the standard Jacobi evaluation of deductive databases.

Due to PROLOG’s evaluation, an assert statement in a DATALOG* rule
r=A« By A...A\B,, where B; = assert(X), is relevant for all subsequent
rules and for all atoms within the body of the same rule r. This can be simulated
without assert by Gauss—Seidel evaluation: let § = By A...AB;_1, then we can
replace r by a helper rule v’ = X « f for deriving X followed by a reduced rule
" = A« BAB;i1 A...A B, without B;. By rule extraction we could of course
avoid the redundancy caused by the double evaluation of the conjunction [in
r’ and r”. The only remaining differences are, that r asserts the atom X only as
a temporary fact, whereas v’ derives X, and that 7’ is fully evaluated before r”,
which makes all asserts of v available to r”’.

For avoiding problems, a more controlled use of update predicates for the
ProLOG database could be required. For example, in our DATALOG* implemen-
tation of diagnostic reasoning, assert is used only after interactive dialogs. This
does not effect the derivation process so drastically; the computation simply
behaves as if all findings had been known before the computation.

5 Conclusions

We have presented an extension of deductive databases with a generalized im-
mediate consequence operator and fixpoint iteration, called DATALOG*, that is
useful for implementing practical EDDB applications nicely in a compact way.
In future work, we will investigate the theoretical properties of the extensions.

The described meta—interpreter could efficiently handle the case studies on
diagnostic reasoning and ontology development with a few thousand facts and
rules. The main advantage of the PROLOG—based approach was the flexibility in
modelling applications requiring more general concepts of forward reasoning than
deductive databases usually offer. Moreover, the meta—interpreter can be easily

48

extended to fit further needs. For other potentially very large applications, such
as disjunctive reasoning, we will conduct experimental evaluations to compare
our proposal to other approaches in the future.

Based on the generalized immediate consequence operator 7p p, it also seems
to be posssible to implement an extended form of the magic sets transformation
method for rules with non—conjunctive rule bodies in a very simple way.

So far, only stratified evaluation is possible for DATALOG*. But, it would be
interesting to extend 7pp to handle non-stratified negation using ASP tech-
nology (stable or well-founded models). Sometimes, guessing strategies on the
truth of special atoms can be used, whereas the whole extension of the called
predicates has to be guessed, before a call to a meta—predicate such as setof/3
can be evaluated.

Logic programming and extended deductive databases can be used as a
declarative mediator technology between different data sources (like relational
databases, XML databases/documents, and EXCEL sheets) and tools. We are
planning to integrate similar diagnostic problem solvers by mapping them to
DATALOG*, and to combine data mining tools by processing their input and
output, such that a declarative data mining workflow can be specified in DATA-
LOG™.

References

1. S. Abiteboul, P. Bunemann, D. Suciu: Data on the Web — From Relations to Semi—
Structured Data and XML, Morgan Kaufmann, 2000.

2. C. Baral: Knowledge Representation, Reasoning and Declarative Problem Solving,
Cambridge University Press, 2003.

3. J. Baumeister, D. Seipel: Smelly Owls — Design Anomalies in Ontologies, Proc.
18th International Florida Artificial Intelligence Research Society Conference,
FLAIRS 2005, AAAI Press, 2005, pp. 215-220.

4. S. Brass: Range Restriction for General Formulas, Proc. 22nd Workshop on (Con-
straint) Logic Programming, WLP 2009.

5. I. Bratko: PROLOG— Programming for Artificial Intelligence, 3rd Edition, Addison—
Wesley, 2001.

6. P. Cabalar: Existential Quantifiers in the Rule Body, Proc. 22nd Workshop on
(Constraint) Logic Programming, WLP 2009.

7. A. Cali, G. Gottlob, T. Lukasiewicz: A General Datalog-Based Framework for
Tractable Query Answering over Ontologies, Proc. International Conference on
Principles of Database Systems, PODS 2009, pp. 77-86.

8. S. Ceri, G. Gottlob, L. Tanca: Logic Programing and Databases, Springer, 1990.

9. W.F. Clocksin, C.S. Mellish: Programming in PROLOG, 5th Edition, Springer,
2003.

10. G. Kostler, W. Kieflling, H. Thone, U. Giintzer: Fixpoint Iteration with Subsump-
tion in Deductive Databases, Journal of Intelligent Information Systems, Volume
4, Number 2, Springer, 1995.

11. J. Lobo, J. Minker, A. Rajasekar: Foundations of Disjunctive Logic Programming,
MIT Press, 1992.

49

12.

13.

14.

15.

16.

17.

18.

19.

B. Marnette: Generalized Schema—Mappings: From Termination To Tractability,
Proc. International Conference on Principles of Database Systems, PODS 2009,
pp. 13-22.

J. Minker (Ed.): Foundations of Deductive Databases and Logic Programming,
Morgan Kaufmann, 1987.

P. Puppe et al.: D3. http://d3web.informatik.uni-wuerzburg.de/

D. Seipel: The DisLoc Developers’ Kit (DDK),
http://wwwl.informatik.uni-wuerzburg.de/databases/DisLog

D. Seipel: Using Clausal Deductive Databases for Defining Semantics in Disjunctive
Deductive Databases. Annals of Mathematics and Artificial Intelligence, vol. 33,
Kluwer Academic Publishers, 2001, pp. 347-378.

D. Seipel, M. Hopfner, B. Heumesser: Analyzing and Visualizing Prolog Programs
based on XML Representations. Proc. International Workshop on Logic Programing
Environments, WLPE 2003.

D. Seipel, J. Baumeister: Declarative Specification and Interpretation of Rule—
Based Systems, Proc. 21st International Florida Artificial Intelligence Research
Society Conference, FLAIRS 2008, AAAI Press, 2008.

J. Wielemaker: SWI-PROLOG 5.0 Reference Manual and

J. Wielemaker, A. Anjewierden: Programming in XPCE/PROLOG,
http://www.swi-prolog.org/

50

xpanda: A (Simple) Preprocessor for Adding
Multi-Valued Propositions to ASP

Martin Gebser, Henrik Hinrichs, Torsten Schaub*, and Sven Thiele

Universitéit Potsdam, Institut fiir Informatik, August-Bebel-Str. 89, D-14482 Potsdam, Germany

Abstract. We introduce a simple approach extending the input language of An-
swer Set Programming (ASP) systems by multi-valued propositions. Our ap-
proach is implemented as a (prototypical) preprocessor translating logic programs
with multi-valued propositions into logic programs with Boolean propositions
only. Our translation is modular and heavily benefits from the expressive input
language of ASP. The resulting approach, along with its implementation, allows
for solving interesting constraint satisfaction problems in ASP, showing a good
performance.

1 Introduction

Boolean constraint solving technologies like Satisfiability Checking (SAT;[1]) and An-
swer Set Programming (ASP;[2]) have demonstrated their efficiency and robustness
in many real-world applications, like planning [3,4], model checking [5, 6], and bio-
informatics [7, 8]. However, many applications are more naturally modeled by addition-
ally using non-Boolean propositions, like resources or functions over finite domains.
Unlike in SAT, however, where such language extensions are application-specific, ASP
offers a rich application-independent modeling language. The high level of expressive-
ness allows for an easy integration of new language constructs, as demonstrated in the
past by preferences [9] or aggregates [10]. Interesting examples of language extensions
illustrating the utility of mixing Boolean and non-Boolean propositions can be found
in [11-13], dealing with reasoning about actions.

In fact, a Boolean framework seems to offer such an elevated degree of efficiency
that it becomes also increasingly attractive as a target language for non-Boolean con-
straint languages. This is for instance witnessed by the system Sugar [14], an award-
winning SAT-based constraint solver. This motivated us to pursue a translational ap-
proach rather than an integrative one, as proposed in [15, 16] or, in more generality, in
the field of SAT modulo theories.

In what follows, we expect the reader to be familiar with ASP (cf. [2]) as well as
the input language of Iparse [17, 18] or gringo [19, 20].

* Affiliated with the School of Computing Science at Simon Fraser University, Burnaby, Canada,
and the Institute for Integrated and Intelligent Systems at Griffith University, Brisbane, Aus-
tralia.

ol

2 Approach

Our approach takes a logic program with multi-valued propositions and translates it into
a standard logic program having Boolean propositions only. A multi-valued proposition
is a variable taking exactly one value out of a pre-defined range. Currently, the range
of multi-valued propositions is fixed to integer intervals. A multi-valued proposition is
subject to two functional conditions, namely, it takes at most and at least one value. This
is conveniently expressed by means of cardinality constraints. Let us make this precise
by looking at the current input syntax.

For instance, the multi-valued proposition v taking values between 1 and 3 is de-
clared as follows:

#variablesv = 1..3.

Such a declaration is translated into the following expressions:

_z_dom(v,0,1..3). o
1 {wval(v, Val) : _x_dom(v,0, Val)} 1.

The new ternary predicate _z_dom captures the fact that v has arity 0 and ranges over
1 to 3. This predicate is hidden in the output via #hide _z_dom(X, Y, Z). The value
assignment to v is captured by the binary predicate val. Thus passing the logic program
in (1) to an ASP system yields three answer sets, given by {val(v, 1)}, {val(v,2)}, and
{wal(v, 3)}, each representing a valid assignment to variable v.

The declaration #variables also allows for more fine-grained specifications, like:

#variables u,v = 1..3 | 10..20.
#variablesf(X) =1..10 : - p(X).

The first declaration shows how multiple variables can be specified, sharing a non-
consecutive range of values. The second one shows how terms can be incorporated. For
this, a term’s domain must be guarded by domain predicates, like p(X). These domain
predicates are then added as body literals to the resulting cardinality constraint, viz.:

1 {wal(f(X), Val) : .x_dom(f,1, Val)} 1 : = p(X).

Interestingly, the mere possibility of defining multi-valued propositions opens up
the possibility of specifying and solving simple constraint satisfaction problems. As
an example, take two variables u, v ranging over {1,2,3} and being subject to the
constraint v + v < 3. This can be expressed by means of the following program:

#variables u,v = 1..3.
u+v < 3.

This program is then translated as follows. While the declaration of v and v is given as
in (1), the constraint v + v < 3 is expressed via an integrity constraint:

: = val(u, Valy,), val(v, Val,), Val, + Val, > 3.

52

Note that the original constraint v + v < 3 appears negated as u + v > 3 within the
integrity constraint. The idea is to exclude assignments to v and v such that u + v > 3.
Finally, we note that passing the result of the compilation to an ASP system yields three
answer sets, containing

{wal(u,1),val(v, 1)}, {val(u,1),val(v,2)}, and {val(u,2),val(v,1)}.

The above transformation applies whenever an arithmetic expression involving
multi-valued propositions appears in the head of a rule. Appearances of such expres-
sions as body literals can be dealt with in a similar way. Unlike above, however, the
original constraint is not negated. For instance, the rule within the program

#variables u,v = 1..3.
p(u,v) :=u+v < 3.
is turned into
p(Val,, Val,) : - val(u, Valy), val(v, Val,), Val, + Val, < 3.

The resulting program has nine answer sets, reflecting all possible value assignments
to u and v. However, among them, only three contain a single instance of predicate p,
namely, p(1,1), p(1,2), and p(2,1).

Finally, our approach provides a dedicated treatment of the popular alldistinct con-
straint, expressing that all involved variables must take pairwisely different values. As
before, this constraint is easily mapped onto cardinality constraints. To illustrate this,
consider the program:

#variables u,v,w = 1..3.

#alldistinct u, v, w.

The declaration of u, v, and w is dealt with as in (1). The alldistinct constraint yields
the following program rules:

#hide _x_distinct_0_var(Var). #hide _x_distinct_0_val(Val).

_z_distinct 0 _var(u). _z_distinct_0_val(Val) : = _x_dom(u,0, Val).
_z_distinct_0_var(v). _z_distinct_0_val(Val) : = _x_dom(v,0, Val).
_z_distinct_0_var(w). _z_distinct_0_val(Val) : = _x_dom(w, 0, Val).

:— _x_distinct_0_val(Val), 2 {val(Var, Val) : _x_distinct_0_var(Var)}.

The predicates _x_distinct_0_var and _z_distinct_0_val are unique for each
alldistinct constraint, fixing the sets of involved variables and values, respectively. The
integrity constraint is violated whenever there are at least two variables sharing a value.

Our translation tool xpanda is written in Python and best used via Unix’ pipes, e.g.:

cat simple.lp | xpanda.py | gringo | clasp O.

A prototype version implementing a subset of the above transformations is (presently)
available at http://files.mutaphysis.de/xpanda.zip. It works with ASP systems support-
ing the input language of Iparse [17, 18] or gringo [19, 20]. Clearly, the translation of
xpanda can easily be modified to using disjunction and explicit counting aggregates
rather than cardinality constraints, and then be used by ASP systems like dlv [21].

53

3 A (Little) Case Study: SEND+MORE=MONEY

Let us conduct a brief case-study reflecting the scalability of our approach. To this end,
we consider the SEND+MORE=MONEY puzzle. The task is to assign distinct numbers
from {0,...,9} to the variables S, F, N, D, M, O, R, Y such that the addition of the
decimal numbers SEN D and M ORE results in the decimal number M ONEY . By
convention, leading digits of decimal numbers must not be 0. This eliminates 0 from
the domains of S and M. Moreover, we know that M cannot be greater than 1 because
it occurs as carry. Hence, the value of M must be 1, effectively reducing the variables
to S, E,N,D,O, R,Y.For clarity, however, we below use variable notation for M too.

A first and apparently compact representation of this problem is the following one:

#variables m= 1.
#variables s = 2..9.
#variables e,n,d,o,r,y = 2..9 | O.

#alldistinct s,e,n,d,o,r,y.

sx1000+ex100+n*10+d
+ mx1000+0%100+r+10+e
== mx10000+0%1000+n*100+ex10+y.

The result of the compilation is given in Appendix A. Unfortunately, the grounding
blows up in space because the (non-ground) integrity constraint resulting from the ac-
tual SEND+MORE=MONEY constraint leads to 8 * 9 ground integrity constraints.
This extreme blow-up is avoided in the following representation, using column-wise
addition and three carry variables to express the SEND+MORE=MONEY constraint:

fvariables m= 1.
#variables s = 2..9.
#variables e,n,d,o,r,y = 2..9 | O.
#alldistinct s,e,n,d,o,r,y.

#variables nl,el,yl = 0..1.

d+e == y+yl*10.

n+r+yl == e+elx10.

etot+el == n+nlx10.

stm+nl == o+ m%x10.

The result of the compilation is given in Appendix B. Unlike a single constraint with
seven variables, this formalization relies on four constraints with at most five variables.
This reduces the resulting ground program to 7172 rules, which the ASP solver clasp
(1.2.1) solves in milliseconds. The overall runtime, including xpanda, gringo (2.0.3),
and clasp, is less than half a second when enumerating all solutions. In fact, this exam-
ple has a unique solution containing:

val(s,9) val (e, 5) val(n,6) val(d,7)
val (m, 1) val (o, 0) val (r, 8)
val(nl,0) val(el,1l) wval(yl,1l) val(y,2).

54

4 Conclusion

We have provided a simple transformation-based approach to incorporating multi-
valued propositions into ASP. Our translation is modular and heavily benefits from the
expressive input language of ASP, providing variables and aggregate statements such
as cardinality constraints. Once multi-valued propositions are available, it is possible to
formulate and solve interesting constraint satisfaction problems by appeal to ASP tech-
nology. As with many ASP applications, the bottleneck of the approach manifests itself
in grounding. We have seen that constraints involving too many variables may result in
a space blow-up. This phenomenon can to some extent be controlled by the user since
the number of variables remains the same in the initial specification and the resulting
compilation. Of course, large domains may still be problematic.

Many open questions remain, concerning encoding optimizations, further language
constructs, etc., and are subject to future research.

Acknowledgments. We are grateful to Wolfgang Faber for commenting on this paper.
This work was partially funded by DFG under Grant SCHA 550/8-1 and by the Go-
FORSYS! project under Grant 0313924,

A First SEND+MORE=MONEY Representation: Compilation

:— val(s,Val_s), val(e,Val_e), val(n,Val_n), val(d,Val_d),
val (m,Val_m), val(o,Val_o), val(r,val_r), val(y,Val_y),
Val_s*1000+Val_ex100+Val_n+x10+Val_d
+ Val_m*1000+Val_o#*100+Val_r+10+Val_e
= Val_m%x10000+Val_ox1000+Val_nx100+Val_ex10+Val_y.

#hide _x_distinct_0_var (X).
#hide _x_distinct_0_val (X).

_x_distinct_0O_var(s). _x_distinct_0_val (Val) (s,0 1)
_x distinct_0_var(e). _x distinct_0_val (Val) (e, 0 1)
_x_distinct_O_var(n). _x distinct_0_val(Val) :— _. (n, 0 1).
_x_distinct_0O_var(d). _x_distinct_0_val(Val) :—- _x_dom(d,0,Val).
_x distinct_0_var (o). _x distinct_0_val (Val) (0,0 1)
_x distinct_O_var(r). _x distinct_0_val (Val) (r, 0 1)
_x_distinct_0_var(y). _x_distinct_0_val (Val) (y,0 1)

:— _x distinct_0_val (Val),
2{ val (Var,Val) : _x_distinct_0_var (Var) }.

#hide _x_dom(X,Y,Z).

_x_dom(m,0,1).
1{ val(m,X_D_Val) : _x_dom(m,0,X D _Val) }1.

"'http://www.goforsys.org

95

_x_dom(s,0,2..9).
1{ val(s,X_D_Val)

_x_dom(e,0,2..9).
1{ val(e,X_D_Val)

x_dom(n,0,2..9).

1{ val (n,X_D_Val)

_x_dom(d,0,2..9).
1{ val(d,X_D_Val)

_x_dom(o,0,2..9).
1{ val(o,X_D_Val)

x_dom(r,0,2..9).

1{ val(r,X_D_Val)

_x_dom(y,0,2..9).
1{ val(y,X_D_Val)

_x_dom(s,0,X_D_Val) }1.

_x_dom(e,0,0).

_x_dom(e,0,X_D_Val) }1.

_x_dom(n,0,0).

_x_dom(n,0,X_D_Val) }1.

_x_dom(d,0,0).

_x_dom(d,0,X_D_Val) }1.

_x_dom(o0,0,0).

_x_dom(o,0,X_D_Val) }1.

_x_dom(r,0,0).

_x_dom(r,0,X_D_Val) }1.

_x_dom(y,0,0).

_x_dom(y,0,X_D_Val) }1.

B Second SEND+MORE=MONLEY Representation: Compilation

:— val(d,val_d), val(e,Val_e),

:— val(n,val_n), val(r,Val_r),
Val_n+Val_r+Val_yl
val (el,Val_el),

val (el,Val_el),

val (nl,vVal_nl),
:— val

(
(
:— val(e,Val_e), val(o,Val_o),
(
(

s,Val_s), wval(m,Val_m),
Val_s+Val_m+Val_nl

Val_e+Val_o+Val_el
val (nl,Val_nl),

#hide _x_distinct_0_var (X).
#hide _x_distinct_0_val (X).

_x_distinct_0_var
x_distinct_0_var

_x_distinct_0_var

_x _distinct_0_var
_x_distinct_0_var
_x_distinct_0_var

(s)
(e)
(n)
_x_distinct_0_var(d).
(o)
(r)
(y)

:— _x_distinct_0_val (val),
_x_distinct_0_var (Var)

2{ wval (Var,Val)

#hide _x_dom(X,Y,Z).

_x_dom(m,0,1).

56

val(y,Val_y),
Val_d+val_e
val(yl,val_yl),

_x_distinct_0_val (Val)
_x distinct_0_val (Val)
_x_distinct_0_val (Val)
_x_distinct_0_val (Val)
_x_distinct_0_val (Val)
_x_distinct_0_val (Val)
_x_distinct_0_val (Val)

).

val(yl,val_yl),
= Val_y+Val_ylx10.
val (e,Val_e),
= Val_e+tVal_elx10.
val(n,Val_n),
!'= Val_n+Val_nlx10.
val (o,Val_o),
= Val_o+Val_m=*10.

x_dom (s, 0,Val)
x_dom (e, 0,Val)
x_dom (n, 0,Val)
x_dom(d, 0,Val)
x_dom (o, 0,Val)
x_dom (r,0,Val)
x_dom(y,0,Val)

_x_dom(nl,0,0..1).
1{ val (nl,X_D_Val)

_x_dom(el,0,0..1).
1{ val(el,X_D_Val)

_x_dom(yl,0,0..1).

1{ val(m,X_D_Val) : _x dom(m,0,X_D_Val) }1.
_x_dom(s,0,2..9).

1{ val(s,X_D_Val) : _x dom(s,0,X_D_Val) }1.
_x_dom(e,0,2..9). _x dom(e,0,0).

1{ val(e,X_D_Val) : _x dom(e,0,X_D_Val) }1.
_x_dom(n,0,2..9). _x dom(n,0,0).

1{ val(n,X_D_Val) : _x dom(n,0,X_D_Val) }1.
_x_dom(d,0,2..9). _x dom(d,0,0).

1{ val(d,X_D_Val) : _x_dom(d,0,X_D_Val) }1.
_x_dom(o0,0,2..9). _x dom(o,0,0).

1{ val(o,X_D_Val) : _x dom(o,0,X_D_Val) }1.
_x_dom(r,0,2..9). _x dom(r,0,0).

1{ val(r,X_D_Val) : _x dom(r,0,X_D_Val) }1.
_x_dom(y,0,2..9). _x_dom(y,0,0).

1{ val(y,X_D_Val) : _x _dom(y,0,X_D_Val) }1.

: _x_dom(nl,0,X_D_Val)

: _x_dom(el,0,X_D_Val)

11

val(yl,X_D_Val) : _x_dom(yl,0,X_D_Val) }1.

References

1.

2.

Biere, A., Heule, M., van Maaren, H., Walsh, T., eds.: Handbook of Satisfiability. IOS Press
(2009)

Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press (2003)

Kautz, H., Selman, B.: Planning as satisfiability. In Neumann, B., ed.: Proceedings of the
Tenth European Conference on Artificial Intelligence (ECAI’92), John Wiley & Sons (1992)
359-363

Lifschitz, V.: Answer set planning. In De Schreye, D., ed.: Proceedings of the Sixteenth
International Conference on Logic Programming (ICLP’99), MIT Press (1999) 23-37
Clarke, E., Biere, A., Raimi, R., Zhu, Y.: Bounded model checking using satisfiability solv-
ing. Formal Methods in System Design 19(1) (2001) 7-34

Heljanko, K., Niemel4, I.: Bounded LTL model checking with stable models. Theory and
Practice of Logic Programming 3(4-5) (2003) 519-550

Lynce, 1., Marques-Silva, J.: Efficient haplotype inference with Boolean satisfiability. In
Gil, Y., Mooney, R., eds.: Proceedings of the Twenty-first National Conference on Artificial
Intelligence (AAAI'06), AAAI Press (2006) 104-109

o7

10.

12.

13.

15.

16.

17.
18.

19.

20.

21.

. Erdem, E., Tiire, F.: Efficient haplotype inference with answer set programming. In Fox, D.,

Gomes, C., eds.: Proceedings of the Twenty-third National Conference on Artificial Intelli-
gence (AAAT’08), AAAIT Press (2008) 436-441

Delgrande, J., Schaub, T., Tompits, H.: Logic programs with compiled preferences. In
Baral, C., Truszczynski, M., eds.: Proceedings of the Eighth International Workshop on Non-
Monotonic Reasoning (NMR’00), arXiv (2000)

Faber, W., Pfeifer, G., Leone, N., Dell’Armi, T., lelpa, G.: Design and implementation of
aggregate functions in the DLV system. Theory and Practice of Logic Programming 8(5-6)
(2008) 545-580

. Giunchiglia, E., Lee, J., Lifschitz, V., McCain, N., Turner, H.: Nonmonotonic causal theories.

Artificial Intelligence 153(1-2) (2004) 49-104

Lee, J., Lifschitz, V.: Describing additive fluents in action language C+. In Gottlob, G.,
Walsh, T., eds.: Proceedings of the Eighteenth International Joint Conference on Artificial
Intelligence (IICAI’03), Morgan Kaufmann Publishers (2003) 1079-1084

Dovier, A., Formisano, A., Pontelli, E.: Multivalued action languages with constraints in
CLP(FD). In Dahl, V., Niemeld, L., eds.: Proceedings of the Twenty-third International Con-
ference on Logic Programming (ICLP’07). Volume 4670 of Lecture Notes in Computer Sci-
ence., Springer-Verlag (2007) 255-270

. Tamura, N., Taga, A., Kitagawa, S., Banbara, M.: Compiling finite linear CSP into SAT. In

Benhamou, F, ed.: Proceedings of the Twelfth International Conference on Principles and
Practice of Constraint Programming (CP’06). Volume 4204 of Lecture Notes in Computer
Science., Springer-Verlag (2006) 590-603

Mellarkod, V., Gelfond, M.: Integrating answer set reasoning with constraint solving tech-
niques. In Garrigue, J., Hermenegildo, M., eds.: Proceedings of the Ninth International Sym-
posium on Functional and Logic Programming (FLOPS’08). Volume 4989 of Lecture Notes
in Computer Science., Springer-Verlag (2008) 15-31

Gebser, M., Ostrowski, M., Schaub, T.: Constraint answer set solving. In Hill, P., Warren,
D., eds.: Proceedings of the Twenty-fifth International Conference on Logic Programming
(ICLP’09). Volume 5649 of Lecture Notes in Computer Science., Springer-Verlag (2009)
235-249

Syrjdnen, T.: Lparse 1.0 user’s manual. http://www.tcs.hut.fi/Software/smodels/lparse.ps.gz
Simons, P., Niemeld, L., Soininen, T.: Extending and implementing the stable model seman-
tics. Artificial Intelligence 138(1-2) (2002) 181-234

Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Thiele, S.: A user’s
guide to gringo, clasp, clingo, and iclingo. http://potassco.sourceforge.net
Gebser, M., Kaminski, R., Ostrowski, M., Schaub, T., Thiele, S.: On the input language of
ASP grounder Gringo. In Erdem, E., Lin, F., Schaub, T., eds.: Proceedings of the Tenth In-
ternational Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’09).
Volume 5753 of Lecture Notes in Artificial Intelligence., Springer-Verlag (2009) 502-508
Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV
system for knowledge representation and reasoning. ACM Transactions on Computational
Logic 7(3) (2006) 499-562

o8

Existential Quantifiers in the Rule Body

Pedro Cabalar*

Department of Computer Science,
Corunna University (Corunna, Spain),
cabalar@udc.es

Abstract. In this paper we consider a simple syntactic extension of
Answer Set Programming (ASP) for dealing with (nested) existential
quantifiers and double negation in the rule bodies, in a close way to
the recent proposal RASPL-1. The semantics for this extension just re-
sorts to Equilibrium Logic (or, equivalently, to the General Theory of
Stable Models), which provides a logic-programming interpretation for
any arbitrary theory in the syntax of Predicate Calculus. We present a
translation of this syntactic class into standard logic programs with vari-
ables (either disjunctive or normal, depending on the input rule heads),
as those allowed by current ASP solvers. The translation relies on the
introduction of auxiliary predicates and the main result shows that it
preserves strong equivalence modulo the original signature.

1 Introduction

One of the traditional limitations of Answer Set Programming (ASP) in the
past has been the need of resorting to a ground instantitation of program rules.
Starting from the original definition of Stable Models [1] in terms of a proposi-
tional language, ASP solvers were designed following a two step process: first,
removing variables in favour of all their ground instances; and second, comput-
ing the stable models of the resulting ground program. Variables were somehow
an “external” element that was not directly treated in the semantics. It is not
surprising, in this way, that quantification was not paid too much attention in
the past although, paradoxically, most practical applications of ASP deal in one
way or another with some limited use of quantified variables, using auxiliary
predicates to capture the intended meaning.

This general picture has experienced a drastical change in the last years
thanks to the introduction of Quantified Equilibrium Logic [2] (QEL) or the
equivalent definition of stable models for first-order formulas proposed in [3].
These approaches provide a logic-programming interpretation for any arbitrary
first-order theory, so that syntactic restrictions do not play a role in the semantic
definition any more. Some recent results have been obtained in applying this se-
mantics to programs with variables, without resorting to grounding. For instance,

* This research was partially supported by Spanish MEC project TIN-2006-15455-
C03-02 and Xunta de Galicia project INCITE08-PXIB105159PR.

99

[4] treats the problem of strong equivalence (i.e., programs that have the same
equilibrium models, even when included in a greater, common context), whereas
in [5] QEL is used to analyse rule redundancy and the completeness of rule sub-
sumption under a given substitution. On the other hand, much work remains to
be done yet in exploring the intuition, under a logic-programming perspective,
of the QEL interpretation of formulas with arbitrary syntax or belonging to new
syntactic classes. Several works have followed this direction: we can mention [6],
that has studied the extension of the concept of safety for arbitrary theories; [7],
which considers an extension for dealing with partial functions; or [8], that pro-
poses a logic-programming language RASPL-1 for counting and choice that can
be translated into first-order expressions under QEL by introducing existential
quantifiers and double negations in the rule bodies.

In this paper we analyse an extension of logic programs with variables where,
similarly to first-order theories resulting from the RASPL-1 translation, we in-
troduce existential quantifiers and double negations in the rule bodies, further
allowing a way of nesting these new constructs (something not considered in [8]).
We provide some intutitions of the utility of this extension and explain how these
features are already used in the current ASP programming style by a suitable in-
troduction of auxiliary predicates. In fact, we propose an automated translation
that relies on this technique of auxiliary predicates and reduces the proposed
extension to regular logic programs with variables as those accepted by current
ASP grounding tools. This translation is shown to be strongly equivalent, that
is, the original set of rules and the result of the translation will yield the same
(non-monotonic) consequences, even when they are part of a greater context or
program (of course, in the original language without the auxiliary predicates).
Apart from providing a more readable and compact representation, the advan-
tage of dealing with the extended syntax is avoiding a potential source of errors in
the introduction of auxiliary predicates, not only due to a possible programmer’s
mistake in the formulation, but especially because auxiliary predicates must be
guaranteed to be hidden and limited to their original use.

The rest of the paper is organised as follows. In the next section we introduce
some motivating examples and explain the paper goals. In Section 3 we provide
an overview of Quantified Equilibrium Logic to proceed in the next section with
the introduction of the syntactic subclass we study in this paper. Section 5
presents the translation of this class into regular logic programs, proving its
correctnes. Section 6 discusses some related work and finally, Section 7 concludes
the paper.

2 DMotivation

Consider the following example. Given the extent of predicates person(X), parent(X,Y’)
(X is a parent of V) and married(X,Y) which is a symmetric relation, suppose
we want to represent that a person is happy when all his/her offsprings are
married. A typical piece of program representing this problem in ASP would

60

probably look like:

has_spouse(Y') «— married(Y, Z)
has_single_offs(X) < parent(X,Y), not has_spouse(Y)
happy(X) «— person(X), not has_single_offs(X)

Notice how predicates has_spouse and has_single_offs are not in the problem
enunciate. Their name suggest that we are capturing an existential quantifier:
note also the occurrence of free variables in the bodies that do not occur in the
heads. A more compact way of representing this program could just be:

happy(X) < person(X), not Y (parent(X,Y), not 3Z married(Y,Z)) (1)

We will show that, in fact, both representations are strongly equivalent under
QEL if we restrict the use of the auxiliary predicates has_spouse and has_single_offs
to the above mentioned rules. Notice, however, the importance of this second
representation. We, not only, get a more readable formula and avoid auxiliary
predicates not included in the original problem: we also avoid a possible mis-
take in the use of these predicates in another part or module of the program,
something that could radically change their intended meaning for the example.

As another typical example of an implicit existential quantifier, consider the
frequent formalisation of the inertia default in ASP:

holds(F,V,do(A, S)) < holds(F,V,S), not ab(F,V, A, S) (2)
ab(F,V, A, S) — holds(F,W,do(A, S)),W # V. (3)

where the complete rule bodies would also include the atoms action(A), situation(S),
fluent(F), range(F, V) and range(F, W) to specify the sorts of each variable
Again, predicate ab is introduced to capture the meaning: “there exists a value

for F other than V.” That is, the formula could have been written instead as:

holds(F,V,do(A, S)) < holds(F,V,S), not IW (holds(F, W, do(A,S)), W £ V)

Something similar happens with choice-like pairs of rules for generating pos-
sible solutions. They typically have the form of even negative loops, like in the
example:

in(X) «— vertex(X), not out(X)
out(X) «— vertex(X), not in(X)
1 —in(X),in(Y),X #Y,not edge(X,Y), not edge(Y, X)
intended for generating a clique® in terms of predicate in(X). It seems clear

that predicate out(X) is auxiliary and thus its use should be limited to this pair
of rules (adding other rules with out(X) as a head may change the intended

LA clique is a set of vertices that are pairwise adjacent.

61

meaning). In fact, if the use of out is limited in that way, the first two rules
become strongly equivalent (wrt the language without out) to the rule:

n(X) V oin(X) «— vertex(X) (4)

Once again, the interest of the extended syntax is that it can be translated into
traditional logic programs while it avoids the explicit use of auxiliary predicates
which become hidden in the translation.

3 Overview of Quantified Equilibrium Logic

Following [5], Quantified Equilibirum Logic (QEL) is defined in terms of a models
selection criterion for the intermediate logic of Quantified Here-and-There. In the
paper, we will deal with a version of this logic dealing with static domains and
decidable equality, calling it QHT for short.

Let £ = (C, F, P) be a first-order language where C is a set of constants,
F a set of functions and P a set of predicates. First-order formulae for £ are
built up in the usual way, with the same syntax of classical predicate calculus.
As in Intuitionistic Calculus, the formula —¢ will actually stand for ¢ — L.
We write Atoms(C, P) to stand for the set of atoms built with predicates in P
and constants in C. Similarly, Terms(C, F') denote the set of ground terms built
from functions in F' and constants in C.

We will adopt a logical writing for logic programming connectives, so that
constructions like («,), (not o) and (a < [3) are respectively written as (aA3),
(ma) and (8 — «). We also adopt lower-case letters for variables and functions,
and upper-case for predicates and constants. In this way, a rule like (2) becomes
the formula: Holds(f,v,s) A —=Ab(f,v,a,s) — Holds(f,v,do(a,s))

We use boldface letters x,y to denote tuples of variables, and similarly d for
tuples of domain elements.

Definition 1 (QHT-interpretation). A QHT-interpretation for a language
L= (C,F,P) is a tuple (D,o), H,T) where:

1. D is a nonempty set of constant names identifying each element in the inter-
pretation universe. For simplicity, we take the same name for the constant
and the universe element.

2. 0 : Terms(DUC, F) — D assigns a constant in D to any term built with
functions in F' and constants in the extended set of constants C'UD. It must
satisfy: o(d) =d for alld € D.

3. H and T are sets of atoms such that H CT C Atoms(D, P). O

An interpretation of the form ((D, o), T, T) is said to be total and can be seen
as the classical first-order interpretation ((D,o),T). In fact, we will indistinctly
use both notations. Furthermore, given any arbitrary M = ((D, o), H, T) we will

define a corresponding total (or classical) interpretation M e ((D,0),T).
Satisfaction of formulas is recursively defined as follows. Given an interpre-
tation M = ((D, o), H,T), the following statements are true:

62

=
L
EaAnpfif M aand M | S. Disjunction V is analogous.
= o — [if both:

) M aor ME 3 and

i) Mr = o — (in classical logic

— M [=Vx a(z) if both: (i) M | a(d), for each d € D;
and (ii) My = Vo a(z) in classical logic.

— M | 3z a(z) if for some d € D, M = a(d). O
In the proofs, we will make use of the following property:
Proposition 1. If M | ¢ then Mrp = . O

Nonmonotonic entailment is obtained by introducing a models-minimisation
criterion. Let us define the following ordering relation among interpretations:

Definition 2. An interpretation M = ((D,0), H,T) is said to be smaller than
an interpretation M’ = ((D, o), H',T), written M X M', when H C H’'. O

That is, to be comparable, M and M’ must only differ in their H component, so
that M < M’ iff H C H’. Notice that, as a consequence, M =< M. As usual,
we write M < M’ when M < M’ and M # M’ (that is H C H').

We say that M is a model of a theory I' if M satisfies all the formulas in
I'. If M is total, it is easy to check that: M = I'" iff My |=I' in classical logic.
The next definition introduces the idea of minimal models for QHT.

Definition 3 (Equilibrium model). A total model M of a theory I' is an
equilibrium model if there is no smaller model M’ < M of T. O

Note that an equilibrium model is a total model, i.e., a classical model of
I'. We name Quantified Equilibrium Logic (QEL) the logic induced by equilib-
rium models. As said in the Introduction, equilibrium models coincide with the
concept of stable models (usually defined in terms of program reducts) for all
syntactic classes of programs. In fact, Equilibrium Logic has inspired the General
Theory of Stable Models (introduced and shown to be equivalent in [3]) which
extends the definition of stable model to any first order theory.

Given an interpretation M for a given language, and a sublanguage L, we
write M|z to denote the projection of M modulo £. We say that two theories
I, I; for language £’ are strongly equivalent with respect to a given sublanguage
L of L', written I ES‘C I, when for any theory I'" in £, the sets of equilibrium
models (modulo £) for It UT" and I'; U I' coincide. When £ = L' we just write
IN =; Iy and, in fact, this has been proved [9] to correspond to the QHT-
equivalence of I} and I%.

A Herbrand QHT-interpretation M = ((D,o),H,T) is such that D corre-
sponds to Terms(C, F) and o = id, where id is the identity relation. In [9] it
was shown that M is a Herbrand equilibrium model of a logic program IT iff T
is a stable model of the (possibly infinite) ground program grp(I1) obtained by
replacing all variables by all terms in D in all possible ways.

63

4 Bodies with Existential Quantifiers

In this section we introduce the syntactic extension of logic programs we are
interested in. We define a body as conjunction of conditions, where a condition,
in its turn, recursively defined as:

i) a predicate atom P(t) where t is a tuple of terms;

i) an equality atom t =t' with ¢, ¢’ terms;

ili) 3x (¢) where x is a tuple of Varlables and 1 is a body in its turn;
iv) =C where C is a condition;

Conditions of the form i) and ii) are called atoms: the former are predicate
atoms and the latter, equality atoms. A literal is also a condition, with the form
of an atom or its negation; the rest of conditions are called non-literal. A literal
like —(t = t’) will be abbreviated as t # t'. Without loss of generality, we can
assume that we handle two consecutive negations at most, since =——C' < —C'is a
QHT-tautology. Conditions beginning (resp. not beginning) with — are said to be
negative (resp. positive). Given a body B, we define its positive (resp. negative)
part, BT (resp. B™) as the conjunction of positive (resp. negative) conditions in
B. We assume that dx; ...z, 1 is a shorthand notation for 3x; ... 3z, .

A rule is an expression like B — Hd where Hd is a (possibly empty) disjunc-
tion of predicate atoms (called the rule head) and B is a body. We assume that
an empty disjunction corresponds to L. All free variables in a rule are implicitly
universally quantified. The following are examples of rules:

P(z) A ==Q(x) A =3y (R(z,y) A3z ~R(y, 2)) — S(z) V R(z,z) (5)
Person(x) A =Jy(Parent(x,y) AN -3z Married(y, z)) — Happy(x) (6)
Vertex(x) A —~—In(x) — In(x) (7)

Rules (6) and (7) are just different ways of writing (1) and (4) respectively.
A rule is said to be normal if Hd just contains one atom. If Hd = 1 the rule
is called a constraint. A rule is said to be regular if its body is a conjunction of
literals (i.e. it does not contain double negations or existential quantifiers). A set
of rules of the general form above will be called a logic program with existential
quantifiers in the body or 3-logic program, for short. A program is said to be
normal when all its rules are normal. The same applies for a regular program.

5 A Translation into Regular Logic Programs

The translation of a rule r : B — Hd into a regular logic program r* will consist
in recursively translating all the negative conditions in the rule body B with
respect to its positive part BT. This will possibly generate a set of additional
rules dealing with new auxiliary predicates.

Definition 4 (Translation of conditions). We define the translation of a
condition C with respect to a positive body Bt as a pair (C®, I1(C, B%)) where
C*® is a formula and II(C, B*) a set of rules.

64

1. If C is a literal or has the form 3x a(x) then C* = C, II(C, B™) = .

2. Otherwise, the condition has the form C' = —a(x) being x the free variables
in C. Then C* = ~Aux(x) and II(C,B*) = (BT Aa(x) — Aux(x))* where
Auzx is a new fresh predicate and * is the translation of rules in Def. 5. O

The translation of a conjunction of conditions D with respect to a positive
body BT is defined as expected (D®, I1(D, B*)) where D*® is the conjunction of
all C* for each C in D, and II(D, B*) the union of all rules II(C, B™) for each
Cin D.

Definition 5 (Translation of a rule). The translation of a rule r, written r*
is done in two steps:

i) We begin replacing all the positive conditions 3x ¢ in the body of r by p[x/y]
being y a tuple of new fresh variables® and repeat this step until no condition
of this form is left. Let B — Hd denote the resulting rule.

il) We then obtain the set of rules:

r* € {Hd « BT A (B7)*}UII(B~,B") O

The translation of an J-logic program II is denoted IT* and corresponds
to the logic program (J,.,; 7" as expected. As an example of this translation,
consider the rule r; = (6). We would have:

ri = {Person(x) A ~Auxy(z) — Happy(x)} UII(B(r1)~, Person(x))

where B(r1)” = —-3y(Parent(x,y) A =Iz(Married(y, z))) and so,
II(B(r1)~, Person(z)) contains the translation of the rule:

Person(z) A Jy(Parent(z,y) A —3z(Married(y, z))) — Auxy(z)
We remove the positive existential quantifier to obtain ro:
Parent(xz,y) A =Iz(Married(y, z)) A Person(x) — Auz(z)
and now

ry = {Parent(z,y) A Person(z) A mAuxs(z,y) — Auxq(z)}
U II(B(r2)”, Parent(z,y) A Person(x))

This yields the rule
Parent(x,y) A Person(z) A Jz(Married(y, z)) — Auxa(z,y)

in which, again, we would just remove the positive existential quantifier. To sum
up, the final complete translation r would be the (regular) logic program:

Person(z) AN = Auxi(x) — Happy(z)
Parent(x,y) A Person(z) A mAuzs(x,y) — Auzi(x)
Parent(z,y) A Person(z) A Married(y, z) — Auxzs(z,y)

2 The introduction of new variables y can be omitted when x does not occur free in
the rest of the rule.

65

We can informally read Auxs(x,y) as “y is a married child of @ and Auxy(z)
as “x has some single child.”

It is easy to see that the translation is modular (we translate each rule inde-
pendently) and that its size is polynomial with respect to the original input.

Proposition 2. Given a rule r containing A atoms in its body and N subfor-
mulas of one of the forms (-3x «) or (——a), the translation r* contains N + 1
reqular rules whose bodies contain at most A+ N atoms. a

It might be thought that, as we always have a way of removing positive
existential quantifiers, these are unnecessary. However, we must take into account
that they are useful when nested in another expression.

As an example with double negation, it can be easily checked that the trans-
lation of rule (7) becomes the program:

Vertex(x) N ~Auz(xz) — In(x) Vertex(xz) A —In(x) — Auz(x)
Theorem 1 (Main result). Let IT be an 3-logic program for language L. Then
I =~ 1. O
Theorem 2. If II is a disjunctive (resp. normal) 3-logic program then II* is a

disjunctive (resp. normal) regular logic program. a

The reason for making the definition of new auxiliary predicates depend on
the positive body of the original rule has to do with the following property, that
will guarantee a correct grounding of the program resulting from the translation.

Definition 6 (Restricted variable). A variable X is said to be restricted by
some positive literal p(t) occurring in a conjunction of literals 8 when:

1. either X directly occurs in p(t);
2. or there exists a positive literal X =Y orY = X in 8 and Y is restricted

by p(t) in G.
We just say that X is restricted in [if it is restricted by some p(t) in (. a
Definition 7 (Safe rule). A rule r : B — Hd is said to be safe when both:

a) Any free variable occurring in r also occurs free and restricted in B.
b) For any condition 3z ¢ in B, x occurs free and restricted in . O

For instance, rule (6) is safe: its only free variable z occurs in the positive body
Person(z). In fact, all the rules we used in the previous sections are safe. How-
ever, rules like:

-~ Mark(x) — Mark(zx) Jy Q(y) — P(x) Jz —-P(x) — A

are not safe. Notice that, for regular programs (i.e. those exclusively containing
literal conditions) only case a) of Definition 7 is applicable and, in fact, this
coincides with the usual concept of safe rule in ASP.

Theorem 3. If IT is safe then IT* is safe. O

66

6 Related Work

The technique of replacing quantifiers by auxiliary predicates was already intro-
duced in Lloyd and Topor’s paper [10] for Prolog extended programs. That work
contained a closely similar translation® for removing existential quantifiers. In
the case of ASP, however, many of Lloyd and Topor’s transformations are not
valid: for instance treating implications as disjunctions, removing double nega-
tions or replacing Vg by —3x—¢p, cannot be done in ASP, as it can be expected
from the intuitionistic nature of its logical characterisation in terms of QHT. So,
in principle, Lloyd and Topor’s treatment of existential quantifiers needed not
to be correct in the case of ASP — we have proved it is so.

In fact, the correctness of this technique for ASP has also been independently
found in the recent work [11] where, moreover, they implemented a system called
F2LP for dealing with quantifiers. This system allows computing answer sets for
first order theories that satisfy some syntactic restrictions: informally speaking,
existential* quantifiers must be in the antecedent of an implication or in the scope
of negation. In fact, the current approach deals with a syntactic subclass of that
of F2LP where we do not nest conjunctions, disjunctions and implications. On the
other hand, although F2LP handles a more general syntax, no safety condition
has been defined for it (until now) in such a way that an arbitrary theory results
in a (quantifier-free) logic program that is safe in the format accepted by current
solvers, as happens with the syntactic subclass proposed in the current work.

As commented in the Introduction, this work is directly related to the recently
introduced language RASPL-1 [8]. In fact, that language is defined in terms of a
translation into first order sentences that fit into the syntax extension we study
here (existential quantifiers and double negations in the body).

The use of 3-logic programs was actually forwarded in [7] where an extension
of QEL for dealing with partial functions was introduced (in fact, the main result
of the current paper was conjectured in that work). A less related approach that
has also considered the use of body quantifiers is [12], although the semantics
was only defined for stratified programs.

7 Conclusions

We have presented an extension of logic programming that allows dealing with
(possibly nested) existential quantifiers and double negations in the rule bodies.
We have shown how this new syntactic class captures several typical represen-
tation problems in ASP allowing a more compact and readable formulation and
avoiding the use of auxiliary predicates. In fact, we presented a translation that
reduces this new syntax to that of regular logic programs by automatically gen-
erating these auxiliary predicates, which are kept hidden to avoid programmer’s
erTors.

3 The main difference is that, in our case, the rule for the auxiliary predicate inherits
the body where the existential quantifier occurred, so that safety can be preserved.

4 F2LP also allows universal quantifiers, but only when they are strongly equivalent to
negations of existential quantifiers.

67

Acknowledgements Many thanks to anonymous reviewers for their helpful sug-
gestions and for pointing out some clearly missing references to related work.

References

10.

11.

12.

13.

14.

Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
Proc. of the 5th Intl. Conf. on Logic Programming. (1988) 1070-1080

Pearce, D., Valverde, A.: Towards a first order equilibrium logic for nonmonotonic
reasoning. In: Proc. of the 9th European Conf. on Logics in AI (JELIA’04). (2004)
147-160

Ferraris, P., Lee, J., Lifschitz, V.: A new perspective on stable models. In: Proc.
of the International Joint Conference on Artificial Intelligence (IJCAT’07). (2004)
372-379

. Lifschitz, V., Pearce, D., Valverde, A.: A characterization of strong equivalence for

logic programs with variables. In: Proc. of the 9th Intl. Conf. on Logic Programming
and Nonmonotonic Reasoning (LPNMR’07). (2007) 188-200

Pearce, D., Valverde, A.: Quantified equilibrium logic and foundations for answer
set programs. In: Proc. of the 24th Intl. Conf. on Logic Programming (ICLP’08).
(2008) 547-560

Lee, J., Lifschitz, V., Palla, R.: Safe formulas in the general theory of stable models
(preliminary report). In: Proc. of the 24th Intl. Conf. on Logic Programming
(ICLP’08). (2008) 672-676

Cabalar, P.: Partial functions and equality in answer set programming. In: Proc.
of the 24th Intl. Conf. on Logic Programming (ICLP’08). (2008) 392-406

Lee, J., Lifschitz, V., Palla, R.: A reductive semantics for counting and choice
in answer set programming. In: Proc. of the 23rd AAAI Conference on Artificial
Intelligence. (2008) 472-479

Pearce, D., Valverde, A.: Quantified equilibrium logic and the first order logic of
here-and-there. Technical Report MA-06-02, University of Malaga, Spain (2006)
Lloyd, J., Topor, R.: Making PROLOG more expressive. Journal of Logic Pro-
gramming 1(3) (1984) 225-240

Lee, J., Palla, R.: System F2LP - computing answer sets of first-order formulas. In:
Proc. of the 10th Intl. Conf. on Logic Programming and Nonmonotonic Reasoning
(LPNMR’09). (2009) to appear.

Eiter, T., Gottlob, G., Veith, H.: Modular logic programming and generalized quan-
tifiers. In: Proc. of the 4th Intl. Conf. on Logic Programming and Nonmonotonic
Reasoning (LPNMR’97). (1997) 290-309

Cabalar, P., Pearce, D., Valverde, A.: Reducing propositional theories in equilib-
rium logic to logic programs. In: 12th Portuguese Conference on Artificial Intelli-
gence (EPIA 2005). (2005) 4-17

Lifschitz, V., Tang, L.R., Turner, H.: Nested expressions in logic programs. Ann.
Math. Artif. Intell. 25(3-4) (1999) 369-389

68

Appendix. Proofs

Proof (Proposition 2). It is easy to see that, excepting for the first step, in
which the original rule r is considered, each time we introduce a new rule is
for univoquely defining an auxiliary predicate Auz(x) that corresponds to one
of the subexpressions of the form —3dx « or ==« that occurred in r. So, the
total number of rules is N + 1. As for the body size of each rule, we always go
keeping a (usually strict) subset of the original number of atoms A occurring in
r, plus additional literals = Auz(x) corresponding to replaced conditions of the
form —3x « or —=—a. As a result, we get the upper bound N + A. O

To prove our main result, we will use several QHT valid equivalences (many
of them already commented in [13]) and introduce several lemmas. For instance,
we will frequently make use of the following QHT valid formula (see [13])

a—(B—=7)=(@nf—7) (®)
Similarly, the following is a QHT-theorem:
aAN=(aNf) - an-p 9)
whose proof can be obtained from transformations in [14, 13].

Lemma 1. Let M be an equilibrium model of I', and M |= a. Then M is an
equilibrium model of I' U {a}. O

Theorem 4 (Equivalent subformula replacement). Given the equivalence:
Vx(a(x) < B(x)) (10)

where x is the set of free variables in a or 3, and a given formula v containing
a subformula a(t), then (10) implies v < ~[a(t)/5(t)]. O

Theorem 5 (Defined predicate removal). Let I'y be a theory for language
L, a a formula in that signature and Aux a predicate not in L. If Iy is I'y plus

Vx(Aux(z) < a(x)) (11)
then I Ef Is. O
Lemma 2. Let My = ((D,0),H,T) be a model of the formulas

Vx(a(x) — Aux(x)) (12)
Vx(—Auz(x) — [(x)) (13)

where o and B do not contain predicate Aux, and let My = ((D,o),H',T) be
such that H\ H' = {Auxz(d) | d € D} for some set of tuples of domain elements
D # 0 satisfying My E Auxz(d) and My £ a(d). Then Mo = (12) U (13). O

69

Theorem 6. Let £ denote a signature not containing predicate Aux, and let
a(x), B(x) be a pair of formulas for L. Given I't = (12) U (13) and Iy consisting
of Iy plus:

Vx(Aux(x) — a(x)) (14)
then Iy Esﬁ Is. O
Theorem 7. Let I'y be a theory consisting of the single formula

vx(a(x) A =B(x) — y(x)) (15)

for language L, being x a tuple with all the variables that occur free in the an-
tecedent or in the consequent. Then Iy =~ I'y where I'y is the pair of formulas:

vx(a(x) A —Auz(x) — y(x)) (16)
vx(a(x) A B(x) — Auz(x)) (17)
and Auxz(x) is a fresh auxiliary predicate not included in L. O

Lemma 3. Let x be a variable that does not occur free in 3. Then, the following
is a QHT-tautology:

(Fz a(z) — B) « Ve(a(z) —) (18)

Proof (Lemma 1). Obviously, M |= I U {a}. There cannot be a smaller model
M < M for I U {a}, because it would also be a model of I" and this would
contradict minimality of M for I. O

Proof (Theorem 4). It is easy to check that, given any tuple d of domain elements
and any model M = ((D, o), H,T), M = (10) implies that:

1. M k= a(d) iff M = B(d)
2. My = a(d) iff My = G(d)

Looking at the satisfaction of formulas, this means that for any model of (10),
a(t) and B(t) for any tuple of terms t are semantically equivalent and can be
interchanged. a

Proof (Theorem 5). Let I' denote an arbitrary theory for £ and take M an
equilibrium model of I" U I} and signature £. We will show that there exists
an equilibrium model M’ of I' U I'; such that M'|; = M. Tt is clear we can
take M’ equal to M for all predicates in £ and fix the extent of Aux such
that M’ E Auz(d) it M | «a(d) for any tuple of elements d. Obviously, by
construction, M’ = I' U I';. Tt must also be minimal, since any M” < M’ that
M" = I'U Ty is also a model of I"'U Iy and this would contradict the minimality
of M for that theory.

70

For the other direction, take some M’ = ((D,0),T") equilibrium model of

I' U Iy. Clearly, M’ = I' U I} and, since this theory does not contain Auz,
its projection M'|, = M = ((D,0),T) must also be a model for I"U I';. Take
another model of this theory, My = ((D, o), H,T) with H C T', that is My < M.
But then, we can construct M5 = ((D, o), H',T') such that H’ consists of H and
the set of atoms Aux(d) for which My |= «(d). Notice that H' must be a subset
of T' because Mz = «(d) implies M = a(d) and this implies M’ E «(d),
that together with M’ |= (11) implies and M’ = Auz(d). But as H C T we
get H' C T" and so M} < M'’. On the other hand, by construction of M}
together with M’ |= (11), we obtain M4 = (11). In this way, M} = ' U I
while M, < M’ reaching a contradiction with minimality of M’ for this theory.
O

Proof (Lemma 2). Note first that, for any tuple d € D, M; and Ms coincide
both for Auz(d), a(d) and 8(d). Then M; = (12) and M; [= (13) allow us
to conclude My | a(d) — Aux(d) and My = —Auzx(d) — 3(d), respectively.
We remain to prove that the same holds for tuples d € D. Consider Mr =
((D,0),T), that is, the total model above M; and M. For any d € D, we
have M; = Auz(d) and thus My = Auz(d), but then My = —=Aux(d). On
the other hand, M; = (13) also implies My |= (13) and, in particular, My =
—Aux(d) — ((d). The latter, together with My & —Auz(d), implies M |=
—Auz(d) — B(d), for any d € D.

Similarly, M; = (12) implies M7 = (12) and, in particular, M7 = a(d) —
Auz(d) for d € D. On the other hand, as M; and Ms do not differ for a(d),
we conclude My £~ a(d), and thus, Ms E a(d) — Auz(d). 0

Proof (Theorem 6). Let I' denote an arbitrary theory for £ and take M =
((D,0),T) an equilibrium model of I U I';. For proving that M is equilibrium
model of I' U I's, by Lemma 1, it suffices to show that M |= (14). Assume this
does not hold. As M is a total model, this just means that for some tuple of
domain elements d, M = Auz(d) and M }= a(d). Let us take now a model
M’ ={((D,o),H,T) where H is equal to T excepting that the extension of Auz
does not include the tuple d. Notice that H C T and M’ < M. In fact, we can
observe that Lemma 2 is applicable taking M; = M, My = M’ and D = {d} to
conclude M’ |= (12) U (13), i.e., M’ |= I';. Furthermore, as M’ only differs from
M in Auz, M’ |= I'. But this contradicts the minimality of M as equilibrium
model of " U I7.

For the other direction, let M be an equilibrium model of I' U I's. Since
Il C I, obviously M = I'UT} . We remain to prove that M is minimal. Suppose
we had some other model M’ < M of I'U I. If M’ |= (14) we would have
M’ |= I'U T3 and this would contradict the minimality of M for that theory. So,
assume M’ £ (14). Let D be the set of tuples d for which M’ £ Auxz(d) — «(d)
(note that this set cannot be empty). As M = (14) we must have M’ = Aux(d)
and M’ [~ a(d) for all d € D. Now take M” equal to M’ excepting that, for all

71

d € D, M" £ Auz(d). We can apply Lemma 2 taking M; = M', My = M”
and D to conclude M” = (12) U (13), i.e., M” = I. Furthermore, as M"
only differs from M’ in the extent of Aux, we obtain M” = I' U I';. Now, as
M" [Auz(d) and we have M |= (14) we conclude M” |= Auz(d) — a(d). For
tuples ¢ € D we had M’ = Auz(c) — «a(c) by definition of D, but M’ and M”
coincide in Aux(c) and a(c). As a result, M” |= (14) too, and since M" < M
we obtain a contradiction with minimality of M for I" U I's. O

Proof (Theorem 7). By (8), the formula (16) is strongly equivalent to:
vx(—Auz(x) — (a(x) — v(x))) (19)

so that, we can apply Theorem 6 on I to transform the implication in (17) into
a double implication:

vx(ax) A B(x) < Auz(x)) (20)

As a result, I's is strongly equivalent (modulo £) to the theory consisting of (16)
and (20). By Theorem 4, this is strongly equivalent, in its turn, to (20) plus:

Vx(a(x) A =(a(x) A B(x)) — (x)) (21)

Due to (9), the latter is strongly equivalent to (15). Finally, by Theorem 5, we
can remove (20), since it is a definition for predicate Aux which does not belong
to L. O

Proof (Lemma 3). As (18) is a classical tautology, we remain to prove that,
for any interpretation M = ((D,o),H,T), M E Jz a(z) — pif M |
Va(a(x) — (). For the left to right direction, assume M = 3z a(x) — S but
M}~ Vo(a(x) — (). The latter means there exists some element d for which
M £ a(d) — B. Since M = Jz a(x) — [we have that M also satisfies that
formula and so Mr = Va(a(x) — B) since it is a classically equivalent formula.
Therefore, the only possibility is M = a(d) and M [~ 5. But from the former
we get M |= 3z a(z) and this contradicts M = Jz a(z) — (.

For the right to left direction, suppose M = Va(a(z) — 3). As My also satis-
fies that formula it must also satisfy the classically equivalent formula 3z a(z) —
(. We remain to prove that M = 3z a(x) implies M = 5. Assume that the
former holds. Then, for some element d, M = a(d). As M = Vz(a(z) — (), in
particular, M = a(d) — (3, but this together with M = «(d) implies M |= (.

O

Proof (Theorem 1. Main result). We prove the result by induction on the suc-
cessive application of -* in each group of newly generated rules. If a rule r is
regular it can be easily checked that r* = r and the result of strong equivalence
is straightforward. If » contains a double negation or an existential quantifier,

72

we will show that the two steps in Definition 5 preserve strong equivalence. Step
i) is the result of the successive application of Lemma 3, that allows us to re-
move a positive existential quantifier in the body, provided that the quantified
variable does not occur free in the rest of the formula. Notice that this lemma
can be applied to a larger body like 3z a(z) A v — [(again, with x not free
in) because the latter is QHT-equivalent to 3z a(x) — (v —). For Step ii),
consider any rule r : B — Hd with some non-literal negative condition —f (x).
We can write r as BT (x) A —31(x) A B'(x) — Hd(x), being B’(x) the rest of
conjuncts in the negative body, that is, B~ (x) excepting =31 (x). This expression
can be equivalently written as BT (x) A =f31(x) — (B'(x) — Hd(x)) and so, we
can apply Theorem 7 taking a(x) to be the positive body BT (x), and ~(x) the
implication B'(x) — Hd(x) to conclude that r is strongly equivalent (modulo its
original language £) to the conjunction of B¥(x) A =Auz(x) A B'(x) — Hd(x)
plus BT (x)AB1(x) — Auz(x) being Aux;y a new fresh predicate. We can repeat
this step for the rest of non-literal negative conditions in B~ until the original
rule becomes Bt (x) A mAuzi(x) A -+ A —Auzx,(x) A B’ (x) — Hd(x), i.e., what
we called BT A (B7)®* — Hd in Definition 5. Finally, the correctness of the
translation of the newly generated rules BT (x) A 3;(x) — Auw;(x) follows from
the induction hypothesis. Note that termination of this inductive transformation
-* is guaranteed by observing that in each step, we reduce the size of new rule
bodies, replacing negative non-literal conditions by smaller expressions. a

Proof (Theorem 2). First, observe that all the rules generated in the transla-
tion either repeat one of the original rule heads in I or just contain one atom
Auz(x). Thus, if the original program was disjunctive (resp. normal) then IT*
will be disjunctive (resp. normal). Second, just notice that the translation is re-
cursively repeated until rule bodies exclusively contain literal conditions, so the
final program will be a regular logic program in the usual sense. a

Proof (Theorem 3). It suffices to observe that the rules generated in each trans-
lation step preserves safety with respect to Definition 7. Assume we start from
a safe rule and obtain its translation following the steps in Definition 5. In Step
i) of that definition, each time we remove Jz¢ and replace it by ¢[x/y] we are
introducing a new free variable y in the rule that must satisfy condition a) in
Definition 7 to maintain safety. But this is guaranteed because the original rule
was safe and so, x occurred free and outside the scope of negation in . There-
fore, y will occur free and outside the scope of negation in ¢[z/y], which is part
of the resulting rule body. This means that the resulting rule satisfies a) in Def-
inition 7 for variable y while the status of the rest of variables in the rule has
not changed.

Now, take the rule : B — Hd that results from iterating Step i) which, as we
have seen, preserves safety. Notice that does not contain quantified expressions
outside the scope of negation, so that BT is just a conjunction of atoms. It can be
easily observed that each rule 7’ : BY A(B~)® — Hd does not introduce new free

73

variables with respect to B — Hd (it just replaced any negative condition like
- (x) in B~ by a new atom —Aux(x)) while it maintains the original positive
body BY. So, as the original rule r was safe, all free variables in 7’ also satisfy
condition @) in Definition 7, while b) is not applicable because ' is regular (its
body exclusively consists of literals). Similarly, rules like 7/ : BT A a(x) —
Auz(x) in II(B~,B") do not introduce new free variables with respect to r
either, while they maintain the same positive body B, so they will satisfy a) in
Definition 7. On the other hand, any quantified condition like Jy ¢ that occurs
in a(x) also occurred in a condition —a(x) in 7. As r was safe, Jy ¢ will satisfy
b) in Definition 7, so that rule »” is safe too. O

74

Kato: A Plagiarism-Detection Tool for
Answer-Set Programs™

Johannes Oetsch, Martin Schwengerer, and Hans Tompits

Institut fiir Informationssysteme 184/3, Technische Universitit Wien,
Favoritenstrale 9-11, A-1040 Vienna, Austria
{oetsch, schwengerer, tompits}@kr.tuwien.ac.at

Abstract. We present the tool Kato which is, to the best of our knowledge,
the first tool for plagiarism detection that is directly tailored for answer-set pro-
gramming (ASP). Kato aims at finding similarities between (segments of) logic
programs to help detecting cases of plagiarism. Currently, the tool is realised for
DLV programs but it is designed to handle various logic-programming syntax
versions. We review basic features and the underlying methodology of the tool.

1 Background

With the rise of the Internet and its easy access of information, plagiarism is a growing
problem not only in academia but also in science and technology in general. In soft-
ware development, plagiarism involves copying (parts of) a program without revealing
the source where it was copied from. The relevance of plagiarism detection for conven-
tional program development is well acknowledged [1]—it is not only motivated by an
academic setting to prevent students from violating good academic standards, but also
by the urge to retain the control of program code in industrial software development
projects.

We are concerned with plagiarism detection in the context of answer-set program-
ming (ASP) [2]. In particular, we deal with disjunctive logic programs under the answer-
set semantics [3]. Answer-set programming is characterised by the feature that problems
are encoded in terms of theories such that the solutions of a problem instance correspond
to certain models (the “answer sets”) of the corresponding theory. It differs from imper-
ative languages like C++ or Java (and also to some extent from Prolog) because of its
genuine declarative nature: a logic program is a specification rather than an instruction
of how to solve a problem; the order of the rules and the order of the literals within
the heads and bodies of the rules have no effect on the semantics of a program. Hence,
someone who copies code has other means to disguise the deed.

For conventional programming languages, sophisticated tools for plagiarism detec-
tion exist, like, e.g., YAP3 [4], Sim [5], JPlag [6], XPlag [7], and others [8]. However,
most techniques are not adequate for ASP. The reason is the declarative nature of ASP
as well as the lack of a control flow. Especially the fact that the order of statements
(and of the literals of a statement) is not relevant for a program causes that existing

* This work was partially supported by the Austrian Science Fund (FWF) under project P21698.

75

techniques are unsuitable in general. As well, many commonly used tools work with
a tokenisation: the source code is translated into a token string where code strings are
replaced by generic tokens. For instance, a tokeniser could replace each concrete num-
ber by the abstract token <VALUE>. The resulting token strings are used for the further
comparisons by searching for common substrings. However, the structure of a DLV
program is rather homogeneous—there are not many built-in predicates—which makes
this technique unsuitable for detecting copies.

The need for tools for plagiarism detection in ASP is clearly motivated by the grow-
ing application in academia and industry, but our primary interest to have such a tool
is to apply it in the context of a laboratory course at our university. We thus developed
the tool Kat o which, to the best of our knowledge, is the first system for plagiarism
detection that is directly tailored for ASP.! Kato aims at finding similarities between
(segments of) logic programs to help detecting cases of plagiarism. Currently, the tool
is realised for DLV programs but it is designed to handle various logic-programming
syntax versions as well.2 In what follows, we review the basic features of Kato and
outline its underlying methodology.

2 Features and Basic Methodology of Kato

Kato was developed to find suspicious pairs of programs stemming from student as-
signments in the context of a course on logic programming at our university. Hence,
the tool can perform pairwise similarity tests on a rather large set of relatively small
programs. In what follows, we provide basic information concerning the implemented
features of Kat o and how they are realised.

Figure 1 shows the basic working steps needed to perform a test run, which can
be divided into three major phases: First, the programs are parsed and normalised in a
preprocessing step. Then, test specific preparations are applied. Finally, the programs
are compared.

Following a hybrid approach, Kato performs four kinds of comparison tests, real-
ising different layers of granularity: (i) a comparison of the program comments via the
longest common subsequence (LCS) metric (see the work of Bergroth et al. [9] for an
overview), (ii) an LCS test on the whole program, (iii) a fingerprint test, and (iv) a struc-
ture test. We recall that the LCS of two strings is the longest set of identical symbols in
both strings with the same order. Hence, the LCS metric tolerates injected non-matching
objects. Note that (i) and (ii) are language independent while (iii) and (iv) need to be
adapted for different language dialects. All of these tests, outlined in more detail below,
compare files pairwise and return a similarity value between O (no similarities) and 1
(perfect match).

LCS-Comment Tests. 1t is surprising what little effort some people spend to mask copied
comments. This test reveals similarities between program comments when interpreted
as simple strings via the LCS metric.

! The name of the tool derives, with all due acknowledgments, from Inspector Clouseau’s loyal
servant and side-kick, Kato.
2See http://www.dlvsystem.com/ for details about DLV.

76

Preprocessing

Parser Normalisation

Input
Programs

Preparation \ Comparison \
Create LCS

Create Fingerprints

Extract Comments

Displaying
Compare Results
Fingerprints

Compare Structure

|

Fig. 1. Overview over a test run

LCS-Program Tests. Similar to the LCS-comment test, the whole programs are inter-
preted as two strings which are then tested for their longest common subsequence. This
test represents an efficient method to detect cases of plagiarism where not much time
has been spent to camouflage the plagiarism or parts of it.

Fingerprint Tests. A fingerprint of a program is a collection of relevant statistical data
like hash-codes, the number of rules, the number of predicates, the number of constants,
program size, and so on. After fingerprints of all programs are generated, they are com-
pared pairwise. This gives a simple yet convenient way to collect further evidence for
plagiarism.

Structure Tests. This kind of tests gives, by taking the structure of the programs into
account, the most significant information in general. The central similarity function
underlying the structure tests is defined as follows: Let lity () be the multiset of all
literals occurring in the head of a given rule and litp(r) the multiset of all literals
occurring in the body of r. Then, for two rules 1 and o, the rule similarity, o(rq, r2),
is defined as

\litg (r1) O litgr (r2)| + |litp (r1) O lits (r2))|
maX(|litH(7“1)| + |litB(’I“1)|, |litH(’I"2)| + |litB(r2)|) '

Furthermore, for two programs P; and P» (interpreted as multisets of rules), the simi-
larity, S(Py, Py), is given by

0'(7”'1,7’2) =

> rep, max(o(r,r’) v € Py)
[Py

S(P,Py) =

Note that S is not symmetrical in its arguments. For any two programs P; and Ps,
S(Py, P,) is mapped to a value between 0 and 1 which, roughly speaking, expresses to
which extent P; is subsumed by P» by similar rules.

By definition, S thwarts disguising strategies like permuting rules or literals within
rules. However, a more advanced plagiarist could also uniformly rename variables
within rules or rename some auxiliary predicates. Therefore, our similarity test comes
with different levels of abstraction to counter these malicious efforts. Such renaming
is handled by finding and applying suitable substitution functions. Without going into
details, the problem of finding such functions is closely related to the homomorphism
problem for relational structures which is known to be NP-complete. To circumvent the
high complexity, we use an efficient greedy heuristic to obtain our substitutions.

To make the similarity function sensitive to common rule patterns, we also im-
plemented a context dependent extension: A global occurrence table gives additional
information how specific two rules are. The main idea is that rare rules yield better ev-
idence for a copy than common ones. Therefore, Kat o collects and counts all rules in
the considered corpus of programs and stores this information in an occurrence table.
During the comparison, the rule similarity is then weighted depending on the frequency
of the involved rules.

3 Further Information and Discussion

The tool is entirely developed in Java (version 6.0). The results of the program com-
parisons are displayed in tabular form with features like sorting and filtering. For the
structure tests, the tool shows program pairs and highlights similar rules. Currently,
Kato is designed for DLV’s language dialect but it can be easily extended to other
dialects—it is planned to consider standard Prolog as well. Kat o was successfully ap-
plied in a logic programming course at our university; all cases of plagiarism detected
by the supervisors showed high similarities, and even further cases of plagiarism could
be detected.

Detailed empirical analyses in terms of precision and recall, as well as comparisons
of our approach with existing tools for plagiarism detection, are left for future work. A
further topic for future work is to develop means to visualise the comparison results,
e.g., to spot clusters of cooperating plagiarists more easily.

Another interesting aspect of Kat o is a possible use as a software engineering tool:
If a team is working on a program, different versions will emerge. Then, the question
about the actual differences between two versions is immanent. Kat o can be adapted
to answer such questions.

Additional information about the tool, and how to obtain it, can also be found at

http://www.kr.tuwien.ac.at/research/systems/kato.

References
1. Clough, P.: Plagiarism in natural and programming languages: An overview of current tools

and technologies. Technical Report CS-00-05, Department of Computer Science, University
of Sheffield, UK (2000)

78

. Baral, C.: Knowledge Representation, Reasoning, and Declarative Problem Solving. Cam-
bridge University Press, Cambridge, England (2003)

. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases.
New Generation Computing 9 (1991) 365-385

. Verco, K.L., Wise, M.J.: YAP3 : Improved detection of similarities in computer program
and other texts. In Klee, K.J., ed.: Proceedings of the Twenty-Seventh SIGCSE Technical
Symposium on Computer Science Education, New York, ACM Press (1996) 130-134

. Gitchell, D., Tran, N.: Sim: A utility for detecting similarity in computer programs. In:
Proceedings of the Thirtieth SIGCSE Technical Symposium on Computer Science Education,
ACM Press (1999) 266270

. Prechelt, L., Malpohl, G., Philippsen, M.: JPlag: Finding plagiarisms among a set of programs.
Technical Report 2000-1, Fakultit fiir Informatik Universitit Karlsruhe, Germany. (2000)

. Arwin, C., Tahaghoghi, S.M.M.: Plagiarism detection across programming languages. In:
Proceedings of the Twenty-Ninth Australasian Computer Science Conference (ACSC 2006).
Volume 48 of CRPIT. Hobart, Australia, ACS (2006) 277-286

. Jones, E.L.: Metrics based plagiarism monitoring. In: Proceedings of the Sixth Annual CCSC
Northeastern Conference. (2001) 1-8

. Bergroth, L., Hakonen, H., Raita, T.: A survey of longest common subsequence algorithms.
In: SPIRE. (2000) 39-48

79

A Paraconsistent Semantics for
Generalized Logic Programs

Heinrich Herre!'? and Axel Hummel'-2

! Department of Computer Science, Faculty of Mathematics and Computer Science,

University of Leipzig, Johannisgasse 26, 04103 Leipzig, Germany,
heinrich.herre@imise.uni-leipzig.de, hummel@informatik.uni-leipzig.de
2 Research Group Ontologies in Medicine and Life Sciences, Institute of Medical
Informatics, Statistics and Epidemiology, University of Leipzig, Hartelstrasse 16-18,
04107 Leipzig, Germany

Abstract. We propose a paraconsistent declarative semantics of pos-
sibly inconsistent generalized logic programs which allows for arbitrary
formulas in the body and in the head of a rule (i.e. does not depend on
the presence of any specific connective, such as negation(-as-failure), nor
on any specific syntax of rules). For consistent generalized logic programs
this semantics coincides with the stable generated models introduced in
[HW97], and for normal logic programs it yields the stable models in the
sense of [GL88].

Keywords: Paraconsistency, generalized logic programs, multi-valued logic

1 Introduction

Declarative semantics provides a mathematical precise definition of the
meaning of a program in a way, which is independent of procedural con-
siderations, easy to manipulate, and reason about. Logic programs and
deductive databases should be as easy to write and comprehend as possi-
ble and as close to natural discourse as possible. Standard logic programs,
in particular definite programs, seems to not be sufficiently expressive for
a comprehensible representation of large knowledge bases and of infor-
mal descriptions. In recent years there has been an increasing interest
in extensions of the classical logic programming paradigm beyond the
class of normal logic programs. Generalized logic programs, introduced
and studied in [HW97], admit more complex formulas in the rules and
thus are more expressive and natural to use since they permit in many
cases easier translation from natural language expressions and from in-
formal specifications. The expressive power of generalized logic programs
also simplifies the problem of translation of non-monotonic formalisms

81

into logic programs, [EH97], [EH99]. In many of the traditional logic pro-
gramming semantics local inconsistency might spoil the whole program,
because a contradictory statement F' A —F implies every formula, i.e. the
whole program would be trivialized. This is also the case for the semantics
of stable generated models introduced and studied in [HW97].

In this paper we represent a declarative semantics of possibly incon-
sistent generalized logic programs. This paraconsistent semantics is an
extension of the semantics of stable generated models, which agree on
normal logic programs with the stable models of Gelfond and Lifschitz
[GL88]. We assume the following leading principles for a well-behaved
paraconsistent extension of logic programs.

1. The proposed syntax of rules in such programs resembles the syntax
of normal logic programs but it applies to a significantly broader class
of programs;

2. The proposed semantics of such programs constitutes an intuitively
natural extension of the stable semantics of normal logic programs.

3. For consistent generalized logic programs the semantics coincides with
the semantics of stable generated models.

The paper has the following structure. After introducing some basic
notation in section 2, we introduce in section 3 several kinds of minimal
models. From this we derive an adequate paraconsistent semantics for
arbitrary theories in predicate logic. In section 4 we discuss the notion of
a generalized program. In section 5, we define the concept of a paracon-
sistent stable generated model and show that the semantics satisfies the
before mentioned principles 1.- 3. Section 6 contains the conclusion and
a discussion of the related work.

2 Preliminaries

A signature o = (Rel, Const, Fun) consists of a set of relation symbols,
a set of constant symbols, and a set of function symbols. U, denotes the
set of all ground terms of o. For a tuple t1,...,t, we will also write ¢
when its length is of no relevance. The logical functors are —, A,V, —
,V,3. L(o) is the smallest set containing the atomic formulas of o, and
being closed with respect to the following conditions: if F, G € L(o), then
{-F, FNG, FVG, F— G, 3zF,VzF} C L(0).

L%(o) denotes the corresponding set of sentences (closed formulas).
For sublanguages of L(o) formed by means of a subset F of the logical
functors, we write L(o;F). Formulas from L(o;{-,A,V,—}) are called

82

quantifier-free and a quantifier-free theory is a set of quantifier-free for-
mulas. With respect to a signature o we define At(c) = L(o;0), the
set of all atomic formulas (also called atoms). For a set X of formu-
las let X = {~F | F € X}. Then the set of all literals is defined as
Lit(o) = At(c) U At(o). We introduce the following conventions. When
L C L(o) is some sublanguage, L" denotes the corresponding set of sen-
tences. If the signature o does not matter, we omit it and write, e.g., L
instead of L(0). w denotes the least infinite ordinal number, and Pow(X)
or 2% denotes the set of all subsets of X.

A logic £ = (L,C) over the language L can be understood as an
operator C' : Pow(L) — Pow(L) determining the consequences of a set
X C L of formulas. C'n denotes the closure operator of classical logic, i.e.
Cn(X) is the set of all classical logical consequences of X. Obviously, if
X is classically inconsistent then Cn(X) = L. A logic (L, C) is said to be
a paraconsistent approzimation of (L,Cn) if the following conditions are
satisfied.

1. C({F,—~F}) # L for every formula F' € L (Paraconsistency).
2. If Cn(X) # L then Cn(X) = C(X) (Conservativity).
3. C(X)=C(C(X)).

Definition 1 (Interpretation) Let o = (Rel, Const, Fun) be a signa-
ture. A Herbrand o-interpretation is a set of literals I C Lit%(o) satis-
fying the condition {a,—a} NI # O for every ground atom a € At%(c)
(interpretations with this property are also called total). Its universe is
equal to the set of all ground terms U,; its canonical interpretation of
ground terms is the identity mapping.

The class of all Herbrand o-interpretations is denoted by I(o). In the
sequel we shall also simply say ‘interpretation’ instead of ‘Herbrand in-
terpretation’. An interpretation I can be represented as a truth-value
function from At°(o) to {t, f, T} by the following stipulation: I(a) = T if
{a,7a} CI,I(a)=tifa € IN-a¢I,and I(a)= fif ~a € INa ¢ I. Con-
versely, every truth-value function I : At® — {t, f, T} can be understood
as an interpretation. In the sequel we use the notion of an interpretation
simultaneously as a set of literals and as a truth-value function.

A waluation over an interpretation [is a function v from the set of all
variables Var into the Herbrand universe U,, which can be naturally ex-
tended to arbitrary terms by v(f(t1,...,t,)) = f(v(t1),...,v(ty)). Anal-
ogously, a valuation v can be canonically extended to arbitrary formulas
F, where we write F'v instead of v(F). Furthermore the truth-value func-
tion I can be extended to a function I which is defined for every formula

83

F € L. In order to be in a position to give a formal definition of I we
fix a linear ordering f < T < t and a unary function neg defined by

neg(t) = f,neg(f) =t,neg(T) =T.

Definition 2 (Model Relation) Let I be an interpretation of signature
o. The extension I of I is a function from the set of all sentences F from
L(o) into the set {t, f, T}, and it is defined inductively by the following
conditions.

I(F) = I(F) for every F € At°(0)

F) =neg(I(F))

AG) = min{1(F).1(G)}

V G) = mazx{I(F),1(G)}
—G)=I1(-FVG

S0F (2)= sup{T(F(x/1)) : t € Ulo)}
vaF(a)) = inf{I(F(1)) : t € Ulo)}

Let be {t, T} the set of designated truth values. We say that an in-
terpretation I is a model of a set X of sentences, denoted by I = X,
if for every sentence F' € X holds: I(F) € {t, T}. The model relation
between an interpretation I € I(o) and a formula F' € L(o) is defined
by I = F iff I = Fv for every valuation v : Var — U,. Mod(X) = {I €
I : I = X} denotes the Herbrand model operator, and = denotes the
corresponding consequence relation, i.e. X = F iff Mod(X) C Mod(F).
For a set K C I(0) and F' € L(o) define K |= F iff for all I € K holds
I'= F. Theset Th(K) = {F | K |= F'} is called the theory of K.

N D Grhs Lo~
N\’\(\’\«\N\N\N

I(=
(
(
(
(
(

Proposition 1 [We97] Let C(X) be the operator defined by C(X) =
{F | X = F}. Then C satisfies paraconsistency, inclusion, idempotence
and compactness, but not conservativity.

An example which illustrates that the operator C' violates the conser-
vativity can be found in [We97, page 14].

Example 1 Consider the set X = {a,a — b}. Then the following inter-

pretations are models of X: I = {a,b}, Iy = {a,b,—b}, I3 = {a,—a,b},
I, = {a,—a, b}, Iy = {a,—a,b,—b}. Because of Iy we obtain b ¢ C(X

3 Minimal Models

Our aim is to define a semantics for logic programs which defines for
classical consistent programs the (two-valued) stable generated models,

84

but in case of inconsistent programs yields suitable three-valued models
assuring paraconsistency. The class of models Mod(X) is not suitable
because conservativity does not hold, i.e. there are consistent theories
T such that C(T') # Cn(T). An adequate solution of this problem uses
different types of minimal models, one of them, minimizing inconsistency,
was introduced in [Pr91] and studied in [We97|. Let < be a transitive
and reflexive relation on the set . An element M € K is said to be <-
minimal if and only if there is no N € K such that N < M and N # M.
Let Min< (K) be denote the set of <-minimal elements of K. In this section
we analyze several forms of minimal models of a paraconsistent theory.
Let I be an interpretation, then Pos(I) = INAt° and Neg(I) = IN{-a:
a € At°}. Let be inc(I) = {a : {a,—a} C I}.

Definition 3 Let I, J be interpretations. Then

1. I < J if and only if Pos(I) C Pos(J) and Neg(J) C Neg(I);
2. I T J if and only if inc(I) C inc(J).

Using the relations <, C, C we introduce the following forms of minimal-
ity.
Definition 4 Let X be a set of formulas and I be an interpretation.

1. Iis a t-minimal model of X iff I € Min<(Mod(X)).
2. Iis an inc-minimal model of X iff I € Ming(Mod(X)).
3. Iis an t-minimal model of X iff I € Minc (Mod(X)).

We introduce following model operators: Mod;pem (X) = {I | I is an
inc-minimal model of X}, Mod;,(X) = {I | I is an i-minimal model of
X}, and Modyy,(X) = {I | I is a t-minimal model of X}. Using these
different notions of minimality we get following consequence operations,

for x € {incm,tm,im}: X =, F iff Mod.(X) C Mod({F'}).

Proposition 2 FEvery inc-minimal model of a set X of formulas is i-
minimal.

Proof: Let I be an inc-minimal model of X and assume that I is not
i-minimal. Then there is a model J C I, J = X, and J # I. This implies
the existence of a literal [€ I — J, assume that [= a is a ground atom.
Since J is a total interpretation this yields —a € J, but then {a,-a} C I,
which contradicts the inc-minimality of 1. [J

There are t-minimal models not being inc-minimal and inc-minimal mod-
els not being t-minimal.

85

Example 2 For clarification, we discuss the following examples:

1. Consider the program P; = {—=b — a}. Obviously, I = {a,—a,—b} is a
t-minimal model of P, but I is not inc-minimal because I = {a,—b} is
a model of P satisfying inc(J) = 0. There are, trivially inc-minimal
models not being t-minimal (note that every two-valued model is inc-
minimal).

2. Let Py ={b — —a;— a}. Then I = {—a,a,b} is an i-minimal model
not being inc-minimal, since {a,—b} is a model of P.

3. Every two-valued model is i-minimal (among the total models), but
not, in general t-minimal. There are also t-minimal models not being
i-minimal: the interpretation {—a,a,—b} is a t-minimal model of P,
but it is not i-minimal.

We recall the following result from [We97].

Proposition 3 1. Let T be a quantifier-free theory. Then the theory T
has an inc-minimal model.

2. The consequence operation Cipeyn(X) = {F | X Finem F} is a para-
consistent, non-monotonic approzimation of Cn.

The main result of this section is the following.

Proposition 4 Let T be a quantifier-free theory and I an inc-minimal
model of T. Then there exists a model J of T such that

1. inc(I) = inc(J)
2. J=1
3. for all Jy =< J such that Jy # J either inc(Jy) # inc(I) or Jo = T.

Proof: We may assume that T is a set of clauses, these are formulas of the
formaV...Va,V=bV...V-b,, where a;, b; are atomic formulas. Let be
A(I)={J|J =2 Tand J |= T and inc(I) = inc(J)}. We consider decreas-
ing sequences within the system (A(I),=<). Let be Jo = ... = J, = ... a
decreasing sequence, J,, € A(I),n < w. Obviously, the sequence {J,, | n <
w} has a lower bound J*, defined by Pos(J*) = ({Pos(J,)|n < w}, and
Neg(J*) = U{Neg(Jn)|In < w}. We show that J* € A(I). By Zorn’s
lemma this implies the result of the theorem. Since inc(J*) = inc(I), it
remains to show that J* = T'. Assume, this is not the case; then there is a
formula F(Z) = a1(Z)V...Van,(T)V-b1(Z)V...V-b,(Z) from T such that
J* W= VT F(T), which implies J*(VZF(Z)) € {T,t}, hence J*(VZF(T)) = f
which yields J*(=VZF (%)) = J*(3z—F(T)) = t. Hence, there are variable-
free terms ¢ such that {—ai(?),...,—am(t),b1(¢),...,b(t)} C J*. This

86

condition implies {b1 (), ..., b,(t)} C J, for every n < w. But, there must
be also a number k < w such that {—a;(?),...,7an(t)} C Ji, and this
implies Ji, (A<, ~@i(t) A \;<,, bj(t)) =t (the value T is not possible, oth-
erwise this would imply inc(Jx) # inc(J*)). This gives a contradiction. [J

Proposition 4 shows that for every model I of a quantifier-free theory T°
the set Min< ({J | inc(J) =inc(l), J € Mod(T')}) is non-empty.

Corollary 5 Let T be a universal theory, 1 a model of T and let J be
a set of literals such that J =< I and inc(J) = inc(I). Then the set
{K|J =K =1and K =T and inc(K) = inc(I)} contains a =<-
minimal element.

Proof: Follows immediately from proposition 4.

4 Sequents and Logic Programs

In the sequel we use Gentzen-sequents to represent rule knowledge as
proposed in [HW97]. A sequent, then, is not a schematic but a concrete
expression representing some piece of knowledge.?

Definition 5 (Sequent) A sequent s is an expression of the form
.. Fy = Gy, Gy

where F;,Gj € L(o) fori=1,...,m and j = 1,...,n. The body of s,
denoted by B(s), is given by {F1,..., Fy}, and the head of s, denoted by
H(s), is given by {G1,...,G,}. Seq(o) denotes the class of all sequents s
such that H(s), B(s) C L(o), and for a given set S C Seq(o), [S] denotes
the set of all ground instances of sequences from S.

The satisfaction set of a formula F' € L(o) with respect to an interpreta-
tion I € I(0) is defined as Sat;(F) = {v ¢ U;"* : I = Fv}

Definition 6 (Model of a Sequent) Let I € I. Then,

IEFR,....Fy = Gi,....Gy iff () Sat(F)C | Sats(Gy)

i<m i<n

3 The use of sequents is mainly technico-methodological, the sequent-arrow = should
be distinguished from the implication connective —.

87

Obviously for every sequent B = H and I € I we have [= B =
H iff I = AB — \/ H. Sometimes, we represent the latter formula by
the expression \/ H <+ A\ B. We define the following classes of sequents
corresponding normal, normal disjunctive and generalized logic programs,
respectively.

1. NLP(o) = {s € Seq(0) : H(s) € At(c), B(s) C Lit(0)}.
2. NDLP(0) = {s € Seq(o) : H(s) C At(o), B(s) C Lit(c), H(s) # 0}.
3. GLP(0) = {s € Seq(0) : H(s), B(s) C L(c;—,A,V,—)}.

For P C GLP(0), the model operators Mod,(P), * € {inc,1i,t} are defined
as in section 3. The associated entailment relations are defined by P =, F'
iff Mod,(P) C Mod(F'), where x = inc,i,t, and F' € L(c). The ground
instantiation of a generalized logic program P is denoted by [P], and
defined by [P] = {6(r) | r € P,0 is a ground substitution}. Obviously, if
P C GLP, then Mod(P) = Mod([P]).

A preferential semantics for sequents is given by a preferred model
operator @ : 259 — 21 satisfying the condition #(P) € Mod(P) and
selecting suitable preferred models. Our intuitive understanding of rules
suggests a meaning which interprets a sequent as a rule for generating in-
formation. We may consider a model I of a set P of sequents as intended
if I can be generated bottom-up starting from a suitable least interpre-
tation by an iterated application of the sequents r € [P]. A model of P
which can be generated in this way is said to be grounded in P. The fol-
lowing examples show that even the following strong form of minimality
is not sufficient to satisfy this condition. A model I of P is said to be
inc-t-minimal if I is inc-minimal and there is no model J of P satisfying
the conditions inc(J) = inc(l), J < I, and J # I.

Example 3 1. Let P = {-p(a) = q(a)}. Every intended model of P
should contain q(a). But M = {p(a),—~q(a)} is also an inc-t-minimal
model of P.

2. This observation is also valid if P has no two-valued model.

Let P = {=r(c); = —p(a); = —p(b); = p(a),p(b); —p(z) = q(x)}.
Every intended model of P should contain q(c). Assume I = P is
inc-minimal, but q(c) & I. Then, —q(c) € I, which implies p(c) € I
(note that I is total). But p(c) cannot be generated by applying the
sequents from [P] because p(c) does not appear in the head of any rule
se[P]. 4

4 Application of a rule r means, roughly, to make the body B(r) true and then to
detach the head H(r).

88

But My = {=p(a),—p(b), p(a), ¢(a), q(b), =q(c), p(c),r(c), —r(a), ~r(b) }
s an inc-t-minimal model of P.

5 Paraconsistent Stable Generated Models

Definition 7 (Interpretation Interval) Let 11,1 € I and inc(l;) =
inc(Iy). Then, [I1,Io) ={I € I:1; < I <1y and inc(I) = inc(ly)}. For
a program P C GLP let be Py, r,) = {r | v € [P],[I1, 2] = B(r)}.

The following definition of a paraconsistent stable generated model com-
bines the construction of a generated model in [HW97] with the notion
of inc-minimality.

Definition 8 (Paraconsistent Stable Generated Model) Let P C
GLP(0). An inc-minimal model M of P is called paraconsistent stable
generated, symbolically M € Modys(P), if there is a chain of Herbrand
interpretations Iy < ... X I such that M = I, and

1. M is inc-minimal

2. In=1inc(M)U{-a | a € At’(0)}.

8. For successor ordinals o with 0 < o < k, I, is a <-minimal ex-
tension of Io_1 satisfying the heads of all sequents whose bodies hold
in Io—1,M], die. In € Min<{l € I(o) : M = I = Io_1,inc(M) =
inc(I),I =\ H(s), for all s € Py, _, a '}

4. For limit ordinals A < Kk, Iy =supy,)la-

We also say that M is generated by the P-stable chain Iy < ... <X I.

Intuitive, we define that an inc-minimal model M of a generalized
logic program P is a paraconsistent stable generated model of P if M is
created bottom-up by an iterative application of the rules of P starting
with the state of no information (that means every atom is negated) and
the inconsistency of M. In every step of the construction the model is
extended in that way that the inconsistency is preserved and the head of
every applicable sequent is satisfied.

Example 4 Let P be the second logic program of Example 3. Because of
the rules {= —p(a); = —p(b); = p(a),p(b)} it is easy to see that P has
no two-valued model. But there are two paraconsistent stable generated
models:

My = {=r(a),~r(b),r(c), 7p(a), 7p(b), p(a), ~p(c), q(a), q(b), q(c)} and
Mz = {=r(a), —r(b), r(c), =p(a), =p(b), p(b), =p(c), q(a), q(b), q(c)}.

89

The model My is constructed by the chain Ig = 112 = M.

In detail we obtain:

1§ = {p(a)}U{ﬂ“(), = (b), =r(c), ~p(a), ~p(b), =p(c), —q(a), ~q(b), —~q(c)}-
So Pyz) = {= r(c); = —wla); = -p(b); = pla),p(b); —pla) =
q(a); =p(b) = q(b); =p(c) = q(c)}. Therefore I3 = My with

12 = {=r(a), ~r(b), 7(c), ~p(a), ~p(8), p(a), ~p(c). a(a), a(b), a(c)}.

For M3 we obtain:

1 = ()} r(@),). 77(0), ~pla). ~p(b), -p(e). ~a(a), ~a(b),~q(0))
So Pz = {= r(c); = —wla); = —p(b); = pla),p(b); —pla) =
q(); —p(b) = q(b); =p(c) = q(c)} and therefore I} = M3 with

= {-r(a), =r(b),r(c), ~p(a), =p(b), p(b), ~p(c), ¢(a), ¢(b), q(c)}.
Hence it follows: P f=ps q(c).

Remark: If we assume in definition 8 that the set inc(M) is empty then
we get the notion of a stable generated model as introduced and studied
in [HW97].

Notice that the notion of stable generated models applies to programs
admitting negation(-as-failure) in the head of a rule and nested negations,
such as in p(x) A =(q(z) A =r(z)) = s(x) which would be the result of
folding p(z) A —ab(z) = s(z) and q(x) A —r(z) = ab(z).

It turns out that the length of the generated sequence of a stable generated
model can be restricted by w.

Proposition 6 Let P C GLP, and let M be a paraconsistent stable gen-
erated model of P generated by the sequence My =< ... = M. Then there
is an ordinal B < w such that Mg = M,.

Proof: We show that every sequence stabilizes at an ordinal § < w.
Obviously, if M, = Myy1 then M, = M, for all « < v < k. It is
sufficient to prove M, = M,+1. Analogously to [HW97], we proceed in
two steps:

(1) First we show that if s € [P] and [M,,, M] = B(s) then there
is a number n < w such that [M,, M] = B(s). Without loss of gen-
erality, we may assume that B(s) is a set of clauses (disjunction of
ground literals), i.e. B(s) = {C1,...,Ci}, C; = al V... Val, V-=bjV

v bl 1€ {1,2,...,k}. A clause C; is said to be positive if the set
P(i) := M Nn{at,..., aini} is nonempty, otherwise it is called negative.
Let {C1,...,Cs} be the set of positive and {Cs1, ..., C} the set of nega-
tive Clauses Because the set P := |J; ;< P(i) is finite, there is a number
Jj < w such that P C M;. Then, trivially, [M;, M| = Ci,...,Cs. It re-
mains to show: if M; =< J =< M then J | Cs41,...,Cf. We proof this

90

fact indirectly. Assume J [~ Csy1, ..., Ck. Then, there exists a number j,
s +1 < j <k, such that J [C; with the following form Cj = aj V...V
am; V —|b] V...V =bf,. Because of J(Cj) = f, we obtain neg(J(C;)) =t

and therefore J = Cj. So J = —u{ A —u{nj A bj A b% since
De Morgan’s laws are vahd in our paracon31stent semantlcs We may as-
sume that the elements in the set {a],...,ah,,0],...,b%,} are pairwise

distinct. Now, we define M* = (M, \ {ﬁbj b D UYL
Then Pos(M,,) € Pos(MY) and Neg(M};) C Neg(w). So M, < M.
Furthermore it holds M < M and therefore we obtain M € [M,,, M]
Because of M0 {a),... ah,,=bl,...,=bh} =0 and {b],...,b),} C M
it follows M} = C;. This is a contradlctlon to [M,,, M| = C

(2) Now, we show that M, = M,41. It is sufficient to prove: if s €
P, vs then My, = \/ H(s). By (1), the condition s € Py, ag implies
that s € Py, a for a certain number n < w, and hence for every j > n :
s € Py, - Hence, M; |= \/ H(s) for every j, n < j < w. Again, we may
assume that \/ H(s) is given as a set of clauses {C1,...,C,}. We have to
check that M, = C1,...,C,. Assume, there is a j, 1 < j < n, such that
M, = Cj, then M, |= —Cj, Cj = al V... Vah, V—=bl V...V b, and
M, = ﬁa{ A A —wzi'nj A b{ A bJ It is easy to show that there exists
a number m < w such that {b]l, .. bilj} C M,,, and from this follows
My, = Cj, which is a contradiction. [J

Corollary 7 If M is a paraconsistent stable generated model of P C
GLP, then there is either a finite P-stable chain, or a P-stable chain of
length w, generating M.

The following example shows that stable generated entailment is not
cumulative, i.e. adding derivable formulas to programs may change their
consequence set.

Example 5 (Observation 18, [HIW99]) Let P be the following logic
program: P = {=-r(a) = q(a);—~q(a) = r(a);-p(a) = p(a);-r(a) =
p(a); }. Then Mod,s(P) = {{p(a),q(a)}}. Therefore P =ps p(a),q(a).
But Modys(P U {p(a)}) = {{p(a), ()}, {p(a),7(a)}} and hence PU
p(a) ¥ q(a).

The relation to consistent generalized programs is captured by the
following proposition.

Proposition 8 Let P be a generalized logic program, and assume P is
consistent, i.e. has a two-valued classical interpretation. Then a model I
of P is paraconsistent stable generated if and only if it is stable generated.

91

Proof: By proposition 3 every inc-minimal model is two-valued. [J

Corollary 9 Let P be a normal logic program. Then a model I of P is
paraconsistent stable generated if and only if it is stable (in the sense of

[GLSS)).

Proof: P is always a two-valued model, since the negation — does not
appear in the heads of the rules. Now we may apply the preceding propo-
sition and the result in [HW97] (stating that the stable generated models
coincide with the stable models for normal logic programs). O

6 Conclusion and Related Work

A framework of paraconsistent logic programs was firstly developed by
Blair and Subrahmanian in [BS89]; they employ Belnap’s four-valued logic
[BeT7] as a theoretical basis, but this framework does not treat default
negation in a program. Kifer and Lozinskii in [KL92] extend Blair’s frame-
work to theories possibly containing default negation. Sakama and Inoue
are studying programs in [SI95] whose rules admit disjunction in the
head and default negation in the bodies of the rules. Our approach gives
a declarative semantics to logic programs whose rules admit arbitrary
quantifier-free formulas in the heads and bodies containing negation that
can be interpreted as default negation. This semantics coincides on nor-
mal logic programs with the stable models in [GL88]. Note, that stable
models T satisfies the condition IN{a, —a} # 0 for every ground atom, and
that any adequate generalization of this notion to paraconsistent models
should preserve this property. This is the reason, why we assume that the
considered interpretations to be total. Our semantics uses the concept of
minimal inconsistent interpretations as introduced by Priest in [Pr91], the
results in [We97] and the notion of a stable generated model introduced
and studied in [HW97].

By introducing a general definition of paraconsistent stable generated
models, we have continued the foundation of a stable model theory for
possibly inconsistent logic programs. It seems to be possible to analyze
further extensions of normal logic programs within a similar framework,
such as admitting quantifiers in the bodies and the heads of rules. As
a consequence of the rapid growth of the Semantic Web, powerful on-
tology languages like Extended RDF [AADWO8] were developed which
use the logic programming paradigm. Therefore the application of the
stable model theory to that family of languages is a beneficial challenge

92

for the near future. In [Hu09] a paraconsistent stable generated seman-
tics for a four-valued logic is proposed which depends on the minimally
inconsistent models too. Another interesting step is to develop a para-
consistent declarative semantics for generalized logic programs with two
kinds of negation satisfying the coherency condition, i.e. ~ F implies = F,
where ~ represents strong negation, and — means weak negation which
is assumed to be total.

Since the stable models in the sense of [GL88] correspond to the stable
models of [FLLO7] for normal logic programs, the stable models in the
sense of [FLLO7] agree also with the two-valued stable generated models
if normal logic programs are considered. Because of the fact that the
semantics of [FLLO7] is also defined for generalized logic programs, a
detailed characterization of the relationship between this semantics and
the stable generated models belongs to our future plans.

Acknowledgment
Thanks due to the anonymous referees for their criticism and useful com-
ments.

References

[AADWO8] Analyti, A, Antoniou, G, Damsio, C. V. and Wagner, G.: Extended RDF
as a Semantic Foundation of Rule Markup Languages, Journal of Artificial
Intelligence Research, 32: 37-94, 2008

[Be77] Belnap, D.N.: A useful four-valued logic. In G. Epstein and J. M. Dunn, edi-
tors, Modern Uses of Many-valued Logic, 8-37, Reidel, 1977

[BS89] Blair, H.A. and Subrahamanian, V.S.: Paraconsistent logic programming, The-
oretical Computer Science. 68: 135-154, 1989

[EH97] Engelfriet, J. and Herre, H.: Generated Preferred Models and Extensions of
Nonmonotonic Systems, Logic Programming, 85-99, Proc. of the 1997 Inter-
national Symposium, ed. J. Maluszynski, The MIT Press, 1997

[EH99] Engelfriet, J. and Herre, H.: Stable Generated Models, Partial Temporal Logic
and Disjunctive Defaults, Journal of Logic and Algebraic Programming, 41 (1):
1-25, 1999

[FLLO7] Ferraris, P., Lee, J. and Lifschitz, V.: A New Perspective on Stable Models,
372-379, Proceedings of the 20th International Joint Conference on Artificial
Intelligence, Hyderabad, India, January 6-12, 2007, 2007

[GL88] Gelfond, M. and Lifschitz, V.: The stable model semantics for logic program-
ming. In R. A. Kowalski and K. A. Bowen, editors, Proc. of ICLP, 1070-1080.
MIT Press, 1988

[Hu09] Hummel, A.: Untersuchungen von Ontologiesprachen mit modelltheoretischer
Semantik, Diploma Thesis, University of Leipzig, 2009

[HW97] Herre, H. and Wagner, G.: Stable Models Are Generated by a Stable Chain,
Journal of Logic Programming, 30 (2): 166-177, 1997

93

[HIJW99] Herre, H., Jaspars, J. and Wagner, G.: Partial logics with two kinds of nega-
tion as a foundation for knowledge-based reasoning, in D. Gabbay and H.
Wansing (Eds.), What is negation ?, pages 121-159. Kluwer Academic Pub-
lishers, 1999

[KL92] Kifer, M. and Lozinskii, E.: A logic for reasoning with inconsistency. Journal
of Automated Reasoning, 8: 179-215, 1992

[Pr91] Priest, G: Minimally inconsistent LP. Studia Logica, 50 (2): 321-331, 1991

[SI95] Sakama, C. and Inoue, K.: Paraconsistent Stable Semantics for extended dis-
junctive programs; Journal of Logic and Computation 5: 265-285, 1995

[We97] Weber, S.: Investigations in Belnap’s Logic of Inconsistent and Unknown In-
formation, Dissertation, University of Leipzig, 1998

94

Stationary Generated Models
of Generalized Logic Programs

Heinrich Herre!'? and Axel Hummel':2

! Department of Computer Science, Faculty of Mathematics and Computer Science,
University of Leipzig, Johannisgasse 26, 04103 Leipzig, Germany,
heinrich.herre@imise.uni-leipzig.de, hummel@informatik.uni-leipzig.de
2 Institute of Medical Informatics, Statistics and Epidemiology, University of Leipzig,
Hartelstrasse 16-18, 04107 Leipzig, Germany

Abstract. The interest in extensions of the logic programming paradigm
beyond the class of normal logic programs is motivated by the need of an
adequate representation and processing of knowledge. One of the most
difficult problems in this area is to find an adequate declarative semantics
for logic programs. In the present paper a general preference criterion is
proposed that selects the ‘intended’ partial models of generalized logic
programs which is a conservative extension of the stationary semantics
for normal logic programs of [Prz91]. The presented preference criterion
defines a partial model of a generalized logic program as intended if it is
generated by a stationary chain. It turns out that the stationary gener-
ated models coincide with the stationary models on the class of normal
logic programs. The general wellfounded semantics of such a program
is defined as the set-theoretical intersection of its stationary generated
models. For normal logic programs the general wellfounded semantics
equals the wellfounded semantics.

Keywords: Extensions of logic programs, semantics, knowledge represen-
tation

1 Introduction

Declarative semantics provides a mathematical precise definition of the
meaning of a program in a manner, which is independent of procedu-
ral considerations, context-free, and easy to manipulate, exchange and
reason about. Finding a suitable declarative or intended semantics is an
important and difficult problem in logic programming and deductive data
bases. Logic programs and deductive data bases must be as easy to write
and comprehend as possible and as close to natural discourse as possible.
Research in the area of logic programming and non-monotonic reason-
ing made a significant contribution towards the better understanding of

95

relations existing between various formalizations of non-monotonic rea-
soning and the discovery of deeper underlying principles of non-monotonic
reasoning and logic programming. Standard logic programs are not suf-
ficiently expressive for the representation of large classes of knowledge
bases. In particular, the inability of logic programs to deal with arbitrary
open formulas is an obstacle to use logic programming as a declarative
specification language for software engineering and knowledge representa-
tion. Formalisms admitting more complex formulas are more expressive
and natural to use since they permit in many cases easier translation
from natural language expressions and from informal specifications. The
additional expressive power of generalized logic programs significantly
simplifies the problem of translation of non-monotonic formalisms into
logic programs, and, consequently facilitates using logic programming as
an inference engine for non-monotonic reasoning.

A set of facts can be viewed as a database whose semantics is de-
termined by its minimal models. In the case of logic programs, minimal
models are not adequate because they are not able to capture the di-
rectedness of rules, i.e. they do not satisfy the groundedness requirement.
Therefore, stable models in the form of certain fixpoints have been pro-
posed by Gelfond and Lifschitz [GL88] as the intended models of normal
logic programs. We generalize this notion by presenting a definition which
is neither fixpoint-based nor dependent on any specific rule syntax. We
call our preferred models stationary generated because they are generated
by a stationary chain, i.e. a stratified sequence of rule applications where
all applied rules remain (in a certain sense) applicable throughout the
model computation. The notion of a stationary model of a normal logic
program was introduced in [Prz91] and further elaborated in [Prz94].
Stationary generated models - as expounded in the current paper - are
defined in a different way. This notion can be easily extended to gener-
alized logic programs which include several types of programs as special
cases, among them disjunctive programs [Prz91]| and super-logic programs
[Prz96]. Lifschitz, Tang and Turner propose in [LTT99] a semantics for
logic programs allowing for nested expressions in the heads and the body
of the rules. The syntax is similar to our generalized logic programs, but
the semantics differs.

In [AHPOO] the notion of stationary generated AP-models was intro-
duced. This notion differs from the stationary generated models as defined
in the present paper. Stationary generated AP-models and stationary
generated models are based on different truth-relations for three-valued

96

partial models. Hence, the current paper closes a gap that remained open
in [AHPOO].

The paper has the following structure. After introducing some basic
notation in section 2, we recall some facts about Herbrand model theory
and sequents in section 3. In section 4, we define the general concept of a
stationary generated model, and then, in section 5 we investigate the re-
lationship of this general concept to the original fixpoint-based definitions
for normal programs as in [Prz91]. It turns out that for normal programs
the stationary generated models coincide with the stationary models in
the sense of [Prz91]. This fact motivates the introduction of the notion of
a general well-founded semantics for a generalized logic program which
is defined as the set-theoretical intersection of its stationary generated
models. We believe that the notion of general well-founded semantic is
the most natural generalization of well-founded semantics to generalized
logic programs.

2 Preliminaries

A signature o = (Rel, Const, Fun) consists of a set Rel of relation symbols,
a set Const of constant symbols, and a set Fun of function symbols. U,
denotes the set of all ground terms of o. For a tuple t1,...,t, we will
also write ¢ when its length is of no relevance. The logical functors are
not,A\,V,—,V,3. L(o) is the smallest set containing the atomic formulas
of o, and being closed with respect to the following conditions: if F,G €
L(o), then {notF, FANG, FVG, F — G, 3zF,VzF} C L(o).

L%(0) denotes the corresponding set of sentences (closed formulas).
For sublanguages of L(o) formed by means of a subset F of the logical
functors, we write L(o; F). With respect to a signature o we define the
following sublanguages: At(c) = L(o;0), the set of all atomic formulas
(also called atoms). The set GAt(o) of all ground atoms over ¢ is defined
as GAt(o) = At(o) N LO%o). Lit(o) = L(o; not), the set of all literals;
for a set X of formulas let X = {notF | F € X}. Then, the set of all
ground literals over o is defined as GAt(c) U GAt(o). {t,f,u} exhibit
particular ground atoms with the meaning true (value 1), false (value 0),
undetermined (value 3).

We introduce the following conventions. When L C L(o) is some sub-
language, LY denotes the corresponding set of sentences. If the signature o
does not matter, we omit it and write, e.g., L instead of L(o). Let L*(0) =
L(o; not,A,V,¥,3),and PL(c) = L*(0)U{F — G|F,G € L*(0)}. PL(0)
is called the set of program formulas of signature o. If Y is a partially

97

ordered set, then Min(Y') denotes the set of all minimal elements of Y,
ie. Min(Y) ={a € Y| —-3d' € Y : d < a}. A Herbrand interpretation
of the language L(o) is one for which the universe equals U,, and the
function symbols are interpreted canonically.

Definition 1 (Partial Herbrand Interpretation) Let be 0 =
(Rel,Const,Fun) a signature. A partial Herbrand interpretation I of o is
defined as follows I = (U(0), (f1) terun, (r')rerer). Its universe U(o) is
equal to the set of all ground terms U,; its canonical interpretation of
ground terms is the identity mapping. The relation symbols r € Rel(o)
are interpreted by functions r! defined by r! : U — {0, %, 1} for every
relation symbol r € Rel, where a(r) denotes the arity of r. Obviously,
every Herbrand interpretation is determined by a function iy : At(c) —
{0,3,1}.

A partial Herbrand o-interpretation I can be represented as a set
of ground literals I C GAt(o) U GAt(o) such that there is no ground
atom a € GAt satisfying {a, nota} C I. For a partial Herbrand o-
interpretation I let Pos(I) = I N GAt and Neg(I) = I N GAt. A partial
Herbrand interpretation I is two-valued (or total) if for every a € GAt
holds {a, nota} N1 # 0. I is a partial interpretation over {t,f,u} if
{u, notu} NI =70, and {t, notf} C I.

The class of all partial Herbrand o-interpretations is denoted by I ;7 (o).
In the sequel we shall also simply say ‘interpretation’ instead of ‘partial
Herbrand interpretation’. A waluation over an interpretation I is a func-
tion v from the set of all variables Var into the Herbrand universe U,,
which can be naturally extended to arbitrary terms by v(f(t1,...,t,)) =
f(v(t1),...,v(ty)). Analogously, a valuation v can be canonically ex-
tended to arbitrary formulas F', where we write Fv instead of v(F'). Note
that for a constant ¢, being a 0-ary function, we have v(¢) = ¢. The model
relation = C I'y(0) x L°(0) between an interpretation and a sentence is
defined inductively as follows.

Definition 2 (Model Relation) Let I € Iy(o). Then the mapping iy

can be extended to a function 1 from the set of all sentences from PL(o)
into {0, 3,1}.

a) =ir(a) for atomic sentences a.

notF)=1— 1 (F).

FAG)=min{I (F), I (G)}
i

FVG) =maz{I (F),T (G)}

e R R Rl

BN

98

5. 1(F—G)=14f1(F)<I(G).
6. Z (F—G)=0if }N(F) 271 (G).
7. 1 (32F(x)) = sup{I (F(z/t)) | t € U(0)}
8. I (VaxF(z)) =1inf{I (F(x/t))|teU(o)}

We write I = F <= T (F) = 1 for sentences F and for arbitrary
formulas F:

I EF <= Ik Fv forallv :Var — Us. I is called a model of
F, and for sets X of formulas I = X if and only if for all F € X it
holds I = F. To simplify the notation we don’t distinguish between I

and } in the following. Two formulas F,G € L(o) are said to be logical
equivalent iff for every instantiation v and every partial interpretation I
the condition I(Fv) = I(Gv) is satisfied.

Modpy(X) ={I € I'y: I = X} denotes the Herbrand model operator,
and =g denotes the corresponding consequence relation, i.e. X =g F iff
Mod g (X) € Modg(F). In the following we omit the subscript H.

Let L™V (Lit(o)) the smallest subset of L(o) containing the set Lit(o)
and closed with respect to the connectives A, V.

Proposition 1 [HJW95] For every formula F' € Li(o) there is a formula
G € L™ (Lit(0)) such that F and G are logical equivalent.

Definition 3 (Partial Orderings between Interpretations) Let be
1,1y € I two interpretations. We define the following orderings between
I and I.

1. Let I < Iy if and only if Pos(I) C Pos(I1) and Neg(I;) C Neg(I). <
1s called the truth-ordering between interpretations, and Iy is said to
be a truth-extension (briefly t-extension) of I.

2. Iy is informationally greater or equal to I iff I C Iy. The partial
ordering C between Herbrand interpretations is called information-
ordering. I is said to be an information-extension (briefly i-extension)
of I.

3. Let I, 11 be two-valued Herbrand interpretations. Define I < I if and
only if Pos(I) C Pos(Iy).

Obviously, if I, I are two-valued models then I < Iy iff Pos(I) C Pos(1y).

Proposition 2 The system C = (I, <) of consistent partial interpreta-
tions is a complete lattice.

99

Proof: Let 2 C Iy be an arbitrary non-empty subset. Define I =
U{Pos(K) | K€ 2}UN{Neg(K) | K € 2}, then I is the least upper
bound of (2, i.e. I = supf?2. Analogously, the infimum of (2, denoted by
inf(2 is defined by inff2 = N{Pos(K) | K € 2} U|J{Neg(K) | K €
©7}. 0O

3 Sequents and Programs

Here, we propose to use sequents for the purpose of representing rule
knowledge. A sequent, then, is a concrete expression representing some
piece of knowledge.

Definition 4 (Sequent) A sequent s = Fy,..., F, = Gi,...,G, is
an expression where F;, Gj € L(o,{A,V, not}) fori=1,...,m and j =
1,...,n. The body of s, denoted by B(s), is given by {F1,...,Fy,}, and
the head of s, denoted by H(s), is given by {G1,...,Gp}. Seq(o) denotes
the class of all sequents s such that H(s), B(s) C L(o), and for a given
set S C Seq(o), [S] denotes the set of all ground instances of sequences
from S.

Definition 5 (Model of a Sequent) Let I € I'y. Then we define, I =
By, ... Fy = Gi,...,Gy iff for all ground substitutions the following
condition is satisfied: I = \,.,, Fiv — \/ .., Gjv. I is said to be a model
OfFl,...,Fm = Gl,...,Gn._

Jj<n

We define the following classes of sequents corresponding to non-
negative, positive disjunctive, normal, normal disjunctive, and generalized
logic programs, respectively.

PLP(0) = {s € Seq(0) : H(s) € At(0), B(s) C At(o) U {u,t,f}.
PDLP(0) = {s € Seq(o) : B(s s) C At(o), H(s) # 0}.

NLP(o) = {s € Seq(o) : H(s) (), B(s) C Lit(o)}.

NDLP(o) = {s € Seq(o) : H(s) C At(c), B(s) C Lit(c), H(s) # 0}.
GLP(0) = {s € Seq(o) : H(s), B(s) C L(o; not,A,V)}.

GU WD

Subsets of PLP are called non-negative logic programs, programs asso-
ciated to PDLP are called positive disjunctive logic programs. NLP relates
to normal logic programs, NDLP to normal disjunctive logic programs,
and GLP to generalized logic programs.

Lemma 3 1. Let Jy = J1 = ...J, = ... be an infinite t-decreasing
sequence of partial interpretations and J = inf{J, | n < w}. Let

100

F e L(AV, not)U{G — H | F,G € L(\,V, not)}. Then there exists
a number k such that for all s > k the condition J(F) = Js(F) is
satisfied.

2. Let Jg =< J1 = ...Jy, = ... be an infinite t-increasing sequence of par-
tial interpretations and J = sup{J, | n < w}. Let F' € L(A,V, not) U
{G — H | F,G € L(A,V, not)}. Then there exists a number k such
that for all s > k the condition J(F) = Js(F) is satisfied.

Let X be an interpretation and P C GLP. X is said to be upward-
consistent with respect to P if there is a model I = P such that X < I.

Proposition 4 Let P C GLP and K an interpretation being upward-
consistent with respect to P. Let I be a model of P such that K < 1.
Then there exists a model J |= P satisfying the following conditions:

1. K=<J=X1I;
2. for every Jy € Iy the conditions K < J; =< J and Jy = P imply
J=J.

Corollary 5 Let P C GLP. Every partial model of P is an t-extension
of a t-minimal partial model and can be t-extended to a t-mazximal partial

model of P.

Proposition 6 Fvery non-negative logic program has a t-least partial
model.

4 Stationary Generated Models

Definition 6 (Truth Interval of Interpretations) Let I;,Iy € Ip.
Then, [I1,I) = {I € Iy : I < I X Is}. Let P C GLP and let F be
a sentence. We introduce the following notions.

= [LJIF) = inf{K(F)|K € [I,J]}
— Pry=A{r|relP]and[I,J)(B(r)) = 3}
— Ppg = {r|re|[P] and[I,J)(B(r)) =1}

The following notion of a stationary generated or stable generated par-
tial model is a refinement of the notion of a stable generated (two-valued)
model which was introduced in [HW97].

Definition 7 (Stationary Generated Model) Let be P C GLP. A
model I of P is called stationary generated or partial stable generated if
there is a sequence {I, : « < K} of interpretations satisfying the following
conditions:

101

Io = GAt (is the t-least interpretation)

a < B <k implies I, = Ig

Supa<nIa =1 o
Foralla < k: Ioy1 € Mingn{J | Io 2 J 2 I and (a) for allr € Py, 1
it holds Io1(H(r)) =1 and (b) for all v € Py, 5 : lat1(H(r)) > st
5. I\ = supg<nIg for every limit ordinal A < k.

o

We also say that I is generated by the P-stationary chain {I, | « < k}.

The set of all stationary generated models of P is denoted by Modtatg(P)-
The resp. stationary generated entailment relations are defined as follows:
P |:statg Fiff MOdstatg(P) - MOd(F)

Notice that our definition of stationary generated models also accom-
modates negation in the head of a rule and nested negations, such as in
p(x) A not(q(z) A notr(x)) = s(x) which would be the result of folding
p(z) A notab(z) = s(z) and g(x) A notr(z) = ab(x).

We continue this section with the investigations of some fundamental
properties of the introduced concepts.

Lemma 7 Let {I, | n < w} a t-increasing sequence of partial interpreta-
tions, i.e. I, < In11 for alln < w, and let be sup{l, | n < w} = I, and
1, X 1. Let F be a quantifier free sentence.

1. If [, I)(F) > 3, then there is a number n < w such that I, I)(F) >
1

5-
2. If [I,, I|(F) = 1, then there is a number n < w such that [I,, I|(F) =
1.

Proposition 8 Let P C GLP and let I € Modgiatg(P) which is generated
by the sequence {I, : o < k}. Then there is an ordinal f < w such that
Ig=1.

Corollary 9 If P C GLP and I € Modsiaig(P), then there is either a
finite P-stationary chain, or a P-stationary chain of length w, generating

1.

We now relate the stationary generated models to the stable generated
two-valued models as introduced in [HW97]. We recall the definition of
[HWO7].

Definition 8 (Stable Generated Model) [HW97] Let P C GLP. A
two-valued model M of P is called stable generated, symbolically M €
Modgg(P), if there is a chain {I, : o« < w} of two-valued Herbrand inter-
pretations such that

102

1. m < n implies I, C I,, and Iy = (.

2. Iny1 is a minimal two-valued extension of I, which is contained in M
and which satisfies all sequents whose body is true in every two-valued
interpretation from the set {J | I, C M}.

3. M ={L,|n<w}.

We also say that M is generated by the P-stable chain {I,, | n < w}.

Proposition 10 Let P C GLP. A two-valued model I of P is stable
generated if and only if it is a stationary generated model of P.

Corollary 11 Let P C GLP. Then Modsy(P) € Modgqarg(P).

Example 1 Let S = {= a,b; a = b}. Then M = {a, b} is not minimal
since {b} is a model of S. But {a, b} is stable: In = 0, Sy (apy) = {= a,b};
and since {a} € Min{I | 0 < I < M,I |= aV b}, we obtain Si(a} {ap}] =
{= a,b;a = b}. Obviously, {a,b} is a minimal extension of {a} satisfying
aVbandb.

5 Stationary Generated Models of Normal Logic Programs

The aim of this section is to prove that for normal logic programs the
stationary models introduced in [Prz91] coincides with our stationary
generated models. To make the paper self-contained we recall the main
notions. Let P be a normal logic program, i.e. the rules r have the form:
T = ai,...,0m, notby,..., notb, = c, where a;,b;,c are atomic. Let
I C BU B be a (consistent) partial interpretation. The transformation
trr(r) is defined as follows.

— try(BT(r)) = B*(r) (positive literals are not changed);

— try(notb;) = £, if b; € I; try(notb;) = t, if notb; € I; try(notb;) = u,
if {b;, notb;} NI = (. Then tr;(B~(r)) = try(notby),...,trr(notby,);

— try(r) = BT (r),tr;(B~(r)) = H(r).

The resulting program P/I which is called the I — reduction of P
is defined by P/I := {tri(r) | r € [P]}. P/I is an example of a so-
called non-negative program [Prz91]. A normal logic program P is said
to be non-negative, symbolically P C PLP, if for every rule r € P the
body B(r) of r satisfies the condition B(r) C At(o) U {t,f,u}. Every
interpretation I contains t and notf, and satisfied {u, notu} N1 = .
Every non-negative logic program has a t-least partial model that can be
constructed as follows [Prz91].

103

Definition 9 Let P C PLP. The operator Tp : ol ol 45 defined as
follows.

Tp(l)={a| thereis a rule B(r) = a € [P] such that I(\ B(r)) =t} U
{nota | for every rule r € [P] satisfying H(r) = a it is I(/\ B(r)) = f}.

The operator T’p is monotonic with respect to the truth-ordering <. Since
(2I , <) is a complete partial ordering the operator Tp has a least fixpoint
I being a model of P. I is defined as follows. Let Iy = { nota | a € GAt},
i.e. Iy is the t-least interpretation. We define an t-increasing sequence
of partial interpretations: In < I1 < ... = I, < ... by In+1 = Tp(I,).
Obviously, I,, < Ip41, for n < w. Then sup{l, : n < w} is the least partial
model of P; we denote it by lpm/(P).

Definition 10 Let P C NLP and I a partial interpretation. I is said to
be a stationary model of P if and only if lpm(P/I) = I.

Lemma 12 Let P C NLP and let I be a stationary model of P with the
generating sequence {I, | n < w}, sup{l, : n < w} = I. Then for every
r € [P], and every n < w, the following conditions are equivalent:

1) In(A B(tri(r))) = u;

2) for all J satisfying the condition I,, < J < I it holds J(\ B(r)) > u.

Proof: 1) — 2). Let r := ay,...,am, notby,..., notb, = ¢, and try(r) =
A1y ooy Oy U1y .. Uy = ¢, where v; € {f,u,t}. Now we assume, that
I(A\ B(trr(r))) > u, then In(ai A... ANam Avi A...Avy) > u. Then, for
every J : I, < J <X I we have {a1,...,a,,} NJ = . Assume this is not
the case. Then there is a nota; € J, and since Neg(J) C Neg(I,) this
implies nota; € I, hence Iy,(a;) = f which yields I,,(A\ B(tri(r)) = f,
which is a contradiction. This implies J(a;) > u for every J: I, < J < 1.
Furthermore, it holds J(notb;) > u for every J: I,, < J < I. Assume,
there is such an interpretation J satisfying J(notb;) = f. Then b; €
Pos(J) and this implies by J < I the condition b; € Pos(I). By definition
of the translation ¢ry this would imply trr(notb;) = f, a contradiction to
L(A B(tri(r) > u.

2) — 1). Now we assume, that for all J: I,, < J < I: J(A B(r)) > u We
show that then I,,(A\ B(trr(r))) > u. Obviously, In(a1 A ... Aay) > u. It
remains to show that I,,(v1 A ... Avy,) > u. Assume this is not the case,
then there is a number j < n such that I,,(v;) = f. This implies b; € I.
But then there is an extension J: I, < J =< I such that b; € Pos(J), hence
J(notb;) = £, and this yields J(/ B(r)) = f, which is a contradiction. O

104

We shall show below that the stationary generated models of a nor-
mal logic program S agree with the fixpoints of I'g, i.e. with stationary
models as defined in [Prz91]. Since the definition of the extended Gelfond-
Lifschitz transformation requires a specific rule syntax, the definition of
stationary models based on it is not very general; as a consequence, Gel-
fond and Lifschitz are not able to treat negation-as-failure as a standard
connective, and to allow for arbitrary formulas in the body of a rule.
The interpretation of negation-as-failure according the stationary (gener-
ated) semantics seems to be the first general standard logical treatment
of non-monotonic logic programs.

Proposition 13 Let P be a normal logic program and I a stationary
model of P. Then I is a stationary generated model of P.

Proof: By assumption we have I = lpm(P/I), and let [y <} <... 2 I,
the defining t-increasing sequence for I. Then I = sup{I, | n < w}. We
show that {I,, : n < w} is a stationary chain generating I. By definition
is Iy = GAt(o). We show that for every n < w the interpretation I,,4; is
a t-minimal extension of I, satisfying the set Py, = {r € [P] | for all
J: I, = J =2 1itis J(\B(r)) > u}. Firstly, we prove for all r € Py,
the condition I,,+1(r) = t. Then we show: if K is a partial interpretation
satisfying the condition I,, < K < I,41, and if K(r) =t for all r € P10
then K = I,41.

By definition it is I,4+1 = {a | B(r) = a € tri([P]) and I,(A\ B(r)) =
t} U{nota : for all B(r) = a € tri([P]) it is I,(AB(r)) = f}. Let
r € Py, n, we show that Iny1(A B(r)) < Lia(H(r)). By lemma 12 it
is L,(AB(r)) > u. If L,(\B(r) =t, then I,;1(H(r)) =t (by definition
of I,+1 and we are ready. Now assume I,,(A B(try(r))) = u. It is suf-
ficient to show that I,41(H(r)) > u. Assume this is not the case, then
In+1(H(r)) = Iy41(a) = f, hence nota € I,4+1. But then nota € I,,
hence I,(a) = f. By definition of I,,41 for all B(s) = a € tri([P]) is
I,(\ B(s)) = f, in particular I,,(/\ B(tr;(r))) = f, this is a contradiction.
Hence I,+1 = Py,,.n- Now let K be satisfy the condition I, < K = I, 11.
Obviously, if K = Py, p, then Pos(K) C Pos(I,11). It remains to show
that Neg(K) = Neg(I,+1). Assume this is not the case, then there is
an element nota € Neg(K) — Neg(In+1). Then a does not satisfy the
condition for Neg([,11), i.e. there is a rule B(s) = a € tr;([P]) such
that I,(A B(s)) > u (o.w. nota € Neg(Ip11). Let be B(s) = tr(B(r)).
Then, by lemma 12 for all J : I,, < J < I we have J(/ B(r)) > u, in par-
ticular K (/A B(r)) > u. Since K (a) = f it follows K = B(r) = a. From
this follows that Neg(K) — Neg(I,4+1) = 0, hence Neg(K) = Neg(In+1),

105

then I, satisfies the conditions according to the definition of stationary
generated model. [

Proposition 14 Let I be a stationary generated model of the normal
logic program P. Then I is a stationary model of P.

Proof: Let {I,, : n < w} be a stationary chain generating I. We show that
this sequence coincides with the sequence associated to the least model
of try(P) = P/I. Let Q = P/I. We show that Tg(l,) = I,41 for every
n < w, and we have to prove the following conditions:
a) Pos(Tg(I,)) = Pos(I+41), and b) Neg(To(In)) = Neg(In+1)-
a) To show: Pos(Tg(In)) € Pos(In41). Let be a € Pos(Tg(I,)), then
there is a rule B(r) = a € tr;([P]) such that I,(/A\ B(r)) = t. Let s € [P]
the rule satisfying tr;(s) = r, and B(s) = ai,...,am, notby,..., notb,.
Then {a1,...,am} C I,. Furthermore, trr(notb;) = t for all j < n.
That means notb; € I, and this implies the condition s € P, . Since
Invi = s and In41(A\ B(s)) = t this yields a € I,41, hence finally
Pos(Tq(1n)) C Int1. By induction hypothesis we assume Tg(I,—1) = I,,.
Let a € Pos(Ip+1) — Pos(Iy), then there is a rule B(r) = a € Py, j, i.e.
(I, I](A\ B(r)) > u. But then there must be a rule of this kind satisfying
L,(\ B(r)) = t (otherwise I,41 — {a} would be a model Py,). This
shows that a € Pos(Tg(1y,)).
b) This condition follows immediately from the following claim:
(*): nota € Neg(I41) iff for all B(r) = a € [P] it holds I,,(A\ B(tri(r))) =
f. To prove (x), let nota € Neg(I,+1), and assume there is a rule
B(r) = a € [P] such that I,,(A\ B(trr(r))) > w. Then by lemma 12 we
have K(/\ B(r)) > u for every K : I, = K < I, hence B(r) = a € Py, p-
But then I,,41 = B(r) = a, because I,41(A\ B(r)) > u and I,11(a) = f.
Hence Ip4+1 = Plly, I], a contradiction.

Assume for all € tr;([P]) with B(r) = a the condition I,,(A B(r)) =
f. We have to show that nota € Neg(I,+1). Assume, this is not the case,
then nota & Neg(I,+1), then nota € Neg(I,) — Neg(I,+1). From this
follows that I, 11 U{nota} = P, 1, which gives a contradiction, because
;41 is a minimal extension of I,, satisfying P, 7. Let I' =1I,11U{a}. We
show: for all 7 € Py, p the condition I'(A B(r)) < I'(H(r)). If H(r) # a,
then this is clear. Now let be B(r) = a € [P] and tr;(r) = B(s) = a.
By assumption is I,,(A\ B(s)) = f. We show that I,(A\ B(r)) = f (this is
indeed sufficient). Let be B(s) = a1,...,am,v1,...,Vn, trr(notb;) = v;.
If I,(a;) = f, then I,(\ B(r)) = f and we are ready. Assume I,,(a;) > u
for every a;, i < m. Then there is a notb; such that tr;(notb;) = f,

106

which means b; € I. Then there is an J : I, = J = I such that b; € J,
hence J(A B(r)) = f, and this means r € Py, . O

6 Conclusion and Future Research

By introducing a new general definition of stationary generated mod-
els, we have established the foundation of a theory of partial models for
generalized logic programs. As a special case we get a model-theoretic
interpretation of the well-founded semantics for normal logic programs.
The consequence operator for generalized logic programs P - based on
stationary generated models - exhibits a form of non-monotonic rea-
soning which is determined by the following definition: P |=ga1y ¢ iff
Modgiarq(P) € Mody(¢), ¢ a quantifier-free sentence. The corresponding
closure operator of f=gtqtq is defined by: Cstarg(P) = {$|¢ quantifier-free
and P Fgiatg ¢}. We believe that only cumulative consequence relations
allow the development of a reasonable proof theory. Hence, it is an inter-
esting task to find natural cumulative approximations of Cyqtg. In [HLOT]
non-monotonic reasoning was successfully applied to the integration prob-
lem for ontologies. We will explore the expressive power of generalized
logic programs with stationary generated semantics for the representa-
tion and processing of knowledge in the field of clinical medicine.

Acknowledgment
Thanks due to the anonymous referees for their criticism and useful com-
ments.

References

[AHPOO] J. Alferes, H. Herre, L. M. Pereira. Partial Models of Extended Generalized
Logic Programs. Int. Conference Computational Logic 2000, Springer LNAI
1861, 2000, pages 149-163

[AP1996] J. Alferes, L. M. Pereira. Reasoning with Logic Programming. Springer LNAT
vol. 111, 1996

[EH99] J. Engelfriet, H. Herre. Stable Generated Models, Partial Temporal Logic and
Disjunctive Defaults, Journal of Logic Programming 41 (1): 1-25, 1999

[GL88] M. Gelfond and V. Lifschitz. The stable model semantics for logic program-
ming. In R. A. Kowalski and K. A. Bowen, editors, Proc. of ICLP, pages
1070-1080. MIT Press, 1988

[HJWO95] H. Herre, J. Jaspars and G. Wagner. Partial logics with two kinds of negation
as a foundation for knowledge-based reasoning, in D. Gabbay and H. Wansing
(Eds.), What is negation ?, pages 121-159. Kluwer Academic Publishers, 1999

[HWO97] H. Herre and G. Wagner. Stable Models Are Generated by a Stable Chain,
Journal of Logic Programming, 30 (2): 166-177, 1997

107

[HLO7] R. Hoehndorf, F. Loebe, J. Kelso and H. Herre. Representing default knowl-
edge in biomedical ontologies: Application to the integration of anatomy and
phenotype ontologies. BMC' Bioinformatics Vol. 8, pp. 377.1-377.12, 2007

[LTT99] V. Lifschitz, L. R. Tang, H. Turner. Nested Expressions in Logic Programs
Annals of Mathematics and Artificial Intelligence 1999

[Prz90] T.C. Przymusinski. Well-founded semantics coincides with three-valued
stable-semantics. Fundamenta Informaticae 13 (1990), 445-463

[Prz91] T.C. Przymusinski. Stable semantics for disjunctive programs. New Genera-
tion Computing, 9:401-424, 1991

[Prz94] T.C. Przymusinsksi. Well-founded and stationary models of logic programs.
Annals of Mathematics and Artificial Intelligence 12 (1994) 141-187

[Prz96] T.C. Przymusinski. Super Logic Programs and Negation as Belief. In: R. Dy-
ckhoff, H. Herre, P. Schroeder-Heister, editors, Proc. of the 5th Int. Workshop
on Extensions of Logic Programming, Springer LNAI 1050, 229-236

108

Constraint-Based Abstraction of a Model Checker for
Infinite State Systems™

Gourinath Banda' and John P. Gallagher!?

I Roskilde University, Denmark
2 IMDEA Software, Madrid
Email: {gnbanda, jpg}eruc.dk

Abstract. Abstract interpretation-based model checking provides an approach
to verifying properties of infinite-state systems. In practice, most previous work
on abstract model checking is either restricted to verifying universal properties,
or develops special techniques for temporal logics such as modal transition sys-
tems or other dual transition systems. By contrast we apply completely standard
techniques for constructing abstract interpretations to the abstraction of a CTL
semantic function, without restricting the kind of properties that can be verified.
Furthermore we show that this leads directly to implementation of abstract model
checking algorithms for abstract domains based on constraints, making use of an
SMT solver.

1 Introduction

Model Checking is a widely used technique for verifying properties of reactive sys-
tems expressed as formulas in a temporal logic, but is restricted to finite-state systems.
Abstraction is an effective technique for handling infinite state spaces, where a finite
or infinite number of original states are collectively represented with a single abstract
state.

The theory of abstract interpretation formalises abstraction techniques. In abstract
interpretation-based analyses, an abstract domain is first constructed and then a Ga-
lois connection between the original (or concrete) domain and the abstract domain is
defined. Computations over the concrete domain are abstractly interpreted over the ab-
stract domain. Due to the Galois connection, the result from abstract computation will
always be an over approximation of the actual result, had the actual analysis been pos-
sible.

The present work is part of an attempt to develop a uniform CLP-based formal
modelling and verification framework for verifying infinite state reactive systems. The
modelling part of this framework was covered in [2] where it is shown (i) how to model
linear hybrid automata (LHA) specifications in CLP; (ii) how standard program trans-
formation tools of CLP can be applied to extract the underlying state transition system
semantics; and (iii) how to abstract the (infinite) reachable state space with the do-
main of linear constraints. In this extended abstract, we show the verification part of the
framework in which abstract interpretation and model checking are integrated.

* Work partly supported by the Danish Natural Science Research Council project SAFT" Static
Analysis Using Finite Tree Automata.

109

The contributions of this work are threefold. First, we present the definition of a
CTL-semantics function in a suitable form, using only monotonic functions and fix-
point operators. Second, we apply the standard abstract interpretation framework to get
a precise abstraction of the CTL-semantics function. We do not construct an abstract
transition system, which turns out to be an unnecessary restriction. Finally, we show
how a constraint-based abstraction can be directly implemented from the abstract se-
mantic function and show how satisfiability modulo theories (SMT)-technology can be
exploited to improve the performance of our abstract model checker.

The structure of this paper is as follows. Section 2 introduces the syntax and se-
mantics of CTL, and outlines the theory of abstract interpretation. Section 3 describes
abstract model checking, that is, abstract interpretation of the CTL semantics function.
Section 4 shows how the framework can be applied in practice to an abstraction based
on linear constraints. Section 6 gives some experimental results, and we conclude in
Section 8.

2 CTL, Model Checking and Abstract Interpretation

CTL is a formal language used to specify temporal properties. A well formed formula
in CTL is constructed from one or more atomic propositions and eight CTL-operators.
The syntax of CTL is given below.

Definition 1 (CTL Syntax). The set of CTL formulas ¢ in negation normal form is
inductively defined by the following grammar:

Ou=rtrue|p|l-plOiAG2 |01 V2|01 — 2| b1 02| AXO|EXO|AFO
|EFO |AGO | EGO | AU[01,92] | EU[01,92] [AR[91,¢2] | ER[01, 2]

where p ranges over a set of atomic formulas P.

A CTL-formula is in negation normal form (NNF) if and only if the negations are
placed in front of the atomic propositions. Any formula not in NNF can be transformed
into NNF by moving negations inwards using equivalence-preserving transformations..
The unary operators AF,AG,AX and the binary operators AU,AR are called universal
CTL operators; while the unary EF,EG,EX and binary ER,EU operators are called
existential CTL operators.

2.1 CTL Semantics

The semantics of CTL formulas is defined with respect to a Kripke structure, which is
a state transition system whose states are labelled with atomic propositions that are true
in that state.

Definition 2 (Kripke structure). A Kripke structure is a tuple (S,A,I,L,P) where S is
the set of states, A C S X S is the transition relation, I C S is the set of initial states, P is
the set of propositions and L : S — 2% is the labelling function which returns the set of
propositions that are true in each state. The set of atomic propositions is closed under
negation.

110

Given the Kripke structure (S,A,I, L, P), the meaning of a formula is the set of states
in S where the formula holds; this is itself an abstraction of a more detailed trace-based
semantics [9]. We define a function [[-] : CTL — 25 that returns the set of states where
the formula holds. This function is called theCTL-semantics function.

Definition 3 (CTL-semantics function). Given a Kripke structure K = (S,A,I,L,?P),

the semantic function [] : CTL — 25 is defined as follows.
[true] =S [false] =0
[p] = states(p) [-p] = states(—p)
[EX6] = preds([[]) [01Vaa] = [01]]U]e2]
[AX9] = predy([[0]) Fbl Ada] =01l N[e2]
[

[EFOQ] = uZ.([0]] Upreds(Z)) [ER[01,02]] = VZ.([02] N ([91] U pred5(Z))
[AFQ = uZ.([9]] Upredy(Z)) [AU[01,92]] = wuZ.([92]]U ([¢1]) N predy(Z))
[AGO] =VZ.([6] Npredy(Z)) [EU[1,02]]| = uZ.([02] U ([91] Npreds(Z))
[EGO] =VvZ.([0] Npred5(Z)) [AR[91,02]] = VZ ([o20 N ([1] U predy(2))

This semantics function makes use of three subsidiary functions preds : 25 — 25, pred,, :
25 — 25 and states : P — 25 called the existential predecessor function, the universal
predecessor function and allocating function respectively. These three functions are
specific for a given Kripke structure K and are monotonic.

Definition 4. Given a Kripke structure K = (S,A,I,L,P) we define functions preds :
25 — 25, pred,, : 25 — 25 and states : P — 25 as follows.

- preds(S') = {s| 35 €S :(s,5) € A} returns the set of states having at least one of
their successors in the set S' C S;

— predy(S") = pred5(S”)\preds(compl(S")) returns the set of states all of whose suc-
cessors are in the set S' C S; the function compl(X) = S\ X.

— states(p) = {s € S| p € L(s)} returns the set of states where p € P holds.

In the CTL semantic definition, uZ.(F(Z)) (resp. VZ.(F(Z))) stands for the least
fixed point (resp. greatest fixed point) of the function AZ.F(Z). The Knaster-Tarski
fixed point theorem [28] guarantees the existence of least and greatest fixed points
for a monotonic function on a complete lattice. All the expressions F(Z) occurring
in uZ.(F(Z)) and vZ.(F(Z)) in the CTL semantic functions are functions 25 — 25
on the complete lattice (25°<,U,N,S,0). They are constructed with monotonic oper-
ators (U,N) and monotonic functions (preds, predy). Thus the CTL semantics function
is well-defined.

2.2 Model Checking

Model checking is based on checking that the Kripke structure K = (S,A,I, L, P) pos-
sesses a property 0, written K |= ¢. This is defined to be true iff 7 C [[¢]], or equivalently,
that 7N [[=¢]] = 0. (Note that ~¢ should be converted to negation normal form). Thus
model-checking requires implementing the CTL-semantics function which in essence
is a fixed point computation. When the state-space S is finite the greatest and least fixed

111

point expressions can be evaluated as the limits of Kleene sequences. But when S is in-
finite, the fixed point computations might not terminate and hence the model checking
of infinite state systems becomes undecidable. In this case we try to approximate [.]
using the theory of abstract interpretation.

2.3 Abstract Interpretation

In abstract interpretation we replace the “concrete” semantic function by an abstract
semantic function, developed systematically from the concrete semantics with respect
to a Galois connection. We present the formal framework briefly.

Definition 5 (Galois Connection). (L,C) *%) (M,Cyy) is a Galois Connection be-

tween the lattices (L,Cr) and (M,Cy) if and only if &: L — M and y: M — L are
monotonic and V1 € Lym € M, (1) Ty m 1 Cp y(m).

In abstract interpretation, (L,C;) and (M,C,,) are the concrete and abstract se-
. ¥
mantic domains respectively. Given a Galois connection (L,) L (M,Cyy) and a

monotonic concrete semantics function f : L — L, then we define an abstract semantic
function f* : M — M such that for all m € M, (oo f o) (m) Ty f*(m). Furthermore it

can be shown that Ifp(f) T y(Ifp(f*)) and that gfp(f) =, y(gfp(f*)).
Thus the abstract function f* can be used to compute over-approximations of f,

which can be interpreted using the v function. The case where the abstract semantic
function is defined as f* = (oo f o) gives the most precise approximation.

If M is a finite-height lattice then the non-terminating fixed point computations of
Ifp(f) and gfp(f) over L are approximated with a terminating fixed point computation
over the finite lattice M.

We next apply this general framework to abstraction of the CTL semantic function,
and illustrate with a specific abstraction in Section 4.

3 Abstract Interpretation of the CTL-Semantic function

In this section we consider abstractions based on Galois connections of the form <2S ,C
Y . .
) ? (24, C), where the abstract domain 2 consists of sets of abstract states. In fact

the abstract domain could be any lattice but for the purposes of this paper we consider
such state-based abstractions, which will be further discussed in Section 4.

Definition 6. Let preds : 25 — 25, pred, : 25 — 25, and states : P — 25 be the func-

tions defined in Definition 4 and used in the CTL semantic function. Given a Galois
Y

connection (25,C) = (24,C), we define apreds : 24 — 24, apred, : 24 — 24 and

astates: P — 24 as

apred; = topredjoy apredy =0opredyoy astates = oostates

It follows directly from the properties of Galois connections that for all ' C S, o(pred5(S’)) C
apreds(a(S')) and o(predy(S”)) C apredy(a(S')).

112

Definition 7 (Abstract CTL semantics function). Given a Galois connection <2S ,C
v

) o (24, C), the abstract CTL semantic function [[-]* : CTL — 24 is defined as fol-

lows.

[true]* =A [false]* =0

[p]* = astates(p) [-p]* = astates(—p)

[EX$]* = apreds([¢]“) [01Vaor]* ={[0:]" U]

[AX]| = apredy([¢]“) [o1 AG2]* =T[o:]“N [92]*

[EFQ]* = uZ.([¢]“ Uapred5(Z)) [ER[01,02]]* = VZ.([¢2]* N ([¢1]* Uapred5(Z))
[AFQ]* = uZ.([0]* Uapredy(Z)) [AU[¢1,02]]* = uZ.([¢2]* U ([¢1]* Napredy(Z))
[AGO]* =VZ.([¢]* Napredy(Z)) [EU[¢1,02]1 = uZ.([¢2]* U ([¢1]* Napred(Z))
[EGO]* =vZ.([0] Napred3(Z)) [AR[91,92]]* = VZ.([¢2]* N ([¢1]* Uapredy(Z))

Since all the operators appearing in the abstract CTL-semantic are monotonic, the
fixpoint expressions and hence the abstract semantic function is well defined. The fol-
lowing soundness theorem is the basis of our abstract model checking approach.

Theorem 1 (Safety of Abstract CTL Semantics). Let K = (S,A,I,L,P) be a Kripke
structure, (25,C) % (24, C) be a Galois connection and ¢ any CTL-formula in nega-

tion normal form. Then a([0]) < [0]“ and y([0]) 2 [0

The proof follows from the fact that o is a join-morphism: that is, that o(S; USy) =
o(S1)Ua(S2) and the fact that ai(S; NS2) C a(S1) No(Sz).

This theorem provides us with a sound abstract model checking procedure for any
CTL formula ¢. As noted previously, K |= ¢ iff [—¢]] N7 = @ (where —¢ is converted to
negation normal form). It follows from Theorem 1 that this follows if y([-¢]*) NI = 0.
Of course, if Y([-¢]]*) NI 2 0 nothing can be concluded.

4 Abstract Model Checking in Constraint-based Domains

The abstract semantics given in Section 3 is not always implementable in practice for a
given Galois connection (25, C) &= S (24, C). In particular, the function yyields a value
in the concrete domain, which is typlcally an infinite object such as an infinite set. Thus
evaluating the functions (oo pred5 o7) and (oo preds o) might not be feasible.

In this section we show that the construction is implementable for transition systems
and abstract domains expressed using linear constraints.

4.1 Constraint Representation of Transition Systems

We consider the set of linear arithmetic constraints (hereafter simply called constraints)
over the real numbers.

C:::t]§t2|tl <t2|c1/\cz\c1\/cz\—\c

where f1,t, are linear arithmetic terms built from real constants, variables and the op-
erators +, x and —. The constraint #{ = 1, is an abbreviation for 1; <t At < t;. Note

113

that —(t; < 1)) =1, <t and ~(f] < 1) =1, < 1, and so the negation symbol — can be
eliminated from constraints if desired by moving negations inwards by Boolean trans-
formations and then applying this equivalence.

A constraint is satisfied by an assignment of real numbers to its variables if the
constraint evaluates to frue under this assignment, and is satisfiable if there exists some
assignment that satisfies it. A constraint can be identified with the set of assignments
that satisfy it. Thus a constraint over n real variable represents a set of points in R".

A constraint can be projected onto a subset of its variables. Denote by projy, (¢) the
projection of ¢ onto the set of variables X.

Let us consider a transition system defined over the state-space R". Let X, X, X etc.
represent n-tuples of distinct variables, and 7, 7, 7 etc. represent tuples of real numbers.
Let x/F represent the assignment of values 7 to the respective variables X. We consider
transition systems in which the transitions can be represented as a finite set of transition

c(xy,x . . _
rules of the form & (1—>2) X». This represents the set of all transitions from state 7| to

state 7, in which the constraint ¢(X},X;) is satisfied by the assignment ¥; /7;,%, /7>. Such
transition systems can be used to model real-time control systems [18, 2].

4.2 Computation of the CTL semantic function using constraints

A constraint representation of a transition system allows a constraint solver to be used
to compute the functions pred;, predy and states in the CTL semantics. Let T be a
finite set of transition rules. Let ¢/ () be a constraint over variables y. It is assumed that
the set of propositions in the Kripke structure used in the semantics is the set of linear
constraints.

preds (¢’ (7)) = V{projs(c'(7) Ac(®, 7)) | £ = 5 e T}
predy(¢' (7)) = preds(c'(7)) A —~(preds(~c'(5)))
states(p) = p

In the definition of states we use p both as the proposition (the argument of states) and
as a set of points (the result).

4.3 Abstract Domains Based on a Disjoint State-Space Partition

Suppose we have a transition system with n state variables; we take as the concrete
domain the complete lattice (2€, C) where C C 2R" is some nonempty, possibly infinite
set of n-tuples including all the reachable states of the system.

We build an abstraction of the state space based on a disjoint partition of C say
A ={dy,...,d;} such that [JA = C. Such a partition can itself be constructed by an
abstract interpretation of the transition relation [2]. Define a representation function
B:C — 24, such that B(¥) = {d € A | x € d}. We extend the representation function to
sets of points, obtaining the abstraction function o;2¢ — 24 given by a/(S) = U{B(x) |
x € S}. Define the concretisation function y: 24 — 2€, as y(V) = {x € C | B(x) C V}.

. Y
As shown in [24,7], (C,Q) ‘?) (A, Q) is a Galois connection. Because the partition A
is disjoint the value of B(x) is a singleton for all x, and the Y function can be written as

vV) =U{v({d}) [d € V}.

114

4.4 Representation of Abstraction Using Constraints

A constraint can be identified with the set of points that satisfies it. Suppose that each
element d of the partition A is representable as a linear constraint ¢, over the variables
X1,...X,. The B function can be rewritten as B(x) = {d | x satisfies ¢;}. Assuming that
we apply a to sets of points represented by a linear constraint over xp,...x,, we can
rewrite the o and 'y functions as follows.

o(c) ={d|SAT(canc)} V) =V{ca|deV}

4.5 Computation of o and y functions using constraint solvers

The constraint formulations of the o and y functions allows them to be effectively com-
puted. The expression SAT (¢4 Ac¢) occurring in the o function means “(c4 Ac) is satisfi-
able” and can be checked by an SMT solver. In our experiments we use the SMT solver
Yices [13]. The 7y function simply collects a disjunction of the constraints associated
with the given set of partitions; no solver is required.

4.6 Implementation of constraint-based abstract semantics

Combining the constraint-based evaluation of the functions preds and predy with the
constraint-based evaluation of the o and 7y functions gives us (in principle) a method of
computing the abstract semantic counterparts of pred5 and predy, namely (oo pred5 o)
and (ovo predy o). This gives us a sound abstract semantics for CTL as discussed previ-
ously. The question we now address is the feasibility of this approach. Taken naively, the
evaluation of these constraint-based functions (in particular predy) does not scale up.
We now show how we can transform these definitions to a form which can be computed
much more efficiently, with the help of an SMT solver.

Consider the evaluation of (oo predy oy)(V) where V € 24 is a set of disjoint parti-
tions represented by constraints.

(ccopredy o7)(V) = (cro preds) (Vica | d € V)
— a(preds(V{ca | d € V}) A (preds(~(V{ca | d € V})))
— afpreds(V{cq | d € V}) A=(preds(V{ca € A\ V}))

In the last step, we use the equivalence —(\/{cs | d € V}) < \/{cs € A\ V}), which
is justified since the abstract domain A is a disjoint partition of the concrete domain;
thus A\ V represents the negation of V restricted to the state space of the system. The
computation of pred5(\/{cs € A\ V}) is much easier to compute (with available tools)
than preds(—(\/{cqs | d € V})). The latter requires the projection operations proj to
be applied to complex expressions of the form proje(—=(c1(F) V- V k(7)) A c(X,7)),
which involves expanding the expression (to d.n.f. for example); by contrast the former
requires evaluation of simpler expressions of the form projz(c,(¥) A c(%,7)).

115

4.7 Further Optimisation by Pre-Computing Predecessor Constraints

We now show that we can improve the computation of the abstract function (oo pred;o
v). Let {c;} be a set of constraints, each of which represents a set of points. It can easily
seen that pred;(\/{c;}) = V{pred5(c;)}. Consider the evaluation of (oo pred5o7)(V)
where V € 24 is a set of disjoint partitions represented by constraints.

(acopreds oY) (V) = (ovopreds)(V{cq [d € V})
= a(V{preds(cq) |[d €V})

Give a finite partition A, we pre-compute the constraint pred5(c,) for all d € A. Let
Pre(d) be the stored predecessor constraint for partition element d. The results can be
stored as a table, and whenever it is required to compute (0to pred5o7) (V) where V € 24,
we simply evaluate o(\/{Pre(d) | d € V}). The abstraction function o is evaluated
efficiently using the SMT solver, as already discussed.

Note that expressions of the form a(pred5(\/{---})) occur in the transformed ex-
pression for (oo predy o7y)(V) above. The same optimisation can be applied here too.
Our experiments show that this usually yields a considerable speedup (2-3 times faster)
compared to dynamically computing the preds function during model checking.

S Implementation

The abstract CTL semantic function was implemented directly in Prolog without se-
rious attempt at optimisation of the algorithm. The function [¢]]* yielding a set S is
represented by the predicate absCt1l (Phi, S), wheké iis a suitable representation of
a CTL formula. Thus for example, the rule for evaluating a formula AG¢, namely

[AGO]* = VZ.([9]“ Napredy(Z))

is rendered in Prolog by the clauses

absCtl(ag(F),States) :-
absCtl (F,FStates),
gfpag(FStates,States).

gfpag(F,8) :-
gfp (' $SVAR' ('Z2'), intersect (F,predForall ("SVAR' ('Z"))), S).
The predicate g fp (Z, F, S¢omputes the greatest fixed point of the function AZ.(F(Z)),
and is implemented naively as shown below by computing successive iterations A, F (A),
F(F(A)),...until F/(A) = F/*1(A) for some j. Here, A is the set of all abstract regions
for the system under consideration. There are improved fixpoint algorithms in the liter-
ature which could be applied, e.g. [4].

116

gfp(Z,E, S1) :-
allStates(S),
gfpiteration(S, Zz, E, S1).

gfpiteration(Prev, Z, E, Fix) :-
applyarg(Z,Prev,E,E1l),
evalExpr (E1l,Next),
gfpcheckfix (Next,Prev,Z,E,Fix).

gfpcheckfix (E1,Prev,_,Fix) :-
subset (Prev,El),
! 4
returnfixpoint (E1,Fix) .
gfpcheckfix (E1,,Z2,E,Fix) :-
gfpiteration(El, 72, E, Fix).

returnfixpoint (X, X) .

The most relevant aspect of the prototype implementation is the interface to external
libraries to perform constraint-solving functions. In implementing the preds operation
we make use of a Ciao-Prolog interface to the PPL library [1]. In particular, this is used
to compute the proj function. The o function is implemented using the SMT solver
Yices [13]. We implemented an interface predicate yicessat (C, Xs), wher€ is a
constraint and Xs is the set of variables in C. This predicate simply translates C to the
syntax of Yices, and succeeds if and only if Yices finds that the constraint is satisfi-
able. Using this predicate the definition of a,, that is o(c) = {d | SAT (¢4 A¢)} can be
implemented directly as defined.

6 Experiments Using an SMT Constraint Solver

Figure 1 shows the transitions of a water-level controller taken from [18]. The transi-
tions are represented as constraint logic program clauses generated automatically from
a Linear Hybrid Automaton specification of the controller, as explained in detail in [2].
The state variables in an atomic formula of form rState (X, W, T, Topresent the rate
of flow (X), the water-level (), the elapsed time (T) and the location identifier (L). The
meaning of a clause of form

rState (X,W,T,L) rtX,W,T,L,X1,wl,T1,L1), rState(X1l,wl,T1,L1)

. . “(X,W,T,L,X1,W1,T1,L.1 s .
is a transition rule (X1,W1,T1,L1) CORR TR) (X,W,T,L). The initial state is given

by the clause rState (0, 1, 1) . Note that there are transitions both from one location
to another, and also from a location to itself, since the controller can remain in a location
so long as an invariant is satisfied.

Figure 2 shows the result of an analysis of the reachable states of the system, based
on computing an approximation of the minimal model of the constraint program in Fig-
ure 1. There are 8 regions, which cover the reachable states of the controller starting in
the initial state (which is region 1). The term v (N, rState (A,B,C,D),][). means

117

rState(0,1,1).

rState(A,B,C,1) :-BH<B = E+A-D, C = F+A-D, IBX
rState(D,E,F,1).

rState(0,A,B,1) :-IL<E = F-2*(D-C), G = H+D-C, G=2, B = G, A=E,
rState(C,F,H,4).

rState(A,B,C,2) :-®H<B = E+A-D, C = F+A-D, <
rState(D,E,F,2).

rState(0,A,B,2) :-E<E = F+D-C,. = G+D-C, E=10, B = 0, A=E,
rState(C,F,G,1).

rState(A,B,C,3) :-®<B = E-2* (A-D), C = F+A-D,5B>
rState(D,E,F,3).

rState(0,A,B,3) :-K<E = F+D-C, G = H+D-C, G=2, B = G, A=E,
rState(C,F,H,2).

rState(A,B,C,4) :-B<B = E-2*(A-D), C = F+A-D,2£<
rState(D,E,F,4).

rState(0,A,B,4) :-IL<E = F-2* (D-C), = G+D-C, E=5, B = 0, A=E,

rState(C,F,G,3).

Fig. 1. The Water-Level Controller

v(l, rState(A,B,C,D), [1*A=0,1*B=1,D=1]).

v(2, rState(a,B,C,D), [-1*B> -10,1*B>1,1*A+ -1*B= -1,D=11]).

v (3, rState(A,B,C,D), [1*B=10,1*A=0,1%C=0,D=2]).

v (4, rState(A,B,C,D), [-1*C> -2,1*C>0,1*A+ -1*C=0,1*B+ -1*C=10,D=2]).
v(5, rState(A,B,C,D), [1*B=12,1*A=0,1%C=2,D=3]).

v (6, rState(A,B,C,D), [-2*C> -11,1*C>2,1*A+ -1*C= -2,1*%B+2*C=16,D=3]).
v(7, rState(A,B,C,D), [1*B=5,1*A=0,1*C=0,D=41]).

v (8, rState(A,B,C,D), [-1*C> -2,1*C>0,1*A+ -1*C=0,1*%B+2*C=5,D=4]).

Fig. 2. Disjoint Regions of the Water-Level Controller

that the region labelled N is defined by the constraint in the third argument, with con-
straint variables A, B, C, rorresponding to the given state variables. The 8 regions are
disjoint. We use this partition to construct the abstract domain as described in Section
4.3.

Our implementation of the abstract semantics function is in Ciao-Prolog with exter-
nal interfaces to the Parma Polyhedra Library [1] and the Yices SMT solver [13]. Our
prototype implementation of the fixpoint computations is very naive. Nonetheless we
successfully checked many CTL formulas including those with CTL operators nested
in various ways, which in general is not allowed in either UPPAAL [3] or HYTECH
[19].

Table 1 gives the results of abstract model checking two systems, namely, a water
level monitor and a task scheduler. Both of these systems are taken from [18]. In the
table: (i) the columns System and Formula indicate the system and the formula being
checked; (ii) the columns A and A, respectively, indicate the number of abstract regions
and original transitions in a system and (iii) the column time indicates the computation

118

time to check a formula on the computer with an Intel XEON CPU running at 2.66GHz
and with 4GB RAM.

6.1 Water level controller

For the water level system, which has 4 state variables, no formula that we have tried to
evaluate takes longer than 0.2 seconds to check. Since verifying certain properties re-
quires finer abstractions (as discussed shortly in Section 6.3), we consider two variants,
a coarse one with eight and a more refined abstraction with twelve abstract regions.

The formula EF (W = 10) means “there exists a path along which eventually the
water level (W) reaches 107, while AG(W = 10 — EF (W # 10)) means “on every path
itis possible for the water level not to get stuck at 10”. The formula EF (AG(min <W <
max)) where min, max € R states “possibly the water level stabilises and fluctuates be-
tween a minimum min and maximum max”. Using this formula, we can check whether
the system reaches a stable region with the given bounds on the water level.

6.2 Scheduler

For the scheduler system that has 8 state variables, 42 abstract regions and 12 transi-
tions, the checking time increases. Here, formulas can take up to 5-6 seconds to check
in our prototype implementation. We proved a number of safety and liveness properties,
again successfully checking properties of a form beyond the capability of other model
checkers. For example the formula AG(K2 > 0 — EF(K2 = 0)), containing an EF
nested within an AG, means that the tasks of high priority (whose presence is indicated
by a strictly positive value of K2) do not get starved (that is, the value of K2 eventually
returns to zero).

6.3 Increasing precision by property-specific refinements

The property EF (W = 3) in the water level controller should hold on the system. But
this formula cannot be verified when the state space is abstracted with 8 abstract re-
gions. Because of the coarse abstraction, we cannot distinguish W = 3 from W £ 3.
The negation of the formula, namely AG(W > 3V W < 3), holds in the abstract initial
state since there are infinite paths from region 1 which always stay in regions that are
consistent with W = 3.

One approach to solving such cases is to make a property-specific refinement to
the abstraction. Each region is split into three regions by adding W = 3, W > 3 and
W < 3 respectively to each region. Consequently, since there are 8 regions in the current
abstraction (shown in 2), we get a new abstraction with 24 abstract regions, of which
only 12 are satisfiable. Only the satisfiable regions need to be retained, giving a total of
12 regions in this example. With this refined abstraction, the property EF (W = 3) can
then successfully be checked.

119

System Formula A | A |Time (secs.)

Waterlevel Monitor| EF(W = 10) 818 0.08
AG(W =10 — EF(W #10)) | 8|8 0.06
EF(AG(1 <W <12)) 818 0.04
AG(W > 1)) 88| 001
EF(W =3) 12| 8 0.16

Task Scheduler EF(K2=1) 42114] 551
AG(K2>0— EF(K2=0)) [42]14] 3.49
AG(K2< 1) 42014] 349

Table 1. Experimental Results

6.4 Limitations implied by our modelling technique

We cannot always successfully check formulas of the form AF ¢, due to an abstraction
introduced into our model of continuous behaviour (rather than the abstraction induced
by the Galois connection). The reason for this is that the transitions of the system in
general include additional self-transitions that were not intended in the original system.
Such transitions with the same location for the successor state as well as predecessor
state are those which do not respect the continuity of the physical system. For example,
the transition rules of the water level controller allow a transition within location 1
directly from W = 1 to W = 5 without passing through W = 3. When trying to prove a
formula of the form AF¢, we need to refute the formula ~(AF¢) i.e. EG—¢. Because
of the extra self transitions, there might exist a path from the initial state on which —¢
holds forever. Thus refutation might not be possible. Other modelling techniques are
needed to capture continuity.

7 Related Work

The topic of model-checking infinite state systems using some form of abstraction has
been already widely studied. Abstract model checking is described by Clarke et al.
[6]. In this approach a state-based abstraction is defined where an abstract state is a
set of concrete states. A state abstraction together with a concrete transition relation A
induces an abstract transition relation A,ps. Specifically, if X|,X> are abstract states,
(X1,X2) € Agps iff 3x1 € X1,x2 € X5 such that (xj,x2) € A. From this basis an abstract
Kripke structure can be built; the initial states of the abstract Kripke structure are the
abstract states that contain a concrete initial state, and the property labelling function
of the abstract Kripke structure is induced straightforwardly as well. Model checking
over the abstract Kripke structure is correct for universal temporal formulas (ACTL),
that is, formulas that do not contain operators EX,EF,EG or EU. Intuitively, the set of
paths in the abstract Kripke structure represents a superset of the paths of the concrete
Kripke structure. Hence, any property that holds for all paths of the abstract Kripke
structure also holds in the concrete structure. If there is a finite number of abstract
states, then the abstract transition relation is also finite and thus a standard (finite-state)
model checker can be used to perform model-checking of ACTL properties. However,

120

if an ACTL property does not hold in the abstract structure, nothing can be concluded
about the concrete structure, and furthermore checking properties containing existential
path quantifiers is not sound in such an approach.

This technique for abstract model checking can be reproduced in our approach,
although we do not explicitly use an abstract Kripke structure. Checking an ACTL for-
mula is done by negating the formula and transforming it to negation normal form,
yielding an existential temporal formula (ECTL formula). Checking such a formula
using our semantic function makes use of the pred; function but not the predy func-
tion. It can be shown that the composition (oo pred5o7y) gives the preds function
for the abstract transition relation defined by Clarke et al. Note that whereas abstract
model checking the ACTL formula with an abstract Kripke structure yields an under-
approximation of the set of states where the formula holds, our approach yields the
complement, namely an over-approximation of the set of states where the negation of
the formula holds.

There have been different techniques proposed in order to overcome the restriction
to ACTL formulas. Dams et al. [10] present a framework for constructing abstract inter-
pretations for transition systems. This involves constructing a mixed transition system
containing two kinds of transition relations, the so-called free and constrained transi-
tions. Godefroid et al. [16] proposed the use of modal transition systems [22] which
consist of two components, namely must-transitions and may-transitions. In both [10]
and [16], given a state abstraction together with a concrete transition system, a mixed
transition system, or an (abstract) modal transition system respectively, is automatically
generated. Following this, a modified model-checking algorithm is defined in which
any formula can be checked with respect to the dual transition relations. There are cer-
tainly similarities between these approaches and ours, though more study of the precise
relationship is needed. The may-transitions are captured by the abstract transitions de-
fined by Clarke er al. [6] and hence by our abstract function (oo pred; oY), as discussed
above. We conjecture that the must-transitions are closely related to the abstract func-
tion (oLo predy o). We argue that the construction of abstract transition systems, and
the consequent need to define different transitions preserving universal and existential
properties, is an avoidable complication, and that our approach is conceptually simpler.
Probably the main motivation for the definition of abstract transition systems is to re-use
existing model checkers, as remarked by Cousot and Cousot [9].

The application of the theory of abstract interpretation to temporal logic, includ-
ing abstract model checking, is thoroughly discussed by Cousot and Cousot [8, 9]. Our
abstract semantics is inspired by these works, in that we also proceed by direct abstrac-
tion of a concrete semantic function using a Galois connection, without constructing
any abstract transition relations. The technique of constructing abstract functions based
on the pattern (oo f o), while completely standard in abstract interpretation [7], is not
discussed explicitly in the temporal logic context. We focus only on state-based abstrac-
tions (Section 9 of [9]) and we ignore abstraction of traces. Our contribution compared
to these works is to work out the abstract semantics for a specific class of constraint-
based abstractions, and point the way to effective abstract model checking implemen-
tations using SMT solvers. Kelb [21] develops a related abstract model checking algo-

121

rithm based on abstraction of universal and existential predecessor functions which are
essentially the same as our predy and preds functions.

Giacobazzi and Quintarelli [15] discuss abstraction of temporal logic and their re-
finement, but deal only with checking universal properties.

Our technique for modelling and verifying real time and concurrent systems using
constraint logic programs builds on the work of a number of other authors, including
Gupta and Pontelli [17], Jaffar et al. [20] and Delzanno and Podelski [11]. However
we take a different direction from them in our approach to abstraction and checking
of CTL formulas, in that we use abstract CLP program semantics when abstracting the
state space (only briefly covered in the present work), but then apply this abstraction
in a temporal logic framework, which is the topic of this work. Other authors have
encoded both the transition systems and CTL semantics as constraint logic programs
[5,23,25,12,14,26,27]. However none of these develops a comprehensive approach
to abstract semantics when dealing with infinite-state systems. Perhaps a unified CLP-
based approach to abstract CTL semantics could be constructed based on these works.

8 Conclusion

We have demonstrated a practical approach to abstract model checking, by construct-
ing an abstract semantic function for CTL based on a Galois connection. Most pre-
vious work on abstract model checking is restricted to verifying universal properties
and requires the construction of an abstract transition system. In other approaches in
which arbitrary properties can be checked [16, 10], a dual abstract transition system is
constructed. Like Cousot and Cousot [9] we do not find it necessary to construct any
abstract transition system, but abstract the concrete semantic function systematically.
Using abstract domains based on constraints we are able to implement the semantics
directly. The use of an SMT solver adds greatly to the effectiveness of the approach.

Acknowledgements. We gratefully acknowledge discussions with Dennis Dams and
César Sanchez.

References

1. R. Bagnara, E. Ricci, E. Zaffanella, and P. M. Hill. Possibly not closed convex polyhedra
and the Parma Polyhedra Library. In M. V. Hermenegildo and G. Puebla, editors, SAS 2002,
volume 2477 of Lecture Notes in Computer Science, pages 213-229. Springer, 2002.

2. G. Banda and J. P. Gallagher. Analysis of Linear Hybrid Systems in CLP. In M. Hanus,
editor, LOPSTR 2008, volume 5438 of Lecture Notes in Computer Science, pages 55-70.
Springer, 2009.

3. G. Behrmann, A. David, and K. G. Larsen. A tutorial on Uppaal. In M. Bernardo and
F. Corradini, editors, SFM-RT 2004, number 3185 in Lecture Notes in Computer Science,
pages 200-236. Springer, September 2004.

4. A. Browne, E. M. Clarke, S. Jha, D. E. Long, and W. R. Marrero. An improved algorithm
for the evaluation of fixpoint expressions. Theor. Comput. Sci., 178(1-2):237-255, 1997.

5. C. Brzoska. Temporal logic programming in dense time. In /LPS, pages 303-317. MIT
Press, 1995.

122

~N

10.

11.
12.
13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, 2000.
P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In POPL’79,
pages 269-282. ACM Press, New York, U.S.A., 1979.

. P. Cousot and R. Cousot. Refining model checking by abstract interpretation. Autom. Softw.

Eng., 6(1):69-95, 1999.

. P. Cousot and R. Cousot. Temporal abstract interpretation. In POPL’2000, pages 12-25,

2000.

D. Dams, R. Gerth, and O. Grumberg. Abstract interpretation of reactive systems. ACM
Trans. Program. Lang. Syst., 19(2):253-291, 1997.

G. Delzanno and A. Podelski. Model checking in CLP. In TACAS, pages 223-239, 1999.
X. Du, C. R. Ramakrishnan, and S. A. Smolka. Real-time verification techniques for untimed
systems. Electr. Notes Theor. Comput. Sci., 39(3), 2000.

B. Dutertre and L. M. de Moura. A fast linear-arithmetic solver for DPLL(T). In T. Ball and
R. B. Jones, editors, CAV 2006, volume 4144 of Lecture Notes in Computer Science, pages
81-94. Springer, 2006.

F. Fioravanti, A. Pettorossi, and M. Proietti. Verifying CTL properties of infinite-state sys-
tems by specializing constraint logic programs. In M. Leuschel, A. Podelski, C. Ramakr-
ishnan, and U. Ultes-Nitsche, editors, Proceedings of the Second International Workshop on
Verification and Computational Logic (VCL’2001), pages 85-96. Tech. Report DSSE-TR-
2001-3, University of Southampton, 2001.

R. Giacobazzi and E. Quintarelli. Incompleteness, counterexamples, and refinements in ab-
stract model-checking. In P. Cousot, editor, Static Analysis, Sth International Symposium,
SAS 2001, Paris, France, July 16-18, 2001, Proceedings, volume 2126 of Lecture Notes in
Computer Science, pages 356-373. Springer, 2001.

P. Godefroid, M. Huth, and R. Jagadeesan. Abstraction-based model checking using modal
transition systems. In K. G. Larsen and M. Nielsen, editors, CONCUR 2001, volume 2154
of Lecture Notes in Computer Science, pages 426—440. Springer, 2001.

G. Gupta and E. Pontelli. A constraint-based approach for specification and verification of
real-time systems. In IEEE Real-Time Systems Symposium, pages 230-239, 1997.

N. Halbwachs, Y. E. Proy, and P. Raymound. Verification of linear hybrid systems by means
of convex approximations. In SAS’'94, volume 864 of Lecture Notes in Computer Science,
pages 223-237, 1994.

T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. HY TECH: A model checker for hybrid sys-
tems. In Computer Aided Verification, 9th International Conference, CAV 97, Haifa, Israel,
June 22-25, 1997, Proceedings, volume 1254 of Lecture Notes in Computer Science, pages
460-463. Springer, 1997.

J. Jaffar, A. E. Santosa, and R. Voicu. A CLP proof method for timed automata. In J. Ander-
son and J. Sztipanovits, editors, The 25th IEEE International Real-Time Systems Symposium,
pages 175-186. IEEE Computer Society, 2004.

P. Kelb. Model checking and abstraction: A framework preserving both truth and failure
information. Technical report, Carl yon Ossietzky Univ. of Oldenburg, Oldenburg, Germany,
1994.

K. G. Larsen and B. Thomsen. A modal process logic. In Proceedings, Third Annual Sym-
posium on Logic in Computer Science, 5-8 July 1988, Edinburgh, Scotland, UK, pages 203—
210. IEEE Computer Society, 1988.

M. Leuschel and T. Massart. Infinite state model checking by abstract interpretation and pro-
gram specialisation. In A. Bossi, editor, Logic-Based Program Synthesis and Transformation
(LOPSTR’99), volume 1817 of Springer-Verlag Lecture Notes in Computer Science, pages
63-82, April 2000.

F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program Analysis. Springer-Verlag
New York, Inc., 1999.

123

25. U. Nilsson and J. Liibcke. Constraint logic programming for local and symbolic model-
checking. In Computational Logic, volume 1861 of LNCS, pages 384-398, 2000.

26. G. Pemmasani, C. R. Ramakrishnan, and I. V. Ramakrishnan. Efficient real-time model
checking using tabled logic programming and constraints. In /CLP, volume 2401 of Lecture
Notes in Computer Science, pages 100114, 2002.

27. J. C. Peralta and J. P. Gallagher. Convex hull abstractions in specialization of CLP programs.
In M. Leuschel, editor, Logic Based Program Synthesis and Tranformation, 12th Interna-
tional Workshop, LOPSTR 2002, Madrid, Spain, September 17-20,2002, Revised Selected
Papers, pages 90-108, 2002.

28. A. Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific Journal of
Mathematics, 5:285-309, 1955.

124

Range Restriction for General Formulas

Stefan Brass

Martin-Luther-Universitat Halle-Wittenberg, Institut fiir Informatik,
Von-Seckendorff-Platz 1, D-06099 Halle (Saale), Germany
brass@informatik.uni-halle.de

Abstract. Deductive databases need general formulas in rule bodies,
not only conjuctions of literals. This is well known since the work of Lloyd
and Topor about extended logic programming. Of course, formulas must
be restricted in such a way that they can be effectively evaluated in finite
time, and produce only a finite number of new tuples (in each iteration
of the T'p-operator: the fixpoint can still be infinite). It is also necessary
to respect binding restrictions of built-in predicates: many of these predi-
cates can be executed only when certain arguments are ground. Whereas
for standard logic programming rules, questions of safety, allowedness,
and range-restriction are relatively easy and well understood, the situa-
tion for general formulas is a bit more complicated. We give a syntactic
analysis of formulas that guarantees the necessary properties.

1 Introduction

Deductive databases have not yet been very successful in practice (at least in
terms of market share), although their basic idea is practically very important:
Deductive databases aim at an integrated system of database and programming
language that is based on the declarative paradigm which was so successful in
database languages. Currently, database programming is typically done in lan-
guages like PHP or Java. The programs construct SQL statements, send them to
the database server, fetch the results, and process them. The interface is not very
smooth, and although the situation can be improved with specific database lan-
guages like PL/SQL and server-side procedures / user-defined functions within
the DBMS, the language paradigms remain different. Object-oriented databases
were one approach to develop an integrated system based on a single paradigm,
but there the declarativity of the database query part was sacrificed, and they
did not get a significant market share, too. Nevertheless, there is an obvious de-
mand for integrated database/programming systems, and this demand has even
grown because of object-relational features that need programming inside the
database server, and because of web and XML applications.

As far as we know, the deductive database prototypes developed so far sup-
port only a Datalog variant, and do not support SQL. But SQL is a database
standard, and many practical programmers are trained in the SQL language. It
would certainly be helpful for the migration of people and projects to deductive
technology, if a deductive system can first be used like a standard SQL DBMS,

125

and only when one wants to use advanced features like recursive views, powerful
constraints, or stored procedures, one has to learn some form of Datalog.

However, supporting SQL in a deductive DBMS is not simply a matter of
hiring a good programmer — it still needs research. A requirement is of course
that everything that can be done in SQL can also be done in the deductive
language (so that e.g., SQL queries can be translated internally to the deductive
language, and then executed). But standard Datalog lacks some SQL features
that are important in practice.

One obvious difference between SQL and Datalog is that SQL permits general
formulas. Already Lloyd and Topor recommended that general formulas should
be allowed in rule bodies [LT84,LT85,L10o87], and developed a transformation
from these extended logic programming rules to standard rules (see also [LCO05]).
Although this transformation is an important yardstick to which newer solutions
must be compared, it does not lead to a very efficient query evaluation. In case
of disjunctive conditions, rules are split, which might lead in the worst case to
exponentially many rules, and even in normal cases computation is duplicated.
Therefore, it is worth to consider direct support for general formulas in rules.
If a deductive database system should be successful, it must have performance
for SQL queries that is more or less comparable to standard DBMS. Splitting
complex conditions into many rules is not advantageous for that purpose.

In another paper we investigated how duplicates as in SQL can be supported
in extended Datalog rules [Bra09]. There the duplicates that Prolog would gen-
erate after the Lloyd/Topor transformation from a rule did not agree with the
duplicates from a very similar SQL query. This, too, shows that the Lloyd/Topor
transfomation does not solve all problems with regard to general formulas in rule
bodies.

In this paper we investigate a basic problem that every concrete deductive
database system must solve: At least each iteration of the Tp-operator used
in bottom-up evaluation must be effectively computable. It might be that the
iteration does not terminate, but this is a quite different problem.

Furthermore, a concrete system has a lot of built-in predicates, for instance <
is essential for many database queries. In standard database systems (not apply-
ing a constraint solver), we must ensure that in a call to < both arguments are
ground. Since derived predicates can be called with different binding patterns,
the system must be able to automatically find a possible evaluation sequence.
This is not difficult for standard rules, where only the body literals must be
reordered, but it is technically a bit more complicated for general rules.

2 Standard Rules

Let us first quickly repeat the usual solution to range-restriction in the case of
standard rules with conjunctions of literals (positive and negative) in the body.
The predicates are classified into

126

— EDB-predicates (“extensional database”), the given database relations: Of
course, these predicates have finite extensions, i.e. they are a finite set of
tuples.

— IDB-predicates (“intensional database”), the predicates defined by rules:
Only these predicates can appear in the rule heads. They have finite exten-
sions in each step of the fixpoint iteration with the Tp-operator (computing
immediate consequences of rules). If the iteration does not terminate, the
extension might be infinite in the minimal model, but that is a different
problem (not subject of this paper).

— Built-in predicates like “<”, which are defined by program code inside the
DBMS. These predicates can have infinite extensions, i.e. they might be true
for an infinite number of argument values.

In bottom-up evaluation, which is the basis of deductive databases, all rules must
be range-restricted. In the most basic case, this means that every variable that is
used in a rule must appear at least once in a positive body literal with an EDB or
IDB predicate (not a built-in predicate with an infinite extension). In this way,
every variable is first bound to a finite set of possible values, and then negative
body literals and literals with built-in predicates like “<” can be evaluated. This
also ensures that every single rule application produces only finitely many result
tuples, containing only values that appeared in the finite database relations.

However, these restrictions are very severe. For instance, they do not permit
to give names to arbitrary subformulas, e.g. the following would not be range-
restricted:

1t(X, Y) :(- X < Y.

Note that such a view also cannot be defined in SQL databases. However, deduc-
tive databases must offer features that go beyond SQL, and since derived pred-
icates are such an important construct in deductive databases, a much stronger
support can be expected.

The next step in the development was to adapt the definition of range-
restriction to the magic-set transformation. There, predicates are assigned bind-
ing patterns, which define which arguments are bound (given inputs), and which
are free (searched outputs) when a predicate is called. For instance, the above
rule would be legal when 1t has only the binding pattern bb (both arguments
are bound).

Definition 1 (Binding Pattern). A binding pattern 3 for a predicate of ar-
ity n is a string over the alphabet {b,f} of length n.

A predicate with more interesting binding patterns is sum, where sum(X,Y,Z)
means X+Y=Z. This predicate supports binding patterns bbf, bfb, £bb and bbb.
Le. given two arguments, the third can be computed.

In the following, we assume that terms are constants or variables. To some
degree, function symbols (term constructors) can be replaced by built-in predi-
cates. Consider for example the standard list append predicate:

127

append([], L, L).
append([F|R], L, [FIRL]) :- append(R, L, RL).

By introducing a new variable for each composed term, and using a predicate
cons(X,Y,Z) = Z=[X|Y], one gets the following definition of append without
structured terms:

append([], L, L).
append(X, L, Y) :- cons(F,R,X), append(R,L,RL), cons(F,RL,Y).

The predicate cons supports the binding patterns bbf (list construction), and
f£b (splitting a list). Of course, structured terms are a useful and compact no-
tational convenience on the user level. However, internally, there terms can be
flattened as shown in the example. The advantage is that terms with evaluable
functions like + and terms with record constructors like [_|_] can be handled
in the same framework. For deductive databases this is important since SQL
programmers are used to terms with the standard arithmetic operators. The
disadvantage of this solution is that data structures with variables in them can-
not be handled conveniently. While there are nice applications of such terms
in logic programming, they are very uncommon in database applications (and
anyway cannot be stored in classical databases).

Definition 2 (Binding Pattern Specification, Valid Binding Patterns).
A binding pattern specification is a mapping bp which defines for each predicate p,
a set of binding patterns bp(p) # 0, called the valid binding patterns for this
predicate. If A is an atomic formula with predicate p, we permit to write bp(A)

for bp(p).

Definition 3 (Allowed Interpretation). Given a binding pattern specifica-
tion bp, an interpretation I is called allowed if it satisfies the binding pattern
restrictions of bp in the following sense:

— Let n be the arity of p and 1 < iy < -+ < i < n be the index positions with

Biz) = b.
— Then for all values c1, . .., c from the domain of Z, the following set is finite:
{(dl,...,dn) EI[[p]] | dil =C1, ..., dzk = Ck}
— Furthermore, it is possible to effectively compute this set for given cq, ..., k.

For built-in predicates, the valid binding patterns correspond to the implemented
variants of a predicate, e.g. bp(sum) = {bbf, bfb, fbb}. It is possible, but not
necessary to add bbb. E.g. if one has an implementation for bbf, one can execute
sum(1,2,3) like sum(1,2,X) A X=3. Thus, a binding pattern 3 is more general
than a binding pattern 4’ iff they have the same length n, and 8; = b implies
Bi=bfori=1,...,n.

For standard EDB predicates, it suffices to have one binding pattern ff...f.
This corresponds to the “full table scan”. If there are indexes, other binding
patterns might become interesting.

128

For user-defined predicates, mode declarations or a program analysis defines
the valid binding patterns.

Now let vars(t) be the set of variables that appears in term t. Since terms are
only constants or variables, the set is a singleton or empty. For a formula ¢, we
write vars(yp) for the free variables in that formula.

The following notion of “input variables” for a literal is helpful to define
range-restriction:

Definition 4 (Input Variables). Given an atomic formula A = p(ty,...,t,)
and a binding pattern 3 = (1...05, for p, the set of input variables of A with
respect to 3 is

input(A, 3) == U{vars(ti) |1<i<mn, B;=>b}

(i.e. all variables that appear in bound arguments).

Input variables in body literals must be bound before the literal can be
called. Input variables in head literals are bound when the rule is executed. Now
range-restriction for standard rules can be defined as follows:

Definition 5 (Range-Restricted Standard Rule). A rule
A—BiA--AB,A=Bpii A A=By,

1s range-restricted given a binding pattern B for the head literal, iff there is a
permutation m of {1,...,m} such that

— for every i € {1,...,m} with w(i) < n there is 3; € bp(Br ;) such that

input(B;y, 3i) C input(A, 3) Uvars(Bry A~ ABrii—1y),
— for every i € {1,...,m} with w(i) > n it holds that
vars(B(;)) C input(A, B) Uvars(Bry A -+ ABrii—1y),
— and furthermore it holds that
vars(A) Cvars(By A--- AB, A=Byi1 A+ A—=B,,) Uinput(A, §).

The permutation 7 determines a possible evaluation sequence for the body
literals. Note that different binding patterns for the head literal might need
different evaluation sequences of the body literals. E.g., when append is called
with binding pattern bbf, the given order of body literals works fine:

append(X, L, Y) :- cons(F,R,X), append(R,L,RL), cons(F,RL,Y).
If, however, append is called with binding pattern ffb, the following evaluation
sequence is needed:

append(X, L, Y) :- cons(F,RL,Y), append(R,L,RL), cons(F,R,X).
In deductive databases, possible queries cannot be anticipated, therefore there
is a strong need to support different binding patterns for derived predicates.

Interestingly, when the magic set transformation is applied to the rules, the

result is a program in which each rule is range-restricted for the binding pat-
tern ff...f, thus bottom-up evaluation can be easily applied afterwards.

129

3 Extended Rules

In extended logic programming, the rule bodies can be arbitrary first order
formulas. Since a formula is a complex tree structure, we can no longer use a
simple permutation in order to define an evaluation sequence. Consider

P(X,Y) A (q(Y,Z) Ar(X))

and suppose that the following binding restrictions are given: p: bf, q: bf, r:f.
Then the only possible evaluation sequence is r,p,q. Of course, one could re-
quire that the user writes the formula in a way that left-to-right evaluation
is possible. That would simplify the definition a bit, but it would contradict
the declarative paradigm. Furthermore, it would not be practical if the derived
predicate supports several binding patterns.

The first task is now to generalize the notion of binding patterns from pred-
icates to formulas:

Definition 6 (Generalized Binding Pattern). A generalized binding pattern
for a formula ¢ is a pair of sets of variables, written Xq,..., Xy — Y1,..., Yy,
such that {X1,..., X, Y1,...,Ym} Cvars(p).

This should mean that given values for Xy,...,X,,, we can compute a finite set
of candidate values for Yq,...,Y,,. The final decision, whether the formula is
true or false in a given interpretation can usually be done only when we have
values for all free variables in the formula.

Generalized binding patterns are related to finiteness dependencies [RBS87].
Finiteness dependencies have first been studied for infinite relations (with at-
tributes instead of variables). The definition of when a finiteness dependency
is satisfied for a given relation in [RBS87] is a bit unclear: “If r(Xy,...,X,) is
finite, then r(Yq,...,Y,,) is finite.” Finiteness dependencies have been used for
general formulas in [EHJ93], but there the definition of satisfaction is based on
the number of function applications that lead from X-values to Y-values.

Our own definition of the meaning of Xy,...,X,, — Y1,...,Y,, adds to the
basic finiteness requirement an important computability property (and links it
to the given binding patterns for the predicates). In order not to overload the
semantics of “finiteness dependency” further, we used a different name.

Definition 7 (Valid Generalized Binding Pattern). A generalized binding
pattern Xy,..., X, — Y1,..., Yy for a formula ¢ is valid iff for every allowed
interpretation T and all values dy, . ..,d, from the domain of T

— the set
{(AY1), . s AYR)) | (T A) E o, AXy) =di, ... A(Xy) = dn}

is finite (i.e. there are only finitely many possible assignments to the Y; that
make the formula true, given values for the X;), and
— a finite superset of this set is effectively computable.

130

Consider again the case p(X,Y) A (q(Y, Z) Ar(X)). The binding restrictions of the
subformula q(Y, Z) Ar(X) can be described with the generalized binding patterns:

—) — X (because r supports binding pattern f)
— Y — Z (because q supports binding pattern bf)

When we have computed a set D = {dy,...,d,} of values for X according to the
first binding pattern, we cannot say yet whether the entire formula will be true
or false. But what has to be guaranteed is that the formula will be certainly false
if X has a value outside the set D, no matter what values the other variables will
have. The second binding pattern Y — Z means that when we already have
a single value (or finite set of values) for Y, then there are only finitely many
variable assignments for Z such that the formula is true, and Y has the given
value (or one from the finite set).

Since negation can be used everywhere inside a formula, not only before
atomic formulas, we also need to clarify the meaning of a generalized binding
pattern in negated context: In this case we are interested to get finitely many
values such that the formula is false. Again, computing a superset is possible.
It must only be guaranteed that the formula is true for every value outside the
computed set.

Given a set of generalized binding patterns, the following closure operation
computes immediate consequences. This closure is for instance used after the
union of sets of binding patterns done for a conjunction. Consider again the for-
mula p(X,Y) A (q(Y,Z) Ar(X)). The left subformula p(X,Y) gives the generalized
binding pattern X — Y corresponding to the binding pattern bf for p (actually,
it also gives many more implied generalized binding patterns, see below). The
right subformula discussed above yields (among others)) — X and Y — Z.
Given these three generalized binding patterns, we can compose them to get
) — X,Y,Z which means that the complete formula is evaluable with a finite
result. This composition is done by the closure operator defined in a minute. An
additional purpose of the closure operator is to add trivially implied generalized
binding patterns. E.g., when we have X — Y, this implies X — X,Y and
X, Y — X and X,Z — Y, Z. Such implied generalized binding patterns are
important e.g. for intersections done for disjunctive conditions.

Definition 8 (Closure of Sets of Generalized Binding Patterns). Let B
be a set of generalized binding patterns for a formula w. Then

cly(B) :={X — Y| X Cvars(p),Y C vars(p),
there aren € Ng, Xy — V1 ,..., Xy — VYV, €B
such that fori=1,...,n:

X c XU Y,
VS XUU?:I Vit

Theorem 1. If every generalized binding pattern in B is valid, then also every
binding pattern in cl,(B) is valid.

131

It is known that the Armstrong axioms for functional dependencies are sound
and complete also for finiteness dependencies [RBS87]. Since generalized binding
patterns have a somewhat different semantics, this result does not automatically
carry over, but at least the soundness is obvious:

— If X C Y, then X — Y is valid (Reflexivity).
— If ¥ — Y is valid, then X U Z — Y U Z is valid (Augmentation).
—IfX — Y and Y — Z are valid, then X — Z is valid.

Definition 9 (Computation of Generalized Binding Patterns).
We need the following auxillary operation:

intersect, (B, By) :={X — YV | X € vars(p), Y € vars(p),
there are X — Y1 € Bl, Xo — Vo € By
with, Xl UXQ Q X, andy Q yl myg}

The functions gbp™ and gbp™ define sets of generalized binding patterns for
arbitrary formulas (in positive/negated context):

— If p is an atomic formula p(ty,...,t,) (where p is not =):
gbp™ () == clp ({X — vars() | there is 5 € bp(p) with X = U3y ti})
gbp™ () := cly({vars(p) — vars(¢)})
— If p is an atomic formula t; = ty:
gbp () = cl, ({X — vars(p) | ¥ = vars(t;) or X = vars(tz)})
gbp™ () := cly({vars(p) — vars(p)})

— If ¢ is a negated formula —pq:

gbp™ () := gbp~ (o)
gbp™ () := gbp

— If ¢ is a conjunction o1 A pa:
gbp ™ () := cl, (gbp™ (1) U gbp™ (102))
gbp™ (i) := cl, (intersect(gbp™ (1), gbp™ (¢2)))
— If ¢ 1s a disjunction @1V @o:
gbp " (i) := cl, (intersect(gbp " (1), gbp™ (102)))
gbp~ () == cl, (gbp™ (121) Ugbp™ (102))
— If ¢ has the form 3 X: g orV X:pq:

gbp™ (¢) == cl,({X¥ — (Y —{X}) | X — YV e gbp™(p0), X & X}
gbp™ (p) :=cl,({X — (¥ —{X}) | X — YV €gbp (o), X € X})

~—

132

Theorem 2.

— Bvery Xy,..., Xy — Y1,...,Y € gbpT(¢) is valid.

— In the same way, for Xi,..., X, — Y1,....Ym € gbp (¢) there are
only finitely many assignments for the Y; that make the formula false (given
values for the X;), and finite supersets of these sets are effectively computable.

Up to now, we have computed only an upper bound for the values that make a
formula true. As explained above for the example p(X,Y) A (q(Y,Z) A r(X)), the
reason was that when we consider subformulas, we might not know values for
all variables yet that appear in the subformula. Of course, in the end, we want
to know the exact set of variable assignments that make the formula true.

This is possible when we have computed candidate assignments for all vari-
ables that occur in the formula. Then we can recursively step down the formula
and check for every given variable assignment whether the corresponding sub-
formula is true or false. For the atomic formulas this is obvious (our definition of
allowed interpretation implies that we can test whether a given tuple of values
is contained in the extension of a predicate). For A, V, = it is also clear how the
truth values computed for the subformulas can be combined. The interesting
case are the quantifiers. Let us consider the example

p(X,Y)AIZ:(q(Y,Z) Ar(X)).

Suppose that the valid binding patterns for the predicates are p: bf, q: bf, r:f.
Consider the subformula 3Z: (q(Y,Z) Ar(X)). In the first phase, we can compute
a set of possible values for X, i.e. we get the generalized binding pattern § — X.
But we have no chance to check whether the existential condition is indeed true
without having a value for Y (which can only be computed after we have a value
for X). But from the finite set of candidate values for X we can compute a finite
number of assignments for (X,Y) which must be checked.

In the second phase, we can assume that we have values for all free variables
in a subformula. In the example, we must check whether 3Z: (q(Y,Z) A r(X)) is
indeed true, given values for X and Y. This is possible if there are only a finite
number of candidate values for the quantified variable Z which must be tried. So
we need that the generalized binding pattern X, Y — Z holds for the quantified
subformula q(Y, Z) Ar(X). This is indeed the case because q supports the binding
pattern bf.

Note how different the situation would be if q permitted only the binding
pattern bb. We could still compute a finite set of candidate assignments for X
and Y, i.e. be sure that the formula p(X,Y)A3JZ: (q(Y,Z) Ar(X)) is false outside
this set. But we had no possibility to check whether the existential condition is
indeed satisfied without “guessing” values for the quantified variable Z.

For universally quantified variables, we need that the quantified formula can
be false only for a finite set of values, so that it suffices to explicitly check this
set. E.g. consider

r(X) AVY:p(X,Y) — r(Y).

133

(again with the binding patterns p: bf and r:f). For the universal quantifier to
be evaluable, the condition is X — Y € gbp™ (p(X,Y) — r(Y)).

Definition 10 (Range-Restriction). A rule A «— ¢ is range-restricted given
a binding pattern B for A iff

1. X — Y € gbpT(p) where

— X :=input(A, B) (variables occurring in bound arguments in the head)
— Y i=vars(p(ty,...,tn) «— @) (all variables in the rule except quantified
ones).

2. for every subformula 3Z: pg in positive (unnegated) context, or subformula
VZ: o in negated context:

(vars(po) —{Z}) — Z € gbp* (o),

3. for every subformula ¥ Z:po in positive context, or subformula IZ:pgy in
negated context:

(vars(po) —{Z}) — Z € gbp™ (¢0)-

Theorem 3. The immediate consequences of a range-restricted rule (according
to the Tp-operator) can be effectively computed, given values for the input argu-
ments of the head literal.

As mentioned above, the magic set transformation turns a rule that is range-
restricted for a binding pattern (3 into a rule that is range-restricted for the
binding pattern ff...f (by adding a condition to the body that binds the input
arguments). Then the immediate consequences of the rule can be computed
without further restrictions on input arguments.

4 A Possible Extension

It is also possible to define a slightly more liberal version of range-restriction that
requires only that variables are bound in the subformula in which they are used.
E.g., p(X) < q(X) V r(X,Y) would not be range-restricted according to Defini-
tion 10. That is no real problem, since one can write p(X) <« q(X) V3 Y:r(X,Y),
or alternatively, p(X) < (q(X) AY = nil) V r(X,Y). Nevertheless, it would also
be possible (and an improvement for the user) to accept the original version of
the rule.

The important insight here is that for an existentially quantified variable
(including variables that are free in the rule, but appear only in the body) it is
not necessary that the quantified formula is true only for a finite set of values. It
is only required that we have to check only a finite set of values. In the example,
q(X) vV r(X,Y) might be true for an infinite set of Y-values (when q(X) is already
true). However, values outside the extension of r will all behave in the same way,
therefore it suffices to check a single such value.

In [Bra92] (page 21), we have solved the problem by computing bottom-up
not only sets of bound variables (in positive/negated context), but also unbound

134

variables (in positive/negated context). In the critical condition q(X) V r(X,Y)
the variable Y is neither bound nor unbound (while X is bound). A generalization
of this idea to the case with built-in predicates is subject of our further work.
Another idea is to have a weaker version of generalized binding patterns,
where X —) means that given values for the X, it suffices to check a finite
set of values for the): If the formula is not true for any of these values, there
cannot be any assignment that makes it true (with the given values for the X).

5 Related Work

Of course, questions of domain independence and safety (finite answers) have
been studied for quite a long time, [Dem92] gives a good overview over earlier
work. [Dem92] generalizes this to arbitrary formulas, but does not consider built-
in predicates.

[RBS87] have finiteness dependencies, which are similar to our generalized
binding patterns, but consider only standard rules. As explained above, the main
difference between finiteness dependencies and generalized binding patterns is
our additional computability requirement.

[EHJ93] have finiteness dependencies and arbitrary formulae, but their se-
mantics of finiteness dependencies is again different: Their goal is to prove do-
main independence of a formula and a finiteness dependency X —) means
that values for the) can be only a bounded number of function applications
farther away from the active domain than values for the X. So they consider
computable functions, but the built-in predicates discussed here are more gen-
eral because they can support several binding patterns. The paper also aims at
computing the result of a formula, but the method is very different than ours.
They investigate the translation of formulas into relational algebra. The last
step is explained only by an example, and it seems that sometimes it might be
necessary to enumerate the entire active domain.

[Mah97] studies finiteness constraints, which have the form ¢ = X —4, Y
and mean that for each fixed assignment for the variables in X, there are only
finitely many values of the variables in) in the tuples of p satisfying ¢ with the
given values of the variables in X. The paper mainly investigates the implication
problem for these dependencies and for constrained functional dependencies. One
might think that when p simply contains the free variables of ¢ as attributes,
then ¢ = X — 45, Y basically means the same as X —) € gbp™ (p). However,
the purpose is very different. For instance, in Maher’s approach, ¢ is restricted
by a constraint domain, with a typical case being linear arithmetic constraints
over integers. In our approach, ¢ is a more or less arbitrary first order formula.
It is also not clear how knowledge about binding patterns for used predicates
can be specified in Maher’s approach: He considers only a single relation besides
the very special predicates in the condition . This is no fault of the approach,
the goals are simply different. Furthermore, we do not use a constraint solver
as Maher, but do a simple syntactic bottom-up computation. Of course, this
also gives different results. For instance, from 5 < X A X < 5, Maher would

135

conclude that X has only a single possible value. In our approach, this formula
is evaluable only for a given value of X, since otherwise the binding restrictions
for the built-in predicate < are not satisfied.

6 Conclusions

I am convinced that deductive databases can still become a serious competitor to
standard relational and object-relational databases for many practical projects.
Declarative programming has many advantages, and for single queries this is
already standard in the database field (SQL is a declarative language). Deductive
databases would lift the declarativity to the level of programs, but this is not
as easy as it was expected in the times when deductive databases were a hype
topic. More research is still needed.

In this paper, we attacked a very basic problem: Which formulas should be
allowed in rule bodies? Of course, we need that they have finite solutions, and
that the solutions are effectively computable. In a realistic setting, a deductive
database will have many built-in predicates with different binding restrictions.
The necessary definition is technically not very easy, but still natural and un-
derstandable.

Questions of domain independence and safety for general formulas have been
investigated before, and finiteness dependencies studied in the literature be-
have quite similar to our generalized binding patterns. However, the coupling of
finiteness conditions with the computability of an upper bound, and the two-step
approach to the evaluation of a formula are unique features of the current paper.

Our long-term goal is to develop a deductive database system that supports
stepwise migration from classical SQL.

References

[Bra92] S. Brass: Defaults in Deductive Databases (in German). Doctoral Thesis,
University of Hannover, 1992.

[Bra09] S. Brass: A Logic with Duplicates for an SQL-compatible Deductive
Database. Submitted for publication.

[Dem92] R. Demolombe: Syntactical characterization of a subset of domain-
independent formulas. Journal of the ACM (JACM) 39:1, 71-94, 1992.

[EHJ93] M. Escobar-Molano, R. Hull, D. Jacobs: Safety and translation of
calculus queries with scalar functions. In Proc. of the twelfth ACM
SIGACT-SIGMOD-SIGART symposium on Principles of database systems
(PODS’93), 253-264, ACM, 1993.

[LCO5] M. Leuschel, S. Craig: A reconstruction of the Lloyd-Topor transformation
using partial evaluation. In P. Hill (ed.), Pre-Proceedings of LOPSTR’05,
Imperial College, London, UK, 2005.
http://eprints.ecs.soton.ac.uk/11198/.

[L1087] J. W. Lloyd: Foundations of Logic Programming, 2nd edition. Springer-
Verlag, Berlin, 1987.

136

[LT84]
[LT85]

[LTT99]

[Mah97]

[RBS87]

J. W. Lloyd, R. W. Topor: Making Prolog more expressive. The Journal
of Logic Programming 1 (1984), 225-240.

J. W. Lloyd, R. W. Topor: A basis for deductive database systems. The
Journal of Logic Programming 2 (1985), 93-109.

V. Lifschitz, L. R. Tang, H. Turner: Nested expressions in logic programs.
Annals of Mathematics and Artificial Intelligence 25:5—4 (1999), 369-389.
http://citeseer.ist.psu.edu/lifschitz99nested.html.

M. J. Maher: Constrained Dependencies. Theoretical Computer Science
178 (1997), 113-149.

http://www.cse.unsw.edu.au/ mmaher/pubs/cdb/condep.ps.

R. Ramakrishnan, F. Bancilhon, A. Silberschatz: Safety of recursive
Horn clauses with infinite relations. In Proceedings of the sizth ACM
SIGACT-SIGMOD-SIGART symposium on Principles of database systems
(PODS’87), 328-339, ACM, 1987.

137

Transforming Imperative Algorithms to
Constraint Handling Rules

Slim Abdennadher, Haythem Ismail, and Frederick Khoury

Department of Computer Science, German University in Cairo
[slim.abdennadher, haythem.ismail, frederick.nabil]@guc.edu.eg
http://met.guc.edu.eg

Abstract. Different properties of programs, implemented in Constraint
Handling Rules (CHR), have already been investigated. Proving these
properties in CHR is fairly simpler than proving them in any type of
imperative programming language, which triggered the proposal of a
methodology to map imperative programs into equivalent CHR. The
equivalence of both programs implies that if a property is satisfied for
one, then it is satisfied for the other.

The mapping methodology could be put to other beneficial uses. One
such use is the automatic generation of global constraints, at an attempt
to demonstrate the benefits of having a rule-based implementation for
constraint solvers.

1 Introduction

Algorithms have properties that define their operation and their results, such as
correctness and confluence which can be illustrated and proven in programs of
various languages. Due to the differences between languages, proofs differ from
one to another, and could therefore be easier in some than in others. The aim of
the paper is to present an approach to map imperative programs to equivalent
rule-based ones. Thus, a technique to prove a property in an imperative program
would be to prove this same property in the corresponding rule-based version.
In this paper, a mapping from an imperative programming language to Con-
straint Handling Rules (CHR) is presented. CHR is a concurrent, committed-
choice constraint logic programming language especially designed to implement
constraint solvers. CHR, which was developed as an enhancement to the con-
straint programming paradigm, is declarative and rule-based, and is the language
of choice in this paper due to the already existing results to prove several prop-
erties, such as correctness, confluence, and termination.

Other areas of research could also benefit from the previously mentioned trans-
formation, such as the development of rule-based solvers for global constraints.
The mapping schematic in this work could be applied in the translation of im-
perative constraint solvers to declarative rule-based solvers, with a purpose of
analyzing these constraints through CHR. With the flexibility and expressiv-
ity of CHR, such a translation could have benefits on the functionality of the
involved constraint-handlers.

139

This paper is structured as follows. In Section 2 we briefly present the syntax
and semantics of a subset of CHR. In Section 3, we give a formal presentation
of the mapping and prove the equivalence of the imperative algorithm and the
corresponding generated CHR program. In Section 4, we present using examples
the methodology for transforming imperative algorithms into CHR. Finally, we
conclude in Section 5 with a summary and a discussion of future work.

2 Constraint Handling Rules

This section presents the syntax and the operational semantics of a subset of
CHR, namely simpagation rules. We use two disjoint sorts of predicate sym-
bols for two different classes of constraints: built-in constraint symbols and user-
defined constraint symbols (CHR symbols). Built-in constraints are those handled
by a predefined constraint solver that already exists. User-defined constraints are
those defined by a CHR program. Simpagation rules are of the form

Rulename @ Hi{\Hs <=>C' | B,

where Rulename is an optional unique identifier of a rule. The head H;\Ho
consists of two parts H; and Hy. Both parts consist of a conjunction of user-
defined constraints. The guard C' is a conjunction of built-in constraints, and
the body B is a conjunction of built-in and user-defined constraints. If H; is
an empty conjunction, then we omit the symbol “\” and the rule is called a
simplification rule.

The operational semantics of a simpagation rule is based on an underlying theory
CT for the built-in constraints and a state G which is a conjunction of built-in
and user-defined constraints. A simpagation rule of the form H;\Hs < C | B is
applicable to a state H{ AHL,AG if CT |= Gp — 32((Hy = H{ ANHy = H))NC),
where Z are the variables in Hy and Hs,, and G g is a conjunction of the built-in
constraints in G. The state transition is defined as follows:

H ANH,NGw— HANGANBACA (Hy=H{ AN Hy = H})

3 Operational Equivalence

In Section 4, we gave a quasi formal description of the mapping from Z to
CHR programs. We now turn to a more formal presentation of the mapping,
ending this section with a proof of equivalence between Z and corresponding
CHR programs.

3.1 The Language 7

To simplify the exposition, we impose two simple restrictions on Z programs. It
should be clear that the following restrictions are only syntactic; the expressive
power of 7 is preserved.

140

1. The identifier on the left-hand side of an assignment statement does not
occur on the right-hand side and is not declared in the same statement.
This can easily be enforced by the careful use of temporary variables and
the separation of declaration from initialization.

2. No array variables are used.

Assuming that all arrays have fixed sizes, an 7 program with an array A
indexed from 0 to n may be replaced by n+1 variables Ay, ... A,,. Naturally,
several other changes will need to be made. In particular, some loops will
need to be unwrapped.

The set of thus restricted Z programs may be defined recursively as follows,
where we assume the standard imperative syntax of identifiers and expressions.

Definition 1. The set 7 is the smallest set containing all of the following forms.

dt x;, where dt is a data type and = an identifier

x = e;, where z is an 7 identifier and e is an Z expression

if e {P1} else { P}, where e is a Boolean expression and Py, P, € 7
while e {P}, where e is a Boolean expression and P € T

Py Py, where P, P, € T.

CU L

We can provide standard operational semantics for Z in the spirit of [2]. A store
o is a partial function from 7 identifiers to Z values. We denote by X' the set of
all possible 7 stores. Usually, the semantics is given by a transition system on
the set I" of program configurations, where I' C (Z x X) U X. A configuration ~y
is terminal if v € Y. Given that Z programs are deterministic, every terminating
program P and initial store o; have a unique terminal configuration [P](¢). To
define the semantics of Z, it thus suffices to define the function [P]. A recursive
definition (on the structure of Z programs) of [P] is given in Figure 1.1

v

In what follows, x is an Z identifier, e is an Z expression, and ¢*~" is identical to o

except that o(z) = v.

1. [dt x;](0) = g~ Pefault(@t)
where Default(dt) is the default value for the Z data type dt.
2. [z=e;](0) = o= [eI”
where [e]? is the value of the Z expression e with respect to the store o.
3. [if e {P1} else {P:}](0) = [P](0)
where P = P if [e]? is true and P = P, otherwise.
4. [while e {P}|(c) =~
where v = [while e {P}]([P](0)) if [e]? is true, and v = o otherwise.
5. [AP)(o) = [P]([P1](0))

Fig. 1. Operational semantics of Z.

! Note that [P](c) is undefined for nonterminating configurations.

141

3.2 The CHR Fragment

In Section 3.3, we present a mapping from Z to CHR. Naturally, the mapping
is not onto, and the image thereof is comprised of CHR programs with only two
constraint symbols: var/2 and state/2. The constraint var was satisfactorily
discussed in Section 4. In this section, we examine the constraint state/2 and
some features of CHR programs employing it. For the purpose of the formal
construction, we take state to be a binary constraint.

A constraint state(b,n) intuitively indicates that the current CHR state cor-
responds to the state of the Z program following the execution of a statement
uniquely identified by the pair (b,n). As per Definition 4, b is a nonempty string
over the alphabet Y12 = {0, 1, 2} starting with a 0, and n is a non-empty string
over the alphabet X'p composed of the set of decimal digits and the separator #.
According to Definition 1, an Z program is a sequence of statements. Each of
these statements corresponds to a pair (b,n), where b = 0 and n is a nonempty
string that does not contain the # (i.e., a numeral); the number represented
by n indicates the order of the statement in the Z program. The special pair
(0, 0) corresponds to the state before any statement has been executed. If the
statement corresponding to a pair (b,n) is a while loop, then a statement in
the body of the loop will correspond to the pair (b, n#m), where m is a numeral
denoting the order of the statement within the body of the loop. Similarly, if an
if-then-else statement corresponds to the pair (b,n), then a statement within
the then block corresponds to the pair (b1, n#m). A statement within the else
block corresponds to the pair (b2, n#m). In both cases, m is a numeral denoting
the order of the statement within the block.

In order to facilitate the definition of the transformation from Z to CHR, we
need some terminology to succinctly talk about CHR programs with state con-
straints. We start with two properties of these constraints.

In the sequel, if m and n are numerals, then m,, is the numeral denoting the
number [m] + [n], where [z] is the number denoted by the numeral x.

Definition 2. Let P be a CHR program and let s = state(b,n) be a constraint
in P.

1. sis terminal if there is a rule r = Hy \ s, Hy <=> C' | B in P, such that no
state constraints appear in B. Such a rule r is a terminal rule.

2. s is maximal if n = wv, where v is the longest numeral suffix of n, and
for every other constraint state(d’,u/v’) in P, with v/ the longest numeral
suffix of v/v’; b is a substring of ¥’ and either v is a proper substring of u’ or
uw=1u"and [v] > [v'].

It is easy to show that if a CHR program has a maximal constraint, then it is
unique.

Definition 3. In what follows P, P1 and P2 are CHR programs, b € X,,, and
n e EB

1. The n-translation of P is the CHR program P,,, which is identical to P with
every constraint state (', n'#m) replaced by a constraint state (b', n'#m.,,).

142

2. The (b,n)-nesting of P is the CHR program (b, n)>P which is identical to P
with every constraint state (0b’,n') replaced by a constraint state (bb', n#n’).

3. The (b, n)-termination of P is the CHR program (b, n)V P which is identical
to P with every terminal rule

H, \ state(¥,n'),Hy<=> C|B

replaced by the rule
H;, \ state(',n'), Hy<=> C|B,state(b,n)

4. Let state(0,n’) be a maximal constraint in P;. The concatenation of P;
and P, is the CHR program

PloP2=(0,n)VP1U P2,

— !
where n = n/ ;.

3.3 The Z-CHR Transformation

We can now give the mapping from Z to CHR programs a more formal guise,
defining it as a system 7 of functions from syntactic Z constructs to syntactic
CHR constructs.

Definition 4. An Z-CHR transformation is a quadruple 7 = (N, V, &, F),
where

— N is an injection from the set of Z identifiers into the set of CHR constants.

— V is an injection from the set of Z identifiers into the set of CHR variables.

— & is an injection from the set of Z expressions into the set of CHR expres-
sions, such that £(e) is similar to e with every identifier replaced by V(x),
every constant replaced by the equivalent CHR constant, and every operator
replaced by the equivalent CHR operator.?

— F : 7 — CHR is an injection defined recursively as shown in Figure 2.

The following proposition states some syntactic properties of CHR programs
resulting from the above transformation.

Proposition 1. In what follows P is an T program and (b,n) € Earm X Eg.

1. Every rule in F(P) has exactly one state constraint in the head and at most
one different state constraint in the body.

2. Every state constraint occurring in F(P) occurs in the head of at least one
rule.

3. F(P) has a unique mazimal constraint.

2 Note the implicit, yet crucial, assumption here. We are assuming that there are
constant- and operator- bijections between Z and CHR.

143

In what follows, x is an Z identifier, e is an Z expression, and V is a (possibly empty)
conjunction of CHR constraints of the form var (N (y),V(y)), one for each identifier y
occurring in e.

1. F(dt x;) = {state(0,0) <=> var(N(z), Default(dt))}
where Default(dt) is the default value for the Z data type dt.

2. F(z=e;) ={V \ state(0,0), var(N(z),_) <=> V(x)=E(e), var(N(z),V(z))}

3. F(if e {P1} else {P>}) = (01,0) > F(P1) U (02,00 > F(P2)U S

where S = {V \ state(0,0) <=> £(e) | state(01,040),
V \ state(0,0) <=> \+&(e) | state(02,0#0) }

4. F(while e {P}) = (0,0)V((0,0) > F(P))US

where S = {V \ state(0,0) <=> £(e) | state(0,0#0),
V \ state(0,0) <=> \+&(e) | true}

5. F(P1P) = F(Pr) o F(P2)

Fig. 2. Definition of the function F from 7 to CHR programs

Note that, had the last statement of the proposition been false, case 5 in Fig-
ure 2 would not have made sense. The following important result follows from
Definition 4 and Proposition 1.

Theorem 1. Let P be an T program. If G is a state containing a single state
constraint that occurs in F(P), then exactly one rule in F(P) is applicable to

G.
Corollary 1. If P is an T program, then F(P) is confluent.

Corollary 2. If P is an T program and state(0,0) ’_)j"-'(P) G, then G contains
at most one state constraint.

Given Corollary 1, we will henceforth denote the unique final state of F(P)
when started in state G by [F(P)](G). Note that, given Proposition 1, [F(P)]|(G)

contains no state constraints.

Proposition 2. In what follows P is an I program, (b,n) € Earu X E]S, and G
18 a state containing no state constraints.

1. [F(P)4n)(G Astate(0,n)) = [F(P)](G Astate(0,0)), for any numeral n.

2. [(b,n) > F(P)](G A state(b,n#0)) = [F(P)](G A state(0,0)).

3. [(b,n)VF(P)(G A s) = [F(P)](G A s) A state(b,n), where s is a state
constraint that occurs in F(P).

Intuitively, P is equivalent to F(P) if they have the same effect; that is, if they
map equivalent states to equivalent states.

144

Definition 5. Let 7 = (M, V, &, F) be an Z-CHR transformation.

1. An 7T store o is equivalent to a CHR state GG, denoted o = G, whenever
o(x) = v if and only if G = G’ A var(N(z),v), where G’ is a state that
contains no state constraints.

2. An 7 configuration v is equivalent to a CHR state G, denoted v = G, if
either v = (P,0) and G = G’ A state(0,0) where c =G, or vy =0 =G.

3. An 7 program P is equivalent to a CHR program Ps, denoted P, = P, if
for every o and G where (Py,0) = G, [P1](0) = [P](G).

Theorem 2. For every I program P and every I-CHR transformation T =
N,V EF), P=F(P).

Proof. See the appendix.

4 Methodology for the Conversion of Imperative
Algorithms to CHR

In this section, we will informally discuss the methodology to convert an al-
gorithm written in a mini imperative programming language, called Z, to an
equivalent CHR program.

The basic features of the language 7 are:

— Variable declaration and assignment

— Alternation using the if-then-else commands
— Iteration using the while-do command

— Fixed-size arrays

In the following, we present the implementation of each of these features of
imperative programming with the intent of implementing an equivalent program
in CHR.

4.1 Variable Declaration

In order to create a storage location for a variable, whenever one is declared, a
constraint is added to the constraint store and is given the initial value of this
variable as a parameter.

The fragment of code

int x = 0;
int y 7;

will be transformed into the following CHR rules:

rl @ state(0, 0) <=> var(x,0), state(0, 1).
r2 @ state(0, 1) <=> var(y,7).

145

The constraint var/2 is used to store the value of the variables. The head of
rule r1 describes the start of the execution of the program by using a constraint
state/1. Rule r1 replaces the first state constraint by a var/2 constraint and
a new state constraint that triggers the execution of the second rule r2.

In general, a variable declaration in an imperative programming language can
be expressed in CHR, using a simplification rule of the form:

Ccurrent <=> V; Cnezt

where Ceyrrent and Cheqr are each a constraint state/1 with a constant unique
parameter. V is a constraint used for the purpose of storing the value of the
variable being declared. A constraint V' is of the form var (variable,value).

4.2 Variable Assignment

Assigning a value to an already declared variable in CHR is quite similar to the
declaration of the variable. However, instead of adding a constraint with the
initial value of the variable, we replace the already existing constraint resulting
from the last assignment of a value to the variable with a new var constraint
with the new assignment.

The fragment of code

int x = 0; // asgl
int y = x + 3; // asg2

will be transformed into the following CHR rules:

asgl @ state(0, 0) <=> var(x,0), state(0, 1).
asg2 @ var(x,V) \ state(0, 1) <=>Y =V + 3, var(y,Y).

Rule asgl performs a variable declaration with an initial value of 0. Rule asg?2
uses the value of x to compute the value of y keeping the same information about
x in the constraint store.

A wvariable assignment in an imperative programming language can be expressed
in CHR using a simpagation rule of the form:

|4 \ Ccurrenh Vora <=> 07 Vnewa Onea:t

where V' is a conjunction of var constraints needed to calculate the new value to
be assigned. Ceyprent and Cheye are the same as in the variable declaration rule.
V14 is the constraint with the old value of the variable which is being assigned
a new value, and V., is the same constraint but passed the new value being
assigned. C' is a conjunction of built-in constraints calculating the new value
which is to be assigned. In case the new value being assigned does not depend
on values of other variables, both V' and C are discarded from the rule and it
becomes a simplification rule.

146

4.3 Alternation

For the fragment of code

int a = 10; // declaration
if(a % 2 == 0)

a=a *x 2; // statement 1
else

a=a/ 2; // statement 2

the statements declaration, statement 1, and statement 2 are transformed
into the following CHR rules:

declaration @ state(0, 0) <=> var(a,10), state(0, 1).
statementl @ state(01, 1#0), var(a,A) <=> NewA = A * 2, var(a,Newh).
statement2 @ state(02, 1#0), var(a,A) <=> NewA = A // 2, var(a,NewA).

To allow the CHR program to choose whether to execute statement1 or statement?2
after the declaration, we add two rules that are responsible for this choice.

gotol @ var(a,A) \ state(0, 1) <=>

Tmp = A mod 2, Tmp = O | state(01, 1#0).
goto2 @ var(a,A) \ state(0, 1) <=>

Tmp = A mod 2, \+(Tmp = 0) | state(02, 1#0).

Alternation in imperative programming, achieved using if-then-else expres-
sions can be expressed in CHR using two simpagation rules of the form:

% \ Ccurrent <=>C | Cifbranch
Vv \ Ccurrem‘, <=>-C ‘ Celsebranch

where V' is a conjunction of var constraints needed to evaluate the condition
of the if-then-else expression. Ceyrrent is the state constraint holding the
current state, the state that an if-then-else expression is to be executed.
Cifbranch is a state constraint indicating that the next state is the beginning
of the body of the if block. Cesepranch 1S @ state constraint indicating that
the next state is the beginning of the body of the else block. C'is a guard that
evaluates the condition of the if statement and —C'is a guard that evaluates to
the negation of C.

4.4 Tteration
Consider the following code fragment

int a = 0; // declaration
while(a < 10)
a=a+ 1; // while block

The statements declaration and while block are transformed into the follow-
ing CHR rules:

147

declaration @ state(0, 0) <=> var(a,0), state(0, 1).
while_block @ state(0, 1#0), var(a,A) <=>
NewA = A + 1, var(a,NewA), state(0, 1).

To evaluate the while-do condition and add a repetition mechanism for the
block of while-do as long as this condition holds and to terminate the iteration
otherwise, we add the following rules:

continue @ var(a,A) \ state(0, 1) <=> A < 10 | state(0, 1#0).
terminate @ var(a,A) \ state(0, 1) <=> \+(A < 10) | true.

Iteration in imperative programming, achieved using while-do expressions, can
be expressed in CHR using the following rules:

V \ Cstartwhile <=>(C l Cewecutebody
V \ Cstartwhile <=> _‘C ‘ Cterminatewhile

where V' is a conjunction of var constraints needed to evaluate the condition
of the while-do expression. Csiqrtwhile 1S @ state constraint holding the cur-
rent state, the state indicating that a while-do expression is to be executed.
Cezecutebody 1S @ state constraint indicating that the next state is the beginning
of the body of the while block. Cierminatewnile 1S @ state constraint indicating
that the next state is the beginning of the code following the while-do ex-
pression, i.e. the termination of the while-do expression. Copgwniie 1S @ state
constraint indicating that the block of the while-do has ended and that the
condition of the loop needs to be checked again. C' is a guard that evaluates the
condition of while-do and —C' is a guard that evaluates to the negation of C.

4.5 Arrays

To simulate arrays in CHR, we represent them using lists and make use of built-
in constraints to either access or modify an element of the list. We assume the
existence of the predicate nthO(N, List, Element) that holds if Element is the
Nth value of the list List.

Given nth0/3, an access to an array element of the form x = a[3] is performed
in CHR using a rule of the form:

arraysRl @ var(a,A) \ state(B, N), var(x,_) <=>
nth0(3, A, Element), var(x,Element), state(B, N+1).

where A is the list containing the values of the array. arraysR1 is written ac-
cording to the rule for variable assignment except that nth0/3 is used to obtain
the value of the element to be assigned to x.

We also add the following implementation of replace0/4 to allow for array
element assignment:

replace0O(List, Index, Value, Result):-
nthO(Index, List, _, Rest), nthO(Index, Result, Value, Rest).

148

replace0/4 makes use of nthO(N, List, Element, Rest), which behaves sim-
ilarly to nth0/3 except that Rest is all elements in List other than the Nth
element. The resulting predicate replace0/4 sets the element at index Index
of List to the value Value and gives the list Result as the new list with the
modified element.

We then represent an assignment of the form a[3] = x using a CHR rule of the
form:

arraysR2 @ var_x(X) \ state(B, N), var(a,A) <=>
replaceO(A, 3, X, NewA), var(a,NewA), state(B, N+1).

arraysR2 is written according to the rule for variable assignment except that
replace0/4 is used to obtain the new list NewA which is the new status of the
variable a.

Ezample 1. The following imperative code fragment finds the minimum value in
an array a of length n and stores it in a variable min:

int temp; int min; int i;

min = al[0];

i=1;

while(i<n){
temp = alil;
if (temp<min){

min = temp;
}
i = i+1;

3

Note that there are no declarations for both a and n as they are expected to be
given as input to the program.

Using the conversion method represented above, the following CHR rules are
generated.

minl @ state(0, 0) <=> var(temp,0), state(0, 1).

min2 @ state(0, 1) <=> var(min,0), state(0, 2).

min3 @ state(0, 2) <=> var(i,0), state(0, 3).

min4 @ var(a,A) \ state(0, 3), var(min,MIN) <=>
nth0(0,A,Newmin), var(min,Newmin), state(0, 4).

min5 @ state(0, 4), var(i,I) <=> Newl = 1, var(i,NewlI), state(0, 5).
min6é @ var(i,I), var(n,N) \ state(0, 5) <=> (I < N) | state(0, 5#0).
min7 @ var(i,I), var(an,N) \ state(0, 5) <=> \+(I < N) | true.
min8 @ var(i,I), var(a,A) \ state(0, 5#0), var(temp,TEMP) <=>

nthO(I,A,NewTemp), var(temp,NewTemp), state(0, 5#1).
min9 @ var(temp,TEMP), var(min,MIN) \ state(0, 5#1) <=>
(TEMP < MIN) | state(O01, 5#1#0).
minl0 @ var(temp,TEMP), var(min,MIN) \ state(0, 5#1) <=>
\+(TEMP < MIN) | state(0, 5#2).

149

minll @ var(temp,TEMP) \ state(01, 5#1#0), var(min,MIN) <=>
NewMIN = TEMP, var(min,NewMIN), state(0, 5#2).
minl2 @ state(0, 5#2), var(i,I) <=> NewI = I + 1, var(i,NewI), state(0, 5).

To run the CHR program, the following goal is used to pass the necessary con-
straints and trigger the first rule:

var(a, A), length(A, N), var(n, N), state(0, 0).

5 Conclusion and Future Work

The context of this paper was a presentation of a conversion methodology to gen-
erate rule-based programs from imperative programs. Given a proof of equiva-
lence between both programs, it can be implied that both programs will function
alike. The purpose of this generation is to use the rule-based programs in proving
properties such as correctness and confluence, which subsequently proves these
properties for the imperative programs. We selected CHR as a rule-based lan-
guage due to the existence of results for proving several properties of programs.
There are several implementations of global constraint solvers which are of an im-
perative nature. An additional use for the implemented conversion methodology
could be to automatically generate solvers for these global constraints instead
of their manual implementation. The benefit of this conversion is to exploit the
flexibility and expressivity of CHR.

An interesting direction for future work is to investigate how the proposed ap-
proach can be combined with previous approaches, e.g. [3,4]. To improve the
efficiency of the generated solvers the set of rules should be reduced. The oper-
ational equivalence results of CHR programs [1] can be applied to find out the
redundant rules. However, in most of the cases, the rules are not redundant but
they can be reduced by merging two or more rules in one.

References

1. S. Abdennadher and T. Frithwirth. Operational equivalence of CHR programs and
constraints. In 5th International Conference on Principles and Practice of Con-
straint Programming, CP99, LNCS 1713, 1999.

2. G. D. Plotkin. A structural approach to operational semantics. Technical report,
Aarhus University, 1981.

3. F. Raiser. Semi-automatic generation of chr solvers for global constraints. In 14th
International Conference on Principles and Practice of Constraint Programming,
2008.

4. 1. Sobhi, S. Abdennadher, and H. Betz. Constructing rule-based solvers for
intentionally-defined constraints. In Special Issue on Recent Advances in Constraint
Handling Rules. 2008.

150

Appendix: Proof of Theorem 2

Let o be an Z store and let G = G’ A state(0,0) be a CHR state, such that
(P, o) = G. Given Definition 5, it suffices to show that [P](c) = [F(P)|(G). We
shall prove this result by structural induction on the structure of P.

Basis. We have two base cases.

1. P=dt z;
Given the semantics of Z, [P](c) = g%~ Pefault(d) By Definition 4,

[F(P)(G) = G' Avar (N (z), De fault(dt)}

It follows from Definition 5 that [P](o) = [F(P)|(G).

2. P=z=c¢;
From the semantics of Z, [P](¢) = o ~l1”. By Definition 4, if G’ = G" A
var(V(z),o(x)) then

[F(P)|(G) = G" Avar (N (z), [E(e)])

Since (P, o) = G, it follows that, for every identifier y in e, var (N (y), o(y))
is a constraint in G”. Hence, given the conjunction V' of constraints in the
head of the only rule in F(P) (case 2 in Figure 2), the variable V(y) is bound
to o(y), for every identifier y in e. Thus, from the definition of &, it follows
that [e]” = [€(e)]¢. Consequently, [P](c) = [F(P)](G).

Induction hypothesis. P, and P are Z programs with P, = F(P;) and
PQ = .7:(P2)

Induction step. We have three recursive rules in the definition of P.

1. P=1if e {P,} else {P»}
Suppose that [e]? is true. In this case, [P](c) = [P;](o) as per the operational
semantics of Z. Now, consider the rule

V' \ state(0,0) <=> £(e) | state(01,0#0)

in F(P) (case 3 in Figure 2). Similar to case 2 in the proof of the basis,
[e]o = [E(e)]€. Thus, the above rule is applicable to G. Furthermore, from
Theorem 1, the above rule is the only rule applicable to G. Hence, G' +— #(p)
G4, where

G1 = G A state(01,0#0)

Since the set of state constraints occurring in (01,0)>F(P;) is disjoint from
the set of state constraints in the rest of F(p), and since state(01,0#0)
occurs in (01,0) > F(P;), then

[F(P)(G) = [F(P)|(G1) = [(01,0) > F(P1)](G1) (1)

151

From Proposition 2 it follows that
[(01,0) > F(P)](G1) = [F(P)](G" A state(0,0))

But G’ A state(0,0) = G. Therefore, given (1), [F(P)|(G) = [F(P)](G).
From the induction hypothesis it follows that

[F(P)I(G) = [P1](0) = [P](0)
The proof is similar, mutatis mutandis, in case [e]? is false.
. P=vwhilee {P}
We prove the equivalence by induction on the number ¢ of iterations of the
loop. If i = 0, then it must be that [e]” is false. According to the semantics
of I, [P](c) = 0. We can show (in a fashion similar to that of proving case
2 of the basis) that [e]” = [€(e)]¢. Thus, the only rule in F(P) applicable
to G is the rule

V \ state(0,0) <=> \+&(e) | true

Since this is a terminal rule, then [F(P)](G) = G'. By Definition 5, G' = 0.
Thus, [P](0) = [F(P))(G).

As an induction hypothesis, suppose that whenever o is such that i = k,
[P](0) = [F(P)|(G). Now, let o be a store, such that i = k+ 1. Clearly, [e]?
is true. Thus, [P](c) = [P]([1](0)), where [P1](0) is a store for which i = k.
It could be shown that [E(e)]]G [e]?. Thus, the only rule in F(P) applicable
to G is the rule

V \ state(0,0) <=> £(e) | state(0,0#0)
Thus, G — xpy G1, where

G1 = G’ A state(0,0#0)

Now, state(0,0) is the only state constraint occurring both in (0,0) v((0,0)>
F(Py)) and the rest of F(P). Moreover, according to the definition of v,
state(0,0) occurs only in the bodies of rules in (0,0)V((0,0) > F(Fy)).
Hence,

[F(P)(G) = [F(P)(G1) = [F(P)]([€0,00v(€0,0) > F(P))I(G1)) (2)

From Proposition 2 it follows that

[€0,0)V((0,0) > F(P1))|(G1) = [F(P1)](G' A state(0,0)) A state(0,0)
But G’ A state(0,0) = G. Therefore, given (2), it follows that

[F(P)(G) = [F(P)([F(P)](G) A state(0,0)) (3)
By the induction hypothesis, [F(Py)](G) = [P1](o). Thus, from Definition 5,
[F(P))(G) A state(0,0) = (P, [P](0)). Since [P;](0) is a store for which

i = k then [Pl(0) = [P([P)(0)) = [F(P(F(PI(G) A state(0,0)).
Consequently, given (3), [P](o) = [F(P)|(G).

152

3. P=P P,
Let state(0,n’) be the unique maximal constraint in F(P;). Given Def-
inition 3, state(0,0) occurs only in the head of a rule in (0,n) VF(P),
where n = n/, ;. The only constraint occurring both in (0,n) VF(P;) and
F(Ps2)4n is state(0, n). However, it only occurs in the bodies of rules of
(0,n) VF(Py). Hence,

[F(P)G) = [F(P)I([C0,m) VF(P))(G)) (4)
By Proposition 2,

[0,) VF(P)](G) = [F(P)|(G) A state(0,n)

Hence,
[F(P(G) = [F(P)([F(P)(G) A state(0,n)) (5)

Now, the constraint state (0,n) occurs only in the head of rules in F(Py) .
In addition, other state constraints in F(P2)4, do not occur elsewhere in
F(P). Hence,

[F(P)([F(P)](G) A state(0,n)) = [F(Ps)n] (F(P)](G) A state(0,n))

By Proposition 2,

[F(P2)4n]([F(P1)](s) Astate(0,n)) = [F(P)]([F(P1)|(G) A state(0,0))
From (5) it follows that

[F(P)G) = [F(P)I([F(P))(G) A state(0,0))
) =

But, given the induction hypothesis, [F(P1)](G) = [P1](o). Thus, from Defi-
nition 5, [F(P1)](G) Astate(0,0) = (P, [P1](0)). It, thus, also follows from
the induction hypothesis that

[F(P)G) = [Po]([P1](0))

Hence, given the semantics of Z,

[F(PNG) = [P)o)
O

Acknowledgments. We would like to thank Abdellatif Olama for preliminary
work done in the same field.

153

Persistent Constraints in Constraint Handling
Rules

Hariolf Betz, Frank Raiser, and Thom Frithwirth

Faculty of Engineering and Computer Sciences, Ulm University, Germany
firstname.lastname@uni-ulm.de

Abstract. In the most abstract definition of its operational semantics,
the declarative and concurrent programming language CHR is trivially
non-terminating for a significant class of programs. Common refinements
of this definition, in closing the gap to real-world implementations, com-
promise on declarativity and/or concurrency. Building on recent work
and the notion of persistent constraints, we introduce an operational se-
mantics avoiding trivial non-termination without compromising on its
essential features.

1 Introduction

Constraint Handling Rules [1] (CHR) is a declarative, multiset- and rule-based
programming language suitable for concurrent execution and powerful program
analyses. Several operational semantics have been proposed for CHR [1], situated
between an abstract and an implementation level.

The most abstract operational semantics — constituting the basis for most
other variants — is called the “very abstract” operational semantics and denoted
as Wyq. It is firmly rooted in first-order logic, defining a state transition system
but providing no execution model. Hence, it is oblivious to termination issues,
unfavorably causing the class of rules known as propagation rules to induce trivial
non-termination.

The de-facto standard in avoiding trivial non-termination is set by the op-
erational semantics wy [1], providing the basis for most available CHR imple-
mentations. In wy, every propagation rule is applicable only once to a specific
combination of constraints, thus avoiding trivial non-termination. This is real-
ized by keeping a propagation history — also called token store — in the program
state.

On the downside, token stores break with declarativity: Two states that
differ only in their token stores may exhibit different operational behaviour while
sharing the same logical reading. Therefore, we consider token stores as mon-
declarative elements in program states. The propagation history also hinders
effective concurrent execution of CHR programs, as it has to be distributed
adequately.

With concurrency in mind, [2] defines operational semantics based on sets
rather than multisets, which effectively avoids trivial non-termination without

155

recurring to token stores. With nine transition rules, however, the resulting state
transition system is unusually complex, thus reducing clarity and complicating
formal proofs. Furthermore, abandoning multiset semantics is a severe break with
existing approaches and the presence of non-declarative elements remains. No-
tably, the authors of [2] reckon that any “reasonable [multiset-based] semantics”
for CHR requires a propagation history. This work is proof to the contrary.

Recent work on linear logical algorithms [3] and the close relation of CHR to
linear logic [4] suggest a novel approach: we introduce the notion of persistent
constraints to CHR, a concept reminiscent of “banged” propositions in linear
logic. Persistent constraints provide a finite representation of the results of any
number of propagation rule firings. Furthermore, we explicitly define our state
transition system as irreflexive. It shows that, in combination, these ideas solve
the problem of trivial non-termination.

Building on earlier work in [5], we thus develop the operational semantics wy
for CHR in this work. As opposed to existing approaches, it achieves a high
degree of declarativity whilst preserving the potential of w,, for effective con-
current execution. Its state transition system requires only two rules, such that
each transition step corresponds to a CHR rule application, thus facilitating
formal reasoning over programs.

In Section 2 we introduce CHR and present its operational semantics wy,
and w;. We then introduce wy and discuss its properties in Section 3, before
comparing it to other approaches in Section 4. Finally, in Section 5 we conclude
and consider possible directions of future work.

2 Preliminaries

This section introduces CHR and its two most important operational semantics.
A complete listing of available operational semantics is given in [6]. In this work,
we concentrate on the so-called wvery abstract operational semantics w,, and
theoretical operational semantics w;. A refined variant of the latter — introduced
in [7] and denoted as w, — reduces several sources of non-determinism and is the
de-facto standard for CHR implementations.

The very abstract operational semantics w,, is the semantics with the sim-
plest state definition and fewest restrictions on rule applications. We introduce
it in Section 2.2 before presenting its refinement into the theoretical operational
semantics w; in Section 2.3.

2.1 The Syntax of CHR

Constraint Handling Rules distinguishes between two kinds of constraints: user-
defined (or simply CHR) constraints and built-in constraints. The latter are pro-
cessed by a predefined solver implementing a complete and decidable constraint
theory C7.

CHR itself is an advanced rule-based rewriting language. Its eponymous rules

are of the form
r@ Hl\HQ &G ‘ Bc,Bb

156

where H; and Hs are multisets of user-defined constraints, called the kept head
and removed head, respectively. The guard G is a conjunction of built-in con-
straints and the body consists of a conjunction of built-in constraints By, and a
multiset of user-defined constraints B.. The rule name r is optional and may be
omitted along with the @ symbol.

Intuitively speaking, a rule is applicable, if a part of the current state can be
matched to all head constraints such that the guard is satisfied. Application of a
rule removes from the state the constraints matched to Hy and adds the guards
and the body constraints to the state. In this work, we put special emphasis on
the class of rules where Hy = (), called propagation rules. Propagation rules can
be written alternatively as H; = G | B, By.

2.2 Very Abstract Operational Semantics

The very abstract operational semantics wy,, [1] is the most general specifica-
tion of an operational semantics for CHR. Its state definition only contains one
component and the transition system is given by a single rule.

Definition 1 (w,.-State).
A wyg-state 0,4 = (C) is a conjunction C of built-in and CHR constraints.

The only allowed state transition in w,, is the application of a CHR rule.

Definition 2 (w,,-Transition). Let r @ Hy \ Hy < G | B be an instance of a
rule v € P with new local variables T and CT |=VY(G — 3z.G). Then

(Hy NHy ANG) —,,, (HHANGANBAG)

Note that the above definition, based on instantiation of rules, requires all
arguments of constraints in H; and Hs to be variables. Ground terms can be
realized by an equality constraint in the guard, and similarly, multiple occur-
rences of the same variable are not allowed, but have to be realized via guard
constraints. This restriction simplifies the formulation of w,,,, but it also makes
for less elegant programs. Most derived operational semantics — including wy,
wset, and wy discussed herein — avoid this restriction.

An inherent problem of w,, is its behavior with respect to propagation rules:
If a state can fire a propagation rule once, it can do so again and again, ad
infinitum. In the literature, this problem is referred to as trivial non-termination
of propagation rules.

2.3 Theoretical Operational Semantics

The theoretical operational semantics w; [1,6] is based on the idea of using a
token store to avoid trivial non-termination. Under w;, a propagation rule can
only be applied once to each combination of constraints matching the head.
Hence, the token store keeps a history of fired propagation rules, which is based
on constraint identifiers.

157

Definition 3 (Identified CHR Constraints).

An identified CHR constraint c¢#i is a CHR constraint ¢ associated with a
unique integer i, the constraint identifier. We introduce the functions chr(c#i) =
¢ and id(c#i) = i, and extend them to sequences and sets of identified CHR
constraints in the obvious manner.

The definition of a CHR state in w; is more complicated, because identified
constraints are distinguished from unidentified constraints and the token store
is added [1].

Definition 4 (w;-State).

A wy-state is a tuple of the form (G,S,B,T)Y where the goal (store) G is
a multiset of constraints, the CHR, (constraint) store S is a set of numbered
CHR constraints, the built-in (constraint) store B is a conjunction of built-in
constraints. The propagation history (or token store) T is a set of tuples (r,I),
where 1 is the name of a propagation rule and I is an ordered sequence of the
identifiers of constraints that matched the head constraints of r in a previous
application of r. Finally, the set V of global variables contains the variables that
occur in the initial goal.

This state definition entails a more complicated transition system, consisting
of the following three types of transitions:

Definition 5 (w;-Transitions).

1. Solve. ({c} ¥ G,S,B,T),) —,, (G,S,B,T)
where ¢ is a built-in constraint and CT =V ((c AB) < B’).

2. Introduce. ({c}WG,S,B,T), —., (G,{c#n}US,B,T), .,
where ¢ is a CHR constraint.

3. Apply. (G, HHUH,US,B, T)Y »,, (BWG, H;US, chr(H,) = H| Achr(H,) =
HYNGAB,TU{(r,id(Hy) +id(H2))}))
where r @ H{ \ Hy < G | B is a fresh variant of a rule in P with fresh
variables variables T such that CT = 3(B) AV(B — 3z(chr(Hy) = Hi A
chr(Hy) = H, AG)) and (r,id(Hy) + id(H)) € T.

By construction, w; restricts the number of applications of a propagation rule
for each given combination of head constraints to one. This stands in contrast
to its declarative reading as well as its execution under w,,, where a propa-
gation rule may be applied any number of times. The w;-state also contains
non-declarative elements: the set of identified CHR constraints, the propagation
history, and the integer n used for identification.

3 Operational Semantics with Persistent Constraints

We now introduce our proposal for an operational semantics wy with persistent
constraints. It is based on three important ideas:

158

1. In wye, the body of a propagation rule can be generated any number of times
given that the corresponding head constraints are present in the store. In
order to give consideration to this theoretical behavior while avoiding trivial
non-termination, we introduce those body constraints as so-called persistent
constraints. A persistent constraint can be regarded as a finite representation
of a very large, though unspecified number of identical constraints. For a
proper distinction, constraints that are non-persistent are henceforth called
linear constraints.

2. Not only the bodies of propagation rules can be generated indefinitely many
times in wy,. Consider the following program:

rl @ q(X) = b(X)
12QHX) & ¢X)

If executed with a goal a(0), this program can generate an arbitrary number
of constraints of the form b(0). As a consequence of this, it can also gen-
erate arbitrarily many constraints ¢(0). To take these indirect consequences
of propagation rules into accout, we introduce a rule’s body constraints as
persistent, whenever its removed head can be matched completely with per-
sistent constraints.

3. As a persistent constraint represents an arbitrary number of identical con-
straints, we consider several occurences of a persistent constraint as idempo-
tent. We now adapt our execution model such that a transition takes place
only if the post-transition state is not equivalent to the pre-transition state.
By the thus irreflexive transition system, we avoid trivial non-termination of
propagation rules.

To realize the first two ideas, we adapt the definion of states in wy with respect
to wy: The goal store G of wg-states is split into a store I of linear constraints
and a store P of persistent constraints. The components B and V of w;-states are
retained, but the token-related components S, T, and n are eliminated.

Definition 6 (w-State).

A wi-state is a tuple of the form (L,P,B,V), where L and P are multisets
of CHR constraints called the linear (CHR) store and persistent (CHR) store,
respectively. B is a conjunction of built-in constraints and V is a set of variables.

We define the notion of strictly local variables which we will apply below.

Definition 7 (Strictly local variables). Let o = (L,P,B,V) be an w state.
Then we call the variables occurring in B but not in I, P, or V the strictly local
variables of o.

To realize the third idea, we adapt the equivalence relation between wi-states.
The following definition of state equivalence is based on [5], adding condition 5
to handle idempotence of persistent constraints.

Definition 8 (Equivalence of w-States).
Equivalence between wy-states is the smallest equivalence relation = over w-
states that satisfies the following conditions:

159

1. (Equality as Substitution) Let X be a variable, t be a term and = the syn-
tactical equality relation.

(L,P,X =tAB,V) = (L[X/t],P[X/t],X =t AB,V)

2. (Transformation of the Constraint Store) If CT |= 35.B < 35'. B’ where 5,5
are the strictly local variables of B,B’, respectively, then:

(L,P,B,V) = (L,P,B',V)

3. (Omission of Non-Occurring Global Variables) If X is a variable that does
not occur in I, P or B then:

(L,P,B,{X} UV) = (L,P,B, V)
4. (Equivalence of Failed States)
<H45]:P)’ J‘? V> = <L/7 P,7 J‘? Vl>

5. (Contraction)
(L,P¥ PWP,B,V) = (L,P P,B,V)

Based on this definition of state equivalence, we define CHR as a rewrite
system over equivalence classes of states. Let X be the set of all wy-states, then
the transition relation —,, satisfies —,, C (X/=)x(X/=). Note that we use the
term state interchangably to denote wi-states per se, as well as equivalence classes
over such states. As discussed above, we require that a post-transition state 7
needs to be different to the pre-transition state o, thus making the transition
relation irreflexive.

Definition 9 (w-Transitions).
r@ (H'wHY)\(HYWHY)) < G| BBy, HY#0 o#7

o=[(HlwH WL H & HHWP,G AB,V)]
= (HiWB. WL, H W HYWP,GABA By, V)] =7

rQ (HiwH)\H) < G| B.,By, o#
o=[(HI WL, H' WwHY W P,G AB,V)]
= (HLWL, HY W HY W B.WP,GABA By, V)] =7

Note that in a concurrent environment, the second inference rule can be
executed without any restrictions: As persistent constraints cannot be removed
by other rule applications every process can independently use them to fire rules.
The first inference rule can be executed concurrently, if is is guaranteed, that
rule applications do not interfere, in the manner described in [8].

160

3.1 Termination Behavior

Our proposed operational semantics w) results in a termination behavior different
from w; and w,,. Compared to w,,, the problem of trivial non-termination is
solved in wy. In comparison with w;, we find that there exist programs that
terminate under wy but not under wy, and vice versa.

Ezample 1. Consider the following straightforward CHR program for computing
the transitive hull of a graph represented by edge constraints e/2:

tQe(X,Y),e(Y,Z2) = e(X,Z)

Due to the presence of propagation rules, this program is not terminating
under wy,,. Under wy, termination depends on the initial goal: It is shown in
[9] that this program terminates for acyclic graphs. However, goals containing
graphs with cycles, like ((e(1,2),e(2,1)),0, T, @}8, result in nontermination.

When executed under wy, the previous goal terminates after computing the
transitive hull.

({e(1,2),e(2,1)},0,T,0)
=g ({e(1,2),e(2,)} {e(1, 1)}, T,0)
—5 ({e(1,2),e(2, 1)}, {e(1, 1), (172)’6(271)’6(272)}7?@ s

In fact, we can show that the above program terminates under w; for all
possible inputs.

Proposition 1. Under wi, the transitive hull program terminates for every pos-
sible input.

Proof. The only rule t propagates e constraints, which are necessarily persistent.
The propagated constraints contain only the arguments X, Z, already recieved
as parameters. Hence, no new arguments are introduced. Any given initial state
contains only a finite number of arguments. Therefore, only finitely many dif-
ferent e constraints can be built from these arguments. As rule application is
wrreflexible, the computation therefore has to stop after a finite number of tran-
sition steps. O

Ezxample 2. Consider the following exemplary CHR program:

rl Qa = b
12Qc¢(X),b & (X +1)

The above program terminates under w; and w,: There can only be a finite
number of a-constraints in the initial goal, hence rule r1 only creates a finite
number of b-constraints. This, in turn, allows only a finite number of increments
being made by rule 2.

In contrast, our proposed semantics w; results in the above program being
non-terminating, as the following infinite derivation shows:

({a,c(X)},0, T, {X})

—0 ({a,e(X)} {0}, T.{X})
—0 ({a,e(X + 1)}, {b} TAXD
—72 ({a,ce(X +2)}, {0}, T, {X}) =12 ...

161

3.2 Limitations of the current approach

The approach specified in this work entails a significant discrepance w.r.t. wy,
when fresh variables are introduced in rule bodies. For example, consider the

following program:
rlQa = b(X)
12Qb(X),b(X) & ¢

If executed with the initial goal a, this program would cause the following infinite
derivation under w,,:

(a)
—n. (@ AD(X"))
s rl <a/\ b(X/) /\b(X”)> sl

Wya Wya 7

The variables X', X", ... each are explicitly distinct from each other and from
the variable X which occurs in the rule body. Thus, it is not possible to derive
the constraint ¢ from goal a under wy,.

Under wy, however, the following derivation is possible:

({a},0,T,0)
—0 ({a}, (X))} T,0) = ({a}, {b(X"),b(X")}, T, 0)
—0 ({ad, {b(X"), ¢}, T,0) = ({a}, {b(X"),b(X"), ¢}, T, 0)

Therefore, the current formulation of the operational semantics wy for CHR
is only applicable to range-restricted programs, i.e. rules that do not introduce
new variables in their bodies.

4 Related Work

In [2] the set-based semantics wgse; has been introduced. Its development was,
amongst other considerations, driven by the intention to eliminate the propaga-
tion history. Besides addressing the problem of trivial non-termination in a novel
manner, it reduces non-determinism in a way closely resembling w;..

Similarly to w;, a propagation rule is only fired once for a possible matching
in wger. Unlike wy, however, additional single firings are possible in wge;. These
depend on the further development of the built-in store. Nonetheless, there re-
mains a limit on the number of rule firings.

Our approach to eliminate trivial non-termination consists of the combination
of two essential components: an irreflexive state transition system and persistent
constraints. Using irreflexivity for termination is a straightforward consequence
of adding persistent constraints. The separation of propositions, or constraints,
into linear and persistent ones was inspired by the work on linear logical algo-
rithms in [3]. CHR differs significantly from linear logical algorithms, because
of its support for built-in constraints, their underlying constraint theory and
interaction with user-defined constraints.

Figure 1 relates the different operational semantics for CHR in a hierarchical
order. At the root, we have the abstract semantics w,, from which the other

162

semantics are derived. The operational semantics w; introduces token stores to
solve the trivial non-termination problem. Numerous extensions of it have been
published [6], as indicated by a dotted elements in the figure. In particular, the
operational semantics w, [7] is an important specialization of wy, as it is the
foundation of most existing CHR implementations. Again, numerous extensions
apply to w;-.

In the right-hand column, we have placed wset, which, is another special-
ization of w,,. Having identified shortcomings of the token store approach, the
authors of [2] give a set-based operational semantics for CHR instead.

By placing our approach into the middle column, we emphasize that it is
a distinct approach to the trivial non-termination problem. The remaining en-
tries in Figure 1 under the category of persistent semantics indicate that w, —
analogously to w; — can serve as the basis for a multitude of extensions and
implementation-specific variants.

Abstract

Token store Persistent Set
Semantics Semantics Semantics

Fig. 1. Relations between Operational Semantics of CHR

The benefits of wy in comparison with the other cited approaches are sum-
marized in Figure 2. In the following, we discuss the different evaluation criteria
and the corresponding results given in Figure 2.

Termination on propagation rules: While forming the basis for all other se-
mantics, w,, itself is a theoretical construct, made impractical by its triv-
ial non-termination on propagation rules. Derived semantics apply various
strategies to avoid this problem, as outlined above.

Effective concurrency: In w; and w,, the necessity to distribute token stores
constitutes an impediment to effective concurrent execution. We deem w,q,
wset, and wy effective bases for concurrent execution, as they do not introduce
auxiliary elements causing inference between rule applications.

Declarative states: In wy, w,, and wse;, program states contain elements that
have no correspondence in the declarative reading. States in wy and w,,, avoid
such non-declarative elements, thus simplifying proofs of program properties.

Number of transition rules: To varying degrees, the transition systems of
the investigated operational semantics encompass concrete execution strate-
gies. Especially in the cases of w, and wse, this makes for a large number

163

of transition rules at the expense of clarity and simplicity of proofs. Second
only to wy,, our system w; consists of only two inference rules. More im-
portantly, each transition step corresponds to an application of a CHR rule,
thus simplifying proofs of program properties.

Preservation of multiset semantics: It should be noted that the multiset
semantics is a key feature of CHR, although strictly speaking it is in contrast
with the paradigm of declaritivity w.r.t. first-order logic. It is already present
in the constitutive semantics w,, and is effectively made use of in many
programs. In this respect, wge; exerts a strong break with the tradition of
CHR that w avoids.

Reduced non-determinism: The refined semantics w, and the set-based se-
mantics wge; significantly reduce the inherent non-determinism of CHR:
Firstly, they determine that rules are to be tried for applicability in tex-
tual order. Secondly, they fix the order in which CHR constraints are tried
to match to the rules. Our semantics wy, along with w,, and wy, is distinctly
non-deterministic. Nonetheless, it leaves open the possibility of restricting
non-determinism, analogously to w, reducing the non-determinism of w;.
However, this comes at the cost of additional transition rules and possibly
introducing non-declarative elements into states.

[woa]wi]wr|wset|w]

Termination on propagation rules: || - |+ |+ | + |+
Effective concurrency: + | -1-|+ [+
Declarative states: +|-1-1 - [+
Number of transition rules: 113|719]2
Preservation of multiset semantics:|| + |+ |+]| - |+
Reduced non-determinism: S [Y TR

Fig. 2. Comparison of the different operational semantics

5 Conclusion and Future Work

For this work, we investigated the extent to which several desirable features are
found in the most prominent operational semantics of CHR. As Figure 2 shows,
each semantics displays certain limitations for specific fields of application. In-
spired by linear logic, we introduced the concept of persistent constraints to
CHR. Building on earlier work in [5], we proposed a novel operational seman-
tics wy that provides a better trade-off between the most significant features.
The transition system of w consists of two rules, such that each transition di-
rectly corresponds to a CHR rule application. Its irreflexive formulation straight-
forwardly solves the trivial non-termination problem. Furthermore, all elements

164

of wy-states correspond to the declarative reading of states. Both properties facili-
tate formal proofs of program properties and hence are advantageous for program
analysis.

Concerning concurrency, wy inherits the suitability for concurrent execution
from w,,,. In this respect, persistent constraints have a clear advantage over token
stores: As they do not hinder rule applications, their distribution is not critical
and less synchronization is required.

Our proposed operational semantics wy displays a termination behavior differ-
ent from the commonly used operational semantics w;. The classes of programs
terminating under wy and w; do not contain each other. Hence, either semantics
may be more favorable, depending on the application. Also, in its current for-
mulation, wy is only applicable to range-restricted CHR programs — a limitation
we plan to address in the future.

Furthermore, we intend to formulate and prove clear statements on the sound-
ness and completeness of our semantics with respect to w,, and to further investi-
gate the differing termination behavior between wy and other semantics. Finally,
as wy is the basis for numerous extensions to CHR, [6], we plan to investigate the
effect of building these extensions on w; instead.

References

1. Frithwirth, T.: Constraint Handling Rules. Cambridge University Press (2009)

2. Sarna-Starosta, B., Ramakrishnan, C.: Compiling Constraint Handling Rules for
efficient tabled evaluation. In Hanus, M., ed.: 9th Intl. Symp. Practical Aspects of
Declarative Languages, PADL. Volume 4354 of Lecture Notes in Computer Science.,
Nice, France, Springer-Verlag (jan 2007) 170-184

3. Simmons, R.J., Pfenning, F.: Linear logical algorithms. In Aceto, L., Damgard,
1., Goldberg, L.A., Halldérsson, M.M., Ingé6lfsdéttir, A., Walukiewicz, 1., eds.: Au-
tomata, Languages and Programming, 35th International Colloquium, ICALP 2008.
Volume 5126 of Lecture Notes in Computer Science., Springer-Verlag (2008) 336-347

4. Betz, H., Frithwirth, T.: A linear-logic semantics for constraint handling rules. In van
Beek, P., ed.: Principles and Practice of Constraint Programming, 11th International
Conference, CP 2005. Volume 3709 of Lecture Notes in Computer Science., Sitges,
Spain, Springer-Verlag (October 2005) 137-151

5. Raiser, F., Betz, H., Frithwirth, T.: Equivalence of CHR states revisited. In Raiser,
F., Sneyers, J., eds.: 6th International Workshop on Constraint Handling Rules
(CHR). (2009) 34-48

6. Sneyers, J., Van Weert, P., Schrijvers, T., De Koninck, L.: As time goes by: Con-
straint Handling Rules — A survey of CHR research between 1998 and 2007. Accepted
by Journal of Theory and Practice of Logic Programming (2008)

7. Duck, G.J., Stuckey, P.J., Garcia de la Banda, M., Holzbaur, C.: The refined oper-
ational semantics of Constraint Handling Rules. In Demoen, B., Lifschitz, V., eds.:
Logic Programming, 20th International Conference, ICLP 2004. Volume 3132 of Lec-
ture Notes in Computer Science., Saint-Malo, France, Springer-Verlag (September
2004) 90-104

8. Sulzmann, M., Lam, E.S.L.: Parallel execution of multi-set constraint rewrite rules.
In Antoy, S., Albert, E., eds.: Proceedings of the 10th International ACM SIG-

165

PLAN Conference on Principles and Practice of Declarative Programming (PPDP),
Valencia, Spain, ACM (July 2008) 20-31

. Pilozzi, P., Schreye, D.D.: Proving termination by invariance relations. In Hill,
P.M., Warren, D.S., eds.: 25th International Conference Logic Programming, ICLP.
Volume 5649 of Lecture Notes in Computer Science., Pasadena, CA, USA, Springer-
Verlag (July 2009) 499-503

166

A Tool for Generating Partition Schedules of
Multiprocessor Systems

Hans-Joachim Goltz and Norbert Pieth

Fraunhofer FIRST, Berlin, Germany
{hans-joachim.goltz,nobert.pieth}@first.fraunhofer.de

Abstract. A deterministic cycle scheduling of partitions at the operat-
ing system level is supposed for a multiprocessor system. In this paper,
we propose a tool for generating such schedules. We use constraint based
programming and develop methods and concepts for a combined inter-
active and automatic partition scheduling system. This paper is also
devoted to basic methods and techniques for modeling and solving this
partition scheduling problem. Initial application of our partition schedul-
ing tool has proved successful and demonstrated the suitability of the
methods used.

1 Introduction

Particularly in safety-critical areas such as medical applications and the aerospace
and automotive industries, the behavior of both simple and highly complex em-
bedded systems must be exactly known. This is achieved by defining the workflow
patterns of the individual subtasks, so-called scheduling. In many computer ap-
plications a dynamic scheduling of the processes is used. By contrast, systems
operating in safety-critical areas execute defined and sequenced work steps, with
execution being continuously repeated (see also [8], [9]). Often, the execution of
a workflow pattern takes only a few seconds.

In this paper, we suppose a deterministic cycle scheduling of partitions at
the operating system level and a given scheduling method among tasks within
each partition. The tasks in one partition can only be executed during the fixed
time slices allocated to this partition. When constructing such a scheduling of
partitions, the execution sequence of the individual work packages is often de-
fined manually. Here, developers soon encounter problems, given the very large
number of possible variations and constraints that have to be taken into account.
For instance, a specific sequence of work steps must be taken into consideration
in the scheduling process. At the same time, a component such as a processor
should, if possible, be able to execute a work step in one piece to avoid unnec-
essary switching overhead.

We developed a scheduling tool that generates the partitions schedules for
such a multiprocessor system using constraint based programming methods.
Here, all the constraints of these complex scheduling tasks are taken into account
even before the actual systems control program - the scheduler - is configured.

167

The basic idea is to avoid conflicts and optimize schedules beforehand rather
than troubleshooting after the event.

Our research is concerned with the development of methods, techniques and
concepts for a combination of interactive and automatic scheduling. The au-
tomated solution search will be implemented in such a way that it normally
allows a solution to be found in a relatively short time, if such a solution exists.
The scheduling tool will be flexible enough to take into account special user re-
quirements and to allow constraints to be modified easily, if no basic conceptual
change in the problem specification is necessary. An essential component is the
automatic heuristic solution search with an interactive user-intervention facil-
ity. The user will, however, only be able to alter a schedule such that no hard
constraints are violated.

An exemplary application of a combined interactive and automatic parti-
tion scheduling system was developed. The first test phase has been successfully
completed. The scheduling tool is designed to be user-friendly. Its graphical in-
terface and combined automatic and interactive solution search component allow
the quick generation of schedules, which can be individually tweaked within the
given ranges.

2 Problem Description

In this section, we explain the used notions and describe the problem. It is
assumed that a multiprocessor system and a set of applications are given. Each
application consists of a set of tasks. Each application will be located in one
partition on one processor. The dedicated processor may be statically configured
or one part of the scheduling process.

A time slice is the non-preemptive (i.e. uninterrupted) usage of processor
time, solely allocated for one partition. A partition consists of a set of time
slices, which have to follow the given constraints and which in total will be
repeated periodically. Note that we do not consider the operation or inherent
schedule of the tasks within a partition. This is outside of the scope of this paper.
A period is specified by the time distance between beginning of cycle N until

Fig. 1. periods of partitions

beginning of cycle N+1 of a partition allocation of the processor time. Since a
period may have also other properties, we call this distance by period length,

168

too. The duration per period is the duration (sum of time slices) the processor
is allocated to the partition per period. A partition may get one or several time
slice(s) per period. In Figure 1 the periods of two partitions are marked. One
partition consists of one time slice per period while the other partition consists
of two time slices per period.

Furthermore an overall time interval is given for which the partition schedul-
ing will be generated. In the following this time interval is called scheduling
period (also known as hyper period). The goal is the generation of a determin-
istic partition scheduling for this given scheduling period such that the given
constraints described below are satisfied. This generated scheduling will be re-
peated continuously on the discrete processors.

For each partition there are constraints on the period and the duration per
period. There may exist partitions which have to follow strong defined periods,
so called fized periods. Variations are not allowed in these cases. We distinguish
between those and fiexible periods, which allow certain variations. These flexible
periods are very useful during solution search, in particular when the processor
load reaches the limit of the period capacity.

A special focus must be held on the situation at the end of each period and
the entry situation for the following period. All constraints must still be met in
this intersection. For a coupled system some synchronization activities will take
place and have to be considered. It should be aimed to allow larger variants in
period and duration for these overall scheduling periods from one to its follower.
These special aspects are not presented in depth in this paper.

If one application should be spread over different processors than in our
system there should be used one copy of this application for each processor
involved and there must be specifications of the relations of the processes.

Between two partitions on different processors there may be definitions of
relations of various kinds. These relations always reference to the beginning of
one period or the end of the last time slice belonging to that period. The pattern
of these relations may be e.g.:

begin(...) +X < begin(...)
end(...) +X = begin(...)
begin(...) +X < begin(...)
end(...) > begin(...) +X
end(...) +X < end(...)

A problem is specified by an amount of special definitions and constraints.
The important components of a complete problem specification consist of:

1. a definition of the basic problem parameters:
(a) the length of the scheduling period,
(b) the basic time unit such that all time values are integers (for instance
1 ms or 1/10 ms),
(c) the worst case waiting time at the end of a scheduling period (time, which
may be necessary for the synchronization of loosely coupled processors);
2. a set of definitions for each processor:
(a) the time for changing a partition on this processor,

169

(b) the general time for writing data after the end of a time slice (commu-
nication activity);
3. a set of definitions and constraints for each partition (application):
(a) the processor allocation or constraints for that (e.g.: not processor X;
another processor than the processor dealing with partition Y')
(b) the period length of the partition,
(¢) for the period length, the allowed difference is specified by its minimum
and its maximum,
(d) the duration of a period,
(e) for the duration of a period, the allowed difference is specified by its
minimum and its maximum,
) the minimal CPU load (e.g. per mill) within the scheduling period,
(g) the maximal number of time slices within a period,
(h) the minimal duration of a time slice,
(i) special constraints on the end of the scheduling period;
4. a set of definitions for the relations between the partitions; the relations
can be of different kind and related to the begin and/or the periods of two
partitions belonging to different processors.

o

—~
-

3 Problem Modeling

The problem of generating partition scheduling for multiprocessor systems can
be suitably modeled in terms of a set of constraints and a constraint based
programming language can be used for solution search. Constraint Logic Pro-
gramming with constraints over finite integer domains, CLP(FD), has been es-
tablished as a practical tool for solving discrete combinatorial problems (e.g. [4],
[10], [11]). The success of the search often depends directly on the chosen model
and the modeling options on the chosen constraint solver. Global constraints use
domain-specific knowledge and specialized consistency methods to obtain better
propagations results. They can be applied to large problem instances and in gen-
eral improve the efficiency for solving real-life problems. The global constraints
built into the Constraint Logic Programming language CHIP are particularly
useful for problem modeling. Examples of global constraints are cumulative
and diffn (see e.g. [1], [2]). Note that global constraints which are similar to
diffn exist also in other constraint based programming languages with other
names.

The basic method for the problem representation by constraint programming
is described in the following and refers to the problem specification given in
Section 2. Note that the special constraints related to the end of the scheduling
are not considered in this paper. Concerning the definition of the basic problem
parameters it is supposed that a scheduling horizon (hyper period) is given and
that all values are integers (see (1) of the specification). The given processors are
numbered by natural numbers 1,2, Let A;,..., A, , be the given applications
(we identify these also with the partitions they are belonging to). For each Ay
we define a domain variable proc(Ay) for the allocation of the processor. The

170

domain of this variable is equal to the numbers of the allowed processors (see
(3a) of the specification). If a processor allocation is given then proc(Ay) is equal
to the corresponding number of the processor.

A sequence of periods p¥,p§, . .. ,pfnk is defined for each Ay . The length of the
sequence depends on the scheduling period and the sum of the periods belonging
to a partition. For each period p¥ domain variables for the length of the period
I(p¥) and the duration of the period d(p¥) are defined by the given values and
the allowed differences (see (3b,c,d,e) of the specification). If differences of the
period length and the duration per period are not allowed then I(p¥) and d(pF)
are integers.

Furthermore, a sequence of time slices s} |, sF5,..., s is defined for each

PRI
period pf . The length of such a sequence ny ; is given the maximal number of
time within a period (see (3g) of the specification). For each time slice sfj we
define domain variables start(s} ;) for the starting time and d(s}';) for duration
of this slice. Firstly, the domain of start(sf’ j) is given by the scheduling period
(from 0 to Maz, the scheduling period). Let mins be the minimal duration
of a time slice and maz, be the maximal duration of a period (see (3h,e) of
the specification). The domain of d(sfj) is defined by the union of {0} and the
interval [min,, maz,]. A time slice s} ; is only relevant if d(s ;) is different from
0. Since one time slice of each period has to be relevant we can suppose that the
first time slice of each period d(s},) is different from 0. Furthermore, we can

suppose that

start(sy ;) + d(sf;) < start(sf;,,)

start(sy) + d(pf) < start(sf,, ;)

for all the corresponding time slices and periods. Then the following equation is
to be satisfied for the period length:

I(pF) = start(s§+1,1) — start(sifl)
The duration of a period d(p¥) is equal to the sum of the durations of time slices
within this period:

d(pF) = d(sfl) + ...+ d(sfn}“)

The minimal CPU load within the scheduling period (see (3f) of the specification)
corresponds an integer minDy. Then, for each partition Ay, this constraint can
be modeled by the inequality

dip¥) + ... + d(pfnk) > minDy

It is important to state by a constraint that all time slices must not overlap. Since
the time for changing a partition has to be integrated into such a constraint we
define the extended duration dy (s¥ ;) of arelevant time slice by the sum of d(s¥ ;)
and the time for changing a partition. If a processor allocation is not given and
the time for changing is different on the processors then the symbolic element-
constraint can used for computing this duration. In the case of a time slice with

d(sf]) = 0, the extended duration dl(sﬁj) is also equal to 0.

171

We consider a time slice as a ”two-dimensional rectangle” with the dimensions
“time” and “processor”. Such a rectangle can be represented by

[start(sf ;), proc(Ay), di (s} ;,1] .

The use of the global diffn-constraint ensures that these rectangles must not
overlap. For our problem we need only one diffn-constraint. Note that time
slices with duration of 0 are not relevant for the diffn-constraint. If for each
application the processor allocation is given and is fixed then a non-overlapping
constraint can generated for each processor separately. In this case, the diffn-
constraint with ”one-dimensional rectangle” can be considered or the global
constraint cumulative-constraint can be used with a resource limit of 1.

The relations between the periods of the partitions (see (4) of the specifica-
tion) can be easily represented by arithmetic constraints (equalities, disequali-
ties, inequalities). The time for writing data after the end of a time slice (see
(2b) of the specification) has to be integrated into these constraints.

4 Solution Search

A solution of a constraint problem is an assignment of the domain variables to
values of their domains such that all the constraints are satisfied. A constraint
solver over finite domains is not complete because consistency is only proved
locally. Thus, a search is generally necessary to find a solution. Often, this search
is called “labeling”. The basic idea behind this procedure is to select a variable
from the set of problem variables considered, choose a value from the domain of
this variable and then assign this value to the variable; if the constraint solver
detects a contradiction backtracking is used to choose another value. This is
repeat until values are assigned to all problem variables such that the constraints
are satisfied or until it is proven that there is no solution. In our scheduling
system, the domain-reducing strategy is also used for the search. This strategy
is a generalization of the labeling method and was presented in [5]:

— The assignment of a value to the selected variable is replaced by a reduction
of the domain of this variable.

— If backtracking occurs, the not yet considered part of the domain is taken
as the new domain for a repeated application of this method.

Practical applications have shown that a reduced domain should be neither too
small nor too large. A solution is narrowed down by this reduction procedure,
but it does not normally generate a solution for the problem. Thus, after domain
reduction, assignment of values to the variables must be performed, which may
also include a search. The main part of the search, however, is carried out by the
domain-reducing procedure. A conventional labeling algorithm can be used for
the final value assignment. If a contradiction is detected during the final value
assignment, the search backtracks into the reducing procedure.

Since a constraint solver is used for the partition scheduling tool the search
space is reduced before the solution search begins. In each search step the search

172

space is further reduced by the constraint solver. Nevertheless, in most cases,
the search spaces of relevant problems are too large and it is not possible to use
a complete solution search within an acceptable time amount. Therefore, the
complete search spaces cannot be investigated and heuristics are needed for a
successful solution search.

The search includes two kinds of nondeterminism: selection of a domain vari-
able and choice of a reduced domain concerning the selected variable. If label-
ing is used, the reduced domain consists of a single value. The success of the
domain-reducing strategy depends on the chosen heuristics for the order of vari-
able selection and for the determination of the reduced domain.

Our experience has shown that in many cases either a solution can be found
within only a few backtracking steps, or a large number of backtracking steps
are needed. We therefore use the following basic search method: the number
of backtracking steps is restricted, and different heuristics are tried out. This
means that backtracking is carried out on different heuristics. With regard to
the problems discussed in this paper, the user can choose between different
methods for the solution search. In particular, the user can control the following
parameters: the number of attempts with different heuristics, the number of
permitted backtracking steps for one attempt, and the priorities of the partitions.

In the recent partition scheduling tool, a static ordering is used for the heuris-
tic of variable selection. This ordering is defined by the priorities of the partitions
and the following ordering of the relevant domain variables related to the selected
partition Ay:

pT‘OC(Ak)7 l(p]f)v d(plf)a
Start(s]f,l)v d(sllc,l)v start(s’fg), d(slf,2)7 RS

l(pIQC)v d(pg)v Sta’rt(sg,l)v d(5§,1)7 et

The domain-reducing strategy is used for the following domain variables: the
length of a period l(pf), the duration of a period cl(pf)7 and the starting time
of a time slice start(sﬁ ;) - The used search strategy prefers the allocation of the
domain maximum to the domain variable d(s ;) (duration of a time slice). The
goal of this strategy is to minimize the number of time slices of a period. Thus
the switching overhead can be reduced.

The following properties should be taken into consideration for the determi-

nation of priorities of the partitions:

— the allowed difference of the period length (partitions with fixed periods
should be scheduled firstly),

— the number of allowed time slices per period (if this number is equal to 1
then this partition should be scheduled earlier);

— the durations per period;

— the desired period length;

— the relations between partitions.

173

If a domain variable of period length is selected then the heuristics for the
choice of a reduced domain or a value can be controlled by a parameter such
that one of the following heuristic is used:

— the given value of the period length is preferred,
— the minimum of the domain value is preferred,
— the maximum of the domain value is preferred.

Furthermore, there is a parameter such that the choice of a reduced domain (or
a value) for the starting time variable of a time slice can be controlled by the
parameter values: minimum, maximum, middle. Additionally, there is a heuristic
for minimizing the number of time slices per period.

m [| [l (- | |/ 0L
=i ="

[[[¥
L] T

Fig. 2. Example of a partition scheduling, excerpt of approx. 200 ms

5 Graphical Interface

The scheduling tool is designed to be user-friendly by its graphical interface. The
generated schedule can be graphically displayed in a clear form with a flexible
layout and a user-defined level of detail. Figure 2 shows a part of an exemplary
partition schedule for three processors. This partition schedule is generated by
our tool and displayed by the graphical interface. For each application the par-
tition schedule is represented in one row of this figure. Moreover, for each pro-
cessor, all partitions of the processor are graphical represented in one row. The

174

relations between two partitions are marked by lines. The following interactive-
scheduling actions are possible with the help of the graphical interface:

— scheduling an individual partition,

— scheduling marked partitions automatically,

— removing marked partitions from the schedule,

— moving time slices of a partition within the schedule,
— scheduling the remaining partitions automatically.

These actions can be performed in any order or combination, and no automatic
backtracking is caused by such user actions. The user can, however, only alter a
schedule in such as way that no hard constraints are violated.

The user interface and the combined automatic and interactive solution
search component allow the quick generation of schedules, which can be in-
dividually tweaked. For instance, different scenarios can be easily tried out and
changes swiftly implemented, consistency with respect to the specifications be-
ing guaranteed at all times. The targeted development of variants enables the
solution process to be made far more flexible and efficient, even when adopting
an iterative approach and when the initial tolerance limits are exceeded. With
the help of the graphical interface the user can interactively generate and evalu-
ate different variants, depending on the optimization criterion. This enables the
user to incorporate his expertise.

6 Implementation and Results

The Constraint Logic Programming language CHIP ([3]) was selected as the
implementation language. The global constraints and the object oriented com-
ponent built into CHIP are particularly useful for problem modeling.

For the representation of the problem, we used three phases: the definition
of the problem, the internal relational representation, and the internal object
oriented representation. For the first phase, the definition of the problem, we
developed a declarative language for problem descriptions. All components of
a partition scheduling problem can be easily defined using this declarative lan-
guage. Thus, the graphical user interface is only needed to set the parameters. In
the second phase, the problem definition is transformed into an internal relational
representation. In the third phase, the internal object-oriented representation is
generated from the internal relational representation. The definition data are
converted into a structure that is suitable for finite integer domains. The object-
oriented representation is used for the solution search and the graphical user
interface.

Our scheduling tool can generate in less than a minute a consistent sched-
ule for complex multiprocessor systems with many thousands of time slices for
an arbitrary interval. Additionally, the generated schedule is guaranteed to be
error-free and executable. Even extreme optimizations are properly manageable
because it is possible to generate schedules that allow over 90 per cent CPU
load. In addition, the results of the scheduling process can easily be converted

175

into other formats, enabling them to be integrated into the overall system de-
velopment process. It should be noted that the currently implemented version
of our partition scheduling tool supposes that an allocation of the partitions to
the processors is given.

7 Conclusions and Future Work

The initial application of our partition scheduling system has been proved suc-
cessful and has demonstrated the suitability of the used methods. From this
application, we were able to obtain useful information for our future work. Our
future research on partition scheduling problems will include investigations of
heuristics for variable and value selection and continued study of the influence
of different modeling techniques on the solution search. Furthermore we will ex-
tend our implementation of a partition scheduling system such that scheduling
process can also allocate partitions to processors. The development of special
search methods is necessary for this goal. Moreover, a graphical interface for the
problem specification will be implemented. The methods, techniques and con-
cepts developed or under development will also be tested on other applications.

References

1. A. Aggoun and N. Beldiceanu,” Extending CHIP in order to solve complex schedul-
ing and placement problems”, Math. Comput. Modelling, 17(7):57-73, 1993.

2. E. Beldiceanu and E. Contejean, ” Introducing global constraints in CHIP”, J. Math-
ematical and Computer Modelling, 20(12):97-123, 1994.

3. M. Dincbas, P. van Hentenryck, H. Simonis, A. Aggoun, T. Graf, and F. Berthier,
”The constraint logic programming language CHIP”, in Int. Conf. Fifth Generation
Computer Systems (FGCS’88), pages 693-702, Tokyo, 1988.

4. M. Dincbas, H. Simonis, and P. van Hentenryck, ”Solving large combinatorial prob-
lems in logic programming”, J. Logic Programming, 8:75-93, 1990.

5. H.-J. Goltz, "Reducing domains for search in CLP(FD) and its application to job-
shop scheduling”, in U. Montanari and F. Rossi, editors, Principles and Practice
of Constraint Programming — CP’95, volume 976 of Lecture Notes in Computer
Science, pages 549-562, Springer-Verlag, 1995.

6. J. Jaffar and M. J. Maher, ”Constraint logic programming: A survey”, J. Logic
Programming, 19/20:503-581, 1994.

7. K. Marriott and P. J. Stuckey, " Programming with Constraints: An Introduction”,
The MIT Press, Cambridge (MA), London, 1998.

8. Y. Lee, D. Kim, M. Younis, and J. Zhou, ”Partition Scheduling in APEX Runtime
Environment for Embedded Avionics Software”, in Proc. IEEE Real-Time Comput-
ing Systems and Applications, pages 103109, Oct. 1998.

9. Y. Lee, D. Kim, M. Younis, and J. Zhou, ”Scheduling Tool and Algorithm for
Integrated Modular Avionics Systems”, in Proc. Digital Avonics Systems Conference
(DASC), Oct. 2000.

10. P. J. Stuckey (editor), ”Principles and Practice of Constraint Programming — CP
2008”, volume 5202 of Lecture Notes in Computer Science, Springer-Verlag, 2008.

11. M. Wallace, ”Practical Applications of Contraint Programming”, Constraints, An
International Journal, 1:139-168, 1996.

176

Efficiency of Difference-List Programming

Ulrich Geske', Hans-Joachim Goltz

'University of Potsdam
ugeske@uni-potsdam.de

Fraunhofer FIRST, Berlin
goltz@first.fraunhofer.de

Abstract. The difference-list technique is described in literature as effective
method for extending lists to the right without using calls of append/3. There ex-
ist some proposals for automatic transformation of list programs into difference-
list programs. However, we are interested in construction of difference-list pro-
grams by the programmer, avoiding the need of a transformation step. In
[GGO09] it was demonstrated, how left-recursive procedures with a dangling call
of append/3 can be transformed into right-recursion using the unfolding tech-
nique. For simplification of writing difference-list programs using a new cons/2
procedure was introduced. In the present paper, we investigate how efficieny is
influenced using cons/2. We measure the efficiency of procedures using accu-
mulator technique, cons/2, DCG’s, and difference lists and compute the result-
ing speedup in respect to the simple procedure definition using append/3. Four
Prolog systems were investigated and we found different behaviour concerning
the speedup by difference lists. A result of our investigations is, that an often
advice given in the literature for avoiding calls append/3 could not be confirmed
in this strong formulation.

1 Introduction

Appending an additional element E as last element to an existing list could be per-
formed by copying all existing list elements and the additional element E into a new
list (using the Prolog procedure append/3).. Instead of, this operation could be per-
formed by an efficient (physical) concatenation using the difference list notation.
Every list may be presented as a difference list. For example, the list [1,2, 3] could
be represented as difference of the lists [1,2, 3 |X]and X. If list X contains E as
first element (e.g. X=[E|Y]), E is the next element after 3 without a copying opera-
tion). A term [E|Y] is called an incomplete list. The Prolog standard does not provide
any special notation for difference lists. A possible notation of a difference list from
two lists I and R may be given by a notation L&R, e.g. L-R or L\R (the symbol
used must be defined as oparator in the concrete Prolog system). If @ denotes a
comma (,), L and R are two arguments in an argument list. The earliest extended de-
scription of difference lists was given by Clark and Térnlund in [CT77]. A concatena-
tion of the difference lists U®v=[1, 2, 3|X]1®X and VOW>=X®n1il results in the dif-
ference list u®w=[1,2,3,4]1®nil=[1,2,3,4] as soon as X is computed to

177

4@nil. The difference list notation is a syntactic variant of the accumulator tech-
nique (a comma is used for @). While in the accumulator technique accumulator and
result parameter are separated into two terms, which needs two variables for accessing
them, in the difference list notation both information are accessible by one variable
with the advantage of an easy to survey structure of procedures.

Our analysis of presentations of the use of difference list in Prolog textbooks
showed that this technique is often not adequately explained [see also GG09]. Espe-
cially, a clear and convincing rule, where in procedures to specify the incomplete list
(e.g. [E|]Y]) is not supplied. Dependent from a concrete problem, the incomplete list
has to be specified in the head of a rule, in one of the calls of the body or in the last
(recursive) call of the body of a rule. A solution of this problem could be the use of
the paradigm of grammar rules or its extension, Definite Clause Grammar (DCG),
which was originally developed for language processing but may be used for list
processing, too. Natural language sentences, coded as list of words, must be processed
phrase by phrase from left to right, consuming some words for a phrase and leaving
the rest for the following phrases. In the DCG formalism it is sufficient to specify the
sequence of phrases. The argument pattern for traversing the list will be generated
automatically in accumulator technique.

%$DCG-Specification for copying a list
dcg_copy ([1) -=> [1.
dcg copy ([X|RR]) --> [X], dcg copy(RR).

%Generated program by automatic program transformation
dcg copy([],L,L).
dcg copy ([X|Xs],Acc,Res) : -

'C' (Res,X,RR),

dcg copy (Xs,Acc,RR) .

Fig. 1 Copying a list as DCG specification

An specification example for DCG’s is copying a list (Fig. 1). The specification [X]
means, taking the first element X from a list [X|Xs]. This specification is transformed
into a call of the built-in procedure ‘C’/3, which could be defined as Prolog procedure
by ‘C’([X|Xs],X,Xs).

For supporting teaching and application of difference list programming, we have
proposed a procedure cons(X, [X|Xs]-Xs) in [GG09] which takes pattern from the
‘C’/3 procedure. The advantages of cons/2 are both, its difference-list format, and that
the definition of cons/2 could be added to each Prolog system while ‘C’/3 and the
DCG formalism are not part of the ISO-Prolog until now and are not available in
each system. The use of cons/2 allows the application of a simple rule for writing ex-
plicit difference-programs and to find out simply the right place for the mentioned in-
complete list [E[Y]. In this paper we investigate the efficiency applying cons/2 com-
pared with other kinds of specification.

178

2 Top-down and Bottom-up Construction of Lists

The notions of top-down and bottom-up procedures for traversing structures like
trees are well established. We will use the notions top-down construction of lists and
bottom-up construction of lists in this paper to describe the result of the process build-
ing lists with a certain order of elements in relation to the order in which the elements
are taken from the corresponding input list.

Top-down construction of lists
The order el,” — el,” of two arbitrary elements el,’, el,” in the constructed
list corresponds to the order in which the two elements el, el, are taken from
the input term (perhaps a list or a tree structure).
Bottom-up construction of lists
The order el,” — el;” of two arbitrary elements el,’, el,” in the constructed
list corresponds to the reverse order in which the two elements el,, el, are
taken from the input term (perhaps a list or a tree structure).

An input list may be, e.g., [2, 4, 3, 1]. A top-down construction of the result list [2,
4, 3, 1] is given if the elements are taken from left to right from the input list and put
into the constructed list in a left to right manner. If the elements are taken from the
input list by their magnitude and put into the result list from left to right, the list [1 2 3
4] will be (top-down) constructed. A bottom-up construction of the result list [1, 3, 4,
2] is given if the elements of the list [2, 4,3,1] are taken from left to right from the in-
put list and put into the constructed list in a right-to-left manner. If the elements are
taken from the input list by their magnitude and put into the result list from right to
left, the list [4 3 2 1] will be (bottom-up) constructed. Which programming techniques
could be used for a top-down- respectively a bottom-up construction of lists? Accu-
mulator technique is an often used technique, which allows both, top-down- and bot-
tom-up construction of lists. Examples are the procedures for traversing in pre-order
manner accapp_pre_td/3 and accapp_pre bu/3 (Fig. 5).. These procedures use besides
accumulators calls of append/3. But, also without use of accumulators, top-down and
bottom-up list-constructions are possible. Examples are pre order/2 and
pre_order bu/2 (see also Fig. 5). Again, calls of append/3 are needed in these defini-
tions.

3 Construction Rules for difference list procedures

There are different possibilities to avoid the use of a call of append/3. A rather triv-
ial improvement is given by unfolding an append/3 call which puts a single element X
in front of a list A to give the result list RR, i.e RR=[X]A]. E.g., the append-free pro-
cedures acc_pre td/3 result (Fig. 2), if in accapp pre td/3 the equivalent [X|L1] for
Xs is inserted and the corresponding call of append ([X],L1,Xs) is crossed.
The difference-list procedure dl_pre td/2 (see Fig. 5) is a syntactic variant of the ac-
cumulator version of the corresponding procedure acc_pre td/3, which results by sub-
stitution of the second and third argument, say ARG2 and ARG3 (ARG2 should be

179

the accumulator parameter, ARG3 the result parameter) with the difference list
ARG3-ARG2.

acc_pre td(tree(X,L,R),Rs, [X|L1]):-
acc_pre td(L, L2, L1),
acc_pre td(R, Rs, L2).
acc_pre td([],L,L).

Fig. 2 Append-free pre-order tree-traversal by accumulator technique

The presented transformation steps for a procedure into difference-list notation has a
serious disadvantage: the starting point is a procedure definition which uses an ap-
pend/3-call (which should be avoided). Moreover, the precondition for the transfor-
mation, an admissible call of append/3, is not always given as examples
pre_order bu/3 (Fig. 5) shows. An admissible structure is given if a single element
should be put in front of a list, i.e. this element is part of the first argument of the call
of append/3. The fulfilment of this condition can not be always ensured. Therefore
append/3 calls must be avoided at all. An alternative, we propose, is the use of the
cons/2 procedure. The definition of cons/2 is choosen to suit the syntactic format of
the difference list notation.

cons (Element, [Element |Rest]-Rest).

Fig. 3 Definition of the cons operation

The advantage of this format is its correspondence to the format which is needed for
composing a resulting difference list from its parts. The position of the call of cons/2
in the body of a procedure is irrelevant, in general, but if this call occurs at its “natu-
ral” position a formal guideline for constructing difference list is possible.

Top-down construction of a difference list Res-Acc results from the “natural” order of
sub-difference-lists Res-Templ, ..., Templ-Templ+1, ..., TempN-Ace.

Bottom-up construction of a difference list Res-Acc results from the “natural” order
of sub-difference-lists Templ-Ace, ...Templ-1 - Templ], ..., Res-TempN

Rule 1 Informal rules for top-down- and bottom-up composition of difference lists

4 Benchmarks
4.1 Benchmark tests - processing trees

There exist, corresponding to [Sterling-Shapiro86], three different possibilities for the
linear traversal of trees. Any node X in a binary tree, besides the leave nodes, has a
Left and a Right successor tree. A pre-order traversal visits the tree in the following
order: X, Left Right, which may be programmed using a call append([X|Left], Right,
Tree) (pre_order/2 in Fig. 5). Correspondingly, an in-order traversal is given by the

180

call append(Left, [X|Right],Tree) and a post-order traversal by the sequence of calls
append(Right,[X],T), append(Left,T,Tree). A concrete example is shown in Fig. 13.

pre-order tree-traversal

[6,1,2,3,4,5,6]

in-order tree-traversal

[2,1,3,0,5,4,6]

post-order tree-traversal

[2,3,1,5,6,4,0]

Fig. 4 Examples for linear traversals of binary trees

Fig. 4 presents four different algorithms for the pre-order-functions. A naive
algorithm uses the append procedure to compose the result from the different parts.
An extension of this algorithm is the additional use of an accumulator with the
advantage that the first argument of the append/3-call is always a list of one element —
there is no danger for looping forever. A further improvement is the avoidance of
append/3-calls at all by substituting it by the new introduced cons/2 procedure.
Finally, unfolding of the call of cons/2 leads to the known difference list format. A
procedure in a difference-list format could be derived step-by-step, as explained or it
may be specified in one step as described in the following for pre-order tree-traversal.
Specification of a pre-order traversal: The result of a pre-order traversal is the
difference-list L-LN. In a top-down construction of the result, the node X of the
structure tree(X,Left,Right) is visited first and supplies the difference-list L-L1, the
traversal of the left subtree supplies the difference-list L1-L2, and the traversal of the
right subtree supplies L2-LN. In a bottom-down construction of the result, the node
X of the structure tree(X,Left,Right) is visited first and supplies the difference-list
L2-LN, the traversal of the left subtree supplies the difference-list L1-L2, and the
traversal of the right subtree supplies L-L1. The in-order and post-order traversals are
specified analogous (see also Fig. 6, Fig. 7).

For processing the procedures a tree of a certain depth is automatically generated
by a call of the procedure

binary tree([], ,0).

binary tree(tree(LR-T,Left,Right),LR,T) :-
Tl is T-1,
binary tree(Left,LR-1,T1),
binary tree(Right,LR-r,T1).

181

Definitions for pre-order tree-traversal

Top-down construction of result

Bottom-up construction of result

%use of append/3; accumulator-free
pre_order (tree(X,L,R), Xs)
pre_order (L,LN),
pre_order (R,LO),
append ([X|LN],LO,Xs) .
pre_ozder([1,[]).

%use of append/3; accumulator-free
pre_order_bu(tree(X,L,R), Xs)
pre_order bu(L,LN),
pre_order bu(R,LO),
append (LN, [X],L1),
append (LO,L1,Xs) .
pre_order bu([],[]).

%use of append/3;use of accumulator
accapp_pre_td(tree(X,L,R),LO,LN) :-
append ([X],L1,LN),
accapp_pre_td(L,L2,L1),
accapp_pre_td(R,LO,L2).
accapp_pre td([],L,L).

%use of append/3;use of accumulator
accapp_pre bu(tree(X,L,R), LO,LN)
append ([X],L0,L2) .
accapp_pre bu(L,L2, L1),
accapp_pre bu(R,L1,LN).
accapp_pre bu([],L,L).

%use of cons/2
%use of accumulator (part of DL)
d pre td(tree(X,L,R),LN-LO):-
/*LN=[X|L1]*/ cons (X,LN-L1),
d pre td(L, L1-L2),
d pre td(R, L2-LO).
d pre td([],L-L).

%use of cons/2
%use of accumulator (part of DL)
d_pre bu(tree(X,L,R),LN-LO) :-
/*L2=[X|LO]*/ cons (X, L2-L0),
d_pre bu(L, L1-L2),
d_pre bu(R, LN-L1).
d pre bu([],L-L).),

%call of cons/2 unfolded

%use of accumulator (part of DL)

dl_pre td(tree(X,L,R),[X|L1]-LO):-
dl_pre td(L,Ll1 -L2),
dl_pre td(R,L2 -LO).

dl_pre td([],L-L).

%call of cons/2 unfolded

%use of accumulator (part of DL)

dl_pre bu(tree(X,L,R),LN-LO) :-
dl_pre bu(L, L1-[X|LO]),
dl_pre bu(R, LN- L1).

dl_pre bu([],L-L).

Fig. 5 Different procedure definitions for pre-order tree-traversal

Definitions for in-order tree-traversal

Top-down construction of result

Bottom-up construction of result

%use of append/3; no accumulator

in_ order (tree(X,L,R), Xs)
in_ order(L,LN),
append (LN, [X|LO] ,Xs),
in_order(R,LO) .

in_order([],[1]).

%use of append/3; no accumulator
in_order_bu(tree(X,L,R), Xs)
in_order bu(L,LN),
in_order_bu(R,LO),
append (LO, [X|LN] ,Xs) .
in_order bu([],[]).

%use of append/3;use of accumulator

accapp_in_td(tree(X,L,R), LO,LN)
accapp_in_td(L,L1,LN),
append ([X],L2,L1),
accapp_in_td(R,L0,L2).

accapp in td([],L,L).

%use of append/3;use of accumulator

accapp_in bu(tree(X,L,R), LO,LN)
accapp_in bu(L,L0,L2),
append ([X],L2,L1),
accapp_in_bu(R,L1,LN) .

accapp in bu([],L,L).

%use of cons/2;accumulator (in DL)
d_in_td(tree(X,L,R),LN-LO) :-
d_in_td(L, LN-L1),
/*L1=[X|L2]*/ cons(X,L1-L2),
d_in_td(R, L2-LO).
d_in_td([],L-L).

%use of cons/2
%use of accumulator (part of DL)
d_in bu(tree(X,L,R),LN-LO)
d_in bu(L, L2-LO0),
/*L1=[X|12]*/ cons(X,L1-L2),
d_in bu(R, LN-L1).
d in bu([],L-L).),

%$cons/2 unfolded; accumulator (in DL)
dl_in td(tree(X,L,R),LN-LO):-
dl_in td(L,LN-[X|L2]),
dl_in td(R,L2-LO).

dl_in_td([],L-L).

% cons/2 unfolded;accumulator (in DL)
dl_in bu(tree(X,L,R),LN-LO):-

dl_in bu(L, L2-L0),

dl_in bu(R, LN-[X|L2]).
dl in bu([],L-L).

Fig. 6 Different procedure definitions for in-order tree-traversal

182

Definitions for post-order tree-traversal

Top-down construction of result Bottom-up construction of result
%use of append/3; no accumulator %use of append/3; no accumulator
post_order (tree(X,L,R), Xs) :- post_order_bu(tree(X,L,R), Xs) :-
post_order(L,LN), post_order bu(L,LN),
post_order(R,LO), post_order bu(R,LO),
append (LO, [X],L1), append ([X],LO,L1),
append (LN,L1,Xs) . append (L1,LN,Xs) .
post_order ([],[]) . post_order bu([],[]).
%use of append/3 and accumulator %use of append/3 and accumulator
accapp_post_td(tree(X,L,R),L0O,LN) :- |accapp post bu(tree(X,L,R),LO,LN) :-
accapp_post_ td(L,L1,LN), accapp_post_order bu(L,L0,L2),
accapp_post_ td(R,L2,L1), accapp_post order bu(R,L2,L1),
append ([X],L0,L2) . append ([X],L1,LN) .
accapp_post td([],L,L). accapp_post order bu([],L,L).
%use of cons/2 %use of cons/2
%use of accumulator (part of DL) %use of accumulator (part of DL)
d post td(tree(X,L,R),LN-LO):- d post_bu(tree(X,L,R), LN-LO):-
d post td(L, LN-L1), d_post_bu (L, L2-10),
d post_td(R, L1-L2), d_post_bu (R, L1-L2),
/*L2=[X|L0]*/ cons(X,L2-L0). /*LN=[X|L1]*/ cons (X, LN-L1).
d post td([],L-L). d post bu([],L-L).),
%call of cons/2 unfolded %call of cons/2 unfolded
dl _post td(tree(X,L,R),LN-LO):- dl_post_bu(tree(X,L,R),[X|L1]-LO):-
dl post td(L, LN-L1), dl_post_bu(L, L2-LO),
dl post td(R, L1-[X|LO]). dl_post bu(R, L1-L2).
dl_post_td([],L-L). dl_post_bu([],L-L).

Fig. 7 Different procedure definitions for post-order tree-traversal

and finally processed by an ordering processed by an ordering procedure, e.g. (meas-
urement of cpu-time not included):

?- binary tree(Tree,0,16),!,pre order (Tree,L).

A depth of 16 for the tree was a good compromise for the used computer with 331
MHz processor takt rate and 192 MB memory concerning consumption of time and
memory. Each benchmark test was repeated 10 times and the mean value was com-
puted.

The investigated systems, in which the benchmark procedures were consulted (using
consult/1), are CHIP version 5.8.0.0, ECLiPSe version 5.8 #95, SWI-Prolog ver-
sion 5.6.64, and SICStus-Prolog version 4.07.

4.2 Speedup

The speedup is the relationship of the processing time of the (naive) accumulator-free
version of a procedure by the processing time of the improved version for the same
algorithm. In Table 1 the speedup is presented for each tree-order traversal (in-order,
pre-order, post-order), each method (top-down (TD), bottom-up (BU)), and each algo-
rithm (append/3+accu, cons/2, DCG’s, difference lists) in each of the investigated
Prolog system. For comparision purpose the naive programming method using calls

183

of the built-in append/3 without using an accumulator argument is used (procedures
in_order/2, pre_order/2, post_order/2, in_order _bu/2, pre_order _bu/2,
post_order bu/2 — in Table 1 denoted by: append/3). The rows denoted by myap-
pend/3 show the speedup with a user-defined append/3-procedure. The other classes
of algorithms use an accumulator either as separate argument or as part of a difference
list. The algorithm which complements the naive procedure by an accumulator is
called append/3+accu in Table 1 (procedures accapp_in_td/2, accapp pre td/2, ac-
capp_post_td/2, accapp_in_bu/2, accapp_pre bu/2, accapp_post_bu/2). A substitution
of append/3 by a call of the new procedure cons/2 leads to the class of algorithms
which is called cons/2 in Table 1 (procedures d in td/2, d pre td/2, d post td/2,
d in_bu/2,d pre bu/2,d post bu/2).

Table 1: Speedup for TD/BU-in-/pre-/post-order traversal of a tree

Prolog system CHIP 5.8 ECLiPSe 5.8 SWI 5.6.64 SICStus 4.07
Construction TD BU TD BU TD BU TD BU
pre-order

myappend/3 1.27 1.25 0.96| 1.06] 0.99 1.00] 0.32| 0.24
append/3 1.00 1.00 1.00| 1.00 1.00 1.00 1.00 1.00
append/3+accu 290 4.84] 4.21| 6.33 3.72 8.48 1.09 1.44
cons/2 390 6.10] 3.24| 5.15] 4.00| 8.70] 0.96 1.23
DCG(‘C’/3) 4.21 6.741 535| 8.77] 4.74| 10.58 0.93 1.22
DCG(-->/2) 5.30| 8.51 6.24| 11.73 1.22 1.58

difference lists 5.00| 7.80] 4.50| 7.06 5.19| 12.84 1.35 1.91

in-order

myappend/3 1.22 1.22 0.97| 1.06 1.01 0.99 0.36| 0.34
append/3 1.00 1.00 1.00| 1.00 1.00 1.00 1.00 1.00
append/3+accu 2.51 2.56 2.90| 3.85 2.41 2.45 1.08 0.99
cons/2 3.72 332 247 3.18] 2.71 2.61 0.86| 0.93
DCG(‘C’/3) 3.60| 3.69] 4.07| 5.54] 3.15 3.11 0.92| 0.85
DCG(-->/2) 4.00| 5.64| 3.63 3.50 1.18 1.17
difference lists 429| 4.25 3.61| 4.66] 3.98 3.73 1.48 1.42
post-order

myappend/3 1.25 1.14] 0.97]| 0.96] 0.99 1.00 0.25 0.34
append/3 1.00 1.00 1.00| 1.00 1.00 1.00 1.00 1.00
append/3+accu 4.52 3.32 6.41| 4.44]1 7.96 5.04 1.42 1.34
cons/2 5.78| 4.25 5.20| 3.57 8.16 5.37 1.23 1.14
DCG(‘C’/3) 6.57| 4.50 8.43| 5.65] 10.48 6.45 1.21 1.16
DCG(-->/2) 8.68| 5.69 | 12.05 8.57 1.47 1.53

difference lists 7.59| 5.55| 7.87 | 4.66| 12.34| 7.24 1.91 1.83

184

Finally, unfolding the call of cons/2 results in the procedures which form the class
called “difference lists” in Table 1 (procedures dl_in_td/2, dl_pre td/2, dl_post td/2,
dl_in_bu/2, dl_pre bu/2, dl_post bu/2). A possible class of procedures with an addi-
tional argument for the accumulator instead of combing it with the result parameter in
a difference list is not considered here. It is a syntactic variant of the difference-list
notation and is denoted in the literature as “accumulator” version.

Table 1 shows that each of the investigated Prolog systems behave in a different man-
ner. But, roughly we may classify the systems into two groups. One group consists of
the CHIP system and SWI-Prolog.. Each improvement in the algorithm (in the as-
sumed order of improvement: append/3-+accu, cons/2, difference list) mirrors in a
partly significant speedup of the execution. Depending of the problem, the speedup of
execution times of the method append/3+accu compared with the append/3 algorithm
is between about 2.5 and 5 for CHIP and about 2.5 and 8.5 for SWI-Prolog. Applica-
tion of the cons/2-algorithm gives a speedup of about 25% less the speedup of the dif-
ference list method (cf. also Table 2). The maximum speedup by the cons/2-method is
about 8-fold compared with the execution time by the append/3-method. Both sys-
tems process obviously a built-in procedure and a user-defined procedures compara-
ble fast (see also rows myappend/3 and append/3 in Table 1).

The second group of Prolog systems contains the systems ECLiPSe and SICStus-
Prolog. The characteristic of this class is a missing strong connection between the as-
sumed improvement given by the algorithms and the speedup of execution. The ac-
cumulator-procedures which contain a call of append/3 may have a greater speedup
than the corresponding procedures which use a call of cons/2 instead of append/3. An
explanation for this effect may be that calls of the built-in (compiled) procedure ap-
pend/3 will be processed faster than calls of the user-procedure cons/2. The cons/2-
algorithm supplies a speedup of about 30% less the speedup of the difference list
method (see also Table 2). The maximum speedup by the cons/2 procedure in this
group is 5.2. For SICStus-Prolog the maximum speedup of about 2 occurs for the dif-
ference list procedure.

Table 2: Average relative speedup for TD/BU-in-/pre-/post-order traversal of a tree

Prolog system CHIP 5.8 ECLiPSe 6.0.82 | SWI5.6.64 | SICStus 4.0/7
Construction ™ [BU| ™ | BU | T | BU | TD | BU
append/3 0.33 0.51 0.36 0.69
append/3+accu 0.60 0.88 0.66 0.74
cons/2 0.77 0.72 0.72 0.65
DCG(‘C’/3) 0.85 1.18 0.85 0.64
DCG(-->/2) 1.19 1.02 0.82
difference list 1.00 1.00 1.00 1.00

In these tests the minimum measured speedup of the algorithms append/3+accu and
cons/2 reaches 58% of the speedup by difference lists (TD-pre-order with CHIP and
TD-in-order in SICStus-Prolog). This result may be important for programming prac-
tice. DCG’s algorithms are able to perform procedure execution more efficient than
difference list algorithms (Table 2).

185

S Summary and Future Work

We have proposed simple, schematic rules for using difference lists. Our rule gen-
eralizes both bottom-up construction of lists using accumulators and top-down con-
struction of lists using calls to append/3 to the notion of difference list. The introduc-
tion of the cons/2 operation serves as a didactic means to facilitate and simplify the
use of difference lists. This operation could easily be removed from the procedures by
an unfolding operation.

The benchmark tests demonstrate that the gain concerning the speedup depends
from the used Prolog system. Speedup factors of 1.35 minimum to 12.84 maximum
could be found for the same traversal order (pre-order) in different systems by using
difference lists instead of the naive algorithm with calls of append/3. SWI-Prolog
supplies for the procedures of the benchmark tests a maximum speedup of about 12,
for CHIP-system this figure is about 8, for ECLiPSe a maximum speedup of about 2
results, and the for SICStus system the maximum speedup is about 2. The highest
possible speedup occur when difference lists or DCG’s are used. A reasonable
speedup occurs when a call of cons/2 is used, with the advantage that such a proce-
dure is easier to read and to maintain. Because of considerable high speedup values
for the append+accu algorithm the often given advice “calls of append/3 should be
avoided” should be substituted by “try using accumulators as often as possible”.

A comparison of the efficienies of the difference-list algorithm and the DCG algo-
rithm leads to the assumption which is to verify yet that a compiled version of the
proposed cons/2 procedure will improve the efficieny significant.

References

[AFSV00] Albert, E.; Ferri, C.; Steiner, F.; Vidal, G.: Improving Functional Logic-
Programs by difference-lists. In He, J.; Sato, M.: Advances in
Computing Sciece — ASIAN 2000. LNCS 1961. pp 237-254. 2000.

[CT77] Clark, K.L.; Tirnlund, S,A: A First Order Theory of Data and Programs.
In: Inf. Proc. (B. Gilchrist, ed.), North Holland, pp. 939-944, 1977.

[GGO09] Geske, U.; Goltz, H.-J.: A guide for manual construction of difference-
list procedures. In: Seipel, D.; Hanus, M.; Wolf, A. (eds): Applications
of Declarative Programming and Knowledge Management, Springer-
Verlag, LNAI 5437, pp 1-20, 2009.

[MS88] Marriott, K.; Sendergaard, H.: Prolog Transformation by Introduction of
Difference-Lists. TR 88/14. Dept. CS, The Univ. of Melbourne, 1988.

[MS93] Marriott, K.; Sendergaard, H.: Prolog Difference-list transformation for
Prolog. New Generation Computing, 11 (1993), pp. 125-157, 1993.

[SS86] Sterling, L; Shapiro, E.: The Art of Prolog. The MIT Press, 1986.
Seventh printing, 1991.

[ZG88] Zhang, J.; Grant, P.W.: An automatic difference-list transformation
algorithm for Prolog. In: Kodratoff, Y. (ed.): Proc. 1988 European Conf.
Artificial Intelligence. pp. 320-325. Pittman, 1988.

186

The workshops on (constraint) logic programming (WLP) are the
annual meeting of the Society of Logic Programming (GLP e.V.)
and bring together researchers interested in logic programming,
constraint programming, and related areas like databases, artificial
intelligence and operations research. The 23 WLP was held in
Potsdam at September 15 — 16, 2009. The topics of the presenta-
tions of WLP2009 were grouped into the major areas: Databases,
Answer Set Programming, Theory and Practice of Logic Program-
ming as well as Constraints and Constraint Handling Rules.

ISBN 978-3-86956-026-7

	Title page
	Imprint

	Preface
	Organization
	Programm Chairs
	Program Committee

	Contents
	Invited Talks
	Overview of the Monadic ConstraintProgramming Framework (Tom Schrijvers)
	Abstract
	1 Introduction
	2 Motivating Example
	3 Haskell Background
	3.1 Type Classes
	3.2 Monads

	4 Constraint Models
	4.1 The Model Tree
	4.2 Syntactic Sugar

	5 Constraint Solving
	5.1 The Solver Interface
	5.2 A Simple Finite Domain Solver

	6 Search
	6.1 Dynamic Variable Enumeration
	6.2 Queueing Strategies
	6.3 Search Transformers

	7 Related Work
	8 Conclusion and Future Work
	8.1 Future Work

	References

	What I have learned from all these solver competitions Databases (Neng-Fa Zhou)
	Abstract
	Presentation Slides

	Databases
	An ER-based Framework for Declarative Web Programming (Michael Hanus and Sven Koschnicke)
	Abstract

	Practical Applications of Extended Deductive Databases in DATALOG* (Dietmar Seipel)
	Abstract
	1 Introduction
	2 The General Idea of DATALOG*
	3 Case Studies for DATALOG*
	3.1 Diagnostic Reasoning
	3.2 Ontology Development
	3.3 Disjunctive Reasoning

	4 A Meta–Interpreter for DATALOG*
	4.1 The Immediate Consequence Operator
	4.2 Managing and Aggregating Facts in a Module
	4.3 The Fixpoint Iteration with Aggregation
	4.4 Stratification
	4.5 Side Effects in Forward Rules

	5 Conclusions
	References

	Answer Set Programming
	xpanda: A (Simple) Preprocesser for Adding Multi-valued Propositions to ASP (Martin Gebser, Henrik Hinrichs, Torsten Schaub and Sven Thiele)
	Abstract
	1 Introduction
	2 Approach
	3 A (Little) Case Study: SEND+MORE=MONEY
	4 Conclusion
	A First SEND+MORE=MONEY Representation: Compilation
	B Second SEND+MORE=MONEY Representation: Compilation
	References

	Existential Quantifiers in the Rule Body (Pedro Cabalar)
	Abstract
	1 Introduction
	2 Motivation
	3 Overview of Quantified Equilibrium Logic
	4 Bodies with Existential Quantifiers
	5 A Translation into Regular Logic Programs
	6 Related Work
	References
	Appendix. Proofs

	Kato: A Plagiarism-Detection Tool for Answer-Set Programs (Johannes Oetsch, Martin Schwengerer and Hans Tompits)
	Abstract
	1 Background
	2 Features and Basic Methodology of Kato
	3 Further Information and Discussion
	References

	Theory of Logic Programming
	A Paraconsistent Semantics for Generalized Logic Programs (Heinrich Herre and Axel Hummel)
	Abstract
	1 Introduction
	3 Minimal Models
	4 Sequents and Logic Programs
	5 Paraconsistent Stable Generated Models
	6 Conclusion and Related Work
	References

	Stationary Generated Models of Generalized Logic Programs (Heinrich Herre and Axel Hummel)
	Abstract
	1 Introduction
	2 Preliminaries
	4 Stationary Generated Models
	5 Stationary Generated Models of Normal Logic Programs
	6 Conclusion and Future Research
	References

	Constraint-Based Abstraction of a Model Checker for Infinite State Systems (Gourinath Banda and John Gallagher)
	Abstract
	1 Introduction
	2 CTL, Model Checking and Abstract Interpretation
	2.1 CTL Semantics
	2.2 Model Checking
	2.3 Abstract Interpretation

	3 Abstract Interpretation of the CTL-Semantic function
	4 Abstract Model Checking in Constraint-based Domains
	4.1 Constraint Representation of Transition Systems
	4.2 Computation of the CTL semantic function using constraints
	4.3 Abstract Domains Based on a Disjoint State-Space Partition
	4.4 Representation of Abstraction Using Constraints
	4.5 Computation of α and γ functions using constraint solvers
	4.6 Implementation of constraint-based abstract semantics
	4.7 Further Optimisation by Pre-Computing Predecessor Constraints

	5 Implementation
	6 Experiments Using an SMT Constraint Solver
	6.1 Water level controller
	6.2 Scheduler
	6.3 Increasing precision by property-specific refinements
	6.4 Limitations implied by our modelling technique

	7 Related Work
	8 Conclusion
	References

	Range Restriction for General Formulas (Stefan Brass)
	Abstract
	1 Introduction
	2 Standard Rules
	3 Extended Rules
	4 A Possible Extension
	5 Related Work
	6 Conclusions
	References

	Constraint Handling Rules
	Transforming Imperative Algorithms to Constraint Handling Rules (Slim Abdennadher, Haythem Ismail and Frederick Khoury)
	Abstract
	1 Introduction
	2 Constraint Handling Rules
	3 Operational Equivalence
	3.1 The Language I
	3.2 The CHR Fragment
	3.3 The I-CHR Transformation

	4 Methodology for the Conversion of Imperative Algorithms to CHR
	4.1 Variable Declaration
	4.2 Variable Assignment
	4.3 Alternation
	4.4 Iteration
	4.5 Arrays

	5 Conclusion and Future Work
	References
	Appendix: Proof of Theorem 2

	Persistent Constraints in Constraint Handling Rules (Hariolf Betz, Frank Raiser and Thom Fruehwirth)
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 The Syntax of CHR
	2.2 Very Abstract Operational Semantics
	2.3 Theoretical Operational Semantics

	3 Operational Semantics with Persistent Constraints
	3.1 Termination Behavior
	3.2 Limitations of the current approach

	4 Related Work
	5 Conclusion and Future Work
	References

	Practice of Logic Programming
	A Tool for Generating Partition Schedules of Multiprocessor Systems (Hans-Joachim Goltz and Norbert Pieth)
	Abstract
	1 Introduction
	2 Problem Description
	3 Problem Modeling
	4 Solution Search
	5 Graphical Interface
	6 Implementation and Results
	7 Conclusions and Future Work
	References

	Efficiency of Difference-List Programming (Ulrich Geske and Hans-Joachim Goltz)
	Abstract
	1 Introduction
	2 Top-down and Bottom-up Construction of Lists
	3 Construction Rules for difference list procedures
	4 Benchmarks
	4.1 Benchmark tests - processing trees
	4.2 Speedup

	5 Summary and Future Work
	References

