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Abstract

Component based software development (CBSD) and aspect-
oriented software development (AOSD) are two complementary
approaches. However, existing proposals for integrating aspects
into component models are direct transposition of object-oriented
AOSD techniques to components. In this article, we propose a
new approach based on views. Our proposal introduces crosscut-
ting components quite naturally and can be integrated into different
component models.

Categories and Subject Descriptors D.2.11 [Software Engineer-
ing]: Software Architectures—Languages

General Terms Aspect-Oriented Software Development, Com-
ponent Based Software Development.

Keywords Aspectualization, VIL, Views, Crosscutting wrappers

1. Introduction

Component based software development (CBSD) and aspect-
oriented software development (AOSD) are two complementary
approaches: while CBSD focuses on the modularity and the
reusability of software systems by assembling components [10],
AOSD focuses on the modularity of crosscutting concerns [7].
However, existing proposals for integrating aspects into compo-
nent models are direct transposition of object-oriented AOSD tech-
niques to components. Moreover, current proposals consider only
specific component models and do not address the issue on its gen-
eral form. Furthermore, most of them are unable to handle both
integration and interaction of aspects. In this article, we contribute
by proposing a new approach based on views. A view is defined
as a reconfigured component architecture by introducing new com-
posites encapsulating some of its original components. These new
composites can then be wrapped to alter the behavior of their in-
ner components. Views can be integrated into different component
models. In this paper we show how views can be used for Fractal
component model [3]. We also introduce a language for views, we
call VIL, that makes integrating views and wrappers into a com-
ponent architecture more expressive. However, integrating aspects
following views consideration introduces crosscutting wrappers
(i.e. crosscutting aspects). In this paper we highlight crosscutting
wrappers issue and discuss the need of a formal specification of
both components and wrappers behavior in order to detect and
tackle their interaction issue.

The rest of this paper is organized as follows: section 2 describes
a motivating example that we use to demonstrate how views are
powerful enough to describe aspects. Section 3 introduces our lan-
guage for views VIL. Section 4 shows how VIL can be integrated
into Fractal component model. Section 5 discusses wrappers in-
teractions and how VIL could contribute for detecting conflicting
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views. Section 6 reviews related work and section 7 concludes and
discusses our key perspectives.

2. Motivating Example

In this section, we show with an example how views enable the
integration of aspects into component architectures. Our example
is a revised version of the one given in [2]. It describes a software
controller of a crane that can lift and carry containers from arriving
trucks to a buffer area or vice versa. The crane system is composed
of an engine that moves the crane left to the truck and right to the
buffer area, a mechanical arm that moves up and down and a mag-
net for latching and releasing containers by activating and deacti-
vating its magnetic field. The engine and the arm may run in two
different modes: slow and fast. Users interact with the crane using
a control board. The control board allows users to choose a running
mode for the crane and start crane loading or unloading containers.
Figure 1 and figure 2 depict, respectively, a schematic overview and
a possible component architecture of the crane system.
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Figure 1. A Schematic Overview of the Crane System
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Figure 2. The Crane System Architecture

In Figure 2, components are depicted by rectangles and provided
and required interfaces are represented by input and output arrows,
respectively. Figure 2 models the crane system as a component ar-
chitecture with three main components: controller;, crane and mag-
net. The controller component provides an interface that permits to
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set the running mode of the crane and start loading and unloading
containers. Upon receipt of user commands, the control component
transforms those commands into signals and requires the crane to
act following those signals through its required interface. The crane
component is a composite of the engine and the arm components.
The engine component provides an interface that permits to move
the crane left and right following a running mode and requires an
interface to call the arm to move up and down. The arm, in turn,
provides an interface for moving up and down following a running
mode and requires an interface to ask the magnet to latch or release
a container. Finally, the magnet component provides merely an in-
terface for latching and releasing containers.
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In the following, we show how views can be used in order to
force the crane system to fulfill the above constraints.

In this article, we use the term view to refer to a component ar-
chitecture with additional composites encapsulating some its orig-
inal components. We also use the term wrapper to refer to each
entity that surrounds a component, intercepts calls on its provided
and required interfaces and may alter its behavior.

Views implementation differs from one component model to
another. As an example, a view in Fractal component model can
be implemented as a controller associated to a composite that acts
when calls are intercepted on its interfaces.

2.1.1 Fulfilling Performance Constraint

The crane system can be forced to fulfill the performance constraint
by adding a wrapper around the engine and the arm components.
The added wrapper intercepts calls on the provided interfaces of the
engine and required interfaces of the arm. The wrapper stores and
updates the state of the magnet whenever setOn and setOff oper-
ations are called. Thus, whenever the wrapper intercepts moveLeft
and moveRight calls, it first checks the stored state of the magnet;
if the state of the magnet is off it forces the engine to run in fast
mode by proceeding the intercepted call with fast as a value of its
parameter.

Performance
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Figure 3. Loading Process for the Crane System

Figure 3 shows the UML sequence diagram of loading a single con-
tainer. The process of loading a container starts when the user sets
the running mode for the crane and presses the load button on the
control board. These two actions are transformed into calling sez-
Mode and load operations, respectively, on the provided interface
of the control component. When the control component receives a
load call, it requires the engine component to move right by call-
ing moveRight operation on its required interface. Upon receipt of
moveRight call, the engine does the action and requires the arm to
move down by calling moveDown operation. The arm accepts the
call, moves down and asks the magnet to latch a container from the
buffer area by calling serOn action on the arm. When the container
is latched, the engine calls the arm to move up throwing a moveUp
call. When all this done, the control requires the engine to move
left to the truck by calling moveLeft operation. The engine receives
the call, asks the arm to move down which in turn asks the magnet
to release the latched container by calling setOff action.

2.1 An Optimized Crane System

Now we want to enhance the functionality of the crane system by
forcing it to fulfill the following constraints:

C1 When the arm is not carrying a container, the crane should run
in fast mode.

C2 When the crane is loading a container on the truck, the arm
should move down slowly.

It is obvious that running the crane in fast mode when the arm is
not carrying a container enhances the performance of the crane.
Moreover, moving the arm slowly when it is carrying a container to
be released on the truck ensures the safety of the truck. We call the
above constraints performance and safety constraints, respectively.
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Figure 4. Performance View

Since the engine and the arm already belong to the same composite,
the performance wrapper can be integrated at the crane composite
level, which gives the first view of the crane system as shown in
figure 4. This view is equivalent to the basic architecture with the
exception of adding a wrapper to a composite level. The wrapper
in figure 4 is presented as dashed border rectangle around the crane
component. The small dark squares in the figure indicate the in-
tercepted interfaces. We use the same notation for all the wrappers
described in this paper.

2.1.2 Fulfilling Truck Safety Constraint

Considering truck safety in the crane system can be made by inte-
grating a wrapper around the control and the engine components.
This way, the integrated wrapper will intercept calls on provided
interfaces of the control and required interfaces of the engine. The
wrapper stores and updates the state on which the control is under
loading or unloading a container. So that, whenever the second call
of moveDown is intercepted, on the required interface of the en-
gine, and the control is being loading a container it proceeds the
moveDown call in slow mode.

In this case, we need another view of the component architec-
ture of the crane where the control and the engine are encapsulated
in the same composite. Figure 5 shows this required view.

Views make it simple to fulfill either constraints C1 and C2
shown above. However, when we consider both constraints, wrap-
pers crosscut each other as shown in figure 6. It is obvious that the
structure of the component system must be transformed in order to
enable both wrappers at the same time. In the following, we intro-
duce a specialized language for views definitions and show how it
can be integrated with fractal in order to weave crosscutting wrap-
pers.
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Figure 5. Truck Safety View
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Figure 6. Wrappers Crosscut Phenomenon

3. VIL: Views Language

In this section we introduce a specialized language we call VIL
for managing views in component models. Views can be specified
using VIL to deal with the integration of wrappers into component
architectures. We start by reviewing FPath language [5], used in
VIL to access the required components which are going to be
integrated into the same view.

3.1 FPath Query Language

FPath is a query language developed to deal with the introspection
of the Fractal component architectures [5]. FPath uses declarative
path expressions to introspect Fractal elements: components, inter-
faces and attributes.

engPath = $root/child :: x[name(.) = crane]/child ::
x[name(.) = engine]

For example, engPath is an FPath expression that provides an
access to the engine component in the architecture given by figure
2. This expression is divided into three steps separated by ”/”.
The first step ”$root” indicates a value of an FPath variable to
denote the component representing the root of the crane system.
This later is considered as an input to the next step. The second step
”child :: x[name(.) = crane]” takes the root component, denoted
by the previous step, checks all its inner components “child :: *”
and selects the one who has the name crane ”[name(.) = crane]”.
The third step “child :: x[name(.) = engine]”, which is similar
to the second step, starts from the crane, denoted by the previous
step, and provides an access to the engine component by checking
all its inner components and selects the one who has the name
engine. Similarly, crnPath and ctr Path provide accesses to the
crane and the control components in the crane system architecture,
respectively.

crnPath = $root/child :: x[name(.) = crane]
ctrPath

$root/child :: x[name(.) = control]

3.2 VIL Language

Now we describe the views introduced in section 2.1 using VIL.
As described in section 2.1.1, performance view wraps the crane
component, intercepts all its provided and required interfaces. This

can be expressed in VIL as follows:
Vi = view crnPath

In VIL, the view keyword defines a view for a component architec-
ture by wrapping the component described by crnPath expression
and intercepts all its provided and required interfaces.

Besides view keyword, req and prov keywords are used
to define views by wrapping a component and intercept all its
required and provided interfaces, respectively. Moreover, a wrapper
may be interested to intercept calls on only some interfaces of a
component, in this case, we use the ”c except s” expression to
indicate that the corresponding wrapper intercepts all the interfaces
of the component ¢ except those defined in s where s is a set of
interface names.

In the case where the components that are going to be wrapped
do not belong originally to the same composite, different sub-views
should be defined each of which wraps one component and in-
tercepts only its concerned interfaces. For example, in the truck
safety case, the control and the engine components do not belong
to the same composite; so, we need to define two sub-views, one
to wrap the control and intercept all its provided interfaces and a
second to wrap the engine and intercept all its required interfaces.
These two sub-views can be defined in VIL as ”prov ctrPath”
and “req engPath” respectively. The complete view can be de-
fined by composing sub-views using predefined views composition
operators. For truck safety case, the two above sub-views can be
composed using the ”LI” (i.e. union) operator. The result view de-
scribes the act of introducing a composite that wraps all the com-
ponents defined by all its sub-views and intercepts all the interfaces
intercepted by all its sub-views. The following is the complete VIL
expression describing the truck safety view:

Vo = prov ctrPath Ll req engPath

Besides U operator, I’ and ”—"" operators are used to describe
intersection and difference operations on views. These three opera-
tors are used to extend the scope of wrappers, to determine conflicts
on wrappers and to separate the scope of one wrapper from another
in views, respectively. These operators are inspired by those defined
in set theory. The following is the complete syntax we propose for
the VIL language:

vE€View == viewe|reqe|prove|uv; excepts
‘ vluv2|vll‘lv2|v17v2

VIL is portable, declarative and robust language. VIL is portable
because it does not depend on a specific component model, it is an
independent language which can be integrated into different com-
ponent models. We will show later in the next section how VIL can
be integrated into Fractal component model. VIL inherits its declar-
ative property from the FPath language [5]. Moreover, views can
be composed using a set of declarative operators which enable pro-
grammers to define new abstractions (such as controlled-engine)
on component architectures. Finally, when a component architec-
ture is reconfigured, some views definitions may remain valid. For
example, adding a new component between the engine and the arm
components on the architecture depicted in figure 6 does not alter
neither the performance nor the truck-safety views. Of course, ar-
bitrary modifications of component architectures may also break
views.

4. VIL Mapping to Fractal

In this section, we show how VIL can be integrated into Fractal
Component Model [3]. We suppose here that the reader is familiar
with Julia implementation of Fractal and Fractal-ADL. Fractal uses
an Architecture Description Language (ADL) to describe compo-
nent architectures. It supports hierarchies, introspection and com-
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ponent sharing. We distinguish two cases for views mapping: the
first case is when the components to be wrapped are directly re-
lated to each other and already belong to the same composite. Here
we need just to associate a controller to that composite in order to
intercept its interfaces and implement the wrapper behavior.

The second and more interesting case is when the components
to be wrapped do not belong to the same composite or their are not
directly related to each other. In this case view mapping is divided
into two steps. The first step consists in finding the closest common
parent of the components to be wrapped. This can be done using
FPath language: Consider ¢; and c2 two different components,
the following FPath expression provides a set of all their common
parents including the root component:

e = c1/ancestor :: x[in(cz /ancestor :: *)]

The ”c1 /ancestor :: ™ sub-expression returns the set of all the
ancestors of c; including the root component. With the predicate
”in” presented between square brackets, only the ancestors of c;
that belong to the set of ancestors of c> will be returned. The closest
parent c belongs to that set and has the following particularity:
descendant(c) N e = ¢ which means that the descendants of the
closest parent do not belong to the set returned by e.

The second step consists in adding a new composite as an
inner component of the common parent of ¢; and cz found by
the previous step. The new composite declares ¢; and c2 as its
inner components sharing them with their common parent. This
way, the original architecture is not affected by views integration.
Integrating a view means associating a controller to each shared
component. The added controller intercepts calls and route them
to the nesting composite. Figure 7 shows how the performance
and truck safety views are integrated into the Fractal component
architecture of the crane system. In this figure, the performance
view is integrated following the first case and truck safety view is
integrated following the second case. The component architecture
transformation becomes a tedious and error prone task when the
architecture grows. Our approach makes it possible to automatize
this task.

Truck-Safety

Figure 7. Views in Fractal Component Model

Figure 8 shows the equivalent Fractal-ADL code of the architecture
given in Figure 7. The underlined lines of code is the ones that can
be generated automatically as a result of analyzing the following
VIL expression that describes truck safety view:

Vs = prov ($root/control) U req ($root/child ::
crane/child :: engine)

5. Wrappers Interactions

We have shown how CI1 and C2 constraints can be satisfied by
introducing wrappers. We have also shown how both wrappers
implementing C1 and C2 can be introduced at the same time in an
automatically transformed architecture. In this case, the intercepted
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<component name=root>
<component name=control>
<controller name=prov>
</component>
<component name=crane>
<component name=engine>

<controller name=req>
</component>

</component>
<binding ........... >
<controller name = performance>

</component>

<component name=controlled-engine>
<component name=control definition=/control>
<component name=engine definition=/crane/engine>
<controller name=truck-safety>

</component>

<binding ...... >

</component>

Figure 8. Views Integration into Fractal-ADL

interfaces by both wrappers are disjoint and they are not in conflict
with each other. However, this is not a general rule. So, we cannot
consider that two wrappers are not in conflict just because they
do not intercept common interfaces. As counterexample, let us
consider the following saving energy constraint:

C3 After carrying a thousand of containers in a day the arm
should run in slow mode.

Saving energy view requires the control and the engine components
to be in the same composite. This time, the wrapper intercepts the
provided interfaces of the control and the required interfaces of the
engine. When load and unload calls are intercepted, the wrapper
updates the number of carried containers. When the threshold is
reached, the wrapper forces all the subsequent calls of moving the
arm up and down to be in slow mode.

Consider the intercepted calls by the wrappers implementing C2
and C3, respectively. They are not disjoint, but when the wrappers
intercept common calls (i.e. moveUp and moveDown) they agree to
run them in slow mode. Indeed, C2 forces the arm to move down
slowly in some cases (i.e. when it is loading the truck) and C3
forces the arm to move up and down slowly in some cases (i.e. when
the threshold is reached). So, when the wrappers implementing C2
and C3 are applied at the same time, both constraints are once again
satisfied.

Now consider the case of C1 and C3. The intercepted calls
by their wrappers are disjoint. However, when both wrappers are
applied at the same time, both constraints are not satisfied. In fact,
both constraints can not be satisfied. Indeed, while the performance
view forces the crane (and the arm) to run in fast mode when the
arm is empty, the saving energy view forces the arm to run in slow
mode once the threshold number of carried containers is reached.
The exact behavior at run time depends on the implementation.
Possible outcomes are:

e only one constraint is satisfied, because the first wrapper to be
applied overrides the second one

e only one constraint is satisfied, because the second wrapper to
be applied overrides the first one

e or worse, none of the two constraints is satisfied, because the
implementation interleaves wrappers code.



Unsurprisingly, these conflicts are similar to aspect interactions.
We believe that a support for conflicts detection and resolution
is mandatory for aspectualizing component models. It is simple
in VIL to detect views intersections. But as we have seen, this
information is not sufficient in general to detect conflicts. Related
work on aspect interactions [12] is a good starting point for future
study. We also believe that component models offer properties
such as protocols or contracts that could help in conflict detection.
Finally, the notion of views could also help to specify what a
conflict is and how it can be solved. For instance if a wrapper
introduces transactions, we could specify that nested wrappers (i.e.
nested transactions) are not allowed, or we could also declare that
it is allowed to automatically extend the scope of a wrapper (i.e.
it wraps more components) in order to expand the corresponding
transaction.

6. Related Work

Many works are dedicated to aspectualize component models.
However, most of them are interested in a specific component
model and all of those works have failed to satisfy the two fol-
lowing requirements: (1) integrate aspects into component models
in a natural way and (2) handle aspects interactions. In our opinion,
their failure is due their lack of expressiveness as well as their lack
of a formal model to analyze and verify properties on the result
aspectualized architectures.

Some of the proposals to aspectualize component models (e.g.,
FAC [8], FRACTAL-AOP [6], SAFRAN [4]) propose to extend
component models with aspect-oriented concepts. Others (e.g.,
FuseJ [9] and Caesar]J [1]) introduce new component models. To
the best of our knowledge, all of them directly transpose object-
oriented AOP concepts into existing CBSE. In particular, they rely
on Aspect]-like pointcut expressions to define where aspects weave
components. Our approach relies on alternative views to get rid of
the tyranny of the primary decomposition and naturally introduces
crosscutting at the level of components.

In all models but JAsCo, aspects are components. Currently in
our proposal a wrapper is not always a component. When an aspect
is a component, this promotes aspects reuse and enable to consider
aspects of aspects. It should be studied how our approach can be
extended in order to consider aspects of aspects. In the other hand,
no aspectualized component model but JAsCo, proposes conflict
detection support (beyond Aspect]-like detection of overlapping
crosscut). JAsCo offers an API dedicated to compose aspects in
a programmatic way. Our approach introduces crosscutting at the
component level and could help to study interaction (e.g.; detect
when two wrappers intersect, or when a wrapper is nested into
another).

Unlike Aspect]-like pointcut expressions [7], VIL expressions
are declarative and Aspect] pointcuts are imperative. This can be
shown through the ability of VIL expressions to specify a pointcut
for different joinpoints without so much care about the actions to
be executed for each joinpoint. In the case of Aspect], pointcuts
and advices are strongly related. Moreover, VIL expressions are
not used only to specify joinpoints but also to reconfigure compo-
nent architectures in a way that wrappers can be integrated at the
right positions. Our proposal can also be compared with Composi-
tion Filter model (CF) [2, 11] in the sense that each wrapper can be
shown as an interface layer with input and output filters surround-
ing a component. However, views address more general concerns
than those specified as filters. Moreover, according to the CF model
presented in [11], filters can only be associated to only one compo-
nent where a wrapper may alter more than one component. Further-
more, even if filters can be generalized to wrap many components
it will be difficult to those filters to wrap components at different
levels of hierarchies and share states on those components.

7. Conclusion and Future Work

In this paper we proposed VIL. A specialized language for aspec-
tualizing component models. It relies on the concept of views that
alter the basic component architecture by introducing new com-
posite components. These extra composites can then be wrapped in
order to intercept their interfaces and alter their basic behaviors for
satisfy extra constraints. We have proposed a declarative language
to define views. Our language do not rely on a specific component
model. We have shown how to implement VIL in Fractal compo-
nent model. Finally, we have discussed views interactions. Indeed,
several views may share components and interact at common inter-
cepted interfaces. This may lead to a conflict between views and
violation of their satisfied constraints. However, views that do not
share components may also interact. As future work, we are inter-
ested in providing a mechanism for conflicts detection and resolu-
tion. For conflict detection, both components and views behaviors
should be considered. Each view should be associated with one or
more constrains, then the compatibility of constraints associated to
each pair of views should be checked to see whether or not they are
in conflict with each other. For conflict resolution many strategies
can be considered. We can mention as examples: associate priori-
ties to views and define rules for views applications (e.g. when v/
is applied v2 cannot be applied).
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