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Zusammenfassung

In sonnenähnlichen Sternen erhält ein Dynamo-Mechanismus die Magnetfelder. Der

Babcock-Leighton-Dynamo beruht auf einem solchen Mechanismus und erfordert

insbesondere die Existenz von magnetischen Flussröhren. Man nimmt an, dass mag-

netische Flussröhren am Boden der Konvetionszone entstehen und durch Auftrieb

bis zur Ober�äche steigen. Es wird ein spezielles Dynamomodell vorgeschlagen,

in dem der Verzögerungse�ekt durch das Aufsteigen der Flussröhren berücksichtigt

wird.

Die vorliegende Dissertation beschäftigt sich mit der Anwendbarkeit des Babcock-

Leighton-Dynamos auf andere Sterne. Zu diesem Zweck versuchen wir, die Auf-

stiegszeiten von magnetischen Flussröhren mit Hilfe von kompressiblen MHD-

Simulationen in spärischen Kugelschalen mit Dichteschichtung zu bestimmen und

einzugrenzen.

Derartige Simulationen sind allerdings nur in einem unrealistischen Parameter-

bereich möglich. Deshalb ist eine Skalierungsrelation nötig, die die Ergebnisse auf

realistische physikalische Regimes überträgt. Wir erweitern frühere Arbeiten zu

Skalierungsrelationen in 2D und leiten ein allgemeines Skalierungsgesetz ab, das für

2D- und 3D-Flussröhren gültig ist. In einem umfangreichen Satz von numerischen

Simulationen zeigen wir, dass die abgeleitete Skalierungsrelation auch im vollständig

nichtlinearen Fall gilt. Wir haben damit ein Gesetz für die Aufstiegszeit von mag-

netischen Flussröhren gefunden, dass in jedem sonnenähnlichen Stern Gültigkeit

hat. Schlieÿlich implementieren wir dieses Gesetz in einem Dynamomodell mit

Verzögerungsterm.

Die Simulationen eines solchen verzögerten Flussröhren/Babcock-Leighton-

Dynamos auf der Basis der Mean�eld-Formulierung führten auf ein neues Dynamo-

Regime, das nur bei Anwesenheit der Verzögerung existiert. Die erforderlichen

Verzögerungen sind von der Gröÿenordnung der Zykluslänge, die resultierenden

Magnetfelder sind schwächer als die Äquipartitions-Feldstärke. Dieses neue Regime

zeigt, dass auch bei sehr langen Aufstiegszeiten der Flussröhren/Babcock-Leighton-

Dynamo noch nichtzerfallende Lösungen liefern und daher auf ein breites Spektrum

von Sternen anwendbar sein kann.
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Abstract

Solar-like stars maintain their magnetic �elds thanks to a dynamo mechanism. The

Babcock-Leighton dynamo is one possible dynamo that has the particularity to re-

quire magnetic �ux tubes. Magnetic �ux tubes are assumed to form at the bottom

of the convective zone and rise buoyantly to the surface. A delayed dynamo model

has been suggested, where the delay accounts for the rise time of the magnetic �ux

tubes; a time, that has been ignored by former studies.

The present thesis aims to study the applicability of the �ux tube/Babcock-

Leighton dynamo to other stars. To do so, we attempt to constrain the rise time of

magnetic �ux tubes thanks to the �rst fully compressible MHD simulations of rising

magnetic �ux tubes in strati�ed rotating spherical shells.

Such simulations are limited to an unrealistic parameter space, therefore, a scaling

relation is required to scale the results to realistic physical regimes. We extended

earlier works on 2D scaling relations and derived a general scaling law valid for

both 2D and 3D. We then carried out two large series of numerical experiments and

veri�ed that the scaling law we have derived indeed applies to the fully non-linear

case. It allowed us to extract a constraint for the rise time of magnetic �ux tubes

that is valid for any solar-like star. We �nally introduced this constraint to a delayed

dynamo model.

By carrying out simulations of a mean-�eld, delayed, �ux tube/Babcock-Leighton

dynamo, we were able to identify a new dynamo regime resulting from the delay.

This regime requires delays about an entire cycle and exhibits subequipartition

magnetic activity. Revealing this new regime shows that even for long delays the �ux

tube/Babcock-Leighton dynamo can still deliver non-decaying solutions and remains

a good candidate for a wide range of solar-like stars.
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1 Introduction

1.1 Context and motivation

Magnetic �elds are everywhere, from the atomic level up to cosmological scales. At

most of these levels magnetic �elds play a signi�cant role. The present work focuses

on stellar magnetic �elds. Understanding the in�uence of the magnetic �elds on

the evolution and dynamics of stars is crucial to build a uni�ed picture of the large

variety of stars found in our Galaxy. By analogy it is crucial to the understanding

of our own star: the Sun.

The Sun, like most of the stars, has a magnetic �eld. Nowadays we observe a great

level of detail of the solar atmosphere, from the solar surface at the photosphere up

to the higher levels in the corona. At each of these heights magnetic �elds play a

major role: from the smallest scales of convection to the large-scale coronal �eld a

rich variety of events may occur, all related to the solar magnetic �eld.

Understanding the complexity of the solar magnetic �eld will impact our every-

day life. Nowadays, communication protocols and GPS are both key ingredients in

the well-functioning of our society. Both are strongly in�uenced by the solar mag-

netic �eld: geo-e�cient storms might perturb the on-board instruments of GPS and

telecommunication satellites. Unraveling the mystery of the origins of solar erup-

tions could, some day, allow mankind to predict such extraordinary events. A �rst

step toward prediction is the understanding of stellar magnetic activity.

Solar and stellar physicists still disagree on how solar-like stars maintain their

own magnetic �eld. A simple computation of the magnetic di�usion time scale

predicts that the large-scale solar magnetic �eld should di�use within roughly a

hundred years; but as we observe after almost 5 billion years the Sun still exhibit a

strong and vigorous magnetic �eld. The present work is motivated by the following

question: why do the Sun and its solar-like peers still have a magnetic �eld?

From the beginning of the last century, when the �rst observations of magnetic

�elds on the solar surface became possible, this question has been addressed. A

possible mechanism to explain the maintenance of magnetic �elds in stars is the

dynamo mechanism: Stars pump energy from their kinetic budget into their mag-

netic budget, a process that prevents the stellar magnetic �eld from decaying. It is

1



1 Introduction

eventually the thermal energy (which drives convection and thereby di�erential ro-

tation) which fuel the kinetic budget for the dynamo mechanism to operate. While

such �ows are known to drive dynamos, the location where the dynamo operates

leads to several scenarios. One of these scenario, called Babcock-Leighton dynamo

(Babcock 1961; Leighton 1964), supposes that magnetic �ux continuously emerges

at the surface and reconnects, fueling the large-scale dipolar �eld.

A question arises: where does this emerging �ux come from? The widely used

case of a Babcock-Leighton dynamo based on magnetic �ux tubes suggests that co-

herent magnetic structures � called magnetic �ux tubes � form in the deep interior of

the Sun. Such magnetic structures rise buoyantly toward the surface, transporting

magnetic �ux from the interior to the surface of the star, where the magnetic �ux

is di�used and transported as to regenerate the polar magnetic �eld. The present

work aims to further investigate the dynamics of the rise of magnetic �ux tubes in

solar-like stars.

1.2 The speci�c case of solar-like stars

In the Milky Way, we observe a large variety of stars. Stars can be de�ned as a

strati�ed sphere of highly ionized gas in mechanical and thermal equilibrium that

is su�ciently massive to trigger fusion processes. This de�nition is common to all

stars, but still allows them to di�er in size, mass, luminosity, internal structure and

metallicity. In the present work we focus on low-mass stars with masses from 0.3 to

1.2 solar masses, and particularly on solar-like stars.

All stars form from the collapse of an interstellar cloud. The collapse of the

cloud forms a stellar object that ultimately reaches an equilibrium. The equilibrium

is achieved when the gravitational energy liberated by contraction represents only

a small portion of the total luminosity: the star stops collapsing and its center

heats su�ciently to ignite hydrogen fusion. The star has reached the zero-age-main-

sequence (ZAMS).

When hydrogen fusion is triggered, the star starts to consume the hydrogen in its

core and produces helium. That process produces a large amount of energy, which

has to be transported to the surface. In the deep interior opacity is su�ciently

low to allow e�cient energy transport by radiation. The stellar interior becomes

radiative up to a certain radius. As temperature decreases toward the surface,

opacity increases and radiation inevitably fails to transport the total energy further

up. At this radius a more e�cient process takes over: convection. Stars in the

above-mentioned mass range always possess a radiative interior and a convective

envelope, and (during the main-sequence) the thickness of the convective envelope

2



1.3 What do we know about stellar activity?

depends on the stellar mass and metallicity.

Stars leave the main-sequence when the hydrogen in their core is fully consumed,

the resulting helium-rich core contracts and the star starts burning the hydrogen

surrounding the core. This shell heats the light convective envelope that drastically

expands, and the star becomes a red giant.

Along the main-sequence, solar-like stars remain relatively the same: their radius,

luminosity, and mass remain of the same order of magnitude. The only property

that signi�cantly changes is rotation. Stars with an external convective envelope

are magnetically active, magnetic �elds together with stellar winds allow them to

lose very e�ciently their angular momentum: as the star gets older, it rotates more

slowly (Schatzman 1962; Kraft 1967; Skumanich 1972).

On the contrary to solid objects, the pole of a star does not necessarily rotate with

the same angular velocity as its equator: stars rotate di�erentially. Di�erential ro-

tation is observed at the surface, but also inside stars, thanks to helioseismology and

astero-seismology (Brown et al. 1989). Theoretically, the non-symmetric Reynolds

stress, which naturally arises from a convective strati�ed plasma in rotation, may

be responsible for di�erential rotation (Rüdiger 1989).

In the Sun we know from helioseismology that the radiative zone rotates approxi-

matively uniformly, and that the convective zone has a signi�cant rotation gradient

in latitude: the pole rotates 25% slower than the equator (Howe 2009). In addition,

the strong radial di�erential rotation gradient at the interface between the convec-

tive and the radiative zone produces shear. This region is called the tachocline.

Even though there are still no clear observations of a tachocline in other stars than

the Sun, by analogy, we suppose that all solar-like stars possess a tachocline.

To conclude, we de�ne solar-like stars as any stellar object with a similar mass

as the Sun. On the main-sequence those stars burn the hydrogen present in their

core; their radius, luminosity and mass remain of the same order of magnitudes, over

large time scales; they possess a di�erentially rotating convective envelope, which

spans about one third of their radius; and they present a tachocline at the interface

between their convective and radiative zone. With age solar-like stars decelerate:

young solar-like stars rotate within a few days, while older types rotate up to 40

days (Skumanich 1972; Meibom et al. 2015; Barnes et al. 2016).

1.3 What do we know about stellar activity?

Mankind has been observing the details of the solar surface for at least four centuries.

Such a large and detailed data sample is unique and allows us to study the large

variety of events occurring on the solar surface.

3



1 Introduction

Observations revealed the occurrence of evanescent dark spots on the solar disk.

This discovery dissolved the ideal picture of a uniform and quiet Sun, and introduced

the idea that our star is a highly dynamical body. The number of these spots on

the solar disk varies from none to about a hundred. Their numbers oscillate with

a period of 11 years (on average), we call this period the activity cycle. The solar

activity cycle is illustrated in Fig. 1.1. This diagram shows every single spot at its

latitude over almost 200 years. At the beginning of the cycle, spots appear at high

latitudes centered about 30◦; and as the cycle goes on, spots appear more often at

lower latitudes. Because of the wing-shaped pattern, this plot is called the butter�y

diagram.

Figure 1.1: The solar butter�y diagram produced by V. Senthamizh Pavai. The colors indicate
the number of active regions observed within a one degree bin over one day. Some
of the data are taken from Arlt et al. (2013); Diercke et al. (2015), and D. Hathaway
(NASA/MSFC website).

It is only since the last century, thanks to the work of Zeeman (1897) and Hale

(1908), that scientists recognized the magnetic nature of sunspots. The Zeeman

e�ect predicts that sunspots absorption lines split when they pass through a magne-

tized medium. The strength of the magnetic �ux density determines the separation

of the split. Sunspots are regions where the magnetic �ux density reaches several

kilogauss (kG). There, the magnetic �eld is strong enough for the plasma to fol-

low the well organized magnetic lines. The turbulent motions of granulation are

smoothed and the amount of energy transported by turbulence reduces. As a result,

the spot looks darker than its surroundings.

Thanks to the improvement of instruments and analysis methods, we have access

4



1.3 What do we know about stellar activity?

to more details of the structures of spots: they are magnetically dominated regions,

where magnetic �ux emerges and forms a variety of patterns. Active regions typically

appear as a pair of spots or more complex events with several concentrated or

fragmented spots. The size of these regions varies from 106 � 107 meters (1 to 10

Mm), they contain magnetic �ux which varies between 1020 Mx and 1022 Mx for

typical active regions, up to 1024 Mx for the largest observed ones (Harvey & Zwaan

1993).

Independently of their morphology, active regions are typically bipolar, consisting

of a leading spot (in the direction of rotation) which exhibits a given polarity and

a following spot with an inverse polarity. Hale et al. (1919) identi�ed that leading

spots on the solar northern hemisphere have all the opposite polarity than the ones

in the southern hemisphere (Hale's law). The polarity of an hemisphere reverses

from one activity cycle to another. This polarity cycle is called the magnetic cycle

and lasts for 22 years (on average).

A further remarkable characteristic of active regions is the relative position of the

spots. The line linking the centers of the spots forms an angle with the equator,

called the tilt angle. On average, the leading spot emerges closer to the equator than

the following spot. There exist several statistical studies on tilt angles (e.g. Hale

et al. 1919; Howard 1991, 1993; Baranyi 2015), it has been shown that the average

tilt angle over a cycle is not zero but between 5 to 7 degrees (e.g. Dasi-Espuig et al.

2010; McClintock & Norton 2013; Wang et al. 2015; Senthamizh Pavai et al. 2016).

A further relevant result is the latitudinal dependence of the tilt angle, also called

Joy's law : active regions emerging at lower latitude statistically exhibit lower tilt.

The tilt is not the only characteristic that varies with latitude: the proper motion

of active regions also has a latitudinal dependence. They follow closely the solar sur-

face di�erential rotation � spots are used for measuring solar and stellar di�erential

rotation �, but not exactly. This small di�erence suggests that their proper motion

may follow deeper rooted �ows. This observational fact supports a scenario where

active regions form due to the emergence of a magnetic �ux tube that originates

from the convective zone.

The Sun is not the only active star in the Galaxy: a large fraction of stars emit

X-rays. The precise mechanism responsible for the X-ray emission remains unclear,

but it is accepted that the ratio of X-rays luminosity over the bolometric luminosity

is proportional to the large-scale magnetic �eld and is therefore a good proxy for

stellar magnetic activity (Jakimiec et al. 1986; Preminger et al. 2010). Large data

set of stars showing X-ray emissions are now available (Wright et al. 2013), some

even show magnetic cycles (Wilson 1978; Oláh & Kolláth 1999; Strassmeier 2009).

By the distance that separates us from stars, there are no direct observations of
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magnetic structures on stellar surface. Indirect observations become possible. The

(Zeeman) Doppler Imaging o�ers the great opportunity to reconstruct temperature

(and even magnetic) maps of stellar surfaces (Vogt 1981; Semel 1989; Strassmeier

2009). The level of details is naturally low compared to the solar case, but we are

now able to identify evolution and migration of active regions, as well as magnetic

cycles (Vidotto et al. 2014; Waite et al. 2015; Folsom et al. 2016; Mengel et al. 2016;

Hackman et al. 2016).

1.4 Maintaining the stellar magnetic �elds: the

Babcock-Leighton dynamo

Given the low molecular viscosity inside the Sun of about 104 cm2/s (Spitzer 1962),

the convective envelopes of solar-like stars are expected to be highly turbulent.

Turbulence is a very e�cient mixing process that enhances the magnetic di�usivity

of the system. The turbulent magnetic di�usivity at the surface of the Sun (ηt)

is expected to be about 1012 cm2 s−1, but this value maybe lower in the convective

envelope where the �ows are less turbulent. Without a process acting against the

turbulent magnetic di�usion, the solar magnetic �eld would di�use within a time

scale τdiff = R2
?/ηt ≈ 150 yr. This process is called the dynamo (Rädler et al. 2003;

Charbonneau 2010).

Before explaining the concept of dynamo, we need to introduce some general as-

pects of stellar magnetic �elds. Magnetic �elds are divergence-free or solenoidal,

that is, they have no source or sink points. This particular aspect allows us to de-

scribe any three dimensional magnetic con�guration with only two components: the

poloidal and the toroidal components. In Fig. 1.2 we illustrate the geometry of the

poloidal and toroidal components of a hypothetical axisymmetric magnetic dipole.

In that case, the toroidal component points in the azimuthal direction and changes

sign across the equator. The poloidal �eld is the one dominating the observable

surface �elds and de�nes � with its large-scale average � the magnetic poles of the

con�guration.

Considering the magnetic cycle of the Sun, and its most famous representation �

the butter�y diagram, cf. Fig. 1.3 � one can notice the alternation of toroidal and

poloidal components. At the maximum of the cycle, most of the �ux emerges at low

latitude under the form of active regions, the east-west orientation of active regions

suggests that the �eld was mostly toroidal before. The toroidal component of the

large-scale magnetic �eld is at maximum, and the poloidal component at minimum.

At the minimum of the activity cycle, most of the surface �ux concentrates at the
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Figure 1.2: Illustration of the geometry of the poloidal (Bp) and the toroidal (Bt) components of
an arbitrary large-scale dipolar magnetic �eld. The transparent grey sphere represents
the surface of a solar-like star; the solid grey sphere the radiative interior. The black
solid lines represent the toroidal and poloidal components of an hypothetical large-scale
dipolar �eld. The arrows show the direction of the �eld. The rotation axis of the star
is shown by the thin vertical axis crossing the star.

pole mostly following the poloidal component: the poloidal component of the large-

scale magnetic �eld is at maximum, the toroidal component at minimum. We face a

non-decaying oscillatory system. Such a system requires a mechanism that generates

poloidal magnetic �elds from toroidal ones, and vice versa.

Figure 1.3: The magnetic butter�y diagram. In contrast to the standard butter�y diagram, here
the polarity information is also indicated. The yellow color indicates a positive polarity
where the blue indicates a negative polarity. Credit: D. Hathaway, NASA.

Because of the nature of solar-like stars, it is commonly accepted that the dominat-

ing process responsible for the generation of toroidal component from the poloidal

component is di�erential rotation. In the Sun the large shear that occurs at the

bottom of the convective zone may wind up the large-scale poloidal magnetic �eld
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around the radiative interior. It concentrates and forms strong bundles of toroidal

magnetic �ux at the bottom of the convection zone, this e�ect is called the Ω-e�ect.

In contrast to the Ω-e�ect, the location where the poloidal �eld is generated is still

under debate. This situation leads the solar community to suggest several processes

that may apply to the Sun.

One of these processes, the turbulent dynamo supposes that the turbulent motions

in the convective zone are responsible for the regeneration of the poloidal �eld: the

unorganized convective �ow twists the magnetic �eld lines at small scales, the �eld

reconnects at larger scale and regenerates the large-scale poloidal �eld. The presence

of helical turbulent velocity �eld produces a mean-�eld source term in the induction

equation, called the turbulent α-e�ect (Steenbeck & Krause 1966; Brun et al. 2004;

Käpylä et al. 2010, 2012; Brown et al. 2010; Racine et al. 2011).

When both the Ω-e�ect and the α-e�ect operate the magnetic energy grows until

it clears out the kinetic budget. This situation is unrealistic therefore a non-linear

limiting mechanism is required. Several limiting mechanism have been suggested;

one particularly accepted, the turbulent quenching, assumes that highly magnetized

plasma are less turbulent than poorly magnetized plasma. In such a situation, the

net-e�ect of the turbulent electromotive force diminishes as it ampli�es magnetic

�eld. This mechanism frames the solution to �nite amplitudes. However, for highly

turbulent medium, this type of quenching may become catastrophic and leads to

decaying solutions.

In order to avoid catastrophic quenching, it has been suggested that the source

terms of the poloidal and toroidal �eld operate at two di�erent locations (Parker

1993). Such dynamos are called interface dynamos.

The Babcock-Leighton dynamo is a particular case of an interface dynamo1 In such

a dynamo the Ω-e�ect operates at the tachocline. The resulting toroidal magnetic

�ux is transported to the surface, where it forms active regions which exhibit tilt

angles. At the surface, the magnetic �ux of the active region di�uses and advects

toward the pole under the action of the random walk of granulation and the merid-

ional circulation. Reaching the pole the remnant magnetic �eld reconnects with the

large-scale dipolar �eld. This mechanism is called the Babcock-Leighton mechanism.

Formulating this e�ect as a source term in the induction equation leads to a system

capable of driving a dynamo.

In contrast to other dynamos, Babcock-Leighton dynamos require the presence of

active regions to operate, while turbulent dynamos, for instance, suggest that active

1Interface dynamos supposes that the source of poloidal �eld and the source of toroidal �eld
operate at two di�erent locations. But it is possible to build a Babcock-Leighton dynamo
where the source term of toroidal �eld is not the Ω-e�ect but the shear at the sub-surface shear
layer. Such a dynamo is an exception and is not an interface dynamo.
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regions are a manifestation of the dynamo mechanism.

All interface dynamos require a mechanism to transport magnetic �ux from one

location to the other. The most used case of Babcock-Leighton dynamos is the one

where magnetic �ux tubes are responsible for the transport of the magnetic �ux

from the bottom to the top of the convective zone; and where meridional circulation

and turbulent pumping are responsible for the transport of �ux from the poles to

the tachocline. The toroidal �eld is ampli�ed and stored at the tachocline until

instabilities form magnetic �ux tubes. The latter rise buoyantly, transporting the

toroidal magnetic �ux up to the surface, where the Babcock-Leighton mechanism

operates and eventually leads to a reversal of the large-scale polar �eld.

The present study addresses the dynamical rise of magnetic �ux tubes in the

frame of a Babcock-Leighton dynamo.

1.5 The magnetic �ux tube scenario

1.5.1 The concept: E. Parker (1955)

The concept of magnetic �ux tubes was introduced by Parker (1955). The author

discussed the possible buoyant non-equilibrium of closed magnetic structures in an

adiabatically strati�ed background, such as a convective envelope. Due to its mag-

netic nature, a magnetic �ux tube in mechanical and thermal equilibrium with its

surroundings will always lack density and buoyantly rise in the opposite direction of

gravity. Parker suggested that these magnetic structures may transport magnetic

�ux from the stellar interior to the surface.

1.5.2 The thin �ux tube era: from Spruit (1981) to Weber

(2011)

This original idea of Parker found a crucial realization, when Spruit in 1981 (Spruit

1981) derived the equation of motion of a thin magnetic �ux tube. This approxima-

tion reposes on the idea that magnetic �ux tubes are thin compared to the length

scale (the pressure scale height) of their surroundings. Under such an approximation

the internal thermal and magnetic properties of magnetic �ux tubes remain constant

across the �ux tube diameter. Inside the Sun, this approximation holds from the

bottom of the convective zone up to the last ten megameters (Mm).

The discreet description of the internal properties of magnetic �ux tubes allows

to solve a simple set of equations. Solving this set of equations is computationally

inexpensive and permits large parameter studies.
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The �rst remarkable result of the thin �ux tube approximation was to obtain

an order of magnitude for the initial magnetic �ux density of solar magnetic �ux

tubes at the bottom of the convective zone. Supposing that emerging magnetic �ux

tubes form active regions, the equatorial migration requires that they emerge at

high latitudes in the beginning of the cycle (≈ 30◦) and at lower latitudes by the

end of the cycle (≈ 10◦). In axisymmetric simulations, �ux tubes with magnetic

�elds of at least 105 G were necessary to emerge at such low latitude. (Choudhuri &

Gilman 1987; Choudhuri 1989; Fan et al. 1994; Schüssler et al. 1994). The latitudinal

migration observed in Fig. 1.1 is believed to be the result of the migrating toroidal

�eld at the base of the convective zone.

These results were encouraging but also surprising in many aspects. Magnetic

�ux tubes with an initial magnetic �ux density larger than 60 kG are in super-

equipartition with the convective motions: the magnetic energy density of the �ux

tube is larger than the kinetic energy density of convection. The existence of super-

equipartition �elds is still debated.

The major issue of the �ux tube scenario, however, is how to store magnetic �ux at

the bottom of the convective zone. Several authors (van Ballegooijen 1982; Schüssler

1983; Moreno-Insertis et al. 1992; Rempel 2004) suggested that a magnetic �ux layer

can be stable in a sub-adiabatically strati�ed background. In the solar case, this

is just below the convective zone near the tachocline. In such an environment,

magnetic layers may store magnetic �ux on a su�ciently long time scale to form

super-equipartition magnetic �ux tubes (Rempel et al. 2000).

Several processes have been suggested that may lead to the formation of magnetic

�ux tubes. The present work is based on one possible scenario: the magnetic �ux is

stored at the tachocline in the form of a magnetic layer; due to the ampli�cation of

the toroidal magnetic �ux by di�erential rotation, the magnetic layer may become

unstable similarly to a Rayleigh-Taylor type of instability (Wissink et al. 2000; Fan

2001) and form tubular magnetic structures. These structures enter the convective

zone and become buoyantly unstable, they rise on a short time scale and emerge at

the surface forming active regions.

1.5.3 On the limits of the thin �ux tube approximation

The thin �ux tube approximation ignores dynamical e�ects such as the self frag-

mentation of magnetic �ux tubes under the viscous force arising from their own

rising velocity (Schüssler 1979). Such fragmentation may reduce the buoyancy of

the remnants and prevent them from reaching the surface. This issue can be tackled

by adding a poloidal component to the magnetic �ux tube called twist. For su�-
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ciently twisted magnetic �eld lines, the radial magnetic tension (resulting from the

azimuthal �eld) suppresses the generation of vortices and ensures that the magnetic

�ux tube remains coherent (Emonet & Moreno-Insertis 1998; Fan et al. 1998; Dorch

et al. 1999).

However introducing a twist further constrains the formation of magnetic �ux

tubes (Jouve et al. 2012). This issue still needs to be explored, especially because a

rather large twist is required; which may trigger the kink instability.

The question of how much twist is required remains open, mostly because viscosity

� which controls the fragmentation � has a lower limit in simulations due to their

resolution. Modern simulations still fail to reach the molecular viscosity of the solar

plasma.

1.5.4 From axisymmetric to non-axisymmetric rise

The fact that the thin �ux tube approximation does not require much computa-

tion time allowed early on to extend the study of magnetic �ux tubes to the non-

axisymmetric case. While rising, a non-axisymmetric thin �ux tube naturally tilts

under the action of rotation. The resulting active regions have a tilt angle that

depends on latitude.

Simulations of thin �ux tubes also permit statistical studies. Weber et al. (2011)

simulated the rise of thin magnetic �ux tubes in a turbulent convective environment.

Turbulence brings randomness; by carrying out a large amount of simulations, they

could extract relevant statistics for the tilt angle: they concluded that magnetic �ux

tubes of 40�50 kG reproduce Joy's law.

As already mentioned, the thin �ux tube model does not account for the required

twist, and the latter may impact the �nal tilt angle of active regions. Jouve et al.

(2013) studied thick �ux tubes in a convective environment under the anelastic

approximation. The latter consists in �ltering sound waves to increase the numerical

time step. This approximation is valid in almost the full solar convective zone where

convective motions are much smaller than the sound speed. The authors indeed

found that the tilt angle depends on both the twist and latitude.

Fan (2008) further contributed to the anelastic non-axisymmetric rise of thick �ux

tubes by �nding that non-axisymmetric thick magnetic �ux tubes rise radially, in

contrast to their axisymmetric counterparts, which are latitudinally de�ected under

the action of rotation.
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1.5.5 Toward a compressible non-axisymmetric study

Both, the thin �ux tube approximation and the anelastic approximation may miss

some dynamical e�ects, that only fully compressible simulations could reveal. The

�rst study on the compressible rise of magnetic �ux tubes was carried out by Cheung

et al. (2006). The authors studied the limits of the thin �ux tube approximation.

This study was limited by its Cartesian geometry, the two dimensional domain, and

the absence of rotation. The present work aims to combine compressibility with the

non-axisymmetric rise of a magnetic �ux tube in an adiabatically strati�ed rotating

spherical shell.
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2 Description of the numerical

setup

2.1 Introduction

A few theories aim to explain how low-mass stars maintain their magnetic �elds; they

are known as dynamo theories. One ensemble of these theories, the �ux transport dy-

namos, suggests that the mechanism responsible for the generation of toroidal �elds

(Ω-e�ect) and the mechanism that regenerates the poloidal �eld (Babcock-Leighton

mechanism) operate at two di�erent places. In such dynamos the magnetic �ux

needs to be transported from one place to another. The particular case of the �ux

tube/Babcock-Leighton dynamo suggests that coherent magnetic structures, called

magnetic �ux tubes, form at the place where the toroidal �eld is generated, buoy-

antly rise through the convective zone transporting the magnetic �ux to the surface,

where the Babcock-Leighton mechanism leads to a net transport of poloidal �eld

to the poles. The Sun, and numerous other stellar objects, exhibit cyclic magnetic

activity (Saar 2002; K®vári & Oláh 2014). The idea behind any cyclic dynamo

mechanism is that the large scale magnetic �eld alternates between a poloidal and

a toroidal topology. It has been shown that there exists non-decaying oscillatory

solution of the dynamo equation (induction equation with a non-linear source-term).

These solutions could be a good description of stellar cycles.

In the considered scenario, when magnetic �ux tubes emerges at the stellar sur-

face, they form magnetic active regions. The magnetic �ux that emerges in active

regions may partially cancels with the magnetic �ux of active regions from the other

hemisphere. The remaining �ux is advected by the meridional circulation toward

the poles. On the way the �ux decays and fragments under the action of the random

walk of granulation. Finally when it reaches the poles the emerged �ux reconnects

with the large-scale dipolar �eld. This entire process taking place at the surface is

called the Babcock-Leighton mechanism, it is responsible for the reversal of the large

scale polar �eld (Babcock 1961).

In the second phase of the dynamo mechanism, meridional circulation and tur-

bulent pumping transport the poloidal �eld to the bottom of the convection zone,
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where the shear layer, called the tachocline (Miesch 2005, sect. 3.2), winds up the

large scale poloidal �eld and generates a layer of toroidal magnetic �eld deep in the

stellar interiors. These regions form magnetic �ux tubes and a new cycle starts.

In the present work, we aim to �nd a universal relation between the rise time of

magnetic �ux tubes and the stellar parameters. We plan to extract such a relation

from direct numerical simulations (DNS) of rising magnetic �ux tubes. This relation

can be introduced into a mean-�eld formulation of the Babcock-Leighton dynamo

where it acts as a delay, i.e. as a non-linearity whose impact on the dynamo solutions

may be manifold.

In the present Chapter, we introduce the concept of the simulations, discuss its

implications on the numerical setup and numerical treatments, and underline the

limits that such a numerical treatment imposes. Finally, we detail the environment

in which we introduce magnetic �ux tubes.

2.2 The journey of a deeply rooted buoyant �ux

tube toward the surface

In this Section, we draw the various phases of the journey of a magnetic �ux tube

toward the surface: generation, rise and emergence. We justify our choice to focus

on the rising phase.

The journey of a magnetic �ux tube starts with its generation. Several processes

can generate magnetic �ux tubes. Helioseismology suggests that the convective bulk

of the sun rotates di�erentially, whereas the radiative interior seems to rotate in a

uniform manner. The resulting radial gradient of rotation at the interface produces

a shear layer. Here we consider that shear �ows at the tachocline build toroidal

magnetic layers which concentrate into magnetic �ux tubes thanks to an instability.

That instability has been discussed by Matthews et al. (1995, and references therein)

and several others (Rempel et al. 2000; Wissink et al. 2000; Fan 2001; Gilman &

Rempel 2005; Favier et al. 2012; Jouve et al. 2012).

Since the mean-�eld formulation of the Babcock-Leighton dynamo only requires

the rise time of magnetic �ux tubes, we exclusively study the rise of magnetic �ux

tube and exclude the destabilization phase to save computation time. Therefore,

we initially consider the magnetic �ux tube to be well formed and already in non-

equilibrium (like in Fan 2008; Jouve & Brun 2009). We discuss this aspect in detail

in Chaps. 4 and 5.

The well-formed twisted magnetic �ux tube buoyantly rises through the convective

envelope. It can take several paths, it tilts and writhes, and it can even become
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unstable against the kink instability, depending on the stellar rotation, its initial

twist and its buoyancy (see Chap. 1). Moreover, both convection and di�erential

rotation will impact the dynamics of the rise, they may deform and de�ect weak

magnetic �ux tubes (less than 10 kG in the solar case) (Fan 2008; Jouve & Brun

2009; Weber et al. 2011). That is why we refrain from comparing our results with

detailed surface observations (e.g. spot emergence, morphology of spots, tilt angles,

spots decay) but we address more general aspects like the rise time, the balance

between the various forces controlling the rise of magnetic �ux tubes, and universal

relations that can apply on a large variety of stars; the goal of this work is to enrich

our understanding of the buoyant rise of magnetic structures in rotating strati�ed

interiors.

Eventually the �ux tube emerges at the surface and forms active regions that

exhibit complex morphologies, asymmetries, and tilt (Caligari et al. 1995, 1996;

Moreno-Insertis et al. 1994; Abbett et al. 2001; Jouve et al. 2013). As for the desta-

bilization phase, we exclude the emergence phase of our study and focus exclusively

on the rise. Along with this Chapter we will show that emergence is a subtle issue

and has to be addressed separately.

2.3 On the need of compressible MHD

We want to design a versatile numerical setup that is capable of evolving to further

applications. The present study focuses on solar-like stars: stellar objects of about

a solar mass on the main-sequence, possessing a convective envelope spanning about

one third of their radius; but the numerical setup should apply to a large range of

stellar objects. In Fig. 2.1 we highlight the various stellar types we plan to study in

the future: from ZAMS solar-like stars to red giants. These stellar objects share a

few aspects: they all have a convective envelope of very di�erent thicknesses, shear

�ows, and exhibit cyclic magnetic activity; that makes them appropriate candidates

for the presence of magnetic �ux tubes (Granzer 2004).

Because in solar-like stars the sound speed is high compared to rotation and con-

vective velocities (convective and rotation Mach numbers are both about 10−3 within

the bulk of the convective zone), and the convective envelope is nearly adiabatic, the

anelastic approximation is well justi�ed. But for other types of stars like red giants,

the higher Mach number of convective �ows (≈ 1) leaves the domain of validity of

this approximation, and compressibility has to be considered.

In Fig. 2.2, we show another advantage of compressibility: it allows to study

highly subadiabatic regions, such as radiative zones. The anelastic approximation

limits the studies to weakly subadiabatic interiors, like the overshoot layer (Jones
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Figure 2.1: Stars of interest in the Hertzsprung-Russell diagram. The cyan area contains main
sequence A,F,G and K stars, which have an external convective envelope and suppos-
edly a tachocline. This region also contains giant stars as they also possess an external
convective envelope and possibly a tachocline. Adapted from ESO (CC-BY).

et al. 2011; Lantz & Fan 1999). The interaction between the convective zone and

the radiative zone can only be studied with compressible MHD. Such a study would

help to constrain the role of a tachocline and/or the role of the overshoot region to

build magnetic �ux tubes.

Simulating stellar surface is a di�cult issue. Compressibility should provide an

advantage compared to the anelastic approach. Indeed, the Mach numbers of the

convective �ows occurring at the surface (≈ 10−2) are large compared to the ones of

the �ows at the bottom of the convective zone (≈ 10−7). Such large Mach numbers

place the anelastic treatment close to the limits of its domain of validity. This is

not the case for a compressible treatment, which theoretically should allow us to

simulate from the radiative zone up to the photosphere. However, at the surface

the numerical resolution becomes a limiter: it fails to catch the sti� strati�cation,

and the small scales of motion. Without a properly simulated surface, we exclude
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emergence events from our study. In general, such studies are still limited to local

simulations.

Solving the fully compressible MHD set of equations also o�ers the opportunity to

study sound waves. One may apply helioseismologic methods on the self-consistent

sound waves obtained from our simulations and try to constrain the helioseismic

methods in the presence of a magnetic �eld.

Figure 2.2: Overview of the standard stellar structure of a solar-like star overlayed with the do-
mains of validity for compressible and anelastic simulations. The blue domain repre-
sents the compressible validity domain extending from the surface to the deep radiative
zone. The anelastic validity domain (in red) extends only from close to the surface to
the overshoot layer. The hatched area represents the region where global simulations
usually fail to resolve the strong strati�cation (very) near the surface.

Finally, this work is the �rst speci�c study on compressible �ux tubes in a 3D

spherical shell. A compressible study of rising �ux tubes has been carried out by

Cheung et al. (2006) (see Fig. 2.3), where the authors studied the 2D rise of a

magnetic �ux tube in a Cartesian plane and explored the limits of the thin �ux tube

approximation. Here we go further and verify the agreement between anelastic and

compressible simulations; and the e�ects of both, rotation and spherical geometry,

in axisymmetric and non-axisymmetric setups.

These aspects motivated our choice of a compressible interior. We use the paral-

lelized NIRVANA code (see Ziegler 2011) 1 to solve the fully compressible MHD set

1http://www.aip.de/Members/uziegler/nirvana-code
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2 Description of the numerical setup

Figure 2.3: Compressible buoyant �ux tube in a Cartesian strati�ed box. The colors represent
the magnetic �eld perpendicular to the plane. Computed after the setup from Cheung
et al. (2006).

of equations on a spherical grid:

∂tρ+∇ · (ρv) = 0 , (2.1)

∂t(ρv) +∇ ·
[
ρuu + ptotI−

1

µ0

BB

]
= ρg + ρf (2.2)

∂te+∇ ·
[
(e+ ptot)v −

1

µ0

(v ·B)B

]
= ∇ ·

[
η

µ0

B× (∇×B)− Frad

]
+ ρg · v + ρf · v , (2.3)

∂tB−∇× (v ×B)− η∇2(B) = 0 , (2.4)

p =
ρkBT

mµ
, (2.5)

where, v, ptot, B, g, f , T , Frad, kB, m and µ are the velocity �eld, the total pres-

sure being the sum of the thermal (p) and the magnetic pressure (pm = B2/2µ0),

magnetic �ux density, gravitational acceleration, external acceleration 2, the tem-

2For the present experiment, we consider only the Coriolis e�ect, as a result, the last term of the
conservation of energy nulli�es.
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perature, the radiative �ux, the Boltzmann constant, the atomic mass unit and the

mean molecular weight, respectively. Apart from the usual symbols, ∂t(.) and I

are the partial time derivative and the identity matrix, respectively. The spherical

coordinate system is (r, θ, φ).

2.4 On the need of a global domain

As we already mentioned, rising magnetic �ux tubes have complex behaviors: they

can take a wide range of paths, from purely radial to almost parallel to the rotation

axis (Choudhuri & Gilman 1987; Moreno-Insertis 1986; Moreno-Insertis et al. 1992;

Schüssler & Solanki 1992). It is di�cult to predict the size of the needed domain.

Furthermore, to ensure that boundary conditions do not impact the rise of the

magnetic �ux tube, we prefer to use the largest possible domain.

We chose to simulate the rise of a magnetic �ux tube in almost the full northern

hemisphere from close to the pole down to the equator. The NIRVANA code would

allow to include the pole but the pole is di�cult to treat numerically since it is a

singularity and the boundary conditions at the pole are computationally very ex-

pensive: they require numerous and complex communications between parallel CPU

cores. To ensure that excluding the pole does not a�ect the results, we conducted

two simulations with and without the pole. We obtained almost identical results,

demonstrating that the pole does not play a major role in our setup.

Our global domain fails to reach the surface, however. The strong strati�cation

at the surface is di�cult to capture. We had to �nd a balance between the largest

radial extent and a pragmatic resolution that is su�cient to resolve the top pressure

scale height with at least ten points.

We chose a domain from 0.684 to 0.946 solar radii, and from 0 to 0.95π/2 in

latitude. The azimuthal extent depends on the needs of various non-axisymmetries

(see more details in Chap. 5).

Finally, we plan our setup to be versatile: to address other stars and further

developments, a global domain appears to be the best choice.

2.5 The power of adaptive mesh re�nement

(AMR)

The early studies of rising magnetic �ux tubes were carried out under the thin �ux

tube approximation. This is justi�ed because stellar evolution models tell us that the

pressure scale height at the bottom of the convection zone is large compared to the
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2 Description of the numerical setup

Figure 2.4: Mesh structure of an axisymmetric simulation. The colors represent the intensity of the
azimuthal magnetic �eld normalized by the maximum. The purple grid represents the
grid structure. Note that a single cell of this grid represents a block of the simulation.
A block consists of 2× 2 cells in 2D (2× 2× 2 in 3D).

hypothetical radius of a magnetic �ux tube: the hydrodynamical characteristics of

the �ux tube do not vary much across its diameter. In the `thick' �ux tube approach,

we do not approximate the small variations to constant values, nevertheless the

magnetic �ux tube remains small compared to the pressure scale height. The �ux

tubes we simulate have a radius of 10−3 R?
3; the �ux tube is a tiny structure in the

global domain.

In the solar interior, the molecular magnetic di�usion time scale for a �ux tube is

about 15000 yr , which is much longer than the rise time supposedly lasting about

one month. Because of the small molecular magnetic di�usion, the tubes conserve

their magnetic �ux. To ensure conservation (more than 90% of the initial �ux

remain in the magnetic �ux tube), we need to resolve the diameter of the magnetic

�ux tube with at least 10 grid points. Such a resolution, however, would lead to

a global resolution of ≈ 2500 points in the radial direction. This can be achieved,

for a single demonstrative simulation, but a large parameter study requires lower

3The values we give along this chapter stem from the axisymmetric setup. For more details about
the corresponding non-axisymmetric values, please refer to Chap. 5.
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2.5 The power of adaptive mesh re�nement (AMR)

resolutions.

The NIRVANA code o�ers a solution that uses adaptive mesh re�nement (AMR).

It consists in resolving the stellar interior with a base-resolution, su�cient to capture

the strati�cation at the surface, and re�ning the base-grid wherever �ner structures

are interesting. We chose a base-resolution of 512 in the radial direction so that

we resolve the top pressure scale height with a few points, and allow two levels of

re�nement to resolve the �ux tube with about 15 points in diameter. The resulting

e�ective resolution is about 2048 in radius. In Fig. 2.4 we show how AMR allows

us to obtain �ne complex structures.

Choosing the criterion that decides about re�nement is not a trivial task. In our

setup, we want to re�ne the magnetic �ux tube. Choosing the presence of magnetic

�eld as re�nement criterion may sound sensible, but such a simple criterion leads

to large re�ned regions, that increasing the required computational time. It is

appropriate to consider the �rst and second derivative of the magnetic �ux density

to follow more �nely the interesting regions.

We construct the following criterion:[
ξ1
‖δB‖2

|B| + (1− ξ1)
‖δ2B‖2

‖δB‖2 + 10−2 · |B|

](
δx(l)

δx(0)

)ξ2 { > EB => refinement,

< 0.8EB => derefinement,

where ‖δB‖2 and ‖δ2B‖2 are the 2-norm of the �rst and second di�erences of B,

ξ1 is a switch-parameter that controls the �rst or second derivative nature of the

criterion, and ξ2 is the level dependence parameter that controls re�nement across

the levels. EB is the threshold of the relative gradient and δx(0) and δx(l) represent

the grid size at the base level and at a level l, respectively. The values of ξ1, ξ2 and

EB are empirical. They are adapted to our speci�c problem such that the re�nement

follows closely the boundary of the magnetic �ux tube. The boundary is de�ned as

the contour that contains 98% of the total magnetic �ux. A further constraint is

that the �ux tube should be uniformly re�ned. A unique level ensures a constant

numerical di�usivity across the �ux tube diameter.

The �rst term of the �rst factor represents the relative growth of magnetic �ux

density, the second term represents the curvature of the same quantity. The second

factor scales the discretization of a given level with the base-level. When the criterion

becomes larger than the threshold, the corresponding block is re�ned; when the

criterion becomes less than 80% of the threshold, the block is coarsened.

In all setups, we used the same parameters: EB = 5.10−3, ξ1 = 0.8, and ξ2 = 1.2.

The choice of this set was obtained by testings.
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2 Description of the numerical setup

2.6 The di�culties due to the compressible

character of the setup

Compared to the thin �ux tube approximation and the anelastic approach, com-

pressibility is more realistic; however, it constrains the system and prevents us from

integrating a few ingredients in the simulation. In this section, we justify our choice

to limit the complexity of the background to a uniformly rotating, static environ-

ment.

2.6.1 Excluding a convective background

The choice of the stellar background is crucial, it needs to be addressed carefully.

The main issue in simulating compressible rising �ux tubes resides in the limitation

on plasma-β (= p/pm). In the Sun, we expect this parameter to approach 105. Be-

cause both approaches, the thin �ux tube approximation and the anelastic approach,

consider only the di�erence in density between the �ux tube and its surroundings,

they have the great advantage of reaching this high β with a reasonable resolution.

The remarkable example of anelastic simulations from Jouve & Brun (2009) in-

cludes most of the relevant ingredients for a realistic description of rising magnetic

�ux tubes: turbulence is treated with the large-eddies approximation and di�er-

entially rotating convection with meridional circulation in a global simulation. In

Fig. 2.5 we show a meridional section of one of their simulations, where a magnetic

�ux tube rises through a convective environment.

Figure 2.5: Anelastic rising �ux tube in a rotating convective spherical shell. The black (yellow)
color denote down (up) �ows of about −300 m/s (+200 m/s), and the green contours
are Bφ levels associated with the �ux tube. Adapted from Jouve & Brun (2009).

In contrast to anelastic simulations, compressible simulations solve the mass con-

servation expressed in absolute density. The discretization error, inherent to any
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2.6 The di�culties due to the compressible character of the setup

numerical experiment, produces oscillations in the thermal pressure term. These

oscillations are clearly unphysical and need to be considered as noise. In our setup,

thanks to its high precision, these oscillations have an amplitude of 10−4 times the

thermal pressure. However, a β ≈ 105 would lead to a magnetic pressure signal

of the order 10−5 times the thermal pressure, which is below the amplitude of the

non-physical pressure oscillation. The setup would fail to resolve the magnetic �ux

tube, which will dissipate and never rise.

A solution to this problem would be to increase resolution. NIRVANA uses a

second order scheme in time and space, and the solution converges in a quadratic

manner in the asymptotic case. Hence, in a perfect situation, the amplitude of

the (non-physical) pressure oscillations should reduce in the same manner as the

discretization error. Resolving the �ux tube such that the magnetic pressure signal

were 100 times larger than the non-physical pressure oscillations, would require at

least a resolution which is 210 larger (or 10 additional levels of re�nement) than

the ones mentioned in Sect. 2.5. This would lead to an e�ective resolution of 219

grid points in the radial direction. Such a resolution is clearly beyond the current

computational capabilities.

Another solution consists in decreasing β. To ensure that the �ux tube is suf-

�ciently resolved, we constrain β to a maximum of 100 such that the numerical

pressure oscillations never exceed 1% of the magnetic pressure signal. The decrease

of β leads to some issues, however: the magnetic �ux density of the tube becomes

much larger than the one expected in the Sun. Such magnetic �ux tube embed-

ded in a convective environment will ignore any convective velocity. To solve this

issue, one could argue that a stronger convection leads to a situation where both

ingredients are in the same relation as in the solar case. And indeed, simulating a

compressible rising magnetic �ux tube in a uniformly rotating, convective interior

can be achieved. However, further issues arise as soon as di�erential rotation is

considered: does rotating convection scale in the same manner as rising magnetic

�ux tubes? This question is non-trivial.

The β issue is not the only problem: the inhomogeneous viscosity due to AMR; the

smaller time step due to compressibility; the long relaxation time that convection

needs to establish; and the fact that realistic parameters for convection are still

di�cult to reach. All those problems are further reasons why we decided to exclude

convection from our setup, and focus on the impact of rotation on the rise of magnetic

�ux tubes.
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2 Description of the numerical setup

2.6.2 Excluding a di�erentially rotating background

A rotating convective spherical shell always tends to rotate di�erentially. But the

mechanism responsible for the generation of di�erential rotation remains unclear.

Several authors tried to generate self-consistently the solar di�erential rotation and

still failed to obtain the exact solar di�erential rotation for the expected regime

(Augustson et al. 2012; Guerrero et al. 2013; Gastine et al. 2014; Karak et al. 2015).

Again the issue of di�erential rotation is a delicate question. In solar-like stars

convection is the driver of di�erential rotation. Since we refrain from setting up a

convective interior, we have no chance to self-consistently generate a di�erentially

rotating star.

An alternative consists in externally forcing the di�erential rotation pro�le (like

done by Fan 2008). Unfortunately this approach relies on a parameterization. An-

other alternative is to generate di�erential rotation thanks to the mean-�eld λ-e�ect

(Rüdiger 1989; Kitchatinov & Rüdiger 2005; Küker & Rüdiger 2011), which is the

result of rotating, strati�ed convection and can be derived quantitatively assuming

mixing length theory to hold. This alternative is kept for further investigations.

Studying the rise of magnetic �ux tubes in a compressible, di�erentially rotating,

and convective environment represents a complex issue, which needs to be addressed

on a life-time career. The present work is restricted to a uniformly rotating, static

background.

2.6.3 Choice of a static interior

Since we exclude convection and di�erential rotation from our setup, we need to

focus on the static properties of the stellar interior, namely strati�cation and su-

peradiabaticity.

The density ratio from the surface to the radiative zone is about a few thousands.

Such a strati�cation is possible to simulate only with an isothermal equation of state

(EOS) because of the proportionality between ρ and P . But the Sun is not isother-

mal and we need to consider temperature variations for our problem. The standard

solution consists in excluding the last 10 to 50 megameters (Mm) toward the surface

where the largest density drop occurs. Stellar evolution models suggest that between

0.68 and 0.96 solar radii, the density ratio is about 45. Such a strati�cation can be

achieved with a polytropic EOS.

Regarding the thermal character of the stellar interior, carrying a temporal and

an azimuthal average of the radial pro�le of entropy in the convective zone leads to

a slightly superadiabatic interior, ∇ − ∇ad ≈ 10−4 (see Eq. (2.10) for de�nition of

∇). Superadiabaticity is the condition for the convective zone to be unstable against
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2.6 The di�culties due to the compressible character of the setup

the convective instability. But because the convective zone is only slightly unstable,

a marginally stable layer is a good approximation to its thermal characteristics.

Such a layer is adiabatically strati�ed with a polytropic index of γ = 5/3 for a

mono-atomic gas.

Finally, from a stellar structure aspect di�erential rotation plays a minor role,

whereas it becomes a crucial ingredient for the stellar dynamo mechanism. It role

becomes less clear in the case of a rising magnetic �ux tube. As Fan et al. (1994,

Fig. 12) suggested, di�erential rotation and the resulting meridional circulation

have a minor impact on the rise, resulting in about 5◦ smaller latitudinal de�ection

as compared to uniform rotation.

In summary, we assume that an adiabatically strati�ed interior with a density

contrast larger than 10 and solid body rotation seems to be a relatively good ap-

proximation for the static properties of a convective interior.

Such a background strati�cation should be in thermal and pressure equilibrium

as well as marginally stable against convection � the convective �ux is zero �, and

the total luminosity produced in the core should be exclusively transported to the

surface by the conductive �ux.

Ftot = Frad , (2.6)

where Ftot = (L0/4πr
2) er, and Frad = −κ (dT/dr) er are the total energy �ux

coming from the radiative zone, and the radiative �ux, respectively, with L0, κ,

and er being the total luminosity, heat conduction, and the radial unit vector in the

spherical coordinate system, respectively. The force balance between the gravity and

the pressure gradient guarantees pressure equilibrium. We neglect the centrifugal

force and write
dp

dr
er = ρg , (2.7)

with g = −GM?

r2
er; where G and M? are the gravitational constant and the mass of

the star. In order to obtain a relation between ρ, p and T , we consider the adiabatic

EOS:

p =
ρkBT

mµ
. (2.8)

Finally, we close the system with the polytropic relation of the logarithmic temper-

ature gradient:

∇ =
d lnT

d ln p
. (2.9)

From this system we obtain a numerical value for κ, a relation for ρ, and an
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2 Description of the numerical setup

ordinary di�erential equation for T . Eq. (2.9) can be written like

∇ =
p

T

dT

dr

dr

dp
. (2.10)

Introducing the force balance (2.7) in the last relation, we write

∇ = − p

Tρ

dT

dr

r2

GM?

. (2.11)

The adiabatic EOS (2.8) tells us that p/(Tρ) is a constant. Hence,

p

Tρ
=

k

mµ
= const =

p0

T0ρ0

, (2.12)

where the index 0 represents the values of the quantities at the top of the domain.

From Eq. (2.11), we can now express the temperature gradient:

dT

dr
= −T0ρ0

p0

∇GM?

r2
. (2.13)

De�ning the pressure scale height at the top of the domain like

Hp0 = p0
dp

dr

∣∣∣∣−1

R0

= −p0

ρ0

R2
0

GM?

, (2.14)

we can now identify the pressure scale height in Eq. (2.13) and obtain

dT

dr
= −T0

∇
Hp0

(
R0

r

)2

. (2.15)

This is integrated with the boundary condition T (R0) = T0 ,

T (r) = T0

[
1 +
∇R2

0

Hp0

(
1

r
− 1

R0

)]
, (2.16)

and results in the radial pro�le of temperature in our domain. Finally, because the

adiabatic EOS is a particular case of a polytrope: p ∝ T∇, we can derive the radial

pro�les of pressure and density:

p(r) = p0

(
T (r)

T0

)1/∇

, (2.17)

ρ(r) = ρ0

(
T (r)

T0

)1/∇−1

. (2.18)

These pro�les describe the static background in which we introduce the magnetic �ux
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tube; they are parameterized with three parameters: ∇, Hp0 , and R0. It is interesting

to notice that such an interior being adiabatic has a zero entropy gradient:

∆s = cv ln(p/p0)− cp ln(ρ/ρ0) ≡ 0 , (2.19)

with ∆s, cv, cp being the entropy di�erence, the isochoric and isobaric heat capaci-

ties, respectively. A buoyant magnetic �ux tube is unconditionally unstable in such

a marginally stable interior.
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Figure 2.6: Dimensionless radial pro�les of the thermodynamical quantities in the spherical shell of
our setup. The three top panels represent density, temperature, and thermal pressure,
scaled by their values at the top of the domain, respectively. The density ratio between
the top and bottom of the domain is about 50. The bottom panel shows the speci�c-
entropy gradient, it characterizes the adiabaticity of the strati�cation. Since the interior
is adiabatically strati�ed, the entropy is constant.

In Fig. 2.6 we plot the dimensionless radial pro�les of the three hydrodynamic

quantities ρ, p and T and the corresponding constant entropy di�erence forHp0/R? =

0.04 (corresponding to the axisymmetric setup).

2.7 On the choice of boundary conditions

The total luminosity produced in the core of the star needs to be transported to the

stellar surface, so we impose a constant energy �ux Ftot at the bottom of the domain.

At the top boundary, we impose a constant temperature T0 without latitudinal

gradient. The latitudinal boundaries at the equator and at high latitude follow

the strati�cation. Regarding the velocities, all boundaries are impenetrable and

stress-free. For the magnetic �eld, the boundary conditions ensure that the �eld is

perpendicular to the domain boundaries.
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2 Description of the numerical setup

These boundary conditions are the simplest ones that can be used for such a setup.

In particular, the top boundary is far from realistic and should not be compared to

a stellar surface. We solve neither radiative transfer, nor cooling; the magnetic �eld

is purely radial; we �x the temperature to a constant value; and the strati�cation

remains much lower than in the Sun. In such a situation we focus exclusively on

the dynamics of the rise throught the convection zone; emergence events at the

photosphere should be addressed in a speci�c study.

Finally, we show the domain geometry as well as the boundary conditions and the

initial condition for a non-axisymmetric rising �ux tube in Fig. 2.7.

2.8 Summary

Along this chapter we introduced the numerical setup of the simulations we carried

out for this work. We described the stellar background of the setup and discussed

its advantages and limitations.

As a summary, we consider that magnetic �ux tubes form at the tachocline, rise up

to the surface and thanks to the Babcock-Leighton mechanisms reconnect with the

large scale dipolar �eld and regenerate the poloidal �eld. But our simulations will

focus only on the rising phase of the �ux tube, because the generation phase needs

too much computational time, and emergence needs to be speci�cally addressed

because of the complexity of the processes happening at the surface.

We justi�ed the global character of our simulations, which lead us to introduce the

adaptive mesh re�nement technique. This technique allows to resolve the magnetic

�ux tube in a large domain with a high level of precision.

Furthermore, we demonstrated on the fact that compressibility is a major aspect

of our work: it is more versatile, more realistic, and has not been studied much. But

it also brings constraints that force us to restrict the setup to a static background.

We exclude convection because computational power still fails to achieve a realistic

setup. Consequently, we exclude di�erential rotation because it needs convection to

be self-consistent. So we chose an adiabatically strati�ed interior being the closest

static approximation to a convective interior. We derived the static background for

a 1/r2 gravitational acceleration, and introduced the various boundary conditions.
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2.8 Summary

Figure 2.7: Sketch of the numerical setup for the non-axisymmetric case m = 8 (see Chap. 5). The
simulated domain corresponds to the wedge-like shape of solid lines. At the bottom of
the domain we impose a constant radiative �ux; at the top a constant temperature. The
latitudinal and longitudinal boundaries follow the adiabatic gradient. The boundary
conditions on the velocity �eld are everywhere impenetrable and stress-free, except in
the azimuthal direction where we impose periodic boundaries. The green contour shows
a magnetic �ux tube and highlight the azimuthal magnetic �ux density at rft = Rft

(see Chap. 4 for de�nitions). The yellow contour shows the part of the �ux tube in
non-equilibrium, which lacks entropy, called the apex. The orange contour shows the
part in stable equilibrium, with an excess of entropy, called the foot.
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3 Derivation of a universal

parameter controling the rise of

magnetic �ux tubes

3.1 Introduction

In the previous chapter, we described the compressible setup that we employ to

study the rise of magnetic �ux tubes. In comparison to the anelastic approximation,

compressibility is more realistic, but its numerical treatment limits the simulations

to plasma-β up to 100. In the Sun, the plasma-β approaches 105 � assuming a

magnetic strength at the base of the convection zone of about 105 G (D'Silva &

Choudhuri 1993; Fan et al. 1993; Fan & Fisher 1996; Caligari et al. 1995, 1998).

Can we rely on the results of compressible simulations? Simulations and reality can

be compared only if the processes occurring in reality and the processes solved in

the simulations occur in the same regime. Therefore, we need to identify the regime

of the rise in the simulations.

Choudhuri & Gilman (1987) and later Schüssler & Solanki (1992) already ad-

dressed the question of de�ning the regime of the rise of a magnetic �ux tube.

Both teams discussed the case of the axisymmetric rise of thin magnetic �ux tubes

in a rotating strati�ed interior. They found that the magnetic Rossby number

(Rom = vA/2HPΩ) acts as a proxy for the ratio of buoyant over Coriolis force. In

this chapter, we extend their work to non-axisymmetric rising �ux tubes. We identify

two regimes, the buoyancy dominated and the rotation dominated regime and derive

a generalized form of the regime-controlling parameter they have found. In Chaps. 4

and 5, we present simulations we have carried out that verify the assumption mo-

tivating our theory (see Eq. 3.6) and that allow us to use the regime-controlling

parameter to identify the nature of the regimes.
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3.2 The particular case of an axisymmetric rise

The regime of a process occurring in a system is controlled by the ratio between the

forces acting on the system. In the particular case of a �ux tube rising in an ax-

isymmetric manner in the rotating frame of a strati�ed stellar interior, magnetic and

inertial forces act on the system: the magnetic buoyancy, the magnetic tension, the

centrifugal force, and the Coriolis force. The centrifugal force is partially balanced

by the gravitational force, it deforms the star and �attens the poles. However this

e�ect is small in solar-like stars. We consider the star to be spherical and neglect

the centrifugal force. Furthermore, in the axisymmetric case the curvature radius of

the �ux tube is of the order of the stellar radius, it is su�ciently large so that the

tension force is also negligible.

It can be noticed that for some stellar objects these approximations do not hold.

For instance, proto-stellar objects rotate much faster than main-sequence stars. In

that cases the centrifugal force deforms the star signi�cantly, a�ecting the direction

of the buoyant force. Another example is the case of red giants. If magnetic �ux

tubes are still formed at the bottom of the convective zone in the deep interior of

these stars, the curvature radius of �ux tubes is small compared to the stellar radius

and enhances the tension force. But such stellar objects are out of the scope of

the current discussion. Therefore, we presume that only the buoyant force and the

Coriolis force act on the system.

The ratio of Fbuoy over Fcorio determines which of both forces dominates the sys-

tem. This ratio controls the regime of the rise of a magnetic �ux tube. When this

ratio is larger than unity, the regime is buoyancy dominated ; when the ratio is less

than unity, the regime is rotation dominated. We can express this ratio in terms of

the setup parameters:
Fbuoy

Fcorio

=
∆ρ g

ρ 2Ω vrise

, (3.1)

where ρ, ∆ρ, vrise, g = GM?/r
2 and Ω are the the density inside the �ux tube, the

density di�erence between the �ux tube and its surroundings, the rising velocity

of the �ux tube, the gravitational potential, and the angular velocity of the star,

respectively. The only unknown is vrise, which is about vbuoy in the axisymmetric

case. As in Choudhuri & Gilman (1987), the latter can be written as:

vbuoy =

[
2

∆ρ

ρ
gl

]1/2

, (3.2)

with l = Hp, the local pressure scale height.

As we will see later in Chap. 4 when introducing our model of isothermal magnetic
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�ux tubes, the relative di�erence of density is equal to the inverse of the plasma-β,

∆ρ/ρ = 1/β. Replacing vrise and ∆ρ/ρ in Eq. (3.1), we can express the ratio of both

forces as a function of their associated velocities:

Fbuoy

Fcorio

=

√
γ

4

vff

cs

vA

$Ω
, (3.3)

with cs and vff =
√
Hpg being the sound speed at the bottom of the convection

zone, and the free fall velocity in the stellar gravity �eld, respectively. $ = rsin(θ)

is the horizontal distance from the rotation axis, such that v0 = $Ω is the rotation

velocity of the �ux tube. For a given star, the �rst factor of the rhs is a constant.

So the ratio of both main forces is proportional to the ratio of the Alfvén speed

and the rotation velocity at the bottom of the convection zone. We refer to this

ratio as the magnetic Rossby number (Rom), a slightly di�erent number the Lehnert

number (λ1) is used in the geo-physics community and di�ers from Rom by their

length scales.
Fbuoy

Fcorio

∝ vA

$Ω
∝ Rom ∝ λ. (3.4)

This number describes the balance between the magnetic energy and the kinetic

energy of rotation. It is a proxy for the ratio of the two main forces and controls

the regime of the rise. Again a question arises: does this number also control the

regime in compressible non-axisymmetric simulations?

3.3 The e�ect of local tension in

non-axisymmetric rise

In contrast to the axisymmetric case where magnetic �ux tubes rise in the shape

of an axisymmetric torus, non-axisymmetric �ux tubes rise as Ω-shaped loops. We

call the azimuthal wave number of their deformation m. In the present model when

magnetic �ux tubes enter the convective envelope and start their buoyant rise toward

the surface, we assume that the wavenumber of their deformation m originates from

the most unstable mode of the Parker instability. Unfortunately, the latter remains

unknown, therefore the parameter m is an input parameter in our model. In the

present scenario, magnetic �ux tubes enter the convective envelope with alternating

azimuthal chunks in stable equilibrium and chunks in non-equilibrium (cf. Fig. 2.7).

The axisymmetric rise reduces to the case m = 0, where the �ux tube is everywhere

in non-equilibrium; the non-axisymmetric case consists of deformations with m > 0,

where the �ux tube is partially in non-equilibrium.
1In the present work λ will never refer to the Lehnert number, except in Eq. (3.4)
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In contrast to axisymmetric loops, the Ω-shape of the non-axisymmetric loops

enhance the tension force. Magnetic tension can be approximated as

Ftens =
2pm

R , (3.5)

where pm and R are the magnetic pressure and the curvature radius, respectively.

The curvature radius of an axisymmetric �ux tube (m = 0) is the distance between

the center of the tube and the rotation axis ($); the curvature radius of an Ω-shaped

�ux tube (m > 0) is the radius of the circle �tting the shape of the Ω-loop. This

radius is by construction smaller than the distance to the rotation axis. Therefore,

the larger the azimuthal wavenumber m, the smaller the curvature radius (R) and
the larger the tension force. In non-axisymmetric setups, the tension force becomes

the third relevant force acting on the system, with the particularity that it never

dominates over the other forces � in our context, the tension dominated regime does

not exist �, it only reduces the rising velocity, and impacts the balance between the

Coriolis and the buoyant force.

The curvature radius does not only depend on the azimuthal wave number m,

but also on the asymmetry of the Ω-loop. For a given m, Ω-loops are narrower in

a rotation dominated regime than in a buoyancy dominated regime: the curvature

radius decreases with the increase of rotation (see Chap. 5). So magnetic tension

impacts the balance between the Coriolis and buoyant force, and simultaneously, the

balance itself a�ects the magnetic tension. The magnetic Rossby number does not

catch the non-linearity present in non-axisymmetric rises, this regime-controlling

parameter needs to be modi�ed to cover the general case.

From our understanding of the problem, we make the hypothesis that the reduc-

tion of the rise velocity due to magnetic tension force is inversely proportional to

the curvature radius of the �ux tube. We formulate this assumption as

vrise

vbuoy

= k
R
R?

. (3.6)

where k is a factor which depends on several parameters (such as the viscous force,

the magnetic twist, the strati�cation of the stellar interior, and the aspect ratio of

the star) acting on the �ux tube. k is in�uenced by m but it does not depend on

the balance between the Coriolis and buoyant force. Relation (3.6) identi�es the

curvature radius as the characteristic length scale of the system.
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3.4 Derivation of the generalized scaling parameter

3.4 Derivation of the generalized scaling parameter

From Eq. (3.6) we can extract vrise, and replace it in Eq. (3.1):

Fbuoy

Fcorio

=
1

k

∆ρ g

ρ 2Ω vbuoy

(
R?

R

)
. (3.7)

Because the curvature radius R appears in Eq. (3.7), this new relation catches the

non-linearity of the non-axisymmetric rise and reveals the impact of the magnetic

tension on the balance of the main forces by reducing the rising velocity. But the

curvature radius itself depends on the balance between buoyant and Coriolis force.

We need to formulate this back-reaction on R to derive a generalized de�nition of

the scaling parameter. We use the general ansatz

R = $βf1Mf2
rot, (3.8)

withMrot = $Ω/cs being the Mach number of the rotation velocity. In Eq. (3.8),

f1 controls the back-reaction of buoyancy, f2 of the Coriolis force. Both will be con-

strained later, when we explore the morphology of a rising �ux tube in simulations.

But we can already mention that when β decreases, the buoyancy gets stronger; the

�ux tube rises faster as a wide, symmetric Ω-loop and the corresponding curvature

radius is large (see Chap. 5). The fact that the relation between β and the curva-

ture radius is inverse constrains f1 to be negative. In a similar manner, whenMrot

increases, rotation has a stronger in�uence; the �ux tube rises slowly and develops

narrow asymmetric loops: the curvature radius is small. Again f2 must be nega-

tive. The m = 0 case further constrains the exponents since then R = $, whence

f1 = f2 = 0. From Eq. (3.8) and the constraints we �xed, we replace R in Eq. (3.7)

and rewrite the ratio of Fbuoy/Fcorio as a function of three dimensionless parameters:

Mff ,Mrot and β.

Fbuoy

Fcorio

=
1

2k
√

2
Mff

(
1

Mrot

)1+f2 ( 1

β

) 1
2

(1+2f1)

, (3.9)

whereMff =
√
gR?/cs is the Mach number of the free fall velocity. Eq. (3.9) is the

general form of the ratio of the two main forces acting on the system. In contrast

to Eq. (3.3), Eq. (3.9) is valid for any m including m = 0.

We can now introduce a new dimensionless number Γα2
α1

as

Γα2
α1

=

[
vα1

A c1−α1
s

$Ω

]α2

(3.10)
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3 Derivation of a universal parameter controling the rise of magnetic �ux tubes

where α1 and α2 are both functions of f1 and f2, whence functions of m, such that

α1 =
1 + 2f1

1 + f2

,

α2 = 1 + f2. (3.11)

Identifying Γα2
α1

in Eq. (3.9), we obtain a simpli�ed version of this relation:

Fbuoy

Fcorio

=

[ Mff

2k
√

2

(γ
2

)α1α2
2

]
Γα2
α1

(3.12)

And because the �rst factor of the rhs is a constant (for a given m), Γα2
α1

acts as a

proxy for the ratio of the main forces. Γα2
α1

is a general form of the scaling parameter

that controls the regime of the rise of magnetic �ux tubes.

In the axisymmetric case (m = 0) where α1 and α2 are unity, Γα2
α1

equals Rom. Γ1
1

controls the regime of the axisymmetric case. In the non-axisymmetric cases, Γα2
α1

also controls the regime, but because of the lack of constraints on α1 and α2 and

their dependence on m, we need to extract them from the simulations. In the next

section, we suggest a method to compute f1 and f2 and thereby α1 and α2.

3.5 A method to verify the hypothesis

We suppose that magnetic tension � due to the Ω-shape of the rising loops � reduces

the rise velocity. Therefore, the reduction is inversely proportional to the curvature

radius R. Thanks to this assumption, we derived a general form of the scaling

parameter Γα2
α1
.

Schüssler & Solanki (1992) introduced the relative rise time τ̃rise of an axisymmet-

ric thin �ux:

τ̃rise =
τrise

Prot

, (3.13)

with τrise and Prot being the rise time of the �ux tube and the rotation period of the

star, respectively. They have shown that τ̃rise scales with Γ1
1. Therefore, our theory

predicts that for a given Γα2
α1

there will be a unique relative rise time independently

of β andMrot. So if we verify the scaling behavior of τ̃rise with Γα2
α1
, we will con�rm

our assumption.

In order to verify the scaling behavior of τ̃rise with Γα2
α1
, we �rst need to study the

impact of compressibility � carrying out axisymmetric, compressible simulations,

see Chap. 4 � and the impact of non-axisymmetry � carrying out non-axisymmetric,

compressible simulations, see Chap. 5. Non-axisymmetry poses a problem: we miss

numerical values for α1 and α2. To obtain this values, we suggest to measure the
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3.5 A method to verify the hypothesis

curvature radius of the Ω-loops. The resulting dependence of R on β andMrot will

provide the missing numerical values to predict Γα2
α1
.

• If the relative rise time indeed scales with Γα2
α1
, this will justify the hypothesis

Eq. (3.6) and show that the magnetic tension of the Ω-loops does in�uence

the dynamics of the rise.

• If the relative rise time does not scale, two conclusions can be made. The

method we use to compute the curvature radius lacks precision; or the magnetic

tension is not a major player in the force balance controlling the regime, and

other e�ects need to be considered such as viscous force, thermal conduction,

and kink instability.

But the theory has some inherent limits. We are allowed to compare real stars and

numerical simulations only when they operate in the same regime. But obviously this

only holds for scalable quantities (e.g. τ̃rise). The plasma-β,Mrot and R clearly do

not belong to this category; for a given Γα2
α1
, their values can di�er, but the balance of

their e�ects remains the same. Therefore, in contrast to anelastic simulations where

β can be of the order of realistic values (105), compressible simulations (β < 100)

always overestimate the curvature radius with respect to reality. For a given regime,

Eq. (3.9) allows us to write a relation between β andMrot

Mrot ∝ β−α1/2. (3.14)

This relation can be reintroduced in Eq. (3.8) and

R ∝ β(α1−1)/2. (3.15)

So, for βreal/βsim = 103 the simulation overestimates Rreal such that

Rreal ≈ Rsim103(α1−1)/2 , (3.16)

where the index (.)real and (.)sim refer to the quantity that should be observed in

reality, and the quantity we measure in compressible simulation that operates in a

realistic regime, respectively. This overestimation naturally varies with m. In the

axisymmetric case for instance, the curvature radius remains $ independently of the

regime (α1 = 1 so there is no overestimation). For larger m, the overestimation will

grow according to α1. In Chap. 5 we will show that for the m = 8 case α1 = 0.793.

In that case, Rreal ≈ Rsim/2.

A further issue resides in the proportionality between Γα2
α1
and Fbuoy/Fcorio. As seen

in Eq. (3.12), we could derive the proportionality factor, but k remains unknown, and
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3 Derivation of a universal parameter controling the rise of magnetic �ux tubes

prevents us from identifying when Fbuoy/Fcorio becomes unity. So far, the theory fails

in di�erentiating the nature of the regime. But in Chaps. 4 and 5, we will estimate

k thanks to a morphologie argument. We will demonstrate there that the factor in

front of Γα2
α1

in Eq. (3.12) approximates 0.7 for the axisymmetric case and 0.4 for

the non-axisymmetric m = 8 case.

3.6 Summary

Along this chapter, we have designed a theory extending the original work of Choud-

huri & Gilman (1987) to non-axisymmetric geometry. The theory regards the e�ect

of the magnetic tension on the rising Ω-loops in non-axisymmetric simulations. The

tension force acts on the balance between the buoyant and Coriolis forces by re-

ducing the rise velocity. We have derived a generalized proxy (Γα2
α1
) for the ratio

of the buoyant and Coriolis forces, which controls the regime. In contrast to for-

mer results, the generalized proxy is valid for axisymmetric and non-axisymmetric

geometries. This proxy allows us to justify that, even though the numerical param-

eters are far from the realistic parameter space (about three orders of magnitude

o�), we can guess the regime of the simulations, and therefore design numerical

experiments obeying the same regime as in the solar case. We have suggested a

method to verify the hypothesis carrying the theory: verifying that the relative rise

time scales with the predicted scaling parameter in compressible axisymmetric and

non-axisymmetric simulations. We also underlined the intrinsic limits of the scal-

ing procedure: an overestimation of the curvature radius and the failing of Γα2
α1

in

identifying the exact limit between the regimes and provides only an order of magni-

tude. Finally, we want to underline that convection and di�erential rotation are not

present in our model, and therefore are excluded from the theory. Both ingredients

a�ect the relative rise time and considering them may change our conclusions. The

present work focuses on the behavior of rising magnetic �ux tubes in non-convective

and uniformly rotating interiors, so that we could evaluate quantitatively (and not

just qualitatively) the impact of convection and di�erential rotation, when it will be

possible to carry out such complex numerical experiments for compressible MHD.
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4 Validation of the setup in 2D

4.1 Introduction

In the �rst chapter, we described the stellar environment of our setup, in the second

chapter we introduced a theory predicting the behavior of the magnetic �ux tube in

such an interior, for axisymmetric and non-axisymmetric simulations. The present

chapter aims to validate the setup.

To do so we carry out a relatively large series of about 30 simulations and verify

that the relative rise time scales with Γ1
1 as predicted in the last chapter.

By identifying the existence of two regimes, we qualitatively compare our results

with the ones obtained from thin �ux tube simulations. We study the morphological

characteristics of the rising magnetic �ux tube: its path and its latitudinal de�ection;

and discuss the relevance of compressibility for these aspects of the rise.

The �nal goal of this chapter is to extract a scaling relation for the relative rise

time, which we plan to introduce in a delayed Babcock-Leighton dynamo.

But before going any further, we need to discuss the precise initial state of the

magnetic �ux tube and underline the assumption it implies: namely axisymmetry.

4.2 The numerical experiment

4.2.1 An unstable axisymmetric �ux tube a the bottom of

the convection zone

We de�ne an axisymmetric �ux tube as a torus being bounded by twisted mag-

netic �eld lines. The magnetic �ux going through a meridional section of such

a coherent magnetic structure stays constant all along its azimuthal span. This

magnetic con�guration has been shown to be unstable in an adiabatically strati-

�ed medium. The stability criterion is ∇ − ∇ad > −1/γβ (Parker 1955; Spruit &

van Ballegooijen 1982), therefore in the case of an adiabatically strati�ed medium

∇ − ∇ad ≡ 0 > −1/γβ, the �ux tube is unconditionally unstable. In the present

scenario we introduce an unstable axisymmetric �ux tube at the bottom of the con-

vective zone, and let it rise toward the surface. We plan to extract the relative rise
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4 Validation of the setup in 2D

time of a magnetic �ux tube, excluding the time needed by the Parker instability to

develop. The formation phase of magnetic �ux tubes lasts longer than the rise time

(Schüssler 1979), therefore, like Fan (2008) and Jouve & Brun (2009), we exclude

this phase from the simulations and save computational time. Instead, we assume

that the azimuthal mode with the largest growth rate has a wavenumber m = 0. At

t = 0, the �ux tube enters the convective zone as an axisymmetric torus being in

buoyant non-equilibrium everywhere.

4.2.2 Description of the initial condition

A �ux tube consists of concentric magnetic tube-shaped surfaces. In order to de�ne

its position and shape, it is useful to consider the line going through the common

centers of the meridional sections of the tubes. At t = 0, (ri, θi) are the coordinates

of the center of the concentric magnetic surfaces on a given meridional section.

Because of the axisymmetry, (ri, θi) are both independent of φ, and we can simulate

the rise of an axisymmetric �ux tube in any meridional section of the star.

We are interested in �thick� �ux tubes, i.e. the thermal and magnetic properties of

the �ux tube vary across its diameter. We parameterize the pro�le of the magnetic

�ux density in the �ux tube's reference frame. The coordinates of a given point in

this frame are (rft, θft). Where rft is the distance of a point to the center of the �ux

tube (ri, θi) and θft is a �latitudinal� coordinate of the same point in the �ux tube

reference frame. From such a frame we design pro�les for the di�erent components

of the magnetic �eld. The longitudinal component is de�ned as:

Bl(rft) = B0 exp

(
− r

2
ft

R2
ft

)
, (4.1)

where Bl, B0, and Rft are the longitudinal magnetic �eld, the magnetic �ux density

at the center, and the radius of the �ux tube, respectively. In the case of an ax-

isymmetric �ux tube, Bl is purely azimuthal, and corresponds to the φ-component

of the magnetic �eld vector. It depends only on rft (and therefore on both spherical

coordinates r and θ). Rft de�nes the circle enclosing about 98% of the total magnetic

�ux (see Cheung et al. 2006), we call it the �ux tube radius. Constructed as such,

the radial pro�le of the longitudinal magnetic �eld is divergence free.

While rising, the viscous force may disturb the magnetic �ux tube; it loses coher-

ence and eventually magnetic �ux. To avoid such a situation, the �ux tube needs to

be twisted (Moreno-Insertis & Emonet 1996; Moreno-Insertis 1997), therefore it has

a poloidal component Bp. To ensure that the poloidal component is divergence-free,
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4.2 The numerical experiment

we derive it from the vector potential Al:

− dAl

drft

= Bp(rft) = λ
rft

Rft

Bl(rft) , (4.2)

where Al is the longitudinal component of the magnetic vector potential A. λ is the

so called twist parameter. In this experiment we use λ = 0.5 (alike in Jouve & Brun

2009).

The various dimensionless magnetic pro�les we described are plotted in Fig. 4.1.

We show the longitudinal magnetic pro�le, the poloidal magnetic pro�le, and the

resulting total magnetic pressure; in the frame of a twisted magnetic �ux tube.

We refer to B0 as the magnetic �ux tube strength, because as seen in Fig. 4.1, its

value corresponds to the maximum of the magnetic �eld inside the �ux tube (for a

twist parameter less than unity).
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Figure 4.1: Magnetic pro�les in the frame of a twisted magnetic �ux tube, with λ = 0.5. Here,
we plot the radial pro�les (in units of the �ux tube radius Rft) of the two components
of the magnetic �eld: Bφ and Bp in units of B0; we also plot the magnetic pressure in
units of P0/β. This unit system was chosen so that the pro�les are valid for any β.

Now that we introduced a complete description of the magnetic components of

the �ux tube, we need to describe its thermal state. All along its rise, the �ux tube

stays in pressure balance at all points:

pi + pm = pe, (4.3)

where pi, pm are the thermal and magnetic pressure (B2/2µ0) inside the �ux tube,
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4 Validation of the setup in 2D

respectively. pe is the thermal pressure at the corresponding depth in the absence of

a �ux tube. Thanks to β = pe/pm, we can transform Eq. (4.3) into a dimensionless

relation:
pi

pe

= 1− pm

pe

= 1− 1

β
, (4.4)

with β being the plasma-β with respect to the stellar interior, not to be confused

with the plasma-β of the �ux tube itself: βft = pi/pm. The dimensionless pressure

equilibrium Eq. (4.4) measures the impact of the magnetic pressure on the thermal

pressure in the absence of �ux tubes. But this is not su�cient, we need to close the

system to �nd the relation between pressure, temperature, and density.

In the present scenario, the simulation starts when the �ux tube enters the con-

vective zone. At that point in time, the instability is fully developed, and the �ux

tube is everywhere in buoyant non-equilibrium. Regarding the various relevant time

scales, the destabilization phase lasts for about 6 years (Schüssler 1979), whereas

the rising phase lasts for about one month (Schüssler et al. 1994). The temperatures

outside and inside the �ux tube adjust on a time scale of about τcond = R2
ft/κ, which

is a few months; it is short compared to the destabilization phase, and long compared

to the rising phase. Therefore, during the destabilization phase, the temperature

adjusts nearly instantaneously (τcond � 6 yr). The magnetic �ux tube remains in

thermal equilibrium with its surrounding, it is isothermal: Ti = Te. But in the

rising phase, τcond lasts longer than the dynamical time scale: the �ux tube does

not remain isothermal. Considering the adiabatic equation of state (EOS) and an

isothermal �ux tube, the ratio of pressures initially equals the density ratio,

pi

pe

=
ρi

ρe

. (4.5)

Using Eq. (4.4) and Eq. (4.5) we write the density di�erence between the �ux tube

and the stellar interior (considering β greater than 1, see discussion in Sect. 2.2 of

Jouve et al. 2013) as
∆ρ

ρe

=
1

β
. (4.6)

Therefore, the buoyancy, in the case of an isothermal �ux tube, depends directly on

the β parameter.

We have now completely described the magnetic �ux tube: it is de�ned by its

position (ri, θi), its radius Rft, its magnetic �eld strength B0, its twist λ, its thermal

state (isothermal) and the choice of an EOS, in that case adiabatic. These param-

eters de�ning the magnetic �ux tube are summarized in Table 4.1 in the section

�Flux tube parameters�. Note that one of the input parameters is β, from which B0

will be computed.
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4.2 The numerical experiment

Describing the �ux tube is not su�cient to entirely describe the simulation. We

need to constrain the stellar interior. As discussed in Chap. 2, three parameters

are su�cient: ∇, χ = Hp0/R? and R0, their respective values are summarized in

Table 4.1 in the section �Stellar parameters�.

The last missing ingredient is rotation. As we already mentioned, two forces

mostly act on the �ux tube: the buoyant force, controlled by β; and the Coriolis

force, controlled by the rotational Mach number Mrot = $Ω/cs with $, Ω and cs

being the distance between (ri, θi) and the rotation axis of the star, the angular

velocity of the star, and the sound speed at r = ri, respectively. For a given stellar

interior and a given �ux tube, this dimensionless parameter is the second input

parameter. It allows to compute the angular velocity of the star Ω.

Table 4.1: Parameters and initial conditions for the STD-2D case.

Numerical parameters

Resolution [512× 1024]
AMR levels 2 levels

E�ective resolution [2048× 4096]

Domain de�nitions

Radial domain [R?] [0.684− 0.964]
Latitudinal domain [π] [0.05− 0.5]

Flux tube parameters

Initial depth: ri [R?] 0.71
Initial latitude: θi 20◦

Initial radius: Rft [R?] 10−3

Initial twist: λ 0.5
Plasma-β: β input

Stellar parameters

Reference radius: R0 [R?] 0.964
Adiabaticity: ∇ 0.4

Pressure scale height: χ 0.013
Strati�cation: ρbot/ρtop ≈ 50

Rotational Mach number: Mrot input
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4 Validation of the setup in 2D

4.3 Verifying the scalability of the setup

Our setup has two input parameters: β and Mrot. To compare our results with

former studies, we should ensure that the simulations occur in a compatible regime.

The values of the input parameters used in the literature are, however, out of reach

for compressible simulations. As usual when carrying out numerical experiments,

resolution is the limiting factor. Since compressible simulations are fully non-linear,

we cannot resolve the entropic signal of a realistic �ux tube. This lack of precision

leads to a maximum limit on the plasma-β of up to 102, which di�er from the prob-

able solar value by three orders of magnitude. Is it possible to realize a simulation

with a lower β but still in the same regime as the Sun?
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Figure 4.2: Graphical representation of the parameter study. Each symbol represents a simulation.
The symbol's coordinates are the input parameters of the corresponding simulation.
The exact values are listed in Table A.1. The closed symbols correspond to a sub-
category of the series with a constant Γ1

1 = 1.217. The dashed lines represent the
numerical and physical limits, crossing them leads to unreliable results. The thin solid
lines are isolines for Γ1

1 with the indication of their respective value.

4.3.1 Carrying out a parameter study

Schüssler & Solanki (1992) have shown that the relative rise time τ̃rise of an axisym-

metric thin magnetic �ux tube scales with Γ1
1. We want to verify if this holds for

compressible simulations. In order to demonstrate the scalability of the setup, we

carry out a parameter study in the (β,Mrot) parameter plane. In Fig. 4.2 we plot
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4.3 Verifying the scalability of the setup

each simulation as a point whose coordinates are the input parameters in the (β,

Mrot.) plane. The �gure also shows that our setup is framed with numerical and

physical boundaries. Across these boundaries, we consider simulations either un-

physical or not reliable because of numerical artefacts. Above the high-β boundary,

the resolution fails to resolve the entropy signal of the �ux tube. The low-β and

the high-Mrot limits are physical boundaries. When β becomes lower than unity,

the plasma becomes magnetically dominated, while in solar-like stars the plasma of

the convective zone is thermally dominated. Even though the setup may scale and

thereby allow us to use non-realistic β, the nature of the plasma should remain ther-

mally dominated. In the same manner, the solar rotation �ow is subsonic, therefore

Mrot should be less than unity.
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Figure 4.3: Plot of the relative rise time of the sub-series with Γ1
1 = 1.217 (the black points on

Fig. 4.2) over β and the corresponding Mrot (upper axis). The thin solid line is a
least-squares �t of the data points. For a given Γ1

1, the relative rise time (τ̃rise) remains
constant. The dashed lines correspond to the numerical and physical limits of the
setup.

4.3.2 Verifying the scalability of the setup

In order to verify the scalability of our setup we focus on the relative rise time of

the magnetic �ux tube and on the path taken by the �ux tubes. In Fig. 4.2 the

closed symbols correspond to simulations with a constant Γ1
1 = 1.217 . In Fig. 4.3

we plotted the relative rise time τ̃rise of these simulations versus their respective β
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4 Validation of the setup in 2D

parameter. In the same �gure, the upper axis indicates the correspondingMrot. We

vary β andMrot by two and one order of magnitude, respectively, and still recover

the same relative rise time. This plot suggests that the setup can be scaled according

to Γ1
1: we are con�dent that even with a β = 105, if the Mrot is set such that Γ1

1

stays constant, the relative rise time will remain unchanged. This agrees with both,

the prediction we have made in Chap. 3, and the former studies of Choudhuri &

Gilman (1987) and Schüssler & Solanki (1992).

Not only the relative rise time scales with Γ1
1, but also the path of the rise. It can

be seen in panel (a) of Fig. 4.4: we show the paths taken by two di�erent magnetic

�ux tubes, rising in the same regime with di�erent rotation rates. The red contours

represent the magnetic �ux density of a weak magnetic �ux tube, rising in a slow

rotating star; the green contours show a strong magnetic �ux tube, rising in a fast

rotating interior. In both cases the magnetic �ux tube takes an identical path, and

emerges at the same latitude. Both setups have a Γ1
1 of 1.217.

This proves that our setup does scale, and that Γ1
1 is indeed a scaling parameter

controlling the regime of axisymmetric rises.

4.4 A qualitative exploration of the morphological

characteristics

Two main forces act on the magnetic �ux tube while rising: the buoyant force and

the Coriolis force. Which of the two dominates depends on the regime. We take the

example of a standard simulation with Γ1
1 about unity and discuss the di�erences

between a buoyancy dominated regime and a rotation dominated regime.

Initially, the �ux tube sits at the bottom of the convective zone. The �ux tube

is everywhere in non-equilibrium, and only the buoyant force acts on it (magnetic

tension in such a tube is negligible). The �ux tube rises in the radial direction.

In our setup, numerical di�usion transfers less than 5% of the �ux tube's angular

momentum to the stellar interior along the entire rise. Therefore, we assume that

the angular momentum within the �ux tube is a conserved quantity.

The path taken by the �ux tube results from the competition between the inertial

and buoyant forces. The inertial force attempts to maintain the magnetic �ux tube

at $ = const; the buoyant force moves the magnetic �ux tube radially. Initially the

buoyant force is larger than the inertia, is that it moves away from the rotation axis

and decelerates azimuthally to conserve angular momentum. While the magnetic

�ux tube rises, the external pressure decreases. Because of pressure balance, the

�ux tube is forced to extend and its buoyancy decreases. As a result, inertia may
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Figure 4.4: Cross-sections of magnetic �ux tubes at various times for �ve representative simula-
tions. The series of cross-sections illustrate the path taken by the �ux tube all along
its rise. (a) is a plot of two simulations with the same Γ1

1 (same regime): the green
contours correspond to a strongly buoyant �ux tube in a rapidly rotating interior (a1
in Table A.1), the red contours correspond to a weakly buoyant �ux tube in a slowly
rotating interior (a2 in Table A.1). (b), (c), and (d) show the paths for three di�erent
Γ1

1. For the buoyancy dominated regime (high Γ1
1) in (b), the path is mainly radial,

whereas in (c) and (d), the path becomes more and more parallel to the axis of ro-
tation as Γ1

1 decreases and the regime becomes more rotation dominated. The input
parameters of the simulations can be found in Table A.1, referred to their respective
labels. 47



4 Validation of the setup in 2D

dominate buoyancy at some point and the magnetic �ux tube follows a path parallel

to the rotation axis. In the rotating frame, this may be translated as follow: the

azimuthal deceleration of the �ux tube builds up a Coriolis force, that acts in the

perpendicular direction to the rotation axis, pointing toward the rotation axis. This

force balances the horizontal component of the buoyant force, until the horizontal,

resulting force vanishes. As a results, the �ux tube rises in a purely axial manner.

When the buoyant force dominates during the entire rise, the �ux tube emerges

almost at its initial latitude θi, whereas when inertia dominates the magnetic �ux

tube is de�ected latitudinally and emerges at higher latitude (Fan 2008, Sect. 3.1).

On the other hand, while the �ux tube rises, it cools due to thermal conduction.

Conduction is driven by κ which we keep constant in all series. Because of the

constraint of pressure balance, as temperature decreases, density has to increase

accordingly. The reduced lack of density decreases buoyancy and thereby the rise

velocity of the �ux tube. Because the conduction time scale τcond = R2
ft/κ lasts

about 10 rise times, this e�ect does not play a major role in our simulations, but it

has been discussed in detail by Weber & Fan (2015).

To conclude, the azimuthal deceleration caused by the conservation of angular

momentum de�ects the magnetic �ux tube toward the poles. The time needed for

the inertial force (Coriolis force in the rotating frame) to build up depends on the

regime of the rise. The scaling parameter Γ1
1 controls the regime and thereby the

path taken by the �ux tube.

In Fig. 4.4 the panels (b), (c) and (d) consist of three representative simulations

in di�erent regimes. The (b) panel represents a rising magnetic �ux tube in the

buoyancy dominated regime. The buoyant force acting on the magnetic �ux tube

dominates its inertia during its entire rise. The resulting Coriolis force builds up

slowly and the de�ection appears late in the rise. One can notice that de�ection

starts shortly before emergence.

The further the regime tends toward the rotation dominated regime, the earlier

inertia takes over buoyancy and the earlier the Coriolis e�ect appears and thereby

the latitudinal de�ection of the �ux tube. This can be seen in the panels (c) and

(d). In panel (c), the �ux tube rises in a balanced regime, inertia starts to dominate

at about half of the rise. At the beginning, it rises in a radial manner, and while the

Coriolis force builds up, the horizontal component of the resulting force diminishes,

and the path taken by the �ux tube becomes progressively vertical. In panel (c), one

can notice how the �ux tube oscillates slightly around a constant angular momentum

line: the vertical line crossing the surface at about 43◦ latitude. These oscillations

have been already discussed in Moreno-Insertis et al. (1992).

In panel (d) the e�ect of the Coriolis force appears at the earliest. The �ux tube
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4.5 The scaling relation of the relative rise time

is in a rotation dominated regime. The buoyant force is weak and inertia takes over

very early in the rise, and the Coriolis force grows on a short time scale. As a result

the �ux tube de�ects from the radial direction in very beginning of its rise. It forces

the �ux tube to follow a line of constant $. Unlike panel (c) the �ux tube does not

oscillate, because the response time scale of the Coriolis force is much shorter in this

regime. This regime leads to the largest de�ection, therefore to the highest latitude

of emergence.

4.5 The scaling relation of the relative rise time
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Figure 4.5: Plot of the relative rise time versus the proxy for the force ratio, Γ1
1. The solid line is

a least squares �t of the data points. The dashed line indicates a power of −2. On the
upper axis, we indicate the corresponding 0.7 Γ1

1 values which are the closest estimates
of Fbuoy/Fcorio we could extract from our simulations. The grey zone marks the spread
of data points from the �t and gives an idea of the scatter.

As we just discussed, the path and the rise velocity change accordingly to the

regime. A buoyancy dominated rising �ux tube takes a short path at a high rise

velocity. On the contrary, a rotation dominated rising �ux tube, takes a longer path

at a slower rising velocity. The relative rise time of the �ux tube varies with the

regime. We extract the relative rise time of each simulation and plot it (in a log-

log scale) in Fig. 4.5 against the scaling parameter Γ1
1. The resulting function has

a small scatter, which con�rms the uniqueness of the solution: for a given Γ1
1 we
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4 Validation of the setup in 2D

obtain a single relative rise time. This function is scale-free, it is a powerlaw:

τ̃rise ∝
(
Γ1

1

)−2
(4.7)

The relative rise time follows a powerlaw of exponent −2. This result agrees with

Schüssler & Solanki (1992), who found the same exponent under the thin �ux tube

approximation. We can conclude that compressibility does neither in�uence the

regime, nor the relative rise time.

In Chap. 3, Eq. (3.12), we have shown that Γ1
1 is a proxy for the ratio of the main

forces and therefore Γ1
1 controls the regime of the rise, but the proportionality factor

remains unknown. We suggest a way to obtain an order of magnitude of this factor

thanks to a morphological argument. In panel (c) of Fig. 4.4, the path of the �ux

tube starts to de�ect at about half of the convective zone. In that case the main

forces balance each other, the ratio is about unity. In this simulation Γ1
1 ≈ 1.5,

therefore the proportionality factor is near 0.7. On the upper axis of Fig. 4.5, we

indicate 0.7 Γ1
1, representing the closest estimate of the main-forces ratio we can

compute. This estimation and Fig. 4.5 tell us that a magnetic �ux tube rising in

a balanced regime will reach the surface in about a rotation period. In the solar

case, this results in a �ux tube with a magnetic �eld strength of B0 ≈ 5 · 104 G.

This results agrees qualitatively with former results (Fan et al. 1994; Choudhuri &

Gilman 1987; Schüssler et al. 1994).

4.6 Summary

The aim of this chapter is to validate the setup we introduced in Chap. 2. We

discussed the scenario of the simulations we carried out. An unstable magnetic

�ux tube sitting in the tachocline develops a Parker instability and rises toward the

surface. The major assumption is that the wavenumber of the azimuthal mode with

the largest growth rate is m = 0.

We described the initial conditions of the simulations and listed the relevant pa-

rameters. We de�ned a magnetic �ux tube and underlined the input parameters of

our numerical experiments, β andMrot.

We carried out a parameter study on these parameters, and demonstrate that the

relative rise time does scale with the proxy parameter described in Chap. 3: Γ1
1.

For a given Γ1
1 the relative rising time remains a constant independently of β.

Therefore, choosing Mrot according to Γ1
1, we demonstrate that we could simulate

the rise of a magnetic �ux tube in a realistic regime even though β < 100. The

estimation of the regime allowed us to compare morphologically our results with
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the literature. We focused on the path taken by the �ux tube and the latitudes of

emergence. We have shown that our conclusions agree with former ones and that

compressible simulations could reproduce results obtained under the thin �ux tube

approximation. Finally, we extracted the scaling relation between the relative rise

time and the proxy Γ1
1. We obtained a scale-free relation: τ̃rise = 2.24 (Γ1

1)
−2. Again

the exponent of the powerlaw agrees with the literature. We also estimated the

proportionality factor between the ratio of the main forces and the proxy, based on

a morphologic argument, to be about 0.7.

In Chap. 3, we predicted that the axisymmetric behavior of a rising �ux tube

di�ers from the non-axisymmetric one. Now that we validated the setup, we move

on to the non-axisymmetric case.
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5.1 Introduction

The relative rise time of axisymmetric �ux tubes scales with the predicted scaling

parameter Γ1
1, and the axisymmetric setup reproduces similar morphological results

as found in the literature. However, according to Fan (2008), the dynamics of a

non-axisymmetric rise di�ers from axisymmetric ones. The extra degree of freedom

allows the �ux tube to redistribute angular momentum along its own axis; as a result,

the �ux tube emerges at lower latitude, develops tilt and writhe. In Chap. 3 we have

shown that the tension force in�uences the rise, we predicted that the relative rise

time of a non-axisymmetric �ux tube scales with a scaling parameter di�erent from

Γ1
1.

In the present chapter, we investigate how non-axisymmetry in�uences the rise

of magnetic �ux tubes: we verify that the non-axisymmetric relative rise time τ̃rise

scales with the predicted scaling parameter derived in Chap. 3; we study the mor-

phology of the �ux tube while rising and compare it to anelastic simulations (Fan

2008; Jouve & Brun 2009; Jouve et al. 2013); �nally, we extract the relation be-

tween the relative rise time and the regime of the rise. But before going any

further, we point out a few numerical di�erences between the axisymmetric and

non-axisymmetric setups.

5.2 Numerical setup: di�erences to the

axisymmetric case

5.2.1 Introducing the concept

We consider a magnetic �ux tube situated at the bottom of the convection zone. The

magnetic �ux tube is perturbed with an azimuthal entropic wave; resulting into a �ux

tube with alternating sections in stable equilibrium and sections in non-equilibrium.

These sections are distributed in azimuth according to the azimuthal wave number

m. The latter aims to represent the most unstable mode of the Parker instability,
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5 Extension to 3D

but since we skip the destabilization phase, m is chosen arbitrarily. Because the only

studies that addressed the formation of magnetic �ux tubes from the destabilization

of a magnetic layer were done in Cartesian boxes the most unstable mode of the

Parker instability is still unknown. Future studies may provide an empirical or

analytical value for m.

The symmetry limits the axisymmetric setup to m = 0, but the non-axisymmetric

setup is not limited. In this chapter we will focus on non-axisymmetric modes

(m > 0) and particularly on the case m = 8. With such a high m, the non-

axisymmetric case su�ciently di�ers from the axisymmetric one to notice the in�u-

ence of the magnetic tension on the rising magnetic �ux tube. In addition, thanks

to the periodic boundary conditions in the azimuthal direction, a high m also saves

computational time.

In order to verify that the periodic character of the azimuthal boundaries does

not in�uence the results, we carried out non-axisymmetric simulations for m = 4

with and without periodic boundaries and �nd that the results are identical.

For the m = 8 case the magnetic �ux tube enters the convective zone with 16

alterning sections, 8 in stable equilibrium, 8 in non-equilibrium. Eventually the ris-

ing sections (the apexes) reach the surface and form what we call active regions.

Suppressing the symmetry property in the non-axisymmetric setups implies mod-

i�cations. We will now introduce these modi�cations and discuss the issues they

address.

5.2.2 Stable equilibrium and non-equilibrium

Magnetic �ux tubes are coherent magnetic structures. The magnetic intensity peaks

at the center of the �ux tube and decreases outward. Since the magnetic �ux

tube stays coherent, the thermal pressure force (directed inward) must balance the

magnetic pressure force (directed outward). Therefore thermal pressure is reduced

inside the magnetic �ux tube. The lack of thermal pressure is re�ected by density

and/or temperature drops inside the �ux tube. In Fig. 5.1 we plotted the responses of

density and temperature to magnetic pressure. We identify two extreme situations:

• the isothermal state, where the temperature di�erence between the �ux tube

and its surrounding vanishes, and the lack of pressure is only re�ected by a

density drop;

• the neutrally buoyant state, where the density inside and outside the �ux tube

equals, and the lack of pressure mirrors only in temperature (�cool �ux tube�,

see Yoshimura 1985).
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Figure 5.1: Radial pro�le of the magnetic and thermodynamical quantities in the �ux tube frame.
The top panel represents the magnetic pressure. The �rst and the second ensembles of
panels, (a) and (b), represent the dimensionless radial pro�les of the entropy di�erence,
the density, and the temperature, in an isothermal and neutrally buoyant �ux tube,
respectively.

In panel (a), the isothermal state exhibits a negative entropy gradient. A section

of a magnetic �ux tube in that state is in non-equilibrium, it rises. In panel (b), the

neutrally buoyant state exhibits a positive entropy gradient, a section in such a state

is in stable equilibrium � under the condition that the stellar interior of the setup is

adiabatically strati�ed (∇ = 0.4) �, it remains anchored in the deep interior.

From the thermal states of the �ux tube, the wavenumber of the most unstable

mode, the EOS and the magnetic pro�les, we can characterize the whole �ux tube.

The magnetic pro�les and the EOS are identical to the ones described in Chap. 4, the

wavenumber m equals 8, and the azimuthal density pro�le follows a cosine function

which oscillates between an isothermal and neutrally buoyant state. The azimuthal
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density pro�le reads

ρ
(m)
i = ρiso +

1

2
(ρe − ρiso) [1− cos(mφ)], (5.1)

where the index (m) represents the azimuthal wavenumber of the initial perturba-

tion. ρi, ρe and ρiso represent the density at the center of the �ux tube, the density

outside the �ux tube, and the density inside an isothermal �ux tube, respectively.

This density pro�le is the generalized form of the density pro�le presented in Chap. 4,

valid for any m ≥ 0.

It is interesting to remark that according to Weber & Fan (2015) (thin �ux tube

approximation) the most unstable mode depends on the conduction κ and the sub-

adiabaticity ∇. For their initial conditions they have found that both m = 2 and

m = 3 may be the most unstable modes, but it is unclear if this conclusion holds in

the general case of solar-like stars.

5.2.3 From 2D to 3D: e�ects of reducing the resolution

Suppressing the axisymmetry in the setup costs computation time: we resolve the

azimuthal direction of the �ux tube with 320 grid points. The number of operations

per time step increases by about a factor of 320. To save time, we reduce the base

resolution by a factor of two, imposing further modi�cations.

As we discussed in Chap. 2, the top pressure scale height HP0 needs to be resolved

with a minimum of ten points So a lower resolution requires to increase the top

pressure scale height, leading to a reduction of the density ratio between the top

and the bottom of the domain. Resolving HP0 with about 20 grid points, leads to a

reduction of the density ratio from 50 (in the 2D case) to 11.

As discussed in Chap. 4, the angular momentum and the magnetic �ux should be

conserved. To match this constraints, we increased the radius of the �ux tube by a

factor of 10. Even though the resolution decreases, we resolve the non-axisymmetric

�ux tube 5 times better than in the axisymmetric case. As a results, the numerical

di�usion decreases and allows a better conservation of the �ux. Although the drag

force is proportional to the radius of the magnetic �ux tube, the �ux tube remains

small compared to the local pressure scale height, and the numerical viscosity is

su�ciently low so that the drag force remains negligible in our setup. In any case,

the drag force is independent of β and Mrot and will therefore only impact the

proportionality factor k which is not critical for our conclusions.

In addition, because of the larger radius, we had to make sure that the bottom

boundary does not alter the initial condition of the magnetic �ux tube and therefore

we also modify the initial depth at which we insert the magnetic �ux tube: from
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5.2 Numerical setup: di�erences to the axisymmetric case

0.71 to 0.73 solar radii.

Finally, to convince ourselves that the various changes we implemented remain

unimportant for the rise, we carried out two axisymmetric simulations with the ax-

isymmetric and the non-axisymmetric resolution, strati�cation and �ux tube radius.

We found that the relative rise time, the path and the latitude of emergence change

by less than a percent.

We summarize the parameters of the setup in Table 5.1. Note the change of

resolution, initial depth, initial radius, pressure scale height, and strati�cation as

compared with the STD-2D setup.

Table 5.1: Parameters for the numerical setup and the initial conditions for the STD-3D case.

Numerical parameters

Resolution [128× 256× 80]
AMR levels 2 levels

E�ective resolution [512× 1024× 320]

Domain de�nitions

Radial domain [R?] [0.684− 0.964]
Latitudinal domain [◦] [0− 81]

Longitudinal domain [◦] [0− 45]

Flux tubes parameters

Initial depth: ri [R?] 0.73
Initial latitude: θi 20◦

Initial radius: Rft [R?] 10−2

Stellar parameters

Reference radius: R0 [R?] 0.964
Adiabaticity: ∇ 0.4

Pressure scale height: χ 0.04
Strati�cation: ρbot/ρtop ≈ 11
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5.3 Verifying the scaling behavior

5.3.1 Parameter study

Following the same method as in Chap. 4, we carry out a parameter study in the

(β, Mrot) parameter space. In Fig. 5.2, each point represents a simulation, whose
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Figure 5.2: Graphical summary of the parameter study. Each symbol represents a simulation.
The symbol's coordinates are the input parameter of the corresponding simulation.
The exact values can be found in Table A.2. The dashed lines represent the boundaries
of the numerical and physical domains, outside of these limits we consider our setup
unreliable.

coordinates represent the values of the input parameters. In that case, we cover

about one order of magnitude in both directions. The numerical limit of the study

(high-β) is reduced compared to the 2D case, owning to the lower resolution to

about one half.

5.3.2 Computing the curvature radius R
In Chap. 3, we suggested to carry out simulations to compute the scaling parameter

that controls the regime of the rise. We have shown that identifying the regime is a

requirement to compare our results with former studies and observations. Our theory

suggests that the relative rise time scales with Γα2
α1
, where α1 and α2 are functions

of f1 and f2. These exponents parameterize the ansatz (3.8), with f1 measuring the

in�uence of β and f2 ofMrot. To extract f1 and f2 from the simulations, we need

to identify the relation between the curvature radius R, β andMrot.

58



5.3 Verifying the scaling behavior

There are several ways to compute the curvature radius of an Ω-shaped loop.

Here, we present two possible methods: a geometrical method and a mathematical

method. It is unclear to us which of the two is the most pertinent. We arbitrarily

chose to present here the numerical values of f1 and f2 obtained from the geometrical

method, but independently of the method, the obtained relations are in qualitative

agreement. The mathematical method gives a factor 2 larger values for R, but the
sign of the slope of R(β,Mrot) remains the same, and the values of f1 and f2 di�er

by less than 0.3%.

With the geometrical method, we select for each simulation the time when the

apex reaches 0.85 solar radii. At this time all loops went through the same amount

of pressure scale heights and are fully developed. From this state, we select three

points: the apex � the point with the largest entropy de�cit; and two leg-points,

from the leading and the following legs. The leg-points are chosen such that they

experience two pressure scale heights less than the apex. These three points de�ne

a circle, and we presume that the latter �ts the upper part of the loop and that its

radius is a good proxy for the curvature radius R.
In Fig. 5.3, we show six examples of circles computed from the geometrical method.

The points represent the minimum entropy for each azimuth. Together they repre-

sent the line going through the center of the �ux tube. The black symbols represent

the three selected points that de�ne the dashed circle. Visually the circles �ts the

upper part of the loop, except in panel (e) and (f). Panel (e) represents the limiting

case where we still rely on the result. Panel (f) corresponds to a case where the

method clearly fails. Such cases happen when the shape of the �ux tube becomes

too complex, due to the development of a kink instability, or because de�ection

becomes so strong that the apex of the loop is not the highest point anymore. In

Table A.2, we emphasize the failed cases by italics.

The mathematical method consists in �tting a spline through all the points de�n-

ing the shape of the magnetic �ux tube. From this �t, we extract the parameterized

function of the spline, and compute the curvature radius at the apex.

Both methods concord that β andMrot a�ect R with about the same exponent

with a slight preference for β: f1 and f2 are of the same order of magnitude, with

f2/f1 ≈ 0.9.

To compute the numerical values of f1 and f2, we use an optimization method:

we plot the curvature radii obtained by the geometrical method against βf1Mf2
rot

varying f1 and f2; and chose the pair that minimizes the residual of a linear �t

in log-log space. The result can be seen in Fig. 5.4. We �nd f1 = −0.161 and

f2 = −0.145. These values agree with our predictions: both are negative and less

than unity. It indicates that at least the sign predictions made in Chap. 3 were
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Figure 5.3: Six top-views representing the projection of the magnetic �ux tube on a horizontal
plane cutting the northern hemisphere of the Sun at z = 0.34 R? (with z being the
cylindrical coordinate parallel to the rotation axis). The solid contours represent the
physical domains of the stellar wedge. The computational domains are indicated by
the thick dashed arcs. Each point represents the projected position of the minimum
entropy inside the �ux tube for a given meridional plane. We consider that these points
build the center-line of the magnetic �ux tube. The few black points are the selected
points that build the dashed circles, their radii are a proxy for the curvature radii R
of the �ux tubes at the apex. We ordered the simulations from large to small radius.

correct.

5.3.3 Computing the scaling parameter Γα2
α1

According to the numerical values of f1 and f2 and Eq. (3.11), we can compute

α1 = 0.793 and α2 = 0.855. Therefore, the theory (discussed in Chap. 3) predicts

that Γ0.855
0.793 should control the regime of the rise of a magnetic �ux tube with an

azimuthal wavenumber m = 8, and thereby that the relative rise time τ̃rise should

scale with that parameter.

5.3.4 Verifying the hypothesis with the simulations

In Fig. 5.5 we plot the relative rise time τ̃rise extracted from the simulations against

Γ0.855
0.793. The data points align, with a low scatter, to a powerlaw. The low scatter

of this plot demonstrates the uniqueness of the relative rise time for a given Γ0.855
0.793,
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Figure 5.4: Curvature radius, R, of the selected simulations (see Appendix) computed from the ge-
ometrical method, over a combination of β andMrot. The dashed line is a least-squares
�t of the data points and demonstrates the correlation between R and β−0.161M−0.145

rot .

that exhibits the scalability of our setup.

The scalability of the setup and the agreement between the numerical and theo-

retical results have three implications: it allows us to compare our numerical results

with observations; it shows the reliability of the method we used to compute the

curvature radius; and it validates the hypothesis on which the theoretical predictions

were based.

5.4 Discussion on the morphological di�erences

The latitude of emergence of magnetic �ux tubes depends mostly on the initial

latitude of the �ux tube θi and the latitudinal de�ection of the magnetic �ux tube

during its rise. Fan (2008) showed that due to the Ω-shape of the loop a pressure

gradient builds between the apex and the feet. This additional force �ows mass in the

opposite direction than the azimuthal deceleration of the magnetic �ux tube, that

reduces the angular velocity of the �ux tube (see Fan 2008, Fig. 5), and results into

a redistribution of angular momentum along the tube's axis. The Coriolis force is

reduced accordingly, and the �ux tube rises radially. In our simulations, we also �nd

a smaller latitudinal de�ection compare to the axisymmetric case As seen in Fig. 5.6,

the latitudinal de�ection of the �ux tube remains close to zero, independently of the

regime. In comparison, in the 2D case, the latitudinal de�ections were up to 25◦ for
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Figure 5.5: Relative rise time, τ̃rise versus the scaling parameter Γ0.855
0.793. The solid line is a least-

squares �t of the data points. The dashed line indicates a power of −1.39. On the upper
axis, we indicate the corresponding 0.4 Γ0.855

0.793 values that are the closest estimates of
Fbuoy/Fcorio we could extract from our simulations. The grey zone gives an idea of the
scatter.

rotation dominated rises.

The tilt angle of emerging regions has been extensively discussed in the literature

and our study would be incomplete without mentioning it. Unfortunately, the tilt

angles obtained from our numerical experiments can not be directly compared to

the ones found in the literature. The tilt angles visible at the solar surface are

supposed to be the results of the combined e�ect of the initial twist and of the wirth

due to the Coriolis e�ect. But due to the high initial twist all our simulations are

kink unstable; the kink instability leads to strong wirth that enhance the �nal tilt

angles to unrealistic values. In most of the presented experiments the ratio of the

rise time over the time scale of the kink instability is of the order of unity. For the

few experiments where the ratio is su�ciently large to ignore the e�ect of the kink

on the wirth, the tilt angles qualitatively agree with former studies; the tilt has the

correct sign and decreases for stronger �ux tubes. Moreover, the relative rise time

remains constant independently of the importance of the kink instability.

In 3D cases, there is one further morphological property that may be addressed:

the azimuthal de�ection of the apex of the magnetic �ux tube. As seen in Fig. 5.7,

the azimuthal de�ection depends on the regime, the more it tends toward rotation
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Figure 5.6: Emergence latitude, θ, of the magnetic �ux tube against the scaling parameter Γ0.855
0.793.

The dashed line indicates the initial latitude where we inject the magnetic �ux tube.

dominated one, the more the apex de�ects in the azimuthal direction. Furthermore,
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Figure 5.7: Azimuthal de�ection, ∆φ, of the apex of the magnetic loop when it reaches the top of
the domain, against the scaling parameter Γ0.855

0.793.

Jouve et al. (2013) have shown that the asymmetry of the Ω-loop increases with the

azimuthal de�ection. We also �nd that e�ect as illustrated in Fig. 5.8. The panels
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5 Extension to 3D

Figure 5.8: Snapshot of four representative simulations ordered from a buoyancy dominated regime
(high Γ0.855

0.793) to a rotation dominated regime (low Γ0.855
0.793). The transparent half-sphere

represents the reconstructed simulated domain, where the real domain is indicated by
the solid wedge-shape. The green contour represents the magnetic pressure where it
reaches about 10% of the maximum. The red (blue) surfaces represent the positive
(negative) radial component of the magnetic �ux density emerging at the top of the
domain. The input parameters of these simulations can be found in Table A.2, referred
with their respective labels.

(a), (b), (c) and (d) are ordered by decreasing Γ0.855
0.793, i.e. increasing in�uence of

rotation. In a buoyancy dominated regime, the loop rises fast as a wide, symmetric

Ω-shaped loop (a). In a rotation dominated regime, the �ux tube rises slowly as a

narrow, asymmetric loop (d).

In summary, our non-axisymmetric simulations reproduce the same morphologic

characteristics as found in the literature: there is nearly no latitudinal de�ection of

the apex; the azimuthal de�ection and the asymmetry of the legs both increase with
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the rotational character of the regime.

5.5 Extracting the scaling relation between the

relative rise time and the regime

We veri�ed that Γ0.855
0.795 controls the regime of the rise for m = 8, and that the results

agree qualitatively with the literature. We now focus on the relative rise time τ̃rise.

From Fig. 5.5, we obtain a powerlaw and extract the following relation

τ̃rise = 7.53
(
Γ0.855

0.793

)−1.39
(5.2)

As in the axisymmetric case, in non-axisymmetric simulations, the relative rise time

follows a negative power of the scaling parameter, but with a di�erent exponent �

called α3 � of about −1.4.

Because Γ0.855
0.795 is just a proxy for the force ratio, we need to �nd the balanced

regime to determine the unknown k. As in Chap. 4 we can use a morphological

argument to estimate the proportionality factor between the force ratio and the

proxy. Panel (c) of Fig. 5.8 illustrates the minimum Γ0.855
0.795 showing an asymmetry.

We consider this magnetic �ux tube rising in the balanced regime. The value of Γ0.855
0.795

is 2.5, the proportionality factor is therefore about 0.4. We indicate 0.4 Γ0.855
0.795 on the

upper axis of Fig. 5.5 which represents the closest estimate we have for Fbuoy/Fcorio.

Considering the estimate of k to be valid, Fig. 5.9 shows that the power laws

relating τ̃rise and Fbuoy/Fcorio for the m = 0 and m = 8 cases, cross each other for

Fbuoy/Fcorio ≈ 0.33. So for a given regime, when Fbuoy/Fcorio exceeds 0.33, non-

axisymmetric �ux tubes rise more slowly than axisymmetric ones, whereas when

Fbuoy/Fcorio < 0.33 the situation inverses.

However, Fig. 5.9 also shows that for a given star (a given Mrot) and a given

magnetic �ux density (a �xed β) magnetic �ux tubes do not necessarily rise in the

same regime. For instance in the solar case, assuming �ux tubes with a magnetic

�ux density larger than 600kG, the higher the azimuthal wave number of the �ux

tube, the more the regime tends toward buoyancy dominated.

Furthermore, as underlined by Fan (2008), in the solar case (e.g. Mrot = 6 ·
10−3) weak magnetic �ux tubes rise faster for m = 8 than for m = 0. But this

conclusion does not hold for the general case. Fig. 5.9 shows indeed that for magnetic

�ux densities larger than 200 kG the situation inverses and axisymmetric �ux tubes

rise faster than the non-axisymmetric ones. Again the characteristics of the rise

depend on the regime. For buoyantly dominated rises, the paths taken by �ux
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Figure 5.9: Relative rise time, τ̃rise, versus the force ratio de�ning the regime of the rise. It should
be noticed that Fbuoy/Fcorio is a result of rotation and the rise velocity, and therefore of
the tension force. The blue and the green solid lines are powerlaws with exponents −2
and −1.4, respectively, and represent the relations we obtained for axisymmetric and
non-axisymmetric �ux tubes. Both relations are valid for any solar-like star, but the
green and blue symbols with actual values are computed for the solar case, for various
magnetic �ux densities, with Mrot = 6 · 10−3. The colored areas indicate the causes
for the longer relative rise times.

tubes are in both cases almost radial, therefore the di�erence in the relative rise

time arises exclusively from the tension force, which reduces the rise velocity of

non-axisymmetric rising �ux tubes (green area in Fig. 5.9). On the contrary, in

the rotation dominated regime, the longer relative rise time of axisymmetric �ux

tubes results from their latitudinal de�ection, leading to longer paths (blue area in

Fig. 5.9).

Finally, Eq. (5.2) shows that the exponent of the powerlaw decreases compared to

axisymmetric simulations. This decrease is out of the scope of the theory described

in Chap. 3, but we can suggest an interpretation. The pressure gradient along the

tube is the only ingredient that is independent of the regime (it only depends on

the strati�cation) and is present in the non-axisymmetric case and absent in the

symmetric one. In the case of an axisymmetric simulation the longer path taken by

the �ux tube causes the di�erence in relative rise time between a rotation dominated

and a buoyant dominated regime. In the non-axisymmetric simulations the di�erence

between the paths reduces through a weaker deceleration of the azimuthal velocity.

We suggest that the pressure gradient, which imposes a more radial path to the
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�ux tube, reduces the exponent of the powerlaw α3. Such an explanation implies

that m = 4 simulations should exhibit an exponent α3 between −2 and −1.4, which

would agree with the exponent found by Moreno-Insertis (1986) where the author

found −1.8. This may be explored by further series varying m, which could lead to

a general function for α3(m). This will allow us to predict the relative rise time of a

magnetic �ux tube depending on the characteristics of the star and the large-scale

magnetic �eld.

5.6 Summary and discussion on the limits

Along this chapter, we investigated the impact of non-axisymmetry on the rise of

magnetic �ux tubes. We �rst discussed the di�erences we had to introduce in the

numerical setup to reduce the computational time in order to achieve a parameter

study: we reduced the resolution and the density ratio between top and bottom of

the numerical domain, and we increased the radius of the magnetic �ux tube. We

also introduced the initial condition of the non-axisymmetric setup. The magnetic

�ux tube is injected at the bottom of the convective zone alternating between two

thermal states � isothermal and neutrally buoyant � with a wavenumber of m = 8.

Then we veri�ed the scalability of the setup by carrying out a parameter study.

We �rst had to compute the predicted scaling parameter (see Chap. 3), by measuring

the curvature radius R of the magnetic �ux tube. We introduced two methods to

compute R, and discussed the results of the geometrical one. We could extract α1

and α2 and compute the theoretical scaling parameter Γ0.855
0.793. Afterward we could

verify that the setup does indeed scale with the latter. We showed the uniqueness

of the relative rise time for a given Γ0.855
0.793. The uniqueness of τ̃rise con�rms the

scalability of our setup and justi�es the assumptions of our theory.

Then, we discussed the morphological behavior of the rise of the magnetic �ux

tube and qualitatively compared it with former anelastic results. We found that

both agree, justifying the use of the anelastic approximation in solar-like stars for

the study of magnetic �ux tubes.

Finally we focused on our main interest � the relative rise time � and extract a

relation between the latter and Γ0.855
0.793. We found that the powerlaw that the relative

rise time follows has a exponent of −1.4, which is shallower than the exponent of −2

found in the axisymmetric case. We suggested that this reduction results from the

radial paths of non-axisymmetric rises. We also found that the scaling parameter is

limited in predicting the balanced regime. So we followed a morphological argument

and found that the proportionality factor between the force ratio and the proxy

approaches 0.4.
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A few issues need to be discussed, however. First, the method we used to compute

R may be criticized and improved. But we have shown that it delivers the expected

sign for the trend of R(β,Mrot), and provides values for f1 and f2 that lead to a

Γα2
α1

which indeed controls the regime of the rise; as we have predicted in Chap. 3.

We may also criticize the absence of convective motions, di�erential rotation,

and meridional circulations in our setup. These ingredients surely impact the rise

of the magnetic �ux tube. But as we mentioned in the �rst chapter, simulating

compressible rising �ux tubes in rotating convective environments is still far beyond

the computational limits of the current massively parallel computing.

Finally, we suggest to carry out further series to extract a relation between α3

and the wavenumber m. This function � combined with the dependence of the

most unstable mode of the Parker instability on the strength of the magnetic �ux

tubes � will allow us to predict the rise time of magnetic �ux tubes through the

stellar activity cycle. But the conclusions of the present chapter already incite us to

investigate the impact of α3 on a delayed Babcock-Leighton dynamo. In the next

chapter, we will discuss and present results on these matters.
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6.1 Introduction

This chapter aims to apply the scaling law we obtained from direct numerical sim-

ulations to a dynamo model for the large-scale magnetic �eld.

The scaling relation we have found has the great advantage, that it applies to any

star that meets the requirements of our scenario. The latter assumes the presence

of magnetic �ux tubes, � and therefore requires a tachocline � and a convective

envelope that spans over about one third of the stellar radius. Main-sequence solar-

like stars meet those requirements. We consider that our scaling law applies to

solar-like stars from the zero-age main sequence to the late main sequence.

The scaling law relates the relative rise time of a magnetic �ux tube τ̃rise to the

parameters of its stellar host β and Mrot. We found that both the regime of the

rise (controlled by Γα2
α1
) and the exponent of the scaling relation α3 depend on the

azimuthal wave number of the Ω-shaped loop m.

In this chapter, we focus on the particular �ux transport dynamo that we call the

�ux tube/Babcock-Leighton dynamo. Similar to Jouve et al. (2010), we implement

this dynamo in a di�erent manner than the traditional version. We consider that

the rise time of magnetic �ux tubes is not negligible compared to the magnetic

cycle. We modify the �ux tube/Babcock-Leighton dynamo by introducing a delay in

the term mimicking the emergence of active regions and being responsible for the

regeneration of the dipolar �eld (the Babcock-Leighton e�ect). We constrain that

delay with the universal scaling law (Eq. 6.5) we have found and study its impact

on the dynamo solutions.

Before discussing these results, we suggest to explore the meaning of our former

conclusions for the rise time of magnetic �ux tubes in solar-like stars.
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6 Application to stellar objects

6.2 Determining the rise time of magnetic �ux

tubes in solar-like stars

6.2.1 Rotation-activity diagram

Nowadays, astronomers have the opportunity to observe stellar activity, e.g. by

measuring the ratio of X-ray luminosity over the total bolometric luminosity,

RX = LX/Lbol. It has been empirically shown that the relative X-ray luminosity of

the Sun is a good proxy for the magnetic �ux density in the corona (e.g. Preminger

et al. 2010). This ratio is therefore considered as a proxy for the magnetic stellar

activity. The level of stellar activity exhibits two branches: the slow, and the fast ro-

tation branch. Stellar activity on the slowly rotating branch depends on the rotation

period, whereas on the fast rotating branch, activity seems to be independent of ro-

tation (Strassmeier et al. 1994; Saar 2002; Böhm-Vitense 2007; Barnes & Kim 2010;

Wright et al. 2013; Reiners et al. 2014). The corresponding results by Wright et al.

(2013) are reproduced in Fig. 6.1. It can be underlined that the RX − Ro relation

Figure 6.1: Left-panel of Fig. 1 from Wright et al. (2013) (adapted). The stellar sample presented
in Wright et al. (2011) includes 824 late-type stars. The plus symbols identify binaries
and the Sun is indicated by the solar symbol. RX = LX/Lbol.

exhibits a lower scatter than the RX −Prot relation shown in Fig. 6.1. However, the

Rossby number Ro (= Prot/τconv) requires the convective turn overtime τconv which

is a weakly constrained quantity and not directly accessible from observations. We
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6.2 Determining the rise time of magnetic �ux tubes in solar-like stars

prefer to concentrate on a relation involving fewer unknowns.

We �rst focus on the slowly rotating branch. The latter shows an inverse square

relation with rotation:
LX

Lbol

∝ P−2
rot . (6.1)

In Vidotto et al. (2014), the authors suggest a relation between activity and the

large-scale dipolar �eld (their Fig. 6). They found the following relation:

LX

Lbol

∝ 〈|Bv|〉1.6, (6.2)

where 〈|Bv|〉 is the average vertical magnetic �eld over the full stellar surface. We

assume that it represents a proxy for the stellar dipolar �eld Bdip. Combining

Eqs. (6.1) and (6.2), we obtain a relation between the dipolar �eld and the stellar

rotation for the slowly rotating branch:

Bdip ∝ P−1.25
rot (6.3)

For the fast rotating branch, the exponent approaches zero, therefore the dipolar

�eld depends weakly on rotation: Bdip ≈ const.

6.2.2 From dipolar �eld to �ux tubes

So far, we considered that �ux tubes form from the toroidal magnetic �eld at the

bottom of the convective zone. In �ux transport dynamos the toroidal magnetic

�eld is maintained by the winding up of the large-scale poloidal �eld by di�erential

rotation: the shear, taking place predominantly at the bottom of the convection

zone, generates toroidal magnetic �ux. We can reasonably suppose that this �eld is

proportional to the large-scale dipolar �eld, with a dependence on the shear due to

di�erential rotation. Küker & Rüdiger (2011) have shown that the mean-�eld theory

of the λ-e�ect predicts that the absolute di�erential rotation is nearly independent

of rotation. This prediction has been con�rmed by observations (Reinhold et al.

2013), but exhibits a large observational scatter. We follow the conclusion of Küker

& Rüdiger (2011) and presume that the shear at the bottom of the convective zone

is independent of rotation. We can relate the dipolar �eld to the strength of the

magnetic �ux tubes: B0 ∝ Bdip.

This path of thought allows us to relate the strength of the magnetic �ux tube to

the rotation period:

B0 ∝ P−1.25
rot . (6.4)

This relation is valid for the slowly rotating branch. It tells us that the slower the
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star rotates, the weaker are the magnetic �ux tubes forming at its tachocline.

Following the same argumentation for the fast rotating branch, we �nd a constant

magnetic �ux density independent of stellar rotation: B0 = const.

6.2.3 Impact on the scaling

The main conclusion of our work is the scaling relation between the relative rise

time and the regime of the rise. We found that

τ̃rise ∝
(
Γα2
α1

)α3 , (6.5)

where Γα2
α1

is de�ned in Eq. (3.10); and where α1, α2 and α3 depend on the azimuthal

wave number of the initial perturbation m. For a given stellar structure, $ as well

as cs are constant, and vA depends exclusively on B0, as a result we can simplify

Eq. (3.10):

Γα2
α1
∝
(
Bα1

0

Ω

)α2

. (6.6)

Now, combining Eqs. (6.5) and (6.6) and replacing B0 by its equivalent for the slowly

rotating branch (cf. Eq. 6.4), we can write:

τ̃
(m)
rise ∝ P

[α3α2(1−1.25α1)]
rot (6.7)

In the m = 8 case, α1 = 0.793, α2 = 0.855 and α3 = −1.4. We �nd α3α2(1 −
1.25α1) ≈ −0.014. For the m = 0 case, α1 = α2 = 1, and α3 = −2: the exponent

equals 0.5. So it seems that in the extreme cases of m = 0 on the one hand, and of

m = 8 on the other hand, the relative rise time does not depend much on rotation

for slowly rotating stars.

In the fast rotating branch the situation is di�erent. Observations indicate that

B0 is independent of rotation, hence Eq. (6.6) implies:

Γα2
α1
∝ Pα2

rot (6.8)

The relative rise time becomes a function of rotation:

τ̃
(m)
rise ∝ Pα2α3

rot. (6.9)

with α2α3 varying between −2 and −1.2 for m = 0 and m = 8, respectively. So in

fast rotating stars, it seems that the relative rise time depends strongly on rotation.

But these relations are incomplete, we can extract their trend, but we miss a point

of reference to �x the curves. We suggest to use the solar value as a reference.
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In Weber et al. (2011), the authors �nd that a �ux tube of 105G perturbed with

an m = 2 azimuthal wave number rises about 40 days that is about 1.5 rotation

period. We can reasonably assume that the corresponding m = 0 τ̃rise is about

unity. Note that 105 G is about 5/3Beq (cf. Section 4.1 of Jouve & Brun (2009)

giving Beq ≈ 60 kG)

If we consider that a magnetic �ux tube rises in the same regime for the m = 0

and the m = 8 cases then 0.7 Γ1
1 = 0.4 Γ0.855

0.793 (cf. Chaps. 4 and 5). In Fig. 4.5, a

relative rise time of τ̃ (0)
rise = 1 corresponds to a regime 0.7 Γ1

1 about unity. For the

same regime in the m = 8 case (0.4 Γ0.855
0.793 = 1) we can read in Fig. 5.5 that the

relative rise time τ̃ (8)
rise ≈ 2. From the scaling relation we compute the corresponding

relative rise time for an equipartition �ux tube: τ̃ (m)
rise (Beq) = τ̃

(m)
rise (B0) (3/5)α1α2α3 .

By continuity, we construct the functions τ (m)
rise (Beq) against Prot for both branches,

taking as reference points

τ
(0)
rise(Beq) = 74.8 d,

τ
(8)
rise(Beq) = 108.5 d.

Fig. 6.2 shows a comparison of the observed magnetic cycle � as a function of

stellar rotation � with the rise time of various magnetic �ux tubes. The red lines

correspond to �ts from Saar (2002, see left-panel of his Fig. 3). They represent the

dependence of the magnetic cycle on stellar rotation for the three activity branches:

inactive, active, and super-active. We plotted in green and blue the upper limits for

the rise time of magnetic �ux tubes for m = 0 and m = 8. For these upper limits

the proportionality factor relating B0 and Prot are chosen such that, for a given

rotation period, the predicted rise time is of the same order of magnitude as the

stellar cycle. The corresponding values of B0 are 25% and 8% of Beq, respectively.

So Fig. 6.2 illustrates that, for stars of rotation periods ranging between 5 and 50

days, any magnetic �ux tube with a magnetic �ux density lower than 25% (8%) of

the equipartition value Beq, will lead to a rise time longer than the cycle period. This

statement contradicts the general paradigm of standard �ux tube/Babcock-Leighton

dynamos, which assume the rise of magnetic �ux tubes to be instantaneous.

An open question remains: are these �ux tubes su�ciently buoyant to reach the

surface without being destroyed by the convective motions?

This issue has been addressed by several authors (Fan et al. 2003; Murray et al.

2006) and it seems clear that isothermal magnetic �ux tubes need to be in su-

perequipartition with the convective �ows to ignore the e�ect of convection. Jouve

& Brun (2009) suggested a minimum �eld of 3Beq. However, weaker magnetic �ux

tubes may still reach the surface. Thin �ux tube simulations (Weber et al. 2011)
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have shown that magnetic �ux tubes with magnetic �ux densities of 0.3Beq (40 kG

in that paper) still reproduce solar-like characteristics. Additionally, convection

may also positively contribute to the rise, and magnetic �ux tubes may also form

within the convective zone (Nelson et al. 2014). In such a case �ux tubes as low

as 2% of Beq have been shown to reach the surface. Therefore, we would like to

consider the possibility that subequipartition �ux tubes with say B0 & 0.1Beq may

still participate to the dynamo mechanism.
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Figure 6.2: Observed magnetic cycles, Pcyc, and theoretical rise time, τrise, plotted against rotation
period. The red lines are �ts to observational data from Saar (2002), for the inactive

(lowest), active (middle), and super-active (uppermost red line) branches (cf. their
Fig. 3). The green (blue) line represents the rise time of a magnetic �ux tube with a
magnetic �ux density of 25%Beq (8%Beq) as a function of various rotation periods,
for m = 0 (m = 8). The black dot represents the magnetic cycle of the Sun.

6.2.4 Conclusions

We used observations to illustrate the implications of our theory. We have shown

that it could lead to situations where the rise of magnetic �ux tubes may become a

signi�cant fraction of the cycle period, at least for inactive stars.

But Fig. 6.2 raises several questions: what happened to the dynamo mechanism

when the majority of the magnetic �ux tubes are so weak that they need a full

stellar cycle to reach the surface? Can the Babcock-Leighton dynamo survive?

In order to answer these questions and to make predictions on observations, we

need to introduce the scaling law obtained in the previous sections into a �ux
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6.3 Delayed Babcock-Leighton Dynamo

tube/Babcock-Leighton dynamo and study how the magnetic cycle reacts when it

experiences the various constraints the scaling law imposes.

6.3 Delayed Babcock-Leighton Dynamo

In the frame of a �ux tube/Babcock-Leighton dynamo, the Ω-e�ect operates at the

bottom of the convection zone, where it generates toroidal magnetic �eld. The re-

versal of the poloidal �eld results from the Babcock-Leighton e�ect, that accounts for

a series of processes taking place at the surface. These processes are the cancelation

of magnetic �ux due to magnetic reconnection, the di�usion of magnetic �ux be-

cause of the strong mixing of turbulence, and the advection of magnetic �ux toward

the poles resulting from the combined e�ect of the random walk of granulation and

the meridional circulation. Applied to the magnetic �ux of tilted active regions,

the remaning net poloidal magnetic �ux cancels with the polar magnetic �eld and

produces the reversal.

The drivers of the dynamo mechanism namely the Ω-e�ect and the Babcock-

Leighton e�ect are located at two di�erent places. But how active regions can

form at the surface from the toroidal magnetc �eld generated at the bottom of the

convection zone? The buoyant rise of magnetic �ux tubes is responsible for the

transport and the Coriolis e�ect for the tilt of the emerging magnetic �ux.

The toroidal magnetic �ux sitting at the bottom of the convective zone varies,

throughout the stellar magnetic cycle. Traditionally, it is considered that the time

scale of the variation of toroidal magnetic �ux lasts much longer than the rise time of

a magnetic �ux tube (Pcyc. � τrise). The rise time is considered instantaneous, and

the Babcock-Leighton e�ect applies to the toroidal magnetic �ux at the emerging

time (t = temerg). But as seen in Fig. 6.2, for a reasonable range of magnetic

�ux densities the rise time of magnetic �ux tubes lasts for a signi�cant fraction

of the stellar magnetic cycle. For these magnetic �ux densities the instantaneous

treatment of the rise time is not valid anymore. In order to account for the rise time,

we design a delayed �ux tube/Babcock-Leighton dynamo, where the Babcock-Leighton

e�ect applies to the magnetic �ux at a time t = temerg− τrise. We constrain τrise with

the scaling law we obtained from our direct numerical simulations.

6.3.1 The numerical setup of a delayed Babcock-Leighton

dynamo

There are several ways to design a mean-�eld Babcock-Leighton dynamo. We chose

to simplify the setup as much as possible. We consider that the molecular magnetic
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di�usion is small compared to the turbulent magnetic di�usion: η � ηt. We suppose

that turbulence is homogeneous in the stellar interior and �x ηt to a constant value.

In order to non-dimensionalize the system, we set R? (the stellar radius), τdiff =

R2
?/ηt (the di�usion time), and Beq = uconv

√
ρµ0 (the magnetic �ux density in

equipartition with convective motion, uconv) as the �typical� length, time scale and

magnetic �ux density of the system.

Considering these assumptions and this unit system, we can solve the reduced

mean-�eld induction equations thanks to the pseudo-spectral code developed by

Rainer Hollerbach, see Hollerbach (2000) for more details.

We solve the following dimensionless mean-�eld formulation of the Babcock-

Leighton dynamo:

∂tBφ =

(
∇2 − 1

$2

)
Bφ

− Re$uP · ∇
(
Bφ

$

)
− ReBφ∇ · uP

+ CΩ $ [∇× ($Aφeφ)] · ∇(Ω),

∂tAφ =

(
∇2 − 1

$2

)
Aφ

− Re
uP

$
· ∇($Aφ) + CSS, (6.10)

where, Bφ, uP, $, Aφ, Ω and S are the azimuthal component of the magnetic

�eld, the meridional circulation, the cylindrical radius, the azimuthal magnetic po-

tential, the angular velocity, and the source term of the Babcock-Leighton e�ect,

respectively. Furthermore, the ∇ operators are in spherical coordinates. Three di-

mensionless parameters control the system: the Reynolds numbers of the meridional

�ow Re and of the rotation CΩ and the dynamo number CS are de�ned as follows,

Re =
u0R?

ηt

; CΩ =
Ω0R

2
?

ηt

; CS =
S0R?

ηt

, (6.11)

where u0, Ω0, and S0 are the �typical� strength of the meridional circulation, the

angular velocity, and the Babcock-Leighton source term, respectively. The pro�les

of uP and Ω normalized by u0 and Ω0 are shown on Fig. 6.3. These pro�les are ob-

tained from computations from Manfred Küker, where he solved the average angular

momentum and temperature equations, closed with the λ-e�ect (Küker & Rüdiger

2011). So in the frame of the λ-e�ect theory (Rüdiger 1989) the di�erential rotation

and the meridional circulation are consistent with each other.

The last missing ingredient in our setup is the meridional pro�le of the Babcock-
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6.3 Delayed Babcock-Leighton Dynamo

Figure 6.3: From Küker & Rüdiger (2011), solar-like di�erential rotation pro�le and meridional
circulation obtained from λ-e�ect solutions.

Leighton source term. In order to obtain �nite solutions of the mean-�eld induction

equations, the the source term needs to be quenched by some non-linear mechanism.

In the present scenario the quenching arises from the low tilt of strong magnetic �ux

tubes. In the buoyancy dominated regime the e�ect of rotation is small, magnetic

�ux tubes rise in a symmetric manner with a lower tilt than their rotation dominated

peers. A low tilt results in a smaller net �ux transport to the pole: the source term

loses e�ciency as the magnetic �ux tube gains buoyancy. The meridional pro�le of

the quenched source term can be written as:

S(r, θ, t) = f(r, θ)
∑

n : tn=t−τrise(n)

[1 +

(
Bdelay(θ, tn)

Bquench

)2
]−1

Bdelay(θ, tn)

 ,
for |Bdelay(θ, tn)| > Bthreshold , S = 0 otherwise , (6.12)

where n and Bdelay(θ, tn) = Bφ(r0, θ, t − τrise(n)) are the time step's index and

the toroidal magnetic �eld at the bottom of the convective zone (r0 = 0.7) at

t−τrise(n); Bquench is the magnetic �ux density at which the source term is quenched,

as suggested by the work of Rempel (2006), we choose Bquench = Beq with Beq being

the magnetic �ux density in equipartition with the convective motions at tn; f is

a dimensionless pro�le of the source term. The sum is done over all time steps,

n, such that tn + τrise(n) = t and Bdelay(θ, tn) > Bthreshold. The Babcock-Leighton
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6 Application to stellar objects

source term is e�ective only at the surface, for r > 0.9

f(r, θ) =
1

2

[
1 + erf

(
r − 0.9

0.02

)]
cos θ sin2 θ . (6.13)

The factor cos θ sin2 θ ensures that the contribution of �ux tubes is maximum be-

tween 0 and 40◦ latitude, as it is observed for the solar-case. Bthreshold is introduced

in this formulation to prevent magnetic �ux tubes that are too weak from reaching

the surface and contributing to the source term. We set the threshold such that

magnetic �ux tubes weaker than 6kG (10%Beq) do not participate to the dynamo

mechanism.

6.3.2 Introduction of the delay

Now that we described the setup, we still need to extract the τrise from the scaling

law. We have shown that

τ̃rise ∝
(
Γα2
α1

)α3 ∝
(
Bα1

0

Ω

)α2α3

, (6.14)

hence, considering a given star, rotation is a constant, and Eq. (6.14) connects τrise

to B0 at the bottom of the convective zone:

τrise ∝
(
B0

Beq

)αu
, (6.15)

with αu being the universal power. This number is a function ofm only. It is de�ned

as

αu = α1α2α3 . (6.16)

It leads to two functions for m = 0 and m = 8:

τ
(0)
rise ∝

(
B0

Beq

)−2

,

τ
(8)
rise ∝

(
B0

Beq

)−0.95

. (6.17)

To treat the delay numerically, we compute and memorized the source term S

and its corresponding delay τdelay at each time step. At temerg the contribution of

the source term is added to all other contributions of further magnetic �ux tubes

emerging at the same time. The delay is computed as follows:

τrise = τ0 sin θ

(
Famp

∣∣∣∣ Bφ

Beq

∣∣∣∣)αu , (6.18)
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6.3 Delayed Babcock-Leighton Dynamo

where τ0 is the �typical� delay of an equipartition magnetic �ux tube (with B0 =

FampBφ = Beq). From the direct numerical simulations, we know that τ0 depends on

m. The factor sin θ is inherited from the tension force acting on the �ux tube: close

to the pole, the curvature radius, R, becomes su�ciently small such that the tension
force takes over buoyancy and the �ux tube does not rise. Famp is the ampli�cation

factor, it represents the missing ingredient of our scenario of how magnetic �ux

tubes form. How does their strength depend on the strength of the magnetic layer

they emerge from? As we mentioned in the introduction, this discussion is out of

the scope of the present work, and will be addressed in future studies. However,

Rempel & Schüssler (2001) shows that the `explosion' instability which may occur

at the bottom of the convective zone can amplify the magnetic �ux density of a

stable magnetic layer up to one order of magnitude. In reality, this parameter might

vary with Bφ, rotation, stellar structure, or how deep the �ux tube forms. This

issue has not been addressed yet and needs to be studied. But without further

constraints at hand, we arbitrarily chose to set Famp to 10. Note that introducing

Famp prevents magnetic �ux tubes weaker than B0 = FampBthreshold from rising. We

suppose that B0 = 0.1Beq is the weakest magnetic �ux density that leads to an

emerging magnetic �ux tube, therefore the threshold on the toroidal �eld at the

bottom of the convective zone should be Bthreshold = 0.01Beq.

Now that we have fully described the delayed �ux tube/Babcock-Leighton dynamo,

we present some results of a parameter study on τ0, CS and αu.

6.3.3 Preliminary results

Along this section we will demonstrate that introducing a delay in the �ux

tube/Babcock-Leighton dynamo reduces the critical CS required to obtain an an-

tisymmetric oscillatory solution. And that this reduction does not only extend the

standard solutions but also reveals a new dynamo regime.

We carried out a parameter study, varying the equipartition delay (τ0) and the

control-parameter CS, with the following �xed parameters:

Bthreshold = 0.01 ; CΩ = 1.25 104 ; Re = 440 ; αu = −2 .

In the case of τ0 = 0, we could reproduce identical results as in the non-delayed

Babcock-Leighton dynamo. In Fig. 6.4, we illustrate the resulting toroidal �eld

at the bottom of the convective zone (r = 0.71) and the squared toroidal �eld

(at the same depth) at 20 degrees latitude for CS = 300. Note that this latter

quantity can be seen as a proxy for the sunspots number. This simulation is super-

critical and delivers a standard solution: setting the rotation period to the solar
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6 Application to stellar objects

Figure 6.4: Toroidal magnetic �eld at the bottom of the convective zone (top panel) for a non-
delayed �ux tube/Babcock-Leighton dynamo versus time, and the evolution of the same
quantity squared at 20 degrees latitude (lower panel).

value (Prot = 25 d) and a meridional circulation of 10 m/s, we obtain a 22-year

magnetic cycle, a di�usion time of 440 years, and a maximum amplitude of about

the equipartition value.

In Fig. 6.5, we plot the maximum of the absolute Bφ against CS, for four di�erent

τ0. The black solid line represents the series with τ0 = 0, those dynamos decay

with a CS smaller than Ccrit
0 ≡ Ccrit

S (τ0 = 0) ≈ 72. In the same plot, series with a

non-zero τ0 (colored lines) show a lower maximum Bφ for values of CS < Ccrit
0 = 72,

but the dynamos do not decay. Those dynamos di�er from the super-critical 1 ones,

we identi�ed a `new' regime.

In Fig. 6.6, we illustrate two examples of dynamos with τ0 = 10−3: a `super-critical

dynamo' with CS = 300, and a non-decaying `sub-critical dynamo' with CS = 15.

Three remarkable characteristics di�er: the period of the magnetic cycle lasts about

twice longer in the sub-critical case; the maximum Bφ stays at lower values; and the

cycle is less sinusoidal.

In the bottom panels of Fig. 6.6 we illustrate the relation between the various

relevant times scales. The green and the red solid lines represent the delay of a

magnetic �ux tube of B0 = Beq, and the period of the magnetic cycle, respectively.

The blue oscillating curve represents the e�ective delay (τdelay) computed from the

Bφ(t) such that t+ τdelay = temerg; with Bφ(t) taken a the bottom of the convective

1In the present case we call `super-critical' solutions the ones with a CS > Ccrit
0 and `sub-critical'

solutions the ones with CS < Ccrit
0 , they are linearly sub-critical without time delay, but they

nonlinearly saturates to a �nite amplitude when the time delay is introduced.
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Figure 6.5: Maximum �eld amplitude at the bottom of the convection zone, Bbot
φ in units of Beq,

of delayed and non-delayed Babcock-Leighton dynamos versus the dynamo number
CS . Each point represent a dynamo solution. The black solid curve represents the
case of a non-delayed Babcock-Leighton dynamo. The colored curves represent various
series of delayed Babcock-Leighton dynamos with di�erent equipartition delays τ0: the
blue, green, red, and cyan lines represent the series with τ0 of 10−2, 10−3, 10−4 and
10−5 (τdiff), respectively. The vertical black solid line indicates the critical CS for the
non-delayed Babcock-Leighton dynamo.

zone and at 20 degrees latitude. The dashed blue line represents the minimum

e�ective delay computed from the maximum value of Bφ at all latitude and r = 0.71.

In the super-critical case (panel (a)), most of the time the e�ective delay is less

than 1% of the magnetic cycle. In those dynamos, the e�ective delay remains small

compared to the magnetic cycle and the dynamo delivers a solution similar to the

non-delayed dynamos.

The non-decaying sub-critical solution (panel (b)) instead exhibits most of the time

an e�ective delay that lasts longer than the magnetic cycle. It is only at maximum

activity that τdelay is shorter than the cycle period. Those dynamos self-adjust and

deliver oscillatory solutions.

In Fig. 6.7 we plot the minimum of the relative delay (τdelay/Pcyc) against CS. For

all sub-critical dynamos, independently of τ0, the ratio of the delay over the cycle

period is close to unity. A question arises: does the delay determine the cycle?

In Fig. 6.8, we plot the magnetic cycle for various CS and τ0. Each solid curve

represents a series obtained from a given τ0. As we vary τ0 the magnetic cycle

remains invariant. In the super-critical regime the cycle period is almost constant,

alike non-delayed dynamos. When CS reaches the Ccrit
0 of the non-delayed Babcock-
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(a) (b)

Figure 6.6: These plots represent the various relevant quantities for representative examples of both
super-critical (left column) and non-decaying sub-critical (right column) dynamos. The
upper panels represent the toroidal magnetic �eld, Bφ, at the bottom of the convective
zone over latitude against time. The middle panels are a slice at 20 degrees latitude
of squared Bφ. The lower panels represent various important time scales. The red and
green solid lines represent the cycle period and the delay of a magnetic �ux tube of
B0 = Beq, respectively. The blue curve represents the e�ective delay in the source term
at 20 degrees latitude. The blue dashed line represents the minimum of the e�ective
delay at all latitudes.

Leighton dynamo the magnetic cycle period increases, following a power law with

exponent −1.

So in the sub-critical regime, the delay does not determine the cycle, on the

contrary it adjusts to the magnetic cycle independently of τ0. This adjustment is

illustrated in Figs. 6.5 and 6.8: the maximum Bφ increases with τ0 (Fig. 6.5) such

that the minimum delay always remains lower than the magnetic cycle (Fig. 6.8).

An opened question remains, what determines the magnetic cycle? We suggest two

explanations: the cycle may arise from a resonance between the e�ective delay and

either the di�usion time, or the meridional circulation time-scale. Further studies

are needed to clarify that issue.

Fig. 6.7 tells us that in the sub-critical regime, the e�ective delay adjusts to a

large fraction of the cycle. And as CS decreases this fraction gets larger, until it

reaches the cycle period. In those cases, the sub-critical dynamo delivers a decaying

solution.

Introducing a delay into the Babcock-Leighton dynamo, we already obtained re-

markable insight; the main result of the previous chapters demonstrates that the de-
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Figure 6.7: Here we plot the minimum e�ective delay, τdelay normalized by Pcyc against the dynamo
number CS . Each point represents a dynamo solution. The e�ective delay at a time t is
computed from Bφ at the bottom of the convective zone, and 20 degrees latitude at the
same time. This delay represent some sort of measurement of the latitudinal average
of the minimum delay. The colored lines represent various series of delayed Babcock-
Leighton dynamos with di�erent equipartition delay τ0. The blue, green, red and cyan
lines represent the series with τ0 of 10−2, 10−3, 10−4 and 10−5 (τdiff), respectively.

lay follows various power laws, whose exponents depend on the preferred wavenum-

ber m. We carried out a further parameter study on αu. We vary αu from −0.95

(m = 8) to −2 (m = 0). Those series demonstrate on the one hand that the super-

critical regime remains una�ected. On the other hand, the sub-critical regime reacts:

the decrease of αu reduces the maximum of Bφ and the relative e�ective delay; the

magnetic cycle remains unchanged.

6.3.4 Discussion

There are limitations in our dynamo model. As mentioned earlier, the ampli�ca-

tion parameter Famp needs to be studied. We can not predict how Bφ, rotation or

any further stellar properties may control Famp. We also need to �gure out which

parameters determine the preferred wavenumber m, and if several modes could be

present simultaneously. These free parameters need to be constrained thanks to di-

rect numerical simulations. Furthermore, our model considers only anti-symmetric

latitudinal modes, symmetric modes may also be present in the solution.

In any case these results suggest that a few strong emergence events are su�cient

to maintain a sub-critical dynamo. But this is not su�cient for suggesting such
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Figure 6.8: Magnetic cycle period, Pcyc, against the dynamo number CS . Each point represents
a dynamo solution. The black curve represents the non-delayed case (τ0 = 0). The
colored curves represent various series of delayed Babcock-Leighton dynamos with dif-
ferent equipartition delay τ0. The blue, green, red and cyan curves represent the series
with τ0 of 10−2, 10−3, 10−4 and 10−5 (τdiff), respectively.

a mechanism to be present in the solar dynamo. In the solar case, these strong

events may still originate from sub-equipartition magnetic �ux tubes, which may

not reach the surface because of the destructive convective motions. In the case

of fast rotating stars � like a young Sun � according the scaling law we found in

Chap. 5 magnetic �ux tubes close to equipartition may rise within a magnetic cycle

and lead to sub-critical dynamos.

6.4 Summary

Along this work, we have shown that the rise time of the magnetic �ux tube can

reach a signi�cant fraction of the observed cycle period of inactive stars Fig. 6.2.

This motivates us to study delayed �ux tube/Babcock-Leighton dynamos.

We constrained the delay thanks to the results of our direct numerical simula-

tions. We introduced the constrained delay into the Babcock-Leighton dynamo and

obtained a sub-critical regime that has not yet been found in kinematic dynamo

models. This dynamo regime has the particularity to self-adjust such that even for

long delays � of the order of the cycle period � the solution remains oscillatory.
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Figuring out how the dynamo mechanism operates in cool stars remains a major

challenge for the stellar community. The �ux tube/Babcock-Leighton dynamo seems

to be a good candidate to explain the dynamics of solar-like stars' magnetic �elds.

The traditional version of this dynamo assumes that the rise time of magnetic �ux

tubes may be neglected compared to the magnetic cycle. This assumption may be

acceptable for the solar case, but is not obviously valid for faster rotators. In a

similar manner as Jouve et al. (2010), we extended the �ux tube/Babcock-Leighton

dynamo by considering a non-instantaneous rise of magnetic �ux tubes. As an

improvement to their work, we constrain the delay with the rise time derived from

our numerical simulations.

Therefore, we need a relation that links the rise time of magnetic �ux tubes to

the relevant characteristics of their stellar host. Since solar-like stars exhibit a wide

range of rotation rates Ω � which have been shown to depend on the stellar age �

and magnetic activity, the magnetic �ux density of the �ux tube and the rotation

period are the most relevant parameters to determine the rise time of magnetic �ux

tubes.

To obtain such a relation we designed a numerical setup that simulates the rise

of magnetic �ux tubes in stellar interiors. We designed a fully compressible setup

of a rising magnetic �ux tube in an adiabatically strati�ed spherical shell, which

rotates uniformly. We carried out axisymmetric and non-axisymmetric versions of

these simulations and extracted the necessary relation which we �nally introduced

into a delayed �ux tube/Babcock-Leighton dynamo.

The large disparity between the sound speed, cs, and the velocity of the convective

motions, which supposedly occur in the convective envelopes of solar-like stars, limits

the time scale of the studied problem. This limit prevents us from simulating a

magnetic �ux tube in a compressible convective environment. To solve this issue,

we consider a static, adiabatically strati�ed interior that mimics the quasi-stationary

character of a convective zone. Another issue arises from the compressible character

of the setup that prevents us from simulating magnetic �ux tubes of high plasma-β

like the one expected in the Sun (105). In order to solve this crucial problem, we

needed to investigate a possible scaling relation, which would allow us to carry out
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simulations at lower β.

Simulations can be compared with reality only if the relevant processes occur in

realistic regimes. Because the realistic parameter space (β,Mrot) is out of reach, we

need to �nd a parameter that controls the regime of the rise. Schüssler & Solanki

(1992) already addressed that question. They found that in axisymmetric rises only

the buoyant force and the Coriolis force act on the rise of magnetic �ux tubes. They

found that the magnetic Rossby number Rom controls the nature of the regime:

Fbuoy

Fcorio

∝ Rom ∝
vA

$Ω
.

A low magnetic Rossby number indicates a rotation dominated regime, while a

high magnetic Rossby number denotes a buoyancy dominated regime. We extended

their work to the non-axisymmetric case by considering the impact of the magnetic

tension arising from the Ω-shape of non-axisymmetric magnetic loops, and designed

a scaling parameter that uni�es axisymmetric and non-axisymmetric results:

Fbuoy

Fcorio

∝ Γα2
α1

=

(
vα1

A c1−α1
s

$Ω

)α2

,

where α1 and α2 both depend on the azimuthal wave number m that is preferred

during the rise. In the particular case of axisymmetric rises (m = 0) we found

α1 and α2 both being unity. The scaling parameter reduces to Γ1
1 which is indeed

proportional to the magnetic Rossby number.

By considering the in�uence of magnetic tension on the rise of magnetic �ux tubes,

we have predicted that Γα2
α1

controls the nature of the regime: for a given m, two

simulations with the same Γα2
α1

should give the same result, independently of the

values of Ω and β. This powerful tool allowed us to carry out simulations with a

lower β but still in a realistic regime. Ensuring the realistic character of the regime

allows us to compare our simulations with observations.

But before verifying our prediction, we needed to make sure that our numerical

setup behaves in a proper manner. We compared our results with former studies and

found that our axisymmetric results agree with former conclusions obtained with the

thin �ux tube approximation. The rise time, the latitudes of emergence, as well as

the path taken by the magnetic �ux tubes are all compatible. We extended the setup

to the m = 8 non-axisymmetric mode and found that the morphological properties

of the rise were again compatible to anelastic and thin �ux tube conclusions. We

concluded that our setup behaves properly and that the thin �ux tube and the

anelastic approximations are both well justi�ed in the bulk of the solar convection

zone.
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The axisymmetric study also demonstrates that the axisymmetric setup indeed

scales with Γ1
1.

For the non-axisymmetric case, we �rst needed to compute α1 and α2, from the

relation between the curvature radius R of the Ω-shaped loops with β and the

stellar rotation. For the m = 8 case, we found α1(8) = 0.793 and α2(8) = 0.855.

As predicted the numerical simulations show a scaling with Γ0.855
0.793. Such a scaling

behavior demonstrates that the assumption that magnetic tension in�uences the

regime of the rise of magnetic �ux tubes should be correct, and that it is possible

to simulate axisymmetric as well as non-axisymmetric compressible rising magnetic

�ux tubes in a regime that is comparable to the solar one.

From the direct numerical simulations, we extracted the relation linking the rel-

ative rise time and the regime of the rise for both m = 0 and m = 8. In both cases,

we obtained a power law:

τ̃rise ∝
(
Γα2
α1

)α3 ,

with α3 = −2 and a proportionality factor of 2.24 in the axisymmetric case; and

α3 = −1.4 and a proportionality factor of 7.53 in the m = 8 case.

These two relations for m = 0 and m = 8 can already be used to constrain a �ux

tube/Babcock-Leighton dynamo. The latter requires the link between the rise time

and both the magnetic �ux density of the �ux tube and stellar rotation. Γα2
α1

has the

advantage of containing both, and the universality of its relation to the relative rise

time makes it valid for any solar-like star. But the fact that we just have access to

discrete values of α3 and the proportionality factor already reveal the limits of our

theoretical work.

The proportionality factor itself depends on several stellar parameters such as

heat conduction, viscosity, the aspect ratio of the star and obviously m. Further

studies are required to derive a theoretical expression for this factor. In the present

case we constrain the latter by simulations.

We suggest that the α3 dependence onm can be explained by the pressure gradient

arising between the apex and the feet of non-axisymmetric loops. Additional studies

are needed to clarify that particular issue. Again, we constrain α3 with the results

obtained from simulations.

We have also shown that the regime of the rise does not only depend on the

magnetic �ux density of the �ux tube and the stellar rotation period, but also

on the azimuthal wave number m that is preferred along the rise. Unfortunately,

the question of which mode is preferred during the rise, is still open. Studying

the formation of magnetic �ux tubes in spherical coordinates may give some hints

toward a �nal answer.
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Finally, our setup neither takes convection nor di�erential rotation into account.

At least convection will inevitably alter the results (Weber et al. 2011) � while the

e�ect of di�erential rotation appears to be small (Fan et al. 1994). Nevertheless,

when larger computational power will permit extending the setup to convective and

di�erentially rotating interiors, our results will provide a solid base of comparison.

Despite these limits, the universality of the power law that relates the relative rise

time and the regime of the rise can be used to constrain the delay in a delayed �ux

tube/Babcock-Leighton dynamo.

The numerical simulations tell us that the rise time, i.e. the delay, depends on

the toroidal magnetic �eld:

τdelay = τ0

(
Famp

Bφ

Beq

)αu
,

with αu = −2 in the axisymmetric case and αu = −0.95 in the m = 8 case. Because

of the limits we discussed along this work, τ0 and Famp remain free parameters,

while Beq is usually constrained with the convective velocity from stellar models.

Considering reasonable values for these three parameters, we found that being de-

layed, the �ux tube/Babcock-Leighton dynamo exhibits two regimes: a super-critical

regime and a non-decaying sub-critical regime.

This dissertation has shown that the relative rise time of magnetic �ux tubes in

solar-like stars follows a powerlaw of Γα2
α1
, that allows us to constrain a delayed �ux

tube/Babcock-Leighton dynamo. We have shown that for dynamo numbers that lead

to decay in the non-delayed case, a long delay � that lasts for a signi�cant fraction

of the cycle � does not necessarily deliver a decaying solution and we identi�ed a

new dynamo regime. The question of the existence of this regime in stellar objects

remains open. But such a regime seems to be a good candidate for solar-like stars

rotating in a few days and exhibits weak magnetic activity.

Our work has demonstrated the importance of the azimuthal wavenumber m that

is preferred during the rise of magnetic �ux tubes. The fact thatm remains unknown

is an issue. And it becomes clear that the study of the formation of magnetic �ux

tubes has never been so crucial to �gure out where the dynamo mechanism operates

in solar-like stars.
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Appendix: List of simulations

Table A.1: List of all axisymmetric simulations based on the STD-2D setup. The labels refer to
the panels in Fig. 4.4, with (a.1) and (a.2) referring to the green and red contours of
panel (a), respectively.

Series 2D m = 0 α1 = 1 α2 = 1

Γα2
α1

Mrot β τ̃rise labels

3.162 0.325 1.135 0.254

2.846 0.325 1.401 0.260

2.846 0.244 2.491 0.261

2.372 0.406 1.291 0.359

2.372 0.325 2.018 0.393

1.897 0.488 1.401 0.477

1.897 0.325 3.153 0.550 (b)

1.708 0.488 1.730 0.651

1.660 0.325 4.118 0.814

1.550 0.406 3.026 1.082

1.470 0.406 3.360 1.325

1.455 0.488 2.384 1.276 (c)

1.360 0.406 3.929 1.488

1.297 0.488 3.001 1.676

1.265 0.406 4.540 1.732

1.217 0.650 1.914 1.772

1.217 0.569 2.501 1.713

1.217 0.528 2.900 1.811

1.217 0.488 3.404 1.778

1.217 0.447 4.050 1.813 (a.1)

1.217 0.406 4.901 1.813 (a.2)

1.217 0.366 6.051 1.779

1.217 0.325 7.658 1.775

1.217 0.285 10.00 1.723

Continued on next page
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Continued from previous page

Γα2
α1

Mrot β τ̃rise labels

1.217 0.203 19.60 1.670

1.217 0.163 30.63 1.653

1.217 0.122 54.45 1.621

1.186 0.488 3.587 1.876

1.186 0.406 5.166 1.815

1.186 0.325 8.072 1.777

1.154 0.406 5.453 1.895

1.107 0.488 4.118 1.979

1.059 0.569 3.303 2.072

0.791 0.325 18.16 4.460 (d)

Table A.2: List of all non-axisymmetric simulations based on the STD-3D setup. The letters of
the labels refer to the panels in Figs. 5.3 and 5.8, respectively referred by their number.
The lines in italics refer to the simulations where the computation of the curvature
radius is not reliable.

Series 3D m = 8 α1 = 0.793 α2 = 0.855

Γα2
α1

Mrot β τ̃rise labels

8.733 0.08 1.166 0.441 (a 5.8)

7.185 0.08 2.073 0.53

6.419 0.04 16.605 0.609

5.885 0.08 3.735 0.616

4.828 0.16 1.166 0.948 (a 5.3)/(b 5.8)

3.973 0.16 2.073 0.98

3.973 0.16 2.073 1.062

3.86 0.08 12.957 1.125

3.463 0.16 3.108 1.216

2.809 0.241 2.073 1.593 (b 5.3)

2.733 0.281 1.523 1.505

2.669 0.321 1.166 2.072

2.594 0.16 7.288 1.768 (c 5.8)

2.134 0.16 12.957 2.502

1.886 0.16 18.658 3.24

Continued on next page
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Continued from previous page

Γα2
α1

Mrot β τ̃rise labels

1.757 0.481 1.44 3.162 (c 5.3)

1.657 0.481 1.713 3.582

1.634 0.241 10.237 3.816

1.621 0.16 29.153 4.1

1.604 0.401 2.985 3.94

1.553 0.481 2.073 4.05

1.509 0.241 12.957 4.425

1.446 0.481 2.559 4.44

1.434 0.321 7.288 4.8

1 .429 0.196 25 .374 4 .251

1.378 0.241 16.923 5.085

1.343 0.561 2.159 5.257

1.335 0.481 3.239 5.16

1.321 0.561 2.265 5.299

1.299 0.561 2.38 5.348 (d 5.3)

1.219 0.481 4.231 5.7

1.098 0.481 5.759 6.6 (d 5.8)

0.944 0.561 6.092 8.47

0 .834 0.481 12 .957 10 .482

0 .812 0.561 9 .519 10 .29 (e 5.3)

0 .686 0.481 23 .034 12 .72 (f 5.3)

0 .668 0.561 16 .923 13 .37
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