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Preface

Every year, the Hasso Plattner Institute (HPI) invites guests from industry and
academia to a collaborative scientific workshop on the topic Operating the Cloud.
Our goal is to provide a forum for the exchange of knowledge and experience
between industry and academia. Co-located with the event is the HPI’s Future
SOC Lab day, which offers an additional attractive and conducive environment
for scientific and industry related discussions. Operating the Cloud aims to be a
platform for productive interactions of innovative ideas, visions, and upcoming
technologies in the field of cloud operation and administration.

On the occasion of this symposium we called for submissions of research papers
and practitioner’s reports. A compilation of the research papers realized during the
fourth HPI cloud symposium Operating the Cloud are published in this proceed-
ings. We thank the authors for exciting presentations and insights into their current
work and research. Moreover, we look forward to more interesting submissions for
the upcoming symposium later in the year.

v





Contents

Scalability, Availability, and Elasticity through Database Replication in
Hyrise-R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Stefan Klauck

Scalable and Secure Infrastructures for Cloud Operations . . . . . . . . . . . 11

Fabian Maschler, Jan-Henrich Mattfeld, Norman Rzepka

dOpenCL – Evaluation of an API-Forwarding Implementation . . . . . . . . 21

Karsten Tausche, Max Plauth, Andreas Polze

vii





Scalability, Availability, and Elasticity
through Database Replication in Hyrise-R

Stefan Klauck

Enterprise Platform and Integration Concepts
Hasso Plattner Institute
stefan.klauck@hpi.de

The growing analytical demand increases the importance of scalability and elas-
ticity for mixed workload in-memory databases. Data replication is a way to
cope with the growing demand and entails increased availability. In this pa-
per, we describe different replication mechanisms, balancing query performance
and availability. In addition, we outline how we implemented the cloud-ilities
scalability, availability, and elasticity in Hyrise-R, a replication extension of the
in-memory database Hyrise. Finally, we summarize further current research ac-
tivities within the Hyrise project, i. e., data tiering, self-adaption and non-volatile
RAM.

1 Introduction

Increasing main memory sizes and parallelism in computer architectures boost
the development of in-memory database systems, i. e., systems that store and
process data solely in main memory. Some of these systems, e. g., SAP HANA [3],
HyPer [7], Peloton [1], and Hyrise [6], are well suited for enterprise workloads,
consisting of transactional and analytical queries. A growing number of users and
an increasing demand for enterprise applications can saturate or even overload
single-node database systems at peak times. Better performance can be achieved by
improving a single machine’s hardware, but it is often cheaper and more practicable
to follow a scale-out approach and use additional machines [2]. Kruger et al. [8]
showed in an analysis of a modern enterprise system that more than 80 % of OLTP
and more than 90 % of OLAP requests are reading queries. The large amount
of reading queries and the possibility to distribute them among several nodes
make the concept of database replication desirable for enterprise applications. Data
replication has many dimensions, describing which data items are replicated, which
nodes can update data items, or how to keep data items in sync.

SAP HANA [11] and HyPer’s scale-out version ScyPer [10] propose master repli-
cation to cope with the growing OLAP demand. Replica instances can execute
reading queries on snapshots in parallel without violating any consistency or isola-
tion requirements. We implemented master replication for the in-memory database
Hyrise and call the extension Hyise-R(eplication) [14]. Besides performance, data
replication on additional nodes can increase the availability by redundancy in case
of failures. An important property for replicated systems is elasticity, i. e., the abil-
ity of expanding and shrinking the system dynamically without having to disrupt
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its availability. An elastic implementation enables the database to react to changing
workloads and resource requirements, and saves costs by running on minimal
resources with no violations of service level agreements. This paper contributes:

• A classification of database replication.

• An architectural blueprint of an OLAP scale-out columnar in-memory database.

• A description how we implemented the cloud-ilities scalability, availability,
and elasticity in Hyrise-R.

After this introduction, the paper continues with a classification of replication
approaches. Following, Section 3 gives an overview of the in-memory database
Hyrise and current related research topics. We describe the implementation of
scalability, availability, and elasticity in Hyrise-R in Section 4. Section 5 concludes
this paper.

2 Replication Approaches

Replication approaches can be classified by the way replicas are updated. Gray
et al. [5] distinguished two replication models: on the one hand eager and lazy
replication, on the other hand master and group replication. In addition, the infor-
mation how to update replicas can be expressed logically or physically. Finally, we
distinguish full and partial replicas.

2.1 Eager vs. Lazy

Eager replication propagates updates to all replicas as part of the transaction. When
a transaction is committed, it is executed on every replica atomically. Following,
all data items in the cluster, i. e., on all nodes, are at the same state after the end
of a transaction. The performance to keep replicas in sync is important, because it
directly influence the transaction latencies for eager replication. In contrast, lazy
replication postpones the updates of replicas. The propagation of changes to the
other nodes is handled asynchronously. Lazy replication delivers better transaction
latencies than eager approaches, because it does not wait to return until all nodes
are synchronized. In addition, lazy replication can optimize the communication
between master and replica nodes by combining the log information of multiple
transactions in a single message without sacrificing transacting latencies.

2.2 Master vs. Group

Master and group replication differentiate where data-altering transactions can be
issued. The first approach allows them only on a dedicated node, called master
or primary, which is responsible to propagate changes to the other nodes, called
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3 Hyrise

replicas or respectively secondaries. Contrary to master replication, group replica-
tion, a so-called update everywhere strategy, allows writing queries on every node
and propagates the changes from there to the other nodes. Resulting, there is no
designated master node within the cluster. Master replication avoids coordination
between nodes for transaction handling. However, master replication cannot scale
beyond on node. To achieve highest transaction rates for workloads with little con-
flicts, group replication is necessary. Partitioning and clever workload distribution
can avoid transactional conflicts between nodes by assigning update responsibilities
to nodes based on key ranges and route queries accordingly.

2.3 Logical vs. Physical Updates

The kind of information how to update replica instances can be logical or physical.
Logical logging describes updates on higher level, such as SQL statements, whereas
physical logging provides information on lower level with regards of the used data
structures, for example specifying the offsets where to insert or change values. The
size of physical logs depends on the amount of changed data, but the speed of
replaying it is usually faster than for logical logs, because the queries do not have
to be reexecuted [16].

2.4 Full vs. Partial Replicas

The majority of analytical requests query a limited set of tables and attributes.
Partial replicas only hold copies of frequently accessed data. This allows them to
answer frequent analytical queries while not requiring the capacity that a full copy
of the database would. Also, they can be used to store highly specific indices, such
as full-text search indices, which are not created on the master node for capacity
reasons.

3 Hyrise

This section introduces the database project Hyrise, describes its read-only scale-out
extension Hyrise-R, and sketches a columnar database blueprint with extensions
we are currently researching.

3.1 Overview

Hyrise is an open source in-memory database research project, initiated by the
investigation of an optimal storage layout for data records. On the one side, a
columnar arrangement is well suited for attributes which are often accessed se-
quentially, e. g., via scans, joins, or aggregations. On the other side, attributes
accessed in OLTP style queries, e. g., projections of few tuples, can be stored in
a row-wise manner. Hyrise supports flexible hybrid table layouts, i. e., storing
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attributes corresponding to their access patterns to optimize cache locality [6].
Over time, many in-memory database concepts were developed, evaluated, and
integrated into Hyrise (see Figure 1).

2009 2011 2013 2015

A Common Database Approach
for OLTP and OLAP

HYRISE - A Main Memory
Hybrid Storage Engine

Merge Process

TAMEX: A Task-Based
Query Execution Framework

Multi Version
Concurrency Control

Hyrise-R(eplication)

Hyrise-NV
Non-Volatile Memory

Data Tiering

Main Memory Optimized
Index Structures

Figure 1: Hyrise research history

By exploiting a main-delta architecture [8], Hyrise is well suited for mixed work-
loads. Tuples in the main partition are stored dictionary compressed with a sorted
dictionary. This allows efficient vector scanning and supports range queries without
decoding complete columns. Data modifications are inserted in the write-optimized
delta partition. Using an unsorted dictionary for the delta is a trade-off for bet-
ter write and reasonable read performance. The periodic merge process moves
tuples from the delta to the main partition. Hyrise exploits an insert-only approach
and multi-version concurrency control with snapshot isolation as default isola-
tion level [13]. That is why, Hyrise can process writing queries without delaying
reading ones. Hyrise features a task-based query execution framework to execute
dynamically arriving transactional queries in a timely manner, even while com-
plex analytical queries are executed [17]. Current Hyrise research activities focus on
leveraging non-volatile(NV) RAM [12, 15], dynamic and transparent data tiering [9],
and scale-out systems [14].

3.2 Hyrise-R Overview

Hyrise-R [14] is a scale-out extension for Hyrise, which implements master repli-
cation. Figure 2 shows the architecture of a Hyrise-R cluster, consisting of a query
dispatcher, a single Hyrise master node, and an arbitrary number of replicas. Users
submit their database requests to a query dispatcher, which acts as a load balancer
for reading queries. The dispatcher parses the queries for data-altering operations,
i. e., inserts, updates, and deletes. The master node processes all writing transac-
tions. Data changes are written into a local log, implemented as a ring buffer [13].
Besides storing the log entries to persistent memory, the master sends them to the
replicas, which update their data accordingly.
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Cluster
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Data
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Figure 2: Hyrise-R architecture

3.3 OLAP Scale-Out DB Blueprint

Besides replication, there are related and orthogonal concepts to improve in-
memory databases. In this section, we summarize in-memory data management
concepts we investigate at the Hasso Plattner Institute. Further, we show how these
concepts fit into Plattner’s blueprint [11] of a columnar in-memory database (see
Figure 3).

• Distributed Log. A distributed log encapsulates data durability, fault toler-
ance, and the replica synchronization in a dedicated cluster of nodes [4]. Only
the master writes to the distributed log, which stores and replicates database
logs and checkpoints for k-safety. Replicas decide how quickly they are syn-
chronized (pull the newest log entries or get the newest log entries pushed).
In this way, full replicas can synchronize more often than partial replicas,
reducing the overall number of messages in the network. The distributed
log can exploit NVRAM to store the newest log entries to speed up writing
queries of the master node.

• Data Tiering. Data tiering is based on the idea of identifying, reorganizing,
and splitting tables into hot and cold data partitions according to access
criteria. Hot data comprises relevant data that is required to process the major
portion of the workload. Hence, hot data should be stored on fast storage.
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Cold data is accessed infrequently and can be stored on slower storage to
save costs.

Besides saving costs, we can speed up queries which do not access data on
the cold partition(s). One way to do this is letting the application specify
explicitly whether a query has to be executed on both (hot and cold) or only
the hot partition. Another way is using pruning filters, e. g., implemented by
Bloom filters, to let the database system decide whether the cold partition(s)
can be skipped [9].

• Self-Adaption. There are many optimization problems when tuning databases,
e. g., which indices to create, how to sort and partition data, how often to
replicate single data items. In the past, database administrators were respon-
sible for achieving the best database performance. By knowing the workload,
internal data organization, and query execution plans, the database system
manages enough information to adopt itself.

• NVRAM. Besides the usage of NVRAM as fast persistent memory for logs, we
investigate how to exploit NVRAM for in-memory data structures. NVRAM
is directly attached to the CPU’s memory controller, where it behaves like
DRAM. It is expected to come with larger capacities and lower costs than
DRAM and could be used to build bigger and cheaper in-memory systems.
However, NVRAM will suffer lower bandwidth and higher latencies (espe-
cially for writing queries). We investigate a database system in which both
types of memory are used side-by-side. Data structures are placed either on
faster DRAM or cheaper NVRAM depending on the access frequency and
pattern.

4 Cloud-ilities in Hyrise-R

This section explains the implementation of the cloud-ilities scalability, availability,
and elasticity in Hyrise-R.

4.1 Scalability

Scalability describes the ability of a system to use additional resources to process
more work. There are two common approaches for scaling (database) systems [2].
Scale-up or vertical scaling describes the strategy of adding more resources, such as
CPU or memory, to a single-machine setup. Scale-out or horizontal scaling denotes
a system extension by adding more machines. Hyrise-R implements scale-out by
replicating the data of a Hyrise master node to replica nodes. In the following, we
discuss the scalability of read workloads, write workloads, and the communication
between cluster nodes.
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Figure 3: Blueprint of a columnar database

• Reads. Hyrise-R scales linearly for read-only workloads, because reading
queries can be routed to arbitrary nodes (master or replica) and executed in
parallel on snapshots without violating consistency or isolation.

• Writes. Implementing master replication, the master node processes all writ-
ing transactions. Hence, write-only workloads can only be scaled up. For
mixed workloads, consisting of reads and writes, the database can be scaled
out until no read-only transactions are executed on the master node anymore.

• Communication. Communication is needed between master and replica nodes
to keep them in sync. The master node sends log information to the replica
nodes. Replica nodes have to acknowledge the reception or must have the
possibility to request previous logs to be able to stay in sync. Sending logs of
multiple commits into a single message reduces the number of messages and
can, thus, improve the throughput, but it can increases transaction latencies.
To reduce the latency, it can be sufficient to replicate updates to a subset of
cluster nodes eagerly, and lazily to the rest.

A straightforward messaging approach is using point-to-point connections
between the master and each replica. With this approach, the number of
messages increases with the number of replicas linearly. Better scalability is
promised by using multi-/broadcast communication, peer-to-peer messages,
or using a dedicated system to keep the replicas in sync, e. g., a distributed
log (see Section 3.3). Broadcast is the most scalable and efficient solution,
because a single message is sufficient to keep all replicas in sync. Peer-to-peer
networking reduces the number of messages per node, but it can increase the
number of hops and, thus, the latency to update replicas. A distributed log
can scale independently from the database cluster. In comparison to direct
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messages between master and replica nodes, the indirection via the shared
log can increase the time until the replicas receive the log.

4.2 Availability

Availability is the measure describing whether the system is operational at a point
in time, i. e., the ratio of uptime and lifetime. Availability is reduced in case of a
failure which stops the operation of the database system. Failover is the process of
detecting the failure and switching to a backup to proceed the service. Depending
on the time to fail over and expected response time of a system, the availability
from the user’s perspective could be 100 percent even in the case of failures.

Schwalb et al. [14] discussed the heartbeat protocol of Hyrise-R to detect failures.
In the following, we explain how the choice between eager and lazy replication
(see Section 2.1) influences the failover and, thus, the availability. Replica failures
can be handled by not using the replica for load balancing anymore. As a result,
the remaining nodes have to take over the load of the failed one. In case of a master
node failure, a replica has to become the new master. When implementing eager
replication, the replicas have always the same transactional state as the master. An
arbitrary replica, which is voted, takes over the master’s role. Using lazy replication,
the replica nodes are either exactly in the same state or almost. When missing the
last committed transactions, the log must be readable for the replicas for a fast
failover. Using a distributed log supports fast failover for lazy replication.

4.3 Elasticity

Elasticity is the capability to shrink and extend the database cluster depending on
the current system load. This property is desirable to optimize resource utiliza-
tion in order to save costs. Especially in cloud computing, tenants pay for those
resources which are allocated for them. Tenants can use a cloud service interface
to acquire and release resources directly, or define policies indicating under what
condition resources should be scaled automatically. For both monitoring the re-
source utilization is necessary to adjust the currently allocated cluster resources.
Additionally, elasticity requires starting and stopping Hyrise instances on multiple
machines, and adding and removing them to a running Hyrise-R cluster.

When starting new Hyrise instances and adding them to the cluster, they have to
load the table data with the newest transactional changes. Checkpoints, which are
regularly created by the master node, are used as basis for table loads. They reduce
the number of log entries which have to be examined by the joining database node.
Nonetheless, loading all table data can take a while for large databases. To exploit
started Hyrise instances for load balancing before they have loaded the complete
data set into their main memory, instances could report their load status, i. e., the
completely loaded table data, such as columns and indices, to the dispatcher. If the
dispatcher receives a query for which the newly started Hyrise instance already
finished loading the related table data, it can propagate the query to the node.
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5 Conclusion

5 Conclusion

This paper presents how data replication implements the cloud-ilities scalability,
availability, and elasticity. It classifies and explains replication approaches, describ-
ing how and which data is replicated, and how the replicated data is kept in sync.
Further, we summarized Hyrise-R, an implementation of full master replication,
which uses physical logs to synchronize replica nodes. A distributed log can in-
crease the availability for lazy replication and partial replicas reduce scale-out costs.
Besides replication, our future work in the context of in-memory data management
focuses on partition pruning, self-adaption, and NVRAM.
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Within the context of the EU-funded project Scalable and Secure Infrastructures
for Cloud Operations (SSICLOPS), we present a virtual private cloud testbed.
With the help of nested virtualization, we create various instances running a
distributed in-memory database. We adopt a central management tool to display
the current cloud status, add or remove instances and define their database roles.
We also perform load tests and examine dynamic resource adjustments. This
paper includes not only test results and a detailed overview of our test setup, but
also insights into the challenges of automatic private cloud deployments

1 Introduction

This paper contains the documentation for the master project Scalable and Secure
Infrastructures for Cloud Operations (SSICLOPS) of the Operating Systems and
Middleware group at the Hasso Plattner Institute (HPI) in the summer term 2016.

The SSICLOPS master project is part of a same-named EU-wide project1, which
is co-funded by the European Union as part of the Horizon-2020 program. The
larger project focuses on techniques for the management of federated private cloud
infrastructures, in particular cloud networking techniques within software-defined
data centers and across wide-area networks.

Within this context, we present a virtual private cloud testbed. With the help of
nested virtualization, we create various instances running a distributed in-memory
database. We adapt a central management tool to display the current cloud status,
add or remove instances and define their database roles. We also perform load tests
and examine dynamic resource adjustments. The project’s source code is available
on GitHub. 2

In the following subsections, we describe the technological foundations of the
project as well as previous master projects. We then give some insights into the
challenges of automatic cloud deployment with OpenStack-Ansible and finally
provide a detailed overview of our resulting setup using DevStack. We conclude
with test results and suggested future work.

1https://ssiclops.eu.
2https://github.com/SSICLOPS/openstack-testbed-vm.
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Figure 1: OpenStack Mitaka dashboard, showing a private cloud topology

1.1 OpenStack

OpenStack is a free and open-source Infrastructure as a Service (IaaS) project. It
provides several modules to share hardware resources, create software-defined
networks, compute nodes and storages. Users can manage the framework via a
graphical dashboard (see Figure 1), a REST API or command line tools. OpenStack
development is supported by large corporations such as HPE, IBM, AMD, Intel,
Canonical, Red Hat, SUSE and more.

Today, the OpenStack project is the foundation of multiple large private cloud
environments. These include business (e. g. Open Telekom Cloud, Rackspace) as well
as non-profit (e. g. Wikimedia) and research (e. g. CERN) solutions.

1.2 Hyrise-R

Hyrise is an in-memory research database developed by the Enterprise Platform
and Integration Concepts (EPIC) group at Hasso Plattner Institute Potsdam.3 It
shares several features with SAP HANA. These include a delta store, column-
based storage, dictionary encoding, several compression techniques as well as an
insert-only approach. Hyrise also features a remarkable OLAP performance and
optimizations for OLTP tasks [2].

Following the scale-out paradigm, Hyrise-R extends the base project to a cloud-
based in-memory solution. Figure 2 shows the architecture consisting of a Hyrise

3http://hpi.de/plattner/projects/hyrise.html.
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Figure 2: Hyrise-R installation, including a dispatcher, a master node and two
replicas

master node, several replicas and one dispatcher [4]. Within SSICLOPS, privacy
and security concerns as well as performance and reliability of such setups will be
evaluated [1].

We provide an automated base setup of the underlying OpenStack infrastructure
to run Hyrise-R and also offer an modified version of the Hyrise-R cluster man-
agement tools (shown in Figure 3), compatible with DevStack and the OpenStack
Python framework.

1.3 Previous Projects

Former master projects at HPI evaluated the possibilities to automatically deploy
a private cloud testbed based on OpenStack Kilo. They conclude that – while still
open-source – business solutions like HPE Helion OpenStack4 are hard to customize
and sparsely documented. They focused on evaluating multi-node/multi-region
setups, as shown in Figure 4, and therefore excluded basic test frameworks like
DevStack [3].

However, they built a foundation for our application-level testbed by introducing
nested virtualization and running dependability tests on OpenStack itself [3]. These
include crashes of compute and control nodes as well as the object storage. They

4http://www8.hp.com/us/en/cloud/hphelion-openstack.html.
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Figure 3: Hyrise-R dashboard, managing replicas and enabling distributed load
tests

Figure 4: The previous project’s OpenStack testbed uses nested virtualization to
resemble individual data centers, servers and VMs. Box sizes represent available
memory and compute resources [1].

report minor flaws (e. g. a user needs to login again) and the need for additional
software (e. g. to check instance and vm statuses) for better reliability.

Hyrise-R is a variant of the in-memory database Hyrise that supports snapshot-
based and continuous replication [4]. Keller and Klauck created an infrastructure
testbed for Hyrise-R that sets up the dispatcher, master node and replicas with
Docker containers. 5 That existing setup includes a web-based cluster manage-
ment tool to manage the replicas, perform basic load tests and monitor the query
performance.

5https://github.com/DukeHarris/hyrise_rcm.
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2 Findings/Discarded Attempts

The previous projects focused on creating a set of Bash and Ansible scripts for
a complex OpenStack setup, including multiple regions. Since then, two major
changes occurred:

1. The introduction of OpenStack Mitaka renders the previous work incompat-
ible. Due to its complexity and prototype-like implementation, a migration
seems impractical.

2. In contrast, the official OpenStack-Ansible project6 gained a lot of attention
and development.

2.1 OpenStack-Ansible on Ubuntu 16.04

Instead of building on the previous sources, our first attempt was a clean start
using the official OpenStack-Ansible playbooks. The project claims to deploy a
production-ready OpenStack environment, providing scalability, simple operations
and a clear upgrade path. Neither of these claims were fulfilled by previous projects.

Following the all-in-one quick start guide7, we aimed to setup OpenStack Mitaka
on Ubuntu 16.04. However, the new Ubuntu version introduced lots of incompat-
ibilities which are documented in our project wiki. These include – but are not
limited to – missing version strings and the introduction of systemd:

• Missing Ansible package for Ubuntu 16.04

• mongodb service not restarting during setup

• Missing identifier for LXC host creation

• Unsupported locale settings

• Missing modprobe commands

• etc.

While we developed workarounds for most of these problems, the number of
failing playbook tasks lead us to a downgrade from Ubuntu 16.04 to the previous
LTS version 14.04.

2.2 OpenStack-Ansible on Ubuntu 14.04

The all-in-one setup runs flawlessly on Ubuntu 14.04, providing an OpenStack
environment containing router, network and running virtual machines (instances).
The setup is – in theory – reproducible and we automated it even more by providing
a Vagrantfile. However, this solution has some downfalls:

6https://github.com/openstack/openstack-ansible.
7https://docs.openstack.org/developer/openstack-ansible/developer-docs/.
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• Bare metal setup on our workstation (32 cores, 64GB RAM, SSD) takes roughly
2 hrs.

• A reboot requires additional manual steps

• iptables rules and network setup are error-prone

• The system is unreliable when starting instances

Despite Ansible’s theoretical idempotence, the setup failed occasionally on re-
build. Even though the system is generally working, we look for a more stable and
lightweight solution, thus introducing the final architecture built on DevStack in
the next section.

3 Final Setup

In our final setup, we use DevStack to deploy a single-node installation of Open-
Stack and run Hyrise-R instances inside. The images used to create the VMs are
provisioned with KVM and a custom script, thus can be loaded in OpenStack
using the QCOW2 format. In this section we describe how the basic installation,
shown in Figure 5, works. Detailed setup instructions can be found in our GitHub
repository’s readme file and the wiki.8

3.1 Image Creation

Having a single-node deployment of OpenStack given by DevStack, we created
images to run the example application Hyrise-R. To prepare base images, we
created a provision script for each of the following VM types:

• Hyrise-R – Hyrise Instances

• Hyrise-R Dispatcher – Orchestration

• Hyrise-R Clustermanager – Dashboard and Benchmark

As base image we use an image from Ubuntu which is prepared for cloud usage.9.
We worked with a custom image as well and did the cloud-init configuration
manually.10. It turns out that we achieve the same result more easily with the
prepared image.

A problem arising from all available base images is the minimum size of 40 GB.
It is very difficult to shrink the virtual disk size, even the actual usage (after
provisioning) is less than 3 GB. We circumvented this problem with increasing the

8https://github.com/SSICLOPS/openstack-testbed-vm.
9https://cloud-images.ubuntu.com/vagrant/trusty/current/.

10http://docs.openstack.org/image-guide/openstack-images.html.
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disk size of the DevStack machine to 800 GB, even though the host’s disk is smaller.
Since our images will never exceed their available disk space the virtually reserved
space within OpenStack does not cause any trouble.

Some dynamic information, such as IP addresses of the Hyrise-R master and
dispatcher, cannot be included in the image at provision time. Thus, we need to
connect to a newly started image in OpenStack and inject this information. Both,
OpenStack and cloud-init, do provide interfaces for that. Unfortunately, we could
not see positive results for any of the following methods:

• Shell script given through the Horizon dashboard

• Cloud-init script11

• user_data parameter in commandline tools and REST API

Considering these issues, we decided to assign a floating IP during instance
creation in the Hyrise RCM dashboard application (see subsection 3.3) and inject
the dynamic information over ssh.

3.2 DevStack

DevStack assists in setting up an OpenStack development and testing installation.
It builds directly from source and provides command-line tools for system oper-
ations and maintenance. In the original OpenStack project, it is an essential part
for integration testing of the various modules. However, it can also be used to
experiment with different OpenStack configurations.

While previous groups discarded DevStack because of the lacking multi-node
capabilities, we believe it fits this project’s needs very well. The default single-node
installation of DevStack provides the following services:

• Dashboard (horizon)

• Compute (nova)

• Networking (neutron)

• Identity (keystone)

• Image Service (glance)

• Object Storage (swift)

• Block Storage (cinder)

• Orchestration (heat)

11http://cloudinit.readthedocs.io/en/latest/topics/examples.html.
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Figure 5: The components of the Hyrise-R installation run in separate VM instances
which are nested in a DevStack VM.

In addition to the original DevStack sources12, we built a Vagrantfile and an
Ansible playbook to automate the deployment even more. The command vagrant
up is then enough to create an OpenStack node, exposing the horizon dashboard
to the local host, as well as ssh connections to possible instances. These can easily
be created using the Python command line tools.

The setup requires Vagrant, Ansible and the Python packages python-novaclient,
python-neutronclient and python-openstackclient. Moreover, NAT should be enabled
on the host to allow internet access to the instances. We use libvirt to virtualize the
DevStack VM. In contrast to VirtualBox it supports nested hardware-accelerated
virtualization that greatly speeds up DevStack instances. A complete rebuild on
the latest OpenStack sources now takes only 15 minutes and results in the nested
VM architecture shown in Figure 5.

3.3 Hyrise-R

Hyrise-R [4] is a variant of the in-memory database Hyrise that supports replica-
tion. A cluster installation of Hyrise-R consists of a single master node that can
be used for reads and writes, several read-only replica nodes and a dispatcher
that distributes the queries. Every node has to register itself with the dispatcher.
Therefore, each node needs to know the address of the dispatcher. Likewise the
replica nodes have to register themselves with the master node.

The master node is the only node that accepts writes. It passes changes to the
database asynchronously on to connected replicas via a distributed log. Hence, the
replica nodes can be used for fulfilling read queries and therefore to greatly speed
up the entire system.

We modified the Hyrise-R clustermanager13 for OpenStack. Each component
of the application (i. e. clustermanager, dispatcher, master and replica nodes) is

12https://github.com/openstack-dev/devstack.
13https://github.com/DukeHarris/hyrise_rcm.
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deployed in an individual VM instance. Dispatcher, master and replica nodes
can be launched through the graphical user interface of the clustermanager. The
clustermanager will automatically assign the correct IP addresses, so that the
components can communicate effectively. Internally, the clustermanager spawns
new instances using the OpenStack Python framework and configures the VMs
using ssh.

For Hyrise-R to run inside an OpenStack VM instance, it needs to be compiled
for the correct architecture requirements. We found that the virtual CPUs inside
a nested libvirt VM only support a subset of the instructions the host CPU might
support. Therefore, we compile the application with the following GCC compiler
flags:

-march=x86-64 -mcx16 -msahf -mno-movbe -mno-aes -mno-pclmul -mpopcnt
-mno-abm -mno-lwp -mno-fma -mno-fma4 -mno-xop -mno-bmi -mno-bmi2 -mno-
tbm -mno-avx -mno-avx2 -mno-sse4.2 -mno-sse4.1 -mno-lzcnt -mno-rtm -mno-hle
-mno-rdrnd -mno-f16c -mno-fsgsbase -mno-rdseed -mno-prfchw -mno-adx -mfxsr
-mno-xsave -mno-xsaveopt –param l1-cache-size=32 –param l1-cache-line-size=64

–param l2-cache-size=4096 -mtune=generic
We conducted simple load testing benchmarks on the system. As shown in

Figure 3, we can clearly observe an increase in query throughput when adding an
additional replica to the setup.

4 Conclusion

In this paper, we presented a virtual private cloud testbed. We documented how to
reproducibly set up such an environment. Also, we demonstrated that a distributed
application, such as Hyrise-R, can be effectively deployed and studied in our
presented testbed.

We used DevStack to implement our testbed, because it is lightweight and easy
to install. However, it only supports single-host installations. In future work, it
could be interesting to expand this setup to a multi-host installation. For multi-
host installations we recommend using OpenStack-Ansible, because it is fairly well
documented and supported.

To test our virtual private cloud testbed, we created a Hyrise-R cluster that
serves as sample application. We implemented tools that allow the scaling of the
application by adding and removing replicas, by modifying previously existing
tools. Our experiments show that adding new replicas to a cluster greatly improves
the query throughput of the database.

As the result of our project, we present a tool for developing and studying dis-
tributed applications in cloud enviroments. This will be useful for further research
in the SSICLOPS EU project. Detailed installation instructions as well as more
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information on the discarded attempts can be found in the GitHub repository’s
readme file and the wiki.14

In future work, usability improvements such as reboot durability of the testbed
could be added. Also, multi-host or multi-region installations and reliability fea-
tures would make the testbed more similar to a production-like environment. In
future implementations, more lightweight VM images could be used to enable
faster boot times.
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Parallel workloads using compute resources such as GPUs and accelerators is a
rapidly developing trend in the field of high performance computing. At the same
time, virtualization is a generally accepted solution to share compute resources
with remote users in a secure and isolated way. However, accessing compute re-
sources from inside virtualized environments still poses a huge problem without
any generally accepted and vendor independent solution.

This work presents a brief experimental evaluation of employing dOpenCL as
an approach to solve this problem. dOpenCL extends OpenCL for distributed
computing by forwarding OpenCL calls to remote compute nodes. We evaluate
the dOpenCL implementation for accessing local GPU resources from inside
virtual machines (VM), thus omitting the need of any specialized or proprietary
GPU virtualization software. Our measurements revealed that the overhead of
using dOpenCL from inside a VM compared to utilizing OpenCL directly on the
host is less than 10 percent for average and large data sets. For very small data
sets, it may even provide a performance benefit. Furthermore, dOpenCL greatly
simplifies distributed programming compared to, e. g., MPI based approaches, as
it only requires a single programming paradigm and is mostly binary compatible
to plain OpenCL implementations.

1 Introduction

Since the emergence of big data in virtually all research and business fields, develop-
ments in high performance computing are focusing more and more on data parallel
algorithms. For satisfying the resulting demand for processing power, GPUs and
accelerators have become much more popular compared to traditional CPU-based
approaches. This development is not yet reflected well in the field of parallel and
distributed programming paradigms. Software developers are mostly forced to
use combinations of techniques (Figure 1). For example, MPI is used to distribute
compute calls to multiple machines, whereas locally on each machine, APIs such as
OpenCL are required to access compute devices. On the one hand, MPI itself has
no means to directly access compute devices. On the other hand, compute APIs
such as OpenCL and CUDA do not allow access to remote devices. However, using
a combination MPI and a local compute APIs is unnecessarily complex and error
prone [8]. Furthermore, MPI requires users to deploy their application code to all
compute nodes, which might additionally introduce security risks.

dOpenCL[8] proposes a solution to these problems by extending the original
OpenCL standard with means of distributed computing, without requiring any
changes of the employed programming paradigm. Applications using dOpenCL
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Figure 1: MPI/OpenCL combination

are still deployed on a single machine only, but the underlying dOpenCL imple-
mentation allows to execute OpenCL kernels on any OpenCL device available in
the network (Figure 2). From a programmers point of view, all available devices
appear in a single OpenCL platform and are transparently usable as traditional
OpenCL devices.

When combining high performance computing with virtualization, accessing
compute devices from within virtual machines (VMs) in a performant and flexi-
ble way is still quite difficult to realize. Virtualization solutions are available that
directly assign compute devices to the VM[13] using PCI passthrough. However,
these are highly specialized solutions that are limited to specific operating sys-
tems, platforms or vendors. Furthermore, such solutions generally exclusively lock
compute devices for the entire lifetime of the VM, no matter if there is an appli-
cation running that currently uses it. We found that dOpenCL is quite useful in
this situation: The user’s application code is deployed only to the VM, so that it is
always isolated from the host system. OpenCL kernels, however, can be executed
on the host or other compute nodes in the network with little overhead. At the
same time, compute devices are only locked as long as they are actually used by
an application. This enables utilizing compute devices on demand by a varying
number of applications in VMs.

In this paper, we evaluate dOpenCL for accessing GPUs attached to the host
from inside a VM. We found that dOpenCL currently is the only implementation
that is entirely based on open standards and implementations. Furthermore, our
evaluation shows that using dOpenCL leads to little overhead, both in terms of
runtime and deployment, compared to a native OpenCL setup.
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2 Related Work

Many GPU API-forwarding implementations have been proposed that enable the
use of compute APIs from inside virtual machines (VMs). In this section, we
compare implementations based on OpenCL and NVIDIA CUDA, as these are
the most widely spread compute APIs. GPU API-forwarding implementations
generally consist of a front-end and a back-end. The front-end provides access to a
compute API within VMs and redirects API calls to the back-end running on the
virtualization host.

2.1 CUDA Forwarding Implementations.

Figure 2: dOpenCL

Figure 3: Distributed computing using a traditional combination of MPI and
OpenCL (Figure 1) compared to the new dOpenCL implementation (Figure 2).
MPI requires explicit knowledge of all compute nodes and deployment of the
application to all nodes. With dOpenCL, the application is deployed only on a
single machine. The distribution of OpenCL kernels to compute nodes is handle
by the underlying implementation.

CUDA based implementations are only compatible with NVIDIA GPUs, and are
thus not portable enough for our objectives. However, these approaches are still
interesting for comparison. GViM[6] provides CUDA forwarding based on the Xen
hypervisor. It additionally implements resource sharing between multiple VMs.
Although its experimental implementation is limited to Xen, its approach might be
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generalization for other virtual machine monitors (VMMs). vCUDA[12] and gVir-
tuS[5] are VMM-independent implementations. Besides simple API-forwarding,
vCUDA implements a full GPU-virtualization, including suspend-and-resume, and
multiplexing capabilities. All three publications include experimental implementa-
tions that provide only a limited set of CUDA functions of outdated CUDA API
versions. In contrasts, recent proprietary releases of rCUDA[4] provide complete
CUDA 8.0 runtime API support. rCUDA was originally intended to provide remote
GPU access in HPC clusters, but proved to be efficiently usable for local GPU access
from within virtual machines, too[4].

2.2 OpenCL Forwarding Implementations

As OpenCL is less popular compared to CUDA, fewer publication exist that fo-
cus on OpenCL API-forwarding. However, the OpenCL API is completely open,
which significantly alleviates creating portable implementations. Hybrid OpenCL
[1] extends OpenCL by a network layer that enables to access remote OpenCL
devices without using MPI or any additional RPC protocols. Its experimental im-
plementation, based on a specific Linux-based OpenCL runtime for Intel CPUs, and
demonstrated that its networking overhead amortizes for long running compute
tasks. SnuCL[10] generalizes the OpenCL approaches for heterogeneous small and
medium scale HPC clusters. Additionally, it extends the OpenCL API by collective
operations, similarly to those included in MPI. The SnuCL runtime makes the com-
puting devices available in a set compute nodes accessible from a single compute
host. Its implementation relies on OpenCL kernel code transformations to correctly
execute data accesses on remote machines.

Finally, dOpenCL[8, 7] generalizes OpenCL for distributed, heterogeneous com-
puting, comparable to SnuCL. However, it introduces a central device manager that
distributes available compute devices (on compute nodes) in a network to multiple
compute hosts in the network. Compute devices are exclusively locked on demand.
This allows to flexibly share a large number of devices with a varying number of
users in the network. Our experiments with dOpenCL are based on an unpublished
prototype that replaces the proprietary Real-Time-Framework (RTF)[14] used in the
original implementation by a Boost.Asio[11] based implementation. This dOpenCL
version does not include the device manager, but it uses the same API-Forwarding
implementation as the RTF-based version. In our experiments, we measure the
performance of dOpenCL when used in a VM on a single machine. Thus, we do
not need the device manager and can rely on the open Boost.Asio based prototype.

3 Concept

In this section we describe the main components, concepts and implemented
OpenCL API features of dOpenCL. Furthermore, we present the Rodinia bench-
mark suite that we use to evaluate the performance of dOpenCL.
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3.1 dOpenCL

We follow dOpenCL’s original naming convention[8]: Host denotes the machine
where user applications are running. These applications make use of computing
hardware that is part of the compute nodes. In our case, the host is a virtual machine,
whereas the local bare metal machine is the compute node.

Components. The dOpenCL middleware consists of three components as de-
picted in Figure 4. Client applications are linked against the dOpenCL client driver.
This library provides binary compatibility with the OpenCL client libraries, so that
any application linked against an OpenCL library can use the dOpenCL client
driver without recompilation. Compute nodes in the network need to run the
dOpenCL daemon in order to be accessible for dOpenCL clients. The daemon sets
up an OpenCL context on its local machine to execute OpenCL calls on the actual
hardware. Both client driver and daemon rely on the communication library that
implements network transfers between host and compute node.

Figure 4: Stack of dOpenCL components. The user application is linked against
the dOpenCL-library (client driver) that redirects all OpenCL calls through the
communication library to dOpenCL daemons. Image source: [8]

Remote Device Discovery. dOpenCL introduces a central device manager that
dynamically assigns compute nodes available in the network to applications. Using
a device manager for remote device discovery is called managed mode in dOpenCL
(Figure 5). Initially, dOpenCL daemons register themselves and their local compute
devices at the device manager. An application using dOpenCL is configured with a

25



Tausche et al.: dOpenCL – Evaluation of an API-Forwarding Implementation

set of properties that it requires for its OpenCL tasks. Based on this configuration,
the client driver requests currently idle compute devices from the device manager
(1). The device manager then assigns appropriate devices to the application (2).
Relevant compute nodes are now informed of the device assignment (3a), and
the list of nodes is sent back to the requesting application. In the last step, the
client driver in the application requests its assigned devices from their respective
compute nodes (4, 5). On the host side, this process is implemented transparently
in the client driver. That way, contexts on remote OpenCL devices are set up in the
same way as traditional local OpenCL contexts.

Figure 5: The managed mode allows the client driver to automatically discover
available compute nodes in the network. For that, a central device manager
exclusively assigns OpenCL devices to clients on demand. Image source: [8]

Besides the managed mode, dOpenCL provides a simpler setup where dOpenCL
nodes are configured in a dcl.nodes file. This file is comparable to the hosts file that
is used along with MPI. In this mode, no device manager is used, thus there is also
no dynamic assignment of devices to multiple clients. However, for our current
experiments, this simpler operation mode suffices. We run a single benchmark
application at a time in a virtual machine, and its respective dcl.nodes file refers
to the dOpenCL daemon running on the underlying bare metal machine (see also
Section 2.2).

Comparison with the OpenCL API. dOpenCL implements a subset of the OpenCL
API version 1.2[9]. Currently, it does not implement image and sampler APIs, sub-
buffer APIs, vendor extensions and a few other functions. Besides, it is not meant to
ever support interoperability with OpenGL or DirectX. Additionally to the OpenCL
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API, dOpenCL includes some experimental implementations for collective opera-
tions comparable to MPI. When using these function, application code is no longer
compatible with OpenCL libraries anymore. However, especially for larger clusters,
collective operations can potentially handle many operations more efficiently.

3.2 Rodinia Benchmark Suite

We use the Rodinia Benchmark Suite[2] for performance measurements. Rodinia is a
set of benchmark applications designed for heterogeneous systems, and provides
implementations for OpenCL, CUDA, and OpenMP. For our current tests, we only
used the Gaussian Elimination benchmark included in the suite. Limiting to a single
benchmark generally does not allow for a comparable performance evaluation[3].
However, in our case we only need to measure the overhead that is introduced by
redirecting OpenCL calls – the executing hardware is the same, no matter whether
the benchmark is started from inside a VM or directly on a bare metal machine.

During our experiments, we noticed a highly different degree of optimization in
the set of benchmarks included in Rodinia. It also seems that most benchmarks are
optimized primarily for specific NVIDIA GPUs, whereas we were using integrated
and dedicated AMD GPUs. Furthermore, the Gaussian elimination benchmark we
use for our evaluation shows irregularities that are probably not caused by the
hardware or OpenCL/dOpenCL implementation, but rather by the benchmark
itself (see Section 4). For our purpose, however, these effects are not critical as we
do not need to compare benchmarking results of different compute devices.

4 Evaluation

We evaluate the performance of dOpenCL on a desktop computer equipped with an
integrated (AMD Radeon R7 “Spectre”, APU: A10-7870K) and a dedicated (AMD
FirePro W8100 “Hawaii”) GPU. The detailed specifications of the test system are
denoted in table 1. We performed the Gaussian elimination benchmark included
in Rodinia with different matrix sizes to measure the impact of task size on the
resulting total runtime. We executed the benchmark on the bare metal machine
using plain OpenCL to determine reference runtime. Additionally, we performed
the same benchmark from within a KVM-based virtual machine using dOpenCL,
with a dOpenCL daemon running on the bare metal machine. We did not succeed
in running an applications using dOpenCL on the bare metal machine that is also
running the dOpenCL daemon, as this caused deadlocks in the daemon.

In our benchmarks, we observed a generally small overhead introduced by
dOpenCL compared to plain OpenCL (Figure 6). This behavior remains largely the
same, irregardles of wether the integrated or the dedicated GPU are used. Also,
both GPUs demonstrate an exceptional long runtime for a matrix size of 3200 · 3200
values, both using plain OpenCL and dOpenCL. We assume that this amplitude is
issue caused by the interaction between the benchmark (see Section 3.2) and the
GPU hardware we employed, but we did not investigate the issue any further.
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Table 1: Specifications of the test systems

CPU AMD A10-7870K (Kaveri)
Memory 2 × 8GB PC3-17066U (DIMM)
Integrated GPU AMD Radeon R7 Graphics (Spectre)
Dedicated GPU AMD FirePro W8100 (Hawaii)
Disk 240GB Intel 535 Series (SATA III)
Operating system Ubuntu Linux 15.10

Figure 6: Runtimes of the Gaussian elimination benchmark on the integrated and
dedicated GPU, using OpenCL (bare metal) and dOpenCL (VM). Note that the
fitted lines do not take into account the high amplitudes at matrix size 3200.

Our measurements revealed, that for very small data set sizes, task execution
through dOpenCL may lead to even faster execution times compared to plain
OpenCL calls (Figure 7). Firstly, the benchmark running in a VM accesses hardware
on the local physical machine, thus the networking latencies should be very low.
Secondly, we assume that the dOpenCL daemon caches OpenCL contexts and
states, so that consecutive executions of a benchmark may reuse a previously
created OpenCL states. Consequently, the benchmark application effectively only
initializes a dOpenCL platform and device, which transparently represents OpenCL
objects. However, when running the benchmark application using plain OpenCL,
it has to initialize the OpenCL platform and context in each run.

For larger data sets, the overhead of dOpenCL compared to plain OpenCL
remains constantly small (Figure 8). This is even the case for the high amplitude at
a matrix size of 3200. Therefore, it can be assumed that the native execution time
of an OpenCL task has little influence on the overhead induced by dOpenCL.

A relative comparison of the runtimes produced by using dOpenCL and plain
OpenCL exposes three general trends (Figure 9). Firstly, as already noted, for
very small data sets dOpenCL allows for shorter execution times compared to
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Figure 7: Detailed plot of runtimes for smaller matrices

plain OpenCL. Secondly, for medium sized data sets, the overhead introduced by
dOpenCL seems to exceed dOpenCL’s initial speedup. In this case, using dOpenCL
leads to an approximately doubled runtime in the worst case. Thirdly, for larger
data sets, the asymptotic overhead of dOpenCL remains continuously smaller than
10 %.

5 Conclusion

We evaluated dOpenCL as an OpenCL forwarding implementation to utilize
OpenCL capable devices from within a local virtual machine. Compared to al-
ternative approaches, dOpenCL is beneficial as it introduces little overhead, both
in terms of deployment and in terms of execution time. It does not depend on a
specific device vendor or virtualization product and is conceptually independent
from a specific operating system. Also, dOpenCL allows for a dynamic assignment
of compute devices to applications. Compared to other solutions, compute devices
are not linked to specific VMs for the lifetime of the VM.

Compared to plain OpenCL, dOpenCL introduces an asymptotic runtime over-
head of less than 10 %, which makes it efficiently usable in productive environ-
ments. In the worst case, for a limited range of task sizes, dOpenCL resulted in a
roughly doubled runtime. When using dOpenCL, care must be taken to omit this
effect for data set sizes and task runtimes that are employed. When spawning a
large amount of quickly finishing OpenCL tasks, dOpenCL can be beneficial when
used as back-end. Its daemon internally caches OpenCL states, so that the platform
and device setup can significantly accelerate a shortly running kernels.

In further studies, the impact of the OpenCL task runtime and size of correspond-
ing data sets could be evaluated separately. Furthermore, in our experiments we
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Figure 8: Even for larger data sets, forwarding OpenCL calls using dOpenCL is
relatively inexpensive. The high amplitude for a matrix size of 3200 · 3200 is
probably caused by the benchmark implementation.

Figure 9: Average quotients of dOpenCL and OpenCL execution times. For very
small data sets, dOpenCL is even faster than direct OpenCL calls, probably due
to caching of OpenCL contexts in the dOpenCL daemon. For larger data sets,
dOpenCL’s overhead remains lower than 10 % (dash-dot line).
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noticed unexpectedly high runtimes for specific parameter sets, both when using
plain OpenCL and dOpenCL. These effects should be evaluated by analyzing the
implementations of dOpenCL and Rodinia more thoroughly.

Acknowledgement

This paper has received funding from the European Union’s Horizon 2020 research
and innovation programme 2014-2018 under grant agreement No. 644866.

Disclaimer

This paper reflects only the authors’ views and the European Commission is not
responsible for any use that may be made of the information it contains.

References

[1] R. Aoki, S. Oikawa, R. Tsuchiyama, and T. Nakamura. “Hybrid OpenCL:
Connecting Different OpenCL Implementations over Network”. In: Computer
and Information Technology, International Conference on 0 (2010), pages 2729–
2735.

[2] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S. H. Lee, and K. Skadron.
“Rodinia: A benchmark suite for heterogeneous computing”. In: Workload
Characterization, 2009. IISWC 2009. IEEE International Symposium on. Oct. 2009,
pages 44–54.

[3] S. Che, J. W. Sheaffer, M. Boyer, L. G. Szafaryn, L. Wang, and K. Skadron. “A
characterization of the Rodinia benchmark suite with comparison to contem-
porary CMP workloads”. In: Proceedings of the IEEE International Symposium
on Workload Characterization (IISWC’10). IISWC ’10. Washington, DC, USA:
IEEE Computer Society, 2010, pages 1–11. isbn: 978-1-4244-9297-8.

[4] J. Duato, F. D. Igual, R. Mayo, A. J. Peña, E. S. Quintana-Ortı, and F. Silla. “An
efficient implementation of GPU virtualization in high performance clusters”.
In: European Conference on Parallel Processing. Springer. 2009, pages 385–394.

[5] G. Giunta, R. Montella, G. Agrillo, and G. Coviello. “A GPGPU Transparent
Virtualization Component for High Performance Computing Clouds”. In:
Euro-Par 2010 - Parallel Processing: 16th International Euro-Par Conference, Ischia,
Italy, August 31 - September 3, 2010, Proceedings, Part I. Edited by P. D’Ambra,
M. Guarracino, and D. Talia. Berlin, Heidelberg: Springer Berlin Heidelberg,
2010, pages 379–391. isbn: 978-3-642-15277-1.

31



Tausche et al.: dOpenCL – Evaluation of an API-Forwarding Implementation

[6] V. Gupta, A. Gavrilovska, K. Schwan, H. Kharche, N. Tolia, V. Talwar, and
P. Ranganathan. “GViM: GPU-accelerated Virtual Machines”. In: Proceedings
of the 3rd ACM Workshop on System-level Virtualization for High Performance
Computing. HPCVirt ’09. Nuremburg, Germany: ACM, 2009, pages 17–24.
isbn: 978-1-60558-465-2.

[7] P. Kegel, M. Steuwer, and S. Gorlatch. dOpenCL. 2016. url: http://dopencl-
uni-muenster.de/.

[8] P. Kegel, M. Steuwer, and S. Gorlatch. “dOpenCL: Towards uniform program-
ming of distributed heterogeneous multi-/many-core systems”. In: Journal of
Parallel and Distributed Computing 73.12 (2013). Heterogeneity in Parallel and
Distributed Computing, pages 1639–1648. issn: 0743-7315.

[9] Khronos Group. The OpenCL Specification. Version: 1.2. Nov. 14, 2012.

[10] J. Kim, S. Seo, J. Lee, J. Nah, G. Jo, and J. Lee. “SnuCL: An OpenCL Frame-
work for Heterogeneous CPU/GPU Clusters”. In: Proceedings of the 26th ACM
International Conference on Supercomputing. ICS ’12. San Servolo Island, Venice,
Italy: ACM, 2012, pages 341–352. isbn: 978-1-4503-1316-2.

[11] C. M. Kohlhoff. Boost.Asio - 1.61.0. 2016. url: http://www.boost.org/doc/
libs/1_61_0/doc/html/boost_asio.html.

[12] L. Shi, H. Chen, J. Sun, and K. Li. “vCUDA: GPU-Accelerated High-Performance
Computing in Virtual Machines”. In: IEEE Trans. Comput. 61.6 (June 2012),
pages 804–816. issn: 0018-9340.

[13] J. Song, Z. Lv, and K. Tian. KVMGT: a Full GPU Virtualization Solution. Oct.
2014.

[14] A. P. u. V. S. University of Muenster. The Real-Time-Framework. 2016. url:
http://www.uni-muenster.de/PVS/en/research/rtf/index.html.

32

http://dopencl-uni-muenster.de/
http://dopencl-uni-muenster.de/
http://www.boost.org/doc/libs/1_61_0/doc/html/boost_asio.html
http://www.boost.org/doc/libs/1_61_0/doc/html/boost_asio.html
http://www.uni-muenster.de/PVS/en/research/rtf/index.html


Aktuelle Technische Berichte  
des Hasso-Plattner-Instituts 

 
Band 
 

ISBN 
 

Titel 
 

Autoren / Redaktion 
 

116 
 

978-3-86956-397-8 
 

Die Cloud für Schulen in 
Deutschland : Konzept und 
Pilotierung der Schul-Cloud 
 

Jan Renz, Catrina Grella, Nils 
Karn, Christiane Hagedorn, 
Christoph Meinel 
 

115 
 

978-3-86956-396-1 
 

Symbolic model generation for 
graph properties 
 

Sven Schneider, Leen 
Lambers, Fernando Orejas 
 

114 
 

978-3-86956-395-4 Management Digitaler 
Identitäten: aktueller Status und 
zukünftige Trends 
 

Christian Tietz, Chris Pelchen, 
Christoph Meinel, Maxim 
Schnjakin 
 

113 
 

978-3-86956-394-7 
 

Blockchain : Technologie, 
Funktionen, Einsatzbereiche 
 

Tatiana Gayvoronskaya, 
Christoph Meinel, Maxim 
Schnjakin 
 

112 
 

978-3-86956-391-6 
 

Automatic verification of 
behavior preservation at the 
transformation level for 
relational model transformation 
 

Johannes Dyck, Holger Giese, 
Leen Lambers 

111 
 

978-3-86956-390-9 
 

Proceedings of the 10th Ph.D. 
retreat of the HPI research 
school on service-oriented 
systems engineering 
 

Christoph Meinel, Hasso 
Plattner, Mathias Weske, 
Andreas Polze, Robert 
Hirschfeld, Felix Naumann, 
Holger Giese, Patrick 
Baudisch, Tobias Friedrich, 
Emmanuel Müller 
 

110 
 

978-3-86956-387-9 
 

Transmorphic : mapping direct 
manipulation to source code 
transformations 
 

Robin Schreiber, Robert 
Krahn, Daniel H. H. Ingalls, 
Robert Hirschfeld 
 

109 
 

978-3-86956-386-2 
 

Software-Fehlerinjektion 
 

Lena Feinbube, Daniel Richter, 
Sebastian Gerstenberg, Patrick 
Siegler, Angelo Haller, 
Andreas Polze 
 

108 
 

978-3-86956-377-0 
 

Improving Hosted Continuous 
Integration Services 

 

Christopher Weyand, Jonas 
Chromik, Lennard Wolf, 
Steffen Kötte, Konstantin 
Haase, Tim Felgentreff, Jens 
Lincke, Robert Hirschfeld 
 

107 
 

978-3-86956-373-2 
 

Extending a dynamic 
programming language and 
runtime environment with 
access control 
 

Philipp Tessenow, Tim 
Felgentreff, Gilad Bracha, 
Robert Hirschfeld 
 

106 
 

978-3-86956-372-5 
 

On the Operationalization of 
Graph Queries with Generalized 
Discrimination Networks 
 

Thomas Beyhl, Dominique 
Blouin, Holger Giese, Leen 
Lambers 
 

105 978-3-86956-360-2 Proceedings of the Third HPI 
Cloud Symposium 
"Operating the Cloud" 2015 
 

Estee van der Walt, Jan 
Lindemann, Max Plauth, 
David Bartok (Hrsg.) 
 

 



 



 



Technische Berichte Nr. 117

des Hasso-Plattner-Instituts für  
Softwaresystemtechnik  
an der Universität Potsdam

Proceedings of the 
Fourth HPI Cloud 
Symposium “Operating 
the Cloud” 2016
Stefan Klauck, Fabian Maschler, Karsten Tausche

ISBN 978-3-86956-401-2
ISSN 1613-5652


	Title
	Imprint

	Preface
	Contents
	Scalability, Availability, and Elasticitythrough Database Replication in Hyrise-R
	1 Introduction
	2 Replication Approaches
	2.1 Eager vs. Lazy
	2.2 Master vs. Group
	2.3 Logical vs. Physical Updates
	2.4 Full vs. Partial Replicas

	3 Hyrise
	3.1 Overview
	3.2 Hyrise-R Overview
	3.3 OLAP Scale-Out DB Blueprint

	4 Cloud-ilities in Hyrise-R
	4.1 Scalability
	4.2 Availability
	4.3 Elasticity

	5 Conclusion
	6 Acknowledgments
	References

	Scalable and Secure Infrastructures for Cloud Operations
	1 Introduction
	1.1 OpenStack
	1.2 Hyrise-R
	1.3 Previous Projects

	2 Findings/Discarded Attempts
	2.1 OpenStack-Ansible on Ubuntu 16.04
	2.2 OpenStack-Ansible on Ubuntu 14.04

	3 Final Setup
	3.1 Image Creation
	3.2 DevStack
	3.3 Hyrise-R

	4 Conclusion
	References

	dOpenCL – Evaluation of an API-Forwarding Implementation
	1 Introduction
	2 Related Work
	2.1 CUDA Forwarding Implementations
	2.2 OpenCL Forwarding Implementations

	3 Concept
	3.1 dOpenCL
	3.2 Rodinia Benchmark Suite

	4 Evaluation
	5 Conclusion
	Acknowledgement
	Disclaimer
	References

	Aktuelle Technische Berichte des Hasso-Plattner-Instituts



