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Populärwissenschaftliches Abstract zur Habilitationsschrift
Computational Cosmology,

vorgelegt von Dr. Alexander Knebe

Die Kosmologie ist heutzutage eines der spannendsten Arbeitsgebiete in der Astronomie
und Astrophysik. Das vorherrschende (Urknall-)Modell in Verbindung mit den neuesten
und präzisesten Beobachtungsdaten deutet darauf hin, daß wir in einem Universum leben,
welches zu knapp 24% aus Dunkler Materie und zu 72% aus Dunkler Energie besteht; die
sichtbare Materie macht gerade einmal 4% aus. Und auch wenn uns derzeit eindeutige bzw.
direkte Beweise für die Existenz dieser beiden exotischen Bestandteile des Universums feh-
len, so ist es uns dennoch möglich, die Entstehung von Galaxien, Galaxienhaufen und der
großräumigen Struktur in solch einem Universum zu modellieren. Dabei bedienen sich
Wissenschaftler Computersimulationen, welche die Strukturbildung in einem expandie-
renden Universum mittels Großrechner nachstellen; dieses Arbeitsgebiet wird Numerische
Kosmologie bzw. “Computational Cosmology” bezeichnet und ist Inhalt der vorliegenden
Habilitationsschrift.
Nach einer kurzen Einleitung in das Themengebiet werden die Techniken zur Durchführung
solcher numerischen Simulationen vorgestellt. Die Techniken zur Lösung der relevanten
(Differential-)Gleichungen zur Modellierung des “Universums im Computer” unterschei-
den sich dabei teilweise drastisch voneinander (Teilchen- vs. Gitterverfahren), und es wer-
den die verfahrenstechnischen Unterschiede herausgearbeitet. Und obwohl unterschiedli-
che Programme auf unterschiedlichen Methoden basieren, so sind die Unterschiede in den
Endergebnissen doch (glücklicherweise) vernachlässigbar gering. Wir stellen desweiteren
einen komplett neuen Code – basierend auf dem Gitterverfahren – vor, welcher einen
Hauptbestandteil der vorliegenden Habilitation darstellt.
Im weiteren Verlauf der Arbeit werden diverse kosmologische Simulationen vorgestellt
und ausgewertet. Dabei werden zum einen die Entstehung und Entwicklung von Satel-
litengalaxien – den (kleinen) Begleitern von Galaxien wie unserer Milchstraße und der
Andromedagalaxie – als auch Alternativen zum oben eingeführten “Standardmodell” der
Kosmologie untersucht. Es stellt sich dabei heraus, daß keine der (hier vorgeschlagenen)
Alternativen eine bedrohliche Konkurenz zu dem Standardmodell darstellt. Aber nichts-
destoweniger zeigen die Rechnungen, daß selbst so extreme Abänderungen wie z.B. modi-
fizierte Newton’sche Dynamik (MOND) zu einem Universum führen können, welches dem
beobachteten sehr nahe kommt.
Die Ergebnisse in Bezug auf die Dynamik der Satellitengalaxien zeigen auf, daß die Un-
tersuchung der Trümmerfelder von durch Gezeitenkräfte zerriebenen Satellitengalaxien
Rückschlüsse auf Eigenschaften des ursprünglichen Satelliten zulassen. Diese Tatsache
wird bei der Aufschlüsselung der Entstehungsgeschichte unserer eigenen Milchstraße von
erheblichem Nutzen sein. Trotzdem deuten die hier vorgestellten Ergebnisse auch darauf
hin, daß dieser Zusammenhang nicht so eindeutig ist, wie er zuvor mit Hilfe kontrollierter
Einzelsimulationen von Satellitengalaxien in analytischen “Mutterpotentialen” vorherge-
sagt wurde: Das Zusammenspiel zwischen den Satelliten und der Muttergalaxie sowie die
Einbettung der Rechnungen in einen kosmologischen Rahmen sind von entscheidender
Bedeutung.



 



Summary
“Computational Cosmology” is the modeling of structure formation in the Universe
by means of numerical simulations. These simulations can be considered as the only
“experiment” to verify theories of the origin and evolution of the Universe. Over the
last 30 years great progress has been made in the development of computer codes that
model the evolution of dark matter (as well as gas physics) on cosmic scales and new
research discipline has established itself.

After a brief summary of cosmology we will introduce the concepts behind such simu-
lations. We further present a novel computer code for numerical simulations of cosmic
structure formation that utilizes adaptive grids to efficiently distribute the work and
focus the computing power to regions of interests, respectively. In that regards we also
investigate various (numerical) effects that influence the credibility of these simulations
and elaborate on the procedure of how to setup their initial conditions. And as run-
ning a simulation is only the first step to modelling cosmological structure formation
we additionally developed an object finder that maps the density field onto galaxies
and galaxy clusters and hence provides the link to observations.

Despite the generally accepted success of the cold dark matter cosmology the model
still inhibits a number of deviations from observations. Moreover, none of the putative
dark matter particle candidates have yet been detected. Utilizing both the novel sim-
ulation code and the halo finder we perform and analyse various simulations of cosmic
structure formation investigating alternative cosmologies. These include warm (rather
than cold) dark matter, features in the power spectrum of the primordial density per-
turbations caused by non-standard inflation theories, and even modified Newtonian
dynamics. We compare these alternatives to the currently accepted standard model
and highlight the limitations on both sides; while those alternatives may cure some of
the woes of the standard model they also inhibit difficulties on their own.

During the past decade simulation codes and computer hardware have advanced to such
a stage where it became possible to resolve in detail the sub-halo populations of dark
matter halos in a cosmological context. These results, coupled with the simultaneous
increase in observational data have opened up a whole new window on the concordance
cosmogony in the field that is now known as “Near-Field Cosmology”. We will present
an in-depth study of the dynamics of subhaloes and the development of debris of
tidally disrupted satellite galaxies.1 Here we postulate a new population of subhaloes
that once passed close to the centre of their host and now reside in the outer regions
of it. We further show that interactions between satellites inside the radius of their
hosts may not be negliable. And the recovery of host properties from the distribution
and properties of tidally induced debris material is not as straightforward as expected
from simulations of individual satellites in (semi-)analytical host potentials.

1For the purposes of our studies, we treat “substructure haloes” (or subhaloes) and “satellite galax-
ies” as interchangeable. However, we note that the correspondence between dark matter substructures
and luminous satellite galaxies is not a straightforward one.





Preface
The concept of this thesis is to present (part of) my cumulative work of the last decade
in a thematically ordered fashion. While the key note of the research presented here is
obviously computational cosmology it will be divided into the following sub-categories

• cosmological simulations (Section II),

• alternative cosmologies (Section III), and

• near-field cosmology (Section IV).

However, the thesis starts with a general introduction to cosmology in Section I where
the currently accepted standard model alongside the terminology used throughout this
thesis will be defined. The subsequent Sections are then summaries of my own con-
tributions to the respective fields. To this extent I will give an introduction at the
beginning of each Section motivating the scientific relevance and then present one par-
ticular highlight of each paper published by myself in that particular area. The papers
that made it into this thesis are the following (ordered chronologically):

(1) Knebe A., Green A., Binney J.J., 2001, MNRAS 325, 845
(2) Knebe A., Islam R.R., Silk J., 2002, MNRAS 326, 109
(3) Knebe A., Devriendt J.E.G., Mahmood A., Silk J., 2002, MNRAS 329, 813
(4) Binney J.J., Knebe A., 2002, MNRAS 333, 378
(5) Little B., Knebe A., Gibson B.K., 2003, MNRAS 341, 617
(6) Knebe A., Devriendt J.E.G., Gibson B.K., Silk J., 2003, MNRAS 345, 1285
(7) Dominguez A., Knebe A., 2003, EpL 4, 631
(8) Knebe A., Dominguez A., 2003, PASA 20, 173
(9) Knebe A., Gill S.P.D., Gibson B.K., 2004, PASA 21, 216
(10) Knebe A., Gibson B.K., 2004, MNRAS 347, 1055
(11) Knebe A., Gill S.P.D., Gibson B.K., Lewis G.F., Ibata R.A., Dopita M.A., 2004, ApJ 603, 7
(12) Gill S.P.D., Knebe A., Gibson B.K., 2004, MNRAS 351, 399
(13) Gill S.P.D., Knebe A., Gibson B.K., Dopita M.A., 2004, MNRAS 351, 410
(14) Gill S.P.D., Knebe A., Gibson B.K., 2005, MNRAS 356, 1327
(15) Knebe A., 2005, PASA 22, 184
(16) Knebe A., Gill S.P.D., Kawata D., Gibson B.K., 2006, 357, 35
(17) Power C.B., Knebe A., 2006, MNRAS 370, 691
(18) Knebe A., Power C.B., Gill S.P.D., Gibson B.K., 2006, MNRAS 368, 1209
(19) Warnick K., Knebe A., 2006, MNRAS 369, 1253
(20) Knebe A., Dominguez A., Dominguez-Tenreiro R., 2006, MNRAS 371, 1959
(21) Knebe A., Arnold B., Power C., Gibson B.K., 2008, MNRAS 386, 1029
(22) Warnick K., Knebe A., Power C.B., 2008, MNRAS 385, 1859
(23) Knebe A., Draganova N., Power C., Yepes G., Hoffman Y., Gottlöber S., Gibson B.K., 2008,
MNRAS 386, L52
(24) Knebe A., Yahagi H., Kase H., Lewis G.F., Gibson B.K., 2008, MNRAS 388, L34

This list is not exhaustive and the total number of peer-reviewed papers published by
myself during the years 2001 - 2008 (i.e. after my PhD) is 33 with four more already
submitted. The papers excluded from this thesis are mainly in-depth investigations of
the properties of galaxies, galaxy clusters, superclusters, and the large-scale clustering
patterns forming within the standard cold dark matter paradigm.
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Introduction



2 I.1. COSMOLOGY

I.1 Cosmology

Cosmology - the study of the formation and ultimate fate of structures and galaxies
throughout the Universe - is without a doubt the dominant field of astrophysics today.
And in the last few years theoretical and observational studies have begun to con-
verge as we entered the era of “Precision Cosmology”. A picture has emerged in which
contemporary structures have evolved by gravitational amplification of seed inhomo-
geneities that are likely of quantum origin. This picture ties together measurements of
the cosmic background radiation, estimates of the primordial abundances of the light
elements, measurements of the clustering of galaxies and, to a more limited extent, the
characteristic properties of individual galaxies (e.g. Komatsu et al., 2008).

There are several turning points to mention that mark the maturation of cosmology
from mere speculations to a research discipline. It all began when Einstein formulated
the theory of general relativity in 1915. It turned out that there are solutions to his
equations that did not comply with the understanding of the Universe at that time,
e.g. Friedmann found in 1922 that the Universe cannot be static. Only the pivotal
discovery of the linear velocity-distance relation for galaxies by Edwin Hubble in 1929
changed that perspective. Nevertheless, there was still the prediction of a primordial
singularity for an expanding Universe. Colloquially dubbed “Big Bang” by Fred Hoyle
in 1949, it was in the year 1965 that Arno Penzias and Robert Wilson discovered what
can be considered the “remnant fireball of the Big Bang”; they (accidently) observed an
“excess antenna temperature” at 4080 Mc/s (Penzias and Wilson, 1965). Already in the
same volume of the Astrophysical Journal Dicke et al. (1965) ascribed a cosmological
origin to this radiation, i.e. the cosmic microwave background radiation (CMBR). The
CMBR stems from the epoch when matter and radiation no longer could be in thermal
equilibrium due to the cooling arising from the expansion of the Universe: protons and
electrons combined to hydrogen atoms and the Universe became transparant for (the
CMBR) photons.

During the 1970’s scientists tried to piece together the jigsaw of how the big bang
theory can give rise to non-linear structures such as galaxies, galaxy groups and clus-
ters. And these years also saw the advent of computer simulations of cosmic structure
formation to be elaborated upon in Section II. The required primordial density pertur-
bations superimposed upon an otherwise homogenous and isotropic Universe were only
discovered in 1992 by the COBE2 satellite. COBE found ansiotropies in the CMBR
of the order ∆T/T ≈ 10−5, just the right order of magnitude if the majority of the
matter in the Universe was so-called “cold dark matter”.3

The following years saw the rise of a wealth of observations targetted at improved
measurements of the cosmological parameters; parameters that desribe the evolution
of the Universe as a whole. And these observations converged to what has been called
the “concordance model of cosmology” to be explained in greater detail in Section I.4.

2Cosmic Microwave Background Explorer
3Already at that time it was clear that the rotation curves of individual galaxies as well as the

velocity disperion of galaxies in clusters cannot be explained by luminous matter alone. Additional
matter that only interacts via gravity was required to explain the inferred gravity.
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I.2 Friedmann Equations

The central equations describing the evolution of the Universe as a whole were first
formulated by Alexander Friedmann in the year 1922. They can be derived from
Einstein’s field equations of general relativity under the assumption of homogeneity
and isotropy. In mathematical terms this comes down to using

Gµν + Λgµν = −8πG

c4
T µν (I.1)

together with the (homogeneous and isotropic) Robertson-Walker metric

ds2 = dt2 − a2(t)

(
dr2

1− kr2
+ r2(dθ2 + sin θ dφ2)

)
, (I.2)

where Gµν is the Einstein tensor, T µν the energy-momentum tensor, Λ the cosmological
constant, a(t) the cosmic expansion factor (which determines the overall scale of the
spatial metric), and k the curvature parameter.
Under the further assumption that the Universe is filled with a perfect fluid (and hence
constraining the energy-momentum tensor correspondingly) one arrives at the following
set of two independent equations, the Friedmann equations :

(
ȧ

a

)2

=
(

ȧ

a

)2

0

(
Ωr,0a

−4 + Ωm,0a
−3 + Ωk,0a

−2 + ΩΛ,0

)

ä =
4πG

3
a(ρ− ρΛ)

(I.3)

where the density parameters are defined as follows:

Ωr,0 =
ρr

ρcrit

Ωm,0 =
ρm

ρcrit

Ωk,0 =
−k

a2
0H

2
0

ΩΛ,0 =
ρΛ

ρcrit

(I.4)

The normalisations used in the definitions of the density parameters are as follows

ρcrit =
3H2

0

8πG

ρΛ =
Λ

8πG

H =
ȧ

a

(I.5)

where ρcrit is referred to as the critical density of the Universe (required to obtain a
spatially flat universe – in the absence of ρΛ) and H0 is todays value of the Hubble
parameter.
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The solution a(t) to Eq. (I.3) describes the expansion/contraction of the Universe and
sensitively depends on these parameters. The determination of these crucial values for
cosmology needs to be done observationally and a lot of efforts during the past decade
has been directed towards their confirmation.

I.3 Structure Formation

One of the underlying assumption in the derivation of the Friedmann Eq. (I.3) is
the cosmological principle, i.e. that the Universe is homogenous and isotropic (cf.
Robertson-Walker metric Eq. (I.2)). However, this is not what we observe! We see
highly inhomogeneous structures such as galaxies and galaxy clusters alongside the
filamentary structure of the Universe.
The just introduced density parameters determine how the Universe as a whole evolves
in time. However, structure formation depends on a couple of more values. Small
deviations from homegeneity and isotropy need to exist in the early Universe. They
likely have their origin in quantum fluctuations and are produced in a phase shortly
after the big-bang called inflation. These fluctuations are thought be of Gaussian
nature and can hence be described by a power spectrum. The overall amplitude of
this power spectrum is yet another parameter to be fixed in order to have a credible
model for cosmological structure formation. Further, the shape of the power spectrum
of primordial density perturbation also depends on the nature of the (dark) matter.
For instance, hot dark matter leads to a different structure formation scenario than
cold dark matter: due to its relativistic nature, hot dark matter erase fluctuations on
small scales and therefore has difficulties to form objects like galaxies whereas cold
dark matter induces hierarchial structure formation by which small entities form first
and subsequently merge to build larger and larger objects (e.g. Davis et al., 1985).
As we will later on return to the nature of dark matter (and actually question it in
Section III.1) we are going to elaborate upon the differences in more detail now.

I.3.1 The Nature of Dark Matter

Cold dark matter (CDM) means that dark matter had negligible thermal veloc-
ities kT � mc2 in the early universe. As mentioned in, for instance, Primack (2003),
this assumption can be satisfied by two complementary sorts of particles:

1. dark matter particles are WIMPs (W eakly Interacting M assive Particles, such
as the neutralino) with mass m ≈ 100Gev and a cross-section of σ ≈ 10−38cm2,

2. dark matter particles are axions with mass m ≈ 10−5ev and hence having non-
relativistic velocities kT � mc2, as they do not originate from a thermal mecha-
nism in the early universe.

Other authors (e.g. Coĺın et al., 2000) define a dark matter particle to be cold if and
only if it has a mass of m � 1GeV and the strength of its interaction is comparable
to the strength of weak interaction.
The CDM model is the most favoured in structure formation scenarios first introduced
by Peebles (1982) and entails (as already mentioned) hierarchical growth of structures.
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Further, this model is in good agreement with several observations. It correctly pre-
dicts the abundances of galaxy clusters nearby and at z ≤ 1. The power spectrum
of (primordial) density perturabations is consistent with measurements from CMB
anisotropies (Komatsu et al., 2008) and with the flux power spectrum inferred from
Lyα forest spectra (Croft et al., 2002).
However, there also exist drawbacks that will be expanded upon later on in Sec-
tion III.1.

Hot dark matter (HDM) has relativistic thermal velocities kT � mc2. Hence,
structures at significant scales up to tens of Mpc’s are “washed out”. This model
therefore entails fragmentation processes to form structures (cf. Doroshkevich et al.,
1974). As this model does not agree with, for instance, the clustering pattern of galaxies
as observed (and simulated) it has been discarded already a long time ago (cf. Peebles,
1982; Bond and Szalay, 1983; White et al., 1983). However, we need to mention that
massive neutrinos are in fact hot dark matter particles. The discrepancy between hot
dark matter models and observations thereore places constraints on the allowed mass
range for neutrinos.

I.3.2 Collisionless Matter

The different kinds of dark matter have in common to be collisionless, as underlined
by their estimated mean free path λ. Particle physics experiments lead to a WIMP-
nucleon elastic-scattering cross section of at minimum σ ≈ 4 × 10−43cm2 at a WIMP
mass of 60GeV (cf., e.g., Akerib et al., 2005). Varying the mass m of a dark-matter
particle between 1keV ∼< m ∼< 100GeV induces a number density n of dark matter
between 1cm−3

∼< n ∼< 6 · 10−8cm−3. Thus, the mean free path of these particles

λ =
1

σn
∈
[
1018; 1025

]
Mpc. (I.6)

is much larger than the Hubble radius

rH =
c

H0

≈ 4000Mpc, (I.7)

where H0 is todays value of the Hubble parameter (cf. Section I.4).
Even when increasing σ in Eq. (I.6) ten orders of magnitude would yield mean free
paths being much greater than rH. Hence, dark matter can be treated as a collisionless
fluid with its phase-space evolution described by the collisionless Boltzmann equation.
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I.4 ΛCDM: Concordance Model of Cosmology

Here we simply like to summarize the parameters and their values of the currently
favoured (and commonly accepted) standard model of cosmology. The most recent
combination of high-precision measurements of the cosmological parameters presented
in Komatsu et al. (2008) yields

• the matter content Ωm = 0.279
• the cosmological constant ΩΛ = 0.721
• the Hubble parameter H0 = 70 km/sec/Mpc
• the amplitude of density perturbations σ8 = 0.817

and this set of values is referred to as ΛCDM model.

Radiation (parameterized via Ωr) is at a neglegiably low level and hence can be dis-
carded. Further, as the sum of all contributions as measured at todays time has to be
unity (cf. Eq. (I.3)) the curvature term does not contribute, too.
We like to note that these are the latest measurements; the model changed over the
years with minor adjustments of the parameters in one way or the other. Therefore,
some of the work presented in this thesis may also refer to open cosmologies (i.e.
OCDM, Ωm < 1 & ΩΛ = 0) and the “old” standard cold dark matter model (i.e.
SCDM, Ωm = 1 & ΩΛ = 0).



Part II
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This part represents a summary of the following publications:

(1) Knebe A., Green A., Binney J.J., 2001, MNRAS 325, 845
(2) Binney J.J., Knebe A., 2002, MNRAS 333, 378
(3) Dominguez A., Knebe A., 2003, EpL 4, 631
(4) Gill S.P.D., Knebe A., Gibson B.K., 2004, MNRAS 351, 399
(5) Knebe A., Dominguez A., 2003, PASA 20, 173
(6) Knebe A., 2005, PASA 22, 184
(7) Power C.B., Knebe A., 2006, MNRAS 370, 691
(8) Knebe A., Dominguez A., Dominguez-Tenreiro R., 2006, MNRAS 371, 1959

II.1 Introduction

As the major theme of this thesis is unbdoubtly “computational cosmology” we decided
to present the concepts behind this rather exciting and novel research field in consid-
erable detail. All of the simulations presented later on in Section III and Section IV
are though based upon the adaptive mesh refinement technique (cf. Section II.4.2,
Section II.4.2 and Section II.6.2). However, we consider it important to highlight and
stress the differences between various techniques and the respective codes available to
(and used by) the astrophysical community for simulating cosmic structure formation.

II.1.1 The Necessity for Cosmological Simulations

Structure formation is generally believed to be a result of the gravitational amplification
of primordial density perturbations. The amplitude of these initial perturbation though
has to have the right value in order to match the clustering patterns observed today.
While it is possible to follow the growth of structures to a certain extent using linear
perturbation theory (e.g. Zel’dovich, 1970), such calculations are limited and cannot
explain the wealth of observational data available to us; they break down on a scale
where the (variance of the) density contrast

δ =
ρ(~x)− 〈ρ〉

〈ρ〉
(II.1)

approaches unity. Todays structures exhibit δ-values in the range from voids with
δ ≈ −1 to δ ≈ 106 in the central regions of galaxies and larger. This requires the need
for computer simulations: the treatment of perturbations in the non-linear regime is a
very complicated problem and the only exact way of doing it is by performing numerical
simulations. As such simulations became more and more sophisticated their relevance
for the field of cosmology has also increased. And today we are left with a resarch
branch on its own, namely computational cosmology to be elaborated upon now.

II.1.2 The History of Cosmological Simulations

The Universe is believed to have started with a Big Bang in which – or more precisely:
shortly after which – tiny fluctuations (in an otherwise homogeneous and isotropic
space) were imprinted into the radiation and matter density field. To understand how
the Universe evolved from that early stage into what we observe today (i.e. stars,
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galaxies, galaxy clusters, ...) one needs to follow the evolution of those density fields
using numerical methods as soon as they turn non-linear (i.e. σδ > 1). Therefore,
the approach to cosmological simulations is actually twofold: firstly, one needs to
generate the initial conditions according to the cosmological structure formation model
to be investigated (cf. Section II.8) and secondly, the initial density field (sampled by
particles and hence the reference to N -body codes) needs to be evolved forward in time
using a numerical integrator for the equations of interest (Sections II.2–II.4).
Algorithms have advanced considerably since the first N2 particle-particle codes (Aarseth,
1963; Peebles, 1970; Groth et al., 1977); we have seen the development of the tree-based
gravity solvers (Barnes and Hut, 1986), mesh-based solvers (Klypin and Shandarin,
1983), then the two combined (Efstathiou et al., 1985) and multiple strands of adap-
tive and deforming grid codes (Villumsen, 1989; Suisalu and Saar, 1995; Kravtsov et al.,
1997; Bryan and Norman, 1998; Knebe et al., 2001). While they all push the limits
of efficiency in computational resources, each code has its individual advantages and
limitations. The result of such research has been highly reliable, cost effective codes.
In all such codes the evolution is simulated by following the trajectories of particles
under their mutual gravity. These particles are supposed to sample the matter den-
sity field as accurately as possible and a cosmological simulation is nothing more (and
nothing less) than a simple and effective tool for investigating non-linear gravitational
evolution. There are two constraints on a cosmological simulation though: a) the cor-
rect initial conditions and b) the observation of galaxies, galaxy clusters, large-scale
structure, voids, etc. Simulations are hence trying to bridge the gap between obser-
vations of the early Universe (i.e. anisotropies in the Cosmic Microwave Background
observed as early as 300000 years after the Big Bang) and the Universe as we see it
today.

II.1.3 The State-of-the-Art of Cosmological Simulations

Until now the methods have been continuously refined to allow for more and more
particles while simultaneously resolving finer and finer structures. Today it is standard
to run a cosmological simulation with millions of particles in a couple of days on large
supercomputers or even clusters of PC’s. These simulations can resolve the orbits of
satellite galaxies within dark matter haloes spanning about five orders of magnitude
in mass and spatial dimension (cf. Section IV).
Fig. 1 depicts the conceptual ideas behind (cosmological) simulations: starting from ini-
tial seed inhomogeneities superimposed onto a homogeneous and isotropic background
the matter field is evolved forward in time. This evolution depends on the cosmologi-
cal model under investigation and is performed using an integrator for the appropriate
equations describing the physics under investigation. Snapshots of the simulation at
various times are recorded and then analysed and compared to observational data to
verify and falsify theories of structure formation and evolution.

In the following Section we present a brief explanation of the actual name “N -body”
code (Section II.2) before transfering the usual (Newtonian) equations of motion into a
coordinate system that expands with the Universe in Section II.3. The heart and soul
of every N -body code though is the part that solves Poisson’s equation by one means
or the other. We therefore present the general concepts behind the two most popular
yet disparate methods to accomplish this task in Section II.4. Before introducing one
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Fig. 1. Illustration of the idea driving N -body simulations. Initial conditions (upper left)
are being evolved forward in time using a computer programme modeling gravity (and gas
physics) under the assumption of a given cosmological model. The outputs over time are then
compared to observational data and the cosmological model adjusted accordingly. Image
credit (mass map of Cl0024+164): European Space Agency, NASA and Jean-Paul Kneib
(Observatoire Midi-Pyrenees, France/Caltech, USA)

particular N -body in greater detail in Section II.6, we discuss some issues with such
codes that are of mere numerical nature in Section II.5. The last Section II.8 then
deals with the process of generating the initial conditions for cosmological simulations
and its intrinsic complications.
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II.2 The N-body Concept

As explained in Section I.3.2 dark matter is practically a collisionless fluid. When
used to model the dynamics of such a collisionless system, an N -body code aims at
simultaneously solving the collisionless Boltzmann equation (CBE)

∂f

∂t
+

3∑
i=1

(
vi

∂f

∂xi

− ∂Φ

∂xi

∂f

∂vi

= 0

)
(II.2)

and Poisson’s equation

∇2Φ(~r) = 4πGρ(~r) , (II.3)

where the matter density ρ(~r) is given by

ρ(~r) =
∫

fd3v . (II.4)

The CBE (II.2) is solved by the method of characteristics (e.g. Leeuwin et al., 1993).
Since the CBE states that f is constant along any trajectory {~r(t), ~v(t)}, the trajec-
tories obtained by time integration of N points {~ri, ~vi} sampled from the distribution
function f at time t = tinitial form a representative sample of f at each time t.
Hence the problem reduces to solving Poisson’s Eq. (II.3) for a set of N particles and
advancing them forward in time according to the equations of motion derived from the
system’s Hamiltonian H: remember that Eq. (II.2) can be written as

∂f

∂t
+ [f,H] = 0 . (II.5)

The details of the time-integration of the equations of motions are going to be explained
below in Section II.3. The prime aspect of every N -body code is to solve Poisson’s
equation Eq. (II.3) and currently there are two commonly used approaches for deriving
the potential from it:

• tree codes rely on a direct particle-particle summation, and

• Particle-Mesh (PM) codes utilize a numerical integration of Eq. (II.3) on a grid.

Both these techniques are going to be explained in Section II.4.
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II.3 Newtonian Mechanics in Comoving Coordinates

Even though solving Poisson’s equation is central to every N -body code, it is also
important to accurately update particle positions and velocities, i.e. integrating the
equations of motion. And as the Universe is expanding it is convenient to introduce
comoving coordinates :

~x =
~r

a(t)
(II.6)

where a(t) is the cosmic expansion factor and the solution to the (first) Friedmann
equation (I.3).
The (comoving) Lagrangian is given by (cf. Knebe et al., 2001)

L = 1
2
a2ẋ2 − Φ

a
, (II.7)

which leads to the canonical momentum

~p = a2~̇x. (II.8)

Hamilton’s equations are therefore

d~x

dt
=

~p

a2

d~p

dt
= −∇Φ

a
.

(II.9)

accompanied by the Poisson’s equation in comoving coordinates

∆Φ = 4πGa(ρ− ρb) (II.10)

where ρb is the cosmic background density (and hence Φ is the potential responsible
for “peculiar accelerations”).
The equations-of-motion (II.9) can be discretized and integrated using a second-order
accurate scheme as follows:

~xn+1/2 = ~xn + ~pn

∫ t+∆t/2

t

dt

a2

~pn+1 = pn − ∇Φ(xn+1/2)
∫ t+∆t

t

dt

a

~xn+1 = ~xn+1/2 + ~pn+1

∫ t+∆t

t+∆t/2

dt

a2
,

(II.11)

where the integrals can be evaluated analytically as they depend only on the cosmology.
This modified leap-frog scheme only needs to store one copy of the positions and veloc-
ities whereas other integrators as, for instance, Runge-Kutta consume more memory.
Further, it has been shown that symplectic integrators4 such as Eq. (II.11) are bet-
ter suited for Hamiltonian systems (Springel, 2005) as they are robust against non-

4Symplectic integrators preserve Poincare integral invariants, or in other words, preserve phase-
space.
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Hamiltonian perturbations introduced by, for instance, ordinary numerical integration
methods.
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II.4 Poisson Solver

As already mentioned in Section II.2 there are two complementary approaches for
deriving the potential from Poisson’s equation (II.3): a) tree codes rely on a direct
particle-particle summation, and b) PM (particle-mesh) codes utilize a numerical in-
tegration of Eq. (II.3) on a grid.

II.4.1 Tree Codes

Fig. 2. Illustration of a tree code. The left panel shows the actual particle distribution and
its cubical decomposition. The right panel is the tree corresponding to this distribution.

The Pre-Requisites

The particle-particle (PP) method upon which tree codes are based assumes that the
particles are δ-functions and hence the density field (rhs of Poisson’s Eq. (II.3)) reads
as follows:

ρ(~r) =
N∑

i=1

miδ(~r − ~ri) , (II.12)

where N is the total number of particles in use.

The Forces

Combining Eq. (II.12) with Eq. (II.3) the analytical solution for the force ~F at particle
position ~ri is given by:

~F (~ri) =
∑
j 6=i

mimj

|~ri − ~rj|2

(
~ri − ~rj

|~ri − ~rj|

)
. (II.13)

But as we are interested in deriving the force at every single particle position, the
PP method scales like N2 (N summations, each over (N − 1) particles). Therefore, a
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(straightforward) PP summation does not appears to be feasible for evolving a set of N
particles under their mutual gravity, not even on the largest supercomputers available
nowadays! One needs to bypass the increase in computational time for large numbers
of particles with a more sophisticated treatment when calculating the forces. One way
of achieving this is to organize the particles in a tree-like structure: particles located
”far away” from the actual particle (at which position we intend to calculate the force)
can be lumped together as a single – but more massive – particle. This tunes down
the number of calculations dramatically.

The idea of a tree code is sketched in Fig. 2. The particles are organized in a tree-like
structure based upon a cubical decomposition of the computational domain. Con-
sequentially, for each particle we “walk the tree” and add the forces from branchings
that need no further unfolding into finer branches according some pre-selected “opening
criterion”.

One publicly available tree code is called GADGET5 (Galaxies with Dark Matter and
Gas intEracT) and I refer the reader to a more elaborate discussion of this technique
to its reference paper by Springel et al. (2001) and Springel (2005).

Force Resolution – softening

In order to avoid the singularity for ~ri = ~rj in Eq. (II.13) one needs to set a limit on
the minimal allowed spatial separation between two particles. This can be achieved by
introducing a (fixed) scale, i.e. the softening parameter ε:

~F (~ri) =
∑
j 6=i

mimj

|~ri − ~rj|2 + ε2

(
~ri − ~rj

|~ri − ~rj|

)
(II.14)

This softening is closely related to the overall force resolution of the simulation and an
elaborate discussion of it can be found in Dehnen (2001).

II.4.2 Particle-Mesh Codes

The Pre-Requisites

Another way for obtaining the forces is to numerically integrate Poisson’s equation (II.3).
This method, however, demands the introduction of a grid in order to define the den-
sity and hence the name particle-mesh (PM) method. The grid is usually of a regular
(cubic) shape with L × L × L cells where each cell is identified by the index triplet
(i, j, k). The forces are then calculated according to the following scheme:

1. assign all particles to the grid to get ρi,j,k

2. solve Poisson’s equation ∇2φi,j,k = 4πGρi,j,k

3. differentiate to get forces Fi,j,k = −∇φi,j,k

4. interpolate Fi,j,k back to particle positions

5GADGET can be downloaded from this web address http://www.mpa-garching.mpg.de/gadget
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Fig. 3. An example for adaptive mesh refinement. The left panel shows the particle distri-
bution at redshift z = 0 in a ΛCDM simulation. The right panel indicates the arbitrarily
shaped grids invoked by the AMR code MLAPM to solve Poisson’s equation. Not that the grid
covering the whole computational domain is not shown for clarity.

The Forces

With this scheme most of the time is spent in step 2 and the most common way to
solve Poisson’s equation on a grid is to make use of FFT’s (Fast-Fourier-Transforms).
The analytical solution to Poisson’s equation is given by the integral

Φ(~r) =
∫

G(~r − ~r′)ρ(~r′)d~r′ (II.15)

where G(~x) = −~x/x3/2 is the Green’s function of Poisson’s equation. This integral can
readily be evaluated in Fourier-space, i.e.

Φ̂ = Ĝ ρ̂ (II.16)

where Φ̂, Ĝ, and ρ̂ are the Fourier transforms of the respective variables.
The PM approach proves to be exceptionally fast outperforming any tree code.
There are of course other techniques than the use of FFT’s available to numerically
solve Poisson’s equation but the utilisation of FFT’s is the most common approach as
it appears to be the fastest.

Force Resolution – adaptive mesh refinement

The most severe problem with the PM method is the lack of spatial resolution below two
grid spacings. Whereas tree codes require the introduction of a softening length to avoid
the force singularity for close encounters of particles, PM codes suffer from the opposite
problem. Gravity is an attractive force and hence the particles flow from low density
regions into high density regions amplifying primordial density fluctuations. This leads
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to an excess of particles in certain cells whereas other cells are becoming more and more
devoid of matter. But as the spacing of the grid introduces a (smoothing) scale particles
closer than about two cell distances do not interact according to Eq. (II.15) anymore.
We are left with the situation where we can not resolve structure formation on scales
of (and below) roughly the cell spacing of the grid!
This is a major problem and the most obvious way to overcome it is to introduce finer
grids in regions of high density. These grids though need to freely adapt to the actual
particle distribution at all times and hence navigating such complex grids through
computer memory is a very demanding task. One of the freely available adaptive
mesh refinement (AMR) codes is MLAPM6 (Knebe et al., 2001).
The mode of operation of this AMR technique can be viewed in Fig. 3 where a slice
through a standard ΛCDM simulation is presented. The left panel shows the distribu-
tion of particles whereas the right panel indicates the adaptive meshes used to obtain
a solution to Poisson’s equation.
It needs to be stressed though that the use of irregularly shaped grids inhibits FFT’s.
Another technique for solving Poisson’s equation needs to be sought such as, for in-
stance, multi-grid relaxation (e.g. Brandt, 1977; Press et al., 1992; Kravtsov et al.,
1997; Knebe et al., 2001).

II.4.3 Hybrid Methods

There are, of course, various other techniques for simultaneously being time efficient
and having a credible force resolution. One possibility is realized in the so-called P3M
technique (i.e. Couchman, 1991) where a combination of PP and PM provides the
necessary balance between accuracy and efficiency: the force as given by the plain PM
calculation is augmented by a direct summation over all neighboring particles within
the surrounding cells. This gives accurate forces down to the scale provided by the
softening parameter ε again. Other examples, for instance, are Tree-PM (Bode and
Ostriker, 2003) and moving mesh (Gnedin, 1995) codes, but the details are well beyond
the scope of this thesis.

II.4.4 Mass Resolution

It still needs to be mentioned that a cosmological simulation in practice only simulates
a certain fraction of the Universe. This is what people refer to as the simulation box.
However, to account for the fact the Universe is actually infinite one uses periodic
boundary conditions: particles leaving the box on one side immediately enter the box
again on the other side.
Moreover, the size of the box also defines the mass resolution of the simulation. We
are only using a certain number of particles within a fixed region of the Universe.
And as the density of the Universe is determined by the cosmological model under
investigation, each individual particle has a certain mass. This mass determines the
mass resolution of that specific simulation. For instance, if we model the evolution
of about 2 million particles in a box with side length 25h−1Mpc using the ΛCDM
cosmology (Ω0 = 0.3), each particle weighs about 6 · 108h−1M�. Therefore we will not
be able to properly resolve dwarf galaxies in that particular cosmological simulation
(Mdwarf ≥ 107h−1M�).

6MLAPM can be downloaded from this web address http://www.aip.de/People/AKnebe/MLAPM
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II.4.5 Comparison

It only appears natural to ask the question which method is superior and how they
compare, respectively.
There is no straight forward answer as both methods have their (dis-)advantages. Tree
codes are based upon the assumption that the Universe is filled with particles of a
certain size related to the softening ε (cf. Section II.4.1). Adaptive mesh refinement
codes use a smoothed density field (which in turn also introduces an effective particle
size) to obtain the potential and hence the force field. In both cases it is important
to bear in mind that particles are only to be understood as markers in phase-space
and should not interact on a two-body basis, i.e. one always intends to integrate the
collisionless Boltzmann equation (II.2). There are several studies investigating two-
body interactions in such simulations and it can be confirmed that they are more
prominent in tree codes (Binney and Knebe, 2002). But as long as one complies with
certain constraints on the numerical parameters (cf. Power et al., 2003) such effects
can be minimized.
There are several studies comparing tree and AMR codes both in efficiency and accu-
racy (e.g. Frenk et al., 1999; Knebe et al., 2001; Heitmann et al., 2007; Agertz et al.,
2007) but in the end it all comes down to a “question of taste”. Both techniques are
well enough developed to successfully model the formation and evolution of cosmic
structures.
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II.5 Numerical Issues

II.5.1 Two-Body Relaxation

It is logically possible that two-body relaxation in simulations of cosmological clustering
influences the final structure of massive clusters. It has therefore been a target of
several investigations (e.g. Binney and Knebe, 2002; Diemand et al., 2004; El-Zant,
2006). Convergence studies in which mass and spatial resolution are simultaneously
increased, cannot eliminate this possibility. The standard way of determining the
significance of two-body relaxation in a simulation is to include particles of more than
one mass: if the simulation is collisionless, the final distributions of the particles will
be independent of mass, whereas the more massive particles will tend to sink to the
bottoms of potential wells if two-body relaxation is significant.

Fig. 4. Ratio of the numbers of light and heavy particles in haloes as a function of the total
number of particles in the halo.

We performed simulations with both a spatially fixed softening length and adaptive
softening using the publicly available codes GADGET (a tree code) and MLAPM (an
adaptive mesh refinemenet code), respectively, where half of the particles have mass
m1 and the other half m2. The effects of two-body relaxation are detected in both
the density profiles of halos and the mass function of halos. However, in the MLAPM

simulations there is no evidence that two-particle relaxation enhances the fraction of
heavy particles in clusters. The GADGET simulations show a clear tendency for clus-
ters with more than a handful of particles to contain more massive than light particles
as can be seen in Fig. 4. Further, this tendency increases in strength with the mass
ratio m2/m1, just as is expected if it is driven by two-particle relaxation.

This work has been published as “Two-Body Relaxation in Cosmological Simulations”
(Binney J., Knebe A., 2002, MNRAS 333, 378).
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II.5.2 Finite Box Size Effects

As explained in Section II.4.4 every cosmological simulation only follows the evolution
of matter in a certain fraction of the volume of the actual universe (with periodic
boundary conditions to account for infinity of space). But to what extent does the
negligence of perturbations on scales larger than the simulation box affect structure
formation?

We investigated the impact of a finite simulation box size on the structural and kine-
matic properties of cold dark matter haloes. Our approach involves generating a single
realisation of the initial power spectrum of density perturbations and studying how
truncation of this power spectrum on scales larger than Lcut = 2π/kcut affects the
structure of dark matter haloes at z = 0. In particular, we have examined the cases of
Lcut = fcutLbox with fcut = 1 (i.e. no truncation), 1/2, 1/3 and 1/4.

In common with previous studies, we found that the suppression of long wavelength
perturbations reduces the strength of clustering, as measured by a suppression of the
2-point correlation function ξ(r), and reduces the numbers of the most massive haloes,
as reflected in the depletion of the high mass end of the mass function n(M). Inter-
estingly, we find that truncation has little impact on the internal properties of haloes.
The masses of high mass haloes decrease in a systematic manner as Lcut is reduced, but
the distribution of, for instance, concentrations is unaffected. On the other hand, the
median spin parameter is ∼ 50% lower in runs with fcut < 1. We argue that this is an
imprint of the linear growth phase of the halo’s angular momentum by tidal torquing,
and that the absence of any measurable trends in concentration (and only a minor
influence of large-scale power on the shape) reflect the importance of virialisation and
complex mass accretion histories for these quantities, respectively.

This work has been published as “The Impact of Box Size on the Properties of Dark
Matter Haloes in Cosmological Simulations” (Power C.B., Knebe A., 2006, MNRAS
370, 691).

II.5.3 Hydrodynamics Approach to the Evolution of Cosmic
Structure

The actual set of equations integrated by an N -body code (i.e. Eq. (II.9) and Eq. (II.10))
can be re-written as (cf. Knebe et al., 2006)

ẋ = 1
a
u,

u̇ = w −Hu,

∇ · w = −4πGa
[

m
a3

∑
i δ

(3)(x− xi)− %b

]
,

∇× w = 0,

(II.17)

where x is the comoving coordinate, u the peculiar velocity, m the particle mass, and
w the peculiar gravitational acceleration.

If we now assume that the actual measure of the density field in an N -body code de-
pends on a smoothing window W (z), the microscopic field %mic relates to the measured
(coarse–grained) field % in the following way:



II.5. NUMERICAL ISSUES 21

Fig. 5. Colour-coded density field of a ΛCDM simulation (left panel) and the correspondong
hydrodynamic model (right panel).

%mic(x, t) =
m

a(t)3

∑
i

δ(3)(x− xi(t)),

%(x, t; L) =
∫ dy

L3
W

(
|x− y|

L

)
%mic(y, t).

(II.18)

The physical interpretation of the field %(x; L) follows straightforwardly from the prop-
erties of the smoothing window: it is proportional to the number of particles contained
within the coarsening cell of size ≈ L centered at x. A microscopic peculiar–momentum
density as well as a peculiar–acceleration field and the corresponding coarse–grained
fields can be defined in the same way.
From these definitions and Eq. (II.17), it is straightforward to derive the evolution
equations obeyed by the coarse–grained fields % and u (from now on, ∂/∂t is taken at
constant x and L, and ∇ means partial derivative with respect to x):

∂%

∂t
+ 3H% = − 1

a
∇ · (% u),

∂(% u)

∂t
+ 4H%u = % w − 1

a
∇ · (% u u + Π),

(II.19)

where a new second-rank tensor field has been defined (dyadic notation):

Π(x, t; L) =
∫ dy

L3
W

(
|x− y|

L

)
%mic(y, t) (II.20)

[umic(y, t)− u(x, t; L)][umic(y, t)− u(x, t; L)].

The peculiarities of the problem at hand (collisionless matter in the non–stationary
state of structure formation) prevent the usual truncation of the hierarchy leading
to the Euler or Navier–Stokes equations, respectively (see, e.g., Chapman and Cowl-
ing, 1991). The small–size expansion (SSE) is a specific truncation for this problem
(Domı́nguez, 2000; Buchert and Domı́nguez, 2005), that starts from the physical as-
sumption that the coupling to the small–scales is weak (this can be argued on the basis
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that, in a hierarchical scenario, the smaller scales “virialize” earlier and thus “decou-
ple” from the evolution of the larger scales). Then the fields Π and w are derived as a
formal expansion in L: Keeping terms up to order L2, Eqs. II.19 become (∂i = ∂/∂xi;
summation over the repeated index i is understood)

∂%

∂t
+ 3H% = − 1

a
∇ · (% u),

∂(% u)

∂t
+ 4H%u = % wmf − 1

a
∇ · (% u u) + % C,

∇ · wmf = −4πGa (%− %b),
∇× wmf = 0,

(II.21)

with the additional acceleration

C =
BL2

%

[
(∇% · ∇)wmf − 1

a
∇ · [%(∂iu)(∂iu)]

]
. (II.22)

The constant B is determined by the smoothing window W (z),

B =
1

3

∫
dz z2 W (z) =

4π

3

∫ +∞

0
dz z4 W (z). (II.23)

To order L0, Eq. (II.21) reduce to the ”dust (pressureless) approximation” for cosmo-
logical structure formation (Sahni and Coles, 1995).
The dynamical evolution predicted by Eq. (II.21) can be implemented without much
difficulties in a particle–mesh (PM) code of N -body simulation. For the details we
refer the reader to the original paper by Knebe et al. (2006).
We now performed a series of cosmological N -body simulations which made use of this
hydrodynamic approach to the evolution of structures. Comparing these simulations to
usual N -body simulations, we find that

• the new (hydrodynamic) model entails a proliferation of low–mass halos, and

• dark matter halos have a higher degree of rotational support.

As an illustration we show in Fig. 5 a colour-coded density field of two “hydrodynamic”
dark matter models in comparison to a ΛCDM model.
These results agree with the theoretical expectation about the qualitative behaviour of
the “correction terms” (II.22) introduced by the hydrodynamic approach: these terms
act as a drain of inflow kinetic energy and a source of vorticity by the small–scale tidal
torques and shear stresses.

This work has been published as “Hydrodynamic Approach to the Evolution of Cos-
mic Structures II: Study of N-body Simulations at z = 0” (Knebe A., Dominguez A.,
Dominguez-Tenreiro R., 2006, MNRAS 371, 1959).
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II.6 MLAPM – Multi-Level-Adaptive-Particle-Mesh

Most of the simulations and results presented in this thesis are based upon simulations
done with a novel computer code that utilizes adaptive meshes in the solution process
of Poisson’s equation (II.3). The code was developed from scratch and made publi-
cally available to the community. We therefore consider it important to present the
particulars of this code in sufficient detail within the context of this thesis.
The code we have developed, MLAPM, starts from a regular Cartesian grid and recursively
refines cells such that subgrids can have arbitrary geometry (subject to each cell being
cubical). MLAPM, which either uses a multigrid algorithm or a Fast-Fourier-Transform
to solve Poisson’s equation, is in many ways similar to the Adaptive Refinement Tree
(ART) code of Kravtsov et al. (1997) and RAMSES (Teyssier, 2002) which also utilize
recursively placed refinements of arbitrary shape as the simulation evolves.

II.6.1 Handling Adaptive Meshes

MLAPM estimates the density on an arbitrarily shaped grid and then employs a finite-
difference approximation to solve Poisson’s equation subject to periodic boundary con-
ditions. If the density in any cell is found to exceed a certain threshold, which cor-
responds to ρref of order 1 to 8 particles per cell, the cell is subdivided as described
below. Cells obtained by this subdivision can be further subdivided. This sub-division
process, which can generate grids of arbitrary geometry, is described in more detail in
Section II.6.2.
To define and navigate such complex grids, several data structures are required, which
we now describe. The general scheme closely follows the precepts of Brandt (1977).
Functions are provided both for the creation and destruction of these structures.
With each cell we associate a data structure called a ‘node’, which stores the values
for the centre of the cell of dynamically interesting quantities:

NODE

◦ density
◦ potential
◦ forces
◦ pointer to first particle

Since there will be more nodes than particles, they need to be defined in a way that
minimizes memory requirements. Moreover, so far as possible, we arrange for nodes
that are adjacent physically to occupy adjacent locations in computer memory. This
has the dual advantage of minimizing cache misses and of enabling neighbours to be
found by incrementing or decrementing pointers. Hence we do not follow Kravtsov
et al. (1997) in arranging nodes as fully-threaded oct-trees. Instead we gather nodes
into xQUADs. An xQUAD is a line of nodes that follow each other parallel to the
x-axis. With it we associate these numbers

xQUAD

◦ pointer to first node
◦ x coordinate of the first node
◦ number of nodes
◦ pointer to next xQUAD

Since the memory for the nodes described by this QUAD is allocated as one block, this
information is sufficient to access directly any node in the QUAD and to determine its
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x coordinate. The pointer to the next xQUAD similarly enables one to reach nodes
further down the axis in a few steps.

Just as nodes are gathered into xQUADs, so xQUADs are gathered into yQUADs.
Thus a yQUAD is a series of contiguous xQUADs and gives one access to a plane7 of
nodes. With a yQUAD we associate these numbers

yQUAD

◦ pointer to first xQUAD
◦ y coordinate of first xQUAD
◦ length of yQUAD
◦ pointer to next yQUAD

A zQUAD is a similar linked list of yQUADs, so it contains these numbers

zQUAD

◦ pointer to first yQUAD
◦ z coordinate of first yQUAD
◦ length of zQUAD
◦ pointer to next zQUAD

Fig. 6 indicates how a two-dimensional, adaptive grid is organized using QUAD’s. All
(virtual) nodes of a grid are shown, with the nodes in use (refined region) represented
by filled circles. Memory is assigned only for these nodes (and the supporting QUAD
structures). As soon as a node is encountered that does not need to be refined, the
xQUAD stops and its ‘next’-pointer is set to the next xQUAD; if this is the last
xQUAD, the pointer is set to NULL. The same scheme applies to the relation between
xQUAD’s and yQUAD’s, and to the relation between yQUADs and zQUADs. In
particular, when a series of xQUADs is contiguous in the sense that there is at least
one xQUAD for every value of y in some range, the storage for the xQUADs with
the smallest x coordinates at each y is allocated in a block. Similarly, storage for
contiguous yQUADs with the smallest y coordinates at given z is allocated in a block.

Computation of the forces involves several sweeps through the nodes. In each such
sweep one loops through the linked list of all zQUADs to locate each yQUAD, and
within each yQUAD one runs through the list of xQUADs, and within each xQUAD one
runs through the list of nodes. Consequently, when referencing a node one always knows
which xQUAD, yQUAD and zQUAD it lies in. This information and the coherent
storage of adjacent x and yQUADS allows one to find neighbours as follows. For
example, suppose we want to find the neighbour that has y smaller by a grid spacing.
Then we decrement by one the current value of the pointer in the loop over xQUADs
to locate the xQUAD nearest the y-axis at the required value of y. Then we loop over
the list of xQUADs at whose head this QUAD stands, until we find the xQUAD that
contains the neighbour we are seeking.

The highest-level structure in MLAPM is a GRID. This gathers together a variety of
information about a particular level of refinement:

7Brandt calls a yQUAD a CQUAD.
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Fig. 6. QUAD structured grid used within MLAPM sketched for two dimensions. Circles mark
nodes, open ones being virtual. QUADs are indicated by lists in brackets.

GRID

◦ pointer to first zQUAD
◦ number of nodes per dimension
◦ distance between adjacent nodes
◦ critical density
◦ mass to density conversion factor
◦ residuals
◦ cosmic expansion factor
◦ ...

The crucial entries in this structure are the pointer to the first zQUAD and the number
of (virtual) nodes. However, additional useful book-keeping data is stored here, such
as the grid spacing, and the critical density for refinement.

The data structure associated with a particle is this

PARTICLE

◦ position
◦ momentum
◦ mass
◦ pointer to next particle

Each particle is assigned to a node, usually the finest node that contains it. The list
of a nodes’s particles is maintained as a standard linked list.

II.6.2 Generating Refinements

A node is refined if its density exceeds a predetermined threshold that varies from
grid to grid, and de-refined whenever it falls below that value. However, around each
high-density region some additional nodes are refined, to provide a ‘buffer zone’. These
buffer zones ensure that the resolution of the grid changes only gradually even if the
density is discontinuous. In detail, a node is refined if either its density, or the density of
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fine grid nodes:

coarse grid nodes:

Fig. 7. Fine-grid cells often overlap more than one coarse-grid cell. Consequently, the
fine-grid node at the centre may owe its existence to either of the two coarse-grid nodes
exceeding the density threshold.

any of the 26 surrounding nodes exceeds the density threshold. Consequently, as MLAPM
marches through the grid deciding whether to refine nodes, it is continually testing the
density of nodes that lie ahead of its current position, since the current node must be
refined if any of them lie above the density threshold. Careful programming is required
to avoid wasting time by testing nodes twice. Notice that a refined node such as that
shown in the centre of Fig. 7 can be called into existence by virtue of the coarse node
to its right or to its left exceeding the density threshold, so we do not speak of ‘parent’
and ‘child’ nodes.

An important difference between our refinement scheme and that of the ART code, is
that some of our refined nodes are cospatial with coarse nodes (see Fig. 7), whereas in
the ART code all refined nodes are symmetrically distributed within the parent coarse
node. Our refinement scheme is the natural one to adopt if one is simply solving partial
differential equations: during the solution process the relevant values stored at each
node (in our case density and potential) need to be interpolated between the grids
which is done by a Taylor expansion about the centre of the node. For instance, for a
prolongation of the coarse node density to the fine node this reads as follows

ρ(xfine) = ρ(xcoarse) + ρ′(xcoarse)(xfine − xcoarse) , (II.24)

where ρ′(xcoarse) is determined as a finite-difference between the neighbopuring nodes to
ρ(xcoarse). If the fine and coarse nodes are co-spatial (i.e. xfine = xcoarse) we simply copy
the coarse value over to the fine node; this scheme therefore ensures to best preserve
peaks in the density field as opposed to always having xfine 6= xcoarse as is the case
for codes that symmetrically distribute fine cells within the volume of the coarse cell.
When particles are involved, it does lead to additional complexity, however, because
with our scheme refined nodes that are not cospatial with coarse nodes have cells that
overlap the cells of more than one coarse node – see Fig. 7.

The edges of refinements always include cospatial nodes of the parent grid (e.g., Fig. 7).
Nodes that lie on the boundary of a refinement have a different role from ones in the
interior. First they carry the boundary conditions subject to which Poisson’s equation
is solved in the interior of the refined grid. That is, the potential on a refinement’s
boundary nodes is obtained by interpolation from the embedding coarse grid and held
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constant as the potential at interior points is adjusted towards a solution of Poisson’s
equation as described in Section II.6.4. The second role of boundary nodes is to carry
values used in the determination of the forces on particles in the refinement – the
determination of these forces involves both numerical differentiation and interpolation.

II.6.3 Mass Assignment Scheme

Generally, each particle is placed in the linked list of the finest node within whose cell
it lies. Exceptions to this rule occur when a particle enters a refinement during a call
to the routine perfoming the integrating of the equations-of-motions (cf. Section II.3)
and on the boundaries of refinements, where refined nodes exist only to provide values
of the potential and forces. These nodes do not acquire particles.
After testing the nearest-grid-point (NGP), cloud-in-cell (CIC) and triangular-shaped-
cloud (TSC) mass-assignment schemes (Hockney and Eastwood, 1988) we adopted the
TSC mass-assignment scheme. In both the CIC and TSC schemes a particle contributes
to the density in more than one node. Particular care has to be exercised at the edges
of refinements if the integral of the density is to equal the total mass of the particles.
A particle in the interior of a refinement only contributes to the density at refined nodes.
When the density at cospatial coarse nodes is required, it is set equal to a weighted
mean of the densities on a number of nearby fine nodes. Brandt (1977) calls this
operation of taking a weighted mean “restriction”. The operator that accomplishes
it has to be matched to the mass-assignment scheme, so that one obtains the same
coarse-grid densities by restriction from a fine grid as one would have obtained if there
had been no refinement and particles had been assigned to the coarse grid.
The restriction operator is also matched to an interpolation operator that is used to
estimate quantities on a fine grid from their values on the embedding coarse grid.
Brandt calls this the “prolongation” operator. The matching is such that if values are
prolonged from coarse to fine and then restricted back to the coarse grid, they do not
change.
Intricate book-keeping is required when particles are transferred between grids on the
creation of a refinement.

II.6.4 Solving Poisson’s Equation

Poisson’s equation is solved using a variant of the multigrid technique (Brandt, 1977;
Press et al., 1992). In essence one relaxes a trial potential to an approximate solution
of Poisson’s equation by repeatedly updating the potential according to

Φi,j,k = 1
6
(Φi+1,j,k + Φi−1,j,k + Φi,j+1,k + Φi,j−1,k + Φi,j,k+1 + Φi,j,k−1− ρi,j,k∆

2) , (II.25)

where ∆ is the grid spacing. There are several possible orderings of the points (i, j, k)
at which these updates are made. We use ‘red-black’ ordering, so called because it
involves first updating Φ on every other node on the grid, as on the red squares of a
chess board, and then updating the other half of the nodes, equivalent to the black
squares on a chess board.
This algorithm rapidly eliminates errors in the trial potential that fluctuate on the scale
of the grid, but eliminates errors with longer-range fluctuations much more slowly. The
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multigrid technique involves using a coarser grid to seek a correction in the event that
convergence is slow.
Once we have a solution on the domain grid8, we prolong it to any refinements and
iterate on the refinements until convergence (see below). Each refinement poses an
independent boundary-value problem. Fortunately, the trial potential only deviates
from the true one on the finest scales because it is obtained by prolongation of a
coarse-grid solution of the same problem. So convergence is in practice rapid. Any
further refinements are handled in the same way.
The potential on any grid is deemed to have converged when the residual

e = ∇2Φ− ρ (II.26)

is smaller than a fraction, ∼ 0.1, of the estimated truncation error

τ = ℘
[
∇2(<Φ)

]
− (∇2Φ), (II.27)

where ℘ and < are the prolongation and restriction operators, respectively. Thus, τ
is essentially the difference between evaluating the Laplacian operator on the current
grid and on the next coarser grid.
Forces at each node are evaluated from centred differences of the potential and prop-
agated to the locations of particles by the TSC scheme to ensure exact momentum
conservation within any given refinement (Hockney and Eastwood, 1988). The forces
∇Φ obtained in this way are then used with the integration of the equations-of-motion
as specified in Section II.3, Eq. (II.11).q
A more elaborate description of MLAPM can be found in “Multi-Level Adaptive Particle
Mesh (MLAPM): a C code for cosmological simulations” (Knebe A., Green A., Binney
J.J., 2001, MNRAS 325, 845).

8Please note that the latest version of MLAPM/ has the option to obtain the solution on the domain
grid via a Fast-Fourier-Transform (FFT) method.
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II.7 Halo Finding

Performing a cosmological simulation is only one step in the process of understanding
structure formation by means of computer simulations; the ensembles of millions of
(dark) matter particles generated by the actual run still require interpreting and then
comparison to the real Universe. This necessitates access to analysis tools to map the
phase-space which is being sampled by the particles onto “real” objects in the Universe;
traditionally this has been accomplished through the use of “halo finders”. Halo finders
mine simulation data to find locally over-dense gravitationally bound systems, which
are then attributed to the dark haloes we currently believe surround galaxies. Such
tools have lead to critical insights into our understanding of the origin and evolution
of structure and galaxies. To take advantage of sophisticated simulation codes and to
optimise their predictive power one needs an equally sophisticated halo finder.

Over the years, halo finding algorithms have paralleled the development of their partner
N -body codes. We briefly outline the major halo finders currently in use.

II.7.1 Friends-Of-Friends

The Friends-of-Friends (FOF) (Davis et al., 1985; Frenk et al., 1988) algorithm uses
spatial information to locate haloes. Specifying a linking length blink the finder links
all pairs of particles with separation equal to or less than blink and calls these pairs
“friends”. Haloes are defined by groups of friends (friends-of-friends) that have at
least one of these friendship connections. Two such advantages of this algorithm are
its ease of interpretation and its avoidance of assumption concerning the halo shape.
The greatest disadvantage is its simple choice of linking length which can lead to
a connection of two separate objects via so-called linking “bridges”. Moreover, as
structure formation is hierarchical, each halo contains substructure and thus the need
for different linking lengths to identify “haloes-within-haloes”. There have been many
variants to this scheme which attempt to overcome some of these limitations (Suto
et al., 1992; Suginohara and Suto, 1992; van Kampen, 1995; Okamoto and Habe, 1999;
Klypin et al., 1999a).

II.7.2 DENMAX/SKID

DENMAX (Bertschinger and Gelb, 1991; Gelb and Bertschinger, 1994) and SKID
(Weinberg et al., 1997) are similar methods in that they both calculate a density
field from the particle distribution, then gradually move the particles in the direction
of the local density gradient ending with small groups of particles around each local
density maximum. The FOF method is then used to associate these small groups with
individual haloes. A further check is employed to ensure that the grouped particles
are gravitationally bound. The two methods differ through their calculation of the
density field. DENMAX uses a grid while SKID applies an adaptive smoothing kernel
similar to that employed in Smoothed Particle Hydrodynamics techniques (Lucy, 1977;
Gingold and Monaghan, 1977; Monaghan, 1992). The effectiveness of these methods
is limited by the method used to determine the density field (Goetz et al., 1998).
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II.7.3 Bound-Density-Maxima

A similar technique to the above is the Bound Density Maxima (BDM) method (Klypin
and Holtzman, 1997; Klypin et al., 1999a). In this scheme a smoothed density is derived
by smearing out the particle distribution on a scale rsmooth of order the force resolution
of the N -body code used to generate the data: randomly placed “seed spheres” with
radius rsmooth are shifted to their local centre-of-mass in an iterative procedure until
convergence is reached. Hence, as with DENMAX and SKID, this process finds local
maxima in the density field. Bullock et al. (2001) further refined the BDM technique by
first generating a set of possible centres, ranking the particles with respect to their local
density and then implementing modifications which allow for credible identification of
haloes-within-haloes. The Bullock et al. (2001) adaptation to BDM excels at finding
halo substructure.

II.7.4 MLAPM’s-Halo-Finder

Fig. 8. This panel shows a series of 3 consecutive refinement levels of MLAPM’s grid structure
starting at the 5th refinement level superimposed upon the density projection of the particle
distribution (cf. also Fig. 3).

Prospective Halo Centres The general goal of a halo finder is to identify grav-
itationally bound objects. As all haloes are centered about local over-density peaks
they are usually found simply by using the spatial information provided by the particle
distribution. Thus, the haloes are located as peaks in the density field of the simu-
lation. To locate objects in this fashion, the halo finder is required in some way to
reproduce the work of the N -body code in the calculation of the density field or the
location of its peaks. When locating haloes like this, the major limitation will always
be the appropriate reconstruction of the density field. With that in mind we introduced
MLAPM’s-Halo-Finder, MHF hereafter.
MHF essentially uses the adaptive grids of the original simulation code MLAPM to locate
the centres of prospective haloes. As previously mentioned in Section II.6, MLAPM’s
adaptive refinement meshes follow the density distribution by construction. Grid
structure naturally “surrounds” the haloes as they are simply manifestations of over-
densities, a view which can best be appreciated through inspection of Fig. 8. In this
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figure, the refinement grids of MLAPM are superimposed over the projected density of
the particle distribution. The left image is the 5th refinement level, with the 6th and
7th levels shown in the middle and right panel, respectively. We emphasise that the
grids get successively smaller and are subsets of other grids on lower refinement levels.
The advantage of reconstructing and using these grids to locate haloes is that they
naturally follow the density field with the accuracy of the N -body code. No additional
scaling length is required, in contrast with techniques such as FOF. Therefore, MHF
avoids one of the major complications inherent to most halo finding schemes as a nat-
ural consequence of its construction.

Fig. 9. This figure illustrates the restructuring of the nested MLAPM grids into to the “grid
tree”. The left side represents an idealised refinement grid structure, while the right side
shows the re-ordering of these grids into a “grid tree”. Note that each branch of the grid tree
represents a single dark matter halo within the simulation.

Gathering Halo Particles An initial guess for particles belonging to a (sub-)halo in
a cosmological simulation is based upon the adaptive mesh hierarchy of the simulation
code MLAPM. The adaptive meshes are organized into a tree structure where the end
leave of each branch is one of the prospective halo centres. The situation is sketched
in Fig. 9. We now need to remember that one of the features of MLAPM is to link
particles to the finest node surrounding it (cf. Section II.6.1). Therefore, to obtain a
first set of particles “belonging” to a given centre we collect all particles starting at the
end-leave moving up the tree to a point where the branch merges with another branch.
That “intersection” with another halo marks the point where two centres share a larger
(lower density) grid, i.e. they are embedded within a lower isodensity contour. Not to
miss any particles that possibly belong to a halo we also collect all the particles from
that parent branch that are within half the distance to the next closest more massive
branch.

Unbinding Procedure Once we know the prospective centres for haloes and have
a list of particles possibly belonging to that halo we test whether the particles are
gravitationally bound to it or not.
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In order to remove the unbound particles we have to obtain the (local) escape ve-
locity vesc(r) at each particle position. As vesc is directly related to the (local) value
of the potential we integrate Poisson’s equation (under the assumption of spherical
symmetry):

∆φ(r) =
1

r

d

dr

(
r2dφ

dr

)
= 4πGρ(r) (II.28)

The first integral reads as follows

r2dφ

dr
−
[
r2dφ

dr

]
r=0

= 4πG
∫ r

0
ρ(r′)r′2dr′ = GM(< r) (II.29)

This equation shows that dφ/dr ∝ M(< r)/r2 and hence r2dφ/dr → 0 for r → 0. We
are therefore left with the following first-order differential equation for φ(r):

dφ

dr
= G

M(< r)

r2
(II.30)

Another integration leaves us with

φ(r) = G
∫ r

0

M(< r′)

r′2
dr′ + φ0 (II.31)

This time we need to calculate φ0. We do this by requiring φ(∞) = 0:

φ(∞) = G
∫∞
0

M(<r′)
r′2

dr′ + φ0

= G
∫ rvir
0

M(<r′)
r′2

dr′ + G
∫∞
rvir

M(<r′)
r′2

dr′ + φ0

= G
∫ rvir
0

M(<r′)
r′2

dr′ + GMvir

∫ rvir
0

1
r′2

dr′ + φ0

= G
∫ rvir
0

M(<r′)
r′2

dr′ + GMvir

r
+ φ0

(II.32)

and hence

φ0 = −
(
G
∫ rvir

0

M(< r′)

r′2
dr′ + G

Mvir

r

)
(II.33)

Note that we assume that the halo is truncated at rvir when evaluating the integral∫∞
rvir

M(<r′)
r′2

dr′.
Unbound particles are removed iteratively where we integrate Eq. (II.31) along a list of
radially ordered particles; the same holds for obtaining φ0 that has to be re-evaluated
prior to a new iteration.

MHF in Action A visual impression of MHF can be viewed in Fig. 10. Here we show
the colour-coded density field of a dark matter halo (left panel) and the subhaloes
identified by MHF (right panel). Note that the host halo itself (which is in fact the
whole object shown on the left) is not marked in the right panel for clarity. This figure
nicely demonstrates the capabilities of MHF: our halo finder is proficient in locating
even the smallest subhaloes without the need to fine-tune any technical parameters.
We further like to mention that MHF also works on-the-fly when performing a simulation
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Fig. 10. MHF in action: the left panel shows the colour-coded density field of a particular
host haloes while the right panel additionally marks the positions and radii of all identified
subhaloes. Note that the host is not marked for clarity.

with MLAPM; whenever the user requests to store an output file of the simulation the
code automatically generates a halo catalogue, too.
This work has been published as “The evolution substructure I: a new identification
method” (Gill S.P.D., Knebe A., Gibson B.K., 2004, MNRAS 351, 399).
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II.8 Initial Conditions

Before actually staring a cosmological simulation one needs to generate the appropriate
initial conditions. In Layman’s terms this means to convert the observed fluctuations
in the cosmic microwave background radiation into density perturbations and generate
a particle distribution with the corresponding statistical properties. This is fairly
straightforward under the assumption that the fluctuations are of Gaussian nature; in
that case one single function is sufficient to describe the perturabtions, namely the
power spectrum of matter perturbations P (k). In this Section we are going to explain
how to perform this task and present a study that checks the credibility of the initial
conditions obtained this way.

II.8.1 Generating Cosmological Initial Conditions

The commonly used way for setting up initial conditions for a cosmological simulation
is to make use of the Zeldovich approximation to move particles from a Lagrangian
point ~q to an Eulerian point ~x (e.g. Efstathiou et al., 1985):

~x = ~q −D(t)~S(~q) , (II.34)

where D(t) describes the growing mode of linear fluctuations and ~S(~q) is the “dis-
placement field”. This method is not restricted to a cosmological scenario nor to the
Zeldovich approximation: it is very general, relying only on the continuity equation for
the transport of particles in the limit D(t) → 0. The initial Lagrangian coordinates ~q
are usually chosen to form a regular, three-dimensional lattice although there are other
possible point-particle realizations yielding a homogeneous and isotropic density field
on large scales (i.e. glass-like initial condition, White, 1996).

For the runs presented in this study we used the code described in Klypin and Holtzman
(1997) to set up the initial conditions

~S(~q) = ∇qΦ(~q), Φ(~q) =
∑
~k

a~k cos(~k · ~q) + b~k sin(~k · ~q) , (II.35)

where the Fourier coefficients a~k and b~k are related to a pre-calculated input power
spectrum of density fluctuations, P (k), as follows:

a~k = R1
1

k2

√
P (k), b~k = R2

1

k2

√
P (k). (II.36)

R1, R2 are (Gaussian) random numbers with mean zero and dispersion unity. The
factor 1/k2 is (the Fourier transform of) the Green’s function of Poisson’s equation9 and
Φ(~q) can therefore be understood as the gravitational potential created by a Gaussian
stochastic density field whose power spectrum agrees with the input P (k); the power
spectrum P (k) measures the strength of each individual k-mode contributing to the
density field. However, to fully preserve the random nature both amplitudes (sine- and
cosine-wave) are to be picked from a Gaussian distribution.

Eq. (II.35) can be rewritten introducing complex numbers:

9Actually, −1/k2 is the correct Green’s function, but the factor −1 can be dropped as R1 and R2

scatter around zero.
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Φ(~q) =
∑
~k

A~k exp(ı[~k · ~q + θ~k]), A~k exp(ıθ~k) :=
1

2
[a~k + a−~k − ı(b~k − b−~k)]. (II.37)

Both A~k and θ~k need to be drawn from appropriate random distributions. However, the
ICs of cosmological relevance are ergodic for A~k with k � kmin, making their random
nature irrelevant: spatial regions of size much smaller than the simulation box already
work as many different realizations inside the box for those amplitudes. Thus, cosmic
variance enters through the random nature of the phases θ~k and of the amplitudes A~k

for k ≈ kmin.

II.8.2 The Reliability of Cosmological Initial Conditions

In order to check the credibility of the initial conditions generated in above outlined
way we create ten random realizations of the same power spectrum P (k) by using
different random seeds when drawing R1, R2 in Eq. (II.36). The input power spectrum
P (k) was calculated using the CMBFAST code (Seljak and Zaldarriaga, 1996), and
all parameters (e.g. box size, number of particles, force resolution, integration steps,
etc.) were fixed except for the seed for generating the random sequence providing the
R–values10.
These initial conditions for N -body simulations were tested with respect to their corre-
lation properties. Recent claims by Baertschiger et al. (2002) throw doubts on the abil-
ity of this method to clearly reproduce the analytical input correlations: Baertschiger
et al. (2002) claim that the power spectrum P (k) and the mass variance σM(r) as
recovered from the initial conditions deviate from the expected behavior.
Our estimator for the mass variance distributes a certain number of spheres with ra-
dius r at random in the simulation volume and compares the number of particles inside
those spheres to the expected mean value

σ2
M,est(r) =

1

〈Nr〉2
Ns∑
i=1

(Ni(r) − 〈Nr〉)2

Ns − 1
. (II.38)

Ns is the total number of spheres with radius r and 〈Nr〉 = 〈ρ〉4πr3/3mp is the mean
number of particles in such a sphere.
We first thoroughly tested our estimator Eq. (II.38) by confirming the scaling relations
predicted for simple particles distribution as for instance a Poisson distribution and a
shuffled lattice. The result can be viewed in the left panel of Fig. 11. The estimator has
then been applied to the set of ten initial conditions alluded to above with the result
presented in the right panel of Fig. 11. The solid line in that plot is the analytical
curve as derived from a simple integration of the initial input power spectrum

σ2
M(r) =

1

2π2

∫ +∞

0
P (k)Ŵ 2(kr)k2dk, Ŵ (x) =

3

x3
(sin x− x cos x) . (II.39)

Contrary to the findings of Baertschiger et al. (2002), we observe that the initial con-
ditions agree, from approximately the scale of the particle Nyquist frequency out to
nearly half the box size, with the analytical predictions. The faster drop of 〈σ2

M,est(r)〉set
for scales approaching the box size is simply the effect of the finite (periodical) box. As

10An appropriate routine might be GASDEV from Numerical Recipes (Press et al., 1992).
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Fig. 11. Reliability check for our σ2
M,est(r) estimator Eq. (II.38) (left panel). The solid lines

have the slopes of the analytical expectations (all amplitudes are arbitrary). (right panel).

soon as the volume of the sphere comes close to the actual box size (which happens for
r ≈ B/2) one finds nearly all particles in the sphere due to the periodic boundary con-
ditions. Hence the variance σ2

M,est(r) drops faster than predicted by Eq. (II.39). And
the larger amplitude of σ2

M,est(r) for small scales is indeed a reflection of the discreteness
of the initial conditions. But in any case Fig. 11 is a rather convincing argument that
the mass variance in the initial conditions does agree with the CDM type fluctuations
as described by the input power spectrum P (k).
This work has been published as “On the reliability of initial conditions for dissipa-
tionless cosmological simulations” (Knebe A., Dominguez A., 2003, PASA 20, 173)
and as a comment on “On the problem of initial conditions in cosmological N-body
simulations” (Dominguez A., Knebe A., 2003, EpL 4, 631).
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This part represents a summary of the following publications:

(1) Knebe A., Islam R.R., Silk J., 2002, MNRAS 326, 109
(2) Knebe A., Devriendt J.E.G., Mahmood A., Silk J., 2002, MNRAS 329, 813
(3) Little B., Knebe A., Gibson B.K., 2003, MNRAS 341, 617
(4) Knebe A., Devriendt J.E.G., Gibson B.K., Silk J., 2003, MNRAS 345, 1285
(5) Knebe A., Gibson B.K., 2004, MNRAS 347, 1055
(6) Knebe A., Arnold B., Power C., Gibson B.K., 2008, MNRAS 386, 1029

III.1 Introduction

The currently favoured ΛCDM model of cosmological structure formation (cf. Sec-
tion I.4) has proven to be extremely successful at describing the clustering of matter
on intermediate to large scales (e.g. Springel et al., 2005; Spergel et al., 2007; Komatsu
et al., 2008). In contrast, it has been argued that the predictions of the ΛCDM model
are at odds with observations on the scales of galaxies, on the basis of cosmological
N -body simulations. The major discrepancies can be summarized as follows

• Cold dark matter haloes are predicted to have “cuspy” density profiles with inner
logarithmic slopes of approximately -1.2 (e.g. Navarro et al., 2004; Tasitsiomi
et al., 2004; Diemand et al., 2005; Reed et al., 2005), whereas high resolution
observations of low surface brightness galaxies appear to require haloes with
constant density cores (e.g. Gentile et al., 2007; McGaugh et al., 2007).

• Furthermore, CDM haloes are predicted to contain a wealth of substructure,
which we might expect to observe as satellite galaxies within galactic haloes, in
sharp contrast to the observed abundance of satellites around our Galaxy and
others (Klypin et al., 1999b; Moore et al., 1999).

• Implied by point 1., the very inner regions of simulated CDM haloes are too
dense, which leads to too efficient baryonic cooling. This results into simulated
galactic disks with too low angular momentum (Steinmetz and Navarro, 1999).

Suggested solutions to these problems have included allowing the dark matter to be
collisional (i.e. self-interacting) rather than collisionless (Spergel and Steinhardt, 2000;
Bento et al., 2000), allowing it to be warm rather than cold (Bode et al., 2001; Avila-
Reese et al., 2001; Knebe et al., 2002), or introducing non-standard modifications to an
otherwise unperturbed CDM power spectrum (e.g. Bullock, 2001; Little et al., 2003).
In this part we are going to explore some of these alternative structure formation
scenarios and compare them against the ΛCDM paradigm.
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III.2 Warm Dark Matter

Fig. 12. Power spectra of cold vs. warm dark matter models. ΛWDM1 corresponds to a
warmon mass of 1.5keV and ΛWDM2 to 0.5keV.

Arguably one of the most promising (and least intrusive) modification to the (cold)
dark matter paradigm is to allow the dark matter particle to be warm (i.e. warm
dark matter, WDM hereafter). In such a case, warm dark matter particles will have
a relatively high thermal velocity dispersion at the era of decoupling and therefore a
non-negligible free-streaming scale λfs. This modification results in a change to the pri-
mordial matter power spectrum, corresponding to a damping of density perturbations
on scales below a filtering scale λf (which is related to the free-streaming scale λfs),
which in turn is related to a filtering mass Mf (Bardeen et al., 1986; Bode et al., 2001;
Avila-Reese et al., 2001; Knebe et al., 2002).
As an illustration we present two such warm dark matter power spectra in comparision
to the ΛCDM model in Fig. 12 where ΛWDM1 corresponds to a warmon mass of 1.5keV
and ΛWDM2 to 0.5keV. The following Sections III.2.1–III.2.3 now take a closer look
at properties of dark matter haloes forming in simulations of WDM cosmic structure
formation. The simulations have been performed using identical phase information
when generating the initial conditions (cf. Section II.8) to allow for a direct cross-
comparison of objects.

III.2.1 The Overabundance of Satellite Galaxies

As WDM was “designed” to reduce small scale power in the simulation it comes at
no surprise that we find a depletion of subhaloes in this model. This can be viewed
in Fig. 13 where we show the grey-scaled density field of two host haloes. While the
upper panel shows those two objects in the CDM simulation we notice the clear trend
for the number of substructures to decrease with decreasing warmon mass (the middle
panel shows the ΛWDM1 and the lower panel the ΛWDM2 model). In terms of the
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Fig. 13. Grey scaled density field of two galactic haloes (left and right column, respectively)
identified at z=0. The upper row shows the ΛCDM model whereas the middle and bottom
row are taken from the ΛWDM1 and ΛWDM2 model, respectively.
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number of subhaloes WDM models are therefore in better agreement with observations.
However, we also note (though not shown here) that WDM has little influence on the
shape of the density profile which still inhibits the “cuspy” nature in the central parts.
The only difference being the concentration of haloes which is lowered in WDM. This
is also the explanation for the depletion of subhaloes: they have lower concentration
and are hence more prone to tidal disruption.

This work has been published as “Merger Histories in WDM Structure Formation Sce-
narios” (Knebe A., Devriendt J.E.G., Mahmood A., Silk J., 2002, MNRAS 329, 813).

III.2.2 The dynamics of subhaloes in WDM models

Fig. 14. Cumulative distribution of relative velocities between all subhaloes and their re-
spective host. The thin vertical line is representative of the collisional speed of the “Bullet”
cluster.

Aside from the actual number of subhaloes are there other apparant differences in the
subhalo populations of CDM and WDM host haloes?
In Fig. 14 we plot the cumulative distribution of relative velocities (Vsat− Vhost) for all
interior subhaloes, where Vsat and Vhost are the centre-of-mass velocities of all particles
inside the virial radius of the subhalo and the host, respectively. Relative velocities
have been normalised to the circular velocity Vvir of the host at the virial radius. If we
compute this quantity for the “Bullet cluster” (Markevitch, 2006) using the estimate of
the mass deduced from weak lensing (Clowe et al., 2004), the normalised collision speed
(Vsat − Vhost)/Vvir is approximately 1.9 (and shown as a thin vertical line). We need to
stress that the Bullet Cluster (1E0657-56) is on ongoing merger and poses a challenge
to CDM as the relative speed of the encounter is extremely large and there are not
that many high-velocity encounters predicted within the CDM paradigm (Hayashi and
White, 2006).
Fig. 14 now reveals that ∼6% of subhaloes in the CDM model have normalised relative
velocities in excess of 1.9, compared to ∼10% in the WDM model. In other words, the
probability of a high-speed encounter is greater in the WDM model than in the CDM
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model.

This work has been published as “The dynamics of subhaloes in warm dark matter
models” (Knebe A., Arnold B., Power C., Gibson B.K., 2008, MNRAS 386, 1029).

III.2.3 Top-Down Fragmentation of WDM Filaments

Fig. 15. Gray-scaled image of the logarithm of the density field around the filament at
redshifts z = 1 (left column), z = 3 (middle column) and z = 5 (right panel) for ΛWDM2
(upper row) and ΛCDM (lower row).

As outlined in Section I.3 structure formation proceeds substantially different for cold
and hot dark matter. Now, warm dark matter is somewhat in-between and it therefore
only appears natural to ask whether objects primarily form top-down (as in HDM) or
bottom-up (as in CDM).
While we investigated the hierarchical structure formation of WDM haloes in a previous
study (Knebe et al., 2002), we now set the focus upon the emergence of objects in
filaments. To this extent we simulated one particular filament with high spatial and
mass resolution in CDM and WDM. Fig. 15 shows the particle distribution for both
models with each particle being grey-scaled proportionally to the logarithm of the local
(over-)density. A striking feature of Fig. 15 is the marked granularity of the density
field in the CDM model at all redshifts in contrast with WDM. This reflects the lack
of filtering of power on small scales in CDM as opposed to WDM. However, while the
WDM filament is obviously different from its CDM counterpart at redshift z=5, they
are similar at z=1. This similarity is all the more remarkable that the logarithmic
scale used to plot the density fields shown in Fig. 15 artificially enhances the density
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contrast, thus highlighting differences between the two universes that would have gone
unnoticed had the scale been linear.
A further difference of note is the appearance of individual (low-mass) haloes during
the course of the WDM filament evolution, whereas dense objects only seem to be
merging in the CDM filament, therefore decreasing steadily in number. This is a clear
indication of a top-down fragmentation of the filament into smaller entities opposite to
hierarchical structure formation in CDM.
We need to mention at this point that these results have recently been challenged by
Wang and White (2007) who claim that it is intrinsically difficult to simulate any kind
of structure formation in hot/warm dark matter models. However, we believe that the
final verdict is still out there and will investigate and check their claims, respectively.

This work has been published as “Top-Down Fragmentation of WDM Filaments” (Knebe
A., Devriendt J.E.G., Gibson B.K., Silk J., 2003, MNRAS 345, 1285).
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III.3 Bumpy Power Spectra

Several mechanisms have been proposed that could generate “features” in the primor-
dial spectrum during the epoch of inflation. Among these are models with Broken
Scale Invariance (BSI) (Lesgourgues et al., 1998), and particularly BSI due to phase
transitions during inflation (Barriga et al., 2001). Other inflationary models include
resonant production of particles (Chung et al., 2000) and non-vacuum initial states
as the quantum mechanical origin for inflationary perturbations (Martin et al., 2000).
Broad features can also be introduced into the power spectrum by including a run-
ning spectral index in slow-roll inflationary models (e.g. Hannestad et al., 2001). After
inflation, other effects such as pressure-induced oscillations11 in the matter radiation
fluid before decoupling also leave an imprint in the overall matter transfer function
towards small scales mainly in the form of successive crests and troughs (Eisenstein
and Hu, 1998). These features will therefore also be part of the cosmological matter
power spectrum after matter-radiation equality. We therefore investigated the effects
of such features onto structure formation by means of cosmological simulations again.

III.3.1 Mocking different Cosmologies

Fig. 16. CDM input spectra containing several features (left panel) and the evolution of the
abundance of haloes more massive than 1014h−1M�normalised to unity at redshift z = 0 in
those models (right panel).

In the left panel of Fig. 16 we present a series of artifically generated “bumps” and
“dips” into an otherwise unperturbed matter power spectrum P (k) (solid line). One
particular interesting quantity to investigate is the abundance evolution of galaxy clus-
ters which can be viewed in the right panel of Fig. 16. It has been used throughout the
literature to put constraints on the matter content of the Universe and the density pa-
rameter Ωm, respectively (e.g. Bahcall et al., 1997, 1999). We note that the abundance
in Fig. 16 has been normalized to unity at redshift z = 0 as we are mainly interested
in comparing the evolution rather than the absolute value.

11This is also recorded in the oscillatory nature of the spectrum of the cosmic microwave background
fluctuations.
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This figure indicates that the evolution of the abundance of galaxy clusters is not a
reliable measure of Ωm if there are features on scales of a few Mpc in the primor-
dial power spectrum. Conversely, if we know the cosmological model parameters from
other measurements, the cluster abundance evolution permits us to probe features in
the power spectrum that are in the nonlinear regime at the present epoch, and hence
difficult to discern directly from current epoch measurements.

This work has been published as “Bumpy Power Spectra and Galaxy Clusters” (Knebe
A., Islam R.R., Silk J., 2001, MNRAS 326, 109).

III.3.2 Bumpy Power Spectra vs. WDM

Fig. 17. Input power spectra for WDM vs. Bump simulations (left panel) and the evolution
of halo abundance for particle groups with mass M in the range [1010h−1M�,1011h−1M�]
(right panel).

We may even go one step further and interpret WDM has some kind of dip in the
matter power spectrum P (k). Both, dips (cf. Fig. 16) and WDM (cf. Fig. 12) reduce
the power and hence may have comparable effects when it comes to, for instance, the
number of satellite galaxies.
For the dip model presented in the left panel of Fig. 17 we are using the same prescrip-
tion to introduce a feature into an otherwise unperturbed CDM power spectrum as for
the simulations presented in Section III.3.1. The power taken away from the standard
ΛCDM model via the dip agrees with the lack of power in the ΛWDM model to the
extend that the integral

σ2 =
1

2π2

∫ k=16hMpc−1

0
P (k)k2dk (III.1)

is identical for the ΛWDM and dip model (k = 16hMpc−1 is the point for which the dip
meets the unperturbed ΛCDM power spectrum again). The power in the dip model
only drops in a narrow interval around k0 with the width of that interval controlled by
the parameter σmod. A visualization of the three power spectra used in this study is
given in Fig. 17 (left panel).



46 III.3. BUMPY POWER SPECTRA

In the right panel of Fig. 17 we highlight the number density evolution of objects in
the mass range 1010h−1M�< M < 1011h−1M� by plotting the abundance evolution for
particle groups within that range out to redshift z = 5. Again, the behavior for WDM
and the Dip model are very similar, but we see the trend for a steeper and faster
evolution in the latter.
We further showed (though not presented here) that some of the large-scale cluster-
ing patterns of this new dip model follow more closely the usual CDM scenario while
simultaneously suppressing small scale structures (within galactic haloes) even more
efficiently than WDM. The analysis in the original paper (Little et al., 2003) shows
that the dip model appears to be a viable alternative to WDM but it is based on
different physics. Where WDM requires the introduction of a new particle species the
dip model is based on a non-standard inflationary period. If we are looking for an
alternative to the currently challenged standard ΛCDM structure formation scenario,
neither the ΛWDM nor the new dip model can be ruled out based on the analysis
presented in Little et al. (2003). They both make very similar predictions.

This work has been published as “Warm Dark Matter vs. Bumpy Power Spectra” (Little
B., Knebe A., Gibson B.K., 2003, MNRAS 341, 617).
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III.4 Modified Newtonian Dynamics

Some of the problems alluded to in the introduction of Section III.1, as for instance
the overabundance of satellites, can be resolved with modifications such as introducing
a filtering-scale (or “dips” produced during non-standard inflationary epochs) in the
power spectrum of primordial density perturbations (e.g. WDM), self-interactions of
dark matter, etc., but none of the proposed solutions have been able to rectify all
shortcomings of ΛCDM simultaneously.
Therefore, there might be alternative solutions worthy of exploration, one of which is
to abandon dark matter completely and to adopt the equations of MOdified Newtonian
Dynamics (MOND; Milgrom 1983Milgrom (1983); Bekenstein and Milgrom (1984)). It
has already been shown by other authors that this simple idea might explain many
properties of galaxies without the need of non-baryonic matter (e.g. Begeman et al.,
1991; Milgrom, 1994; Sanders, 1996; McGaugh and de Blok, 1998; Scarpa et al., 2003).
MOND is also successful in describing the dynamics of galaxy groups and clusters
(Sanders, 1999; Milgrom, 1998), globular clusters (Scarpa et al., 2003) and, to a limited
extent, gravitational lensing (Mortlock and Turner, 2001; Qin et al., 1995). A recent
review of MOND is given by Sanders and McGaugh (2002) which also summarizes
(most of) the successes alluded to above.

Fig. 18. Comparison of the large-scale density field of the three models under investigation
at redshift z = 0 (bottom) and z = 5 (top). The left column shows the ΛCDM simulation,
the middle column the MONDian cosmological simulation and the right one the fiducial
OCBMond model.

Here we present a series of high-resolution N -body simulations in which the equations
of motion have been changed to account for MOdified Newtonian Dynamics (MOND).
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For the technical details and equations involved we refer the reader to the original
paper by Knebe and Gibson (2004).
We showed that a low-Ω0 MONDian model with an appropriate choice for the normal-
isation σ8 can lead to similar clustering properties at redshift z = 0 as the commonly
accepted (standard) ΛCDM model. However, such a model shows no significant struc-
tures at high redshift with only very few objects present beyond z > 3 that can be
readily ascribed to the low Ω0 value adopted. The agreement with ΛCDM at redshift
z = 0 is driven by the more rapid structure evolution in MOND. This agreement can
be viewed in Fig. 18 where we show for three simulations, i.e.

• a standard ΛCDM model,

• an open, low-Ω0 model with the same σ8 = 0.9 as ΛCDM,

• an open, low-Ω0 model with MOND and adjusted σMOND
8 = 0.4 << σ8.

Fig. 19. Redshift evolution of the abundance of haloes with mass M > 1011h−1M�.

a projection of the whole simulation with each individual particle grey-scaled according
to the local density at redshift z = 0 and z = 5. This figure indicates that the MOND
simulation (middle column) looks fairly similar to both the ΛCDM model (left column)
and the OCDM model (right column) in terms of the locations of high density peaks
(dark areas), filaments and the large-scale structure, respectively. One should bear
in mind though that the MONDian simulation was started with a much lower σMOND

8

normalisation than the other two runs. This is in fact reflected in the upper panels
showing the density field at redshift z = 5; the MOND simulation is less evolved.
As in the previous Sections, the evolution of the abundance of objects proofs to be
again a discriminator for the different cosmological models. To this extent, Fig. 19
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shows the (integral) abundance evolution of objects with mass M > 1011h−1M�. The
OCDM model undoubtly experiences very little evolution from z ∼ 5 to today whereas
both other models show a very steep evolution. The discrepancy between the MOND
model and the other two models at redshift z = 5 can, however, be ascribed to the
lower initial σMOND

8 value again; the MOND model was set up with much smaller initial
density perturbation which only grew to a comparable level of clustering via the effects
of MOND. This is again in agreement with the findings of Sanders (2001) who showed
that the collapse of spherically symmetric overdensities becomes MOND dominated for
redshifts z ∼< 5 and hence starts to outrun Newtonian models (cf. Fig. 5 in Sanders
2001).

This work has been published as “Galactic Haloes in MONDian Cosmological Simula-
tions” (Knebe A., Gibson B.K., 2004, MNRAS 347, 1055).
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This part represents a summary of the following publications:

(1) Knebe A., Gill S.P.D., Gibson B.K., 2004, PASA 21, 216
(2) Knebe A., Gill S.P.D., Gibson B.K., Lewis G.F., Ibata R.A., Dopita M.A., 2004,
ApJ 603, 7
(3) Gill S.P.D., Knebe A., Gibson B.K., Dopita M.A., 2004, MNRAS 351, 410
(4) Gill S.P.D., Knebe A., Gibson B.K., 2005, MNRAS 356, 1327
(5) Knebe A., Gill S.P.D., Kawata D., Gibson B.K., 2006, 357, 35
(6) Knebe A., Power C.B., Gill S.P.D., Gibson B.K., 2006, MNRAS 368, 1209
(7) Warnick K., Knebe A., 2006, MNRAS 369, 1253
(8) Warnick K., Knebe A., Power C.B., 2008, MNRAS 385, 1859
(9) Knebe A., Draganova N., Power C., Yepes G., Hoffman Y., Gottlöber S., Gibson
B.K., 2008, MNRAS 386, L52
(10) Knebe A., Yahagi H., Kase H., Lewis G.F., Gibson B.K., 2008, MNRAS 388,
L34

IV.1 Introduction

There is mounting evidence that the Cold Dark Matter (CDM) structure formation
scenario provides the most accurate description of our Universe. Observations point
towards a “standard” ΛCDM Universe comprised of 28% dark matter, 68% dark en-
ergy, and luminous baryonic matter (i.e. galaxies, stars, gas, and dust) at a mere 4%
(cf. Spergel et al., 2007; Komatsu et al., 2008, , and Section I.4). This so-called “con-
cordance model” induces hierarchical structure formation whereby small objects form
first and subsequently merge to form progressively larger objects (White and Rees,
1978; Davis et al., 1985, cf. also Section I.3).

Even though CDM appears to have problems with, for instance, the abundance of
satellite galaxies orbiting within a galactic dark matter host halo, there are indica-
tions from gravitational lensing experiments that these (missing) objects are in fact
needed to reconcile observations with theory (Dalal and Kochanek, 2002; Dahle et al.,
2003). Hence, if the (overabundant) satellite population predicted by CDM really does
exist, it is imperative to understand the orbital evolution of these objects and their
deviation from the background dark matter distribution. Moreover, a new astrophys-
ical discipline called “galactic archaeology” has emerged which tries to decipher the
formation history of our very own Milky Way by utilizing the debris fields of tidally
destroyed satellite galaxies (cf. Helmi and de Zeeuw, 2000). While such disrupted
satellites may no longer be detectable in real space, they will still be identifiable in the
“integrals-of-motion-space” due to the conservation of angular momentum and energy.
Large observational projects (e.g. RAVE (Radial Velocity Experiment, Steinmetz et al.
(2006)) and GAIA12) are being initiated to survey millions of stars in phase-space for
exactly this purpose.

In order to test (and possibly confirm) the underlying ΛCDM model utilizing these
“galactic building blocks”, more predictions regarding their properties are necessary
which can be verified by observations. And this is the driving agent for the science
prsented in this Part of the thesis.

12http://www.esa.int/esaSC/120377 index 0 m.html



IV.2. SATELLITE GALAXIES 53

IV.1.1 The Simulations

Our analysis is based on a suite of in total 25 high-resolution N -body simulations.
Eight of them were carried out using the publicly available adaptive mesh refinement
code MLAPM (Knebe et al., 2001) and first presented in Gill et al. (2004a). Another
one was simulated with the ART code and corresponds to the Milky Way type halo
“Box20” introduced in Prada et al. (2006). For the analysis of the radial alignment
signal presented in Section IV.2.3 we augmented these nine hosts with 16 more haloes
taking from various other (re-)simulations (Knollmann et al., in preparation; Knebe
et al. (2008a); Knebe et al. (2008b)) in order to span a host halo mass range from
1012h−1M� to 1015h−1M�. While the particulars of the simulations obviously vary
amongst the runs, they are all based upon the ΛCDM model (with only little variation
in the actual parameters as given by the first and third year WMAP analysis, Spergel
et al. (2003, 2007)). Further, all these hosts contain of order millions of dark matter
particles and the time-sampling of the outputs is sufficient to closely follow the orbital
evolution (and tidal disruption) of their subhalo populations. For the very details we
refer the reader to the respective publication.

IV.1.2 The Haloes

The host haloes (as well as all substructure objects down to 20 particles) are identified
using our novel open source halo finder MHF13 (MLAPM’s-halo-finder; Gill et al., 2004a, see
also Section II.7.4). MHF is based upon the adaptive grid hierarchy of MLAPM and acts
with exactly the same resolution as the N -body code itself; it is therefore free of any
bias and spurious mismatch between simulation data and halo finding precision arising
from numerical effects. For every halo (either host or satellite) we calculate a suite of
canonical properties based upon the particles within the virial/truncation radius. The
virial radius Rvir is defined as the point where the density profile (measured in terms
of the cosmological background density ρb) drops below the virial overdensity ∆vir, i.e.
M(< Rvir)/(4πR3

vir/3) = ∆virρb. This threshold ∆vir is based upon the dissipationless
spherical top-hat collapse model and is a function of time for the given cosmological
model. For z = 0 it amounts to ∆vir = 340. This prescription does no longer apply
to subhaloes where the point Rvir will not be reached due to the embedding of the
satellite within the mass distribution of the host, i.e. the density profile will show a
rise again at a certain point. In that case, we use this “upturn point” and truncate the
object ignoring all particles outside of the corresponding sphere. For a more elaborate
discussion of this process and the halo finder in particular, we refer the reader to Gill
et al. (2004b).

IV.2 Satellite Galaxies

Within the cold dark matter paradigm haloes constantly grow in mass through slow
accretion and violent mergers (cf. Section I.3) and hence satellite galaxies can be con-
sidered the “galactic building blocks”. While a self-consistent cosmological modeling
of both hosts and satellites has long been recognised as optimal, the required mass and

13MHF (and MLAPM) can be downloaded from the following web page
http://www.aip.de/People/aknebe/MLAPM



54 IV.2. SATELLITE GALAXIES

force resolution can be difficult to accommodate (hence the use of static host potentials
in most previous studies, Ibata et al. (cf. 2003); Helmi (cf. 2004); Peñarrubia et al. (cf.
2006)).
The first fully self-consistent simulations targeting the subject were performed by Tor-
men (1997) and Tormen et al. (1998). Both studies were landmark efforts, but lacked
the temporal, spatial, and mass resolution necessary to explore a wide range of environ-
mental effects. Unable to follow the satellite distribution within the host’s virial radius,
satellites were instead tracked only up to and including the point of “accretion”. This
allowed an analysis of the infall pattern, rather than the orbital evolution of the satel-
lites. Ghigna et al. (1998) also investigated the dynamics of satellite galaxies in live
dark matter host haloes. Although greatly increasing the mass and spatial resolution,
they still lacked the temporal resolution to explicitly track the satellite orbits. Instead,
the orbits were approximated using a spherical static potential. More recently, Taffoni
et al. (2003) used N -body simulations coupled with semi-analytical tools to explore
the evolution of dark matter satellites inside more massive haloes. However, they focus
their efforts on the interplay between dynamical friction and tidal mass loss in deter-
mining the final fate of the satellites. Kravtsov et al. (2004) also mainly concentrate
on the mass loss history of satellites using fully self-consistent cosmological N -body
simulations.
In the following Sections we investigate the evolution of substructure and the orbital
parameters of satellites using high spatial, mass, and temporal resolution.

IV.2.1 The Dynamics of Satellite Galaxies

The work described in this sub-section focuses upon a detailed analysis of the temporal
and spatial properties of satellite galaxies residing within host dark matter haloes and is
based upon eight cluster sized dark matter haloes. To date, typical satellite properties
such as orbital parameters and mass loss under the influence of the host halo have
primarily been investigated using static potentials for the dark matter host halo (e.g.
Johnston et al., 1996; Hayashi et al., 2003). We stress that each of these studies have
provided invaluable insights into the physical processes involved in satellite disruption;
our goal was to augment these studies by relaxing the assumption of a static host
potential, in deference to the fact that realistic dark matter haloes are not necessarily
axis-symmetric. Haloes constantly grow in mass through slow accretion and violent
mergers, possessing rather triaxial shapes (e.g. Frenk et al., 1988; Warren et al., 1992;
Kasun and Evrard, 2005; Bailin and Steinmetz, 2005; Allgood et al., 2006; Macciò
et al., 2007; Bett et al., 2007; Gottlöber and Yepes, 2007).
As an example of the results obtained we show in Fig. 20 the eccentricity of each satellite
(represented by the crosses) versus the number of orbits the satellite has completed.
There is a clear trend for eccentricity to decrease as the number of orbits of a satellite
increases. This is also demonstrated by the histogram, which is not the “binned” result
of the crosses, but is instead the average eccentricity for all satellites that had ≥ Norbits

orbits

〈e〉(Norbits) =
1

Nsat(≥ Norbits)

Nsat(≥Norbits)∑
i=1

ei(Norbits) . (IV.1)

Here, ei(Norbits) is the eccentricity of satellite i after Norbits orbits and Nsat(≥ Norbits)
is the number of satellites with equal or more than Norbits orbits.
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Fig. 20. The final orbital eccentricity plotted against the number of orbits completed for
each surviving satellite (pluses). The histograms show the averaged eccentricity.

For example, a satellite that has had 3 orbits contributes its respective value of eccen-
tricity to the average eccentricity in the bins for 1, 2, and 3 orbits. This histogram shows
a trend indicative of orbit circularisation with time. Before the work of Hashimoto
et al. (2002) one would have been quick to interpret this result as dynamical friction
circularising the orbits, however, they suggested otherwise. To confirm this, we se-
lected the satellites at differing pericentre, as dynamical friction is proportional to the
local density of the background field, and thus has it’s strongest influence at pericentre.
Having done this, we saw no significant change in the above trend. Further, when we
used the analytical predictions of Taffoni et al. (2003) we found that very few satellites
in the population presented could be affected by dynamical friction. Therefore, we
do not attribute the circularising of the orbits to dynamical friction. One mechanism
which could be responsible for the circularising of the orbits is the secular growth in
the host halo’s mass. In response to this increase in host mass the velocity and hence
the orbit of the satellite changes.
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This work has been published as “The evolution of galaxy cluster substructure II: linking
dynamics to environment” (Gill S.P.D., Knebe A., Gibson B.K., Dopita M.A., 2004,
MNRAS 351, 410).

IV.2.2 The Spatial Anisotropy of Satellite Galaxies

Fig. 21. Normalized distribution of angles between the position vector ~Rapo
sat of the satellites

measured at the last apocenter and the major axis ~E1,host of the host halo.

Observations of the distribution of bright elliptical galaxies within the Virgo galaxy
cluster show a remarkable collinear arrangement (West and Blakeslee, 2000). Moreover,
this axis also appears to be part of a filamentary bridge connecting Virgo and the rich
cluster Abell 1367. Moreover, even on smaller scales – in galactic systems – there are
clear observational indications that the distribution of the orbits of satellite galaxies is
biased towards the galactic pole (Holmberg, 1969) giving an anisotropic distribution.



IV.2. SATELLITE GALAXIES 57

Zaritsky et al. (1997) found that satellites of (isolated) disk galaxies are scattered
asymmetrically about the parent galaxy and aligned preferentially with the disk minor
axis.
Using the same set of simulations as already presented in Section IV.2.1 we now probe
the alignment of the satellites’ positions with the shape and orientation of the host
halo. To this extent, Fig. 21 presents the (normalized) distribution of angles between
~Rapo

sat and ~E1,host, i.e. the vector to the satellite’s last apocentre and the major axis
of the host halo. This graph shows that there is a clear trend in at least six of the
eight host haloes studied for the two vectors to be aligned (the distribution peaks at
0◦ and 180◦, respectively) meaning that the orbits of the satellites are preferentially
found along the major axis of the host. We like to stress that only satellite galaxies
that at least had one or more complete orbits were taken into account in Fig. 21; the
figure is not based upon the infall pattern of satellites as investigated by, for instance,
Tormen (1997). We also need to stress that the distributions presented in that figure
are normalized, i.e. they are corrected for the bias introduced by plotting them as a
function of the angle θ rather than cos θ.

This work has been published as “Anisotropy in the Distribution of Satellite Galaxy
Orbits” (Knebe A., Gill S.P.D., Gibson B.K., Lewis G.F., Ibata R.A., Dopita M.A.,
2004, ApJ 603, 7).

IV.2.3 The Radial Alignment of Satellite Galaxies

Another property of the satellite population that has caught the interest of observers
and simulators (aside from the aforementioned spatial anisotropy) is the radial align-
ment of their primary axes of subhaloes with respect to the direction towards the host.
The first evidence for this effect was reported for the Coma cluster, where it was ob-
served that the projected major axes of cluster members preferentially align with the
direction to the cluster centre (Hawley and Peebles, 1975; Thompson, 1976). Such a
correlation between satellite elongation and radius vector has further been confirmed
by statistical analysis of the SDSS data (Pereira and Kuhn, 2005; Agustsson and Brain-
erd, 2006; Wang and White, 2007; Faltenbacher et al., 2008). The radial alignment of
subhalo shapes towards the centre of their host has also been measured for the subhalo
population in cosmological simulations (Kuhlen et al., 2007; Faltenbacher et al., 2007;
Pereira et al., 2008).
In this sub-section we provide evidence that the radial alignment of subhaloes in cos-
mological simulations does not depend on the mass of their host dark matter halo.
Further, the strength of the observed signal is only recovered when measuring the
(projected) 2D shape of subhaloes at about 10-20% of their virial radii.

To measure the radial alignment of subhaloes, we use the eigenvector ~E1 which cor-
responds to the direction of the major axis of the subhalo. We quantify the radial
alignment of subhaloes as the angle between the major axis ~E1 of each subhalo and
the radius vector of the subhalo in the reference frame of the host:

cos θ =
~Rsat ∗ ~E1,sat

|~Rsat|| ~E1,sat|
(IV.2)

The (normalized) distribution P (cos θ) of cos θ measuring the fraction of subhaloes in
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Fig. 22. Distribution of subhalo radial alignment. The histograms are the differential
distribution (with Poissonian error bars) with the best function of the form P (cos θ) ∝ cos4 θ
shown as dashed line. The continuous line represents the cumulative probability distribution
P (< cos θ); the dotted line is the (cumulative) isotropic distribution. Only subhaloes with
Np > 200 and b/a < 0.9 are considered.

the respective bin can be viewed in Fig. 22 where we find a positive radial alignment
signal different from isotropy, in agreement with Kuhlen et al. (2007), Faltenbacher
et al. (2007) and Pereira et al. (2008). We further note that the signal does not depend
on the mass of the host halo.

Fig. 23 now presents the orientation correlation in 2D projection using different per-
centages of inner particles for the determination of the subhaloes’ shape. We observe
a drop in the signal’s strength when restricting to the central parts: considering only
the inner 10-20% of particles we recover the observed correlation noted by Pereira and
Kuhn (2005).

We like to note that the host haloes used in Figs. 22 and 23 are different. These two
studies are based upon two different collaborations each with access to different cos-
mological simulations. The former utilizes a set of 5 objects in each mass bin whereas
the latter combines the information from 40 cluster sized objects.

This work has been published as “On the relation between radial alignment of dark
matter subhaloes and host mass in cosmological simulations” (Knebe A., Draganova N.,
Power C., Yepes G., Hoffman Y., Gottlöber S., Gibson B.K., 2008, MNRAS 386, L52)
and “The radial alignment of dark matter subhaloes: from simulations to observations”
(Knebe A., Yahagi H., Kase H., Lewis G.F., Gibson B.K., 2008, MNRAS Letter, in
press).



IV.2. SATELLITE GALAXIES 59

0 30 60 90
!

0

0.5

1

1.5

2

P
(!

)

All
Inner 80%
Inner 60%
Inner 40%
Inner 20%
Inner 10%

Fig. 23. Correlation of angle between major axes of subhaloes and position of the subhaloes
from the center of their host in 2D projection. Each line shows the correlation using major
axes derived from a fraction of particles. The different lines represent shape measures at
different mass thresholds. Error bars indicate the projection variation.

IV.2.4 Backsplash Galaxies: a new population

The relationship between galaxy morphology and local environment (i.e. the morphology-
density relation) was first noticed by Hubble and Humason (1931), where they reported
that field and cluster galaxy populations differ. However, the origin of this morphology-
density relationship is still not fully understood with several large and small scale mech-
anisms proposed to explain their existence, including ram pressure stripping (Gunn and
Gott, 1972), tidal stripping/star formation (Merritt, 1983, 1984), starvation (Larson
et al., 1980), galaxy merger and harassment (Icke, 1985; Moore et al., 1996) and dy-
namics (Tsuchiya and Shimada, 2000).

We demonstrate in Fig. 24 that a rich population of galaxies exist beyond the virial
radius most of which have previously spent time near the cluster centre. In this figure
we plot for all of our simulated dark matter host haloes the minimum distance Dmin a
subhalo reached to the host’s centre throughout its history versus its current distance
Dz=0. Both distances have been normalised by the host’s present day virial radius Rvir.

The number of backsplash galaxies with Dmin < Rvir and Dz=0 > Rvir is significant and
should be accounted for when interpreting the galaxy morphology-density relationship.
These galaxies penetrate deep within the cluster potential, as deep as their bound
counterparts. Hence, they should be sampling the large and small-scale transformation
mechanisms alluded to above.

Please note that we stacked the data for eight cluster-sized host systems in the prepa-
ration of Fig. 24. Nevertheless, we confirm in a different study that the backsplash
population also exists for galactic host systems (Warnick and Knebe, 2006).
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Fig. 24. Minimum distance for all satellite galaxies versus current distance in terms of
the host’s virial radius. The population in the upper right corner consists of substructure
orbiting within satellites, i.e. sub-subhaloes. This figure clearly indicates that there is a
distinct population of “backsplash” satellites, i.e. Dmin < Rvir and Dz=0 > Rvir in the lower
right corner.

This work has been published as “The evolution of galaxy cluster substructure III: the
outskirts of clusters” (Gill S.P.D., Knebe A., Gibson B.K., 2005, MNRAS 356, 1327).

IV.2.5 The Importance of Satellite-Satellite Interactions

It has been understood for some time that the structure of a galaxy can be affected
by tidal interactions with its close neighbour(s) (e.g. Gunn and Gott, 1972); tell-tale
signs such as tidal tails and disturbed morphologies provide a visible record of these
encounters. Around our own Galaxy, there is substantial evidence for its tidal interac-
tion with the Small and Large Magellanic Clouds (SMC and LMC), the consequences
of which have been studied in detail (e.g. Lin et al., 1995; Oh et al., 1995; Gardiner
and Noguchi, 1996; Yoshizawa and Noguchi, 2003; Bekki and Chiba, 2005; Mastropi-
etro et al., 2005; Connors et al., 2006). What yet remained less well understood and
studied is the interaction of satellite galaxies with other satellites orbiting within the
same host. We therefore quantified the importance of satellite-satellite encounters and
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Fig. 25. Frequency distribution of the average (fractional) mass loss per Gyr. The thick
solid line shows mass loss due to satellite interactions and the dashed line due to the influence
of the host alone.

assessed their impact upon mass loss from the substructure population.
In Fig. 25 we show the distribution of the average mass loss per Gyr induced by either
tidal interactions with the host (dashed line) and encounters with other satellites (solid
line). These two contributions to the total mass loss have been calculated using a novel
method based upon a decomposition of the integral force experienced by each satellite
into the contribution from the host and all other companion satellites (cf. please refer
to the original paper for more details).
This figure demonstrates that the mass loss induced by encounters between satellite
galaxies can be as important as the tidal stripping of mass by the host potential, at
least in dynamically young host systems (halo #8, note that the host haloes are or-
dered by their age with halo #1 being the oldest).

This work has been published as “Interactions of Satellite Galaxies in Cosmological
Dark Matter Haloes” (Knebe A., Gill S.P.D., Gibson B.K., 2004, PASA 21, 216) and
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“The importance of interactions for mass loss from satellite galaxies in cold dark matter
haloes” (Knebe A., Power C., Gill S.P.D., Gibson B.K., 2006, MNRAS 368, 741).

IV.2.6 The Sense of Rotation of Satellite Galaxies

Fig. 26. The peculiar velocity distribution (normalised to the hosts’ velocity dispersion
σv,host). Here velocities are defined to be positive, if the observer classifies the satellite as
prograde, negative velocities mean retrograde motion.

Host dark matter haloes usually carry a small internal angular momentum, which is es-
tablished by the transfer of angular momentum from infalling matter via tidal torques
(Peebles, 1969; Barnes and Efstathiou, 1987). However, Gardner (2001) as well as
Vitvitska et al. (2002) proposed another explanation for the origin of the angular mo-
mentum in galaxies and their dark matter haloes: they claim that haloes obtain their
spin through the cumulative acquisition of angular momentum from satellite accretion.
These two descriptions are certainly linked together and mutually dependent, respec-
tively. A detailed analysis of the orbits of satellite haloes shows that they are directly
connected to the infall pattern of satellites along the surrounding filaments (cf. Knebe
et al., 2004). Those subhaloes falling into the host at early times establish the angular
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momentum of the inner regions of the primary halo (cf. Vitvitska et al., 2002) and
are channelled into the host along the same direction as those merging at later times.
This leads to the speculation that satellites are preferentially co-rotating with the host,
which is going to be investigated in Fig. 26.

In Fig. 26 we present the results for the (differential) peculiar velocity distribution of
subhaloes when viewed in 2D projection. We used one hundred random lines of sight
and the velocities are normalised by the hosts’ velocity dispersion. All satellites to the
left of the vertical dash-dotted “zero” line have been classified as retrograde while all
satellites to the right are observed to be prograde. In addition, the mean number of
prograde and retrograde orbits (along with the 1σ deviation) is given for every host halo
in the upper right corner of every panel. We get a mean observed prograde fraction of
53.3% (±3.3%). The individual observed prograde fractions f obs

p for each dark matter
host are given in the inset panels of the respective plot of Fig. 26.

Despite the weakness of the signal this is a new prediction of CDM structure formation
that can be verified observationally.

This work has been published as “The sense of rotation of subhaloes in cosmological
dark matter haloes” (Warnick K., Knebe A., 2006, MNRAS 369, 1209).

IV.3 Debris from Satellite Galaxies

The tidal disruption of satellite galaxies is characteristic of the hierarchical merging
scenario. As a satellite galaxy orbits within the gravitational potential of its more
massive host, it is subject to a tidal field that may vary both in space and time. The
gravitational force acting on the satellite strips a stream of tidal debris from it, and
in some cases tidal forces may be sufficient to lead to the complete disruption of the
system. This tidal debris tends to form two distinct arms – a leading arm ahead of the
satellite and a trailing arm following the satellite.

Observationally, large scale surveys have uncovered strong evidence for several tidal
steams around the Milky Way (see e.g. Belokurov et al., 2006; Grillmair, 2006; Powell
et al., 2006, for recent observations). The well-known Magellanic stream is an example
of a gaseous stream, arising from the tidal interaction of the Magellanic Clouds with our
Galaxy (e.g. Bekki and Chiba, 2005; Mastropietro et al., 2005; Connors et al., 2006).
The tidal stream associated with the Sagittarius dwarf (Ibata et al., 1994) has been
studied extensively (e.g. Johnston et al., 1995; Helmi and White, 2001; Majewski et al.,
2003; Mart́ınez-Delgado et al., 2004; Johnston et al., 2005, and many others), as has
the Monoceros stream (Newberg et al., 2002; Yanny et al., 2003). Further, Ibata et al.
(2001) have found evidence for a giant stream around M31, while deep photometric
observations by Brown et al. (2006) suggest that this tidal stream and the spheroid of
M31 have similar properties and hence may have a common origin. And even beyond
our Local Group, Pohlen et al. (2004) and Wehner et al. (2006) have found evidence for
tidal features around a number of distant galaxies, while the recent study of Cortese
et al. (2007) has uncovered evidence for the tidal stripping of material from a spiral
galaxy that is in the process of disruption in the galaxy cluster Abell 2667.

While previous studies of individual satellites disrupting in analytical host potentials
via means of controlled N -body experiments hinted at simple and direct links between,
for instance, flattening of the host and dispersion of the debris field (e.g., Ibata et al.,
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2003; Helmi, 2004; Peñarrubia et al., 2006), the situation is vastly more complicated in
“live” host haloes. Already Peñarrubia et al. (2006) pointed out that there is only hope
to recover present-day properties of the host due to the adiabtic response of the stream
to changes in the host potential, we actually go one step further: even the current state
of the host will be difficult to obtain given the complexity of interactions responsible
for the emergence of derbris fields. There are multiple processes driving these effects
and so while we note tentative correlations, we require further simulations to help us
understand what is happening. This will represent the focus of the following Sections.

IV.3.1 Mapping Substructures

Fig. 27. The distribution of satellite particles in the E−L plane for one of the cluster sized
host haloes. The left panel shows the distributions at the time the respective satellite galaxy
enters the virial radius of the host whereas the right panel presents the distributions at z = 0.
Different colours represent particles of different satellites.

We present in Fig. 27 the evolution for eight different (tidally disrupting) satellites
in the so-called integrals-of-motions space, i.e. energy E vs. angular momentum L.
Each satellite is represented by an individual colour. The satellites shown in Fig. 27
are all taken from a self-consistent cosmological simulation of a galaxy cluster of mass
M ≈ 1014h−1M� and represent a fair sample of all available satellites, i.e. their masses
cover a range from from M ∼ 5 × 1010h−1M� to M ∼ 4 × 1012h−1M� and they are
on different orbits. The left panel of Fig. 27 shows the distributions at the time the
respective satellite enters the virial radius of the host, whereas the right panel displays
the distributions at z = 0.
Fig. 27 allows us to gauge the “drift” of satellites in integral-space. We note that,
compared to Fig. 4 of Helmi and de Zeeuw (2000), the integrals-of-motion are hardly
conserved in our “live” model, neither for high nor low mass streamers. The distribu-
tions rather show a large scatter, and have been significantly “re-shaped” over time. In
addition, the mean values of E and L are also moved after the evolution. For instance,
the “red” satellite drifts in time over to the initial position of the “cyan” satellite.
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One encouraging result implied from Fig. 27, however, is that even though the integrals-
of-motion are changing over time (mainly due to the constant growth of mass of the
host halo, Knebe et al. (cf. 2005)), satellites still appear coherent in the E − L plane.
Hence, the integral-space analysis pioneered by Helmi and de Zeeuw (2000) still proves
to be a useful diagnostic to identify streams. We further like to stress that observations
only provide us with the snapshot of the distribution at today’s time, i.e. the right hand
panel of Fig. 27 and hence measuring “evolution” is beyond the scope of, for instance,
RAVE (Steinmetz et al., 2006) and GAIA.
This work has been published as “Mapping Substructures in Dark Matter Haloes”
(Knebe A., Gill S.P.D., Kawata D., Gibson B.K., 2005, MNRAS 357, 35).

IV.3.2 Tidal Streams of Disrupting Subhaloes

Fig. 28. Classifying stream particles according to age and leading/trailing arm. Shown are
the particles of a representative sample of subhalo galaxies orbiting in one of our host haloes
viewed edge-on with respects to the best fit debris plane. The black line represents the path
of the orbit. Grey particles are still bound to the subhalo, red particles are marking the
trailing, blue ones the leading arm. The colours vary from dark to bright, indicating the age
of the respective stream.
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In order to study leading and trailing debris arms we devised an automated method
to identify (and separate) these two arms and hence get a handle on their combined
as well as individual properties. A number of examples are given in Fig. 28 where we
show the orbits of a sample of satellites (crosses) and their respective debris fields. This
figure nicely demonstrates how well our method for tracking debris fields works and
we will now present one particular result. The particulars of this method are given in
Warnick et al. (2008).

Fig. 29. The deviation of debris particles from the best fitting debris plane (normalised to
the virial radius of the respective host) as a function of infall mass for subhaloes with at least
one orbit. Backsplash subhaloes are marked with grey asterisks and the median values of the
distributions are shown in the lower right corners.

Our analysis of the tidal arms reveals that there is a relation between the scatter of
stream particles about the best-fit debris plane and the infall mass of the progenitor
subhalo. This allows us to reconstruct the infall mass from the spread of its tidal debris
in space: for Fig. 29 we fit a plane to the detected debris field and then determine the
deviation of the debris field from this best-fit plane and plot it against the original infall
mass of the satellite (prior to disruption). We observe a correlation between infall mass
and debris deviation. Thus, by measuring the deviation of debris from the debris plane
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itself, it is possible for an observer to predict the most probable mass of the subhalo it
originates from.
This work has been published as “Tidal Streams of Disrupting Subhaloes in Cosmological
Dark Matter Haloes” (Warnick K., Knebe A., Power C.B., 2008, MNRAS 385, 1859).
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V.1 Conclusions

During the past thirty years, numerical simulations of cosmic structure formation have
become a powerful theoretical tool to accompany, interpret, and sometimes to lead
cosmological observations. We presented a (more or less) thorough introduction into
this exciting discipline of “Computational Cosmology”. After a primer on the technical
details and numerical methods (Section II) simulations have been presented that looked
into the differences between the standard ΛCDM model and alternative cosmologies
(Section III) as well as an in-depth study of the dynamics and disruption of satellite
galaxies – the buildung blocks of cosmic structures (Section IV).
In each of these sub-categories we can draw individual conclusions to be summarized
below.

Numerical Simulations We presented a novel solver for the integration of the
equations-of-motion of dark matter particles under their mutual gravity as described
by Poisson’s equation. This solver is based upon arbitrarily shaped adaptive meshes
and hence automatically adapts to the problem at hand. We further highlighted the
differences to other codes in the field that utilize tree-structures to increase the com-
putational speed for obtaining the relevant forces via direct summation.
However, performing the simulation is only the first step in the study of cosmic struc-
ture formation by means of computer simulations. One also needs to identify objects
(galaxies, galaxy cluster, filaments, etc.) in them to be able to compare the results
against observations. To this extent we also developed a new “halo finder” that is
essentially parameter free. Both these codes (i.e. the simulation code MLAPM and the
halo finder MHF) have been made publically available to the community and our main
achievements/results can be summarized as follows.

• We developed an adaptive mesh gravity solver for cosmology.

• We developed a novel halo finder to be used with such simulations.

• Despite the diversity in numerical methods most of the codes used to simulate
structure formation agree with each other.

• Each method though has its strengths and weaknesses and we showed that, for
instance, two-body scattering is more prominent in tree-codes than in adaptive-
mesh-refinement codes.

Alternative Cosmologies We tested whether we can solve to so-called “CDM cri-
sis”, considering even the most extreme alternatives to dark matter (i.e. modified
Newtonian dynamics (MOND), Milgrom (1983)). While most of the suggested solu-
tions are (minor) modifications to the cold dark matter paradigm and include warm
dark matter as well as effects from non-standard inflationary periods, MOND abandons
the need for dark matter completely by adjusting the law of gravity. The main results
from these studies can be summarized as follows.

• None of the studied alternatives is capable of simultaneously rectifying all short-
comings of CDM.

• Warm dark matter greatly reduces the number of subhaloes.
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• Warm dark matter haloes have lower concentrations.

• The likelihood of high-speed encounters akin to the “Bullet” cluster is greater in
WDM than in CDM.

• Non-standard inflationary theories may lead to (bumpy) features in the power
spectrum of primordial density fluctuations and such “bumps” may mock different
cosmologies.

• MONDian cosmological simulations show that it is in fact possible to arrive at a
universe akin to the observed one with a different temporal evolution though.

Despite our efforts to solve the “CDM crisis” by merely tweaking the properties of dark
matter we belive that only when all the governing physics (dark matter and gas) is
included in the theoretical modeling we will have a fair chance of understanding how
galaxies formed and evolved and will possibly resolve the CDM crisis. This refers to
the fact that our simulations are pure dark matter simulations whereas it is rather
obvious that on those scales for which the CDM crisis is apparant the physics of gases
can and should not be neglected. This last point is the main driver for further code
development to be elaborated upon in the Outlook below.

Near-Field Cosmology Within the hierarchical structure formation scenario in-
duced by cold dark matter the smallest entities, i.e. satellite galaxies, are the building
blocks of all larger structures. It therefore appears mandatory to study their formation,
evolution and tidal disruption in greater detail. Only recently it became possible to
address this task not only observationally but also computationally. And as it combines
our knowledge of (large-scale) cosmology and small scale structures it has been dubbed
“Near-Field Cosmology” (Freeman and Bland-Hawthorn, 2002). Utilizing a large suite
of (dark matter only) simulations of individual halos we explored the dynamics of
subhaloes in great detail. The main results obtained are as follows.

• Subhaloes are radially aligned, i.e. their major axis points towards the centre of
the host halo they orbit in.

• Subhaloes are anisotropically distributed, i.e. they are preferentially found along
the major axis of their host halo.

• Subhaloes tend to be on orbits co-rotating with their host.

• Satellite-satellite interactions can lead to significant contributions to mass loss.

• Tidal debris fields from disrupting satellite galaxies are a powerful tool for study-
ing the formation history of their host halos.

• We found a correlation between properties of the debris field and the intial mass
(and orbital eccentricity) of the satellite.

• We developed a technique to separate the leading and trailing debris arm.

• Even in “live” host halos debris fields can be identified as coherent structures in
the integrals-of-motion space.
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• However, the relation between host and debris properties is more complex than
derived from controlled experiments of individual satellites disrupting in analyt-
ical (static) host potentials: we found little correlation of debris fields and host
halo properties.

V.2 Outlook

Amongst many of the unanswered and open questions that emerged during the investi-
gation of cosmic structure formation by means of numerical simulation that could only
be in part presented in this thesis, we like to draw the attention to a small subset of
the problems planned to be addressed in the near future.

The subhalo-satellite galaxy connection For the purposes of the studies pre-
sented in this thesis, we treated “substructure haloes” (or subhaloes) and “satellite
galaxies” as interchangeable. However, the correspondence between dark matter sub-
structures and luminous satellite galaxies is not a straightforward one. And despite
great advances in refining numerical techniques allowing for an ever-increasing reso-
lution of the problem under investigation, the implementation of more complicated
physics such as gas physics significantly raises the complexity and hence degrades the
resolution again. Therefore, complementary to modelling baryonic processes via numer-
ical integration of the hydrodynamics equations we plan to engage in the discipline of
“semi-analytical galaxy formation”. Such a method combines our current understand-
ing of galaxy formation with the predictions from dissipationless CDM simulations such
as the ones presented in this thesis. It utilizes the merger trees of dark matter haloes
found in the simulations and adds analytical prescriptions for galaxy formation. The
parameters of these recipes are gauged by observations of galaxies in the local Universe.
This technique has recently been extremely successfull in explaining the intriguing
result that all satellites of the Milky Way have the same mass interior to 300 parsec, i.e.
M ≈ 107M� while spanning almost four orders of magnitude in luminosity (Strigari
et al., 2008; Li et al., 2008b; Maccio’ et al., 2008). However, at present, it remains
unclear whether the luminosity function of the satellites of the Milky Way and their
peculiar spatial distribution are unique to the Galaxy, or whether these are generic
features that arise during the formation of a typical galaxy. For instance, we found
that there exists a prominent population of “backsplash” subhaloes outside the (virial)
radius of even galactic host haloes. Therefore, we should be able to detect these
objects also about the Milky Way. But to allow for a comparison with obsveration
predictions for their luminosities and/or morphologies are required, too. Therefore,
the future plan is to couple the semi-analytical code GalICS (Hatton et al., 2003) to
our suite of dark matter haloes (cf. Section IV) and derive observable properties for the
satellite galaxy population orbiting within them. We plan to address the question of
the (putative) backsplash population and their possible relation to the rather peculiar
spatial distribution of satellites on a so-called “disk of satellites” (Metz et al., 2007,
2008). We further like to know what actually determines the number of Milky Way
satellites and what shapes their luminosity function.

Galaxies at high-redshift Besides of the discrepancies between simulations of hier-
archical structure formation and observations at low redshift (cf. Section III) there also
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appear to be problems related to our understanding of structure formation at high red-
shift. There is a divergence between the predictions of analytic models and the results
of computer simulations that follow the formation of the first objects in our Universe:
while Jenkins et al. (2001) showed that the mass function of dark matter haloes ap-
pears to be universal, the recent years have seen a number of studies indicating that
this universality actually breaks down in the high-redshift universe (Springel et al.,
2005; Reed et al., 2005; Heitmann et al., 2006; Betancort-Rijo and Montero-Dorta,
2006; Reed et al., 2007). However, can we be certain to actually model and simulate
the mass function at those high-redshifts accurately? While a lot of efforts have been
directed towards modeling haloes as accurately as possible at low redshifts, high red-
shift simulations, however, suffer from their own set of systematic issues as quantified
by Lukić et al. (2007). But as haloes forming at redshifts around z ≈ 15 − 20 will
host the first galaxies and stars that (presumably) re-ionized the Universe, a precise
and quantitative understanding of those objects (and their abundance) is crucial for a
comprehension of the subsequent structure formation. Further, the properties of those
early objects can significantly differ from the particulars of their present day counter-
parts (Cohn and White, 2008; Knebe and Power, 2008) further pointing towards the
necessity to study them in greater detail.
In that regards we plan to investigate the abundance of objects at redshifts z ≥ 10 by
utilizing extremely high-resolution cosmological simulations of hierarchical structure
formation taking into account the criteria set by Lukić et al. (2007). This then allows
us to establish the mass function of high redshift haloes. We shall further apply the
technique of semi-analytical galaxy formation alluded to above to make predictions
that can be tested by the next generation of 21cm missions such as LOFAR and the
SKA that will observationally probe that redshift regime.

Cosmological Magneto-Hydrodynamics Magnetic fields play an important role
in almost all astrophysical phenomena including star formation. But due to the diffi-
culty in analytic modeling magnetic fields are still poorly understood; numerical sim-
ulation again is the major tool for studying their effects and impact.
When it comes to the local Universe, it has been well established that there are
widespread magnetic fields in the intracluster medium (e.g. Carilli and Taylor, 2002;
Govoni, 2006, for a recent review). There has also been tantalizing evidence for mag-
netic fields in the wider intergalactic medium. The origin of these large-scale magnetic
fields is still unknown. Furthermore, it is presently mostly unknown whether these
magnetic fields have played an important role or not in systems ranging from large-
scale structure formation over galaxy clusters to cluster core regions and to galaxy
formation itself. There have only been a few studies aiming at investigating the role
of magnetic fields in the intracluster and intergalactic medium to date (e.g. Ryu et al.,
1998; Dolag et al., 2002, 2005; Brüggen et al., 2005; Li et al., 2008a; Xu et al., 2008),
most of them not in a cosmological context.
With regards to the high-redshift Universe, preliminary investigations of the relevance
of magnetic fields for cosmic structure formation scenarios reveal that their effects
cannot be neglected (Sethi et al., 2008). The presence of magnetic fields in the early
Universe can significantly change the standard history of star formation and they can
further seed early formation of structures (Sethi and Subramanian, 2005).
We therefore went one step further than simply adding gas physics to our simulation
code described in Section II.6; we added the equations of magneto-hydrodynamics in su-
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percomoving coordinates to MLAPM that are being solved by a conservative, divergence-
free Godunov-type central scheme (Ziegler, 2005). And first test runs indicate that
the presence of magnetic fields in the early universe will have an impact upon cosmic
structure formation. We are currently in the process of confirming this finding with
better resolved simulations and differing initial magnetic field configurations.

Cosmological Modified Newtonian Dynamics We just fininshed developing a
novel solver for the analogue to Poisson’s equation in the framework of modified New-
tonian dynamics (MOND)

∇ ·
[
µ

(
|∇ΦM |
a2g0

)
∇ΦM

]
=

4πG

a
(ρ− ρ̄) . (V.1)

This equation is (in contrast to the Newtonian Poisson’s equation) highly non-linear
and hence standard codes based upon tree structures and/or FFT’s in general are not
applicable to solve it; one needs to defer to multi-grid relaxation techniques. We will
utilize this new code to revisit the issue of cosmic structure formation under MOND.14

And first steps in that direction show that, for instance, the probability of high-speed
encounters between galaxy clusters (as, for instance, observed in the “Bullet cluster”,
Markevitch (2006)) are more likely in MOND than in dark matter scenarios. Never-
theless, structure formation in a MONDian universe appears to be more rapid with
less structures at high redshift – possibly in contradiction to observations. We hope to
clarify this and either rule out or confirm the venturesome theory of MOND.

14Note that for the study presented in Section III.4 we did not solve the MONDian Poisson’s
equation but rather modified the Newtonian potential according to a prescription based upon various
assumptions to account for the affects of MOND.
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Avila-Reese, V., Coĺın, P., Valenzuela, O., D’Onghia, E., and Firmani, C. (2001).
Formation and Structure of Halos in a Warm Dark Matter Cosmology. ApJ, 559,
516–530.

Baertschiger, T., Joyce, M., and Sylos Labini, F. (2002). Power-Law Correlation and
Discreteness in Cosmological N-Body Simulations. ApJ, 581, L63–L66.

Bahcall, N. A., Fan, X., and Cen, R. (1997). Constraining Omega with Cluster Evolu-
tion. ApJ, 485, L53+.

Bahcall, N. A., Ostriker, J. P., Perlmutter, S., and Steinhardt, P. J. (1999). The Cosmic
Triangle: Revealing the State of the Universe. Science, 284, 1481–+.



76 BIBLIOGRAPHY

Bailin, J. and Steinmetz, M. (2005). Internal and External Alignment of the Shapes
and Angular Momenta of ΛCDM Halos. ApJ, 627, 647–665.

Bardeen, J. M., Bond, J. R., Kaiser, N., and Szalay, A. S. (1986). The statistics of
peaks of Gaussian random fields. ApJ, 304, 15–61.

Barnes, J. and Efstathiou, G. (1987). Angular momentum from tidal torques. ApJ,
319, 575–600.

Barnes, J. and Hut, P. (1986). A Hierarchical O(NlogN) Force-Calculation Algorithm.
Nature, 324, 446–449.

Barriga, J., Gaztanaga, E., Santos, M. G., and Sarkar, S. (2001). Evidence for an in-
flationary phase transition from the LSS and CMB anisotropy data. Nuclear Physics
B Proceedings Supplements , 95, 66–69.

Begeman, K. G., Broeils, A. H., and Sanders, R. H. (1991). Extended rotation curves
of spiral galaxies - Dark haloes and modified dynamics. MNRAS, 249, 523–537.

Bekenstein, J. and Milgrom, M. (1984). Does the missing mass problem signal the
breakdown of Newtonian gravity? ApJ, 286, 7–14.

Bekki, K. and Chiba, M. (2005). Formation and evolution of the Magellanic Clouds
- I. Origin of structural, kinematic and chemical properties of the Large Magellanic
Cloud. MNRAS, 356, 680–702.

Belokurov, V., Zucker, D. B., Evans, N. W., Gilmore, G., Vidrih, S., Bramich, D. M.,
Newberg, H. J., Wyse, R. F. G., Irwin, M. J., Fellhauer, M., Hewett, P. C., Walton,
N. A., Wilkinson, M. I., Cole, N., Yanny, B., Rockosi, C. M., Beers, T. C., Bell,
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Klypin, A., Gottlöber, S., Kravtsov, A. V., and Khokhlov, A. M. (1999a). Galaxies in
N-Body Simulations: Overcoming the Overmerging Problem. ApJ, 516, 530–551.

Klypin, A., Kravtsov, A. V., Valenzuela, O., and Prada, F. (1999b). Where Are the
Missing Galactic Satellites? ApJ, 522, 82–92.

Klypin, A. A. and Shandarin, S. F. (1983). Three-dimensional numerical model of the
formation of large-scale structure in the Universe. MNRAS, 204, 891–907.

Knebe, A. and Gibson, B. K. (2004). Galactic haloes in MONDian cosmological sim-
ulations. MNRAS, 347, 1055–1064.



82 BIBLIOGRAPHY

Knebe, A. and Power, C. (2008). On the Correlation between Spin Parameter and
Halo Mass. ApJ, 678, 621–626.

Knebe, A., Green, A., and Binney, J. (2001). Multi-level adaptive particle mesh
(MLAPM): a c code for cosmological simulations. MNRAS, 325, 845–864.

Knebe, A., Devriendt, J. E. G., Mahmood, A., and Silk, J. (2002). Merger histories in
warm dark matter structure formation scenarios. MNRAS, 329, 813–828.

Knebe, A., Gill, S. P. D., Gibson, B. K., Lewis, G. F., Ibata, R. A., and Dopita, M. A.
(2004). Anisotropy in the Distribution of Satellite Galaxy Orbits. ApJ, 603, 7–11.

Knebe, A., Gill, S. P. D., Kawata, D., and Gibson, B. K. (2005). Mapping substructures
in dark matter haloes. MNRAS, 357, L35–L39.

Knebe, A., Domı́nguez, A., and Domı́nguez-Tenreiro, R. (2006). Hydrodynamic ap-
proach to the evolution of cosmic structures - II. Study of N-body simulations at z
= 0. MNRAS, 371, 1959–1974.

Knebe, A., Draganova, N., Power, C., Yepes, G., Hoffman, Y., Gottlöber, S., and
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