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Kurzfassung

Gegenstand dieser Arbeit ist die Untersuchung generischer Synchronisierungs-
pha&nomene in interagierenden komplexen Systemen. Diese Ph&nomene werden
u. a. in gekoppelten deterministischen chaotischen Systemen beobachtet. Bei sehr
schwachen Interaktionen zwischen individuellen Systemen kann ein Ubergang
zum schwach koharenten Verhalten der Systeme stattfinden. In gekoppelten zeit-
kontinuierlichen chaotischen Systemen manifestiert sich dieser Ubergang durch
den Effekt der Phasensynchronisierung, in gekoppelten chaotischen zeit-diskreten
Systemen durch den Effekt eines nichtverschwindenden makroskopischen Feldes.

Der Ubergang zur Koharenz in einer Kette lokal gekoppelter Oszillatoren, be-
schrieben durch Phasengleichungen, wird im Bezug auf die Symmetrien des Sy-
stems untersucht. Es wird gezeigt, daf? die durch die Symmetrien verursachte Re-
versibilitat des Systems nichttriviale topologische Eigenschaften der Trajektorien
bedingt, so dal? das als dissipativ konstruierte System in einem ganzen Parame-
terbereich quasi-Hamiltonische Zige aufweist, d. h. das Phasenvolumen ist im
Schnitt erhalten, und die Lyapunov-Exponenten sind paarweise symmetrisch.

Der Ubergang zur Koharenz in einem Ensemble global gekoppelter chaotischer
Abbildungen wird durch den Verlust der Stabilitat des entkoppelten Zustandes
beschrieben. Die entwickelte Methode besteht darin, die Selbstkonsistenz des
makroskopischen Feldes aufzuheben, und das Ensemble in Analogie mit einem
Verstarkerschaltkreis mit Ruckkopplung durch eine komplexe lineare Ubertra-
gungssfunktion zu charakterisieren. Diese Theorie wird anschliefend fur einige
theoretisch interessanten Félle verallgemeinert.






Abstract

Subiject of this work is the investigation of generic synchronization phenomena
in interacting complex systems. These phenomena are observed, among all, in cou-
pled deterministic chaotic systems. At very weak interactions between individual
systems a transition to a weakly coherent behavior of the systems can take place.
In coupled continuous time chaotic systems this transition manifests itself with
the effect of phase synchronization, in coupled chaotic discrete time systems with
the effect of non-vanishing macroscopic mean field.

Transition to coherence in a chain of locally coupled oscillators described with
phase equations is investigated with respect to the symmetries in the system. It
is shown that the reversibility of the system caused by these symmetries results
to non-trivial topological properties of trajectories so that the system constructed
to be dissipative reveals in a whole parameter range quasi-Hamiltonian features,
i. e. the phase volume is conserved on average and Lyapunov exponents come in
symmetric pairs.

Transition to coherence in an ensemble of globally coupled chaotic maps is
described with the loss of stability of the disordered state. The method is to
break the self-consistensy of the macroscopic field and to characterize the ensemble
in analogy to an amplifier circuit with feedback with a complex linear transfer
function. This theory is then generalized for several cases of theoretic interest.
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Unter System ... soll jedes Wirklich-Seiende
verstanden werden, das sich in einer auferst
komplexen, verdnderlichen, im Ganzen nicht
beherrschbaren Umwelt identisch halt.

Chapter 1 (Niklas Luhmann)

INntroduction

Is Plato’s Demiurge needed to create Cosmos out of Chaos? Is a Hobbes’ dictator needed
to establish a civil order out of the ground state anarchy? Or is it cabbalistic Allmighty whose
emanations from an undefinable Ein-Soph state into the present form of the world we now
call Genesis (or, maybe, guantum-mechanical measurement)? Since the antique atomism it
has been a fundamental problem of natural philosophy to discover how order arises from
irregular microscopic states of matter. There had to be either some higher force or some
coherence in the individual irregular dynamics for macroscopic order to be explained.

On the other hand, nature was regarded in the sense of Newtonian dynamics as a huge
closed conservative and deterministic system. Given an initial state the whole evolution in
nature could be tracked forward and backward in time by a Laplacian demon. Thus there
was no place for any irregularity in the dynamics of a closed system. Every irregularity had
therefore to be ascribed either to the openness of the system or to unsufficient knowledge
of its initial state. This classical picture was destroyed by Poincaré who recognized that no
calculable solutions exist for the locally well-defined 3-body-problem of celestial mechanics.
Later on the Birkhoff and Smale mathematically proved the possibility for solutions of prob-
lems of classical mechanics to be deterministically chaotic, i. e. unpredictable on large time
scales.

Microscopically regular dynamics can thus cause chaos on larger scales. Macroscopically
regular dynamics can be caused in its turn by microscopically irregular motion. The first
observation leads to the neccessity to redefine and to deeper understand complexity. The
second one attracts scientific attention to synchronization phenomena.

First discovered by Huygens in the middle of the 17th century synchronization is now
known to appear in a vast number of scientific disciplines: in physics and life sciences, in
mechanical and electrical engineering, in chemistry and acoustics, in economy and sociology
etc. Huygens [43] observed that two pendulum clocks became completely synchronized when
placed on a common console. At the end of the 19th century Rayleigh [83] described the effect
of mutual damping of slightly detuned organ pipes due to interactions. In the 1940s the effect
of synchronization of mechanical rotators [12] was found. The first steps in the theoretic
description of the effect of synchronization were made in the works of Appleton [3] and Van
der Pol [22]. In the 1980s the effect of synchronization in chaotic systems was found (cf. [71]),
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giving rise to an intensive research in this field.

This work on generic synchronization phenomena in complex deterministic dynamical sys-
tems is organized as follows: in the rest of this chapter the concepts of complex systems and
synchronization as well as the theoretical approach in studying these phenomena are intro-
duced, then typical kinds of interactions between elements of a complex system and different
types of synchronization, i. e. complete, weak and phase synchronization are discussed in
more details. Chapter 2 is devoted to the effect of phase synchronization in lattices of dis-
sipative chaotic systems with nearest-neighbor couplings. Synchronization phenomena in a
reduced system of phase equations are investigated with respect to the symmetries of the dy-
namics. In Chapter 3 a transition to coherence in globally coupled discrete chaotic dynamical
systems is described. An analytic approach to the problem of finding the transition point is
derived.

1.1 Describing complex systems

There exists a deep controversy concerning what one means while speaking about complex
systems. Without intention to stick with this discussion we want to clarify now what is
understood under complex systems in the framework of this thesis.

1.1.1 System and environment

A system is an entity consisting of some elements obeying some inherent rules and inter-
acting with each other and with the rest of the world. Not every collection of elements, rules
and interactions can be meaningfully called a system. Persistence at least in one constituent
of the above definition is usually required. One can speak about a system consisting of the
same elements, or a system of changing elements obeying the same dynamic equations, or a
system with changing elements and mutating rules but behaving with a certain constancy in
its environment.

In this sense the concept of system is a concept of an artificial reduction of complexity
of the world when trying to describe its certain aspect. This concept is therefore subjective.
Essentially, environment objectively exists (in a materialistic philosophy) while a system only
exists as observation of a system, i. e. distinguishing between system and its environment. A
system can be studied, its environment not. Otherwise one would have to enlarge the system
definition for relevant aspects of the environment.

As the environment cannot be studied assumptions on its interaction with the system
under investigation have to be made. If no interaction between a system and its environment
takes place then this system is called closed, otherwise it is called open. For an open system
all external forces must be considered as given and can be modelled with regular, irregular
or even random terms in corresponding dynamical equations.

Elements constituting the system can also be treated as systems, which is the reductionist
paradigm of classical science. The most fundamental elements in this hierarchy are usually
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assumed to have the simplest inherent dynamical laws, continuous or discrete. These dynam-
ical laws can be deterministic or contain stochastic terms, their dynamics can also be regular
or chaotic.

1.1.2 Determinism, uncertainty and complexity

Saying that a system is complex means implicitely that contemporary science cannot han-
dle all its aspects. Otherwise this complexity would be trivial in the reductionist approach.
The current definition of complex systems as systems with nonlinear or/and stochastic terms
in their mathematical formulation is well established due to lack of knowledge how to deal
with generic nonlinear systems. Complexity means unability to understand and to predict,
which makes this term anthroposophic and reflexive. It is the man’s problem, not that of the
nature.

Hence it is the question of our subjective selfdefinition how to deal with complexity, i. e.
after having realized that there are no exact synopsis and prognosis. The two opposing meta-
physical doctrines of the 19th century, determinism of Laplace [56] and tychism of Peirce [68]
put the blame for it on the two different parties. Pierce stated that it is the nature itself that
is ruled by the "law of chance” while Laplace argued that the nature can be exactly described
and predicted if an exact knowledge about its initial state and dynamical rules is provided.
The Laplacian determinism which dominated the natural sciences for a century means that
no matter how many variables one needs to completely describe a system (a direct product of
all variables needed for a complete description of a system is called phase space of a dynami-
cal system), obtaining exact information about the dynamical rules and just one state at any
time moment gives complete information about the past and the future states of the system.
These states are lying on a path (trajectory) in the phase space which is defined by its any
point because (the principle of causality) trajectories in the phase space cannot intersect.

Introducing complexity, one admits the limitedness of one’s knowledge, accuracy and ra-
tionality. This means that one usually calls a system complex if either its initial state or its
dynamical rule or the formalism of describing it are not exact but possibly contain some er-
rors (note that our mathematics is not free of paradoxes as well — of course, one could equally
blame the nature and/or our way of thought for it).

Therefore the probabilistic approach to complex systems is unavoidable, either in describ-
ing initial conditions (with letting dynamical rules remain deterministic) or in admitting
stochastic terms in the equations of motion. In fact, these two approaches, deterministic
and stochastic dynamics, are not completely antagonistic. Ergodic theory of complex sys-
tems [97, 26, 18] unifies them. To some extent, the probabilistic theory of a complex deter-
ministic system can be understood as a coarse-grained description of its temporal evolution.

If the dynamic rules are deterministic and no nonlinearity enters the corresponding math-
ematical model then its solution can be written in a trivial way as superposition of solutions
of its constituting elements. In linear systems errors in the definition of the initial condition
can be easily handled so that the complexity related to these errors does not grow with time.

Complex systems are therefore often defined as systems of many interacting nonlinear el-
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ements, or as systems of many nonlinearly interacting elements, or as systems of many inter-
acting elements with complex external forces. The dynamics generated by complex systems
can be itself either regular, e. g. periodic or quasiperiodic, or irregular, e. g. intermittent,
chaotic or stochastic.

In the framework of stochastic models even linear equations are not easy to deal with and
thus should be called complex. In this work we restrict ourselves to deterministic dynamical
equations only.

The question is now how to quantify complexity. While there are still many different
approaches to this problem (cf. [6]) it is clear that the measure of complexity should be a
measure of inexactness, or after Ruelle [91] "a measure of randomness in the system”. The
corresponding physical quantity is entropy.

If possible states of a system are taken by the system with some probability then the
information entropy H, i. e. the mean uncertainty of this probability distribution is given [95]

by

H = —(logp)

Here (-) means averaging over accessible phase space, in the case of a continuous proba-
bility distribution this reads

H =~ [ (9 logp(x)dx

The information entropy corresponds to the amount of information additionally needed to
resolve uncertainty in order to specify exactly in which state the system is at a given time.*

To quantify the complexity of the time evolution of a complex system one can use the con-
cept of entropy of a finite symbolic sequence (cf. [25]). Imagine the phase space of a dynamical
system partitioned in some way into M regions. Each region is assigned a symbol ay (like A, C,
G, T with M =4 in the coding of DNA). Then every trajectory in the phase space is represented
by a sequence of visited symbols {Ac} like

...,C,AC,G,AT,T,T.G,CA, ...

For every sequence, finite or infinite, one can define the probability pn(A1,Az,-..,An) to find
the given subsequence (block) {A}n = (A1,Ay,...,An) of the lenght n.
The entropy per block of the lenght nis then

Hn=— > pPn({A}n)logpn({A}n)
v{An

The uncertainty of the symbol following the block is

*Note that the information entropy is not a covariant quantity, it varies with transformations of phase space
variables. Contrary to this, a transformation entropy K {p(x), p(x)} (the information gain) of a transition from one
probability distribution p(x) to another one fi(x) is covariant

(P90} = - [ pix)10g 5% dx
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hn = Hn+1 —Hp

The entropy of the source h of the sequence is defined by

h:rI]m hnzrl,'_r,TLH”/n (1.2)

i
—> 00
For a very broad class of generating processes (ergodic processes) was shown [49] that

Hni1 (1.2)

Hpp1 > H and
ntl=Tn n+1= n

This ensures existence of the limit (1.1). The value h (measured in bits per time) is the
asymptotic rate of entropy production in the system with time (i. e. with adding the next
symbol to the sequence) so that the total uncertainty in a complex system asymptotically
grows with time, if h > 0T,

Note that entropy as a measure of complexity can be used independently of the nature
of the process that generates the symbolic sequence. And one can expect that complex se-
guences are generated in every non-linear system which is large enough. This enlightens
the historical fact that general systems theories and theories of complex systems arose inde-
pendently in different fields of science in the first three decades of the 20th century. In the
second part of the 20th century concepts of complexity and complex systems were applied in
practically every scientific discipline (cf. [7]).

E. g. in theoretical biology the principal ideas of what was called the "theory of complex
systems” was developed by Berthalanffy [106], in economics by Hayek [41], in the theory
of state and governmental management by Bogdanov [14]. A discussion on complexity can
also be found in Bakhtine’s works on linguistics of that time [9]. In the 60s these or similar
ideas were developed in chemistry by Prigogine [34] and in sociology by Luhmann [60] and
advanced later in the 70s in numerous works on Haken’s synergetics [40].

In some disciplines the measure of complexity h could be directly calculated. For instance,
Shannon [96] himself calculated the entropy of printed English texts. Investigations of texts
in different languages and music pieces [44] followed, having led to a sort of quantitative
theory of aesthetic values [92]. Investigation of properties of biosequences (cf. [28]) developed
itself to an independent science of mathematical evolution (cf. [27]).

To understand generic effects in complex systems models that are known to generate typi-
cal (in the sense of asymptotic entropy production) complex dynamics are usually investigated
— so-called deterministic chaotic systems.

1.1.3 Deterministic chaos as source of complexity

A dynamical rule of a complex system can be described by an evolution operator F 1t
which transforms the state of the system at some time t; as described by a point x(t1) in the
(n-dimensional) phase space into the state x(ty) at another time t, =t; +t. If time is continuous

TFrom the equations (1.2) follows directly h > 0, which corresponds to the second principle of equilibrium thermo-
dynamics.
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then the evolution operator describes for every initial point in the phase space a continuous
trajectory, if time is discrete then the evolution is a directed graph (described by a map).

Of course, it is always possible to reduce a trajectory to a directed graph by considering
discretized times (so-called stroboscopic map). If the evolution operator is given by a set
of ordinary differential equations then it describes a flow in the phase space, its stroboscopic
maps are all invertible. This is ensured by the fact that trajectories in the phase space cannot
intersect*. General maps in discrete time dynamics are not necessarily invertible.

Assume that the dynamics of the system is bounded. Then this implies existence of so-
called non-wandering points in the phase space; most of trajectories starting from any vicinity
of such a point either never leave this vicinity (stable fixed point) or will return into this
vicinity at some later time (oscillating dynamics). The set of all non-wandering points that is
stable in some sense is called attractor of the system. If dynamics of the systems is bounded
then every trajectory will enter a vicinity of some non-wandering point in a finite transient
time.

That means that bounded dynamics will almost always end up on an attractor which
may have the dimension equal or less than the dimension of the underlying phase space. In
dissipative systems evolution should contract the phase space® so that one expects that the
attractor (i. e. the set of non-wandering points) has a smaller dimension than the dimension
of the embedding phase space.

Not all points in the phase space are visited equally often. This fact can be reflected in a
coarse-grained description by means of the probability (density) p(x,t) of finding the trajectory
at the point x at a given time t if no information on the initial conditions is available. With
the evolution operator F 4t acting in the phase space a corresponding operator acting in the
space of probability functions can be defined, so-called Frobenius-Perron operator defined by
the integral equation

pxta+0) = [ B(x—FUty)p(yits)dy (13)

Note that a certain trajectory does not have to visit all the non-wandering points, i. e. it
does not have to cover the whole attractor. For instance, this is the case if a non-wandering
point is itself periodic. Nor all trajectories, which visit a vicinity of a non-wandering point,
visit it with the same frequency (same probability).

If these probabilities are the same for a whole set of trajectories (as defined with their
initial conditions) having the dimension of the underlying phase space then this probabil-
ity distribution is called natural measure of a point on the attractor. Almost every initial
probability distribution will converge in the sense of the Frobenius-Perron equation (1.3) to
this natural measure. A trajectory from this set is called typical with respect to the natural
measure.

If a dynamical system is autonomous, i. e. the dynamic equations are not explicitely time-

*In singular points some trajectories, so-called separatrices, can intersect each other but this intersection takes
infinite time. Thus all stroboscopic maps of flows defined for finite time intervals are still invertible.

SWe will see later on that the same system of equations can demonstrate dissipative and conservative behavior
at different parameter values. Therefore dissipativity should be understood as a property of the dynamics but not
that of the equations of motion.
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dependent, and mixing, then the Frobenius-Perron operator does not depend on t; and the
solution of (1.3) should converge to an invariant (time-independent) distribution p(x).

A system is called ergodic if average properties of a trajectory are the same as averaged
properties of the attractor, i. e. for any observable g(x) holds [15]

I|m q (F'x)dt = /q (1.4)

Chaoticity means sensitive dependence of trajectories on the attractor on small perturba-
tions. It is quantified with the construction of the Lyapunov exponent.

6(1)

5(0)

Figure 1.1: Divergence of two close trajectories. An initial perturbation 5(0) typically grows
exponentially with time in a chaotic system.

Let a dynamical system be described by a n-dimensional ordinary differential equation.

x= f(xt) (1.5)

Consider a solution of the equation (1.5) starting in x(0) and another solution of the same
equation starting in a close point x(0) 4+ &(0) with |§| < 1. From (1.5) a linearized equation for
the difference vector 4(t) between these two solutions can be derived.

of(x,t)

5= 28 (1.6)

At every point of the phase space the matrix (g Y stretches the vector & in directions of its
eigenvectors by the corresponding eigenvalues. Thus the perturbation vector (1) at a time 1
is formed from 3(0) through the integration along the unperturbed trajectory x(t), so to say,
by successive stretchings with locally defined matrices ‘”(Xt) . With the assumption that the
norm of the local stretching matrices fluctuates around some mean value the length of the
vector d scales asymptotically with time as

13(1)| ~ [3(0)|€"

For different initial perturbations 6(0) the number A can be different being determined
by the direction of 5(0). All these numbers are called Lyapunov exponents of the solution

fIn the case of a mapping the whole argumentation is analogous.
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X(t) of the system (1.5). Altogether there are n Lyapunov exponents which can be positive or
negative. A dynamical system is usually called chaotic if there is an ergodic set in which a
typical trajectory has at least one positive Lyapunov exponent. Then initially close trajecto-
ries typically diverge exponentially with time. Of course, there are such degenerative initial
conditions that the corresponding difference vector &(0) is orthogonal to the direction of the
stretching but they form a set of zero measure.

In the language of symbolic sequences produced by initially close trajectories this means
that there always exists a probability that two sequences with identical histories will gen-
erate different symbols in the next time step. The uncertainty hks of a next symbol (or,
more exactly, its supremum over all partitions of the phase space) if all the past symbols
A_i,t =1, 0, are known is called Kolmogorov-Sinai entropy (production rate) of a dynamical
system [51, 52].

Intuitively, two trajectories can only quit visiting the same symbols by escaping from each
other in an unstable direction. The corresponding connection between Kolmogorov-Sinai en-
tropy and Lyapunov exponents has been derived [70] under the assumption that the natural
probability measure is smooth in the unstable directions! to be just the sum of positive Lya-
punov exponents

hks= 3 Ai (1.7)
Ai>0
Kolmogorov-Sinai entropy hgs is zero for regular (periodic or quasiperiodic) bounded dy-
namics and infinite in stochastic systems (cf. [58]). In deterministic chaotic systems the en-
tropy production rate is finite, which makes them especially useful in modelling of complexity
production and reduction.

1.1.4 Entropy production vs. emergence of order

The second principle of thermodynamics postulates convergence of every large closed sys-
tem to the state of maximal entropy, the equilibrium. This corresponds to the irreversibility of
the evolution in a closed system, the system (when described with some macroscopic variable)
tends to the state of maximal probability, the attractor. Fluctuations around the attractor are
of the order fracly/N with N being the number of the systems in ensemble.

The attractor is stable. The initial state of the system gets forgotten with approaching
the attractor so that the attractor in a large closed system corresponds to the state of maxi-
mal macroscopic symmetry. For a measured symbolic sequence in any macroscopic variable

lunder more general assumptions an inequality was shown [90] to hold

hks< 3 Ai
Ai >0

Generally can be written [36, 26]

hks= 3 dihi
Ai>0

Numbers d; are called partial information dimensions of the attractor (cf. [58]).
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this means that the asymptotic entropy production rate h is zero. In fact, this implicitely
means that coupling together a large number of chaotic systems would only generate trivial
dynamics in any macroscopic variable (up to the finite size effects). In general, producing
entropy in the system should move it, according to the classical thermodynamics, to a trivial
(disordered) state.

However, this does not hold in every system. Imagine that such an open system and
the boundary conditions are chosen that the temperature of the system remains constant.
Then the equilibrium state of the system is defined by the extremum of its free energy F =
E — TS but not extremum of its entropy S, with E being the energy and T the temperature.
As discussed in [81], the equilibrium is the result of competing minimizing the energy and
maximizing the entropy, i. e. at small temperatures one observes highly organized structures
(with small energy and entropy) and for large temperature the entropy dominates and the
system converges to a disordered state.

One sees that even in the framework of Boltzmann'’s equilibrium thermodynamics ordered
states are possible, though these states have to be static and hence cannot explain dynamical
growth of complexity and self-organized structures. To explain the dynamical complexity and
emergence of order in oscillating complex systems, i. e. systems far from equilibrium one has
to consider systems where the equilibrium state is unstable or does not exist at all.

Physically, this is generally the case in dissipative dynamical systems under permanent
input of energy. Their dynamics is far from equilibrium and, while they produce entropy, the
produced entropy is "exported” and highly organized structures can arise.

1.1.5 Synchronization as emergence of order

Interacting nonlinear systems as well as nonlinearly interacting systems can demonstrate
dynamics which is more complex than the dynamics of these systems in absence of interac-
tions. In the language of Haken's synergetics [40], a system is more than just a sum of its
parts. But also the contrary is possible, and the interplay of individual systems reduces total
complexity of the solution. E. g. coupling together two chaotic systems can produce periodic
or even constant dynamics.

Synchronization is the situation when interactions make dynamics of individual systems
similar in a certain sense, which surely is form of reduction of complexity. Freely trans-
lated from Greek, synchronization means "sharing common time” by different processes, due
to interactions. Systems which are not synchronous in absence of interactions reveal some
coherence in their dynamics while being coupled together. Usually one formalizes this by
introducing a coupling parameter and analyzing bifurcations in the dynamics of the system
with changing coupling strength. According to the type of coupling synchronization between
closed complex systems and synchronization between a complex system and external forces
can be studied.

To characterize synchronism of different processes a corresponding macroscopic observ-
able has to be defined. This makes synchronization a very general phenomenon. This observ-
able has the meaning of an order parameter and is often directly connected to some measure
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of complexity or its reduction.

1.1.6 Modelling synchronization effects in complex systems

From what has been said a possible way to investigate typical synchronization effects in
complex systems is to construct typical models of a complex system consisting of complex
(chaotic) subsystems. The subsystems, if uncoupled, produce chaotic dynamics, described by
some dynamical equations. These equations can be continuous or discrete both in space and
time.

A variety of intriguing effects in space-continuous complex systems described with par-
tial differential equations are known like different types of turbulence [54], localization [24],
dendritic growth [93] and roughening interfaces [75], or self-organized criticality [8].

In general, partial differential equations are much more difficult to analyze than ordinary
differential equations. That is why coupled lattices of chaotic dynamical systems gained much
scientific attention. Such a lattice can be understood as a discretization of a corresponding
continuous space problem. The dynamics of each element in the lattice is given by a set of
simple dynamical rules which can be continuous or discrete in time. One looks for generic
effects, i. e. these effects should be non-specific for a definite choice of the dynamical laws
and should hold for every typical complex (chaotic) systems.

The hope is that the results from coupled lattices can then be applied to continuous space
systems by going over to the thermodynamic limit of infinitely many grid points on a lattice
in a given bounded space interval**.

The interactions between systems in the lattice are described by a coupling function (de-
pending on the other systems in the lattice). Different types of coupling are investigated,
e. g. nearest-neighbor or global coupling. A nearest-neighbor coupling models partial differ-
ential equations with local terms up to the second spatial derivatives only. A global coupling
corresponds to a situation where the spatial dynamics produces a mean field equally acting
in all points of the continuum. The action of the coupling can be isotropic or directed which
is defined by the way how contributions of the neighbors enter the interaction term. In the
case of one-dimensional lattices (chains) of coupled chaotic systems one speaks of unidirec-
tional coupling if it contains contributions of elements from one side only and of bidirectional
coupling if elements from the left and the right act symmetrically.

Another important aspect in modelling complex systems with lattices of chaotic elements
of a finite size is the question of boundary conditions. Analogously to the continuous case
different situations are possible while one usually restricts oneself in the fundamental ques-
tioning to either periodic or free boundary conditions.

If the dynamics on the attractor of an individual system in the lattice is oscillatory then
one can analyze typical return times into a vicinity of a point on the attractor. In the syn-
chronized state these return times have to be coherent in some sense.

Thus an outline of a synchronization research can be summarized as follows: one sim-
ulates a complex system with a lattice of discrete or continous low-dimensional dynamical

**This optimism, however, is damped by some results [18] showing that this thermodynamic limit can be non-
equivalent to the underlying continuous problem.

10
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equations generating oscillatory (regular or chaotic) trajectories and interacting with each
other through a chosen coupling function. For each system an observable describing its tem-
poral behavior is defined. In the disordered state the values of these variables are different.
In the synchronized state the observables show a coherent pattern.

There were found different types of synchronization in lattices of coupled chaotic systems.
Now we want to discuss them in more details. In the rest of this introductory chapter we
will follow the recently published monograph [71] where the theoretical concepts of synchro-
nization are formulated and the state of the art in the current research on synchronization is
given.

1.2 Complete and weak synchronization

We start with considering two replica of some N-dimensional complex system (in the sense
of complex dynamics) which are dissipatively coupled together. The most obvious kind of
synchronization between these two systems, solutions of which x(t) and y(t) are different in
absence of interactions, is when interactions make the solutions completely coincide. With-
out synchronization the dynamics takes place in a 2N-dimensional phase space, in the syn-
chronous regime the dynamics is restricted to the N-dimensional diagonal subspace x =Y.
This effect is called complete synchronization.

Continuous time systems can always be reduced to mappings by discretizing with an ap-
propriate stroboscopic or Poincaré map. Thus, to illustrate features of complete synchroniza-
tion let us consider two identical maps M : x(t) — x(t + 1) multiplicatively coupled through the

- - - - - _ 1—8 €
linear dissipative coupling operator L = ( c 1-e

(x(t+1)> —LoM <x(t)> _ (1—5 € > _ (f(x(t))) _ ((1—s)f(x(t))+sf(y(t)> (1.8)
y(t+1) y(t) e 1-¢g/ \f(y(t)) (1—)f(y(t)) +ef(x(t)

First note that the diagonal state x =y is always a solution. However, if the coupling is
switched off, € = O, this solution is degenerate. Contrary to this, if € = 1/2 then the right
hand sides of (1.8) are identical for x and y, and every solution converges to the diagonal after
one time step. Obviously, this diagonal state can be either stable or unstable at different
couplings ¢.

It is possible to find the critical coupling €; € [0,1/2] where transition to complete syn-
chronization takes place, i. e. the diagonal state becomes stable to small perturbations for
€ > gc. Denoting with U = %’ andV = %’ the variables along and transverse to the diagonal
respectively one can rewrite (1.8) in terms of longitudinal and transverse components of the
dynamics.

—

Ut+1) = HUONOHHUO-VE) .
V(t+1) = HUONOHOOVE) g :

Linearizing around the diagonal V (t) = 0 we obtain linear mappings for small perturbation
vectors u and v in the diagonal and the transversal subspaces.

11
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ut+1) = fU)-u)
Vit+1) = (1—28)f'(U(t)) wt) (1.10)
Ut+1) = fU(®)

Mathematically, the equations (1.10) is a skew system. The dynamical equation for the
underlying mapping drives equations for perturbations. Moreover, perturbations in the di-
agonal subspace and transverse perturbations do not interact and they are governed by the
same equation up to the constant factor 1— 2¢. This means that every transverse Lyapunov
exponent A = Ay is connected to the corresponding Lyapunov exponent of an uncoupled map
A=A

AL =In|1—2¢[+A (1.11)

The completely synchronized state x =y becomes stable in the sense of average decay of
perturbations when A | =0, i. e. for € > g, = (1—e)/2. However, topologically the transition
to complete synchronization is a bit more complicated.

1.2.1 Topological view on the onset of synchronization

We proceed further with the assumption on the underlying map f(-) to be one-dimensional
and chaotic. Consider a T-periodic orbit x*(t) inside the attractor. Because the mapping is
chaotic this orbit is unstable along the diagonal (synchronized) subspace with the multiplier

T
Me = [ f'(x*(t)), |ul > 1. The multiplier in the direction transverse to the synchronization
t=1

diagoﬁal is W = (1—2¢)u,. This defines a bifurcation of the given periodic orbit that takes
place at

eo(x') = ~ Il |;“|_l (1.12)

Generally this critical value e:(x") can be different for different periodic orbits inside chaos,
82"”‘ < ec(x*) < e, Therefore, topologically the transition of a chaotic attractor containing
periodic orbits with different instability thresholds e.(x*) takes place in a whole interval in €.
The value . as defined by the transverse Lyapunov exponent belongs to the interval [e™", €]
as well.

Thus there are four regimes:

e strong synchronization
€ > g™ all periodic trajectories are transversally stable, this means that the (still
chaotic) synchronized state V = 0 is stable and attracts all points from its neighborhood,;

e weak synchronization
€ < € < eI there are unstable periodic orbits but the chaotic attractor on the synchro-
nization diagonal is stable on average, almost all points from a vicinity of the diagonal
V = 0 are attracted to it (but now there exist trajectories that run off this vicinity);

12
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e weak asynchronous state
™ < € < gc: while still there are transversally stable periodic orbits, the synchroniza-
tion diagonal is now unstable in the Lyapunov sense;

e strongly asynchronous state
€ < e <: all periodic orbits are unstable, both in the diagonal subspace and in the
transversal subspace.

One sees now that the diagonal subspace can be stable on average but still contain unsta-
ble orbits. Moreover, these unstable orbits can also be dense in this synchronization subspace.
Therefore, this subspace cannot be properly called attractor in the topological sense, i. e. that
the attractor consists of non-wandering point such that all trajectories starting from a certain
open vicinity of this point return to this vicinity.

As transversally unstable orbits can be dense in the synchronization subspace any vicinity
of any point in this subspace can in principle contain escaping points. Instead of the topo-
logically defined attractor as a compact set with such an open vicinity that all points in this
vicinity do not escape it (cf. [48]) the term of attractor is here to be understood in the sense
of a probabilistic definition [63]. In this probabilistic definition an attractor is the smallest
closed set attracting a set of initial points of strictly positive measure.

1.2.2 Statistical approach to the onset of synchronization

As seen in the topological description of the previous section, the averaged stability can
deviate from the stability of individual trajectories. Averaging over the attractor discards all
the fine topological structure; that is why synchronization can be described within a statisti-
cal approach, i. e. when considering the onset of synchronization as being noise-driven.

Let us introduce new notations

w=1v, z=Inw

Now the equation (1.10) reads
w(t +1) = w(t)eh gV ®) (1.13)

Here the function g(-) is

gU®) =In|f' ()] —A

In the language of z it reads

2(t+1) = 2(t) + A +g(U (1)) (1.14)

The equation (1.14) is linear which makes the further analysis simple. Formally writing
the solution for large times T, one obtains

ZT)—20)—A, T =AT (1.15)

13



CHAPTER 1. INTRODUCTION

The value A is the finite-time Lyapunov exponent, shifted by A and thus converging to
zero for large T

1T—l ,
A= 3 Inlf' o] -2 (1.16)

In other words, dynamics in z consists of the drift with constant velocity A | and a fluctu-
ating part described by A. If A} > 0then z— o and the synchronization diagonal is unstable.
If A\ <Othenitis stable.

Of course, fluctuations of the finite-time Lyapunov exponent A are not uncorrelated be-
cause they are generated by a deterministic dynamical system. But applying the central
limit theorem one can consider A as a noisy term [66, 65, 19] with the Gaussian probability
with a certain diffusion constant D

2

PAT) ~e

As zis linearly connected to A, it grows diffusively with

<(z— (z>)2> ~DT (1.17)

Near the transition to synchronization the value of the transverse Lyapunov exponent A |
is small so that fluctuations dominate. Due to the diffusion (1.17) the distribution of z flattens
with time, therefore very large and very small z become probable. This effect is called on-off
intermittency [31, 32, 114]. In the time series of w this corresponds to randomly appearing
bursts with very large amplitudes.

Compared to the topological description the statistical description represents an approach
to complex systems where the averaged equations are deterministic and fine structures are
described by noisy terms T,

1.3 Phase of a signal and phase synchronization

Another type of synchronization is so-called phase synchronization [72, 87, 88]. Intu-
itively, synchronization between two systemes takes place when both systems evolute along
trajectories on their attractors in a certain concordance. To quantify this concordance the
notation of phase is introduced in order to reduce the full dynamics to relevant phase equa-
tions [62, 54].

Phase can be defined as the variable along the trajectory in a corresponding local coordi-
nate frame.

TBifurcations in chaotic systems seem to always admit two different descriptions: one in the framework of the
statistical approach and another through tracking topological changes in the corresponding attractor. E. g. in [115]
bifurcations in multiplicatively coupled maps were described as crisis, i. e. an abrupt change in the topology of
the attractor, while in [55] was shown that all observed phenomena can equally be described in terms of on-off
intermittency.

14
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1.3.1 Phase equations around stable periodic solutions

For instance, given a dissipative autonomous system of ordinary differential equations

x = f(x) in a general N-dimensional phase space with a simple periodic limit cycle, its phase
¢ is postulated to change monotonously in time gaining 2t by each rotation.

d=w=21/T (1.18)

This uniformly rotating phase can be obtained from any angle variable 8 through the
transformation

0
o= / 6 1de (1.19)
0

X
Figure 1.2: Phase of a limit cycle as defined by an arbitrary angle variable.

The most important property of phase is that it is neutrally stable. Perturbations in
phase neither decay nor grow with time. This corresponds to the time shift invariance of
autonomous dynamical systems. If some function x(t) is a solution then for every time shift t
the function x(t + 1) is a solution as well.

Interactions with other systems giving rise to synchronization modify solution of the sys-
tem. Assuming that these interactions are small, one can describe this situation with the
equation

X = fic(X) +&gk(Xe, - -, Xwm,t) (1.20)

Altogether there are M N-dimensional systems weakly interacting with each other through
the coupling functions gk(-). In the simplest case the equations (1.20) can be replaced with
equations where the systems is driven by an external force.

X = f(x) +€pk(X,t) (1.21)

The external force drives the trajectory away from the limit cycle. However, as this force
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is e-small and the limit cycle is stable, the perturbed solution still lies in the vicinity of the
limit cycle, perturbations transverse to the cycle are small. In contrast to this, perturbations
along the cycle, i. e. perturbations in phase due to the action of p(-) can be large.

It is possible to construct a continuation of a uniformly rotating phase variable as defined
by the equations (1.18)-(1.19) into the vicinity of a stable limit cycle by means of so-called
isochrones [111, 112, 38, 54]. A stroboscopic map with the period of the limit cycle ®(x) :
X(t) — x(t+T) is attracting to the limit cycle, the latter is the set of fixed points of ®(x). The
set of preimages of a point x* belonging to the limit cycle as defined by the map ®(x) is called
isochrone, it is (N — 1)-dimensional hypersurface crossing the limit cycle in x*. It is always
possible to define monotonously rotating phase on the limit cycle according to the equation
(1.19). By demanding that the phase is constant on each isochrone one defines monotonously
rotating phase in the whole neighborhood of the limit cycle where isochrones exist.

Xq

Figure 1.3: Construction of isochrones in the vicinity of a limit cycle.

With this definition for the phase the equation (1.19) is valid in some vicinity of the limit
cycle in absence of interactions, € = 0 (here the map ®(x) and, consequenly, all isochrones are
defined with respect to the unperturbed dynamics).

o) =w

Or, as phase is per definition a smooth function of the variables x,
o .

With this interaction-free definition of the phase the phase equation (1.18) in the per-
turbed case (1.21) reads

O(x) =w+e) %pk(x,t)

As the second term is proportional to € and deviations of x from the limit cycle xo are small
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as well so up to the first order of € one can neglect these deviations to obtain with denoting

Q0,1) = 5 25 (x(9),1)

B(x) = w+eQ(d,1) (1.22)

As the limit cycle can be parametrized with the phase ¢ the equation for the phase is now
in a closed form with Q(-) being 2r-periodic in ¢. Note that the same line of argumentation is
applicable if the cycle is fully unstable. In this case the whole derivation holds after inverting
time.

1.3.2 Phase synchronization by external force and mutual synchro-
nization

By taking the stroboscopic map with the period T of the perturbation Q(¢,t) in the equa-
tion (1.22) we obtain a one-to-one correspondence between ¢(t) and ¢(t + T), the so-called
circle map:

Ont1=On+p+eF(Pn) (1.23)

We have denoted here p= wT. The dynamics of the circle map (1.23) can be characterized
by the rotation number, the average phase shift per one iteration (one period of the external
force):

n—o 2T t—oo t W
The rotation number is shown (cf. [48]) to be independent of the initial point ¢o. The
number Q is the observed frequency (average velocity of phase rotation)

Q=lim w (1.25)

t—oo

According to the Denjoy theorem [21], if the rotation number p is irrational then the circle
map (1.23) can be transformed with an appropriate substitution ¢ = g(6) to the circle shift
Bh+1 = By + 21tp. The solution of the circle shift is trivial so that the solution of the circle map
is quasi-periodic for any 2reperiodic function g(-):

¢n = 9g(9o+ 21M) (1.26)

On a periodic trajectory the rotation mumber is rational p = gq/p. For the fixed point
dp = ¢o+ 2 of the p-iterate of the circle map one can write up to the order of € (with denoting

-1
Folbn) = 5 F (g0 212K)

£Fp(0n) = woT — 21'[% (1.27)

The equation (1.27) has a solution if wT — 211% € UFp, this defines the synchronization
regions in the (W, €)-plane, so-called Arnold tongues [4]. In the case of the sine circle map
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(F(¢) =sin¢) these synchronization regions have width Apwith the scaling Ap~ P [5] (because
the function Fp is obtained by an averaging along a trajectory, it is small for large p). Inside
the Arnold tongues the system described in absence of the external force with the phase equa-
tion = wis %—synchronized to the external force. In the figure 1.4 (adopted from [71], p. 227)
the Arnold tongues corresponding to small g and p are shown.

€

1/2  3/52/3 3/4 1/1 5/4 413 7/5 3/2 r]/ZT[

Figure 1.4: Major Arnold tongues in the sine circle map.

If no external forces are acting on the system, but instead the synchronization is caused
by the interactions between two or more coupled systems then the approach is analogous. Let
us consider two systems described with the closed phase equations

b1 = w1 +€Qu(d1,92) (1.28)
b2 = wp +€Qo(1,d2)

In the zero approximation the phases rotate with the unperturbed frequencies w; and .
Writing the coupling functions Q2 in the Fourier representation, e. g. Q1 = 3y aldldkoutiz)
we note that all terms correspond to fast rotations except the terms that fulfill the resonance
condition kwy + luy = 0.

Assuming that the natural frequencies are close to the resonance nw; &~ muy, we can write
with denoting v = nw; — muwy, and q() = 3 (na} "™ e ¥ —maj)"e-ii¥) the averaged equation
of one variable Y = ng1 — md, that is the equation of the circle map:

b =v+eq(p) (1.29)

Inside the synchronization region (Arnold tongue) the constant relation g—z = T between

the observed frequencies of the oscillators holds, this effect is called frequency locking due to
interactions.

1.3.3 Phase synchronization in presence of noise

In order to be able to deal with complex systems that generally allow a coarse-grained
description only let us now spell a couple of words on synchronization in presence of noise.
The natural way to describe mutual synchronization of noisy oscillators is to include a noise
term in the equation (1.29):
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b =v+eq(y) +&(t) (1.30)

The theory of synchronization of noisy oscillators is well established [100, 61] and should
not be repeated here. A simple physical interpretation of the Langevin dynamics (1.30) can
be given as a random walk of a zero-mass particle in an effective one-dimensional potential
V()= —-vy —ef‘“ g(x)dx. This situation is illustrated in the figure 1.5 (adopted from [71], p. 262).
Synchronization corresponds to the minima of the potential, the desynchronized state to the
potential without minima.

a) b)

A\

VA

Figure 1.5: Phase as a particle in a potential. (2) The minima of the potential correspond to
the synchronization, due to the noise the particle can overcome the barrier and a 21 phase
slip occures. (b) Outside the synchronization region the particle slides down.

In the synchronized state the action of noise can push the phase out of the minimum of
the potential, the phase will make a so-called phase slip to the next minimum. If the noise
is unbounded then there always is probability of such slips at any non-zero noise intensity.
In the diagram for the frequency difference Qy = () vs. the mismatch v of the natural
frequencies, shown in the figure 1.6 (adopted from [79]), no synchronization plateau like that
of the noise-free case can exist even at very small noise intensity. Another situation is when
the noise is bounded, now at small noise intensity the particle cannot overcome the barrier
and the synchronization plateau still exists at small mismatch v.

A

a) Qu, b) Qy

\J
\J

Figure 1.6: Synchronization plateau, frequency difference vs. mismatch for (a) bounded and
(b) unbounded noise. With the dotted curves the synchronization region without action of
noise is shown.
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1.3.4 Phase synchronization of chaotic systems

The formalism of isochrones around fully stable or fully unstable periodic solutions does
not work for the saddle-type periodic orbits. This is a very typical situation in chaotic dynam-
ics, the closure of an attractor contains infinitely many unstable saddle-type periodic orbits of
different periods. Every typical trajectory on a chaotic attractor wanders from one unstable
periodic orbit to another, the period cannot be properly defined.

Thus the first obstacle in extending the phase equation approach on chaotic systems is
the problem of definition of the phase itself. A reasonable definition of the phase of a chaotic
system should correspond to the shift along the trajectory in the local coordinates and hence
ensure marginal stability and zero Lyapunov exponent. For the periodic orbits embedded in
chaos this definition also has to reduce to the usual one.

One way to define phase of a chaotic solution is the concept of analytic signal [33, 67, 82,
98, 13] based on the Hilbert transform. Given a signal s(t), we assume time t to be complex.
Then such an imaginary part §(t) is looked for that the full complex signal S(t) = s(t) +i§(t) is
an analytic function of complex t. By this analyticity condition §(t) is uniquely defined from
the given signal s(t) to be the Hilbert transform of s(t)

)
§(t):%TIim /%dr
—y00 —
T

The instantaneous phase ¢(t) and amplitude A(t) of the process s(t) are unambiguously
defined as the argument and the amplitude of the complex signal S(t) = s(t) +i§(t) = A(t)e!®®),
The main advantage of defining the phase of a signal by the Hilbert transform is that it is
defined in the unigue way. The problem is that the signal used to define the phase can be
chosen in different ways in a dynamical system.

Another approach [77] to define phase is to define an appropriate Poincaré section, i. e.
such a hypersurface in the phase space that all trajectories on the attractor cross it. Every
isochrone of the case of a periodic limit cycle can serve as Poincaré section. Then every
crossing of a Poincaré section can be understood as one rotation and thus should correspond
to the 2reshift in phase. A definition of phase can now be set by the requirement that phase
grows monotonously between two consequent crossings. The definition of the phase with a
Poincaré section is not unique as well, it depends on the choice of the section.

t—tn

+ 2T[n, tn S t < tn+1 (131)

Sometimes one can find such a projection of the attractor on some plain that in this plain
the projections of (chaotic) trajectories are close to a limit cycle. This means that one can
introduce an angle variable as in the figure 1.2 so that the phase can be introduced according
to the equation (1.19). Also this definition is not unique because the projection can be made
in different ways.

Although there is no unique definition of the phase of a chaotic system, one sees that all
three above definitions are equivalent in the sense that in a long time average their growth
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rates are the same. Therefore every of these definitions can be used in practical calculations.
With using the definition via Poincaré maps, one can represent the dynamics of the amplitude
(vector) and the phase between two subsequent Poincaré crossings in the form [72]

Ant1 = M(An)
¢ = w+F(A)
The equation (1.32) is similar to the equation of a periodic oscillator driven by a noisy

term, the term F(A,) is chaotic and can be understood as some effective noise. Therefore, the
dynamics of phase in a chaotic system is generally diffusive with some diffusion constant D.

(1.32)

(®(t) —$(0) — wt) ~ Dt

1.4 Summary

Large complex systems are called complex because they are difficult to describe with a
full accuracy. In order to describe them a probabilistic approach in the sense of averaged
properties is unavoidable.

Complexity can be quantified with Kolmogorov-Sinai entropy of the dynamics of the sys-
tem. For regular dynamics it is zero, for stochastic dynamics infinite. In deterministic chaotic
systems this entropy is finite. When linear deterministic systems are coupled linearly, then
the complexity neither falls nor grows, this situation is trivial in the reductionist approach.
To reveal non-trivial effects in deterministic complex system either the individual systems or
the coupling have to be non-linear, complex systems can be modelled with lattices of interact-
ing dynamical systems.

Introducing interactions between individual systems can increase or decrease complexity
of the whole system. As the dynamics of a large non-linear system cannot be decomposed
in terms of its constituting subsystems and studied independently for each such subsystem,
complexity typically grows with increasing system size and stronger interactions between
subsystems. However, also the opposite effect is possible, stronger interactions can cause
simpler dynamics in a large complex systems.

Synchronization is the effect where an increasing coupling strength makes the dynamics
of interacting systems timely coherent. Most obvious this effect is in the case of complete
synchronization where interactions make the dynamics of individual systems completely co-
incide, and a number of subsystems of a large complex system form a cluster of completely
same dynamics so that the dimensionality of the whole system is reduced according to the size
of the cluster. The threshold of this transition is defined by the stability condition for the clus-
ter solution, stability can be understood within the topological or the statistical approaches,
these approaches are two alternative ways to describe large complex (ergodic) dynamical sys-
tems.

Less strong is the effect of phase synchronization of oscillating systems which is character-
ized by emerging coherence in the speed of oscillations (e. g. the same mean rotation number
per time unit) while the amplitude dynamics remains almost unchanged as compared with
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the interaction-free case. In the case of continuous time systems the phase can be defined as
the variable along the trajectory in the local coordinate frame, for oscillating dynamics in ab-
sence of interactions it can be defined to be rotating with a constant velocity, specific for each
subsystem. Dynamics in dissipative systems in presence of interactions can be described for
small coupling with closed equations in phases only. The reason is that phase is neutrally
stable while the amplitude dynamics is dissipative.

The definition of the phase is not unique but for analyzing the transition to coherence
all definitions should be equivalent in terms of long time averages. For general (chaotic)
oscillating dynamics the phase can be introduced by Hilbert transform, in the vicinity of a
stable limit cycle by the construction of isochrones, by Poincaré sections, or, sometimes, by an
angle variable if some projection of the dynamics is close to a limit cycle.

In this work the transition to coherence at small couplings is investigated. In the next
chapter transition to coherence in a lattice of dynamical systems with nearest-neighbor cou-
pling described by closed phase equations is discussed with respect to the symmetries in the
system. Then the corresponding effect in discrete chaotic systems, i. e. the transition to
coherence in populations of chaotic maps coupled through a mean field is investigated.
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Chapter 2

Synchronization vs. reversibility
INn an oscillator lattice with
nearest-neighbor coupling

In this chapter we consider a lattice of coupled oscillating systems described by the phase
equations showing a hierarchical transition to synchronization through successive formation
of synchronization clusters. We demonstrate that there also exists a competing effect caused
by the symmetries in the lattice, which makes the latter reveal not dissipative but rather
Hamiltonian-in-mean features.

2.1 Introduction

The synchronization transitions in lattices of coupled oscillators with nearest-neighbors
coupling have attracted a lot of attention recently. Such lattices appear, e. g., in laser ar-
rays [35], Josephson junctions [16], phase locked loops [1, 20], and even in piano strings [107].
Although particular dynamical systems describing these lattices are quite different, there are
many general features that can be described already in the framework of the simplest model
of coupled phase equations [54, 29, 53, 85] as described in the introductory chapter. Indeed,
because the phase of a self-sustained oscillator is free and the amplitude is relaxing to a
particular value, small coupling influences the phases only.

The same description can be used for coupled chaotic oscillators as well. Here the phase
¢ of an individual oscillator is free corresponding to a zero Lyapunov exponent; in absense
of interactions it rotates with the natural angular velocity wy specific for this oscillator (plus
chaotic fluctuations). Effect of the coupling is phase synchronization of chaotic oscillators [72,
77, 78].

In the case of many coupled oscillators, between the limiting cases of full synchronization
(when all oscillators have the same angular velocity) and complete desynchronization (all the
frequencies are different) one encounters regimes of partial synchronization. For a lattice
such a state appears in the form of synchronization clusters, when neighboring or even non-
neighboring oscillators form groups having the same average frequency (¢). In general, the
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transition from a non-synchronous to a synchronous state can be described as formation and
merging of clusters.

Particular features of this process depend on the coupling and on the distribution of natu-
ral frequencies. Typically, one assumes that the coupling is attracting, i. e. it tends to equal-
ize the phases of interacting oscillators. More variative is the distribution of frequencies,
here two types of models attracted special interest. In papers [2, 116] a random distribution
of natural frequencies was considered. Here one can make only statistical predictions on the
transition. In [29] a linear distribution of the natural frequencies in a one-dimensional lattice
have been studied. It was motivated by experimental observations of formation of clusters in
mammalian intestinal smooth muscle [23]. Also boundary conditions are of relevance. These
are typically chosen to be free or periodic. These two types of boundary conditions are not
equivalent even in the thermodynamic limit, which will be discussed later on. Below only the
case of free boundary conditions is investigated.

2.2 The phase lattice model and its properties

Here we describe the phase lattice model, reduce it to a closed system in phase differences,
and briefly outline its general properties.

2.2.1 Basic model

An individual system is described with a phase variable ¢y, it rotates with a constant nat-
ural frequency wk. The coupling of nearest neighbors is implemented via a coupling function
f that depends on the phase differences. As a result, we obtain a set of ordinary differential
equations (cf. [1, 54, 29])

b1 = +ef(d2—¢1)

Ok = o+ & (D1 — §i) + € (P2 — di) 2.1)

On = N +ef(On_1— ON)

Here ¢ is the coupling constant, it is assumed to be the same for all oscillator pairs.
Furthermore we assume f(0) = 0 and f’(0) > 0. In this case the coupling function tends
to equalize the phases of neighbor systems. In other words, this coupling corresponds to a
discrete diffusion operator so that it is expected to act dissipatively. To see this, one can ex-
pand the right hand side of the equations (2.1) assuming ¢x+1 — ¢k to be small. This yields
ef’(0)(Pyy1 — 20k + dk—1) which is the discrete form of the second spatial derivative. As the
individual systems in the lattice (2.1) are defined modulo 2m, the coupling function f(¢) also
has to be 2r-periodic, f(¢) = 5 (axsinkd + bxcoskd).
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2.2.2 Properties of the model

First note some general properties of the system (2.1) (cf. [29, 1]). As solely the phase
differences are entering the equations (2.1), a closed system can be written for these differ-
ences only, reducing the number of variables by one. Denoting n=N—1, Yx = dx1 — dx and
Ay = 01 — ux this gives

W1 =41 —ef (W) +ef(—W1) +f (Y2)

U = Ak — ef (—Wi-1) — ef (i) +eF (=) +&F (Y1) (2.2)

This reduction takes the simplest form if the function f is an odd one, f(—y) = —f(y):

(1 =D — 2ef(P1) +£f (P2)

W = D+ eF (Y1) — 2eF (W) +F (Piy 1) (2.3)

The boundary conditions for system (2.3) are Yo = Y1 = 0. As in [17] one can write (2.3)
as Yx = D+ €Y Amf (WUm) or (with R (W) = f(gx)) in the vector form

W =A+eAF (W) (2.4)

The matrix A describes the coupling of oscillators in the chain and the boundary condi-
tions:

-2 1 0
1 -2 1 0 ... ... ... .. ..
A= 0 1 -2 1 0 ... ... ... .. (2.5)

o 1 -2
The structure of the matrix A reflects the geometry of the interactions between oscillators.

With different A different arrangements of oscillators (e. g. higher-dimensional lattices with
local or non-local coupling) can be described through the equation (2.4).

Note that for the periodic boundary conditions and the nearest-neighbor coupling this
matrix A would additionally have two non-zero elements Any = Ay = 1 and thus be singular,
detAnn) = 0. This backgrounds principal non-equivalence between periodic and free bound-
ary conditions. In the following we will use in numerical simulations the coupling function
f (W) = siny if not stated otherwise.
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Y1 = A1 — 2esing1 + €sinys;
Wk = D + esinig_1 — 2esinig + £sinWPx. 1 (2.6)

Pn = An +€sinPip_1 — 2esiny,
2.2.3 Small and large couplings

Before proceeding to numerical simulations, we outline some general properties of the
system (2.3) (cf. [29, 1]) in the mostly simple limiting cases of small and large couplings.

For € = 0 equations (2.3) have a simple n-frequency solution. If the frequency differences
A are incommensurate, this solution is quasiperiodic and can be represented as an ergodic
motion on a n-dimensional torus. The natural invariant measure on this torus is uniform.
According to the KAM-theory-type arguments, if the frequencies are far from resonances
then this solution can be extended into the region of non-zero coupling parameter ¢, and the
quasiperiodic motion is expected for small coupling € <« 1 as well.

For large € a fully synchronized state is observed for any limited lattice size n. In terms
of the phase differences Yy this corresponds to a fixed point in (2.3), stable at € > &¢. In the
thermodynamic limit no fixed point solution exists.

The equation for the fixed point (), = 0 can be written with denoting oy, = —A;n%Ak (of course
if the inverse of A as given by (2.5) exists) as

f(Ym) =€ am 2.7)

If f(-) is bounded fyin < f < frax and has a root, then equation (2.7) can be resolved if for
allm

Efrrin <Gm<sfrrax (28)

A 2meperiodic function f has at least two branches, so there are at least 2" different fixed
points. As shown in [29], only one of them is stable corresponding to the choice of the branch
with f’ > 0for all variables.

It is easy to calculate €. in the case of an oscillator chain with nearest-neighbor coupling,
i. e. with the matrix A in the form (2.5). Since detAy,n) = (=DN(N+1) #0in the case of free
boundary conditions one can revert (2.3) with setting W = 0in the sense of the equation (2.7)
to obtain the equation (2.8) (i. e. f(Wx) =& 1~ (A~1.A)y in a vector form). The inverse matrix
is defined through (A(‘leN)) o — & (N+1—m), with k> mand Al = AL When A is decom-
posed in terms of eigenvalues pk and eigenvectors ax of the (generic) matrix A the condition
for ¢ is then read as —egH(A71A) = —eg 1 (A1 S cmam)k = —€5 1(3 Cmam/Hm)k € O(f), Vk.

For f(W) = siny the range is O(f) =[-1,1] and thus

(2.9)

k
€ = n@gX‘ (n;cmam/ m)

k
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In the case of free boundary conditions and the nearest-neighbor coupling this is equiva-

lent to the condition ¢ = rr\lex

k
S wm| which was derived in [42]. In this case the eigenvalues
m=1

of Anxn) can be expressed [1] in terms of the second-order Chebyshev polynomials.

It is worth noting that properties of the system strongly depend on symmetry properties
of the vector A, the function f(-) (or the symmetry of its range) and the coupling matrix A
which is given by the geometry of the problem.

Thus, a stable phase-locked solution exists for large enough couplings. From the consid-
eration above it is also clear, how it loses its stability. This happens when for some m* the
solutions of (2.7) seize to exist via a saddle-node bifurcation. Typically, beyond this transition
the variable Y rotates while other phase differences remain bounded. This corresponds to
the splitting of the lattice (2.1) in two clusters k < m* and k > m*.

The limiting situations described above suggest that there exists a hierarchy of transi-
tions from the completely phase-locked state at large € to the quasiperiodic state at small
€. A scenario depends on the frequencies wy. Here we focus on a particular case of linearly
distributed natural frequencies in the lattice. As have been discussed in [29], it corresponds
to a real experimental situation of mammalian intestinal smooth muscle [23]. The results for
this particular case are presented in [103], here we discuss them in more detail.

2.2.4 Clustering hierarchy

Further in this chapter we consider the particular case of a linear distribution of natural
frequencies in (2.1). This means that all frequency differences Ak in (2.2) are equal. Rescal-
ing the time we can set these differences to unity, thus the resulting system has only one
parameter — the coupling constant €. Of course, this specific choice Ax = 1 introduces some
new symmetries into the system; below we will see that they strongly influence the dynam-
ics. Furthermore, we use the coupling function f () = sin. This simplest choice also brings
additional symmetries, to be discussed below.

Note that the equations (2.1) are autonomous. Additionally they are invariant with re-
spect to an equal shift in all variables ¢y (because of the possibility of reduction to the closed
equations in differences Yy = ¢x11 — Pk). This means that non-constant solutions of the equa-
tions (2.1) are neutrally stable for perturbations along them (in time) as well as for rotations
as a whole (shift of all phases), and two Lyapunov exponents are zero in the interval € € [0,&¢].
Above g the solution is constant in time. Therefore only one Lyapunov exponent correspond-
ing to the rigid rotation still has to be zero.

The main quantities of interest are the observed frequencies of the oscillators defined as
the mean rotation velocities Qx = (¢x). For the oscillators forming a cluster of synchronization
these frequencies coincide. Thus, an appearance of a cluster can be easily seen from the
bifurcation diagram Qy vs €. We present these diagrams for several values of the chain length
N in the figure 2.1.

The synchronization diagrams reveal several features.

(i) With increasing € the oscillators successively group into clusters of equal frequencies.
The last transition to a single cluster occurs at &, which can be calculated according to the
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Figure 2.1: Observed frequencies Qi vs. coupling strength € for oscillator chains of different
length. The bifurcation diagrams were produced by choosing randomly 10 initial points for
each € and plotting the resulting frequencies with dots on one graph. The smeared regions
that are seen for small € indicate the dependence of the frequencies on the initial conditions.
On these graphs also the average expansion rate S (see eq. (2.11)) of the phase volume is
shown with squares.
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equations (2.7) and (2.8) above as

e — { N2/8 even N (2.10)
(N-1)(N+1)/8 oddN

When approaching the thermodynamic limit N — o the critical coupling €. diverges quadrat-
ically, in the thermodynamic limit there are no fixed point solutions.

(if) There are regions of frequency locking, e. g. around € = 0.8 in the chain of N = 7 phase
oscillators in the figure 2.1.

In the figure 2.2 a closer look at the bifurcation diagram in the case of N = 7 oscillators with
numerically calculated Lyapunov exponents is presented. In the frequency locking regions at
€~ 0.8 and € ~ 1.3 the frequencies are Q1 = Qy =2Q3, Q4 =0, 2Q5 = Qg = Q7 = —Q1. In the
language of phase differences Yk = dy1 — dx this means that (except for the clusters Q1 = Qy,
Qs = Q7) the relative phase differences Wy all grow with the same velocity. Both regions are
then a sort of 1:1 frequency locking*.
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1 N ——
2.00 - =
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0.00

QA

-1.00 T ¥ 000 Rmeaensnn o SRR

-2.00
| ot

-3

00 I I I I I I
0.70 0.80 0.90 1.00 1.10 1.20 1.30 1.40

Figure 2.2: Phase locking regions, N = 7. Mean rotation velocities and calculated Lyapunov
exponents (in grey) are shown.

The frequency locking windows correspond to existence of stable periodic solutions which
is supported by the observation that all but two Lyapunov exponents are negative in these
windows (remember, two Lyapunov exponents are always zero at € < €¢), while beyond them
there are positive Lyapunov exponents too so that the lattice is in a chaotic state.

(iii) In some regions of € the diagram is “smeared”. Most visible is this region for the
case of three oscillators. In the smeared region the averaged frequency depends on initial
conditions, what means that the system does not have a single attractor, but, presumably,

*One could argue that this situation can also be called as 2:1 locking in the sense of ¢x. However, shifting all the
natural frequency wy by an arbitrary constant would destroy the relations Q; = Q; = 2Q3 but the relations for the
differences Qo — Q3 = Q3 — Q4 = Q4 — Q5 would still be valid.
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many invariant states. Note that these regions mostly appear in small lattices at small
couplings, prior to the first clustering. The discussion of this state is the main purpose of the
analysis below [103].

2.2.5 Quasi-Hamiltonian dynamics for small couplings

To reveal the dynamics of the lattice, we have calculated the Lyapunov exponents. The
calculations of the exponents give the results shown in the figure 2.3. For small couplings we
always numerically obtain a sign-symmetric picture of the exponents: they appear in pairs
having the same absolute value and opposite signs (additionally, some Lyapunov exponents
can be zero). This means that the phase volume is conserved on time average: its mean
divergence

S= <%> =25 (f'(py)) (2.11)

2 \aw A
is the sum of the Lyapunov exponents, and it vanishes. We have checked this by calculating
the average (2.11) directly, and found it to be nearly zero (apart from statistical fluctuations).
These results are presented in the figure 2.1 (see also detailed calculations in the figure 2.11).

The symmetrical Lyapunov exponents and the conservation of the phase volume are the
hallmarks of the Hamiltonian dynamics. Thus we call the dynamics of the lattice at small
couplings quasi-Hamiltonian.

In particular, any element of the phase volume V = [[]dpdox in Hamiltonian systems is
conserved (Liouville theorem)

V= {/dekqu,H} —0 (2.12)

Moreover, in Hamiltonian systems Lyapunov exponents always come in symmetric pairs
+A [59]. Here a similar structure of Lyapunov exponents is observed, at least in the parame-
ter region of small «.

Obviously, as seen in the figures 2.1 and 2.3, the system (2.3) does not necessarily show
dissipative behavior as understood in terms of the phase space contraction. In other words,
S Ak < 0 is not always valid. This sum is the trace of the right side matrix in the linearized
version of (2.3), written for a variation vector d and averaged over a trajectory:

Sk:szAkmf’(qu)ém, or
5=A(y)-3, with SpA(p)=—2e3 f'()

While the sum of the Lyapunov exponents is S= (SpA), the time dependent function of
the motion SpA(y(t)) is interesting by itself. It gives the local phase space volume element
expansion rate at every trajectory point Y(t). In a Hamiltonian system this expansion rate
equals to zero.

Figures 2.4 and 2.5 show the time dependence of SpA(t) for a chain of four oscillators at
different e. Remarkable is the behavior of the system at small €. While numerically 3 Ay =
(SpA) = 0 which resembles the features of Hamiltonian systems, the phase space volume is
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Figure 2.3: Lyapunov exponents vs. coupling strength ¢ for the same lattices as in the fig-
ure 2.1 (the case N = 3 is not shown, here all Lyapunov exponents vanish for € < 1 and two
are negative for € > 1).
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Figure 2.4: The local phase space volume element expansion rate d'stV =SpA(t) ate=0.40as

the function of time, four oscillators, N =4, (SpA) = S Ak = 0. In a Hamiltonian system phase
space volume is conserved, here this would give % InV = (SpA) =0.
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Figure 2.5: The same at € = 0.70, the mean value (SpA) =  A\x = —1.5439< 0.

not an integral of motion, it is time-dependent through the instant vector (t), and so may be
periodic, quasiperiodic, or chaotic. Thus the system (2.6) constructed to be dissipative reveals
for a definite coupling strength range not only no dissipative but rather Hamiltonian-in-mean
features. It is this Hamiltonian-in-mean kind of behavior that will be further addressed as

gquasi-Hamiltonian.

2.3 Reversibility of regular and chaotic regimes

In this section we will demonstrate that the origin of the quasi-Hamiltonian behavior lies
in the reversibility of the system (2.2).

2.3.1 Three oscillators

We start with the simplest case of a chain consisting of three oscillators with the vector of
frequency differences A = (i) . The system (2.6) is two-dimensional:

1 =1—2esin €sin
lPl Sf Y1+ Sf W2 (2.13)
Wy =1—-2esiny, +esinyy
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One can substitute x= (Y1 +Y2)/2and y= (Y1 —P2)/2 into (2.13) and divide one equation by
the other to get one non-autonomous ordinary differential equation with the only parameter
el>1

d_y . 3sinycosx

dx & 1+sinxcosy (2.14)

Or, with denoting s=x— 7

dy  3sinysins

S __ w777 2.1
ds & 1—cosscosy (2.15)

The right hand side of the equation (2.15) is odd with respect to s. This means that every
solution y(s) of the equation (2.15) is s-even. In particular y(—m) = y(1), and, as y(s) = y(s+ 2m),
every solution has to be 2r-periodic as seen in the figure 2.6.

v,
o

Figure 2.6: Numerical solutions of (2.14) for different initial conditions in x-y and ;- dia-
grams, they are all periodic with different periods. € = 0.29.

As a consequence the Lyapunov exponent corresponding to a shift in y(0) also vanishes.
Hence, all three Lyapunov exponents are zero below £; = 1 and the system shows not dis-
sipative but rather conservative behavior in the whole range € € [0,1]. Observed velocities
Qk = (dx) can vary in dependence on the initial condition y(0), which is confirmed in the fig-
ure 2.1, where initial conditions at different € were randomly chosen.

As seen, in a chain of three oscillators the degenerative dependence on the threshold
velocities Qi from initial conditions is present due to the symmetry in the frequency mismatch
between neighbors and the specific choice f () =siny. Let us now generalize this observation
for larger chains.

2.3.2 Reversibility
Our explanation of the quasi-Hamiltonian behavior is based on the specific symmetry of
the equations (2.1). Namely, the specific symmetries discussed above cause reversibility of

the dynamics (see [94, 86] for mathematical definitions).
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Reversibility means that there exists an involution R: W — W (involution means that R is
identical transformation; W here denotes the set of variables W = ()1, ...,y)n)) which together
with the time reversal transformation T : t — —t leaves the system invariant. Reversibility
yields that the trajectories of a dynamical system come in symmetric pairs. Indeed, for ev-
ery point of the phase space W(0) there is the symmetric point RW(0), and the trajectory ¥(t)
starting from W(0) is symmetric to the trajectory R¥Y(—t) running backward in time and start-
ing from RW(0). In the terms of trajectory stability, these symmetric trajectories have inverse
Lyapunov spectra, because the Lyapunov exponents change sign with the time inversion and
are invariant under any change of variables [64].

Figure 2.7: The reversibility symmetry, all trajectories come in pairs.

The fact that a system is reversible (i. e. it possesses an involution as described above)
still does not say anything on the dissipativity/conservativity of the observed dynamics; it
means only that if there is an attractor, there should be the corresponding symmetric repeller.
Particularly important is the case where some symmetric trajectories coincide, i. e. if the
involution R transforms a trajectory to itself. It will be the case if this trajectory crosses the
set FixR of the invariant points of the involution (W € FixR means that RY = W). Such a
trajectory we call reversible. If we set R¥Y(0) = W(0) (crossing of FixR happens at time t = 0)
then for a reversible trajectory holds R¥Y(T) = W(-T).

Note that if a reversible trajectory crosses the set FixR twice then it is periodic. Setting
RY(0) = W(0) and R¥Y(T) = W(T), one notices immediately that RW(—T) = W(-T) = R¥Y(T)
holds too. The trajectory has the period of 2T. Properties of periodic reversible trajectories
are like of those in Hamiltonian systems: the Lyapunov exponents are sign-symmetric and
the phase space volume in their vicinity is conserved on average (in particular, the local
Poincaré map is area-preserving).

In general, reversible trajectories may be non-periodic, and coexist with non-reversible
ones. Here we can distinguish two cases. A reversible non-periodic trajectory can connect an
attractor and a repeller, being heteroclinic. Note that even in this case the phase space in the
vicinity of this trajectory is conserved on average, if averaging is understood in the sense of a
principal value as integration from —T to T with T — oo,
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X(1)

R X(-t)

Figure 2.8: Reversible trajectories cross the invariant set FixR.

Otherwise, a reversible trajectory can be non-wandering™, in particular, it can repeatedly
return to a vicinity of the set FixR. In the latter case the average properties have to be
qualitatively similar to those of periodic reversible trajectories, and in particular the Lya-
punov exponents are sign-symmetric. This property is very important if we consider complex
(quasiperiodic or chaotic) invariant sets.

If such a set is ergodic, and at least one typical trajectory belonging to it is reversible and
non-wandering, then the invariant measure is R-symmetric and the dynamics of the system
is quasi-Hamiltonian on this set. Note that this property does not require any symplectic
structure and hence does not depend on evenness/oddness of the underlying phase space.

We now argue, that in order for periodic and non-wandering reversible trajectories to
exist, the set FixR should be large enough. Let us consider the evolution of FixR in time.
A reversible periodic trajectory exists if the sets F!(FixR) and FixR intersect, where F! is
the evolution operator of the dynamical system. This intersection generally can occur in a
n-dimensional phase space if the topological dimension of FixR is large enough, at least [n/2],
i.e. n/2for even and (n—1)/2 for odd n, the dimension of F !(FixR) being then [n/2] + 1.

Basing on the continuity arguments, we obtain the same estimate for a general existence
of non-wandering trajectories, because in the latter case the distance between F !(FixR) and
FixR has to nearly vanish at some times. Contrary to this, if the dimension of the set FixR is
small, generally there are no non-wandering reversible trajectories. From these arguments
it follows, that not all possible involutions R can explain the quasi-Hamiltonian behavior, but
only those having a high-dimensional invariant set FixR.

2.3.3 Reversibility of the oscillator lattice

We now proceed with applying this concept to the lattice of n oscillators (2.2). The involu-
tion yielding reversibility here is

TIn the sense that its every point is non-wandering.
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R: Yk — TT— Yn_k (2.16)
One can see that this transformation can be represented as the product R= Po Q of two
involutions:
Pk — Wnk (2.17)
and
Q: Yk — TT— Yk (2.18)

These transformations reflect the symmetry of the distribution of the natural frequencies
(P requires Ay = Ay_k) and the symmetry of the coupling function f(-) (Q requires that the odd
function f has only odd harmonics in its expansion in sine Fourier series) as well as the spe-
cific geometry of the lattice given by the matrix A in the matrix formulation (2.4). Involution
(2.16) has an invariant set Yy + W,k = 1t of dimension [n/2], thus we can expect periodic and
non-wandering reversible trajectories to exist. This is not the case for the involution Q: its
invariant set Yy = 1/2 is one point.

Below we consider implications of the reversibility described for some particular lattices.

2.3.4 Three coupled oscillators revisited

Involution (2.16) for the system (2.13) has invariant line FixR: Y1+ Y2 =1 or Xx=T1/2in
the language of the section 2.3.1.

Because x = 1—esinxcosy > 0 when € < ¢c = 1, it is clear that on the two-dimensional
phase plane (Wi,y2) every (rotating) trajectory crosses this line many times (more than
once), thus all trajectories are periodic and reversible, and the desynchronized state is quasi-
Hamiltonian. We show the phase portrait in the figure 2.9. It represents a typical for an
integrable Hamiltonian system family of periodic orbits. These orbits have different periods,
and this explains the diversity of frequencies ("smearness”) in the figure 2.1. A difference to
Hamiltonian phase portraits can be also easily seen: because the phase volume is conserved
in average, but not locally, different regions on the phase plane are filled with different densi-
ties. The transition to clusters occurs via an inverse saddle-node bifurcation, at which stable
and unstable points appear at Y1 = Y, = 11/2 from the condensation of trajectories.

2.3.5 Four coupled oscillators

The system of four coupled oscillators reads

1 = 1—2esinyy +esiny;,
P2 = 1—2esinyy +esinyy + esinyiz (2.19)

3 = 1—2esinPz +esiny,
Applying the involution (2.16), we obtain that the set FixR s the line Y1+ Y3 =1 Y = 11/2.
The phase trajectories in a three-dimensional phase space generally do not intersect a given
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Figure 2.9: The phase portrait of the system (2.13). The line FixR is shown as bold dashed
one; it is crossed by all trajectories.

line, so we cannot expect reversibility for all trajectories. In this case we observe a non-trivial
transition from the quasi-Hamiltonian to the dissipative dynamics, to be described below.

To visualize the dynamics we constructed the Poincaré maps. The Poincaré section was
chosen by the condition Y, = 1/2 so that the invariant set of the involution is the line Y1+ Y3 =
mton this plane. The Poincaré maps for different values of parameter € are presented in the
figure 2.10. They are constructed by iterations of initial points lying on the line Y, + Y3 =T,
i. e. belonging to FixR.

To verify whether the dynamics is quasi-Hamiltonian or not, we calculated the average
divergence of the phase volume Sover a very large time (up to T = 1.5x 107). Only the values
of S that are nearly the same for the averaging times T/2 and T have been considered to
be distinguishable from zero. The data is presented in the figure 2.11 together with the
calculations for larger lattices.

(i) Quasiperiodic dynamics for small €:

In the case shown in the figure 2.10a the dynamics appears to be quasiperiodic, and the
phase space appears to be foliated by tori. All these tori cross the line FixR, thus on each
torus there is a reversible non-wandering trajectory. This ensures reversibility of the tori,
and the whole dynamics is quasi-Hamiltonian. The average divergence Sin this case is indis-
tinguishable from zero.

(i) Mixed quasi-Hamiltonian dynamics:

In the case shown in the figure 2.10b the dynamics appears to be quasi-Hamiltonian with
chaotic and quasiperiodic components. In some components images of FixR appear to be
dense. This allows us to speak of “reversibility in average”. Note, that due to ergodicity the
mean frequency is the same for all typical trajectories in the chaotic sea, but has different
values for different tori. Thus, the mean frequency depends on initial conditions. On the other
hand, there are components having no overlap with images of FixIR, they are nevertheless
symmetric with regard to the involution.
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¢ -T2 Y 3m/2 dy -T2 Y 3m/2

—Ti/2L

Figure 2.10: The Poincaré map for the system (2.19) for different values of coupling. The
maps are constructed by choosing the initial conditions on the line Y1 + Y3 = 1t (filled circles)
and plotting 2000 their iterations. (a) € = 0.3, the quasiperiodic states dominate. (b) € = 0.39:
chaotic and quasiperiodic regimes coexist. The attractor and the repeller for € = 0.49 are
shown in (c) and (d), respectively.
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Figure 2.11: The average divergence of the phase volume for lattices of different sizes. The
lowest values at |S| ~ 10~ correspond to the remaining statistical uncertainty achieved after
averaging over times as large as 10”. Up to this uncertainty, the threshold for the transition
from the quasi-Hamiltonian to reversible behavior appears to lie at € =~ 0.1 for lattices with
N> 4.

(iii) Chaotic dissipative dynamics:

As one can see from the detailed calculations of the mean divergence of phase volume
(figure 2.11), for € > 0.43 the divergence is non-zero, although very small. Accordingly, we
have to characterize the observed chaotic state as an attractor. Surely, there exists also
the repeller symmetric to the attractor — it can be easily obtain via backward integration
of the equations (2.19). We present the phase portraits of the attractor and the repeller
in the figures 2.10c and 2.10d. From visual inspection of these pictures one may conclude
that the attractor and the repeller “overlap”. However, according to the Birkhoff ergodic
theorem [11], the invariant measures of these invariant sets should be mutually singular.*
The contradiction is resolved if one takes into account that although the attractor and the
repeller look like possessing positive Lebesgue measure, in reality they are fractals having
Lebesgue measure zero. Because the mean divergence of the phase volume is very small, the
dimensions of these fractals are extremely close to 2, therefore it is difficult to distinguish
them from quasi-Hamiltonian dynamics. Note that there exist reversible trajectories which
are still non-wandering while being heteroclinic. The attractor and the repeller do not contain
FixR but their closures do.

We emphasize that for some values of coupling we observed non-chaotic, periodic attrac-
tors in the system as shown in the figure 2.12. The situation appears to be similar to other
cases of non-hyperbolic chaotic dynamics (e. g. in the Hénon map), where stable orbits with
relatively short periods appear and disappear as a parameter is varied. Numerically, it is dif-
ficult to distinguish whether in these situations the chaotic attractor transforms to a chaotic
saddle and the only attractor is the regular one, or there is a bistability “chaos - periodic
orbit”.

*We are thankful to D. Turaev for this remark.

39



CHAPTER 2. SYNCHRONIZATION VS. REVERSIBILITY
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Figure 2.12: Stable periodic attractor, € = 0.46. Transient chaotic state is shown in grey,
integration time was 10°. Note that some points of the actually period 12 orbit nearly coincide,
which hints that they were born from an orbit of a smaller period.

(iv) Clustering transition:

With increasing of the coupling, at € ~ 0.604 a pair of stable and unstable fixed points
appears in the Poincaré map. On the stable periodic solution of system (2.19) the mean
rotation frequencies of the variables Y3 and Y1 coincide, which corresponds to the appearance
of the cluster (cf. Fig 2.1). The set FixR is now attracted to the stable orbit which is a global
attractor of system (2.19), and the dynamics on this attractor is no more reversible.

2.3.6 Large number of oscillators

In the case of a large number of oscillators we can characterize the dynamics with aver-
aged quantities like Lyapunov exponents, but it is rather difficult to reveal the topological
structure in the phase space. Calculations of the Lyapunov exponents show that for small
couplings € they are coming in sign-symmetric pairs and the phase volume is conserved in
average, i. e. the system is quasi-Hamiltonian. The dimension of the invariant set of the
involution FixR is exactly [n/2] and thus is large enough to make reversible non-wandering
orbits possible.

Numerically, it appears that the transition from quasi-Hamiltonian to dissipative dynam-
ics for a large number of oscillators is not as abrupt as for N = 3, and does not coincide with
the point of the first clustering, but is similar to the continuous transition described above for
N = 4. This can be seen from the calculations of the average divergence of the phase space S
(2.11) presented in the figure 2.11. Because of large statistical fluctuations we were not able
to determine Swith accuracy better than 10-6, and with this accuracy the threshold for the
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transition lies at € ~ 0.1. We expect that this threshold should be the same for every large
chain length N because first clusters always appear at the ends of the chain and thus should
not depend in a strong way on the number of oscillators in the middle of the chain. Due
to high dimensionality of the system, we could not follow any topological transition in the
structure of chaos at this point.

2.4 Destruction of reversibility

Obviously, the involution (2.16) which is responsible for the reversibility is based on the
high symmetry in the lattice. This symmetry exists both due to the particular distribution of
the frequencies Qk (P-symmetry) and the symmetry of the coupling function (Q-symmetry).
We demonstrate here that violations of these symmetries lead to non-reversible dynamics.
For small lattice sizes properties of P-symmetric solutions are discussed.

2.4.1 Non-uniform frequency distribution

Here we will demonstrate that quasi-Hamiltonian features disappear if the symmetry in
the distribution of Ay responsible for the P-symmetry is broken. We start with the case of
three oscillators.

(i) Three oscillators:

Given a general frequency vector A = (2;) what would change in the behavior of the

system? The system (2.6) reads now
I = A1 —2edin gsin
L!Jl 1 _ Y1+ _ 7 (2.20)
Wy = Ay — 2esinyy + esinyg

In the section 2.3.1 the substitution Y1 = x+y and o = x—y was made. In the new
variables x rotates (x > 0,V¥x,y) and y oscillates. A similar transformation is possible also if
the frequency vector A % (i) is of general form A = c; (%) +c (‘11). With the substitution
Xx=((c1 —Cc)W1 + (c1+Cc2)W2) /2 and y = ((c1 — c2) W1 — (€1 + C2)W2) /2 the equations (2.20) read

. X o X
qu = C:)L(t)éz and d_y = X = (CZ + 3Cl) sin C)l("'gZ + (C2 — 3Cl) sin C:—)Clz (2 21)
Yo =L dx X 2e73(cf-cf) - (c1+3c2)sin gL — (1 —3cp)sin gL

The dynamics is reversible if dy/dx in the equation (2.21) is odd with respect to the rotating
variable x (maybe shifted like in the equation (2.15)). This is the case in two situations.
The first situation is given by A ~ (}) i. e. natural frequencies wy are distributed linearly.
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The situation A ~ (‘11) gives another degenerative case3' with only periodic solutions in the
whole region € < g; = % as defined by the equation (2.9) (now denoting x = (Y2 —Y1)/2 and
y=(W2+y1)/2).

d_y . Sinycosx

dx &1—3sinxcosy (2.22)

If A has both (i) and (‘11) components then the solutions are no more 1-periodic. We
will analyze this general case with construction of the Poincaré map defined by the section
x = T11/2. This section is crossed by all trajectories because x is rotating at a sufficiently small
€ (cf. equation (2.21)) for arbitrary c; and c;. Moreover, in the cases where all solutions
are periodic, A ~ (i) and A ~ (‘ll), this section coincides with the invariant set FixR of the
corresponding reversibility involution|.

Now we will analyze the one-dimensional function g(y) mapping the point from one Poincar é
section (”)//2) to the next Poincaré section point (ZTSES/Z), so that e. g. g(y) =y would corre-
spond to 1-periodic solutions, and g(Vy) # y would mean that no simple 1-periodic solution

exists.

T
2 o0 1
o
T ‘
-Tt 0 T
y

Figure 2.13: The Poincaré map with A = (1) or A= (11) ate=0.29< g, f(P) =sny, is an
identical map.

8This situation is reported in [107] to correspond to a typical arrangement of piano strings. Already in the Middle
Age one noticed that a piano sounds better if instead of one string one would take three and slightly detune the
middle one.

According to [107], in this case the horizontal oscillation modes are decaying much slower than vertical modes,
which causes a typical aftersound. If the strings on the left and right of the middle one are detuned too then this
effect disappears.

Horizontal modes of the three strings are weakly interacting and can be described with phase equations similar
to equations (2.1) so that the slowness of their decay can be ascribed to this new effect of non-dissipativity of the
symmetric solution with A ~ (*11).

we thank Prof. G. Pfister for attracting our attention to this example.
INote that reversible trajectories always cross FixR transversally, i. e. W x K = 0 for any vector of the tangential
space at the crossing point Wo, K € Ty, (FixR). The reason is that R¥ = —W at the crossing point.
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If all solutions are periodic then the map g(y) is identical, g(y) =y (see figure 2.13) which
is the case if A ~ (i) orA~ (—11)_

ay)
o

-t

Figure 2.14: The Poincaré map, A = (i) +0.01 (‘11) ate=0.29< g.. f()=siny

In the case of the broken symmetry, A = (}) +c(*11), we obtain the map from the fig-
ure 2.14 corresponding to a general circle map, yn+1 = d(¥n). Therefore, Arnold tongues repre-
senting the stability regions in the plane of parameters (g,c) are expected, which means the

existence of a set of stability intervals in .

15

1.0 .
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0.0

<dg/dt>

-05 -

[

-15
15

0.0 0.5

Figure 2.15: The synchronization diagram Qy vs. € (dots) and calculated Lyapunov exponents
(lines) for A = (i) +0.01 (—ll), f(@) = siny.

In the figure 2.15 the synchronization diagram for A = (i) +0.01(*ll) is plotted. The
period-locking region around € = 0.75 is just one of many Arnold tongues which are clearly
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seen in the zoomed figure 2.16.
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Figure 2.16: Lyapunov exponents for A = (i) +0.01 (*11) , a closer look. The frequency locking

region which was seen in the figure 2.15 reveals a fine structure of several (possibly infinitely
many) Arnold tongues, () = siny.

Thus in a chain of three oscillators one typically finds quasiperiodic trajectories with
all three zero Lyapunov exponents and dissipative windows of periodic limit cycles (Arnold
tongues).

(i) Larger chains:

In general, the involution (2.16) requires that the frequency differences in (2.3) are sym-
metric but not necessarily equal.

Dy =Dnk k= 1,...,n/2 (2.23)

We illustrate this in the figure 2.17a. The phase volume here is conserved in average,
and the dynamics remains reversible and quasi-Hamiltonian. Contrary to this, if we take a
distribution of frequency differences that violates the symmetry (2.23), we obtain a strange
attractor instead of quasi-Hamiltonicity (figure 2.17b). We emphasize, that also in this latter
case the system is reversible under the P-involution (2.18). The dimension of the invariant
set of this involution is, however, too low (zero) to ensure reversibility of the dynamics.

We note that if the symmetry (2.23) is only slightly violated, the dynamics remains nearly
guasi-Hamiltonian: the convergence of the phase space volume is small. In the chaotic case
this means that the dimension of the attractor is close to the dimension of the phase space. In
the periodic case like that in the figure 2.9 a weak dissipation means that the Poincaré map
is a circle map close to the identity. It is known that in such maps a vast majority of states is
quasiperiodic, i. e. they have zero Lyapunov exponents and are therefore not distinguishable
from the quasi-Hamiltonian ones.
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=0.400 Aw=0.200 =0.400 Aw=0.300
V7 dehatittied S AT it
Y3 Ws
—mt/2L T . - I —T[/2"" i S i
a) —n/2 (] 31/2 by -~TU2 W 31/2

Figure 2.17: The dynamics of the system (2.3) with N=4,e=0.4. (a): A1=A3=1, A, =13
Here a violation of equality of frequencies that does not destroy involution (2.16) preserves
quasi-Hamiltonian dynamics. (b): A; = Az =1, A3 = 1.2. The involution (2.16) is broken; the
dynamics is dissipative with a strange attractor.

2.4.2 Non-symmetric coupling function

Here we demonstrate that violations of the function symmetry (2.18) lead to break of
reversibility.

(i) Three oscillators:

Let us try different 2reperiodic coupling functions f () = ¥ (axsinky + bxcosky). As this
f(x) is in general non-odd, the equations (2.1) now read as

{ b1 = Lo (f (W) + (=) — () (2.23)
W2 = 1+e(—f (=) + f(=W2) — f(Y2))

After performing the same substitution like in the equation (2.14), 1 =x+yand Qs = x—Y,
one obtains

dy _ (F(y+X)+f(=y=x) = 3(fy+X) + fy=X) _ 26, (=%, ) = G1(%,%) (2.25)
% :

dx e l-1(f(y+x) —f(y—x) e l1-G (v

The functions G4 (u,v) = %(f(u+v) + f(u—v)) are even/odd with respect to the second ar-
gument, Gx(u,v) = £G4 (u,—v). The symmetry as from the case of f(@) = siny is present if
the functions G.(u,v+ 3) are odd/even with respect to 7, i. e. G+(u,5+V) = FG+(u,5 —V),
Yu,v. The denominator would then be an even function and the numerator an odd one. For a
generic 2reperiodic function f() = S (axsinky + bk cosky) holds

G+ (u,v) = 5 ¥ (aksink(u+ v) + bk cosk(u + v) + axsink(u — v) + by cosk(u — v))
{ G_(u,v) = 5 ¥ (aksink(u+ v) + bk cosk(u + v) — axsink(u — v) — by cosk(u — v))

NI NI

2
2
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CHAPTER 2. SYNCHRONIZATION VS. REVERSIBILITY

or
{ G, (u,v) = ¥ (axsinku+ by cosku) coskv

G_(u,v) = 3 (axcosku — bxsinku) sinkv
The oddness/evenness conditions for G_(y,x), G (y,x), and G;(—Y,x) have the same form,

varying in the y-term only. E. g. for G_(y,x) it reads as

v
G_(u,g+v) +G_(u,g—v) 2 0= ZZ(akcosky— bksinky)sinkxcosk—;T

Thus every coupling function only consisting of odd harmonics ensures all the solutions to
be 1-periodic like in the case f () = siny.
f(P) = agsinP+ by cosy + azsin3y + bz cos3y + as sin5Y + bs cos5Y + . ...

In the figure 2.18 the influence of adding the next odd harmonics to the coupling function
on the phase space diagram is shown.

— 7

b,
o

- ‘
-Tt 0 T

v,

Figure 2.18: Numerical solutions of the equations (2.14) for different initial conditions and
f(p) = 0.8sinP+0.2sin3y in Y1-Y» diagrams, in grey the solutions for the same initial condi-
tions and f () = siny are plotted, N =3, € = 0.29.

If an even harmonics is present in the coupling function then the symmetry discussed
above is broken. For the Poincaré map g(y) in the figure 2.19 this means the existence of two
fixed points y = g(y), one being stable and the other unstable. All the trajectories converge to
a limit circle.

(ii) Larger chains:

Restricting ourselves to odd coupling functions f () = — f (—) we see that the Q-symmetry
requires that f(y) = f(1t— ). The question whether there also exist non-odd functions deliv-
ering the symmetry Q in the system (2.3) for an arbitrary lattice size could not be answered.

The odd coupling functions invariant under Q-involution (2.18) are represented by a sine
Fourier series with odd harmonics only. Such functions yield reversible dynamics; one exam-
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Figure 2.19: The Poincaré section map, A = (i) ate=0.29< g, f(P) =0.8sinP+ 0.2sin2.

ple is presented in the figure 2.20a. If even harmonics in the Fourier series are present, the
dynamics is dissipative as can be seen in the figure 2.20b.

2.4.3 On P-symmetric solutions and their destruction

The reversibility of the systems is ensured by the product of the symmetries P and Q. The
symmetry Q ensures the reversibility and the symmetry P ensures that the set of invariant
points FixRof their product has a dimension which is high enough ([n/2]). Then one can expect
non-wandering typical trajectories in an ergodic set, that cross FixR and herewith establish
guasi-Hamiltonian features on average over this ergodic set.

Besides such quasi-Hamiltonian ergodic sets there can exist other types of ergodic sets in
the vicinity of FixR like quasiperiodic windows or ergodic sets of smaller dimensions. Here
we want to illustrate this with discussing specific P-symmetric solutions for small lattices.

The perturbation symmetry P : i« — Wn_k in the case of the coupling function f(y) =siny
has the diagonal subspace Yy = Yr_k as an invariant set. For each of such pairs in the equa-
tion (2.6) we introduce new variables & = &k = (Wk+Wn-«)/2, €1k = &nk = (W1 —Ynk)/2. If the
number of oscillators N is even (n is odd) then additionally is set {n/> = Un/2. The P-invariant
subspace is defined by & | =0, Vk.

(i) Four oscillators:

Now we make this substitution in the chain of four oscillators with all Ay =1 and f(y) =
siny, i. e. in the case of the equation (2.19). Letting E” =81 =(W1+Y3)/2, & =Wy, &, =& =
(W1 — W3)/2 one obtains from the equations (2.19)

El =1+¢€siné, —2esinécosés

&r=1—2esin&, + 2esin&; cosé3 (2.26)
&3 = —2esin&3coséy
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Figure 2.20: (a) The dynamics of system (2.3) with N=4, Ay =1, e=0.35and f(Y) = sin@+
0.2sin3y is reversible. (b) The same system as (a), but with a non-symmetric coupling function
f(p) =sinP+0.2sin2y and € = 0.4 has a strange attractor.

The linearized equation for the perturbations 6 of the P-symmetric solution &, = &3 =0
reads

51 = €£c0s&20, — 26C0SE101
O = —2€C0S&20 + 26C0SE 101 (2.27)
53 = —2e€0s¢103

The transversal Lyapunov exponent is then straightforward A | = A3 = —2¢g(cos&1). For &1
(which is equal to 1 ») holds

{ §1:1—2£sinél+ssinéz (2.28)

&> =1+ 2esn&, —2esiné,

This equation has the same form as the equation (2.4), with A = (1) A= (*22_2), (W) =
sinyk, but it does not possess the reversibility symmetry.

As seen in the section 2.4.1, this equation corresponds in terms of the Poincaré map g(y)
(with x = (§1 +&2)/2, y = (&1 — &€2)/2) mapping one Poincaré section (which is defined here by
x=0) (8) to the next one (gz(’;)) to an invertible circle map, and one should expect Arnold
tongues in € where stable periodic solutions exist. One Lyapunov exponent, let it be Ay,
is always zero for non-constant solutions because the system is autonomous. Aj; shall be
zero outside the Arnold tongues and negative within them. Through building the trace and

averaging over time for the linearized version of (2.28) one obtains

A1 =A1+ A2 = —2¢({cos&1) + (cosE2)) = —2e(CcoS&2) + AL

In the figure 2.21 calculated Lyapunov exponents and their sum is shown. Beyond the
Arnold tongues the dynamics in the P-invariant plane is foliated by tori so that A; =0, among
them there is one torus crossing the set FixR which ensures reversibility for all tori, S Ax =0.
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Therefore all Lyapunov exponents are zero, the invariant plane &, = 0 is neutrally stable.
Around the symmetric quasiperiodic solution 1 = i3 other quasiperiodic solutions exist. To-
gether they build a window of quasiperiodicity with A | = 0 for initial conditions close to this
plane.
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Figure 2.21: Numerical planar (black) and transversal (grey) Lyapunov exponents for the
symmetric solution 1 = i3 and their sum (dashed line).
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Figure 2.22: Tangent bifurcation of g(y), in grey g(y) at € = 0.6, in black g(y) at € = 0.61 above
the bifurcation threshold.

Inside an Arnold tongue all trajectories on the P-invariant plane converge to a periodic
orbit. While stable in the invariant plane, this orbit is transversally unstable and represents
a typical unstable saddle-type periodic orbit within chaos. In this case there cannot be any
guasiperiodic windows around the P-invariant plane, the sea of chaos involves this plane.
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The sum of Lyapunov exponents is negative for such a plane-stable periodic orbit, the
latter being then dissipative. However, there still exists the R-symmetric trajectory with an
inverted Lyapunov spectrum and diverging phase volume along it.

At the value of € = g1 =~ 0.604, where first cluster arises, the map g(x) undergoes a tangent
bifurcation, which is shown in the figure 2.22. There arises a Q-symmetric pair of fixed points,
one of them being both planarly and transversally stable and the other both planarly and
transversally unstable. All the solutions converge then to the P-symmetric plane. This en-
sures W4 (t) — W3(t) and means decreasing in the dimensionality of the motion from the three-
dimensional to two-dimensional torus where no chaos can be present. All the P-symmetric
solutions converge to the periodic one corresponding to the fixed point of the map g(y). More-
over, this periodic trajectory is oscillatory in 1. This explains the arising of clusters, since for
an oscillatory process the time average of its derivative is zero. The dimensionality is again
reduced by one.

When clusters are present the system also demonstrates an exact intercluster synchro-
nization, i. e. Yi(t) = Ys(t) after transients. In terms of the P-symmetry it can be said
that one subsystem {Wy,k < [n/2]} is exactly synchronized with the P-symmetric subsystem
{Wn_k,k < [n/2]}.

(ii) Five oscillators:

The situation with five oscillators (n = 4) is interesting because the invariant set of the
symmetry transform is still a plane which allows relative simple considerations. We proceed
analogously to the case of four ocsillators. With &1 = (W1 +Wa)/2, &2 = (W2 +W3)/2, &3 = (W2 —
W3)/2, &4 = (Y1 — W4)/2 one can write for the P-symmetric solutions (Y1 = Ys, Yo = Ys):

Written in linearized form for perturbation, this gives

81 = —2¢e01 c0s¢&1 + €6, COSE
82 = €07 C0SE1 — €02 COSE

63 = £03C0S&» — 2€04C0SE 1
84 = —3ed3c0s¢&> + €04 COSE 1

Assuming one zero Lyapunov exponent A2 = 0 one obtains

A1 =A1+ Ay = —2e(cos&1) — €(cosr)
A3+ Aq = €(cos&y) + €(cosEy)

Again, quasiperiodic solutions in the invariant plane &3 = {4 = 0 are expected with A1 =0,
and there should be Arnold tongues with A; < 0 and a tangent bifurcation delivering the
map g(y) a stable fixed point which corresponds to the synchronization to the first cluster.
Calculated Lyapunov exponents in the plane are shown in black in the figure 2.23 together
with the transversal Lyapunov exponents in grey. The dashed line represents the sum of all
four exponents.
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Figure 2.23: Five oscillators. Planar (black) and transversal (grey) Lyapunov exponents and
their sum (dashed line) for the dynamics in the P-invariant plane.

There are regions in € where all exponents are zero. This means the possibility of existence
of a window of quasiperiodicity around the invariant plane. Also there are intervals where
every still quasiperiodic solution in the invariant plane is transversally a saddle-type trajec-
tory with transversal Lyapunov exponents coming in the pair £A. Like in the case of four
oscillators this destroys the quasiperiodic window around the invariant plane which is then
contained in the sea of chaos. Also here Arnold tongues with periodic saddle-type dissipative
orbits in the plane are present.

At the value of €1 ~ 0.575 corresponding the tangent bifurcation Q1 (Q4) first coincides with
Q, (Q3). But after €1 up to the & ~ 0.732 no clusters are observed, the system shows chaotic
dynamics as seen from the figures 2.1 and 2.3.

Unlike the case of four oscillators the synchronization between the subsystems after ap-
pearance of the first cluster is not exact but exactly counterphase one. In the figure 2.24
Q1 = Q4 =0 because Y1 (t) and Y4(t) oscillate. But they do not only oscillate, they oscillate in
an exact counterphase.

2.5 Summary

The extremely simple system of coupled phase oscillators demonstrates extremely rich
dynamics. This can be already seen from the figures 2.1 and 2.3. Many regimes in large
lattices are chaotic, so the clustering should be described as a transition inside chaos. In
this work we focused on a particular peculiarity of the dynamics for very small couplings and
demonstrated, that this dynamics is reversible.

This property is responsible for a rather unusual for dissipative systems quasi-Hamiltonian
dynamics. Although the reversibility holds for any coupling, only when the clusters are ab-
sent the reversible trajectories appear to be dense in the ergodic sets; at large coupling they
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Figure 2.24: Time evolution of the system (2.6) in the two-clusters regime, five oscillators,
€ =0.8, Y1 and Y in black are in counterphase to Y3 and Y4 in grey.

connect a repeller and an attractor, so that the observed dynamics on the attractor is dissipa-
tive.

In investigating the simplest non-trivial case of 4 coupled phase oscillators we have found
a non-trivial transition from the quasi-Hamiltonian to dissipative dynamics. It can be char-
acterized as a symmetry-breaking “chaos-chaos” transition, at which the mean contraction
rate smoothly deviates from zero.

In discussing reversibility we have argued that the symmetry of the involution that gives
rise to reversibility should be large enough. This requires not only the symmetry of the
coupling function, but the symmetry of the natural frequencies as well. If the dimension of
the invariant set of the involution is low, no reversible dynamics is observed. It would be
interesting to apply these ideas to the systems of Josephson junctions, where the non-linear
functions are known to have a high symmetry [104, 108].
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Chapter 3

Transition to coherence In
globally coupled maps

In this chapter we describe the transition to coherence in populations of dynamical sys-
tems coupled “every-to-every” via mean field. In the disordered state the mean field is con-
stant up to statistical fluctuations, in the coherent state a non-trivial mean field arises. We
show that this transition can be described in the framework of linear response theory as
autogeneration in an amplifier circuit with feedback.

3.1 Introduction

The concept of the global coupling is the counterpart to the nearest-neighbor coupling rep-
resenting short-range interactions. Speaking about globally coupled systems, one assumes
that long-range interactions are present, they can be described as a type of interactions
“every-to-every”, or as the situation where an equal force is acting on every system in an en-
semble, which is formed in its turn by individual dynamics of the systems in this ensemble.
This force is often called mean field in resemblance with the notation of the mean field first
introduced by Van der Waals [89], often it is not an approximation but arises naturally due
to the nature of the problem. Prominent examples of globally coupled systems are arrays of
Josephson junctions [39], multimode lasers [109], certain chemical reactions [54], interacting
biological clocks [112], and models of neural activity [99].

In the context of coupled lattices [45, 47] a rich variety of dynamical phenomena was
found, that seem to be typical for all globally coupled systems. With growing coupling a tran-
sition hierarchy from a completely disordered state to a completely ordered state is expected
in globally coupled systems. At relatively large couplings that still are not large enough to
ensure complete synchronization the effect of cluster formation has been found and exten-
sively discussed [45, 113, 10, 80]. At very small coupling the effect of hidden coherence was
found [46, 73, 74]. In this phenomenon the fluctuations of the mean field does not vanish
in the thermodynamic limit. The mean field distribution seems to obey the central limit
theorem, but not the law of large numbers.
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In the language of non-linear Frobenius-Perron equation this means that the measure
does not converge to a time-invariant limit in spite of the fact that the dynamical rules are
autonomous. The mean field reveals a non-trivial asymptotic dynamics.

3.1.1 Formulation of the problem

We start with investigation of the transition to coherence in populations of globally cou-
pled discrete time systems. Our basic model is an ensemble of N globally coupled chaotic
maps

X(t+1) = h(x(t),ea(t))
] (3.1)

« €
at) = &3 a0(t)

1

Here ¢ is the coupling constant. Note that the coupling performs via the mean field a
which is the average of some observable q(x). We write the coupling in a general form, using
arbitrary functions h(x,ea) and q(x). The only natural condition is that in the thermodynamic
limit the mean field vanishes for e =0, i. e. (q(X))o = 0, where ()o denotes average over the
stationary distribution of the map x+— h(x,0).

This condition means that if ¢ = 0 then individual systems in (3.1) are independent of each
other, the mean field is constant in time up to statistical fluctuations due to the limited size
of the ensemble. This constant mean field is assumed to be zero, i. e. it is assumed to be
contained in the function h(x,ea)*.

With increasing € the effect of the mean field a on individual systems becomes stronger
and at some critical value . the dynamics of individual systems reveal a certain coherence
with each other so that arising of a non-trivial, i. e. time-dependent mean field is expected.
Further in this section a theory of this transition [102] will be presented. This theory is
based on general linear response theory (cf. [69]), similar ideas were developed for ensembles
of noise-driven systems [101].

3.1.2 Finite-size effects

Assume that an ensemble with independently chosen initial conditions is prepared. The
initial value of the mean field is proportional to ﬁ with N being the number of systems in
the ensemble. This small mean field can grow or decay with time, while one expects that for
completely incoherent systems this value will remain small.

In the thermodynamic limit N — o the effect of fluctuations due to the limited ensemble

size should vanish. With this assumption the value of the mean field can be calculated by

*Of course, a general ensemble of the form (3.1) does not have to produce a zero mean field if the systems are
uncoupled, € = 0, this trivial mean field can be any finite constant a. With a formal continuation for € # 0 one can

N
write with this trivial solution x(t +1) = h(x(t),€a(€)) to obtain a self-consistent trivial mean field a(e) = & ¥ q(xc(t)).
k=1

With the substitution a(t) = a(€) + b(t) the equations (3.1) produce a zero mean field solution b=0at € = 0 as well as
for small € # 0.

Unfortunately, in general the function a(€) does not have to be smooth (e. g. in structurally unstable systems). Nor
it has to be unique (if multiple invariant states exist for € > 0).
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averaging over phase space of an individual map.

alt) = () = [ e(0adx= fim = S a0(0)

—00

The evolution of the probability density is governed by the non-linear Frobenius-Perron equa-
tion (1.3). The effects of the limited ensemble size can be understood as small perturbations
(of order \%N) of the thermodynamic limit state of the system. The question of arising of co-
herence in an ensemble of systems coupled through a mean field can therefore be answered
in the limit of a very large ensemble size by studying the stability of the state a= 0 in the
framework of linear theory.

3.2 Linear stability analysis

In the thermodynamic limit N — o the trivial mean field a= 0 is a solution. In general one
cannot guarantee that a solution at finite N exists that is close to this trivial solution so that
finite-size effects only mean existence of fluctuations around a = 0. The question whether
a linear response theory is possible at all for general chaotic systems has been intensively
discussed in the last two decades [37, 84]. While such a theory should work for "good” chaotic
systems, it is to be applied with care. Now we will introduce this linear stability theory for
the state a=0.

3.2.1 Breaking self-consistency condition

Let us take a closer look at the structure of the equations (3.1). They contain the mean
field a(t) twice, the field acting on an individual system is defined in its turn by the state of
all these systems. Another observation is that an individual system in the ensemble (3.1)
experiences only the effect of the mean field, it has no other information about the dynamics
of the other systems in the ensemble nor it knows their number.

Therefore the dynamics of this individual system remains unchanged if instead of the
coupling through the mean field a= ﬁ Elq(xi (t)) the system would be driven by an appropriate

£

external force ajn. In particular, in the ensemble (3.1) the same mean field aqy = @, would be
generated. In other words, a proper input aj, ensures a proper output agy.

Thus, the ensemble (3.1) can equally be writen with using the self-consistency condition
for the mean field as:

X(t+1) = h(x(t),ean(t)) (3.2)
aou(t) = (a(x(t)))
aon(t) = an(t) (3:3)

Now we put aside the requirement of the self-consistency aqy = ajn to return to it later on.
Instead of requiring (3.3) we will consider ajn(t) as a given (while unknown) function of time.
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3.2.2 Linearization

Atfer having broken the self-consistensy the question of stability if the state a=0 is re-
duced to the question how the system (3.2) transforms an input signal aj,. In the disordered
state this g, is small. That is why one generally expects that the average response aqy of
the ensemble (3.2) is also small and the linear stability theory can be applied. Then we can
expand (3.1) around the trivial solution a= 0. Denoting h(x,0) = f(x) and hi,(x,0) = g(x) we
obtain

x(t+1) = f(x(t))+eg(x(t))at)
at) = (qx(t)))

Of course, the system (3.4) also has the trivial solution a= 0. As a linear response agy of
the system (3.1) to small perturbations &, is expected one can equivalently analyze stability
of the state a= 0 in the systems (3.1) or (3.4).

Within the linear theory we will not be able to find the distant solutions of the system (3.1),
i. e. the solutions that are far from a= 0, we will only find the critical value of the coupling at
which the transition to coherence takes place.

(3.4)

3.2.3 On ”good” and ”"bad” maps

It is known that the response to small perturbations can be singular as discussed above
(e. g. [30, 37]). For instance, this happens in structurally unstable chaotic systems. In such
systems, small changes of a parameter lead to a topologically nonequivalent dynamics, what
can, e.g., been seen in the symbolic description or in the representation via unstable peri-
odic orbits. Note, that to this class belong even many systems where chaos persists in the
whole parameter range (e.g., the Lorenz attractor and the tent map), let alone such nonhy-
perbolic examples where small perturbation can lead to a periodic window (like in the logistic
map). Response of the structurally unstable system is expected to be singular [30], what, in
particular, can be seen from the fractal dependence of some statistical characteristics on a
parameter [50].

We have argued that in order to ensure that the linear theory is valid the map (3.18)
has to be "good” enough. Essentially, it should be structurally stable, i. e. adding a small
perturbation should not change the topology of the attractor. The corresponding requirement
has been formulated in [37]: the perturbation pg(x)a(t) should be such that it does not change
the number of preimages of the map f(x).

Note that it is not required here that the invariant measure of the perturbed map is close
to the unperturbed one, we only need a smooth response of mean field that is an average over
this measure. Under which condition a phase space average respond smoothly to a small
perturbation of the underlying map deserves an independent research.

We proceed with the assumption that the map h(x, €ain) is structurally stable with respect
to small perturbations ajn.
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3.2.4 Ensemble as a linear filter

Equations (3.4) can be understood as input-output relations with the consistency condi-
tion (3.3)
(t+1) = f((t))+eg(xk(t))ain(t)
aou(t) = (a(x(t)))

The system (3.5) transforms one function of time ajn(t) to another function of time ag(t).
As a linear response is assumed the effect of tranformation of every Fourier mode of ajn(t)
can be analyzed separately. That is why we use now as test perturbations small periodic
perturbations of the trivial state ga = 0, aj,(t) = Repd*t, u < 1. As the equations (3.5) are
linear in ajn(t) the response is expected (under the same assumptions on the system to be
structurally stable) to get asymptotically established at the same frequency proportially to

(3.5)

aou (t) = PReK ()€ + o(1) (3.6)

The complex constant K(w) corresponds to the well-known transfer function of a linear fil-
ter in the theory of analog processing (e.g. [69]). The ensemble after breaking the consistency
can thus be understood as an amplifying device with the complex amplification coefficient
K(w) at the frequency w.

K(w)

EN o

Figure 3.1: Linear amplifier analogy: a linear amplifying device is characterized by its com-
plex transfer function K(w).

3.2.5 Stability of a linear filter

Here the theory of linear circuits (e.g. [69]) needed in order to obtain the stability condition
in the closed feedback loop is reminded. Given a general linear device with one input signal
ain(t) and one output signal ag(t), one can describe it through the linear ordinary differential
equation

0 daon _ &, d“ain
(]k— = Bk (37)
2.0 are — 2 Paw

With denoting the differentiation operator with D = % this equation takes the form

a(D)aos = B(D)ain (3.8)

a(D) and B(D) are polinomials in D of the order nand mrespectively. To solve this equation
one uses the complex Laplace transform L which is defined by
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0

f(p) = L{f(t)}:/f(t)e‘mdt (3.9)

0
From a given Laplace transform f(p) its original can be restored with the inverse Laplace
transform

CHioo

(=L (P} =5 [ f(pedp (3.10)

C—ico
The constant c is to be chosed in such a way that the integration contour lies to the right

of all poles of f~(p) in the complex plane. The Laplace transform is linear and its important
property is that

L{Df(1)} = pL{f(1)} - f(0) (311)

Assuming zero initial conditions the equation (3.8) is read now

a(p)&out (P) = B(P)ain(p) (3.12)

From the convolution property of the Laplace transform, i. e.

t
L { [xwye —T)dr} = X(P)¥(p)
0

follows
fos(t) = th(r)an(t—r)dr
ht) = L {H(p)} (3.13)
Hp) = BB

The function of the complex variable H(p) = B(p)/a(p) is called transfer function of the
device described with the equation (3.7).
The device is stable by input if and only if

[

/|h(t)|dt<oo

(0]
In the language of the transfer function H(p) this implies two conditions:
e n>m, i. e. the order or the polinomial a(p) is not less than the order of B(p).
¢ No poles of H(p) have positive real part.

Now we have to account for initial conditions which are generally non-zero. As the equa-
tion (3.8) is linear its solutions can be written as a superposition of the homogenous and the
particular solutions:
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foa) = Ane(t)+ [ h(Dann(t - 1)t

0 (3.14)
a(D)Aor(t) = O

The device is stable by initial conditions if and only if the effect of initial conditions asymp-
totically decays in time, i. e. if JLrpvom (ty=0.

After applying the Laplace transform to the homogenous equation a(ID)Ao: = 0 one obtains
a(p)Aat (p) + Y(p) = 0, where the polinomial y(p) of order equal or less then that of a(p) con-
tains contributions of initial conditions on Ay and its derivatives due to the relation (3.11).

The asymptotic behavior of the homogenous solution Agy(t) is then obtained through the
inverse Laplace transform

Aow(t) = Zim_f%emdp: Zepit Res ;’((';';)) (3.15)
Here the sum goes over all complex roots py; of a(p) which are assumed to be simple.
One sees that the device is stable by initial conditions if and only if all Rep; < 0. If these
conditions do not hold then the system responds singularly. Note that we cannot generally
guarantee that the system (3.5) with broken feedback is stable by input and/or by initial
conditions so that the whole linear theory will only work if it is the case (one can expect
this for structurally stable maps as discussed above). If the system (3.5) does not respond
singularly then asymptotically it responds to a small harmonic input aj,(t) = pg* at the same
frequency, which directly follows from (3.13):

t t

aout(t) = /h(t)l.leiw(t_T)dT = “eim/h(t)e—iw‘rd.[
(0]

(o]

t _
As tIi_)mfh(t)e"‘*”dr = H(iw) it is valid asymptotically that
®o

aou (t) = pH (ic0)e*

That means that when calculating the linear response to a harmonic test input at a given
frequency we are actually calculating

eK (00) = H (iw) = 582’; (3.16)

The fact that a system responds linearly to a harmonic input implies that the complex
function K(w) does not have a pole (or, more exactly, a(iw) does not have a root) for real w.

3.2.6 Stability of a feedback loop
From all what is said above it is now trivial to obtain the stability condition for the in-
coherent state a= 0 in the ensemble (3.1). With the known transfer function H(p) = % =

H(—iw) = eK(w) (p is purely imaginary because the input signal is harmonic) it is easy to
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write down the analog of the equation (3.8) by invoking the self-consistency of the mean field,
Qin = Aoyt = &

(a(p) —B(p))&(p) = a(p)(1—eK(w))&(p) = 0

Here here is no input in the system any more so that only instability by initial conditions is
possible in the feedback loop. The onset of instability and, thus, of coherence in the ensemble
of chaotic elements coupled through the mean field is given by the complex condition

eK(w) =1 (3.17)

Note that there are actually two conditions, the condition on the imaginary part of the
transfer function ImK(w) = 0 gives the frequencies of autogeneration with which the critical

coupling strength can be defined from the condition on the real part €. = Re%(w)'

3.3 Linear response of chaotic maps

So far the analysis was presented as if it were easy to calculate the average response of
a chaotic system to a periodic external force which is, in fact, the most difficult part of the
whole. Now we want to calculate this linear response of the ensemble of non-interacting maps
defined on the unit circle to a small periodic driving pe'™.

We proceed assuming maps fi(-) from the ensemble (3.5) to be identical, structurally stable
and chaotic. Then in the thermodynamic limit of a very large ensemble size N — o averaging
over ensemble can be replaced by averaging over the invariant measure of the individual
map, which has the form

X(t+1) = f(x(t)) = f(x(t)) + pg(x(t))a(t), with a(t) = t+D (3.18)

The number T is an arbitrary phase constant. With this premise it is legitime now to speak
about response of an individual map to a harmonic perturbation.

The phase space averaged value of the contribution to the mean field from an individual
map will oscillate at the frequency of the driving (q) = [ pt(X)q(x)dx = p Re K(w)&0, Our
goal is to find the variations of the probability distribution density in the first order in p< 1,
pt(X) = po(X) + Hp1(X) €D + o(p?). This can be done using different methods.

3.3.1 Method 1: static response of the p-iterate

Let us assume w = 2/ p, i. e. the driving is p-periodic. Then the p-iterate of the map
f(-) is autonomous, and the phase-averaged response of this p-iterate F = fP to the driving
pe @0 will only depend on the phase T.

To define the linear response of the map (3.18) at the frequency w it is enough to define the
static response of the p-iterate F(-) of f(-) to the perturbation with an appropriate function
G(x) ~ €%, i. e. fP(x) = (f +pga) " (X) = F(X) = F(X) + HG(X) + 0o(12).

60



3.3. LINEAR RESPONSE OF CHAOTIC MAPS

Assuming that the perturbation pG does not change preimages of F too much we can write
the Frobenius-Perron equation for F with the sum index running over preimages xs, of x in
the map F:

N . 2
Po(X) + Hp1(X) + (1) = > Po(Xm) + Wpa(Xm) + Ot (3.19)

& |F' () + HG' (x) + O(12) |

F+uG

Figure 3.2: Shift of preimages up to the order of p of a point x in the map F = F + G as
compared with the map F. This shift is smooth if the slope of every branch of F is non-zero
at Xm(x). If the slope is zero then an addition of a non-zero perturbation G causes a singular

shift of preimages and/or change of their number. Therefore, not every possible perturbation
functions G are allowing the linear response analysis.

Taking into account the shift of preimages of x in F as compared to F up to the order of p
(x=F () = F (Xm) = X =Xm— MG (Xm) /F’ (Xm) +0(142)) we can go over to the sum over preimages
of the unperturbed map and extract the correction term pj:

n

signF’ F
p1(X) = J (poGE — PG+ p1F' — poG) | (3.20)

& F°

Xm

Of course, the equation (3.20) is again of the Frobenius-Perron-type and may be not easy to
solve analytically. However, this method has the advantage that it can be applied to analyze
the response of individual (possibly stable) n-periodic orbits to the p-periodic driving just by
analyzing the np-iterate of f(-).

3.3.2 Method 2: spectral decomposition

Denoting the right hand side of (3.18) as F !(x), we write the Frobenius-Perron operator
for the density pi(X)

pria() = [ 8(x=F{(y)pr(y) dy (3:21)

From this point on we restrict ourselves to maps on a unit circle and can now introduce the
Fourier transform of the density pt(x) = 5 W (k)e?™ and obtain from (3.21) the corresponding

61



CHAPTER 3. TRANSITION TO COHERENCE IN GLOBALLY COUPLED MAPS

Frobenius-Perron operator in the Fourier space:

W = 3 RO

T (3.22)
Rt(k,|) — errnIx—ZTukH(x)dX
0

Taking into account that F!(x) = f(x) = f(X) + pg(x)é“ we can now write the spectral rep-
resentation of the Frobenius-Perron equation (3.21) up to the first order in p

R(k, 1) = RO(k, 1) + pRY (k,1)€** + o(p?) (3.23)

where

Ro(k, I ) — jl‘e2m'lx—2nikf(x)dx

0
1 ] )
Rl(kal) = _zmkfg(x)ezﬂlW*ZTukf(x)dX
0

Substituting this in (3.22) and writing W (k) = WO(k) + pe“*y(k) + o(u?) we obtain the equation
for the complex amplitude of the perturbation (k)

1) = IiR‘%k,I)wla) FRY(KDYO() (3.24)

If all coefficients RO(k,|) and RY(k,1) of the Frobenius-Perron operator in the spectral rep-
resentation can be found then one has to solve the algebraic equations (3.24) to obtain the
oscillating correction term to the invariant density.

3.4 Transition to coherence in coupled Bernoulli maps

Here we will give an example of application of the linear response theory to an ensemble
of particular chaotic maps.

3.4.1 The system

To remind, we consider an ensemble of identical chaotic maps on a unit circle (3.4) which
are coupled every to every through a mean field.

AEHD = F000) +eglx()al)
at = § 3 ax)

Individual uncoupled maps are taken here to be Bernoulli maps, f(x) = 2xmod 1, but the
results should be general for structurally stable maps on a circle.

This map is a paradigmatic model of a chaotic systems while it admits relatively simple
calculations. It is typically chaotic in the sense that if one writes a number from the interval
[0,1] as a binary fraction 0.110010101111011010010... and takes a close number differing from
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Lty

0 0.5 1 X

Figure 3.3: The Bernoulli map f(x) = 2xmod 1.

the first one in the digit n then the map generates diverging sequence of numbers. The
distance between consequent images of the initially close numbers will grow to the order of
one after n steps. The slope of this map is constant, the map has uniform invariant density
and is structurally stable to small perturbations, i. e. the dynamics remains chaotic with its
invariant density close to uniform.

In order to ensure that the number of preimages is not changed as discussed in [37]by the
perturbation the perturbation function g(x) = Re k;ngezn”‘X is introduced.

3.4.2 Calculation of transfer function: method 1

Now our goal is to obtain the expansion of the invariant probability density p(x) = po(x) +
HP1(X) 4+ o(?) in the perturbed system

Xni1 = f(X) = f(Xn) + H9(Xn)@n, With a, = cosw(n+T1) (3.25)

This task reduces for p-periodic driving (i. e. if w= 21'[%) to the problem of finding out the
first correction to the invariant density of the p-iterate of the map (3.25) when driven by a
constant, with fP(x) = (f + pgan) *(x) = F(X) = F(X) + UG(x) + o(p?) being now autonomous.

The equation (3.20) gives a Frobenius-Perron-like equation for this correction in terms of
preimages of the p-iterate of the unperturbed map f(-), which is in our case the p-iterate of
the Bernoulli map F(x) = fP(x) = 2Px mod 1.

The preimages xm(X) of a point x defined by the p-iterate of the Bernoulli map are

xm(x):X;_—pm,m:O,l,...,Zp—l (3.26)

Invariant density of the (unperturbed) Bernoulli map is uniform, i. e.

Po(x) = 1
po(x) = 0

The slope of the p-iterate of the Bernoulli map is constant, i. e.

(3.27)
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F(x) = 2Pxmod1
F'l(x) = 2P (3.28)
F'(x) = 0

The equation (3.20) for the correction term to the invariant density of the perturbed sys-
tem is now read

p1(X) = sz_:Z‘Zp (2"p1 (Xszm ) -G (X;rpm)> (3.29)

To evaluate G’ to be substituted into (3.29) we expand the derivative of the p-iterate F of
f=f+egan:

B0 =F/(00 +180 +o4P) = S P)

p—-1

. (f’(f“k(x>)+ug'(f‘k<x>)eu<)
a

k=0

p—1 N
= I!:Lf'(fk(X))+H|;Wk= f/(fk(X))+0(u2)

The slope f'(+) is the same at every point on the circle, so taking advantage of the Bernoulli
map once again, we obtain with g(x mod 1) = g(x)

G'(xm)zzp—lpflg' 2P(x+m))a (3.30)
2

We will look for a solution of (3.29) with G’ from (3.30) in the form
1
pL=Rey €™ with ¢ = /pl(x)e‘zmkxdx
0

Now we compare coefficients at equal frequencies in the left and right sides of (3.29). As
the invariant density is unique so it is sufficient to construct just one solution. Accordingly,
we will set the coefficients to zero whenever possible.

We rewrite (3.29) as

p-1 ) 2P-1 o im 2P—1p-1
Re T @™ = Re2 Py 5 e —27p1 5y v g’(Z"p(x+ m)) cos2nd(l +1)
k=0 m=0 k=0 m=0 120 P
= ReA+ReB

(3.31)
n if k/nez
0 if k/n¢gz

R R n—1 - ki R
Using the geometric sum 3 e = { we receive:
m=0
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2P—1 2P_1 )
A = ZpZ chez"’kT—Zchkez"’kixpZezr"kimF:Zczpkezmkx
m=0 k=0 m=0 k=0
2P—1p-1 q
B = —277ty Z}g (2' P(x+ m)) cos2r— (I 4 1)
= p

op_q
- _ ;2 p- lcosZth (I+71) Z)Zrukgk Z g?rik2 ~P(x+m)

— Zoezmkx( 2p"Tﬂkgzp7|kcosanp(l +T))

_ Zezmkx(

. q
2' ik cos2m— (T — |
2 | 9ol p( ))

an

For coefficients cx we obtain recursive relations which connect them with the spectral
coefficients gy of the perturbation function g(x)

p
Cx = Copk — Z 2' ik gz|k0032ngp (1-1) (3.32)
=1

This equation should be read from larger values of k to smaller ones and the period p
should be free to multiply with any integer together with g without any change in the result.
Thus p can be assumed to be big enough for every limited k and the term c,pk can be neglected
if the expansion g(x) = Re S gn¢®™" is limited. A nonzero term g, will contribute to the terms
with 2’k =n

C1 — 02,94,08, - -
C2 — 04,098,016, - - -

C3 — 06,012,024, . ..

For example, if g(x) = sin4mx+ sin81, i. €. g2 = g4 = —I, then the invariant density is

p(x) = 1-— p2n( Cos2rTy (T — 1) + 2c0s2m (T — 2)) COS2TX

(3.33)
—4pmcos2d (T — 1) cosdmx+ o(p?)

From the equation (3.32) we now obtained the invariant density for the perturbed Bernoulli
map at every time n+1 (or just 1) in the form

p(X) =1+pHRe ick(T)eZT'jk)‘+o(p2) (3.34)

Every coefficient c(1) is p-periodic in T, ck(1) ~ €¥%. An average of an observable qg(x) =
Re 5 oxe®™* with driving frequency o =2t is:
k=0
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a, @
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b). N+t

Figure 3.4: Modulation of the averaged response (g) with the phase of the driving force a.
a). Histogram of invariant density p = po+£p1 + 0(€?) of the 3-periodically driven system taken
at different times (n+1), here 1= 0,1,2, € = 0.01, 10° points used. The observable is q(x) =
cos21x, the perturbation function g(x) = sin4mx+ sin8mx. The thick lines are theoretically pre-

dicted density p(x) = 1— ZSH(COSZTI% (T~ 1) + 2cos2m](t— 2)) COS2MX — 4€TCOS2MT (T — 1) cos4mx
at t=0,1,2. b.) External force a, = COSZT[%(I’H—T) (dashed) and e-normalized mean field re-

sponse @, amplification and phase shift effects are seen. Filled circles are observable aver-
ages a+ (cos2mnx) calculated for 1= 0,1, 2 from the above densities.

[« [«

1
aout (1) = ukzongoo/Reqkezmkaeck(r)eZT“mxdx: Reg k;)q_kck(r) = ReK (0)e*" (3.35)

For example, with the observable defining the mean field set to be g(x) = cos2rx and the
perturbation function g(x) = sin4tx+ sin8mx (the modulation of the invariant measure with
time for this choice of q(x) and g(x) is illustrated in the figure 3.4) the mean field response of
the p-iterate of the map f to the driving frequency w= 2Tr% results to

aout (T) = (q(X)) = —prmeosw(T — 1) — 2umcosw(T — 2) = Re K(w)e'®! (3.36)

From (3.36) the complex transfer function follows

K(w) = —T1(2e 20 g% (3.37)
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3.4.3 Calculation of transfer function: method 2

Our starting point is the Frobenius-Perron equation in the spectral form (3.23). In the
case of the Bernoulli map the corresponding Frobenius-Perron operators for the unperturbed
map RO(k,|) are

1
RO(k,1) = /eZTIiIx—ZTu'k(Zx mod 1)y — & (3.38)
0

Here & is the Kronecker symbol. For the spectral compoments PO(k) of the unperturbed
Bernoulli map this gives P°(k) = @°(2k) so that the invariant density is uniform

YO(k) = ok (3.39)

Also the operator R(k,1) is calculated straightforward to be

1
RU(k,1) = —ik2m / g(x)iIx-2k2xmod gy — _orike | (3.40)
0

Again, gy is the spectral component of the perturbation function g(x). Substituting (3.38), (3.39)
and (3.40) in the equation (3.24) gives
&Y (k) = WH(2k) — 2mikga (3.41)
Writing down the expression for g*(2"k) and recalling that r!Lm Wi(n) = 0 if p1(x) admits

Fourier decomposition at all, one obtains

WH(k) = —ikm Y 2Me Mg . (3.42)
m=1

Now we have to calculate the mean field as the average over the probability density:

0

1im S ax) = () = [ e09a) ax

Substituting here the expression for the density
pr(x) = Z(wo(k) + PPt (k) ™ + o)
we obtain exactly like in the method 1:

@ = pK(w)e™
K@ = Skg-kW(k)

gk is the Fourier harmonics of the function q(x)

(3.43)
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1
Ok = /q(x)e‘zn”‘xdx
0
In deriving (3.43) we have taken into account that the unperturbed invariant density does
not contribute to the mean field. In the particular case of Bernoulli map we obtain from
(3.42),(3.43)

K(w) = —ikm2Me™ M gm gk (3.44)
k:Zoo nZl

With g(x) = sindnx + sin8mx and q(x) = cos2mx the equation (3.44) yields

K(w) = —T1(2e 20 &%) (3.45)

Of course, this coincides™ with the result (3.37).

3.4.4 Transition points

Now we use the transfer function (3.45) and the stability condition (3.17) to define the
critical coupling at which the transition to coherence in the ensemble (3.4) takes place.

First we define the frequencies of the most unstable modes, i. e. the autogeneration
frequencies in the amplifier-feedback circuit:

-1/4
ImMK(w) =0 & 2sin2w+sinw=0 < cosw= 1
-1
With these frequencies we obtain the critical coupling strengths
1 1/2n
T 3.46)
ReK(w) =1 = = - _

EReK(0) =1 & & = o o~ d00s% 11//311 (

—-1/m

The stability interval is herewith —1/3n=¢x < € < &g = 1/2m. The autogeneration fre-
quencies are wp = 0and w; = arccos(—1/4).

TBoth methods seem to be identical. In the method 1 one first obtains the Frobenius-Perron equation for the
perturbation of the p-iterate of the map and then goes over to its spectral form while in the method 2 the Fourier
transform is made in order to obtain the Frobenius-Perron equation for the perturbation of the invariant density.

In the relatively simple example of Bernoulli maps perturbed with "reasonable” functions g(x) these two ways are
equivalent indeed and lead to the same recurrent relations between spectral coefficients. But there can be situations,
where only one of these two steps is possible so that one would have to start with this possible step and try to advance
after it in a different manner.

For instance, this is the case if there are stable n-periodic orbits. Their linear response to the driving at the
frequency w = 2mm/ p can be still calculated using the method 1, i. e. analyzing the np-iterate of the map.

Another argument is that the equation (3.20) is valid no matter whether p1(x) admits simple spectral decomposi-
tion or not.
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3.4.5 Numerics

An ensemble of 108 systems was simulated numerically. As an observable to visualize the
transition to coherence the variance <a2> of deviations of the mean field from the trivial state
a=0is used. In the disordered state this variance has to be of the order N~1, where N is
the size of the ensemble. The results are presented in the figure 3.5. They are in a good
agreement with the theory.

0 T v T T T

107 -
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o
N
ti——————‘

(
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(2]
=
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|
|
| €
; | ; |

—3/4T -2/ATt -1/ATt 0 1/4T0 2/4T0 3/ATT
E

Figure 3.5: Transition to coherense in the ensemble of 108 globally coupled Bernoulli maps.
Long-dashed lines shows the region of the theoretically predicted stability. Several invariant
states exist for some values of .

The transition to coherence occurs at €1 and g differently. At g1 the frequency of auto-
generation is non-zero, an oscillating mean field arises. At ec, the frequency is zero, a shift
of the mean field away from its zero state takes place. Both situations are illustrated in the
figure 3.6.

3.4.6 Discrete Hopf bifurcation at

The transition at €;; = 1/21tis generic in the sense that the autogeneration frequency in a
feedback loop is typically non-zero. The corresponding bifurcation type is Neimark (discrete
time Hopf) bifurcation. In the leading order one expects the amplitude of the mean field to
scale as v/Ag, with As = € —g¢. In the fugure 3.7 this scaling corresponds to the dashed line.
One can argue that the expected scaling holds up to finite-size effects.

Another way to visualize the type of bifurcation at €¢; is to calculate the non-linear re-
sponse function at the known autogeneration frequency w; = arccos(—1/4). The technique is
the same, only the amplitude of the harmonic perturbation p is not small any more. Again,
one is only interested in the response at the same frequency.
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Figure 3.6: Different dynamics of the non-trivial mean field in the coherent regimes, N = 104,
(a) The transition at €.;. In the disordered state at € = 0.13 the mean field vanishes up to
finite-size fluctuations (a cloud around an+1 = a, = 0); in the coherent state at € = 0.18 nearly
periodic oscillations are observed. (b) The transition at € is one from a zero equilibrium
point (¢ = —0.08) to a nearly constant mean field at € = —0.13.

0
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Figure 3.7: Scaling at €c1. The theoretically expected scaling is a ~ v A¢ (long-dashed line).

With this method one obtains a mapping from an input amplitude aj, to the output ampli-
tude agy at the given frequency and a given coupling strength €. One sees immediately that
aout(0) = 0 (no input means no output) and the slope of this mapping is proportional to the
coupling constant €. More exactly, the slope is equal to the product of € and the modulus of
the linear transfer function. At the transition point €1 the slope of the map exactly equals to
one.

dagut

dain

At € < g1 the map ao(ain) (see figure 3.8) only has one stable fixed point a= ag = an = 0.

At € > g the fixed point a= 0 is unstable, and a small non-zero amplitude solution arises (a
transcritical bifurcation). In the figure 3.8 formally the response to the "negative” amplitudes

= g[K(w)|
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Figure 3.8: Non-linear response at the frequency w¢ = arccos(—0.25). With filled circles the
non-linear response at € = g = 1/21mis shown; squares correspond to the coherent state at
€ = 1.4¢e¢; plus signs correspond to the disordered state, € = 0.8e¢1. With the dashed line the
invariant diagonal agy = ajn is shown.

of &, is drawn. In the Hopf bifurcation this negative branch is symmetric to the positive one,
in general this is not always the case, to be seen later on.

The next-leading order in the expansion of the curve aq(ain) around zero determines the
scaling of the amplitude of the mean field with Ase = € — g as defined by the fixed point of
the map aou (&in,€). Generally the quadratic order dominates so that close at a (transcritical)
transition point holds

a= ain = aou(@n,AE) = Crain + Cpa%, +0(a2)  with ¢y = 1+ As+0(Ae?)

It follows straightforward for a non-zero solution

a~ VAe

3.4.7 Asymmetric subcritical bifurcation at &

This scenario fails to explain the transition at € = €. The reason is that this transition
takes place at zero frequency, to some extent it is a degenerate case due to the specific choice
of the maps f(-) (Bernoulli maps) and the perturbation function g(-) in the ensemble (3.4).

In the language of the non-linear response the situation is illustrated in the figure 3.9
where the non-linear response functions at €. and at two close values are calculated. One
sees that the non-linear response function is not symmetric and at € > g = —1/3m there
are three self-consistent amplitudes. The zero-amplitude solution with ag: = a, = 0 and the
distant solution with ag = ajn ~ 1 are stable (the diagonal is crossed from left-up to right-
down), the solution in-between is unstable (the diagonal is crossed from left-down to right-
up).

Note that the method of a non-linear response function at a given frequency only wokrs for
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Figure 3.9: Non-linear static response (at the frequency w¢ = 0). With filled circles the non-
linear response at € = g = —1/3m is shown; squares correspond to the coherent state at
€ = 1.4¢e; plus signs correspond to the disordered state, € = 0.85. With the dashed line
the invariant diagonal ag = ajn is shown.

small amplitudes. The distant solutions do not have to have the same frequency, at which the
non-linear response function has been calculated. Therefore, existence of distant fixed points
in the map aq(ain) is not a proof but merely a hint on possible existence of self-consistent
mean field solutions of large amplitudes and, probably, different frequencies.

At € < g = —1/3m, i. e. in the coherent state, there are three stable solutions and two
unstable solutions between them. We see that the transition at € = e = —1/31 is subcriti-
cal. Due to absense of a <+ —a symmetry the situation corresponds to the skewed subcritical
bifurcation like that in the figure 3.10.

a

Figure 3.10: Subcritical pitch-fork bifurcation in absense of the symmetry a < —a. A hys-
teretic transition is expected.

That is why we obtained one branch with small amplitudes near the transition, |Ag| =
|e—€ec2| < 1, and a number of distant solutions. Therefore, the trivial state a= 0 is metastable,
at least when close to the transition to coherence. This is also clearly seen in the figure 3.5.
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The branch of the small solution in the figure 3.10 has a well-defined slope, so that the
scaling a~ Ae should be expected. This scaling is confirmed by the numerics in the figure 3.11.

0.20

0.15

@M 0.10 t
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-0.03 -0.02 —&01 0.00 0.01

Figure 3.11: Scaling at ¢ is linear, a~ At.

The stability of the distant solutions can be analyzed separately. Numerical experiments
have shown that two different distant solutions can be obtained with different initial condi-
tions (of course, because they are distant they do not have to be of zero-frequency).

One solution is a "one-cluster” solution. This means that all systems are synchronized to
a fixed point solution xk(t) = 0, Vk. As the perturbation function g(x) = 0 if x= 0 so the mean
field remains a = 1 for all times. Of course, in an individual map this solution also exists but
unstable. It becomes stable if the following condition is fulfilled

dx(t+1)

0] <1

|Xk:O

Which gives the stability conditions

1 1
2+ 12 1 - ——
|2+ 12mg < = se{ o 12“]

For € < —1/4mthe "one-cluster” solution does not exist but still there is a distant solution
(cf. figures 3.5 and 3.9) as a continuation of the "one-cluster” solution, the structure of which
is more complex and could not be described in a simple way. At least, it does not appear to be
a cluster solution.

Another branch is the "two-cluster” solution, i. e. xx =1/3 or xx = 2/3. The points x=1/3
and x = 2/3 are the period-two orbit of the Bernoulli map. Again, this is ensured because
g(x) = sindtx+ sin8rx is zero if x=1/3 or x=2/3. At both points the mean field has the value
alt)=-1/2.

The stability condition is now read

dxk(t +2)
dx(t)

= ‘(2+sg’(x)a(x)) - (2+ed (x)a(x)) Ined| = (2+3mg2< 1

1
|Xk:3
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Every "two-cluster” solution (no matter how many systems are in the state xx = 1/3 and
how many in the state xx = 2/3) is stable if

1 1
——<E< —— 3.47
T <E< 3n ( )

Note that apart of these two (numerically found) distant solutions also other solutions
may exist but we did not find them in our simulations.

3.5 Extensions of the theory

The linear respose approach has been adopted in analyzing the transition to coherence in
globally coupled chaotic maps. This approach is quite general so that the above theory can be
extended for similar problems. Below some generalizations are shortly discussed.

3.5.1 Dynamics with additive noise

A straightforward generalization of the linear theory is including an additive noise in the
dynamics. In this case the equation (3.4) is rewritten as

x(t+1) = f(x(t))+eg(x(t))alt)+&i(t)
at) = {arakt)

Here &;(t) are independent equally distributed random variables. The Frobenius-Perron
equation (3.21) is generalized to this case by including the convolution of p with the probabil-
ity density of & (e.g. [57]). In the Fourier space one simply multiplies the operators R® and
R in the case of the unperturbed (3.22) and perturbed (3.23) dynamics respectively with the
characteristic function of noise

(3.48)

R(k,1) = wR(k, )

Here R, Rare the operators R® and R! with and without noise, respectively, and w is the
Fourier transform of the probability density W; of the random noise

Wy = /_D;V\/E(x)e_zmkxdx

With this modification, all the linear response theory holds. Moreover, the presence of
the fast decaying factor wy regularizes the Frobenius-Perron equation, so that a non-singular
solution for the response function can be expected even when the deterministic dynamics
is structurally unstable, or even when in the deterministic dynamics periodic windows are
present. In the particular case of Bernoulli maps, the final expression for the response func-
tion K (3.44) is modified to

co m-1

K(w) = Z —ikmg_ Z 2" M gom, |_LW2'|<
m=1 I=

k=—o0
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3.5.2 Complex dynamical dependence on the mean field

The linear response approach above can be also generalized to the case when the mean
field has its own dynamics. Such a situation appears, e.g., in a series array of Josephson
junctions coupled by means of an external load [110]. The junctions are coupled via the
common current, which obeys an additional equation (for the RLC-load considered in [110]
this is the equation of a driven damped linear oscillator).

Generally, the situation like that of the RLC-load means that there are more than two
points in the circuit where the mean field a in some form (e.g. its derivatives) is present in
the equations. This circuit is not a simple amplifier-feedback loop any more. As an illustration
let us assume that there is an additional equation which governs the dynamics of the mean
field.

h(x(t),ea(t))

Xk (t+ 1)
() %k 40x(®)) (3.49)

at+1) = fa(t) ()

Pa

1Mz

To apply the linear theory the equation (3.49) are linearized in a (still a= 0 should be a
solution, therefore ¢(0,-) = £(-,0) = 0)

x(t+1) = f(x(t))+eg(x(t))at))
N
@ = § % a0(0) (3.50)
at+1) = wialt)+y(aq)

The first two equations in the system (3.50) describe the linear device which transfer
function has to be defined. The third equation describes the inherent inertial dynamics of the
mean field.

K :
a \é\é*

D

Figure 3.12: A circuit corresponding the equations (3.50) consists of a summator, a didderen-
tiating device, and three amplifiers with different amplification coeffitients.

Again, one can consider this equations as a circuit with feedback as shown in the fig-
ure 3.12 and first break the feedback to define the transfer function K(w) in order to close it
when the function K(w) is known. One calls the mean field in the first equation "input” ajn(t)
and the average (q) "output” of the second equation and the whole theory works so that linear
response of (q) to a small harmonic aj, can be defined.

The peculiarity is now that breaking of self-consistency can be done differently in the third
equations. For instance, it can equally be understood as
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ain(t+ 1) = yraou (t) + v2(q) (3.51)

or
aout (t + 1) = y180u (t) + y2(q) (3.52)

These two interpretations of breaking of consistency are illustrated in the figure 3.13.

a B Yy aw

an K D %@»%l aout

b).

Figure 3.13: Different ways to break the self-consistency of the equations (3.50). a). Two
inputs and one output as in the equation (3.51) b). One input and two outputs as in the
equation (3.52).

In the case of the interpretation as given in the equation (3.51) the total transfer function
Ks (w) = K1 (w) is asymptotically (i. e. zero initial conditions are assumed) calculated from

. . N d® — evoK (0
€%Gin = y18ou +EV2K(W)&n = Kl(w)=+() (3.53)

With the interpretation from (3.52) this reads

e ~ o eyoK(w

&% = V1dou +EV2K(W)&n = Ka(w) = gﬁ’—(yl) (3.54)

Invoking the self-consistency a= agy = @y gives in both cases
(—€® 4y +ey2K(w))d=0 (3.55)

The stability condition on € is obvious
. Y2

eL(wK(w)=1 with L(w)=—"— 3.56
(@K () @=="g (3.56)

Note that for general input aj, the linear device described by the transfer function Ki(w)
from (3.53) can be unstable by input. Contrary to this, the device with Ky(w) from (3.54) is
stable by input. Of course, this has no effect on the validity of the equation (3.55).

In general, if the dynamical equations of the ensemble have complex dynamical depen-
dence on a then their linearization can be understood as a complex circuit of linear devices.
Connections between groups of devices can be arbitrary broken so that every group has only
one input and one output. After defining transfer functions of these groups the total stability
of the circuit can be written by invoking the self-consistency as
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L(c0)d=0 (3.57)

The function L (w) is independent of the choice how the self-consistency is broken. The
stability by initial condition (there is no input in the equation (3.57)) is defined by the complex
relation

L(w) =0 (3.58)

As an example let us consider the ensemble (3.4) with inertial dynamics of the mean field

a(t) = vat — 1) +(q(x(t))

In this case L(w) = (1—ye'®)~1 in the equation (3.56) with an obvious modification of
the transition values ¢; and frequencies w. Namely, the frequencies are obtained from the
imaginary part of L (w) = 1—eL(w)K(w) = 1—ye '®+em(2e 2@+ e19) = 0 to be

Ccosw = 1 (3.59)

Here the frequency still depends on €¢, one has to insert these frequencies (3.59) into
RelL (w) = 0 in order to resolve for £.. From this the transition points are

(1—ycosw) b
T(2 — CcOSW — 4COS? W) 3vnil

CoSW = 1 (3.61)

The inertial dynamics with a small y of the mean field only affect the frequency but not
the critical coupling at g¢; and, on the contrary, it only affects the crical coupling but not
the frequency at € (of course, this effect has no generality). The corresponding numerical
simulations are presented in the figure 3.14.

If y< —1/2 then the mode with cosw = —1 (period-two oscillations) becomes more unstable
than the mode cosw = 1 (zero frequency). The corresponding bifurcation diagram is presented
in the figure 3.15. The difference of these two types of transitions at €, is illustrated in the
figure 3.16.

For y < —1 even the state at € = 0 is coherent. This corresponds to a divergent dynamics
of a(t) (the modulus of the multiplier is larger than one) if interactions in the ensemble are
absent, € = 0. Note that there still exists the stability interval € € [%;1, %T], this means that
coupling of a dynamical system with divergent dynamics with an ensemble of chaotic systems
can stabilize it.
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Figure 3.14: Transition to coherence in the ensemble of 10® coupled Bernoulli maps with an
inertial mean field dynamics, y=1/2.
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Figure 3.15: Transition to coherence in the ensemble of 10® coupled Bernoulli maps with
an inertial mean field dynamics, an oscillatory transition at €2, y= —2/3, note that even at
|e] <« 1the trivial state a= 0 is metastable.
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Figure 3.16: Different dynamics of the non-trivial mean field in the coherent regimes at
€ < £ With an inertial dynamics of the mean field. Ensemble size is N =10% (a) y=1/2. In
the disordered state at € = 0.13 the mean field vanishes up to finite-size fluctuations (a cloud
around an;1 = an = 0); in the coherent state at € = —0.07 < g = —1/6m nearly constant mean
field is observed. (b) y=—2/3. At e = —0.13 < e, = —1/3m the period of autogeneration is 2.

3.5.3 Ensembles of non-identical systems

Now assume that systems in the ensemble (3.1) are different

X(t+1) = h(x(t),ea(t))

a) = &3 ) 262

Under which conditions does the linear theory still work?

In principle, if the ensemble still responses linearly to small periodic perturbations then
it can be characterized by the transfer function K(w) and the transition to coherence can be
analyzed in the same way as in the case of identical systems. Apparently, this holds if all the
systems in the ensemble response linearly. In the thermodynamic limit N — c we can proceed
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as if there were infinite number of systems of each kind. I. e. averaging over the ensemble
can be replaced by averaging over invariant probability density of individual systems of each
kind.

For each function hy(x,€a) a corresponding transfer function Ky(w) can be defined, the total
transfer function is calculated as a superposition of contributions of each kind of systems. For
instance, if some parameter r of systems in the ensemble is randomly distributed according
to the probability distribution IM(r) then the total transfer function is

K(0) = /Kr(w)l'l(r)dr

Note that the condition that ax = (q(xx)) = 0 if € = 0 should be valid for all system is not
required here. Itisonly required y ax =0. For a small harmonic driving all structurally stable
systems are expected to respond at the same frequency.

As an example consider the situation that the ensemble (3.4) of Bernoulli maps is coupled
with an ensemble of maps with a stable fixed point attractor. We take the simplest form of
such a map giving (q(x)) = (cos2mnx) = O:

X(t+1) = % +k(x(t) - %) +eat) with |k <1 (3.63)

We assume that there are altogether N systems with the fraction Q of Bernoulli maps and
the fraction 1 — Q of the stable maps (3.63). The mean field is calculated by averaging over
both fractions, i. e. just

1 N
alt) = N Z COS21X« (1)

The transfer function of the whole systems is

K(w) = QK1 () + (1— Q)Ka(w) (3.64)

The transfer function K;(w) of the Bernoulli map fraction is given by the equation (3.45),
the transfer function Kx(w) of the stable map fraction can be easily calculated with using the
method 1 described in the section 3.3.1. The transfer function of the ensemble (3.63) at the
frequency w = 2mg/ p equals to the static response of the p-iterate of the map (3.63). As |k| < 1
this p-iterate has a stable fixed point

p—1
XO) -z =xt+p -3 = K(xt)-3) +£kzokp‘1‘ka(t +K)
o p-1 ,
= kP(x(t)— %) +ed®t pz KP—1—kgiok (3.65)
k=0
= KP(x(t) - ) +eimarke

The complex shift of the fixed point of the p-iterate of the maps (3.63) driven at frequency
w=2rmg/pis

AX =

g9 —k
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The transfer function as defined by the observable q(x) = cos2mx is given (with xo = 1/4
being the fixed point of the unperturbed map) by
1, 21
Ka(w) = Za ()= — 55
Substituting these transfer functions into the stability condition (3.17) gives for the imag-
inary and the real parts

(3.66)

_ ; 2(1-Q) _
ImK = Ttsmm(Q(4cosw+ 1)+m) =0 (3.67)
ReK = n(—Q(4cosZoo+ cosw—2) +2(1-Q) %) =gt

Thus there are four solutions:
(a) The zero frequency solution cosw = 1. The corresponding critical coupling strength is
1-k
a __ e

= T2 ol-30) (3.68)
This critical value is always negative for Q €]0,1] and k€] — 1,1].
(b) The period 2 solution cosw = —1. The corresponding critical coupling strength is posi-

tive for Q € [0, ;%[ and negative for Q €] 3%, 1].

b 1+k

%= 2= 0B TN (3.69)

(c) Two more solutions given by

C1(K+5+1 4k(1-Q)
CoSwW = 2 (T <1i\/1+ m) -1 (3.70)

Of course, these solutions may not exist for some combinations of Q and k if either the
argument of the square root is negative or the modulus of the right hand side exceeds 1. For
the combinations of Q and k where they exist the critical value of the coupling is

1

_ (k24 k 4&(1-Q)
T[Q<2 (k +2+1) (1:*: 1+Q(k2+%+l)2>>

€St = (3.71)

This critical coupling can be positive as well as negative. For different combinations of k
and Q the critical value of € is determined by different solutions €2, €2, or €. To determine
which solution is responsible for the transition to coherence we compare €2, €2, and £+ at
different Q and k. The two values of €, one positive and one negative, with the smallest
modulus will give the transition threshold.

Setting €2 = €2 gives Q = 2/(1+k?) > 1, k€] — 1,1. This means that the solution €2 is not
relevant for the transition to coherence at negative €. When calculating the condition €2 = €
we take into account that this condition is an algebraic equation of the second order in Q and
of the fourth order in k which has to admit a factorization. Indeed, for the combinations of Q
and k which deliver cosw = 1in (3.70) we already obtained the corresponding solution, which
is linear in Q and quadratic in k, so that now we only have to look for the second factor, which
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CHAPTER 3. TRANSITION TO COHERENCE IN GLOBALLY COUPLED MAPS

is linear in Q and quadratic in k too. With this approach from €2 = &S follows

<5Q(1— K)2+2(1— Q)) (Q(l— k)(2k+3) +2(1— Q)) =0 (3.72)

The corresponding bifurcation curves lie in the (k,Q)-plane outside the area Q €]0,1] and
k €]—1,1]. This means that it is the solution €2 at zero frequency that determines the negative
critical coupling at which the transition to coherence takes place.

Analogously, requiring 52 = ¢g, one obtains

(- 3Q(1+k)?+2(1— Q)) (Q(1+ K)(2k—1) +2(1— Q)) =0 (3.73)
l T T T
54
O o5t ]
b
8C
O L 1 L
-1 -05 0 0.5 1
k

Figure 3.17: Parameter plane (k,Q). Different regions for positive critical coupling values.

Above the bold curve the transition value of the coupling is determined by €, below it by 52,

here the transition to coherence takes place with period 2. Below the dotted line no €¢ exists.
Dashed lines correspond the condition €2 = €.

For positive critical coupling one obtains the bifurcation diagram presented in the fig-
ure 3.17. In the figures 3.18a and 3.18b the transitions for Q =1/2 and k= +1/2 are illus-
trated.

3.6 Possible further extentions

Here we want to give an outlook on some other possible extentions of the theory above
that can be developed in future.

3.6.1 Structurally unstable systems

Amasingly, even if some systems are not structurally stable, the linear response approach
should work, at least in some situations. For example, imagine the situation that an infinitely
small harmonic input can stabilize a periodic orbit of the same period. Then the system (with
parameter r) will respond with a finite amplitude A;(w) to this infinitesimal perturbation.
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Figure 3.18: Transition to coherence in an ensemble of Bernoulli maps coupled with an
ansemble of stable maps, distant solutions are not shown. 108 systems in both ensebles,
Q=1/2, i.e. in each ensemble there are 5-10° systems. The mean field observable is
g(x) = cos2rmx. With bold dashed lines the theoretical predictions are shown. (a) k= —-1/2.
The transition at the negative . = —%{ takes place at zero frequency, the transition at the
positive g = 3% has the period 2. (b) k=1/2. The transition at the negative g; = —%T takes
place at zero frequency as well, the frequency of autogeneration at the positive €. = 3%1 is

w = arccos(—3).
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CHAPTER 3. TRANSITION TO COHERENCE IN GLOBALLY COUPLED MAPS

Denoting the fraction of the systems in the ensemble responding singularly in this way to the
driving with amplitude € at frequency w through g(w,€) we can write the output

8out (W) = 0(, )A(w) + (1 - q(w,€))K(w)éin

Or, with self-consistency,

(1—€(1—q(w,e))K(w))ad=g(w,&)A(w) (3.74)

The value A is obtained by averaging over all structurally unstable systems. In principle,
no further assumptions have to be made on this A, it only has to be limited but does not have
to be smooth.

Thus an ensemble with a small fraction q(w, ) of systems responding singularly to a small
harmonic perturbation at frequency w with amplitude € shows small but finite mean field
in the incoherent state if the device (3.74) is stable by input. The critical coupling £; and
autogeneration frequency w are defined by the linear fraction only.

L(w)=1—¢(1—q(w,€))K(w)=0 (3.75)

To ensure correct integration one has to demand analyticity of q(w,€), at least in some
vicinity of the roots of L (w). The meaning of g(w,¢) is clear, it is the fraction of the systems
locked in the Arnold tongue at the frequency w. At small € the width of an Arnold tongue
grows approximately linearly with €. Therefore the effect of q(w,€) on the stability of the
linear fraction can be neglected if the transition to coherence is expected to take place at a
small € <« 1.

In particular, this effect should be present in globally coupled Rossler oscillators. In [77]
Arnold tongues for driven Rossler oscillators were calculated and found to reach very small €
values, down to € ~ 10~2. Ensembles of globally coupled Réssler oscillators have been studied
and a transition to coherence with non-trivial mean field was found [76] to take place at about
the same threshold of £ ~ 1072, In [105] the Arnold tongues in a driven Réssler system were
found (at other parameter values) to exist at even smaller €. It would be interesting to check
in direct simulations whether the transition to coherence in an ensemble of non-identical
Rdssler oscillators takes place at larger €, i. e. when a part of the systems are already locked
in an Arnold tongue and respond singularly. This is the subject of the currect work, the
results will be reported elsewhere.

3.6.2 Continuous time systems

The approach of the linear response theory itself is independent of whether time is discrete
or continuous. The linear response theory considers the ensemble of coupled chaotic systems
as a linear device in analog signal processing, i. e. as a black box with given characteristics
K(w). This black box is given an input signal ajs(t) (in continuous time) and the ouput is read
from the continuous time signal ag(t). What happens in interior of the black box does not
concern the theoretical construction.
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Therefore the only difference between the discrete time case and the continuous time case
is at the stage of calculating the transfer function K(w). Analyzing the Frobenius-Perron
equation is to be replaced in the case of continuous time systems by analyzing Liouville or (if
noise is present) Fokker-Plank equations. Of course, it is by far more difficult task.

In principle, two ways are still open to proceed. First, one could rely on humerics. As the
fluctuations-dissipation theorem does not hold for general chaotic systems, the calculation
of the transfer function has to be done by direct simulations [84]. Then the condition (3.17)
gives the threshold of instability in the ensemble and the autogeneration frequency of the
emerging macroscopic mean field.

In some cases simple analytic approximations of the linear response functions of contin-
uous time chaotic systems can be made [84] using the shadow property of hyperbolic chaotic
systems. The shadow property ensures that for every limited time interval there exists in the
perturbed system a trajectory x which is e-close to the unperturbed solution xg in this time
interval. The trick is to use this trajectory for averaging in the perturbed system. Unfortu-
nately, the approximations like that in [84] give a good asymptotic description for small and
large w but fail in the near of the peak in the power spectrum of the unperturbed dynamics.
Thus the approach of analytic approximations can be useful if the autogeneration frequency
lies far away from this peak.

That this can be the case we have already seen in the example of an inertial dynamics of
the mean field in the previous section, where introducing the parameter of inertion y changed
the frequency of autogeneration so that this frequency could be tuned by changing .

3.7 Summary

Despite the dynamical equations (3.1) describing an ensemble of chaotic maps globally
coupled through a mean field are not explicitely time-dependent there exist at a stronger cou-
pling coherent states where the attractor do not possess a hatural measure which is invariant
in time. Instead, this measure (and the mean field calulated according to this measure) oscil-
lates.

The transition can be analyzed by considering the supplementary problem of finding the
first correction term of the natural measure of an individual system in the ensemble driven
instead of mean field by a small harmonic external force at a given frequency. For structurally
stable systems this response is expected to be linear so that the system can be linearized. By
analyzing the linear response in the driven system the complex transfer function is defined,
from the self-consistency condition on the input and output mean field the complex stability
condition for the disordered state is defined. The transition to coherence can be described
as a self-exitation in a linear amplifier with feedback. The frequency of autogeneration is
derived from the condition on the imaginary part of the transfer function, the critical value
of the coupling from its real part.

If the autogeneration frequency is not zero then the transition is a discrete Hopf bifurca-
tion. If it is zero then the bifurcation can be subcritical and hysteretic due to existency of
distant solutions (i. e. solutions with non-small amplitudes). This is the case in an ensemble
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of coupled Bernoulli maps which we could fully analyze as an example of an application of
the linear theory.

The linear theory can be extended for the case of noisy dynamics, the case where there
is an additional dynamical equation for the inherent dynamics of the mean field, the case
of ensembles of non-identical systems, the case of continuous time systems, the case where
some part of the systems in the ensemble are structurally unstable. The cases of continuous
time systems and systems with structurally unstable fraction are especialy intriguing, it
would be interesting to investigate whether they admit a (partially) analytic treatment. In
the case of continuous time systems one could make analytic approximations to the linear
response function and proceed further with this approximation, which should work better
if the autogeneration frequency lies far away of the mean peak in the power spectrum of
an uncoupled individual system. If in the ensemble there is a structurally unstable fraction
then we expect that the stability of the disordered state and the autogeneration frequency are
determined by the linear fraction only. It would be worth trying to find this effect numerically.
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Résumeé

In this work we studied synchronization phenomena in lattices of coupled dynamical sys-
tems. At small coupling strength the dynamics of an individual system in the lattice remains
close to the dynamics in the unperturbed case but from some threshold on the systems reveal
a certain coherence which can be seen in the dependence of some averaged quantity from the
coupling strength.

We studied this transition to coherence in two different cases, for continuous time systems
with nearest-neighbor coupling and for discrete time systems with global coupling. Since in-
teracting oscillating continuous time systems can be described for a small coupling by closed
phase equations a lattice of coupled phase equations with nearest-neighbor coupling was
investigated. The coupling was implemented via coupling function such that for nearly co-
inciding dynamics of the systems it was equivalent to the dissipative coupling through the
diffusion operator. In the case of discrete time systems an ensemble of chaotic maps globally
coupled via mean field was investigated.

(i) Oscillator lattices with nearest-neighbor coupling, symmetries

In the lattice of coupled oscillators described with the phase equations a hierarchical syn-
chronization transition was observed. The observable was chosen to be the average rotation
velocity, in absence of interactions all individual natural velocities are different. Generically
the effects of clustering, i. e. successive grouping of oscillators into clusters of equal average
velocities, and frequency locking are observed. For every limited lattice size there exists a
critical coupling value above which a stable fixed point solution exists. This critical coupling
can be calculated in the case of nearest-neighbor coupling for any lattice size, in the case
of linearly distributed natural velocities it is quadratically diverging with increasing lattice
size. In the thermodynamic limit no fixed point solution exists.

In the particular case of linearly distributed natural velocities also the effect of sensitive
dependence of the average velocities from the initial conditions was found. This effect is ex-
plained with reversibility of the lattice. Reversibility means that there exists an involution
which together with the time reversal leaves the equations of motion invariant. The solu-
tions of a reversible system can be of two different types, either dissipative or what we called
guasi-Hamiltonian. If a solution is typical for an ergodic set then the property of dissipativity
or quasi-Hamiltonicity holds for the whole set.
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A trajectory crossing the set of the invariant points of the reversibility involution is called
reversible, if an ergodic set contains a reversible non-wandering trajectory then it is quasi-
Hamiltonian, its properties resemble the properties of Hamiltonian systems. In particular,
the Lyapunov exponents come in pairs of opposite signs, the phase volume is conserved on
time average. In direct numerical simulations we found coexistent chaotic and quasi-periodic
quasi-Hamiltonian ergodic sets. The mean velocity is the same for every initial condition
from the chaotic ergodic set and different on every orbit from a quasi-periodic window, which
explains the smearness of the bifurcation diagrams.

In general reversible systems Quasi-Hamiltonian features are expected if the dimension
of the invariant set of the reversibility involution is large enough, i. e. at least [(N—1)/2],
with N being the size of the lattice. Then its images should cross it and one can expect the
existense of periodic and, by continuity, non-wandering reversible trajectories.

At large coupling no quasi-Hamiltonian regimes are observed. The transition from the
guasi-Hamiltonian to the dissipative dynamics is generally smooth and is a symmetry break-
ing chaos-chaos transition. The symmetric attractor of the system splits into an attractor-
repeller pair. Despite both attractor and repeller appear to be dense in the phase space, it
follows from the Birkhoff ergodic theorem that they have to be mutually singular. Therefore
they have to be fractals of zero Lebesgue measure. For larger lattices the transition to the
dissipative regime takes place at nearly same coupling strength. The reason is that the dy-
namics of the system is more sensitive on the ends of the chain and, therefore, the length of
its middle part does not play any role.

The reversibility is caused by the specific symmetries of the coupling function and distri-
bution of the natural frequencies. If these symmetries are violated the quasi-Hamiltonian
features are destroyed.

Quasi-Hamiltonian behavior in the system constructed as dissipative shows importance
of symmetries for synchronization phenomena in coupled complex systems. This behavior
is characterized by a complicated topological structure of the phase space which should be
understood in a better way in future. It is interesting to apply the concept of reversibil-
ity to arrays of coupled Josephson arrays where high symmetries ensuring reversibility are
present.

(ii) Chaotic maps globally coupled via mean field

In chaotic systems globally coupled via mean field a transition to coherence is observed,
in the coherent states the dynamics of the individual systems remains chaotic but the mean
field oscillates nearly periodic or fluctuates around a non-zero constant. In the disordered
state the mean field is zero up to statistical fluctuations due to finite-size effects. The transi-
tion to coherence can be understood as the loss of stability by the trivial zero field state due
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to fluctuations.

Because fluctuations are small on onset of transition, the study of stability can be made
in a linearized system. This systems can be described as a linear amplifier with feedback. In
order to completely solve the stability problem it is enough to calculate the linear response
function of the amplifier without feedback describing the linear amplification coefficient at
a given frequency. After defining the linear response of the systems without feedback, i. e.
without the self-consistency of the mean field fluctuations the point of the transition to coher-
ence is defined by the complex relation K =1 . From the imaginary part of this relation the
frequency of the autogeneration is defined, from the real part one obtains the critical coupling
strength on this frequency. This critical value does not need to be small.

To obtain a smooth linear response function the perturbation caused by the statistical fluc-
tuations should be such that the number of preimages of the underlying maps is not changed
for all points from the range of the map. To obtain the transfer function two approaches can
be used.

Method 1: If the period of the fluctuations is rational g/p then the p-iterate of the initial
map is autonomous with respect to the perturbation, the linear response to the perturbation
with period p is equivalent to the static response of the p-iterate of the map. To define this
static response the Frobenius-Perron-like equation is written for the first corrections to the
invariant density of the unperturbed system.

Method 2: For maps on a unit circle the Frobenius-Perron operator can be rewritten in a

spectral form. For the coefficient of the solution an infinite-dimensional rekursive system of
algebraic equations has to be solved.
As an example an ensemble of Bernoulli maps was investigated, the transfer function was
computed with both methods. The structure of bifurcations at positive and negative cou-
plings was studied. The transition at positive coupling is a discrete time Hopf bifurcation
with the characteristic square-root-scaling. At negative coupling an asymmetrical subcritical
bifurcation takes place, there exist distant and close solutions with respect to the trivial zero
state, the corresponding linear scaling of the close colution has been confirmed by the numer-
ics.

The linear theory can be extended. Noisy terms can be incorporated into the spectral rep-
resentation of the Frobenius-Perron operator. Considering inherent dynamics of the mean
mield and ensembles of non-identical systems do not requires any reformulation of the linear
theory, only the autogeneration condition is changed due to the different form of feedback
loop.

Further progress can probably be done in future by extending the linear theory on contin-
uous time systems and structurally unstable systems. In the case of continuous time systems

the accent to be set on methods of defining linear response function. Existing methods are
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not working well if the frequency of autogeneration is close to the peak of the power spectrum
of the individual system. In the case of structurally unstable systems an interesting question
could be to consider an ensemble of non-identical chaotic systems in which a small fraction
of the systems respond singularly but no autogeneration takes place. This can be the case in
globally coupled Rdssler oscillators.
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