Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke Abteilung Biochemie der Mikronährstoffe

Vitamin E und der vesikuläre Transport

Untersuchungen zu den genregulatorischen Funktionen von Vitamin E mittels Microarray- und *real time* PCR-Analysen in der Maus und funktionellen *in vitro* Assays in RBL-2H3 Zellen

DISSERTATION

zur Erlangung des akademischen Grades "doctor rerum naturalium" (Dr. rer. nat.)

in der Wissenschaftsdisziplin "Biochemie der Ernährung"

eingereicht an der

Mathematisch-Naturwissenschaftlichen Fakultät

der Universität Potsdam

von Sandra Nell

Potsdam, im Februar 2009

Gutachter/innen:

Prof. Dr. Regina Brigelius-Flohé

Deutsches Institut für Ernhährungsforschung Potsdam-Rehbrücke Abteilung Biochemie der Mikronährstoffe

Prof. Dr. Lutz Graeve

Universität Hohenheim Stuttgart Fakultät Naturwissenschaften / Fg. Biochemie der Ernährung

PD Dr. Volker Böhm

Friedrich-Schiller-Universität Jena Biologisch-Pharmazeutische Fakultät / Institut für Ernährungswissenschaften

Disputation: 18. Juni 2009

AUCH EINE ENTTÄUSCHUNG, WENN SIE NUR GRÜNDLICH UND ENDGÜLTIG IST, BEDEUTET EINEN SCHRITT VORWÄRTS.

Max Planck

Dieses Werk ist unter einem Creative Commons Lizenzvertrag lizenziert: Namensnennung - Keine kommerzielle Nutzung - Weitergabe unter gleichen Bedingungen 3.0 Deutschland

Um die Bedingungen der Lizenz einzusehen, folgen Sie bitte dem Hyperlink: http://creativecommons.org/licenses/by-nc-sa/3.0/de/

Online veröffentlicht auf dem Publikationsserver der Universität Potsdam: URL http://opus.kobv.de/ubp/volltexte/2009/3571/ URN urn:nbn:de:kobv:517-opus-35710 [http://nbn-resolving.org/urn:nbn:de:kobv:517-opus-35710]

Inhaltsverzeichnis

Inhalts	verzeichnis	I
Abbild	ungsverzeichnis	V
Tabelle	enverzeichnis	VI
Abkürz	zungsverzeichnis	VII
1 Eir	nleitung	1
1.1	Vitamin E	1
1.1.1	Biologische Aktivität von Vitamin E	2
1.1.2	Absorption und Verteilung von Vitamin E	2
1.1.3	Metabolismus und Ausscheidung von Vitamin E	4
1.1.4	α-Tocopherol-bindende Proteine	4
1.1.4.1	α-Tocopheroltransferprotein (TTPA)	5
1.1.5	Vitamin E-Defizienz	6
1.1.6	Ttpa Knockout-Maus	7
1.1.7	Funktionen von Vitamin E	7
1.1.7.1	Antioxidative Funktionen	7
1.1.7.2	Nicht-antioxidative Funktionen	8
1.1.8	Vitamin E in Membranen	11
1.2	Ziel der Arbeit	12
2 Ma	aterial und Methoden	13
2.1	Synthetische Oligonukleotide (primer)	13
2.2	Antikörper	14
2.3	Zellkultur	14
2.3.1	Kultivierung von Zellen	14
2.3.2	Subkultivierung von Zellen	14
2.3.3	Bestimmung der Zellzahl	14
2.3.4	MTT-Test	15
2.3.5	Mycoplasmen-Test	15
2.3.6	Inkubation der Zellen mit Vitamin E	15
2.4	Tierversuche und Genexpressionsanalysen	16
2.4.1	Tierversuch Nr.1	16
2.4.1.1	Diäten	16
2.4.1.2	Tiere und Versuchsablauf	16
2.4.1.3	Oligonucleotide Microarray-Analyse	17

2.4.2	Tierversuch Nr. 2	17
2.4.2.1	Diäten	17
2.4.2.2	Tiere und Versuchsablauf	17
2.4.2.3	Genotypisierung der <i>Ttpa</i> Knockout-Mäuse	18
2.4.2.4	Oligonucleotide Microarray-Analyse	18
2.5	Molekularbiologische Methoden	20
2.5.1	Elektrophorese von Nukleinsäuren	20
2.5.1.1	Elektrophoretische Trennung von DNA	20
2.5.1.2	Elektrophoretische Trennung von RNA	20
2.5.2	Polymerasekettenreaktion (PCR)	20
2.5.2.1	Standard-PCR	20
2.5.2.2	Real time PCR	21
2.5.3	RNA-Isolation	21
2.5.4	Reverse Transkription	22
2.5.5	Klonierung von PCR-Produkten zur Sequenzierung	22
2.6	Proteinbiochemische Methoden	23
2.6.1	Herstellung von Proteinextrakten	23
2.6.2	Proteinbestimmung	23
2.6.3	SDS-Polyacrylamid-Gelelektrophorese	23
2.6.4	Coomassie-Färbung von Proteinen	24
2.6.5	Western-Blot und Immundetektion	24
2.6.6	Dot Blot	24
2.7	Isolierung von detergent resistant membranes (DRMs)	25
2.8	β-Hexosaminidase Assay	25
2.9	Microarray-Analysen	26
2.9.1	GCOS (GeneChip Operating Software)	26
2.9.2	EASE (Expression Analysis Systemic Explorer)	26
2.10	Vitamin E-Analytik	27
2.10.1	Vitamin E-Extraktion aus Zellen und Plasma	27
2.10.2	Vitamin E-Extraktion aus Geweben	27
2.10.3	Vitamin E-Extraktion aus Futterproben	28
2.10.4	HPLC zur Vitamin E-Quantifizierung	28
2.10.5	Bestimmung von Vitamin E-Metaboliten	28
2.10.6	Bestimmung des Responsefaktors	29
2.11	Statistik	29

3 Er	gebnisse	30
3.1	Identifizierung α-Tocopherol-sensitiver Gene in der murinen Leber	30
3.1.1	α-Tocopherol-Gehalte in Plasma, Leber und Großhirn	30
3.1.2	Genexpressionsanalyse in der Leber mittels Oligonucleotide Microarray	31
3.1.3	Verifizierung der Expression ausgewählter Gene mittels real time PCR	33
3.1.4	Identifizierung der alternativen Spleißvariante Stx1c in der Leber	35
3.2	Funktionelle in vitro Versuche zur Überprüfung eines funktionellen Einflusses	
	von α-Tocopherol auf vesikuläre Transportvorgänge	37
3.2.1	Aufnahme von Vitamin E in RBL-2H3 Zellen	38
3.2.2	Vitamin E-Metabolismus in RBL-2H3 Zellen	38
3.2.3	Überprüfung der Cytotoxizität von Vitamin E in RBL-2H3 Zellen	38
3.2.4	Einfluss von α-Tocopherol auf die Degranulation in RBL-2H3 Zellen	39
3.2.5	Real time PCR-Analysen in RBL-2H3 Zellen	40
3.2.6	Einfluss von Trolox auf die Exocytose in RBL-2H3 Zellen	41
3.2.6.1	Aufnahme und Cytotoxizität von Trolox in RBL-2H3 Zellen	42
3.2.6.2	Trolox hat keinen Einfluss auf die Degranulation in RBL-2H3 Zellen	43
3.2.7	Einfluss von α-Tocopherol auf den <i>Lipid raft</i> Marker G _{M1}	43
3.3	Die <i>Ttpa</i> Knockout-Maus als genetisches Modell für Vitamin E-Defizienz	45
3.3.1	Gewichtsentwicklung der Mäuse	45
3.3.2	Ttpa Genexpression in der Leber	46
3.3.3	Ttpa Gewebsverteilung	47
3.3.4	Bestimmung der α-Tocopherol-Gehalte	47
3.3.4.1	α-Tocopherol-Gehalte im Plasma	48
3.3.4.2	α-Tocopherol-Gehalte in der Leber	48
3.3.4.3	α-Tocopherol-Gehalte in Großhirn und Kleinhirn	49
3.3.4.4	α-Tocopherol-Gehalte in Herz, Skelettmuskel, Lunge und Niere	50
3.3.4.5	Vergleich der α-Tocopherol-Plasmaspiegel mit den α-Tocopherol-Gehalten	
	in den extrahepatischen Organen	51
3.3.5	Microarray-Analysen in Leber, Großhirn und Kleinhirn	52
3.3.6	Real time PCR-Analysen in der Leber	53
3.3.6.1	Verifizierung der Microarray-Daten	53
3.3.6.2	Cyp3a11	55
3.3.6.3	Vesikelfusionsgene Stx1c, Nsf, Vamp1 und Stxbp1	56
3.3.6.4	Gene des Cholesterolstoffwechsels	57
3.3.7	Real time PCR-Analysen im Großhirn	58

4 Disl	kussion	60
4.1 ∖	/itamin E und der vesikuläre Transport	60
4.1.1	Identifizierung α-Tocopherol-sensitiver Gene in der murinen Leber	60
4.1.2	Vitamin E und die Mastzelldegranulation	63
4.2	Die <i>Ttpa</i> Knockout-Maus als genetisches Modell für Vitamin E-Defizienz	68
4.2.1	Gewebsverteilung und hepatische Genexpression von TTPA	68
4.2.2	Einfluss der Diät auf die α-Tocopherol-Gehalte	69
4.2.3	Einfluss des <i>Ttpa</i> Genotyps auf die α-Tocopherol-Gehalte	70
4.2.4	α-Tocopherol-Defizienz im Gehirn	72
4.2.5	Geschlechtsspezifische Unterschiede	73
4.2.6	Genexpressionsanalysen in der Leber	74
4.2.6.1	Vitamin E und CYPs	74
4.2.6.2	Vitamin E und der Cholesterolmetabolismus	75
4.2.6.3	Identifizierung weiterer α-Tocopherol-regulierter Gene	78
4.3 <i>A</i>	Ausblick	78
5 Zus	ammenfassung	80
6 Lite	raturverzeichnis	82
7 Anh	nang	97
Danksa	gung	109
Selbstäi	ndigkeitserklärung	110

Abbildungsverzeichnis

Abb. 1:	Chemische Struktur von Vitamin E.	1
Abb. 2:	Modulation der Signaltransduktion und Genexpression durch Vitamin E.	11
Abb. 3:	α-Tocopherol-Konzentrationen in Plasma, Leber und Großhirn	30
Abb. 4:	Relative mRNA-Expression von Stx1c, Vamp1, Nsf und Stxbp1 in der murinen Leber	
	in Abhängigkeit von der Diät	34
Abb. 5:	Relative mRNA-Expression von Stx1c, Vamp1, Nsf und Stxbp1 in der murinen Leber	
	in Abhängigkeit vom α-Tocopherol-Gehalt der Leber	35
Abb. 6:	Expression verschiedener Syntaxin 1A-Isoformen in Großhirn und Leber.	36
Abb. 7:	Schematische Darstellung der Struktur von Stx1c im Vergleich zu Stx1a.	37
Abb. 8:	Aufnahme von Vitamin E in RBL-2H3-Zellen	38
Abb. 9:	MTT-Test zur Überprüfung der Cytotoxizität von Vitamin E in RBL-2H3-Zellen	39
Abb. 10:	α-Tocopherol erhöht Sekretion der β-Hexosaminidase in RBL-2H3-Zellen	40
Abb. 11:	Genexpressionsanalyse in RBL-2H3-Zellen	41
Abb. 12:	Aufnahme von Trolox in RBL-2H3-Zellen.	42
Abb. 13:	MTT-Test zur Überprüfung der Cytotoxizität von Trolox in RBL-2H3-Zellen	42
Abb. 14:	β-Hexosaminidase-Assay in RBL-2H3-Zellen.	43
Abb. 15:	Analyse der Verteilung von G _{M1}	44
Abb. 16:	Gewichtsentwicklung der männlichen <i>Ttpa</i> +/+ und <i>Ttpa</i> -/- Mäuse	45
Abb. 17:	Relative <i>Ttpa</i> mRNA-Expression in der Leber	46
Abb. 18:	Ttpa Protein-Expression in der Leber.	46
Abb. 19:	Ttpa Gewebsverteilung in männlichen Ttpa+/+ Mäusen	47
Abb. 20:	α-Tocopherol-Konzentration im Plasma.	48
Abb. 21:	α-Tocopherol-Konzentration in der Leber.	49
Abb. 22:	α-Tocopherol-Konzentration in Großhirn und Kleinhirn	49
Abb. 23:	α-Tocopherol-Konzentration in Herz, Skelettmuskel, Lunge und Niere.	50
Abb. 24:	Vergleich der α-Tocopherol-Gehalte zwischen supplementierten <i>Ttpa</i> und	
	defizienten <i>Ttpa</i> +/+ Mäusen	51
Abb. 25:	Relative Cxcl1 mRNA-Expression in der Leber.	54
Abb. 26:	Relative <i>Dbp</i> mRNA-Expression in der Leber.	55
Abb. 27:	Relative Cyp3a11 mRNA-Expression in der Leber	55
Abb. 28:	Relative mRNA-Expression von Stx1c, Vamp1, Nsf und Stxbp1 in der Leber	56
Abb. 29:	Relative mRNA-Expression von Ldlr und Sqle in der Leber	57
Abb. 30:	Relative Edg8 mRNA-Expression im Großhirn	58
Abb. 31:	Relative mRNA-Expression von Npas4 und Th im Großhirn	59
Abb. 32:	Proteine des vesikulären Transports.	62

Tabellenverzeichnis

Tab. 1:	Modulation der Genexpression verschiedener Gene durch Vitamin E	10
Tab. 2:	Synthetische Oligonukleotide für die real time PCR	13
Tab. 3:	Verwendete Antikörper	14
Tab. 4:	Verwendete Zelllinie	14
Tab. 5:	PCR-Ansatz für Mycoplasmen-Test	15
Tab. 6:	PCR-Ansatz für Genotypisierung	18
Tab. 7:	PCR-Ansätze für Standard- und real time PCR	21
Tab. 8:	Synthetische Oligonukleotide für PCR auf genomische Kontamination	21
Tab. 9:	Zusammensetzung von Sammel- und Trenngel	23
Tab. 10:	Funktionelle Clusteranalyse der α-Tocopherol-regulierten Gene mit <i>EASE</i>	32
Tab. 11:	In vesikuläre Transportprozesse involvierte α-Tocopherol-regulierte Gene	32
Tab. 12:	Affymetrix GCOS Single Array Analysen	52
Tab. 13:	Affymetrix GCOS Comparison Array Analysen	53
Tab. 14:	Ausgewählte Gene zur Überprüfung der hepatischen Genexpression	
	mittels real time PCR.	54
Tab. 15:	Effekt von α-Tocopherol auf die Expression von Genen des Lipidstoffwechsels	57
Tab. 16:	Ausgewählte Gene zur Überprüfung der hepatischen Genexpression	
	mittels real time PCR.	58
Tab. A1:	TV1 - In vesikuläre Transportprozesse involvierte α-Tocopherol-regulierte Gene	97
Tab. A2:	TV2 - α-Tocopherol-Konzentrationen in Plasma und verschiedenen Organen	98
Tab. A3:	TV2 - Statistische Analyse der α -Tocopherol-Gehalte in Plasma und verschiedenen	
	Organen der Maus	99
Tab. A4:	TV2 - In der Leber regulierte Gene - <i>Ttpa</i> ^{+/+} supplementiert vs. <i>Ttpa</i> ^{+/+} defizient	100
Tab. A5:	TV2 - In der Leber regulierte Gene - <i>Ttpa</i> supplementiert vs. <i>Ttpa</i> defizient	101
Tab. A6:	TV2 - In der Leber regulierte Gene - <i>Ttpa</i> +/+ supplementiert vs. <i>Ttpa</i> -/- supplementiert	102
	TV2 - In der Leber regulierte Gene - <i>Ttpa</i> ^{+/+} defizient vs. <i>Ttpa</i> -/- defizient	
Tab. A8:	TV2 - Im Großhirn regulierte Gene - <i>Ttpa</i> ^{+/+} supplementiert vs. <i>Ttpa</i> ^{+/+} defizient	104
	TV2 - Im Großhirn regulierte Gene - <i>Ttpa</i> ^{-/-} supplementiert vs. <i>Ttpa</i> ^{-/-} defizient	
	: TV2 - Im Großhirn regulierte Gene - <i>Ttpa</i> +/+ supplementiert vs. <i>Ttpa-/-</i> supplementiert	
	: TV2 - Im Großhirn regulierte Gene - <i>Ttpa</i> +/+ defizient vs. <i>Ttpa-/-</i> defizient	
Tab. A12	: TV2 - Im Kleinhirn regulierte Gene - <i>Ttpa</i> +/+ supplementiert vs. <i>Ttpa</i> +/+ defizient	106
	: TV2 - Im Kleinhirn regulierte Gene - <i>Ttpa^{-/-}</i> supplementiert vs. <i>Ttpa^{-/-}</i> defizient	
Tab. A14	: TV2 - Im Kleinhirn regulierte Gene - <i>Ttpa</i> +/+ supplementiert vs. <i>Ttpa-/-</i> supplementiert	107
Tab. A15	: TV2 - Im Kleinhirn regulierte Gene - <i>Ttpa</i> ⁺′⁺ defizient vs. <i>Ttpa</i> ⁻′ defizient	108

Abkürzungsverzeichnis

ABCA1 ATP-binding cassette, sub-family A (ABC1), member 1

Apo Apolipoprotein
APS Ammoniumpersulfat

AVED ataxia with vitamin E deficiency

BHT butyliertes Hydroxytoluol

bp Basenpaar

BSA bovine serum albumin

CMBHC Carboxymethylbutylhydroxychroman
CEHC Carboxyethylhydroxychroman
CETP cholesteryl ester transfer protein

COX-2 Cyclooxygenase-2

CTB-HRP Cholera Toxin B - Horse Radish Peroxidase

CYP Cytochrom P450
DAGK Diacylglycerolkinase

Dbp D site of albumin promoter (albumin D-box) binding protein

DEPC Diethylpyrocarbonat

DGE Deutsche Gesellschaft für Ernährung
DMEM Dulbecco's modified eagle medium

DMF Dimethylformamid
DNA deoxyribonucleic acid

dNTPs Desoxyribonukleosidtriphosphate
EASE Expression Analysis Systemic Explorer

EDTA Ethylendiamintetraacetat

FC fold change
FCS fetal calf serum
FG Frischgewicht

GCOS GeneChip Operating Software

GO gene ontology

HDL high density lipoprotein

het heterozygot

HMGCR HMG-CoA-Reduktase

HPLC Hochleistungsflüssigkeitschromatographie

(high performance liquid chromatography)

IE Internationale Einheit IgE Immunglobulin E

kDa Kilodalton ko Knockout

LDL low density lipoprotein

LDLR low density lipoprotein receptor

LPL Lipoproteinlipase
LPS Lipopolysaccharid
mRNA messenger RNA

MOPS 3-Morpholinopropansulfonsäure

MTT 3-(4,5-Dimethyl-thiazol-2-yl)-2,5-Diphenyl-Tetrazoliumbromid

MTTP microsomal triglyceride transfer protein

MW Mittelwert

NPC1L1 Niemann-Pick C1-like 1

PAGE Polyacrylamidgelelektrophorese

PBS phosphate buffered saline

PCR polymerase chain reaction (Polymerase-Kettenreaktion)

PI3Ky Phosphatidylinositol-3-Kinase y

PKB Proteinkinase B
PKC Proteinkinase C
PLA2 Phospholipase A2
PLCy Phospholipase Cy

PLTP phospholipid transfer protein
PMA Phorbol-12-myristat-13-acetat
PMSF Phenylmethylsulfonylfluorid
PP2A Proteinphosphatase 2A
PTK Proteintyrosinkinase
RBL rat basophilic leukemia

RNA ribonucleic acid

RNS reactive nitrogen species (Reaktive Stickstoff-Spezies)
ROS reactive oxygen species (Reaktive Sauerstoffspezies)

rpm rounds per minute

RPMI Rosewell Park Memorial Institute Medium

RT Raumtemperatur

SD standard deviation (Standardabweichung)
SDS sodium dodecyl sulfate (Natriumdodecylsulfat)

SHIP SH2 containing inositol phosphatase

SLR signal log ratio

SNARE soluble N-ethylmaleimide-sensitive factor attachment protein receptor

SOC super optimal broth
SPF supernatant protein factor

SREBP2 sterol regulatory element-binding protein 2

SR-B1 scavenger receptor class B type 1
TAP α-Tocopherol-assoziiertes Protein

TBE Tris-Borat-EDTA-Puffer
TBME tert-Butylmethylether
TBP Tocopherol-Bindeprotein
TBS tris buffered saline

TEAH Tetraethylammoniumhydroxid TNF α tumor necrosis factor alpha TTPA α -Tocopheroltransferprotein

TV Tierversuch

3'UTR three prime untranslated region VLDL very low density lipoprotein

wt Wildtyp

1 Einleitung

1.1 Vitamin E

Vitamin E wurde erstmals 1922 als ein bis dahin unbekannter Nahrungsbestandteil beschrieben, der für die Reproduktion von Ratten essentiell war [1]. Zwei Jahre später erhielt dieser den Namen Vitamin E [2]. Aufgrund seiner bekannten Funktion wurde es später auch als Tocopherol bezeichnet, zurückgehend auf die altgriechischen Wörter *tocos* (Geburt) und *pherein* (hervorbringen) zusammen mit dem Suffix -ol für den alkoholischen Charakter [3]. 1938 gelangen schließlich die Strukturaufklärung sowie die chemische Synthese von α-Tocopherol [4, 5].

Heute ist Vitamin E ein Sammelbegriff für jeweils vier Tocopherole und Tocotrienole (α , β , γ , δ), deren gemeinsames Strukturmerkmal ein an Position 6 hydroxylierter Chromanring ist, welcher an Position C2 mit einer aliphatischen Seitenkette verknüpft ist (Abb. 1). Diese liegt in Tocopherolen gesättigt vor, während sie in Tocotrienolen drei Doppelbindungen aufweist. Die α -, β -, γ - und δ -Formen unterscheiden sich in der Methylierung ihres Chromanringes. Tocopherole besitzen drei chirale C-Atome (C2, C4′, C8′) und können somit in acht verschiedenen stereoisomeren Konfigurationen vorkommen. Natürliche Tocopherole weisen ausschließlich die *RRR*-Konfiguration auf, während synthetische Tocopherole Racemate aus allen acht Stereoisomeren (= *all-rac*-Tocopherol) darstellen. Tocotrienole hingegen besitzen nur ein chirales C-Atom (C2), welches bei natürlich vorkommenden Tocotrienolen ebenfalls stets in der *R*-Konfiguration vorliegt.

Tocopherol
$$R2 \xrightarrow{CH_3} \xrightarrow{H_3C} \xrightarrow{H_3C$$

	R1	R2
α-	CH ₃	CH ₃
β-	CH ₃	Н
γ-	Н	CH ₃
δ-	Н	Н

Abb. 1: Chemische Struktur von Vitamin E.

 $\bar{\bar{\mathbb{C}}} \mathsf{H}_3$

Dargestellt sind die natürlich vorkommenden Vitamin E-Formen (α -, β -, γ -, δ -Tocopherol und α -, β -, γ -, δ -Tocotrienol). R1 und R2 kennzeichnen die entsprechenden Substitutionen am Chromanring.

Vitamin E wird ausschließlich in photosynthetisch aktiven Organismen wie Pflanzen und einigen Cyanobakterien synthetisiert [6, 7]. Besonders hohe Gehalte an Vitamin E weisen pflanzliche Öle wie Weizenkeimöl, Sonnenblumenöl, Palmöl und Olivenöl auf.

1.1.1 Biologische Aktivität von Vitamin E

In Abhängigkeit von der Methylierung des Chromanringes, der Sättigung der Seitenkette sowie der stereoisomeren Konfiguration unterscheiden sich die Vitamin E-Formen hinsichtlich ihrer biologischen Aktivität. Basierend auf dem fötalen Resorptions-Gestations-Test an Vitamin E-depletierten Ratten zur Bestimmung der Bioaktivität besitzt *RRR*-α-Tocopherol die höchste biologische Aktivität [8]. Im Vergleich zu *RRR*-α-Tocopherol als Referenzsubstanz, dessen Aktivität auf 100% gesetzt wurde, betragen die relativen Aktivitäten für *RRR*-β-Tocopherol 57%, für *RRR*-γ-Tocopherol 31%, für *RRR*-δ-Tocopherol 1,4% und für *R*-α-Tocotrienol 30%. Auf der Grundlage solcher Analysen wurde für 1 mg *all-rac*-α-Tocopherol eine Aktivität von 1 IE (Internationale Einheit) definiert, auf die alle anderen Vitamin E-Formen bezogen werden, so entspricht z. B. 1 mg *RRR*-α-Tocopherol 1,49 IE [9].

1.1.2 Absorption und Verteilung von Vitamin E

Die Absorption von Vitamin E erfolgt analog zu den Nahrungslipiden in die Enterocyten des Dünndarms [Übersicht in 10, 11]. Sie ist sowohl von der Fettzufuhr als auch der Dosis abhängig. So lässt sich die Vitamin E-Aufnahme bei gleichzeitig erhöhter Fettzufuhr steigern [12]. Mit etwa 15-45% ist die Effizienz der Absorption insgesamt eher gering [13]. Laut der Deutschen Gesellschaft für Ernährung (DGE) beträgt die Absorption bei der empfohlenen täglichen Zufuhr von 12 mg RRR- α -Tocopherol 54%, bei einer Dosis von 24 mg etwa 30% und bei pharmakologischen Dosierungen von 200 mg werden schließlich nur noch ca. 10% absorbiert [9]. Beim Vergleich der intestinalen Absorption von α -Tocopherol und α -Tocopherylacetat besteht kein Unterschied [14, 15]. Die Hydrolyse der Tocopheryl-Ester erfolgt größtenteils vor der Absorption im Darmlumen durch pankreatische Esterasen [14-17]. Allerdings können die Ester auch durch intrazelluläre Esterasen in den Enterocyten hydrolysiert werden. Darüberhinaus sind Gallensäuren zur Bildung von gemischten Micellen für die Aufnahme lipophiler Substanzen in die intestinale Mukosa essentiell [18, 19].

Die genauen Mechanismen der intestinalen Absorption von Vitamin E sind größtenteils unbekannt. Nachdem zunächst angenommen wurde, dass Vitamin E wie andere lipophile Mikronährstoffe ausschließlich durch einen passiven Prozess absorbiert wird, deuten neuere Studien auf komplexere Prozesse hin. So konnte gezeigt werden, dass Transporter wie der SR-B1 (*scavenger receptor class B type 1*) [20] und der NPC1L1 (*Niemann-Pick C1-like 1*) [21], welche auch in die Aufnahme von Cholesterol in Enterocyten involviert sind, eine Rolle

bei der Vitamin E-Absorption spielen. Bezüglich der intestinalen Aufnahme erfolgt keine Diskriminierung zwischen den verschiedenen Vitamin E-Formen [20, 22-24]. Der intrazelluläre Vitamin E-Transport durch die Mukosazellen ist ebenfalls nicht aufgeklärt. Bislang konnte kein intestinales Tocopheroltransferprotein identifiziert werden. In Caco-2 Zellen akkumulierte Vitamin E hauptsächlich in mikrosomalen Membranen [25].

Die intestinale Vitamin E-Sekretion kann auf zwei verschiedenen Wegen erfolgen. Der größte Teil des Vitamin E wird an Chylomikronen assoziiert, welche in die Lymphe sezerniert werden und über den Ductus thoracicus ins Blutsystem gelangen [26]. Ein kleiner Teil kann jedoch durch ABCA1-abhängige Sekretion mit intestinalem HDL direkt in die Blutzirkulation gelangen [25-27]. Auf dem Weg zur Leber wird bereits ein Teil des Vitamin E infolge der Lipolyse der Chylomikronen durch die endothelständige Lipoproteinlipase (LPL) in extrahepatische Organe wie Fettgewebe, Skelettmuskel und Gehirn transportiert [28-32]. Der Großteil des Vitamin E erreicht jedoch mit den Chylomikronen-Remnants Parenchymzellen der Leber. Nach der Aufnahme von Vitamin E wird bevorzugt RRR-a-Tocopherol ins Plasma resezerniert, während der größte Teil aller anderen Vitamin E-Formen sowie überschüssiges α-Tocopherol metabolisiert und über Galle oder Urin ausgeschieden werden [Übersicht in 33, 34]. Verantwortlich für diese Biodiskriminierung ist das cytosolische α-Tocopheroltransferprotein (TTPA; Kap. 1.1.4.1), welches bevorzugt RRRα-Tocopherol bindet [35]. Während man zunächst hauptsächlich von einer durch VLDL vermittelten α-Tocopherol-Sekretion ausging [10], weisen neuere Studien auf eine TTPAabhängige Sekretion durch einen VLDL-unabhängigen Transportmechanismus hin, der zum direkten Einbau von RRR-α-Tocopherol in HDL führt [36, 37]. So zeigten Mäuse, die infolge des Fehlens des hepatischen MTTP (microsomal triglyceride transfer protein) keine VLDL-Sekretion aufwiesen, keine Abnahme der α-Tocopherol-Gehalte in extrahepatischen Geweben wie Lunge, Niere oder Gehirn [37]. Wie bereits für intestinale Zellen gezeigt, kann α-Tocopherol-Sekretion möglicherweise auch direkt von der Plasmamembran auf ApoA1 und HDL erfolgen [11]. So wurde in Fibroblasten, Makrophagen und Hepatocyten eine ABCA1-abhängige Sekretion beobachtet [38, 39].

Im Plasma wird α-Tocopherol hauptsächlich in LDL und HDL transportiert [40]. Dabei findet ein konstanter Austausch von Vitamin E zwischen den Lipoproteinen und Zellen statt, welcher durch die LPL [10] und das PLTP (*phospholipid transfer protein*) [41] katalysiert wird. Möglicherweise sind daran auch weitere Plasmaproteine wie das CETP (*cholesteryl ester transfer protein*) involviert [42].

Die Aufnahme von α -Tocopherol in die peripheren Gewebe ist abhängig vom Zelltyp und der Lipoproteinquelle [Übersicht in 11, 43]. So wird das LDL-assoziierte α -Tocopherol über den LDL-Rezeptor (LDLR) aufgenommen, während die Aufnahme von HDL-assoziiertem α -Tocopherol über den SR-B1 erfolgt. Dabei scheint die LDLR-abhängige α -Tocopherol-

Aufnahme *in vivo* für die Aufrechterhaltung normaler Vitamin E-Gewebekonzentrationen nicht essentiell zu sein. So konnte in LDLR-defizienten Mäusen keine Abnahme der Vitamin E-Gehalte in verschiedenen Geweben wie Leber, Niere, Testis, Lunge und Gehirn gefunden werden [44]. Im Gegensatz dazu konnte die physiologische Bedeutung von SR-B1 für die HDL-vermittelte Vitamin E-Aufnahme in periphere Gewebe in SR-B1 Knockout-Mäusen gezeigt werden. Diese wiesen erhöhte α -Tocopherol-Plasmaspiegel sowie reduzierte α -Tocopherol-Konzentrationen in Testis, Lunge und Gehirn auf [44].

1.1.3 Metabolismus und Ausscheidung von Vitamin E

Der Metabolismus von Vitamin E erfolgt über einen oxidativen Seitenkettenabbau, der durch eine ω-Hydroxylierung der Seitenkette initiiert wird [45-47]. Katalysiert wird diese Reaktion durch Cytochrom P450-abhängige Monooxygenasen (CYP) [45, 48-50], welche eine wichtige Rolle im Fremdstoffmetabolismus spielen. In vitro konnte speziell für CYP3A und CYP4F2 eine Rolle im Abbau von Vitamin E gezeigt werden. Im Anschluss erfolgt ein schrittweiser Abbau der Seitenkette durch fünffache β-Oxidation, wie sie für den Abbau ungesättigter oder methylverzweigter Fettsäuren bekannt ist. Bei den Endprodukten handelt es sich um die Vitamer-spezifischen Carboxyethylhydroxychromane (CEHC) und deren Vorläufer Carboxymethylbutylhydroxychroman (CMBHC), welche als Glucuronid- oder Sulfat-Konjugate über Urin und Galle ausgeschieden werden [Übersicht in 51]. Die Metabolite weisen eine verkürzte Seitenkette auf und haben einen intakten Chromanring, was darauf schließen lässt, dass Vitamin E im Organismus nicht als Antioxidanz fungiert haben kann [52]. Während alle Vitamin E-Formen über den gleichen Mechanismus abgebaut werden, unterscheiden sie sich jedoch erheblich in ihrer Abbaurate [46, 53, 54]. Im Vergleich zu den anderen Vitamin E-Formen wird α-Tocopherol in geringerem Umfang abgebaut. Dies ist vermutlich auf das TTPA zurückzuführen, welches speziell den Abbau und die Exkretion von

1.1.4 α-Tocopherol-bindende Proteine

α-Tocopherol verhindert (Kap. 1.1.4.1).

Aufgrund seines lipophilen Charakters ist α -Tocopherol beim Transport durch intra- und extrazelluläre Flüssigkeiten auf Transportproteine angewiesen. Neben dem TTPA, das als wichtigstes intrazelluläres Transportprotein von α -Tocopherol in Hepatocyten identifiziert wurde, sind einige weitere potentielle α -Tocopherol-bindende Proteine beschrieben worden, über deren genaue Funktion bislang wenig bekannt ist [33, 55]. Dazu gehören das Tocopherol-Bindeprotein (TBP) [56, 57], Afamin [58, 59] sowie die α -Tocopherol-assoziierten Proteine (TAPs) [60-63]. TBP, ein 14,2 kDa großes Protein, das im Cytosol von Hepatocyten und Cardiomyocyten der Ratte gefunden wurde, bindet spezifisch *RRR*- α -Tocopherol und

stimuliert in vitro den α-Tocopherol-Transfer von Liposomen zu Mitochondrien [56, 57]. Daher wird für TBP eine Rolle im intrazellulären Vitamin E-Transport angenommen. Afamin, ein 87 kDa großes Glycoprotein und Mitglied der Albumingenfamilie, bindet spezifisch α- und y-Tocopherol [59]. Es ist nicht nur im Plasma, sondern auch in extravaskulären Flüssigkeiten (follikulär und cerebrospinal) zu finden [64]. Möglicherweise spielt Afamin daher eine Rolle bei Fertilität und Neuroprotektion. So konnte in vitro zusammen mit α-Tocopherol ein protektiver Effekt auf kortikale Neuronen gezeigt werden [58]. Weiterhin wurde Afamin auch in cerebrovaskulären Endothelzellen gefunden [65]. Und in einem in vitro Modell konnte es den Transport von α-Tocopherol durch die Blut-Hirn-Schranke erleichtern [65]. Die TAPs gehören ebenso wie das TTPA zur Familie der SEC14-Proteine, welche eine Lipid-Bindedomäne (CRAL-TRIO) ähnlich der von Sec14p aus S. cerevisiae besitzen [63, 66, 67]. TAP, das schließlich als SPF (supernatant protein factor) identifiziert wurde [68, 69], ist ubiquitär mit der höchsten Expression in Leber, Gehirn und Prostata zu finden und bindet neben α-Tocopherol auch y-Tocopherol [63, 66, 70]. Es konnte gezeigt werden, dass TAP α-Tocopherol-abhängig in den Zellkern transloziert und die Transkription von Reportergenen aktiviert [70]. Damit könnte α-Tocopherol über Assoziation mit TAP als Transkriptionsfaktor die Expression von Genen regulieren. Inzwischen wurden weitere TAPs (TAP2, TAP3) identifiziert [60, 62]. Für rekombinante humane TAPs konnte gezeigt werden, dass sie neben α-Tocopherol auch Phospholipide wie Phosphatidylinositol, Phosphatidylcholin und Phosphatidylglycerol binden können [60]. Während sie in vitro die Aktivität der katalytischen Untereinheit der Phosphatidylinositol-3-Kinase y (PI3Ky) reduzierten, führte die Anwesenheit von α-Tocopherol zu einer Aktivierung der PI3Ky. Daher wäre es denkbar, dass andere Phospholipid-abhängige Signalwege durch TAPs und α-Tocopherol moduliert werden.

1.1.4.1 α-Tocopheroltransferprotein (TTPA)

Das α-Tocopheroltransferprotein (TTPA) spielt eine zentrale Rolle in der Vitamin E-Homöostase. Es handelt sich um ein 32 kDa großes cytosolisches Protein, das zuerst aus dem Cytosol der Rattenleber isoliert und charakterisiert wurde [71-75]. Später wurde dann auch das humane TTPA identifiziert [76, 77]. TTPA weist die höchste Expression in der Leber auf, konnte inzwischen allerdings auch in anderen Geweben wie Placenta, Uterus, Gehirn, Milz, Lunge und Niere gefunden werden [76, 78-82].

Im Vergleich zu allen anderen Vitamin E-Formen hat TTPA die höchste Affinität zu α -Tocopherol [35]: RRR- α -Tocopherol (100%) > β -Tocopherol (38%) > α -Tocotrienol (12%) > SRR- α -Tocopherol (11%) > γ -Tocopherol > δ -Tocopherol (2%) > α -Tocopherylacetat (2%). Die unterschiedliche Affinität der verschiedenen Vitamin E-Formen zum TTPA scheint einer der entscheidenden Faktoren in der Bestimmung ihrer biologischen Aktivität zu sein und erklärt die hohe Bioaktivität von α -Tocopherol. Aufgrund dieser Selektivität ist α -Tocopherol

die dominierende Vitamin E-Form im menschlichen Blut und Gewebe. Die Präferenz des TTPA für RRR- α -Tocopherol wird durch die Struktur der Lipid-Bindetasche bestimmt. Wichtige Strukturmerkmale für die Erkennung des Liganden durch TTPA sind 1) der vollständig methylierte Chromanring, 2) die aliphatische Seitenkette sowie 3) die R-Konfiguration am C2-Atom [51]. So konnte in Mäusen gezeigt werden, dass TTPA vorzugsweise 2R- α -Tocopherole ins Plasma sezerniert [83].

In vitro konnte in Hepatocyten eine Erhöhung der α -Tocopherol-Sekretion durch Überexpression von TTPA beobachtet werden, während die Aufnahme von Vitamin E unbeeinflusst blieb [36, 39]. Über die molekularen Mechanismen des intrazellulären Transports von Vitamin E und der TTPA-abhängigen Sekretion von α -Tocopherol ist bislang wenig bekannt. Qian *et al.* beobachteten, dass α -Tocopherol bereits kurz nach der Internalisierung durch Endocytose hauptsächlich in Endosomen und Lysosomen zu finden ist, wo auch das TTPA konstitutiv lokalisiert ist [39]. Sie vermuteten, dass TTPA Vitamin E in den Lysosomen bindet und den Intermembrantransfer von α -Tocopherol zwischen Lysosomen und Transportvesikeln ermöglicht, die dann das Vitamin zur Plasmamembran befördern. In diesem Sinne resultierte eine Mutation des TTPA in einer verminderten Sekretion, wobei α -Tocopherol nicht mehr zur Plasmamembran transportiert wurde und in den Lysosomen verblieb [84].

1.1.5 Vitamin E-Defizienz

Vitamin E-Defizienz infolge einer Mangelernährung ist beim Menschen sehr selten. Sie kann allerdings durch Lipoproteindefizienz, Lipidmalabsorptionssyndrome oder genetische Defekte im *TTPA* hervorgerufen werden [Übersicht in 10]. So können z. B. Patienten mit Cystischer Fibrose oder cholestatischen Lebererkrankungen, die eine eingeschränkte Aufnahme von Nahrungsfetten und damit auch fettlöslichen Vitaminen haben, eine symptomatische Vitamin E-Defizienz entwickeln. Menschen mit Abetalipoproteinämie haben aufgrund eines genetischen Defekts im *MTTP* Gen, das für den Zusammenbau und die Sekretion der ApoBhaltigen Lipoproteine (Chylomikronen, LDL, VLDL) in der Leber verantwortlich ist, nahezu undetektierbare Lipoprotein-Plasmaspiegel. Dadurch ist die Absorption fettlöslicher Vitamine vermindert und Vitamin E wird hauptsächlich in Form von HDL transportiert.

Mutationen im *TTPA* Gen sind die Ursache einer autosomal rezessiv vererbten Krankheit, bekannt als *Ataxia with vitamin E deficiency* (AVED) [85-89]. Patienten, die an AVED leiden, weisen extrem niedrige α-Tocopherol-Plasmakonzentrationen auf und zeigen progressive neurologische Dysfunktionen sowie sensorische Störungen, Dysarthrie, *Retinitis pigmentosa* und Muskelschwäche. Die Supplementation mit Vitamin E kann die Symptome mindern und die Progression der Krankheit verlangsamen [88, 90].

1.1.6 Ttpa Knockout-Maus

Zur besseren Untersuchung der Funktionen von Vitamin E wurden von zwei verschiedenen Arbeitsgruppen *Ttpa* Knockout-Mäuse generiert, die als genetisches Model für Vitamin E-Defizienz verwendet werden können [80, 91]. In beiden Mausmodellen wiesen die *Ttpa*-/- Mäuse im Vergleich zu den *Ttpa*+/- Mäusen deutlich reduzierte Vitamin E-Gehalte im Plasma und in verschiedenen Geweben wie Gehirn, Lunge, Herz, Testis und Ovarien auf [83, 91-95]. Im Gegensatz zu den männlichen *Ttpa*-/- Mäusen waren die weiblichen infolge der Vitamin E-Defizienz unfruchtbar, was durch eine hohe Vitamin E-Supplementation komplett rückgängig gemacht werden konnte [80, 91]. Während die *Ttpa*-/- Mäuse von Terasawa *et al.* selbst im Alter von 18 Monaten noch keine neurologischen Störungen aufwiesen [91], zeigten sich bei den *Ttpa*-/- Mäusen von Jishage *et al.* [80] bereits im Alter von einem Jahr Anzeichen von Ataxie und retinaler Degeneration [96]. Die Symptome konnten ebenfalls durch α-Tocopherol-Supplementation vermindert werden.

Zur Überprüfung eines Einflusses von α-Tocopherol auf die Genexpression in Abhängigkeit von TTPA wurden Microarray-Analysen in verschiedenen Geweben wie Leber [93], Gehirn [93] und Herz [95] durchgeführt. Dabei wurde im Cortex von *Ttpa*-- Mäusen die Expression von Genen inhibiert, die bei der neuronalen Entwicklung, der synaptischen Plastizität und der Freisetzung von Neurotransmittern eine wichtige Rolle spielen. Insofern könnte die *Ttpa* Knockout-Maus ein geeignetes Modell zur Aufklärung der molekularen Mechanismen für die bei AVED zu beobachtenden neurologischen Dysfunktionen darstellen.

1.1.7 Funktionen von Vitamin E

Die Suche nach einer spezifischen Vitamin E-Funktion dauert seit seiner Entdeckung an. So ist die Wirkungsweise von Vitamin E als Fertilitätsfaktor immer noch unbekannt. Nachdem die Funktionen von Vitamin E zunächst ausschließlich auf seine antioxidativen Eigenschaften zurückgeführt wurden, liegt nun der Fokus der Vitamin E-Forschung auf molekularen Funktionen, die nicht auf einer antioxidativen Wirkungsweise beruhen.

1.1.7.1 Antioxidative Funktionen

Vitamin E wird heute immer noch als das wichtigste lipophile Antioxidanz betrachtet, das biologische Membranen, Lipoproteine und Lipide vor Lipidperoxidation durch freie Radikale schützt. Bereits 1931 wurde erstmals eine antioxidative Aktivität von Vitamin E beschrieben [97]. In der Folgezeit wurde die antioxidative Funktion von Vitamin E weiter eingehend untersucht [98-100]. Heute weiß man, dass die antioxidative Wirkung auf einem Abbruch der Radikalkettenreaktion beruht [Übersicht in 101]. Dabei reagieren die freien Radikale mit der Hydroxylgruppe des Chromanringes, wobei das phenolische H-Atom auf das Peroxyl-Radikal

unter Bildung des entsprechenden Hydroperoxids und eines resonanzstabilisierten Tocopheroxyl- bzw. Tocotrienoxyl-Radikals übertragen wird. Dieses kann nachfolgend wieder durch andere zelluläre Antioxidanzien wie Vitamin C [102-104], Ubichinon [105], Bilirubin [102, 106] oder Glutathion [107] regeneriert werden. Beim Fehlen effektiver Co-Antioxidanzien kann Vitamin E auch als Prooxidanz wirken [108-111]. Die Bedeutung der Interaktion zwischen Antioxidanzien wird deutlich, wenn man betrachtet, dass eine gleichzeitige Defizienz von Vitamin E und C in Meerschweinchen zu neurologischen Dysfunktionen und innerhalb von wenigen Tagen zum Tod führt [112, 113]. Eine Defizienz von Vitamin E und Selen verursacht in Meerschweinchen hingegen eine schwere Myopathie [114].

Die natürlichen Vitamin E-Formen haben *in vitro* relativ ähnliche antioxidative Aktivitäten [Übersicht in 51], wenngleich α -Tocopherol im Vergleich zu den anderen Vitameren die höchste Aktivität besitzt, was auf die vollständige Methylierung des Chromanringes zurückzuführen ist. Diese verhindert außerdem die Bildung von Addukten im Gegensatz zu den anderen Vitameren, deren Chromanring nicht vollständig methyliert ist. So kann beispielsweise γ -Tocopherol mit reaktiven Stickstoffspezies unter Bildung von 5-Nitro- γ -Tocopherol reagieren [115].

Da zahlreiche Erkrankungen wie Arteriosklerose, Morbus Alzheimer, Morbus Parkinson oder Krebs mit oxidativem Stress in Verbindung gebracht werden, wurde ein möglicher positiver Effekt von Vitamin E in seiner Funktion als Antioxidanz in der Prävention dieser Krankheiten diskutiert. Allerdings konnte in zahlreichen großen Humanstudien wie der *ATBC Study*, der *Physicians' Health Study II*, der *Women's Health Study* oder der *HOPE Study* bislang kein Hinweis auf eine protektive Wirkung von Vitamin E hinsichtlich der Vorbeugung von Krebs, rheumatoider Arthritis oder kardiovaskulärer Erkrankungen gefunden werden [116-124].

1.1.7.2 Nicht-antioxidative Funktionen

Seit der initialen Entdeckung eines inhibitorischen Effekts von α-Tocopherol auf die Aktivität der Proteinkinase C (PKC) [125, 126] wurde eine Vielzahl von Enzymen gefunden, die in Signaltransduktionsvorgänge involviert sind und durch Vitamin E direkt oder indirekt beeinflusst werden können. Dazu gehören außer der PKC u. a. die Proteinphosphatase 2A (PP2A), die Diacylglycerolkinase (DAGK), die Phospholipase A2 (PLA2), die Cyclooxygenase-2 (COX-2) oder die Proteinkinase B (PKB) [Übersicht in 127].

Der in glatten Muskelzellen beobachtete inhibitorische Effekt von α -Tocopherol auf die PKC α -Isoform beruhte indirekt auf der Aktivierung der PP2A, die zur Dephosphorylierung und somit Inaktivierung der PKC führte [128-131]. Im Gegensatz dazu hatten weder β -Tocopherol noch Trolox trotz ähnlicher antioxidativer Eigenschaften einen inhibitorischen Effekt auf die PKC, was als Hinweis auf eine nicht-antioxidative Funktion von α -Tocopherol

interpretiert wurde und in der Folgezeit den Grundstein für die Untersuchung der nichtantioxidativen Funktionen von Vitamin E legte.

Eine PKC-Inhibition durch Vitamin E konnte inzwischen auch in anderen Zelllinien gezeigt werden. So führte in humanen Monocyten die Inaktivierung der PKC durch α-Tocopherol zur Verringerung der O₂--Produktion [132, 133]. Die verminderte PKC-Aktivität bewirkte dabei eine Inhibition der Phosphorylierung und Translokation von p47^{phox}, einer cytosolischen Untereinheit der NADPH-Oxidase, deren Assemblierung an der Membran damit beeinträchtigt war. In Microgliazellen konnte ebenfalls eine Abnahme der O₂--Produktion infolge der Inhibierung der p67^{phox} Translokation zur Plasmamembran beobachtet werden [134]. Durch die Reduktion der ROS-Produktion sowie der ROS-vermittelten Signaltransduktion könnte Vitamin E möglicherweise chronische inflammatorische Prozesse wie Arteriosklerose, Skleroderma, Leberfibrose und Neurodegeneration verhindern [134].

Weiterhin führte die α -Tocopherol-abhängige PKC-Inaktivierung in humanen Fibroblasten zur Reduktion der Collagenase-Expression [135] und in Endothelzellen zur Thrombin-induzierten Inhibition der Endothelin-Sekretion [136]. In murinen Epithelzellen konnte auch eine inhibierende Wirkung von δ -Tocopherol, α -Tocotrienol, γ -Tocotrienol und δ -Tocotrienol auf die EGF-induzierte PKC α -Aktivierung beobachtet werden, während α - und γ -Tocopherol keinen Effekt hatten [137].

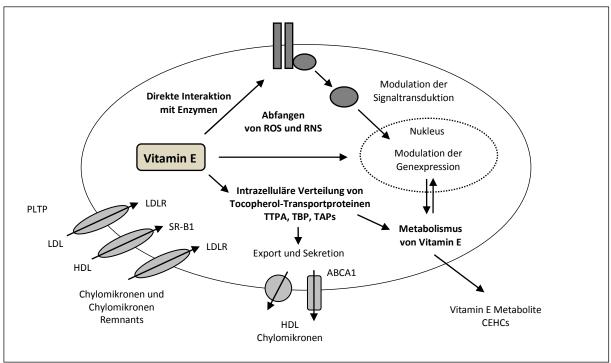
Neben der posttranslationalen Modulation von Enzymaktivitäten kann Vitamin E auch auf transkriptioneller Ebene die Expression von Genen beeinflussen [Übersicht in 138]. So wurde in der Vergangenheit eine Vielzahl von Genen identifiziert, deren Expression durch Vitamin E moduliert wird. Insbesondere durch Microarray-Analysen konnten viele potentielle α-Tocopherol-regulierte Gene in verschiedenen Organen wie Leber, Herz, Skelettmuskel und Cortex gefunden werden [93, 95, 139-141].

Nach Azzi et al. lassen sich diese durch Vitamin E regulierten Gene basierend auf ihren Funktionen in fünf Gruppen einteilen: Gene, die 1) in Aufnahme und Metabolismus von Vitamin E involviert sind, 2) bei der Lipidaufnahme und Arteriosklerose eine Rolle spielen, 3) die Expression zellulärer Proteine modulieren, 4) mit Entzündung, Zelladhäsion und Thrombocytenaggregation assoziiert sind und 5) in Signaltransduktion und Zellcyclusregulation eine Rolle spielen [138]. Tab. 1 zeigt eine Auswahl dieser Gene.

Fechner *et al.* konnten beispielsweise zeigen, dass die Supplementation Vitamin Edepletierter Ratten mit α - oder δ -Tocopherol zu einer Erhöhung der mRNA-Expression von TTPA führte [142]. Darüberhinaus wurde in verschiedenen Studien gezeigt, dass Vitamin E in der Leber die Genexpression von Proteinen, die im Metabolismus von Xenobiotika eine Rolle spielen, erhöhen kann, wodurch es auch in der Lage ist, seine eigene Konzentration zu modulieren. So führte Vitamin E z. B. zu einer erhöhten Expression des humanen CYP3A4

und seines murinen Homologs Cyp3a11. Für CYP3A Enzyme wurde bereits eine Rolle im Abbau von Vitamin E gezeigt [45, 48, 49].

Tab. 1: Modulation der Genexpression verschiedener Gene durch Vitamin E¹


Gen	Zelllinie / Gewebe	Vitamin E-Form ²	Effekt	Regulation	Referenz
Gruppe1) Aufnahme und Metabolismus von Vitamin E					
TTPA	Leber	αΤος, δΤος	Erhöhung	mRNA	[142]
CYP3A4, CYP3A5	HepG2	үТ3	Erhöhung	mRNA	[143]
CYP3A11	Leber	αΤος	Erhöhung	mRNA, Protein	[144-146]
CYP3A, CYP2B	Leber	αΤος	Erhöhung	Protein	[147]
CYP1, CYP2	Leber	αΤος	Erhöhung	Aktivität	[148]
ABCB1A	Leber	αΤος	Erhöhung	mRNA	[146]
ABCB1B	Leber	αΤος	Erhöhung	Protein	[147]
Gruppe 2) Lipidaufi	nahme und Arteriosklerose				
CD36	Monocyten / Makrophagen	αΤος	Inhibition	mRNA, Protein	[139, 149-
	SMC, HL-60, Leber				151]
SR-B1	Typ II Pneumocyten, Leber,	αΤος	Inhibition	Protein	[152, 153]
	HepG2				
SR-A	Monocyten / Makrophagen	αΤος	Inhibition	mRNA, Aktivität	[149, 154]
Gruppe 3) Modulati	ion der Expression zellulärer F	Proteine			
α-Tropomyosin	SMC	αΤος	Erhöhung	mRNA, Protein	[155, 156]
Collagen a 1(1)	Leber	αΤος	Inhibition	mRNA	[157]
MMP-1	Fibroblasten	αΤος	Inhibition	mRNA, Protein	[135]
Gruppe 4) Entzünde	ung, Zelladhäsion und Thromb	ocytenaggregation			
E-Selectin	HUVEC	αΤ3	Inhibition	Protein	[158]
ICAM-1	HUVEC	αΤος, αΤ3	Inhibition	Protein	[158, 159]
VCAM-1	HUVEC	αΤος, αΤ3	Inhibition	Protein	[158, 159]
GPIIb	HEL	αΤος	Inhibition	Promotoraktivität	[160]
IL-4	T-Zellen	αΤος	Inhibition	mRNA, Protein	[161]
Gruppe 5) Signaltra	ansduktion und Zellcyclusregu	lation			
Cyclin D1	DU-145	γТос	Inhibition	Protein	[162]
Cyclin E	DU-145	γТос	Inhibition	Protein	[162]
CD95L	T-Zellen	αΤος	Inhibition	mRNA	[163]

¹ Modifiziert nach [138].

Die Möglichkeiten von Vitamin E, die Genexpression und Signaltransduktion zu modulieren, sind vielfältig (Abb. 2) [Übersicht in 127]. So besteht die Möglichkeit einer spezifischen und direkten Interaktion mit Transkriptionsfaktoren oder Enzymen, die in Signaltransduktionsvorgänge involviert sind. Für die PLA2 konnte z. B. eine direkte Bindung an α-Tocopherol beobachtet werden. Alternativ kann Vitamin E jedoch auch indirekt die Aktivität von Enzymen und Transkriptionsfaktoren beeinflussen. Zum einen kann es sie allgemein vor der Schädigung durch ROS (*reactive oxygen species*) und RNS (*reactive nitrogen species*) schützen, andererseits kann es die Aktivität durch Änderung ihres Redoxstatus' modulieren. Die intrazelluläre Konzentration und Lokalisation von Vitamin E kann ebenfalls zelluläre Prozesse beeinflussen. Dabei kann die intrazelluläre Vitamin E-Konzentration durch Import,

 $^{^{2}}$ α Toc: α -Tocopherol; γ Toc: γ -Tocopherol; δ Toc: δ -Tocopherol; α T3: α -Tocotrienol; γ T3: γ -Tocotrienol.

Export und Metabolismus moduliert werden, wie es bereits für PLTP, LDLR, SR-B1, ABCA1 und TTPA gezeigt wurde. Bei der intrazellulären Verteilung von Vitamin E könnten zudem die verschiedenen Vitamin E-bindenden Proteine wie TTPA, TBP und TAPs eine Rolle spielen (Kap. 1.1.4).

Abb. 2: Modulation der Signaltransduktion und Genexpression durch Vitamin E. Modifiziert nach [127].

1.1.8 Vitamin E in Membranen

Aufgrund seines lipophilen Charakters ist Vitamin E hauptsächlich in biologischen Membranen zu finden. Im Vergleich zu anderen Membranlipiden ist die Konzentration von Vitamin E allerdings relativ gering [Übersicht in 164, 165]. Die Verteilung von Vitamin E im Körper differiert in Abhängigkeit vom Gewebe. So enthalten Fett, Leber und Skelettmuskel den größten Teil des Vitamin E im Körper, wobei etwa 90% im Fettgewebe zu finden sind. Von allen subzellulären Membranen befindet sich die höchste α -Tocopherol-Konzentration in den Membranen von Golgi und Lysosomen.

Die genaue Charakterisierung der Lokalisation von Vitamin E in Membranen ist essentiell für das Verständnis seiner Funktionen. Vitamin E ist nicht homogen in der Membran verteilt, sondern tendiert zur Bildung von Clustern [165, 166]. Diese Cluster sind aus Vitamin E und Phosphatidylcholin im Verhältnis 1:10 zusammengesetzt, wobei sich Tocopherol senkrecht zur Membranebene mit der Hydroxylgruppe in der Lipid-Wasser-Interphase positioniert. Die Ausbildung von Vitamin E-angereicherten Domänen in Membranen scheint nicht in Übereinstimmung mit seiner Funktion als Antioxidanz zu stehen. Effekte auf Struktur und Stabilität der Membran deuten auf andere Funktionen von Vitamin E hin. Eine Assoziation

mit spezifischen Membranmikrodomänen (*Lipid rafts*), die als Plattformen bei der Signaltransduktion eine wichtige Rolle spielen, könnte ein möglicher Ansatzpunkt für die beobachtete Modulation von Enzymaktivitäten durch Vitamin E sein. So konnte beispielsweise in THP-1 Zellen gezeigt werden, dass α -Tocopherylsuccinat den LPS-induzierten Transport der Phosphatase SHIP (*SH2 containing inositol phosphatase*) in *Lipid rafts* inhibiert, was eine erhöhte Aktivität von AKT/PKB und eine Reduktion der TNF α -Produktion zur Folge hatte [167].

1.2 Ziel der Arbeit

Im Zentrum dieser Arbeit standen die genregulatorischen Funktionen von Vitamin E mit dem Ziel der Identifizierung neuer Vitamin E-sensitiver Gene *in vivo*. Besonderes Interesse galt dabei dem α -Tocopherol, der vorherrschenden Vitamin E-Form im menschlichen und tierischen Organismus.

In Vorarbeiten wurde ein Fütterungsversuch mit Mäusen zur Untersuchung der hepatischen Genexpression in Abhängigkeit von α -Tocopherol durchgeführt [168]. Im ersten Teil der Arbeit sollten die mit Hilfe von *Oligonucleotide* Microarrays erstellten Genexpressionsprofile der Leber hinsichtlich differentiell exprimierter Gene analysiert werden. Eine funktionelle Analyse der potentiellen α -Tocopherol-regulierten Gene sollte zelluläre Prozesse identifizieren, die möglicherweise durch α -Tocopherol beeinflusst werden können. Die α -Tocopherol-abhängige Expression ausgewählter Gene sollte durch *real time* PCR-Analysen verifiziert und ein möglicher funktioneller Effekt von α -Tocopherol in einem entsprechenden *in vitro* Testsystem untersucht werden.

Im zweiten Teil der Arbeit sollte ein weiterer Tierversuch unter Verwendung der Ttpa Knockout-Maus als genetisches Modell für Vitamin E-Defizienz durchgeführt werden. Neben einem Einfluss von α -Tocopherol sollte zusätzlich der Einfluss des Ttpa Genotyps auf die Genexpression untersucht werden. Zur Analyse der globalen Genexpression sollten Microarray-Analysen in Leber, Großhirn und Kleinhirn der Mäuse durchgeführt werden. Neben der Identifizierung neuer α -Tocopherol-regulierter Gene sollten dabei auch Gene, die bereits als α -Tocopherol-reguliert beschrieben wurden, hinsichtlich ihrer Expression untersucht werden. Zur weiteren Charakterisierung der Ttpa Knockout-Maus sollten zudem die α -Tocopherol-Konzentrationen in verschiedenen Organen der Maus in Abhängigkeit von der Diät und dem Genotyp analysiert werden. Um mögliche geschlechtsspezifische Unterschiede untersuchen zu können, wurden sowohl männliche als auch weibliche Mäuse im Versuch verwendet.

2 Material und Methoden

2.1 Synthetische Oligonukleotide (primer)

Das Design der Oligonukleotide (Tab. 2) erfolgte mit Hilfe der Programme *Primer* [169] bzw. *PerlPrimer* [170], die Synthese wurde bei Sigma-Aldrich (München) in Auftrag gegeben.

Tab. 2: Synthetische Oligonukleotide für die real time PCR

Gen	GenBank	Nukleotidsequenzen (5´- 3´)		Produkt	T _h ¹
		Primer forward	Primer reverse	(bp)	(°C)
Primer für d	ie Maus				
Amy2	NM_009669	TGTGAACACAGATGGCGTCAAA	AAGTGGCTGACAAAGCCCAGTC	169	60
Atf7	NM_146065	CACTGAAGGAGGAAGTTACCA	GAAGGAAGAGTTGGATGAAGTGGA	123	60
Calm1	NM_009790	AACAAGGCTGTCACCAAATC	GCAATGTTGATGGTGTGCTC	149	58
Calm2	NM_007589	ATCTAAGCCCGTCTGCACAT	CCACAGTCCACGCAGAGTTA	144	59
Clps	NM_025469	TTATCAACCTGGAGGACGGTGAG	CCGGTAGTAGATCCCATAGAGGGT	158	60
Cpa1	NM_025350	TCTCCATCCACAGCTACTCCCAG	CTCCCACTGGCTTGATAGATCGT	181	60
Cxcl1	NM_008176	CCCAAACCGAAGTCATAGCCACAC	AAGCCAGCGTTCACCAGACAG	165	60
Cyp3a11	NM_007818	TTTGGTAAAGTACTTGAGGCAGA	CTGGGTTGTTGAGGGAATC	134	64
Dbp	NM_016974	CAAGCATTCCAGGCCATGAGAC	CTTCTCATCCTTCTGTTCCTCAGG	128	60
Edg8	NM_053190	CTTCATTGTGCTGGAGAACTTGG	GTAGGATGTTGGTGGCGTAGG	139	60
Ela2a	NM_007919	TTGCCTCAGCAACTATCAGACCT	GGCCAGTTTGATTAAGGCAATGTC	165	60
Gm2a	NM_010299	TCACCGTGGAGAAGGAAGTGG	TGAGTAGGTACCTTCCTTGAAGGG	187	60
Gsta1/a2	NM_008182	GTTGAAGGGCCATGGACAAGAC	CTCTTGAAGGCCTTCAGCAGAG	141	60
Hprt1	NM_013556	GCAGTCCCAGCGTCGTG	GGCCTCCCATCTCCTTCAT	168	60
Ldlr	NM_010700	TGTGCATGGCTTCATGTACT	GAGTTTGGAATCAACCCAATAGAG	169	60
Lgals1	NM_008495	ACCTGTGCCTACACTTCAATCC	GATGCACACCTCTGTGATGCTC	149	60
Mgst3	NM_025569	CTACTACACAGGAGACCCTAGCA	AGGTGAGTGAGAGTCGGAAGG	185	60
Npas4	NM_153553	GTTGCTATACCTGTCGGAGAGTG	AAAGGCGATCAGCATCCAGAG	160	60
Nsf	NM_008740	ACTCTCTTGGCTCGACAGATTG	CCACTGTTAGCACCAAGCCT	164	62
Rbp1	NM_011254	AACTTCACCTGGAAATGAGAGCTG	GCCCATCCCACTTGTTCCTG	121	60
Snap25	NM_011428	ATGCACAACCAAATTGCTGA	CAAACCAACAGAGGAGACAGG	145	59
Snca	NM_009221	GCAGTGGTGACTGGTGTGAC	CAGGCATGTCTTCCAGGATT	148	59
Sqle	NM_009270	CTGGGCCTTGGAGATACAGTAG	GCTTTCCGGAGACTCATGATGA	176	60
Stx1a	NM_016801	CCTCTGGGATCATCATGGACTC	TACTTGACGGCCTTCTTGGTGT	238	62
Stx1c	BC057892	CCTCTGGGATCATCATGGACTC	CTCAGGACCAGGAGGGAGTG	191	62
Stxbp1	NM_009295	ACTCCGCTGACTCTTTCCAA	TGGATCGTCGGCTTTATAGG	209	62
Th	NM_009377	TCACTTCTTGAAGGAACGGACTG	CGGGTGAGTGCATAGGTGAG	145	60
Ttpa	NM_015767	TGTAGCCAAGAAGATTGCTGCTG	TGTAGTTGTTCCCGTGCAGATGA	167	62
Vamp1	NM_009496	TGCTGAAGGGACAGAAGGAG	CCGGTCATCCAGCTCTGAC	181	62
Primer für d	ie Ratte				
Cplx2	NM_053878	GCAGATTCGAGATAAGTATGGGCT	GATGCTCTCCTCTTCTTCCTCCT	157	59
Hprt1	NM_012583	GTCCCAGCGTCGTGATTAGT	GGCCTCCCATCTCCTTCAT	165	59
Nsf	NM_021748	ACTCTCTTGGCTCGACAGATTG	GAGCCGTCTCTGCTCCTCTT	150	59
Snap23	NM_022689	ATGGTCAGCCTCAGCAGACT	CCCATATCCAGAGCCATGTT	148	59
Stx3	NM_031124	GAAGGCACGGGATGAAACTA	AAATGCCCAGCAACACAACT	101	59

¹ T_h (Hybridisierungstemperatur)

2.2 Antikörper

Tab. 3: Verwendete Antikörper

Antikörper	Firma	Verdünnung
TTPA Kaninchen-anti-human Antiserum ¹		1:5:000
Ziege-anti-Kaninchen-IgG-POD	Chemicon, Hofheim	1:50.000

¹ Zur Verfügung gestellt von Dr. Schülke (Charité, Berlin)

2.3 Zellkultur

2.3.1 Kultivierung von Zellen

RBL-2H3 Zellen wurden im Brutschrank bei 37°C in 95% gesättigter Wasserdampfatmosphäre und 5% CO₂ kultiviert. Alle Zellkulturarbeiten wurden unter sterilen Bedingungen durchgeführt.

Tab. 4: Verwendete Zelllinie

Zelllinie	Zelltyp	DSMZ-Nr.	Referenz
RBL-2H3 ¹	rat basophilic leukemia	ACC 312	[171, 172]

¹ zur Verfügung gestellt von Dr. A. Lorentz, Universität Hohenheim, Abteilung Ernährungsmedizin und Immunologie

RBL-2H3 Zellen wurden in DMEM *high glucose* (Gibco, Karlsruhe) mit 10% FCS (Sigma-Aldrich, München) kultiviert. Zusätzlich wurden dem Kulturmedium jeweils 2 mM L-Alanyl-L-Glutamin, 100 U/ml Penicillin sowie 100 μg/ml Streptomycin (alle Gibco) hinzugefügt.

2.3.2 Subkultivierung von Zellen

Die adhärenten RBL-2H3 Zellen wurden alle 3-4 Tage passagiert. Dazu wurde das Medium verworfen, der Zellrasen mit PBS (140 mM NaCl; 10 mM Na₂HPO₄; 3 mM KH₂PO₄; pH 7,4) gewaschen und anschließend für 5 min mit Trypsin/EDTA-Lösung (0,05% Trypsin; 0,02% EDTA in PBS; pH 7,4) bei 37°C im Brutschrank inkubiert. Die proteolytische Aktivität des Trypsins wurde durch Zugabe von serumhaltigem Medium gestoppt. Nach Zentrifugation (5 min, 250 x g, RT), Resuspension des Zellpellets in frischem Medium und der Bestimmung der Zellzahl (Kap. 2.3.3) erfolgte die Aussaat der Zellen in der gewünschten Dichte.

2.3.3 Bestimmung der Zellzahl

Die Bestimmung der Zellzahl erfolgte mittels Neubauer-Zählkammer. Dazu wurde ein Aliquot der Zellsuspension 1:2 mit Trypanblau-Lösung (0,4% (w/v) in PBS (Kap. 2.3.2)) gemischt, so dass eine Unterscheidung toter Zellen durch die Aufnahme des Farbstoffes Trypanblau von lebenden Zellen möglich war.

2.3.4 MTT-Test

Zur Untersuchung cytotoxischer Eigenschaften von Substanzen wurde der MTT-Test [173] verwendet. Dieser beruht auf der von mitochondrialen Dehydrogenasen katalysierten Umsetzung des wasserlöslichen Tetrazoliumsalzes MTT (3-(4,5-Dimethyl-thiazol-2-yl)-2,5-Diphenyl-Tetrazoliumbromid) zu einer wasserunlöslichen Formazanverbindung.

Für den Test wurden die Zellen in 96-Loch-Platten ausgesät und mit den zu untersuchenden Substanzen inkubiert. Anschließend wurden jeweils 20 µl MTT-Lösung (5 mg/ml in PBS (Kap. 2.3.2)) hinzugegeben und die Platte 40 min bei 37°C inkubiert. Dann wurde das Medium abgeschlagen, die Zellen für 10 min in je 100 µl Lysepuffer (95% Isopropanol; 5% Ameisensäure) unter Schütteln lysiert und die Extinktion bei 550 nm (Referenzwellenlänge 690 nm) im *Elisa-Reader MR5000* (Dynatech, Denkendorf) gemessen.

2.3.5 Mycoplasmen-Test

Die Zelllinien wurden in regelmäßigen Abständen hinsichtlich der Kontamination mit Mycoplasmen mittels PCR [174] getestet. Dazu wurden von einer konfluenten Kultur je 100 µl Medium entnommen und 5 min bei 95°C inkubiert. Jeweils 2 µl wurden in der nachfolgenden PCR eingesetzt (Tab. 5). Nach einer initialen Denaturierung für 5 min bei 95°C folgten 35 Cyclen mit 30 s 95°C, 30 s 58°C und 60 s 72°C sowie eine terminale Elongation von 10 min bei 72°C. Die PCR-Produkte wurden im Anschluss in einem 1%igen Agarosegel aufgetrennt (Kap. 2.5.1.1). Bei einer Kontamination der Zellen mit Mycoplasmen wäre ein PCR-Produkt von etwa 500 bp zu erwarten. Die Zellen wurden stets negativ auf Mycoplasmen getestet.

Tab. 5: PCR-Ansatz für Mycoplasmen-Test

Reagenzien	V (μl)	Finale Konzentration	Firma / Sequenz der Oligonukleotide
H₂O ad 20 μl	13,9		
10 x Puffer	2	1 x	TrueStart™ (Fermentas, St. Leon-Rot)
MgCl ₂ (25 mM)	1,2	1,5 mM	<i>TrueStart</i> ™ (Fermentas)
dNTPs (je 2,5 mM)	0,4	je 50 μM	Bioline, Luckenwalde
Primer Myco A (25 µM)	0,2	0,25 μΜ	5' - GGCGAATGGGTGAGTAACACG - 3'
Primer Myco B (25 µM)	0,2	0,25 μΜ	5' - CGGATAACGCTTGCGACCTATG - 3'
Taq-Polymerase (5 U/μl)	0,1	0,5 U	TrueStart™ (Fermentas)
Zellkulturüberstand	2		

2.3.6 Inkubation der Zellen mit Vitamin E

Vitamin E wurde entweder in FCS bei 4°C über Nacht vorinkubiert [46] und zum Medium gegeben oder aber direkt aus einer ethanolischen Stammlösung hinzugefügt. Beide Methoden resultierten in vergleichbaren Aufnahmeeffizienzen [175; eigene Daten]. Die

Kontrollen wurden mit der äquivalenten Menge Ethanol inkubiert, wobei die Ethanol-konzentration im Zellkulturmedium nicht mehr als 0,3% (v/v) betrug.

2.4 Tierversuche und Genexpressionsanalysen

Alle Tierversuche wurden entsprechend den Festlegungen des Ministeriums für ländliche Entwicklung, Umwelt und Verbraucherschutz des Landes Brandenburg und den gesetzlichen Bestimmungen der *Federation of European Laboratory Animal Science Association* (FELASA) durchgeführt. Die Tiere wurden unter Standardbedingungen (Temperatur 22°C, relative Luftfeuchtigkeit 50-60%, 12 h Tag-Nacht-Rhythmus) gehalten. Futter und Wasser standen den Tieren *ad libitum* zur Verfügung.

2.4.1 Tierversuch Nr.1

2.4.1.1 Diäten

Die Diäten basierten auf einer Vitamin E-armen Grunddiät (Ssniff Spezialdiäten GmbH, Soest), welche aus 240 g/kg Casein, 500 g/kg Stärke, 110 g/kg Glucose, 30 g/kg Kokusnussöl, 50 g/kg Cellulose, 10 g/kg Vitamin-Mix (Vitamin E-arm) und 60 g/kg Mineralien- und Spurenelemente-Mix bestand. Die metabolisierbare Energie betrug 15,4 MJ/kg, 60% aus Kohlenhydraten, 31% aus Protein und 7% aus Fett. Dieser basalen Diät wurden 2, 20 oder 200 mg/kg RRR- α -Tocopherylacetat (Sigma-Aldrich, München) beigemischt [144]. Anschließend wurde der α -Tocopherol-Gehalt in den pelletierten Futterproben mittels HPLC (Kap. 2.10.3) auf 4,9 ± 2,6 (7,3 IE; defizient); 14,7 ± 2,1 (22 IE; adäquat); 132,2 ± 27,6 (197 IE; supplementiert) mg/kg Futter bestimmt [176]. Demzufolge war bereits in der Grunddiät eine gewisse Menge α -Tocopherol enthalten und ein Teil des zugesetzten α -Tocopherylacetats wurde womöglich durch die nachfolgende Pelletierung des Futters zerstört.

2.4.1.2 Tiere und Versuchsablauf

Für den Versuch wurden männliche C57BL/6J Mäuse verwendet. Diese stammten aus der Zucht der *Ttpa* Knockout-Maus [91]. Dabei wurden ausschließlich die aus der Verpaarung von heterozygoten (*Ttpa*+/-) Mäusen hervorgegangenen Wildtyp-Mäuse (*Ttpa*+/-) im Versuch eingesetzt. Im Alter von vier Wochen wurden die Mäuse einer der drei Fütterungsgruppen zugewiesen: Vitamin E-defizient (n = 3), -adäquat (n = 6) oder -supplementiert (n = 6). Nach 13 Wochen wurden die Tiere nach Betäubung mit Isofluran (Abbot, Wiesbaden) und retroorbitaler Blutentnahme durch Dekapitation getötet. Die Organe wurden sofort nach der Entnahme in flüssigem Stickstoff schockgefroren und bis zur weiteren Verwendung bei -80°C

gelagert. Das Blut wurde 10 min bei 3.000 x g und 4°C zentrifugiert und das gewonnene Plasma bei -80°C eingefroren.

2.4.1.3 Oligonucleotide Microarray-Analyse

Zur Untersuchung der Genexpression in der murinen Leber wurden Microarray-Analysen durchgeführt. Die RNA-Isolation, die Vorbereitung der Proben, die Hybridisierung mit den Microarrays sowie das Scannen der Arrays erfolgten im Labor von Prof. Joe Lunec (Universität Leicester, UK) und sind detailliert in der Dissertation von Nico Landes beschrieben [168]. Es wurde der *GeneChip Mouse Expression Array 430A* (Affymetrix, Santa Clara, USA) verwendet. Dieser ermöglichte die Analyse der Expression von über 22.000 *probe sets*, die mehr als 14.000 bekannte murine Gene präsentieren. Die mittels *Microarray Suite* (MAS 5.0; Affymetrix) generierten -CEL-Dateien wurden mit Hilfe der Affymetrix *GeneChip Operating Software* (*GCOS*) analysiert (Kap. 2.9.1).

2.4.2 Tierversuch Nr. 2

2.4.2.1 Diäten

Die Vitamin E-arme Basisdiät (C1018; Altromin, Lage) bestand aus 170 g/kg Protein, 470 g/kg Polysaccharid, 110 g/kg Disaccharid, 50 g/kg Fett und 40 g/kg Rohfaser. Die metabolisierbare Energie betrug 14,6 MJ/kg. Dieser Diät wurden 100 mg/kg RRR- α -Tocopherylacetat (Sigma-Aldrich, München) beigemischt. Der α -Tocopherol-Gehalt wurde mittels HPLC (Kap. 2.10.3) kontrolliert und auf 0,606 \pm 0,264 mg/kg (0,9 IE; Vitamin E-defizient) bzw. 103,82 \pm 43,88 mg/kg (155,0 IE; Vitamin E-supplementiert) bestimmt.

2.4.2.2 Tiere und Versuchsablauf

Als genetisches Modell zur Untersuchung der Vitamin E-Defizienz wurde die *Ttpa* Knockout-Maus verwendet [91]. Für die Zucht wurden heterozygote Mäuse miteinander verpaart. Im Alter von drei Wochen wurden die Tiere abgesetzt und durch Ohrlochung markiert. Zur Genotypisierung (Kap. 2.4.2.3) wurde eine Schwanzbiopsie entnommen. Sowohl männliche als auch weibliche Mäuse aller drei Genotypen (*Ttpa**/-, *Ttpa**/-, *Ttpa**/-) wurden im Versuch eingesetzt. Mit vier Wochen wurden die Tiere für einen Zeitraum von 16 Wochen auf die Vitamin E-defiziente oder -supplementierte Diät gesetzt. Gewicht und Futteraufnahme wurden wöchentlich erfasst. Um den Vitamin E-Status der Tiere zu verfolgen, erfolgte nach neun und zwölf Wochen eine retroorbitale Blutentnahme (50-100 μl) nach vorheriger Betäubung mit Isofluran (Abbot, Wiesbaden). Am Versuchsende wurden die Tiere nach Isoflurannarkose und retroorbitaler Blutentnahme durch Dekapitation getötet. Die Organe wurden sofort nach der Entnahme in flüssigem Stickstoff schockgefroren und bis zur

weiteren Verwendung bei -80°C gelagert. Das Blut wurde zentrifugiert (10 min, 3.000 x g, 4°C) und das gewonnene Plasma bei -80°C eingefroren.

2.4.2.3 Genotypisierung der Ttpa Knockout-Mäuse

Zur Genotypisierung der Mäuse erfolgte zunächst ein proteolytischer Verdau der Schwanzbiopsie [177]. Dazu wurde zu jeder Probe ein Mix aus 39,5 μl sterilem Wasser, 5 μl 10 x Gitschier-Puffer (670 mM Tris-HCl pH 8,8; 166 mM (NH₄)₂SO₄; 65 mM MgCl₂; 0,5% (v/v) Triton X-100), 5 μl Proteinase K (10 mg/ml) und 0,5 μl β-Mercaptoethanol gegeben. Nach 2,5 h Inkubation bei 50°C und 1.000 U/min erfolgte eine Hitzeinaktivierung der Proteinase K für 10 min bei 95°C. In der nachfolgenden Genotypisierungs-PCR [91] wurden die Ansätze (Tab. 6) 5 min bei 95°C denaturiert, gefolgt von 35 Cyclen mit 30 s 95°C, 30 s 60°C, 60 s 72°C und einer abschließenden Elongation von 10 min bei 72°C. Die PCR-Produkte wurden in einem 2%igen Agarosegel (Kap. 2.5.1.1) aufgetrennt. Die AB-PCR amplifizierte ein 138-bp Fragment vom Wildtyp-Allel, die AC-PCR ein 266-bp Fragment vom Knockout-Allel.

Tab. 6: PCR-Ansatz für Genotypisierung

Reagenzien	V (µI)	Finale Konzentration	Firma / Sequenz der Oligonukleotide
H₂O ad 25 μl	20,375		
10 x Puffer B (+ MgCl ₂)	2,5	1 x (1,5 mM)	Roboklon, Berlin
dNTPs (je 2,5 mM)	0,5	je 50 μM	Bioline, Luckenwalde
Primer A (25 μM)	0,25	0,25 μΜ	5' - TGAGTGTGCGTGGGGCGGCGTCC - 3'
Primer B (25 μM)	0,25	0,25 μΜ	5' - CTGTTTCCCAACCAATGGCCCC - 3'
Primer C (25 μM)	0,25	0,25 μΜ	5' - CATTCAGGCTGCGCAACTGTTGGG - 3'
Taq-Polymerase (5 U/μl)	0,125	0,625 U	Roboklon
Template	1		

2.4.2.4 *Oligonucleotide* Microarray-Analyse

Zur Untersuchung der Genexpression in Leber, Großhirn und Kleinhirn der männlichen *Ttpa*^{+/+} und *Ttpa*^{-/-} Mäuse wurden Microarray-Analysen durchgeführt.

RNA-Isolation

Die RNA aus Leber, Großhirn und Kleinhirn wurde unter Verwendung des *TRIZOL™Reagent* (Invitrogen, Karlsruhe) isoliert. Zuerst wurden 10-20 mg Gewebe in 1 ml Trizol 2 min bei 30 Hz im *Tissue Lyzer* (Qiagen, Hilden) homogenisiert. Nach 5 min Inkubation bei RT wurden die Proben zentrifugiert (10 min, 12.000 x g, 4°C), der Überstand mit 200 μl Chloroform versetzt, 15 s intensiv geschüttelt, 3 min bei RT inkubiert und anschließend zentrifugiert (15 min, 12.000 x g, 4°C). Die obere farblose, wässrige Phase wurde mit 500 μl Isopropanol gemixt, 10 min bei RT inkubiert und zentrifugiert (10 min, 12.000 x g, 4°C). Das

RNA-Pellet wurde mit 1 ml 75% Ethanol gewaschen, zentrifugiert (5 min, 7.500 x g, 4°C), luftgetrocknet und anschließend in 87,5 μ l DEPC-Wasser 10 min bei 55-60°C unter Schütteln gelöst. Im Anschluss wurde die RNA einem DNase-Verdau unter Verwendung des *RNase-Free DNase Set* (Qiagen) unterzogen. Dazu wurde die RNA mit 10 μ l RDD-Puffer und 2,5 μ l DNase I-Lösung 10 min bei RT inkubiert. Zum Schluss wurde die RNA mit dem *RNeasy Mini Kit* (Qiagen) aufgereinigt. Zu den 100 μ l Probe wurden nacheinander 350 μ l RLT-Puffer (ohne β -Mercaptoethanol) und 250 μ l Ethanol (96%) zugefügt, gut gemixt, auf die Säule gegeben und zentrifugiert (15 s, \geq 10.000 rpm). Dann wurde die Säule zweimal mit je 500 μ l RPE-Puffer gewaschen, zentrifugiert (2 min, \geq 10.000 rpm) und die RNA in 35 μ l RNase-freiem Wasser eluiert. Die RNA-Konzentration wurde mit Hilfe des *NanoDrop ND-1000* (Peqlab, Erlangen) bestimmt. Zur Überprüfung der RNA-Qualität wurden der *2100 Bioanalyzer* und der *RNA 6000 Nano Chip Kit* (Agilent Technologies, Waldbronn) nach Herstellerangaben verwendet. Für die Array-Analysen wurde jeweils 1 μ g RNA von sechs Mäusen pro Gruppe gepoolt.

Microarray-Analyse

Die Markierung der Proben, die Hybridisierung, das Waschen und das Scannen der Arrays wurden entsprechend des Affymetrix *GeneChip® Expression Analysis Technical Manual* von der Firma ServiceXS BV (Leiden, Niederlande) im Rahmen des NuGO-Microarray-Projektes durchgeführt. Die Konzentration der gepoolten RNA-Proben wurde mittels *NanoDrop ND-1000* (Peqlab, Erlangen) bestimmt und die RNA-Qualität mit dem *RNA 6000 Nano Chip Kit* am *2100 Bioanalyzer* (Agilent Technologies, Waldbronn) überprüft. Jeweils 2 µg Gesamt-RNA wurden mittels *Eukaryotic One-Cylce Target Labeling* zur Herstellung Biotin-markierter *antisense* cRNA verwendet. Die Qualität der cRNA wurde mittels Agilent *2100 Bioanalyzer* kontrolliert. Die biotinylierte cRNA wurde mit *NuGO_Mm1a520177* Arrays (Affymetrix, Santa Clara, USA) hybridisiert. Nach einem automatisierten Prozess von Waschen und Färben wurden die Arrays gescannt und die absoluten Expressionswerte mittels Affymetrix *Command Console v1 Software* berechnet. Die Auswertung der Arrays erfolgte mit Hilfe der Affymetrix *GeneChip Operating Software* (Kap. 2.9.1).

Die *NuGO_Mm1a520177* Arrays wurden von Affymetrix in Zusammenarbeit mit NuGO (http://www.nugo.org/everyone) entwickelt. Sie ermöglichten die Analyse der Expression von 23.865 *probe sets*.

2.5 Molekularbiologische Methoden

2.5.1 Elektrophorese von Nukleinsäuren

2.5.1.1 Elektrophoretische Trennung von DNA

PCR-Produkte wurden mittels Flachbettgelelektrophorese (Biometra, Göttingen) überprüft. Die Auftrennung der DNA-Fragmente erfolgte je nach Größe in 1-2%igen (w/v) Agarosegelen in TBE-Puffer (89 mM Tris; 89 mM Borsäure; 2 mM EDTA pH 8) bei 80-90 V. Die DNA-Proben wurden vor dem Auftragen mit 10 x DNA-Ladepuffer (20% (w/v) Ficoll®400; 0,1 M EDTA pH 8; 1% SDS; 0,025% Bromphenolblau) versetzt. Nach der Elektrophorese wurde das Gel 5 min in Ethidiumbromid-Lösung (5 μ g/ml in TBE-Puffer) gefärbt und anschließend 2 x 5 min in Wasser entfärbt. Die Visualisierung und Dokumentation der DNA erfolgte mit Hilfe des *GelDoc*TM 2000 Systems und der Software *QuantityOne 4.2.3* (BioRad, München).

2.5.1.2 Elektrophoretische Trennung von RNA

Die Intaktheit der RNA wurde mittels denaturierender Agarosegelelektrophorese kontrolliert. Für das Gel wurden 1,2 g RNase-freie Agarose (Life Technologies, Paisley, UK) in 80 ml RNase-freiem Wasser aufgekocht. Nach dem Abkühlen auf 70°C wurden 10 ml 10 x MOPS-Puffer (400 mM MOPS; 100 mM Natriumacetat; 10 mM EDTA-Na₂; pH 7,2) und 5,4 ml Formaldehyd (37%) dazu pipettiert. 3-5 μg RNA wurden mit Probenpuffer (7,2 ml Formamid (deionisiert); 1,6 ml 10 x MOPS-Puffer; 2,6 ml Formaldehyd (37%); 1,8 ml H₂O (RNase-frei); 1 ml Glycerin (RNase-frei); 0,8 ml gesättigte Bromphenolblau-Lösung) versetzt, 5 min bei 95°C denaturiert und anschließend sofort auf Eis gestellt. Die Proben wurden etwa 60 min bei 70 V mittels Flachbettgelelektrophorese (Biometra, Göttingen) in 1 x MOPS-Puffer aufgetrennt.

2.5.2 Polymerasekettenreaktion (PCR)

2.5.2.1 Standard-PCR

Die Standard-PCR wurde unter Verwendung des *T3 Thermocycler* (Biometra, Göttingen) zur Optimierung von *primern*, zur Herstellung von Standards für die *real time* PCR sowie zur Überprüfung von RNA-Proben auf genomische Kontaminationen eingesetzt. Das PCR-Programm umfasste eine initiale Denaturierung von 5 min bei 95°C, 35 Cyclen mit 30 s 95°C, 30 s 60°C, 30 s 72°C sowie eine terminale Elongation von 10 min bei 72°C. Der PCR-Ansatz ist in Tab. 7 aufgeführt.

Tab. 7: PCR-Ansätze für Standard- und real time PCR

Reagenzien	Standard-PCR	real time PCR	Finale Konzentration	Firma
	(μI)	(µI)		
H₂O ad 20 µl	16	11,8		
10 x Puffer B (+ MgCl ₂)	2	2	1 x (1,5 mM)	Roboklon, Berlin
dNTPs (je 2,5 mM)	0,4	0,4	je 50 μM	Bioline, Luckenwalde
Primer forward (25 μM)	0,2	0,2	0,25 μΜ	
Primer reverse (25 μM)	0,2	0,2	0,25 μΜ	
SYBR®Green I	-	0,2	0,1 x	Invitrogen, Karlsruhe
Perpetual Taq (2,5 U/μl)	0,2	0,2	0,625 U	Roboklon
Template	1	5	6-66 ng RNA-Äquivalente	

Für die PCR zur Überprüfung von RNA-Proben aus Mausgeweben und RBL-2H3 Zellen auf mögliche Kontaminationen mit genomischer DNA wurden die in Tab. 8 aufgeführten Oligonukleotide verwendet. Im Falle einer Kontamination wurden die RNA-Proben einem nochmaligen RNase-Verdau unterzogen und erneut mittels PCR überprüft.

Tab. 8: Synthetische Oligonukleotide für PCR auf genomische Kontamination

Spezies Nukleotidsequenzen (5´- 3´)			Produkt
	Primer forward	Primer reverse	(bp)
Maus, Ratte	AACAAGGCTGTCACCAAATC	GCAATGTTGATGGTGTGCTC	149 bp

2.5.2.2 Real time PCR

Die *real time* PCR zur Quantifizierung der Genexpression erfolgte unter Zusatz des Fluoreszenzfarbstoffes SYBR®Green I (Tab. 7) und Verwendung des *Mx3005P™ QPCR Systems* (Stratagene, La Jolla, USA). Das PCR-Programm erfolgte analog zur Standard-PCR mit der Ausnahme, dass es 40 Cyclen gab und statt der terminalen Elongation eine Schmelzkurvenanalyse zur Detektion von Primerdimeren erfolgte. Die Quantifizierung der Genexpression erfolgte relativ zu einem Referenzgen mit Hilfe externer Standardkurven. Diese wurden aus gereinigtem PCR-Produkt hergestellt. Dazu wurde das entsprechende PCR-Produkt mittels Agarosegelelektrophorese aufgetrennt (Kap. 2.5.1.1), unter UV-Licht ausgeschnitten, die DNA mit Hilfe des *Invisorb Spin® DNA Extraction Kit* (Invitek, Berlin) isoliert und nach der Bestimmung der Konzentration mittels *NanoDrop ND-1000* (Peqlab, Erlangen) seriell verdünnt.

2.5.3 RNA-Isolation

Zur Isolierung der Gesamt-RNA aus Mausgeweben und Zellen wurde das *TRIZOL™Reagent* (Invitrogen, Karlsruhe) nach Herstellerangaben eingesetzt (Kap. 2.4.2.4). Gewebeproben wurden initial mit Hilfe des *Tissue Lyzer* (Qiagen, Hilden) 2 min bei 30 Hz in 1 ml Trizol homogenisiert. Die in 6-Loch-Platten ausgesäten Zellen wurden nach Waschen mit PBS (Kap. 2.3.2) in 800 µl Trizol lysiert und in entsprechende Reaktionsgefäße überführt.

Die final in 50 μl DEPC-Wasser gelöste RNA wurde zur Eliminierung möglicher Kontaminationen mit genomischer DNA einem DNase-Verdau unterzogen. Hierzu wurde die *RQ1 RNase-Free DNase* (Promega, Mannheim) nach Anweisung des Herstellers verwendet. Die RNA wurde unter Zusatz von 10 μl RQ1-Puffer und 5 μl RQ1-DNase in einem Gesamt-volumen von 100 μl 30 min bei 37°C inkubiert. Anschließend erfolgte eine Aufreinigung der RNA mittels Phenol-Chloroform-Extraktion mit nachfolgender Ethanolfällung. Nach Bestimmung der RNA-Konzentration mit Hilfe des *NanoDrop ND-1000* (Peqlab, Erlangen) wurde die RNA-Qualität elektrophoretisch überprüft (Kap. 2.5.1.2). Die Abwesenheit von genomischer DNA wurde mittels PCR verifiziert (Kap. 2.5.2.1).

2.5.4 Reverse Transkription

Jeweils 3 µg Gesamt-RNA wurden in einem 45 µl-Ansatz unter Verwendung von 150 pmol Oligo-(dT)₁₅-Nukleotiden, 30 U RNasin und 180 U *Moloney Murine Leukemia Virus* (M-MLV) Reverse Transkriptase (alle Promega, Mannheim) für 2 h bei 37°C in einem *T3 Thermocycler* (Biometra, Göttingen) in cDNA umgeschrieben. Der reversen Transkription ging eine 4-minütige Inkubation bei 72°C zur Auflösung von mRNA-Sekundärstrukturen voraus. Zur Enzyminaktivierung wurde der Reaktionsansatz terminal für 10 min auf 94°C erhitzt.

2.5.5 Klonierung von PCR-Produkten zur Sequenzierung

Für die PCR-Produkten Sequenzierung von wurden diese mittels zunächst Agarosegelelektrophorese (Kap. 2.5.1.1) aufgetrennt, aus dem Gel ausgeschnitten und mit dem Invisorb Spin® DNA Extraction Kit (Invitek, Berlin) isoliert. Die PCR-Fragmente wurden dann mittels TA-Klonierung unter Verwendung des TOPO TA Cloning® Kit (Invitrogen, Karlsruhe) in den pCR®II-Topo®-Vektor ligiert. Für die folgende Transformation in chemokompetente E. coli (TOP10; Invitrogen, Karlsruhe) wurden 6 µl Ligationsansatz zu 50 µl Bakteriensuspension gegeben und für 20 min auf Eis inkubiert. Nach einem Hitzeschock für 90 s bei 42°C wurden die Zellen auf Eis gestellt, in 250 µl SOC-Medium (2% Trypton; 0,5% Hefeextrakt; 10 mM NaCl; 2,5 mM KCl; 10 mM MgCl₂; 10 mM MgSO₄; 20 mM Glucose) aufgenommen und 60 min bei 37°C geschüttelt. Anschließend wurden die Zellen auf S1-Agarplatten (S1-Nähragar; Merck, Darmstadt) mit 100 μg/ml Ampicillin (Roth, Karlsruhe) ausplattiert und über Nacht bei 37°C inkubiert. Zur Blau-Weiß-Selektion wurden Platten vorher mit 70 μl X-Gal (40 mg/ml 5-Bromo-4-chloro-3-indolyl-β-Dgalactopyranosid in DMF) bestrichen. Positive Klone wurden gepickt und über Nacht in 5 ml S1-Medium (S1-Nährbouillon; Merck, Darmstadt) mit 1 mg/ml Ampicillin inkubiert. Parallel dazu wurden die Klone mittels Kolonie-PCR zur Detektion des inserierten Fragments überprüft. Aus den Übernachtkulturen wurden die Plasmide mittels QIAprep Spin Miniprep

Kit (Qiagen, Hilden) nach Vorschrift isoliert und anschließend die Konzentration am SmartSpec™3000-Spektrophotometer (BioRad, München) bestimmt. Die Sequenzierung der klonierten PCR-Produkte wurde bei der Firma SEQLAB (Göttingen) in Auftrag gegeben.

2.6 Proteinbiochemische Methoden

2.6.1 Herstellung von Proteinextrakten

Für Proteinextrakte aus Mausorganen wurden 20-30 mg Gewebe in 200 μ l Homogenisationspuffer (100 mM NaP pH 7,5; 10% Glycerol; 1 mM EDTA; 1 x *Complete* TM Protease Inhibitor Cocktail (Roche, Mannheim)) mit Hilfe des Tissue Lyzer (Qiagen, Hilden) aufgeschlossen und anschließend für 10 min bei 15.000 x g und 4°C zentrifugiert.

2.6.2 Proteinbestimmung

Die Bestimmung der Proteinkonzentration erfolgte nach Bradford [178] in 96-Loch-Platten in Triplikaten. Dazu wurden 10 µl jeder Probe mit 200 µl 1:5 verdünnter Bradford-Färbelösung (BioRad, München) versetzt, 15 min bei RT inkubiert und anschließend die Extinktion bei 630 nm im *Elisa-Reader MR5000* (Dynatech, Denkendorf) gemessen. Zur Quantifizierung wurde eine Eichgerade mit BSA (BioRad) erstellt.

2.6.3 SDS-Polyacrylamid-Gelelektrophorese

Proteine wurden unter denaturierenden Bedingungen durch diskontinuierliche SDS-Polyacrylamid-Gelelektrophorese (SDS-PAGE) [179] aufgetrennt. Es wurden 12,5%ige Polyacrylamidgele (Tab. 9) in einer Minigelapparatur zur vertikalen PAGE (BioRad, München) bei einer Stromstärke von 15 mA pro Gel in Elektrophoresepuffer (25 mM Tris; 200 mM Glycin; 0,1% SDS) gefahren. Die Proben wurden 5 min bei 95°C in reduzierendem Laemmlipuffer (62,5 mM Tris pH 6,8; 10% Glycerin; 2% SDS; 2,5% β-Mercaptoethanol; 1,25% Bromphenolblau) denaturiert.

Tab. 9: Zusammensetzung von Sammel- und Trenngel

Reagenzien	Firma	Sammelgel	Trenngel
40% Acrylamid/Bisacrylamid (29:1)	Roth, Karlsruhe	5%	12,5%
Tris, pH 6,8		0,125 M	-
Tris, pH 8,8		-	0,375 M
SDS		0,1%	0,1%
APS	Merck, Darmstadt	0,1%	0,1%
TEMED	Serva, Heidelberg	0,1%	0,1%

2.6.4 Coomassie-Färbung von Proteinen

Zur Färbung von Proteinen in SDS-Polyacrylamidgelen wurde die Coomassie-Färbung angewendet. Dazu wurden die Gele 10 min in Coomassie-Färbelösung (0,1% Coomassie-Brilliant-Blau R-250; 10% Essigsäure; 42,5% Ethanol; 5% Methanol) geschüttelt und in Fixierlösung (7% Essigsäure; 10% Methanol) über Nacht entfärbt.

2.6.5 Western-Blot und Immundetektion

Der Transfer der mittels SDS-PAGE aufgetrennten Proteine auf eine Nitrocellulosemembran (Schleicher & Schüll, Dassel) erfolgte mit Hilfe der *Hoefer®SemiPhor™* Blotapparatur (Amersham Biosciences, Freiburg) für 2 h bei 1,2 mA/cm² und 4°C in Blotpuffer (25 mM Tris; 100 mM Glycin; 15% Methanol). Die Blot-Effizienz wurde durch reversible Färbung mit Fast Green (0,1% Fast Green; 10% Essigsäure; 30% Ethanol) überprüft. Zur Blockierung unspezifischer Bindestellen wurde die Membran in 5% Magermilch in TBS-T (50 mM Tris; 150 mM NaCl; 0,1% Tween20; pH 7,5) über Nacht bei 4°C inkubiert. Anschließend wurde der Blot mehrmals mit TBS-T gewaschen. Die Immunfärbung erfolgte durch einstündige Inkubation der Membran mit dem ersten Antikörper (in TBS-T) bei RT. Ungebundene Antikörper wurden durch Waschen mit TBS-T (4 x 5 min) entfernt. Danach erfolgte die Inkubation mit dem Peroxidase-konjugierten Sekundärantikörper (in TBS-T) für 1 h bei RT und erneutes Waschen mit TBS-T (4 x 5 min). Zur Visualisierung der Immunreaktion wurde der Blot in einer Peroxidase-Substrat-Lösung (*SuperSignal®West Dura Extendes Duration Substrate*; Perbio, Bonn) inkubiert. Die Detektion der Chemilumineszenz erfolgte mittels *Fuji LAS3000-CCD* Kamerasystem und der AIDA *Image Analyser Software* (Version 4.04).

2.6.6 **Dot Blot**

Der Dot-Blot wurde zur Quantifizierung des Gangliosids G_{M1} in Fraktionen aus Sucrosedichtegradientenzentrifugationen (Kap. 2.7) eingesetzt. Dafür wurde die *Bio-Dot* Apparatur (BioRad, München) verwendet. Jeweils 20 µl jeder Probe wurden auf eine Nitrocellulose-Membran (Schleicher & Schuell, Dassel) gespottet. Zur Blockierung unspezifischer Bindestellen wurde die Membran 1 h in 5% Magermilch in TBS-T (Kap. 2.6.5) bei RT inkubiert. Anschließend wurde der Blot mehrmals mit TBS-T gewaschen. Dann erfolgte eine einstündige Inkubation bei RT mit HRP-konjugiertem Cholera Toxin B (CTB-HRP; Sigma-Aldrich, München; 1:50.000 in TBS-T) zur Markierung des Gangliosids G_{M1} . Nach mehrmaligem Waschen wurde die Membran zur Visualisierung von G_{M1} in einer Peroxidase-Substrat-Lösung (*SuperSignal®West Dura Extendes Duration Substrate*; Perbio, Bonn) inkubiert. Die Detektion der Chemilumineszenz erfolgte mittels *Fuji LAS3000-CCD*

Kamerasystem und der AIDA *Image Analyser Software* (Version 4.04). Im Anschluss erfolgte eine densitometrische Auswertung.

2.7 Isolierung von detergent resistant membranes (DRMs)

Zur Isolation der *detergent resistant membranes* (DRMs) [nach 180, 181] aus RBL-2H3 Zellen wurden die Zellen zunächst mittels Trypsin-EDTA geerntet (Kap. 2.3.2). Die Zellen wurden dann zweimal mit 10 ml TBS (25 mM Tris/HCl; 140 mM NaCl; pH 7,5) gewaschen und nach Zentrifugation (5 min, 1.100 x g, 4°C) pelletiert. Anschließend wurden die Zellen in 750 μl Lysepuffer (1% Triton X-100 in TBS pH 8; 1 mM EDTA; 1 mM PMSF; 1 mM Na₃VO₄; 1 x *CompleteTM Protease Inhibitor Cocktail* (Roche, Mannheim)) für 30 min auf Eis inkubiert. Zur Entfernung von Zelltrümmern wurden die Proben zentrifugiert (5 min, 10.000 x g, 4°C). Für die nachfolgende Sucrosedichtegradientenzentrifugation wurden 350 μl der Proben 1:2 mit 80%iger Sucrose gemischt. Davon wurden 560 μl in ein Ultrazentrifugationsröhrchen (Beckman, Krefeld) überführt und mit jeweils 1.540 μl 30% Sucrose und 5% Sucrose überschichtet. Im Anschluss wurden die Proben 18 h bei 100.000 x g und 4°C zentrifugiert. Am Ende wurden 12 komplette Fraktionen von je 280 μl von oben abgenommen und bis zur weiteren Verwendung bei -20°C gelagert.

2.8 β-Hexosaminidase Assay

Für den β-Hexosaminidase Assay [nach 182] wurden RBL-2H3 Zellen in 6-Loch-Platten ausgesät und für unterschiedliche Zeiten mit den verschiedenen Substanzen inkubiert. Nach der Inkubation wurden die Zellen zweimal mit 1 ml RPMI-1640 Medium ohne Phenolrot (Sigma-Aldrich, München) gewaschen. Die Exocytose wurde induziert durch 0,4 μM Ionomycin und 4 nM PMA (beide Sigma-Aldrich, München) in einem Gesamtvolumen von 1 ml. Zur Bestimmung der basalen Degranulation wurden die Zellen mit dem Vehikel (Ethanol) behandelt. Die Zellen wurden bei 37°C inkubiert und nach verschiedenen Zeitpunkten wurden 100 μl Aliquots des Mediums entnommen. Zum Schluss wurden die Zellen zur Bestimmung der verbliebenen zellassoziierten β -Hexosaminidase in 500 μl 1% Triton X-100 in RPMI-1640 Medium lysiert und zentrifugiert (5 min, 20.000 x g, 4°C).

Zur Bestimmung der β -Hexosaminidase-Aktivität wurden Aliquots (10 μ l) der Überstände und Zelllysate in Triplikaten in 96-Loch-Platten mit 50 μ l Substratlösung (1 mg/ml p-Nitrophenyl-N-acetyl- β -D-glucosaminid (Sigma-Aldrich) in 0,05 M Citratpuffer pH 4,5) für 60 min bei 37°C inkubiert. Die Reaktion wurde durch Zugabe von 100 μ l Stopplösung (0,2 M NaOH; 0,2 M Glycin; pH 10) beendet. Anschließend wurde die Absorption bei 405 nm im *Elisa-Reader MR5000* (Dynatech, Denkendorf) gemessen.

Die Menge an freigesetzter β -Hexosaminidase wurde in % relativ zur gesamten β -Hexosaminidase berechnet. Zur Ermittlung der Nettodegranulation wurde die basale Degranulation der *mock* stimulierten Zellen von den PMA/Ionomycin-stimulierten Zellen abgezogen.

2.9 Microarray-Analysen

2.9.1 GCOS (GeneChip Operating Software)

Die Analyse der Microarray-Daten erfolgte mit Hilfe der GeneChip Operating Software (GCOS; Affymetrix, Santa Clara, USA). Es wurden die von GCOS vorgegebenen Grundeinstellungen verwendet. Um Variationen zwischen den Arrays zu berücksichtigen, wurde die global scaling Strategie angewendet. Differentiell exprimierte probe sets wurden mittels GCOS comparison analysis identifiziert. Dazu wurden paarweise Vergleiche von jeweils zwei Microarrays durchgeführt, wobei ein Microarray als baseline array und der andere als experimental array fungierte. Die so erzeugten Daten wurden anschließend nach EXCEL transferiert und entsprechend der Affymetrix "GeneChip Expression Analysis - Data Analysis Fundamentals" nach den Parametern change, detection und signal log ratio (SLR) sortiert und hinsichtlich differentiell exprimierter probe sets gefiltert. Zunächst wurden alle probe sets mit einem no change call aus der Liste eliminiert. Dann wurden alle probe sets mit einem absent call im experimental array (robust increases) bzw. im baseline array (robust decreases) eliminiert. Zum Schluss wurden alle probe sets mit einem SLR > -1 bzw. < 1 entfernt. Die Umrechnung des SLR in fold changes erfolgte entsprechend der Formeln 2^{SLR} (SLR \geq 0) bzw. (-1) * 2^{-(SLR)} (SLR < 0). Die Affymetrix probe set IDs wurden mit Hilfe des NETAFFX Analysis Center [183] annotiert.

2.9.2 EASE (Expression Analysis Systemic Explorer)

Zur schnellen biologischen Interpretation der durch die *Microarray*-Analysen erhaltenen Genlisten wurde die *EASE* (*Expression Analysis Systemic Explorer*) Software [184], verfügbar auf der *Database for Annotation, Visualization and Integrated Discovery* (DAVID, http://david.niaid.nih.gov/david) [185], verwendet. *EASE* ermöglicht die funktionelle Annotierung und Klassifizierung von Genen basierend auf ihren *gene ontology* (GO) Bezeichnungen und berechnet die Überrepräsentation individueller Gene in spezifischen GO Kategorien im Vergleich zu allen untersuchten Genen auf dem Microarray. Als statistisches Maß für die spezifische Anreicherung von GO Bezeichnungen dient der *EASE score*, eine konservative Anpassung des *Fisher exact probability* Tests. Die funktionellen Gencluster werden hinsichtlich ihrer biologischen Signifikanz, ausgedrückt durch den *group enrichment score* (geometrisches Mittel (in -log Skala) der *p*-Werte aller Gene in einem Gencluster),

gerankt. Die höchst signifikanten überrepräsentierten Kategorien werden als "biologische Themen" der Genlisten definiert.

2.10 Vitamin E-Analytik

2.10.1 Vitamin E-Extraktion aus Zellen und Plasma

Zur Bestimmung der Vitamin E-Aufnahme in Zellen wurden diese in 6-Loch-Platten ausgesät und für verschiedene Zeiten mit den entsprechenden Vitameren inkubiert. Anschließend wurde das Medium abgenommen, der Zellrasen zweimal mit je 0,5 ml PBS (Kap. 2.3.2) gewaschen, mittels Zellschaber abgelöst und in 1 ml PBS in 2 ml Reaktionsgefäße überführt. Die Zellen wurden mittels Tissue Lyzer (Qiagen, Hilden) 5 min bei 30 Hz aufgeschlossen. Nach Zentrifugation der Proben (5 min, 21.000 x g, 4°C) wurden 50 µl für die Proteinbestimmung (Kap. 2.6.2) abgenommen. Für die Extraktion wurden die verbliebenen 950 µl Zelllysat bzw. 50 µl Plasma in 15 ml Zentrifugenröhrchen überführt. Nach Zugabe von 4,23 nmol δ-Tocopherol (Interner Standard), 1 ml Methanol und 2,5 ml n-Hexan (mit 10% Ethylacetat) wurden die Proben 1 min kräftig gevortext, zentrifugiert (5 min, 2.000 x g, 4°C) und die organische Phase abgenommen. Die Extraktion wurde mit 2,5 ml n-Hexan wiederholt, die organischen Phasen vereinigt und im Rotationsverdampfer (RC 10.10, Jouan, Fernwald) bis zur Trockne eingeengt. Die Rückstände wurden abschließend in 200 µl HPLC-Puffer (95% Methanol; 1,02 g/l Lithiumacetat; 0,02% Trifluoressigsäure) aufgenommen und in HPLC-Probengefäße überführt. Bis zur Vermessung der Proben wurden diese bei -20°C gelagert.

2.10.2 Vitamin E-Extraktion aus Geweben

Für die Vitamin E-Bestimmung wurden 10-20 mg Gewebe in 2 ml Reaktionsgefäßen zusammen mit 1 ml Pyrogallol-Lösung (6% in Ethanol) und 1,057 nmol δ-Tocopherol (Interner Standard) für 2 min bei 30 Hz im *Tissue Lyzer* (Qiagen, Hilden) homogenisiert. Nach Überführung in 15 ml Reaktionsgefäße und Zugabe von 1 ml Ethanol und 400 μl 40% (w/v) KOH-Lösung wurden die Proben 1 min gevortext und dann 30 min bei 70°C im Schüttelwasserbad inkubiert. Nachdem sie abgekühlt waren, wurden sie nach Zugabe von 1,6 ml NaCl-Lösung (2% in Wasser) und 2,5 ml n-Hexan 1 min gevortext und zentrifugiert (5 min, 2.000 x g, 4°C). Die organische Phase wurde abgenommen, die Extraktion mit 2,5 ml n-Hexan wiederholt, die organischen Phasen vereinigt und im Rotationsverdampfer (RC 10.10, Jouan, Fernwald) bis zur Trockne eingeengt. Die Kondensate wurden in jeweils 200 μl HPLC-Puffer (95% Methanol; 1,02 g/l Lithiumacetat; 0,02% Trifluoressigsäure) durch 30 s Vortexen gelöst, in HPLC-Probengefäße überführt und bis zur Messung bei -20°C gelagert.

2.10.3 Vitamin E-Extraktion aus Futterproben

Die Futterpellets wurden zunächst mittels *Tissue Lyzer* (Qiagen, Hilden) homogenisiert, dann mit 5 ml Wasser und 4,3 nmol δ-Tocopherol (Interner Standard) gemischt und 30 s gevortext. Nach Zugabe von 5 ml 1% (w/v) Ascorbinsäure, 10 ml Ethanol und 1,5 ml 40% (w/v) KOH-Lösung wurden die Proben 1 min gevortext und 30 min bei 70°C im Schüttelwasserbad inkubiert. Anschließend wurden 10 ml n-Hexan zugegeben und die Proben über Nacht bei 4°C unter Rotieren inkubiert. Die organische Phase wurde nach der Zentrifugation (5 min, 600 x g, RT) abgenommen, die Extraktion mit 20 ml n-Hexan wiederholt, die organischen Phasen vereinigt und im Rotationsverdampfer (RC 10.10, Jouan, Fernwald) bis zur Trockne eingeengt. Das Kondensat wurde in jeweils 200 μl HPLC-Puffer (95% Methanol; 1,02 g/l Lithiumacetat; 0,02% Trifluoressigsäure) durch 30 s Vortexen gelöst, in HPLC-Probengefäße überführt und bis zur Messung bei -20°C gelagert.

2.10.4 HPLC zur Vitamin E-Quantifizierung

Die Vitamin E-Bestimmung erfolgte mittels *reverse phase* HPLC unter Verwendung eines *Summit HPLC-Systems* mit ED50 elektrochemischer Detektion (Dionex, Idstein). Als stationäre Phase diente eine *LiChrospher*® *RP-18ec* Säule (250 x 4 mm) mit Vorsäule (4 x 4 mm; Merck, Darmstadt).

Für die Vitamin E-Bestimmung in Zellen und Plasma wurde die mobile Phase (95% Methanol; 1,02 g/l Lithiumacetat; 0,02% Trifluoressigsäure) in einem isokratischen Lauf (48 min) mit einer Fließgeschwindigkeit von 1 ml/min über die Säule geleitet.

Für die Vitamin E-Bestimmung in Geweben und Futter bestand die mobile Phase aus 95% Methanol, 1,02 g/l Lithiumacetat, 0,02% Trifluoressigsäure [A] bzw. 100% Propanol [B]. Die Fließgeschwindigkeit betrug 1 ml/min mit einem Gradientenprogramm von 0% [B]: 0-35 min; 0-30% [B]: 35-38 min; 30% [B]: 38-105 min; 30-0% [B]: 105-108 min und 0% [B]: 108-120 min.

Die verschiedenen Vitamere wurden über die Retentionszeiten identifiziert, ihre Peakflächen durch Integration ermittelt und mit Hilfe des internen Standards δ-Tocopherol unter Berücksichtigung des Responsefaktors (Kap. 2.10.6) quantifiziert. Die Vitamin E-Gehalte wurde abschließend auf den Proteingehalt (Zellen), das Gewicht (Gewebe, Futter) bzw. das Volumen (Plasma) normalisiert.

2.10.5 Bestimmung von Vitamin E-Metaboliten

Zur Überprüfung des Metabolismus von RRR- α -Tocopherol in RBL-2H3 Zellen wurden diese in 6-Loch-Platten ausgesät und für 72 h mit 100 μ M RRR- α -Tocopherol inkubiert. Anschließend wurde das Medium abgenommen und die Zellen geerntet (Kap. 2.10.1). Das

Medium wurde mit 100 μ l Ascorbinsäure (40 mg/ml in H₂O), 40 μ l 30 μ M α-Carboxypropylhydroxychroman (α-CPHC; in EtOH) als internem Standard und 1,6 ml Na-Acetatpuffer (0,1 M; pH 4,5) versetzt. Die Metabolite wurden mit 2 x 15 ml und 1 x 10 ml TBME/BHT (TBME mit 1 ml/l 10 g/l BHT in EtOH) extrahiert. Nach Zentrifugation (2 min, 4.000 x g, RT) wurden die organischen Phasen abgenommen, am Ende vereinigt und im Rotationsverdampfer (RC 10.10, Jouan, Fernwald) bis zur Trockne eingeengt. Die Rückstände wurden in 200 μ L Puffer (TEAH/Wasser/Acetonitril (0,25 : 28,25 : 43); 0,32 mM EDTA; 20 mM BHT) durch Vortexen gelöst, in HPLC-Probengefäße überführt und bis zur Messung bei -20°C gelagert.

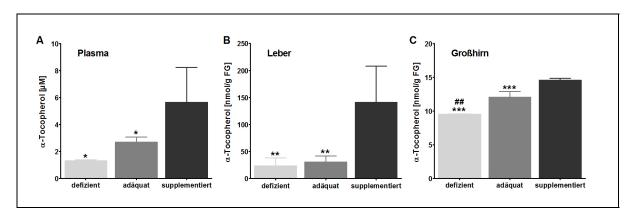
Die Trennung der Metabolite erfolgte mit dem *Summit HPLC-System* mit ED 50 elektrochemischem Detektor (Dionex, Idstein). Als stationäre Phase diente eine *LiChrosphere*® *RP18ec* Säule (250 x 4 mm) mit zugehöriger Schutzsäule (Merck, Darmstadt). Die mobile Phase bestand aus den Laufmitteln Acetonitril [A] und TEAH/Wasser/Acetonitril (0,5 : 56,5 : 43), 0,64 mM EDTA, pH 5,5 [B]. Die Flussrate betrug 0,6 mL/min mit dem folgenden Gradientenprogramm: 0% [A]: 0-34 min; 0-45% [A]: 34-52 min; 45-96% [A]: 52-55 min; 96% [A]: 55-65 min; 96-0% [A]: 65-68 min und 0% [A]: 68-78 min. Für die coloumetrische Detektion betrug die Spannung der analytischen Zelle +0,55 V.

2.10.6 Bestimmung des Responsefaktors

Um die unterschiedliche Sensitivität des elektrochemischen Detektors gegenüber den verschiedenen Substanzen zu berücksichtigen, wurde der jeweilige spezifische Responsefaktor (RF) bestimmt. Dazu wurden verschiedene Konzentrationen der entsprechenden Substanz mit einer konstanten Konzentration des internen Standards gemischt, mittels HPLC aufgetrennt und unter Verwendung des internen Standards quantifiziert. Der Responsefaktor ergab sich aus den gemittelten Quotienten der eingesetzten Soll-Konzentration und der chromatographisch bestimmten Ist-Konzentration.

2.11 Statistik

Alle statistischen Berechnungen wurden entweder mit *Microsoft*® *Excel 2000* oder *GraphPad Prism Version 4.0* (San Diego, USA) durchgeführt. Die jeweils verwendeten statistischen Tests werden an den entsprechenden Stellen angeführt.


3 Ergebnisse

3.1 Identifizierung α-Tocopherol-sensitiver Gene in der murinen Leber

Zur Untersuchung der genregulatorischen Funktionen von α -Tocopherol mit dem Ziel der Identifizierung α -Tocopherol-sensitiver Gene in der Leber wurde ein Fütterungsversuch mit männlichen $Ttpa^{+/+}$ Mäusen durchgeführt (Kap. 2.4.1). Die Tiere wurden über einen Zeitraum von 13 Wochen mit drei verschiedenen Vitamin E-Diäten gefüttert: defizient (4,9 ± 2,6 mg RRR- α -Tocopherylacetat/kg Futter; n = 3), adäquat (14,7 ± 2,1 mg RRR- α -Tocopherylacetat/kg Futter; n = 6) bzw. supplementiert (132,2 ± 27,6 mg RRR- α -Tocopherylacetat/kg Futter; n = 6). Die Mäuse zeigten weder Anzeichen von Ataxie, ein klassisches Symptom der Vitamin E-Defizienz, noch Unterschiede in der Gewichtsentwicklung (Daten nicht gezeigt). Der Effekt der Fütterung der drei Vitamin E-Diäten wurde anhand der Bestimmung der α -Tocopherol-Gehalte in Plasma, Leber und Großhirn überprüft. Anschließend wurden die globalen Genexpressionsprofile der Leber mit Hilfe von Oligonucleotide Microarrays analysiert [168, 176].

3.1.1 α-Tocopherol-Gehalte in Plasma, Leber und Großhirn

Der zunehmende Gehalt an RRR- α -Tocopherylacetat im Futter führte zu einer Erhöhung der α -Tocopherol-Konzentrationen sowohl im Plasma als auch in der Leber und im Großhirn der Mäuse (Abb. 3). Im Plasma stieg der α -Tocopherol-Gehalt im Vergleich zur defizienten Fütterungsgruppe (1,33 ± 0,05 μ M) in der adäquaten Gruppe etwa um das Zweifache (2,96 ± 0,39 μ M) und in der supplementierten Gruppe um das Fünffache (5,65 ± 2,57 μ M).

Abb. 3: α-Tocopherol-Konzentrationen in Plasma, Leber und Großhirn. Männliche $Ttpa^{+/+}$ Mäuse wurden 13 Wochen mit einer Vitamin E-defizienten (4,9 ± 2,6 mg RRR-α-Tocopherylacetat/kg Futter), -adäquaten (14,7 ± 2,1 mg RRR-α-Tocopherylacetat/kg Futter) bzw. -supplementierten (132,2 ± 27,6 mg RRR-α-Tocopherylacetat/kg Futter) Diät gefüttert. Die α-Tocopherol-Gehalte in Plasma (A), Leber (B) und Großhirn (C) wurden mittels HPLC bestimmt [168]. Dargestellt sind MW ± SD (n = 3-6). Die Daten wurden mittels $One\ Way\ ANOVA$ mit $Bonferroni's\ Multiple\ Comparison\ Test\ analysiert. *<math>p$ < 0,05; **p < 0,01; ***p < 0,001 vs. supplementierte Gruppe. *#p < 0,01 defiziente vs. adäquate Gruppe.

Der α -Tocopherol-Gehalt der Leber stieg von 23.8 ± 14.3 nmol/g FG in der defizienten Gruppe nur geringfügig auf 30.5 ± 11.5 nmol/g FG in der adäquaten und um den Faktor 6 auf 141.2 ± 67.0 nmol/g FG in der supplementierten Gruppe. Die α -Tocopherol-Gehalte von Plasma und Leber innerhalb der supplementierten Gruppe wiesen starke Schwankungen auf, was die hohen Standardabweichungen begründet.

Im Großhirn stiegen die α -Tocopherol-Gehalte zwar geringfügig aber hoch signifikant an: defizient: 9,5 \pm 0,01 nmol/g FG, adäquat: 12,1 \pm 0,9 nmol/g FG, supplementiert: 14,6 \pm 0,3 nmol/g FG.

3.1.2 Genexpressions analyse in der Leber mittels Oligonucleotide Microarray

Das Genexpressionsprofil der Leber von jeweils zwei Mäusen pro Fütterungsgruppe wurde mit Affymetrix *MOE430A* Microarrays untersucht. Die Auswertung der Expressionsdaten erfolgte mit Hilfe der Affymetrix *GeneChip Operating Software* (Kap. 2.9.1). Der Prozentsatz der als exprimiert detektierten *probe sets* (*present call*) auf dem Array kann als ein Qualitätsmerkmal für die Hybridisierung herangezogen werden. Von den 22.690 *probe sets* auf dem Array konnten im Schnitt nur zwischen 18 und 30% detektiert werden.

Ein Vergleich der Expressionsdaten der defizienten und der adäquaten Gruppe ergab keine signifikant regulierten Gene, was in Übereinstimmung mit den ähnlichen α-Tocopherol-Gehalten der Leber beider Gruppen ist (Abb. 3B). Beim Vergleich der defizienten mit der supplementierten Fütterungsgruppe konnten jedoch 465 *probe sets* (~2%) mit einem FC \geq 2 reguliert gefunden werden. Diese repräsentierten 387 Gene, von denen 295 mit α-Tocopherol herauf- und 92 herunterreguliert wurden [176]. Die weitere Untersuchung der 387 differentiell exprimierten Gene mit Hilfe der *EASE* Software (Kap. 2.9.2) ergab eine signifikante Anreicherung von Genen, die in zelluläre Transportprozesse involviert sind. Tab. 10 zeigt die drei Gencluster mit der höchsten Signifikanz. Gencluster 1 hatte mit 5,38 den höchsten *Enrichment score* und umfasste insgesamt 21 Gene, die aufgrund ihrer vesikulären Lokalisation zusammengefasst wurden. Im zweiten Gencluster waren 121 Gene enthalten, wobei 20 der 21 Gene aus Cluster 1 auch in Gencluster 2 präsent waren. α-Tocopherol-sensitive Gene, die in neurophysiologischen Prozessen involviert sind, waren in Gencluster 3 enthalten. Von den 41 Genen waren 26 auch in Cluster 2 zu finden.

Insbesondere solche Gene, die an vesikulären Transportvorgängen beteiligt sind, schienen bevorzugt auf α -Tocopherol zu reagieren. Tatsächlich waren fast alle Gene, die an Vesikelausbildung, Fusion der Vesikel mit der Zielmembran sowie der Regulation dieser Prozesse beteiligt sind, in der supplementierten Gruppe heraufreguliert [176]. Tab. 11 zeigt eine Auswahl dieser Gene. Eine Liste der zugehörigen Gennamen ist dem Anhang zu entnehmen (Tab. A1).

Tab. 10: Funktionelle Clusteranalyse der α-Tocopherol-regulierten Gene mit EASE

Kategorie	Gene ontology Bezeichnung	Anzahl ¹	% ²	<i>p</i> -Wert
Annotation Cluster 1	Enrichment Score: 5,38	21		
GOTERM_CC_ALL	synaptic vesicle	12	3,0	2,80E-07
GOTERM_CC_ALL	cytoplasmic vesicle	21	5,3	9,00E-07
GOTERM_CC_ALL	vesicle	21	5,3	1,60E-06
GOTERM_CC_ALL	cytoplasmic membrane-bound vesicle	19	4,8	6,40E-06
GOTERM_CC_ALL	membrane-bound vesicle	19	4,8	1,10E-05
GOTERM_CC_ALL	clathrin-coated vesicle	13	3,3	1,40E-05
GOTERM_CC_ALL	coated vesicle	13	3,3	4,90E-05
Annotation Cluster 2	Enrichment Score: 5,07	121		
GOTERM_BP_ALL	localization	117	29,4	9,60E-08
GOTERM_BP_ALL	establishment of localization	116	29,2	1,10E-07
GOTERM_BP_ALL	transport	106	26,6	2,30E-07
GOTERM_BP_ALL	transporter activity	56	14,1	2,00E-03
SP_PIR_KEYWORDS	transport	46	11,6	8,50E-03
Annotation Cluster 3	Enrichment Score: 4,57	41		
GOTERM_BP_ALL	transmission of nerve impulse	21	5,3	3,20E-08
GOTERM_BP_ALL	synaptic transmission	19	4,8	8,00E-08
GOTERM_BP_ALL	cell-cell signaling	22	5,5	7,70E-06
GOTERM_BP_ALL	neurophysiological process	25	6,3	1,60E-03
GOTERM_BP_ALL	organismal physiological process	40	10,1	4,30E-01

BP: Biological Process; CC: Cellular Component; MF: Molecular Function.

Überraschend war die veränderte Genexpression einiger synaptischer Proteine wie *Vamp2* (*vesicle-associated membrane protein 2*), *Syn1* (Synapsin 1), *Syp* (Synaptophysin), *Syt11* (Synaptotagmin 11), *Sv2a* (*synaptic vesicle glycoprotein 2a*), *Stx1a* (Syntaxin 1A), *Stxbp1* (*syntaxin binding protein 1*), *Snca* (Synuclein α), *Snap25* (*synaptosomal-associated protein 25*) und *Cplx1* (*Complexin 1*). Diese Proteine spielen eine wichtige Rolle in neurophysiologischen Prozessen wie der Freisetzung von Neurotransmittern.

Im Vergleich zu leberspezifischen Genen waren die Expressionslevel der α -Tocopherolregulierten Gene insgesamt relativ niedrig. So lagen beispielsweise die Signalintensitäten von Albumin, das hauptsächlich in der Leber produziert wird, zwischen 40.400 und 74.000, während die meisten der durch α -Tocopherol regulierten Gene eine Signalintensität < 5.000 aufwiesen. Dies lässt auf eine relativ geringe Expression dieser Gene in der Leber schließen.

Tab. 11: In vesikuläre Transportprozesse involvierte α -Tocopherol-regulierte Gene

Gen [#]	GenBank	Expression	Expression	FC	Funktionen
Symbol		supplementiert	defizient		
Abca3	NM_013855	336 ± 126	1958 ± 670	-4,8	transport
Арр	NM_007471	11790 ± 7338	3554 ± 352	3,5	endocytosis, apoptosis, cell adhesion
Arf3 ^{1,6}	NM_007478	2778 ± 261	1373 ± 267	2,9	protein transport
Atp1a2 ^{1,6}	NM_178405	1899 ± 239	50 ± 15	21,5	neurotransmitter uptake, cation transport
Atp1b2 ^{1,6}	NM_013415	1590 ± 324	154 ± 162	15,7	ion transport
Calm1 ³	NM_009790	4673 ± 1871	1318 ± 272	4.1	G-protein signaling pathway, calcium signaling
Calm2 3,6	NM_007589	2182 ± 339	900 ± 112	2.9	G-protein signaling pathway, calcium signaling
Cplx1 1,6	NM_007756	10364 ± 1380	490 ± 33	9,0	neurotransmitter transport
Cplx2 1	NM_009946	4190 ± 342	172 ± 50	17,6	neurotransmitter transport, vesicle docking
Cubn	XM_130038	98 ± 56	1545 ± 270	-11,7	receptor mediated endocytosis
Grin1 1	NM_008169	1340 ± 302	160 ± 149	8,4	ion transport, synaptic transmission

¹ Gibt die Anzahl der Gene im gesamten Cluster sowie in den einzelnen Kategorien jedes Clusters an. Dabei können Gene redundant in den verschiedenen Kategorien eines Clusters vorkommen.

² Gibt die Anzahl der Gene eines Clusters in % bezogen auf alle regulierten Gene an. Entgegen der eigenen manuellen Auswertung ermittelte die *EASE* Analyse der 465 differentiell exprimierten *probe sets* 398 Gene. Darauf basierend erfolgte die prozentuale Berechnung.

Kns2 NM_008450 1946 ± 720 45 ± 9 40,2 axon cargo transport Mbp 6 NM_0107777 14976 ± 8562 544 ± 307 23,7 myelination, synaptic transmission Mobp 1,3 NM_008614 2809 ± 277 29 ± 1 77,9 myelination Mayb 1,6 NM_013603 3493 ± 751 340 ± 26 8,0 negative regulation of neurogenesis Napb 1,6 NM_019632 1102 ± 225 52 ± 18 14,1 vesicle-mediated transport Naf 6 NM_01882 343 ± 1424 178 ± 63 21,6 axonogenesis, CNS development Nsf 6 NM_08740 5062 ± 3485 501 ± 78 7,7 protein transport, ATPase activity Plp1 1,6 NM_090901 4465 ± 1011 199 ± 188 9,7 myelination in the CNS, synaptic transmission Rab3a NM_009001 4465 ± 1011 199 ± 188 28,6 regulation of synaptic vesicle exocytosis Rab6b NM_173781 1776 ± 1051 165 ± 160 9,5 vesicle-mediated transport Rab11b NM_009897 2089 ± 1164 7	6					
Mbp ⁶ NM_010777 14976 ± 8562 544 ± 307 23,7 myelination, synaptic transmission Mobp ^{1,3} NM_008614 2809 ± 277 29 ± 1 77,9 myelination Mt3 NM_013603 3493 ± 751 340 ± 26 8,0 negative regulation of neurogenesis Napb ^{1,6} NM_010862 3434 ± 1424 178 ± 63 21,6 axonogenesis, CNS development Nsf ⁶ NM_008740 5062 ± 3485 501 ± 78 7,7 protein transport, ATPase activity Plp1 ^{1,6} NM_011123 3544 ± 960 419 ± 188 9,7 myelination in the CNS, synaptic transmission Rab3a NM_009001 4465 ± 1011 199 ± 188 28,6 regulation of synaptic vesicle exocytosis Rab11b NM_008997 2089 ± 1164 721 ± 574 3,6 protein transport Sape1 NM_009162 2442 ± 1605 100 ± 35 14,2 intracellular protein transport Snap25 ³ NM_011428 5014 ± 2854 172 ± 234 20,4 neurotransmitter transport, synaptic transmission Snap27 ³ NM_003669	Kif1b ⁶	NM_008441	2736 ± 921	884 ± 345	3,4	axon cargo transport, synaptic transmission
Mobp 1/3 NNL_008614 2809 ± 277 29 ± 1 77,9 myelination Mt3 NM_013603 3493 ± 751 340 ± 26 8,0 negative regulation of neurogenesis Naph 1/6 NM_019632 1102 ± 225 52 ± 18 14,1 vesicle-mediated transport Ndn 1/6 NM_010882 3434 ± 1424 178 ± 63 21,6 axonogenesis, CNS development Nsf 6 NM_008740 5062 ± 3485 501 ± 78 7,7 protein transport, ATPase activity Plp1 1/6 NM_0011123 3544 ± 960 419 ± 188 9,7 myelination in the CNS, synaptic transmission Rab3a NM_009001 4465 ± 1011 199 ± 188 28,6 regulation of synaptic vesicle exocytosis Rab6b NM_173781 1776 ± 1051 165 ± 160 9,5 vesicle-mediated transport Sgne1 NM_009902 2442 ± 1605 100 ± 35 14,2 intracellular protein transport Snap25 3 NM_011428 5014 ± 2854 172 ± 234 20,4 neurotransmitter transport, synaptic transmission Snag25 3 NM_01669		_			,	
Mt3 NM_013603 3493 ± 751 340 ± 26 8,0 negative regulation of neurogenesis Nabp 1.6 NM_019632 1102 ± 225 52 ± 18 14,1 vesicle-mediated transport Ndn 1.6 NM_010882 3434 ± 1424 178 ± 63 21,6 axonogenesis, CNS development Nsf 6 NM_08740 5062 ± 3485 501 ± 78 7,7 protein transport, ATPase activity Plp1 1.6 NM_008740 5062 ± 3485 501 ± 78 7,7 protein transport, ATPase activity Plp1 1.6 NM_0011123 3544 ± 960 419 ± 188 9,7 myelination in the CNS, synaptic transmission Rab3a NM_009001 4465 ± 1011 199 ± 188 28,6 regulation of synaptic vesicle exocytosis Rab6b NM_173781 1776 ± 1051 165 ± 160 9,5 vesicle-mediated transport Rab11b NM_009897 2089 ± 1164 721 ± 574 3,6 protein transport Sgne1 NM_009162 2442 ± 1605 100 ± 35 14,2 intracellular protein transport, synaptic transmission Snap25 3 NM_011428 <td></td> <td>NM_010777</td> <td>14976 ± 8562</td> <td>544 ± 307</td> <td>23,7</td> <td>myelination, synaptic transmission</td>		NM_010777	14976 ± 8562	544 ± 307	23,7	myelination, synaptic transmission
Napb 1.6 NM_019632 1102 ± 225 52 ± 18 14,1 vesicle-mediated transport Ndn 1.6 NM_010882 3434 ± 1424 178 ± 63 21,6 axonogenesis, CNS development Nsf 6 NM_008740 5062 ± 3485 501 ± 78 7,7 protein transport, ATPase activity Plp1 1.6 NM_011123 3544 ± 960 419 ± 188 9,7 myelination in the CNS, synaptic transmission Rab3a NM_009001 4465 ± 1011 199 ± 188 28,6 regulation of synaptic vesicle exocytosis Rab6b NM_173781 1776 ± 1051 165 ± 160 9,5 vesicle-mediated transport Rab11b NM_008997 2089 ± 1164 721 ± 574 3,6 protein transport Sgne1 NM_009162 2442 ± 1605 100 ± 35 14,2 intracellular protein transport, synaptic transmission Snap25 3 NM_011428 5014 ± 2854 172 ± 234 20,4 neurotransmitter transport, synaptic transmission Snca 2 NM_003610 4136 ± 1221 850 ± 129 4,3 negative regulation of neuron apoptosis Stx1a 4.5 <td>Mobp 1,3</td> <td>NM_008614</td> <td>2809 ± 277</td> <td>29 ± 1</td> <td>77,9</td> <td>myelination</td>	Mobp 1,3	NM_008614	2809 ± 277	29 ± 1	77,9	myelination
Ndn NM_010882 3434 ± 1424 178 ± 63 21,6 axonogenesis, CNS development Nsf ⁶ NM_008740 5062 ± 3485 501 ± 78 7,7 protein transport, ATPase activity Plp1 ^{1,6} NM_011123 3544 ± 960 419 ± 188 9,7 myelination in the CNS, synaptic transmission Rab3a NM_009001 4465 ± 1011 199 ± 188 28,6 regulation of synaptic vesicle exocytosis Rab6b NM_173781 1776 ± 1051 165 ± 160 9,5 vesicle-mediated transport Rab11b NM_008997 2089 ± 1164 721 ± 574 3,6 protein transport Sgne1 NM_009162 2442 ± 1605 100 ± 35 14,2 intracellular protein transport Snap25 ³ NM_011428 5014 ± 2854 172 ± 234 20,4 neurotransmitter transport, synaptic transmission Snap3 ³ NM_013669 1496 ± 928 31 ± 28 23,7 clathrin coat assembly Snca ² NM_003610 4136 ± 1221 850 ± 129 4,3 negative regulation of neuror apoptosis Stx1a ^{4,5} NM_01		NM_013603	3493 ± 751	340 ± 26	8,0	negative regulation of neurogenesis
Nsf 6 NM_008740 5062 ± 3485 501 ± 78 7.7 protein transport, ATPase activity Plp1 $^{1.6}$ NM_011123 3544 ± 960 419 ± 188 9.7 myelination in the CNS, synaptic transmission Rab3a NM_009001 4465 ± 1011 199 ± 188 28.6 regulation of synaptic vesicle exocytosis Rab6b NM_173781 1776 ± 1051 165 ± 160 9.5 vesicle-mediated transport Rab11b NM_008997 2089 ± 1164 721 ± 574 3.6 protein transport Sgne1 NM_009162 2442 ± 1605 100 ± 35 14.2 intracellular protein transport Snap25 3 NM_011428 5014 ± 2854 172 ± 234 20.4 neurotransmitter transport, synaptic transmission Snap91 3 NM_013669 1496 ± 928 31 ± 28 23.7 clathrin coat assembly Snca 2 NM_009221 1658 ± 195 56 ± 25 23.3 regulation of neurotransmitter secretion Sncb 1 NM_016801 2330 ± 1460 360 ± 21 3.9 neurotransmitter transport,	Napb ^{1,6}	NM_019632	1102 ± 225	52 ± 18	14,1	vesicle-mediated transport
Plp1 1.6 NM_011123 3544 ± 960 419 ± 188 9,7 myelination in the CNS, synaptic transmission Rab3a NM_009001 4465 ± 1011 199 ± 188 28,6 regulation of synaptic vesicle exocytosis Rab6b NM_173781 1776 ± 1051 165 ± 160 9,5 vesicle-mediated transport Rab11b NM_008997 2089 ± 1164 721 ± 574 3,6 protein transport Sgne1 NM_009162 2442 ± 1605 100 ± 35 14,2 intracellular protein transport Snap25 3 NM_011428 5014 ± 2854 172 ± 234 20,4 neurotransmitter transport, synaptic transmission Snap91 3 NM_013669 1496 ± 928 31 ± 28 23,7 clathrin coat assembly Snca 2 NM_009221 1658 ± 195 56 ± 25 23,3 regulation of neurotransmitter secretion Sncb 1 NM_033610 4136 ± 1221 850 ± 129 4,3 negative regulation of neurotransmitter transport, synaptic transmission Stx1a 4.5 NM_016801 2330 ± 1460 360 ± 21 3,9 neurotransmitter transport, synaptic transmission	Ndn ^{1,6}	NM_010882	3434 ± 1424	178 ± 63	21,6	axonogenesis, CNS development
Rab3a NM_009001 4465 ± 1011 199 ± 188 $28,6$ regulation of synaptic vesicle exocytosis Rab6b NM_173781 1776 ± 1051 165 ± 160 $9,5$ vesicle-mediated transport Rab11b NM_008997 2089 ± 1164 721 ± 574 $3,6$ protein transport Sgne1 NM_009162 2442 ± 1605 100 ± 35 $14,2$ intracellular protein transport Snap25³ NM_011428 5014 ± 2854 172 ± 234 $20,4$ neurotransmitter transport, synaptic transmission Snap91³ NM_013669 1496 ± 928 31 ± 28 $23,7$ clathrin coat assembly Snca² NM_009221 1658 ± 195 56 ± 25 $23,3$ regulation of neurotransmitter secretion Sncb¹ NM_033610 4136 ± 1221 850 ± 129 $4,3$ negative regulation of neuron apoptosis Stx1a⁴.⁵ NM_016801 2330 ± 1460 360 ± 21 $3,9$ neurotransmitter transport, synaptic transmission Sv2a NM_022030 2916 ± 729 683 ± 19 $3,6$ neurotransmitter transport, synaptic transm	Nsf ⁶	NM_008740	5062 ± 3485	501 ± 78	7,7	protein transport, ATPase activity
Rab6b NM_173781 1776 ± 1051 165 ± 160 9,5 vesicle-mediated transport Rab11b NM_008997 2089 ± 1164 721 ± 574 3,6 protein transport Sgne1 NM_009162 2442 ± 1605 100 ± 35 $14,2$ intracellular protein transport Snap25³ NM_011428 5014 ± 2854 172 ± 234 $20,4$ neurotransmitter transport, synaptic transmission Snap91³ NM_013669 1496 ± 928 31 ± 28 $23,7$ clathrin coat assembly Snca² NM_009221 1658 ± 195 56 ± 25 $23,3$ regulation of neurotransmitter secretion Sncb¹ NM_033610 4136 ± 1221 850 ± 129 $4,3$ negative regulation of neuron apoptosis Stx1a ^{4,5} NM_016801 2330 ± 1460 360 ± 21 $3,9$ neurotransmitter transport, synaptic transmission Stxbp1 ⁶ NM_009295 454 ± 95 28 ± 4 $7,3$ vesicle-mediated transport, synaptic transmission Syn1 NM_013680 2206 ± 852 705 ± 90 $3,4$ neurotransmitter transport, synaptic t	Plp1 ^{1,6}	NM_011123	3544 ± 960	419 ± 188	9,7	myelination in the CNS, synaptic transmission
Rab11b NM_008997 2089 ± 1164 721 ± 574 3,6 protein transport Sgne1 NM_009162 2442 ± 1605 100 ± 35 $14,2$ intracellular protein transport Snap25 3 NM_011428 5014 ± 2854 172 ± 234 $20,4$ neurotransmitter transport, synaptic transmission Snap91 3 NM_013669 1496 ± 928 31 ± 28 $23,7$ clathrin coat assembly Snca 2 NM_009221 1658 ± 195 56 ± 25 $23,3$ regulation of neurotransmitter secretion Sncb 1 NM_033610 4136 ± 1221 850 ± 129 $4,3$ negative regulation of neuron apoptosis Stx1a 4.5 NM_016801 2330 ± 1460 360 ± 21 $3,9$ neurotransmitter transport, synaptic transmission Stxbp1 6 NM_099295 454 ± 95 28 ± 4 $7,3$ vesicle-mediated transport, vesicle docking Sv2a NM_022030 2916 ± 729 683 ± 19 $3,6$ neurotransmitter transport, synaptic transmission Syn1 NM_013681 813 ± 160 207 ± 101 $6,9$ neurotransmitter secre	Rab3a	NM_009001	4465 ± 1011	199 ± 188	28,6	regulation of synaptic vesicle exocytosis
Sgne1 NM_009162 2442 ± 1605 100 ± 35 $14,2$ intracellular protein transport Snap25 ³ NM_011428 5014 ± 2854 172 ± 234 $20,4$ neurotransmitter transport, synaptic transmission Snap91 ³ NM_013669 1496 ± 928 31 ± 28 $23,7$ clathrin coat assembly Snca ² NM_009221 1658 ± 195 56 ± 25 $23,3$ regulation of neurotransmitter secretion Sncb ¹ NM_033610 4136 ± 1221 850 ± 129 $4,3$ negative regulation of neuron apoptosis Stx1a ^{4,5} NM_016801 2330 ± 1460 360 ± 21 $3,9$ neurotransmitter transport, synaptic transmission Stxbp1 ⁶ NM_009295 454 ± 95 28 ± 4 $7,3$ vesicle-mediated transport, vesicle docking Sv2a NM_022030 2916 ± 729 683 ± 19 $3,6$ neurotransmitter transport, synaptic transmission Syn1 NM_013681 813 ± 160 207 ± 101 $6,9$ neurotransmitter secretion Syngr1 NM_009303 5242 ± 1354 551 ± 3 $6,7$ p	Rab6b	NM_173781	1776 ± 1051	165 ± 160	9,5	vesicle-mediated transport
Snap25 3 NM_011428 5014 ± 2854 172 ± 234 20,4 neurotransmitter transport, synaptic transmission Snap91 3 NM_013669 1496 ± 928 31 ± 28 23,7 clathrin coat assembly Snca 2 NM_009221 1658 ± 195 56 ± 25 23,3 regulation of neurotransmitter secretion Sncb 1 NM_033610 4136 ± 1221 850 ± 129 4,3 negative regulation of neuron apoptosis Stx1a $^{4.5}$ NM_016801 2330 ± 1460 360 ± 21 3,9 neurotransmitter transport, synaptic transmission Stxbp1 6 NM_009295 454 ± 95 28 ± 4 7,3 vesicle-mediated transport, vesicle docking Sv2a NM_022030 2916 ± 729 683 ± 19 3,6 neurotransmitter transport, synaptic transmission Syn1 NM_013680 2206 ± 852 705 ± 90 3,4 neurotransmitter secretion Syngr1 NM_013681 813 ± 160 207 ± 101 6,9 neurotransmitter transport Syp NM_009303 5242 ± 1354 551 ± 3 6,7 protein targeting, transport <	Rab11b	NM_008997	2089 ± 1164	721 ± 574	3,6	protein transport
Snap91 3 NM_013669 1496 ± 928 31 ± 28 23,7 clathrin coat assembly Snca 2 NM_009221 1658 ± 195 56 ± 25 23,3 regulation of neurotransmitter secretion Sncb 1 NM_033610 4136 ± 1221 850 ± 129 4,3 negative regulation of neuron apoptosis Stx1a $^{4.5}$ NM_016801 2330 ± 1460 360 ± 21 3,9 neurotransmitter transport, synaptic transmission Stxbp1 6 NM_009295 454 ± 95 28 ± 4 7,3 vesicle-mediated transport, vesicle docking Sv2a NM_022030 2916 ± 729 683 ± 19 3,6 neurotransmitter transport, synaptic transmission Syn1 NM_013680 2206 ± 852 705 ± 90 3,4 neurotransmitter secretion Syngr1 NM_013681 813 ± 160 207 ± 101 6,9 neurotransmitter secretion Syngr1 NM_009303 5242 ± 1354 551 ± 3 6,7 protein targeting, transport Syp NM_009305 2982 ± 486 791 ± 155 6,6 transport, endocytosis, synaptic transmission Syt13 <td>Sgne1</td> <td>NM_009162</td> <td>2442 ± 1605</td> <td>100 ± 35</td> <td>14,2</td> <td>intracellular protein transport</td>	Sgne1	NM_009162	2442 ± 1605	100 ± 35	14,2	intracellular protein transport
Snca 2 NM_009221 1658 ± 195 56 ± 25 23,3 regulation of neurotransmitter secretion Sncb 1 NM_033610 4136 ± 1221 850 ± 129 4,3 negative regulation of neuron apoptosis Stx1a $^{4.5}$ NM_016801 2330 ± 1460 360 ± 21 3,9 neurotransmitter transport, synaptic transmission Stxbp1 6 NM_009295 454 ± 95 28 ± 4 7,3 vesicle-mediated transport, vesicle docking Sv2a NM_022030 2916 ± 729 683 ± 19 3,6 neurotransmitter transport, synaptic transmission Syn1 NM_013680 2206 ± 852 705 ± 90 3,4 neurotransmitter secretion Syn2 6 NM_013681 813 ± 160 207 ± 101 6,9 neurotransmitter secretion Syngr1 NM_009303 5242 ± 1354 551 ± 3 6,7 protein targeting, transport Syp NM_009305 2982 ± 486 791 ± 155 6,6 transport, endocytosis, synaptic transmission Syt13 NM_030725 827 ± 146 241 ± 261 7,1 vesicle-mediated transport Vamp1 </td <td>Snap25 3</td> <td>NM_011428</td> <td>5014 ± 2854</td> <td>172 ± 234</td> <td>20,4</td> <td>neurotransmitter transport, synaptic transmission</td>	Snap25 3	NM_011428	5014 ± 2854	172 ± 234	20,4	neurotransmitter transport, synaptic transmission
Snca 2 NM_009221 1658 ± 195 56 ± 25 23,3 regulation of neurotransmitter secretion Sncb 1 NM_033610 4136 ± 1221 850 ± 129 4,3 negative regulation of neuron apoptosis Stx1a $^{4.5}$ NM_016801 2330 ± 1460 360 ± 21 3,9 neurotransmitter transport, synaptic transmission Stxbp1 6 NM_009295 454 ± 95 28 ± 4 7,3 vesicle-mediated transport, vesicle docking Sv2a NM_022030 2916 ± 729 683 ± 19 3,6 neurotransmitter transport, synaptic transmission Syn1 NM_013680 2206 ± 852 705 ± 90 3,4 neurotransmitter secretion Syn2 6 NM_013681 813 ± 160 207 ± 101 6,9 neurotransmitter secretion Syngr1 NM_009303 5242 ± 1354 551 ± 3 6,7 protein targeting, transport Syp NM_009305 2982 ± 486 791 ± 155 6,6 transport, endocytosis, synaptic transmission Syt13 NM_030725 827 ± 146 241 ± 261 7,1 vesicle-mediated transport Vamp1 </td <td>Snap91 3</td> <td>NM_013669</td> <td>1496 ± 928</td> <td>31 ± 28</td> <td>23,7</td> <td>clathrin coat assembly</td>	Snap91 3	NM_013669	1496 ± 928	31 ± 28	23,7	clathrin coat assembly
$Stx1a$ $^{4.5}$ NM_016801 2330 ± 1460 360 ± 21 3.9 neurotransmitter transport, synaptic transmission $Stxbp1$ 6 NM_009295 454 ± 95 28 ± 4 7.3 vesicle-mediated transport, vesicle docking $Sv2a$ NM_022030 2916 ± 729 683 ± 19 3.6 neurotransmitter transport, synaptic transmission $Syn1$ NM_013680 2206 ± 852 705 ± 90 3.4 neurotransmitter secretion $Syn2$ 6 NM_013681 813 ± 160 207 ± 101 6.9 neurotransmitter secretion $Syngr1$ NM_009303 5242 ± 1354 551 ± 3 6.7 protein targeting, transport Syp NM_009305 2982 ± 486 791 ± 155 6.6 transport, endocytosis, synaptic transmission $Syt11$ $^{1.6}$ NM_018804 886 ± 271 116 ± 99 5.0 transport $Syt13$ NM_030725 827 ± 146 241 ± 261 7.1 vesicle-mediated transport $Vamp1$ NM_009496 1247 ± 561 105 ± 81 <td></td> <td>NM_009221</td> <td>1658 ± 195</td> <td>56 ± 25</td> <td>23,3</td> <td>regulation of neurotransmitter secretion</td>		NM_009221	1658 ± 195	56 ± 25	23,3	regulation of neurotransmitter secretion
Stxbp1 6 NM_009295 454 ± 95 28 ± 4 7,3 vesicle-mediated transport, vesicle docking Sv2a NM_022030 2916 ± 729 683 ± 19 3,6 neurotransmitter transport, synaptic transmission Syn1 NM_013680 2206 ± 852 705 ± 90 3,4 neurotransmitter secretion Syn2 6 NM_013681 813 ± 160 207 ± 101 6,9 neurotransmitter secretion Syngr1 NM_009303 5242 ± 1354 551 ± 3 6,7 protein targeting, transport Syp NM_009305 2982 ± 486 791 ± 155 6,6 transport, endocytosis, synaptic transmission Syt11 $^{1.6}$ NM_018804 886 ± 271 116 ± 99 5,0 transport Syt13 NM_030725 827 ± 146 241 ± 261 7,1 vesicle-mediated transport Vamp1 NM_009496 1247 ± 561 105 ± 81 $9,4$ vesicle-mediated transport	Sncb ¹	NM_033610	4136 ± 1221	850 ± 129	4,3	negative regulation of neuron apoptosis
Sv2a NM_022030 2916 ± 729 683 ± 19 3,6 neurotransmitter transport, synaptic transmission Syn1 NM_013680 2206 ± 852 705 ± 90 3,4 neurotransmitter secretion Syn2 ⁶ NM_013681 813 ± 160 207 ± 101 $6,9$ neurotransmitter secretion Syngr1 NM_009303 5242 ± 1354 551 ± 3 $6,7$ protein targeting, transport Syp NM_009305 2982 ± 486 791 ± 155 $6,6$ transport, endocytosis, synaptic transmission Syt11 ^{1.6} NM_018804 886 ± 271 116 ± 99 $5,0$ transport Syt13 NM_030725 827 ± 146 241 ± 261 $7,1$ vesicle-mediated transport Vamp1 NM_009496 1247 ± 561 105 ± 81 $9,4$ vesicle-mediated transport	Stx1a ^{4,5}	NM_016801	2330 ± 1460	360 ± 21	3,9	neurotransmitter transport, synaptic transmission
Sv2a NM_022030 2916 ± 729 683 ± 19 3,6 neurotransmitter transport, synaptic transmission Syn1 NM_013680 2206 ± 852 705 ± 90 3,4 neurotransmitter secretion Syn2 ⁶ NM_013681 813 ± 160 207 ± 101 $6,9$ neurotransmitter secretion Syngr1 NM_009303 5242 ± 1354 551 ± 3 $6,7$ protein targeting, transport Syp NM_009305 2982 ± 486 791 ± 155 $6,6$ transport, endocytosis, synaptic transmission Syt11 ^{1.6} NM_018804 886 ± 271 116 ± 99 $5,0$ transport Syt13 NM_030725 827 ± 146 241 ± 261 $7,1$ vesicle-mediated transport Vamp1 NM_009496 1247 ± 561 105 ± 81 $9,4$ vesicle-mediated transport	Stxbp1 ⁶	NM_009295	454 ± 95	28 ± 4	7,3	vesicle-mediated transport, vesicle docking
Syn2 6 NM_013681 813 ± 160 207 ± 101 6,9 neurotransmitter secretion Syngr1 NM_009303 5242 ± 1354 551 ± 3 6,7 protein targeting, transport Syp NM_009305 2982 ± 486 791 ± 155 6,6 transport, endocytosis, synaptic transmission Syt11 $^{1.6}$ NM_018804 886 ± 271 116 ± 99 5,0 transport Syt13 NM_030725 827 ± 146 241 ± 261 7,1 vesicle-mediated transport Vamp1 NM_009496 1247 ± 561 105 ± 81 9,4 vesicle-mediated transport		NM_022030	2916 ± 729	683 ± 19	3,6	neurotransmitter transport, synaptic transmission
Syngr1 NM_009303 5242 ± 1354 551 ± 3 $6,7$ protein targeting, transport Syp NM_009305 2982 ± 486 791 ± 155 $6,6$ transport, endocytosis, synaptic transmission Syt11 ^{1,6} NM_018804 886 ± 271 116 ± 99 $5,0$ transport Syt13 NM_030725 827 ± 146 241 ± 261 $7,1$ vesicle-mediated transport Vamp1 NM_009496 1247 ± 561 105 ± 81 $9,4$ vesicle-mediated transport	Syn1	NM_013680	2206 ± 852	705 ± 90	3,4	neurotransmitter secretion
Syp NM_009305 2982 ± 486 791 ± 155 6,6 transport, endocytosis, synaptic transmission Syt11 ^{1,6} NM_018804 886 ± 271 116 ± 99 5,0 transport Syt13 NM_030725 827 ± 146 241 ± 261 7,1 vesicle-mediated transport Vamp1 NM_009496 1247 ± 561 105 ± 81 9,4 vesicle-mediated transport	Syn2 ⁶	NM_013681	813 ± 160	207 ± 101	6,9	neurotransmitter secretion
Syt11 ^{1.6} NM_018804 886 ± 271 116 ± 99 5,0 transport Syt13 NM_030725 827 ± 146 241 ± 261 7,1 vesicle-mediated transport Vamp1 NM_009496 1247 ± 561 105 ± 81 9,4 vesicle-mediated transport	Syngr1	NM_009303	5242 ± 1354	551 ± 3	6,7	protein targeting, transport
Syt13 NM_030725 827 \pm 146 241 \pm 261 7,1 vesicle-mediated transport Vamp1 NM_009496 1247 \pm 561 105 \pm 81 9,4 vesicle-mediated transport	Syp	NM_009305	2982 ± 486	791 ± 155	6,6	transport, endocytosis, synaptic transmission
Syt13 NM_030725 827 \pm 146 241 \pm 261 7,1 vesicle-mediated transport Vamp1 NM_009496 1247 \pm 561 105 \pm 81 9,4 vesicle-mediated transport	Syt11 1,6	NM_018804	886 ± 271	116 ± 99	5,0	transport
· · · · · · · · · · · · · · · · · · ·		NM_030725	827 ± 146	241 ± 261	7,1	vesicle-mediated transport
Vamp 2 1.4 NM 009497 2351 + 668 543 + 69 3.6 regulation of synaptic vesicle exocytosis	Vamp1	NM_009496	1247 ± 561	105 ± 81	9,4	vesicle-mediated transport
vamp2 tam_odd to 2001 2000 o to 200 o to galation of cynapito vociole oxecytotic	Vamp2 1,4	NM_009497	2351 ± 668	543 ± 69	3,6	regulation of synaptic vesicle exocytosis

Mäuse wurden 13 Wochen mit einer Vitamin E-defizienten, -adäquaten oder -supplementierten Diät gefüttert. Die globalen Genexpressionsprofile der Leber von zwei Mäusen pro Gruppe wurden mit *MOE430A* Microarrays analysiert. Die mittels *GCOS*-Analyse identifizierten α-Tocopherol-abhängig exprimierten 465 *probe sets* wurden mit *EASE* funktionell geclustert.

3.1.3 Verifizierung der Expression ausgewählter Gene mittels real time PCR

Zur Verifizierung der Ergebnisse aus den Microarray-Analysen wurde die Expression einiger ausgewählter Gene (*Vamp1*, *Stx1a*, *Stxbp1*, *Nsf*, *Snap25*, *Snca*, *Calm1*, *Calm2*), die beim vesikulären Transport eine wichtige Rolle spielen, mittels *real time* PCR überprüft. Dazu wurden alle Mäuse des Versuchs in die Analyse einbezogen. Bei der Etablierung der *real time* PCR für *Stx1a* stellte sich nach der Sequenzierung des PCR-Produktes heraus, dass es sich dabei um die alternative Spleißvariante *Stx1c* handelte (Kap. 3.1.4).

Die Genexpression von *Stx1c*, *Vamp1*, *Stxbp1* und *Nsf* wurde in der murinen Leber durch α-Tocopherol hochreguliert (Abb. 4). Die Expression in der defizienten und der adäquaten Gruppe unterschied sich kaum, was in Übereinstimmung mit der Microarray-Analyse war und in Anbetracht der relativ ähnlichen α-Tocopherol-Gehalte der Leber (Abb. 3B) zu erwarten war. Beim Vergleich von defizienter mit supplementierter Gruppe erhöhte sich die Expression von *Stx1c* nach Supplementation um das 2,5-fache, von *Vamp1* um das 3,8-fache, von *Nsf* um das 1,7-fache und von *Stxbp1* um den Faktor 3,3. Aufgrund der geringen Gruppengröße

[#] Eine Liste der zugehörigen Gennamen ist dem Anhang zu entnehmen (Tab. A1).

¹ Gene sind im Cortex von *Ttpa*^{-/-} Mäusen im Vergleich zu *Ttpa*^{+/-} Mäusen herunterreguliert [93].

² Snca ist im Cortex von Ttpa^{-/-} Mäusen im Vergleich zu Ttpa^{+/+} Mäusen hochreguliert [93].

³ Gene waren nicht in den drei Genclustern aus Tab. 10 enthalten und wurden nach Literaturrecherche manuell hinzugefügt.

⁴ Bei diesen Genen wurden nicht alle stringenten Kriterien gemäß der GCOS-Analyse erfüllt.

⁵ Stx1a wurde nach Sequenzierung als Stx1c identifiziert (Kap. 3.1.4).

⁶ Für diese Gene wurde mehr als ein *probe set* reguliert gefunden.

sowie der relativ hohen Standardabweichungen innerhalb der supplementierten Gruppe war die erhöhte Expression jedoch nur für *Vamp1* und *Stxbp1* im Vergleich zur adäquat versorgten Gruppe signifikant, dahingegen waren *Stx1c* und *Nsf* knapp nicht signifikant.

Infolge der hohen Variation der Genexpression innerhalb der supplementierten Gruppe sowie der Tatsache, dass auch die α-Tocopherol-Gehalte der Leber sehr stark schwankten (Abb. 3B), wurde die relative Genexpression in Abhängigkeit von der entsprechenden α-Tocopherol-Konzentration der Leber dargestellt (Abb. 5). Ein Zusammenhang zwischen beiden wurde mittels Korrelationsanalyse überprüft. Für *Stx1c* und *Vamp1* zeigte sich ein hoch signifikanter Zusammenhang zwischen der Genexpression und dem α-Tocopherol-Gehalt der Leber, während *Nsf* knapp nicht signifikant war. Außerdem zeigten die supplementierten Mäuse aus der Microarray-Analyse bei allen vier Genen eine deutlich erhöhte Genexpression im Vergleich zu den defizienten Array-Tieren, wodurch sich die Ergebnisse aus den Microarray-Analysen direkt bestätigen ließen.

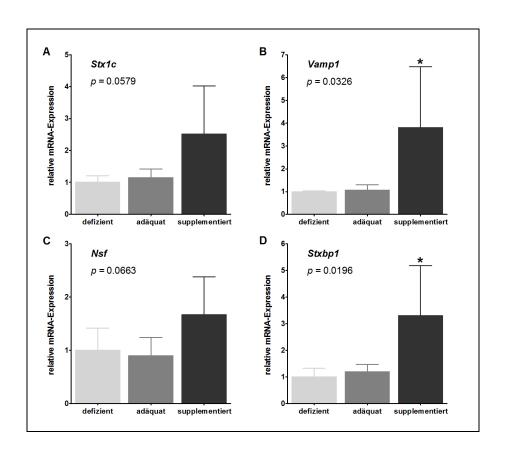


Abb. 4: Relative mRNA-Expression von Stx1c, Vamp1, Nsf und Stxbp1 in der murinen Leber in Abhängigkeit von der Diät.

In der murinen Leber wurde der Einfluss von α -Tocopherol auf die Genexpression von Stx1c (A), Vamp1 (B), Nsf (C) und Stxbp1 (D) untersucht. Dazu wurde die RNA isoliert, in cDNA umgeschrieben und die Genexpression mittels real time PCR quantifiziert. Die Expression wurde auf das Referenzgen Hprt1 normalisiert. Dargestellt sind MW \pm SD (n = 3-6). Die defiziente Gruppe wurde auf 1 gesetzt und die anderen Werte im Vergleich dazu abgebildet. Die Daten wurden mittels One Way ANOVA mit Tukey's Multiple Comparison Test analysiert. *p < 0.05 vs. adäquate Gruppe. Die Signifikanzniveaus sind angegeben.

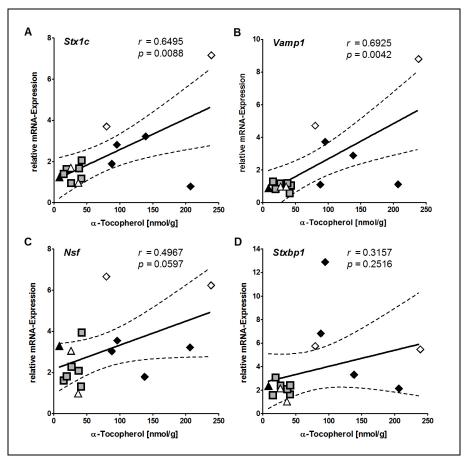
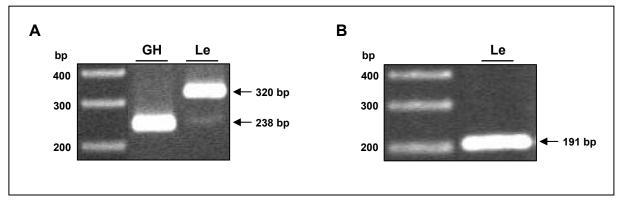


Abb. 5: Relative mRNA-Expression von *Stx1c*, *Vamp1*, *Nsf* und *Stxbp1* in der murinen Leber in Abhängigkeit vom α-Tocopherol-Gehalt der Leber.

In der murinen Leber wurde der Einfluss von α-Tocopherol auf die Genexpression von *Stx1c* (A), *Vamp1* (B), *Nsf* (C) und *Stxbp1* (D) untersucht. Die relative Genexpression der einzelnen Mäuse wurde in Abhängigkeit ihrer Leber-α-Tocopherol-Gehalte dargestellt. Die Daten wurden mittels *Pearson's Correlation* analysiert. Angegeben ist der *correlation coefficient r* sowie *p*. ▲ defiziente Gruppe; ■ adäquate Gruppe; ◆ supplementierte Gruppe; offene Symbole zeigen die mittels Microarray-Analyse untersuchten Mäuse. (—) lineare Regressionsgerade; (---) 95% Konfidenzintervall.


Eine Regulation der mRNA-Expression von Snca, Calm1 und Calm2 in der Leber durch α -Tocopherol konnte mittels real time PCR nicht bestätigt werden (Daten nicht gezeigt). Zudem konnte Snap25 in der Leber nicht detektiert werden, da es sich um ein Gen handelt, das spezifisch im Gehirn exprimiert wird.

3.1.4 Identifizierung der alternativen Spleißvariante Stx1c in der Leber

Syntaxin 1A (STX1A) wurde ursprünglich als ein spezifisch in Neuronen exprimiertes, membranverankertes Rezeptorprotein, das für die Fusion synaptischer Vesikel mit der präsynaptischen Plasmamembran notwendig ist, identifiziert [186].

Bei der PCR-Optimierung von *Stx1a* wurde das erwartete PCR-Produkt von 238 bp Länge in der Leber im Vergleich zum Großhirn, das als Positivkontrolle fungierte, nur in sehr geringen Mengen amplifiziert (Abb. 6A). Dagegen wurde ein wesentlich größeres Produkt von 320 bp amplifiziert. Nach Klonierung und Sequenzierung der beiden Produkte aus Leber und

Großhirn wurde festgestellt, dass das längere Fragment aus der Leber eine 83 bp lange Insertion enthielt. Sequenzanalysen und Datenbankrecherchen ergaben, dass es sich bei der in der Leber bevorzugt exprimierten cDNA vermutlich um eine alternative Spleißvariante von *Stx1a* handelte.

Abb. 6: Expression verschiedener Syntaxin 1A-Isoformen in Großhirn und Leber.

Dargestellt sind die Ergebnisse der PCR-Optimierung für Syntaxin unter Verwendung von synthetischen Oligonukleotiden für Stx1a (A) bzw. Stx1c (B). Die PCR-Produkte wurden zusammen mit einem Längenstandard in einem 1%igen Agarosegel aufgetrennt und mit Ethidiumbromid angefärbt. Als Matrize für die PCR diente cDNA aus Großhirn (GH) bzw. Leber (Le) der Maus, wobei GH als Positivkontrolle fungierte.

Bereits 1997 konnte aus einer humanen Fettzell-cDNA-Bibliothek ein neuer *STX1A*-Klon identifiziert werden, der eine 91 bp-Insertion in Codon 226 enthielt, wodurch aufgrund einer Verschiebung im Leseraster eine cDNA erzeugt wurde, die für ein trunkiertes Protein kodierte [187]. Diesem fehlte die für die Syntaxinfamilie charakteristische C-terminale Transmembrandomäne sowie die für STX1A spezifische *Botulinum neurotoxin C* Schnittstelle (Lys²⁵³-Ala²⁵⁴). Es wurde angenommen, dass diese neue als Syntaxin 1C (STX1C) bezeichnete Isoform durch alternatives Spleißen entstanden ist.

Beim Sequenzvergleich der 320 bp-Sequenz aus der Leber mittels *Basic Local Alignment Search Tool* (NCBI/BLAST) wurden zwei GenBank-Einträge (BC057892, AK144399) gefunden, deren Nukleotidsequenzen zu 99% identisch waren. Beim weiteren Vergleich der Nukleotidsequenzen der Transkripte aus Gehirn (NM_016801) und Leber (BC057892) zeigte sich, dass sie bis auf die 83 bp-Insertion in Exon 9 identisch waren (Abb. 7). Diese Insertion in Codon 226 erzeugte eine cDNA, die infolge einer Leserasterverschiebung für ein trunkiertes Protein (256 AS) kodierte. Diesem fehlte analog zur humanen STX1C Isoform die C-terminale Transmembrandomäne sowie die *Botulinum neurotoxin C* Schnittstelle (Lys²⁶⁰-Ala²⁶¹). Dagegen kodierte die *Stx1a*-mRNA ein um 32 AS längeres Protein (288 AS). Beide Proteinsequenzen waren bis zur 226. Aminosäure identisch.

Der Vergleich der Proteinsequenzen der humanen STX1C-lsoform (BAC78519) mit der murinen Isoform aus der Leber ergab eine Übereinstimmung von 94% innerhalb der ersten 247 AS. Aufgrund dieser Tatsache wurde die murine Syntaxin-Isoform in der murinen Leber in der Folge als *Stx1c* bezeichnet.

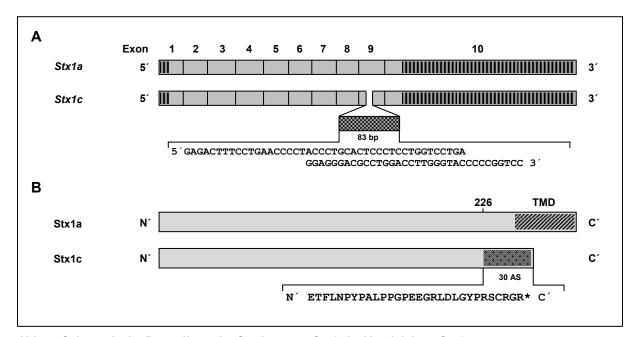


Abb. 7: Schematische Darstellung der Struktur von Stx1c im Vergleich zu Stx1a.

Dargestellt ist (A) die mRNA-Struktur mit Lokalisation und DNA-Sequenz der 83 bp Insertion in Exon 9 der Stx1c-Isoform sowie (B) die Proteinstruktur mit der veränderten Aminosäuresequenz ab AS 226 infolge der Leserasterverschiebung. TMD, Transmembrandomäne; * Stoppcodon.

Da das *probe set* auf dem Microarray in der 3'UTR der mRNA von *Stx1a* liegt, war keine Unterscheidung zwischen den beiden Isoformen möglich. Zur Analyse der Genexpression von *Stx1c* in der Leber wurde ein neuer *reverse primer* verwendet, der in der 83 bp-Insertion lag und zusammen mit dem *forward primer* ein Produkt von 191 bp amplifizierte (Abb. 6B).

3.2 Funktionelle *in vitro* Versuche zur Überprüfung eines funktionellen Einflusses von α-Tocopherol auf vesikuläre Transportvorgänge

Die vorangegangenen Microarray-Analysen wiesen auf einen Einfluss von α-Tocopherol auf zelluläre Transportprozesse hin. Durch *real time* PCR-Analysen konnte bestätigt werden, dass α-Tocopherol in der Leber von Mäusen zu einer Steigerung der Genexpression von Vertretern der vesikulären Fusionsmaschinerie führte. Um nun zu klären, ob es sich dabei um einen funktionellen Einfluss von α-Tocopherol auf vesikuläre Transportvorgänge handelt, die letztlich in einer Steigerung der zellulären Exocytose enden, wurden funktionelle *in vitro* Studien durchgeführt. Zu diesem Zweck wurde die Mastzelllinie RBL-2H3 aus der Ratte verwendet. Sie stellt ein etabliertes Modell zur Untersuchung der regulierten Exocytose dar [182]. Die Zellen besitzen sekretorische Granula, die nach Stimulation mit der Plasmamembran verschmelzen und ihren Inhalt sezernieren.

Bevor der funktionelle Einfluss von α -Tocopherol auf die Exocytose untersucht werden konnte, musste zunächst die Vitamin E-Aufnahme in die Zellen sowie der Einfluss von α -Tocopherol auf die Zellvitalität überprüft werden.

3.2.1 Aufnahme von Vitamin E in RBL-2H3 Zellen

Zur Untersuchung der Vitamin E-Aufnahme in RBL-2H3 Zellen wurden diese mit unterschiedlichen Konzentrationen α -Tocopherol bzw. β -Tocopherol für verschiedene Zeitpunkte inkubiert und der Vitamin E-Gehalt der Zellen mittels HPLC bestimmt.

Sowohl die steigende Vitamin E-Konzentration im Medium sowie die Erhöhung der Inkubationszeit führten zu einem deutlichen Anstieg der Vitamin E-Konzentration in den Zellen (Abb. 8). Im Vergleich der beiden Vitamin E-Formen zeigte sich eine ähnliche Aufnahmerate für α - und β -Tocopherol. Der Vitamin E-Gehalt der Kontrollzellen lag stets unterhalb der Nachweisgrenze. Dies zeigt, dass die Zellen initial Vitamin E-defizient waren.

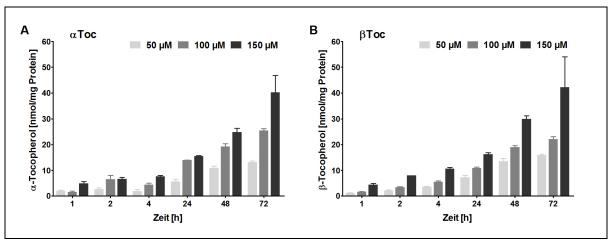


Abb. 8: Aufnahme von Vitamin E in RBL-2H3 Zellen.

Die Aufnahme von α -Tocopherol (A) bzw. β -Tocopherol (B) in RBL-2H3 Zellen wurde untersucht. Dazu wurden die Zellen in Duplikaten in 6-Loch-Platten ausgesät und für die angegebenen Zeitpunkte mit 50, 100 oder 150 μ M RRR- α -Tocopherol bzw. β -Tocopherol inkubiert. Kontrollzellen wurden mit der entsprechenden Menge Ethanol (Vehikel) inkubiert. Der Vitamin E-Gehalt wurde mittels HPLC bestimmt und auf den Proteingehalt der Zellen normalisiert. Dargestellt sind MW \pm SD. Da der Vitamin E-Gehalt der Kontrollzellen stets unter der Nachweisgrenze lag, wurden diese nicht abgebildet.

3.2.2 Vitamin E-Metabolismus in RBL-2H3 Zellen

Zur Untersuchung der Metabolisierung von α -Tocopherol in RBL-2H3 Zellen wurden diese für 72 h mit 100 μ M RRR- α -Tocopherol inkubiert. Anschließend wurde das Medium abgenommen und die Metabolite mittels HPLC quantifiziert und auf den Proteingehalt der Zellen normalisiert. Unter den gewählten Bedingungen konnten keine Metabolite von α -Tocopherol im Medium detektiert werden.

3.2.3 Überprüfung der Cytotoxizität von Vitamin E in RBL-2H3 Zellen

Um eine mögliche cytotoxische Wirkung von Vitamin E auf die RBL-2H3 Zellen zu untersuchen, wurde die Zellvitalität mittels MTT-Test untersucht. Dazu wurden die Zellen mit

unterschiedlichen Konzentrationen α -Tocopherol bzw. β -Tocopherol für verschiedene Zeitpunkte inkubiert und der Effekt auf die Zellen untersucht.

 α -Tocopherol führte unter keiner der gewählten Bedingungen zu einer Änderung der Zellvitalität (Abb. 9). Im Gegensatz dazu resultierte eine Behandlung der Zellen mit 100 μM β -Tocopherol nach 48 h und 72 h in einer signifikanten Abnahme der Zellvitalität auf etwa 40%. Eine Inkubation mit 25 oder 50 μM β -Tocopherol hatte keinen Einfluss auf die Zellvitalität.

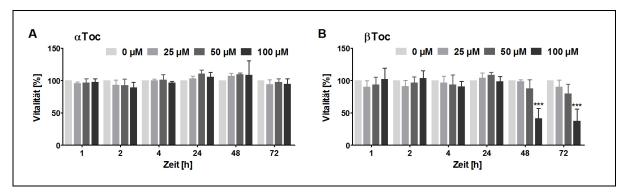
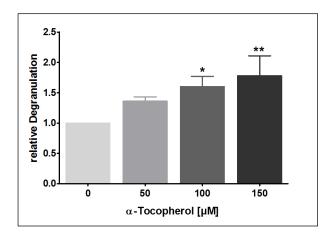



Abb. 9: MTT-Test zur Überprüfung der Cytotoxizität von Vitamin E in RBL-2H3 Zellen. Die Cytotoxizität von α -Tocopherol (A) bzw. β -Tocopherol (B) in RBL-2H3 Zellen wurde untersucht. Dazu wurden die Zellen in 96-Loch-Platten ausgesät und für die angegebenen Zeitpunkte mit 25, 50 oder 100 μ M RRR- α -Tocopherol bzw. β -Tocopherol inkubiert. Kontrollzellen wurden mit der entsprechenden Menge Ethanol (Vehikel) inkubiert. Die Zellvitalität wurde mittels MTT-Test bestimmt. Dargestellt sind MW \pm SD aus drei unabhängigen Versuchen. Die Kontrollzellen (0 μ M) wurden auf 100% gesetzt und die anderen Werte im Vergleich dazu dargestellt. Die statistische Auswertung erfolgte mit Two Way ANOVA mit Bonferroni posttest. ***p < 0,001 vs. Kontrolle.

3.2.4 Einfluss von α-Tocopherol auf die Degranulation in RBL-2H3 Zellen

Zur quantitativen Bestimmung der Exocytose in RBL-2H3 Zellen wurde der β -Hexosaminidase-Assay verwendet. Bei der β -Hexosaminidase handelt es sich um ein lysosomales Enzym, welches nach Stimulation sezerniert wird. Die Exocytose kann durch Antigen-induzierte Vernetzung der hochaffinen IgE Rezeptoren (Fc ϵ RI) oder durch direkte Stimulation mit Phorbolestern und Calciumionophoren ausgelöst werden. Für die Versuche wurde mit PMA und Ionomycin stimuliert. Die β -Hexosaminidase-Aktivität wurde colorimetrisch durch Umsatz von p-Nitrophenyl-N-acetyl- β -D-glucosaminid bestimmt. Durch den Vergleich der ins Medium freigesetzten β -Hexosaminidase mit der noch in den Zellen verbliebenen wurde die Sekretion quantifiziert.

Abb. 10 zeigt den Einfluss von α -Tocopherol auf die PMA/Ionomycin-induzierte Degranulation in RBL-2H3 Zellen. Im Vergleich zu den Kontrollzellen führte die Inkubation mit α -Tocopherol konzentrationsabhängig zu einem signifikanten Anstieg der Degranulation um den Faktor 1,4 (50 μ M), 1,6 (100 μ M) bzw. 1,8 (150 μ M).

Abb. 10: α-Tocopherol erhöht Sekretion der β-Hexosaminidase in RBL-2H3 Zellen. RBL-2H3 Zellen wurden für 72 h mit 50, 100 oder 150 μM RRR-α-Tocopherol inkubiert. Kontrollzellen (0 μM) wurden mit der entsprechenden Menge Ethanol (Vehikel) behandelt. Die Exocytose wurde mit 0,4 μM Ionomycin und 4 nM PMA für 30 min stimuliert und die Sekretion der β-Hexosaminidase ins Medium bestimmt. Die Kontrollzellen wurden auf 1 gesetzt und die mit α-Tocopherol behandelten Zellen im Vergleich dazu abgebildet. Dargestellt sind MW \pm SD aus drei unabhängigen Versuchen. Die statistische Auswertung der Daten erfolgte mit One Way ANOVA mit Bonferroni posttest. *p < 0,05; **p < 0,01 vs. Kontrolle.

3.2.5 Real time PCR-Analysen in RBL-2H3 Zellen

Nachdem gezeigt werden konnte, dass α -Tocopherol zu einer Erhöhung der PMA/Ionomycin-induzierten Sekretion der β -Hexosaminidase in RBL-2H3 Zellen führte, sollte nun untersucht werden, ob dieser Effekt auf eine transkriptionelle Regulation der Genexpression durch α -Tocopherol zurückzuführen ist.

Die Fusion von Membranvesikeln mit der Plasmamembran ist ein hochkonservierter Prozess und wird durch eine Reihe membranassoziierter Proteine, den sogenannten SNARE (*soluble N-ethylmaleimide-sensitive factor attachment protein receptor*) Proteinen, sowie eine Vielzahl regulatorischer Proteine vermittelt [188]. Diese sind auch an der Fusion der sekretorischen Granula mit der Plasmamembran während der Mastzelldegranulation beteiligt. So konnte für diverse Proteine wie Nsf (*N-ethylmaleimide sensitive fusion protein*), Cplx2 (Complexin 2), Snap23 (*synaptosomal-associated protein 23*), Stx3 und Stx4 (Syntaxin 3/4) eine wichtige Rolle bei der Exocytose von RBL-2H3 Zellen gefunden werden [180, 182, 189-193]. Daher sollte der Einfluss von α-Tocopherol auf die mRNA-Expression von einigen dieser Gene untersucht werden. Dazu wurden die RBL-2H3 Zellen für verschiedene Zeitpunkte mit 100 μM α-Tocopherol inkubiert und die Genexpression von *Nsf, Cplx2, Snap23* und *Stx3* mittels *real time* PCR analysiert. Abb. 11 zeigt, dass α-Tocopherol unter den ausgewählten Bedingungen keinen signifikanten Effekt auf die mRNA-Expression von *Nsf, Cplx2, Snap23* sowie *Stx3* hatte.

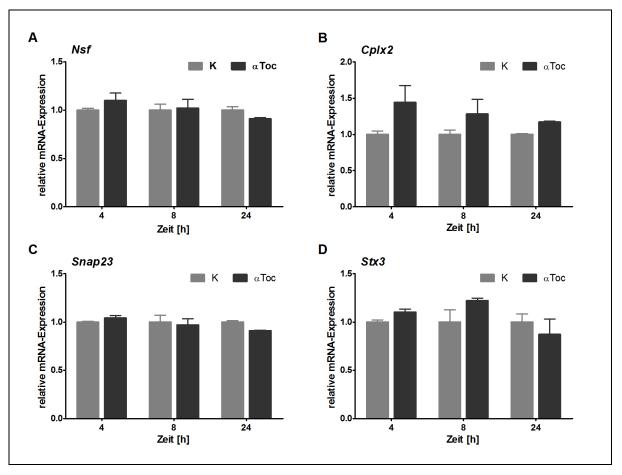


Abb. 11: Genexpressionsanalyse in RBL-2H3 Zellen.

In RBL-2H3 Zellen wurde der Einfluss von α-Tocopherol auf die Genexpression von *Nsf* (A), *Cplx2* (B), *Snap23* (C) und *Stx3* (D) untersucht. Dazu wurden die Zellen in Duplikaten in 6-Loch-Platten ausgesät, mit 100 μM *RRR*-α-Tocopherol (αToc) oder Ethanol als Vehikel-Kontrolle (K) für 4, 8 bzw. 24 h inkubiert. Anschließend wurde die RNA isoliert, in cDNA umgeschrieben und die Genexpression mittels *real time* PCR quantifiziert. Die Expression wurde auf das Referenzgen *Hprt1* normalisiert. Dargestellt sind MW ± SD aus Duplikaten. Der 4 h-Zeitpunkt der Kontrollen wurde auf 1 gesetzt und die anderen Werte im Vergleich dazu abgebildet. Die Daten wurden mittels *Two Way ANOVA* mit *Bonferroni posttest* analysiert. Es wurden keine signifikanten Unterschiede festgestellt.

3.2.6 Einfluss von Trolox auf die Exocytose in RBL-2H3 Zellen

Da kein Einfluss von α -Tocopherol auf die Expression der untersuchten Gene in RBL-2H3 Zellen festgestellt werden konnte, wurde vermutet, dass die durch α -Tocopherol gesteigerte Degranulation möglicherweise auf eine Modulation von Signaltransduktionsvorgängen an der Plasmamembran zurückzuführen ist. Aufgrund des hydrophoben Charakters von Vitamin E ist es hauptsächlich in zellulären Membranen und Lipidvesikeln lokalisiert. Dementsprechend kann angenommen werden, dass Vitamin E seine Funktionen vorwiegend an der Plasmamembran und intrazellulären Membranen ausübt.

Aus diesem Grund sollte der Einfluss von Trolox, einem hydrophilen Analogon von α -Tocopherol, auf die Degranulation in RBL-2H3 Zellen untersucht werden. Zunächst wurde die Aufnahme von Trolox in die Zellen sowie der Einfluss von Trolox auf die Zellvitalität überprüft.

3.2.6.1 Aufnahme und Cytotoxizität von Trolox in RBL-2H3 Zellen

Zur Untersuchung der Aufnahme von Trolox wurden die RBL-2H3 Zellen für verschiedene Zeitpunkte mit 100 μ M Trolox inkubiert. Die Bestimmung von Trolox in den Zellen erfolgte analog zur Bestimmung der Vitamin E-Metabolite mittels HPLC (Kap. 2.10.5). In den Zellen konnte Trolox zu allen untersuchten Zeitpunkten nur in sehr geringen Mengen detektiert werden (Abb. 12). Im Gegensatz zur Aufnahme von α - und β -Tocopherol (Abb. 8) konnte über die Zeit keine Zunahme der Trolox-Konzentration festgestellt werden. Die Aufnahme blieb konstant bei durchschnittlich etwa 2,5 nmol/mg Protein. Im Vergleich dazu lag der Vitamin E-Gehalt der Zellen nach einstündiger Inkubation mit 100 μ M α -Tocopherol bei 1,5 nmol/mg und mit 100 μ M β -Tocopherol bei 1,7 nmol/mg. In den Kontrollzellen konnte kein Trolox nachgewiesen werden (Daten nicht gezeigt).

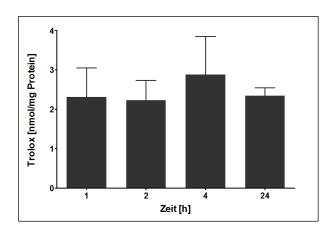


Abb. 12: Aufnahme von Trolox in RBL-2H3 Zellen. Die Zellen wurden in Duplikaten in 6-Loch-Platten ausgesät und für die angegebenen Zeitpunkte mit 100 μM Trolox inkubiert. Kontrollzellen wurden mit der entsprechenden Menge Ethanol (Vehikel) inkubiert. Der Trolox-Gehalt wurde mittels HPLC bestimmt und auf den Proteingehalt der Zellen normalisiert. Dargestellt sind MW ± SD aus drei unabhängigen Versuchen. Da der Trolox-Gehalt der Kontrollzellen stets unter der Nachweisgrenze lag, wurden diese nicht abgebildet.

Anschließend wurde die Cytotoxizität von Trolox mittels MTT-Test untersucht. Unter den gewählten Bedingungen konnte kein cytotoxischer Effekt von Trolox auf die Vitalität der RBL-2H3 Zellen festgestellt werden (Abb. 13).

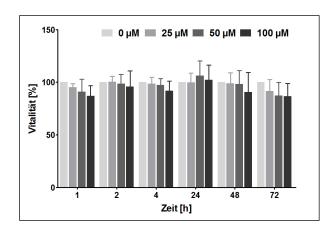


Abb. 13: MTT-Test zur Überprüfung der Cytotoxizität von Trolox in RBL-2H3 Zellen.

Die Zellen wurden in 96-Loch-Platten ausgesät und für die angegebenen Zeitpunkte mit 25, 50 oder 100 μM Trolox inkubiert. Kontrollzellen (0 μM) wurden mit der entsprechenden Menge Ethanol (Vehikel) inkubiert. Die Zellvitalität wurde mittels MTT-Test bestimmt. Dargestellt sind MW ± SD aus drei unabhängigen Versuchen. Die Kontrollzellen wurden auf 100% gesetzt und die anderen Werte im Vergleich dazu dargestellt. Die statistische Auswertung erfolgte mit *Two Way ANOVA* mit *Bonferroni posttest*. Es wurden keine signifikanten Unterschiede festgestellt.

3.2.6.2 Trolox hat keinen Einfluss auf die Degranulation in RBL-2H3 Zellen

Zusätzlich zu Trolox sollte ein möglicher Einfluss von β -Tocopherol auf die regulierte Exocytose untersucht werden. Sowohl Trolox als auch β -Tocopherol weisen ähnliche antioxidative Eigenschaften wie α -Tocopherol auf [51]. Beide Substanzen wurden in der Literatur oftmals als eine Art Negativkontrolle verwendet, um spezifische α -Tocopherol-Effekte zu untersuchen, die auf einer nicht-antioxidativen Wirkung beruhten [125, 132].

Da die Aufnahmerate von α - und β -Tocopherol sowie Trolox nach einstündiger Inkubationszeit ähnlich war (Vgl. Abb. 8 und 12), wurde dieses Zeitregime für den Versuch verwendet. Die Zellen wurden für 1 h mit 100 μ M α -Tocopherol, β -Tocopherol oder Trolox inkubiert und die Degranulation mittels β -Hexosaminidase-Assay bestimmt (Abb. 14). Sowohl α -Tocopherol als auch β -Tocopherol führten zu einer signifikanten Erhöhung der Degranulation im Vergleich zu den Kontrollzellen. Dagegen resultierte die Inkubation mit Trolox in keiner erhöhten Sekretion der β -Hexosaminidase.

Abb. 14: β-Hexosaminidase-Assay in RBL-2H3 Zellen. RBL-2H3 Zellen wurden für 1 h mit 100 μM RRR-α-Tocopherol (A), 100 μM β-Tocopherol (B) oder 100 μM Trolox (C) inkubiert. Kontrollzellen (K) wurden mit der entsprechenden Menge Ethanol behandelt. Die Exocytose wurde mit 0,4 μM Ionomycin und 4 nM PMA für die angegebenen Zeitpunkte stimuliert und die Sekretion der β-Hexosaminidase in das Medium bestimmt. Die basale Degranulation der mock stimulierten Zellen wurde abgezogen. Die Versuche wurden jeweils dreimal durchgeführt. Dargestellt sind MW ± SD eines repräsentativen Versuches. Die Daten wurden mittels zweiseitigem ungepaarten T-Test analysiert. *p < 0,05; *p < 0,01.

3.2.7 Einfluss von α -Tocopherol auf den *Lipid raft* Marker G_{M1}

Die Plasmamembran eukaryotischer Zellen ist lateral in Membranmikrodomänen (*Lipid rafts*) organisiert, die mit Cholesterol und Glycosphingolipiden angereichert sind [194]. Für eine Vielzahl von Proteinen konnte eine spezifische Assoziation mit diesen Membranmikrodomänen gezeigt werden. Dabei handelte es sich hauptsächlich um Proteine, die in Signaltransduktionsvorgänge involviert sind [195]. Daher wird ein Zusammenhang zwischen diesen Membranmikrodomänen und der Regulation der Signaltransduktion diskutiert. Für die SNARE Proteine, die die Membranfusion vermitteln, konnte bereits eine Assoziation mit *Lipid rafts* gezeigt werden [180].

In diesem Zusammenhang könnte Vitamin E die Signaltransduktion während der Mastzelldegranulation modulieren, indem es die Rekrutierung von Proteinen in diese Membranmikrodomänen beeinflusst. Daher sollte der Einfluss von α -Tocopherol auf die Verteilung von G_{M1} in Membranmikrodomänen überprüft werden. Hierbei handelt es sich um ein Gangliosid, das als *raft*-assoziiert beschrieben wurde und daher häufig als Marker für *Lipid rafts* verwendet wird [180].

Die Membranmikrodomänen können aufgrund ihrer geringen Dichte sowie ihrer Unlöslichkeit in kalten, nicht-ionischen Detergenzien isoliert werden. RBL-2H3 Zellen wurden nach Inkubation mit α -Tocopherol bzw. Ethanol (Kontrolle) in 1% Triton X-100 solubilisiert und anschließend mittels Sucrosedichtegradientenzentrifugation fraktioniert. Die zwölf Fraktionen wurden dann hinsichtlich ihres G_{M1} -Gehaltes mittels Dot Blot überprüft. Abb. 15 zeigt die Verteilung von G_{M1} in den Membranfraktionen. α -Tocopherol hatte einen deutlichen Einfluss auf die Verteilung von G_{M1} im Vergleich zu den mit Ethanol behandelten Kontrollzellen. G_{M1} lag fast ausschließlich in den Fraktionen 4-8 vor, während es in den Kontrollen auch in den hinteren Fraktionen (9-12) zu finden war.

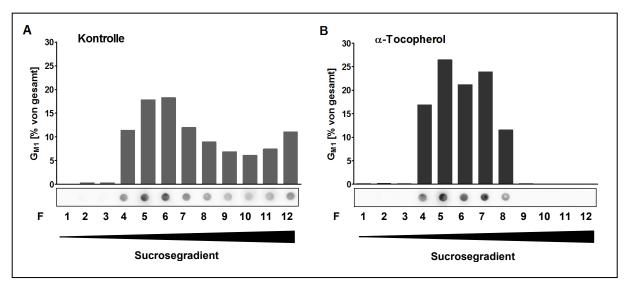


Abb. 15: Analyse der Verteilung von G_{M1}.

RBL-2H3 Zellen wurden für 24 h mit Ethanol (A) oder 100 μ M RRR- α -Tocopherol (B) inkubiert. Anschließend wurden sie in 1% Triton X-100 solubilisiert und auf einem diskontinuierlichen Sucrosedichtegradienten fraktioniert. Es wurden 12 Fraktionen (F) abgenommen. Zur Bestimmung von G_{M1} wurden gleiche Volumina jeder Fraktion mittels Dot Blot auf eine Nitrocellulosemembran aufgetragen und mit CTB-HRP zur Markierung des Gangliosids G_{M1} inkubiert. Anschließend erfolgte eine densitometrische Auswertung. Die Verteilung von G_{M1} ist dargestellt in % jeder Fraktion vom Gesamtgehalt. Der Versuch wurde dreimal durchgeführt. Dargestellt ist ein repräsentatives Experiment.

3.3 Die *Ttpa* Knockout-Maus als genetisches Modell für Vitamin E-Defizienz

Zur weiteren Untersuchung der genregulatorischen Funktionen von RRR- α -Tocopherol sowie der Funktion des α -Tocopheroltransferproteins (Ttpa) wurde ein zweiter Tierversuch unter Verwendung der Ttpa Knockout-Maus [91] als genetisches Modell für Vitamin E-Defizienz durchgeführt (Kap. 2.4.2). Männliche und weibliche $Ttpa^{+/+}$, $Ttpa^{+/-}$, $Ttpa^{-/-}$ Mäuse (n = 10-15) wurden 16 Wochen mit einer Vitamin E-supplementierten (103,82 ± 43,88 mg RRR- α -Tocopherylacetat/kg Futter) oder defizienten (0,606 ± 0,264 mg RRR- α -Tocopherylacetat/kg Futter) Diät gefüttert. Nach 9 und 12 Wochen erfolgte eine retroorbitale Blutentnahme. Am Versuchsende wurden die Tiere getötet und die Organe entnommen. Die Mäuse zeigten keine Anzeichen von Ataxie, ein klassisches Symptom der Vitamin E-Defizienz.

3.3.1 Gewichtsentwicklung der Mäuse

Die Mäuse wurden wöchentlich gewogen und der Futterverbrauch bestimmt. Innerhalb der drei Genotypen gab es weder bei den weiblichen noch bei den männlichen Mäusen signifikante Unterschiede in der Gewichtsentwicklung in Abhängigkeit von der Diät. Im Gegensatz dazu ergab der Vergleich der männlichen $Ttpa^{+/+}$ und $Ttpa^{-/-}$ Mäuse signifikante Unterschiede in der Gewichtsentwicklung (Abb. 16). Die $Ttpa^{-/-}$ Mäuse wiesen unabhängig von der Diät zu allen Zeitpunkten ein höheres Gewicht auf. Dies korrelierte mit einer ebenfalls erhöhten Futteraufnahme, die besonders bei Fütterung der defizienten Diät hoch signifikant war (p < 0,001). Dagegen waren bei den weiblichen Mäusen diesbezüglich keine signifikanten Unterschiede festzustellen (Daten nicht gezeigt).

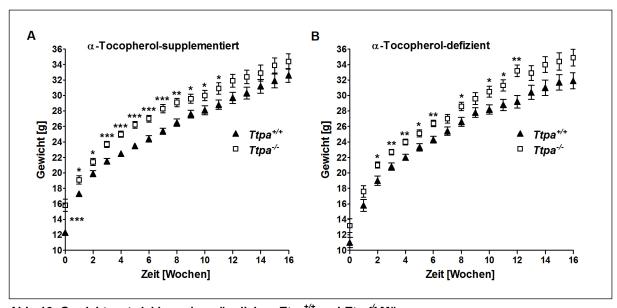


Abb. 16: Gewichtsentwicklung der männlichen $Ttpa^{+/+}$ und $Ttpa^{-/-}$ Mäuse. Die Gewichtsverläufe der männlichen $Ttpa^{+/+}$ und $Ttpa^{-/-}$ Mäuse der α -Tocopherol-supplementierten (A) bzw. -defizienten (B) Fütterungsgruppen wurden miteinander verglichen. Dargestellt sind MW \pm SD (n = 11-15). Die statistische Auswertung erfolgte mittels zweiseitigem ungepaarten T-Test. *p < 0,05; **p < 0,01; ***p < 0,001.

3.3.2 Ttpa Genexpression in der Leber

Die Bestimmung der Genotypen ($Ttpa^{+/+}$, $Ttpa^{+/-}$, $Ttpa^{-/-}$) erfolgte initial mittels PCR auf genomischer DNA. Nach Beendigung des Tierversuches wurde die Expression des Ttpa in der Leber sowohl auf mRNA-Ebene mittels real time PCR als auch auf Proteinebene mittels Western Blot überprüft. Zudem sollte ein möglicher Einfluss des α-Tocopherols auf die Ttpa mRNA-Expression untersucht werden.

Sowohl bei den männlichen als auch bei den weiblichen Mäusen (Abb. 17) war zu sehen, dass die *Ttpa* mRNA-Expression in der Leber bei den heterozygoten Mäusen ($Ttpa^{+/-}$) im Vergleich zu den Wildtyp-Mäusen ($Ttpa^{+/-}$) auf etwa 50% reduziert war. In den Knockout-Tieren ($Ttpa^{-/-}$) war dagegen erwartungsgemäß keine Ttpa mRNA zu detektieren.

Des Weiteren konnte beim Vergleich der defizienten mit den supplementierten Fütterungsgruppen weder bei den männlichen noch bei den weiblichen Mäusen ein Einfluss von α -Tocopherol auf die Genexpression des *Ttpa* in der Leber gezeigt werden.

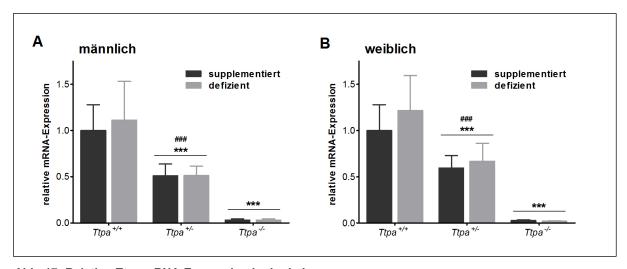
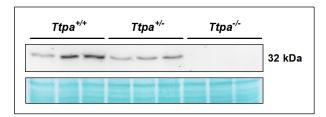



Abb. 17: Relative *Ttpa* mRNA-Expression in der Leber.

Die Ttpa Expression wurde in männlichen (A) und weiblichen (B) Mäusen bestimmt. Dazu wurde aus der Leber die Gesamt-RNA isoliert, die mRNA in cDNA umgeschrieben und die Ttpa Expression mittels real time PCR quantifiziert. Die Genexpression wurde auf das Referenzgen Hprt1 normalisiert. Dargestellt sind MW \pm SD. Der MW der supplementierten $Ttpa^{+/+}$ Gruppe wurde auf 1 gesetzt und die anderen Werte im Verhältnis dazu abgebildet. Die Daten wurden mittels Two Way ANOVA mit Bonferroni posttest analysiert. ***p < 0,001 vs. $Ttpa^{+/+}$; ***p < 0,001 vs. $Ttpa^{-/-}$.

Das auf mRNA-Ebene gesehene Expressionsmuster spiegelte sich auch auf der Proteinebene wider (Abb. 18). In *Ttpa*^{-/-} Mäusen konnte kein Ttpa detektiert werden, während in den *Ttpa*^{+/-} und *Ttpa*^{+/-} Tieren das Ttpa deutlich bei 32 kDa zu sehen war.

Abb. 18: *Ttpa* **Protein-Expression in der Leber.** Von jeweils drei männlichen *Ttpa**/-, *Ttpa**/- und *Ttpa**/- Mäusen wurden Proteinextrakte aus der Leber hergestellt. Jeweils 100 μg Protein wurden mittels SDS-PAGE (12,5%) aufgetrennt. Der spezifische Nachweis des Ttpa erfolgte mittels Western Blot. Unten ist der Blot nach Färbung mit Fast Green zu sehen.

3.3.3 Ttpa Gewebsverteilung

Als nächstes wurde die Gewebsverteilung des *Ttpa* auf mRNA-Ebene untersucht. Dazu wurde von sechs männlichen *Ttpa*^{+/+} Mäusen RNA aus verschiedenen Geweben isoliert und die *Ttpa* Expression mittels *real time* PCR quantifiziert. Abb. 19 zeigt, dass *Ttpa* am stärksten in der Leber exprimiert wurde, gefolgt von Testis, Niere und Kleinhirn. Im Vergleich zur Leber betrug die Expression im Testis nur etwa 12%, in der Niere 4% und im Kleinhirn 1,5%. In allen anderen Organen machte die Expression deutlich weniger als 1% aus, wobei die Expression in der Milz am niedrigsten war.

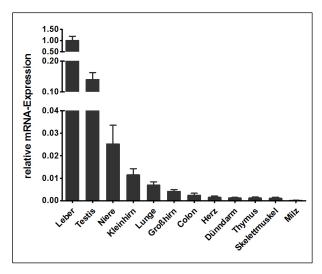


Abb. 19: *Ttpa* Gewebsverteilung in männlichen $Ttpa^{+/+}$ Mäusen.

Aus zwölf verschiedenen Organen von insgesamt männlichen Ttpa^{+/} sechs Mäusen der supplementierten Fütterungsgruppe RNA wurde isoliert, in cDNA umgeschrieben und die Ttpa Expression mittels real time PCR quantifiziert. Die Expression wurde auf das Referenzgen Hprt1 normalisiert. Dargestellt sind MW ± SD. Die *Ttpa* Expression der Leber wurde auf 1 gesetzt und die anderen Organe im Verhältnis dazu abgebildet.

Aufgrund der insgesamt sehr niedrigen Genexpression des *Ttpa* in den extrahepatischen Geweben war eine Detektion des *Ttpa* auf Proteinebene mittels Western Blot nicht möglich.

3.3.4 Bestimmung der α-Tocopherol-Gehalte

Nachdem der Status der Mäuse hinsichtlich der *Ttpa* Genexpression in der Leber überprüft worden war, wurden im Anschluss zur weiteren Charakterisierung der Mäuse nun die α -Tocopherol-Gehalte im Plasma und in verschiedenen Organen mittels HPLC bestimmt. Neben dem Effekt der Fütterung der Vitamin E-defizienten bzw. -supplementierten Diät sollte weiterhin der Einfluss des *Ttpa* Genotyps auf die α -Tocopherol-Gehalte überprüft werden. Ein Vergleich der α -Tocopherol-Konzentrationen der männlichen und weiblichen Mäuse sollte mögliche geschlechtsspezifische Unterschiede aufdecken. Eine Zusammenfassung aller α -Tocopherol-Gehalte unter Angabe der Anzahl der für die Vitamin E-Analyse verwendeten Tiere sowie die vollständige statistische Analyse sind dem Anhang zu entnehmen (Tab. A2/3).

3.3.4.1 α-Tocopherol-Gehalte im Plasma

Weder bei den männlichen noch bei den weiblichen Mäusen war eine signifikante Änderung der α-Tocopherol-Gehalte über die Zeit zu beobachten (Abb. 20). Die Fütterung der supplementierten Diät resultierte in einer deutlichen Erhöhung der α-Tocopherol-Gehalte. Dieser Anstieg war allerdings für die männlichen *Ttpa*-/- Mäuse nicht signifikant. Des Weiteren konnte man innerhalb der supplementierten Gruppen ebenfalls einen Einfluss des *Ttpa* Genotyps auf die α-Tocopherol-Gehalte erkennen. In den *Ttpa*-/- Mäusen und besonders in den *Ttpa*-/- Mäusen war eine deutliche Abnahme zu beobachten. So betrugen die α-Tocopherol-Gehalte in den *Ttpa*-/- Mäusen im Vergleich zu den *Ttpa*-/- Mäusen nur noch zwischen 17-20% bei den Männchen und 25-29% bei den Weibchen. Im Gegensatz dazu hatte der *Ttpa* Genotyp innerhalb der defizienten Gruppen keinen signifikanten Einfluss auf die α-Tocopherol-Gehalte. Ebensowenig waren geschlechtsspezifische Unterschiede beim Vergleich von männlichen und weiblichen Mäusen zu beobachten.

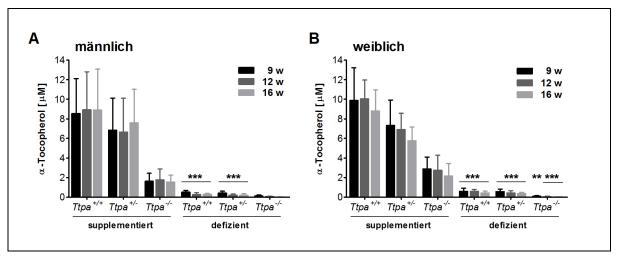
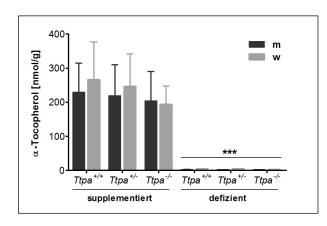



Abb. 20: α-Tocopherol-Konzentration im Plasma.

Männliche (A) und weibliche (B) Mäuse wurden 16 Wochen mit einer α-Tocopherol-defizienten oder -supplementierten Diät gefüttert. Nach 9, 12 und 16 Wochen (w) erfolgte die retroorbitale Blutentnahme. Die α-Tocopherol-Gehalte im Plasma wurden mittels HPLC bestimmt. Dargestellt sind MW \pm SD. Die Daten wurden mittels *Two Way ANOVA* mit *Bonferroni posttest* analysiert. Eine vollständige Übersicht der statistischen Auswertung ist dem Anhang zu entnehmen (Tab. A3). **p < 0,01; ***p < 0,001 defiziente vs. supplementierte Gruppe.

3.3.4.2 α -Tocopherol-Gehalte in der Leber

Sowohl bei den männlichen als auch bei den weiblichen Mäusen führte die supplementierte Diät zu einem deutlichen Anstieg der α -Tocopherol-Gehalte (Abb. 21). Diese waren etwa um den Faktor 100 gegenüber den defizienten Mäusen erhöht. Innerhalb der supplementierten und defizienten Fütterungsgruppen gab es zwischen den verschiedenen Genotypen keine signifikanten Unterschiede im α -Tocopherol-Gehalt. Auch im Vergleich der männlichen und weiblichen Gruppen waren keine geschlechtsspezifischen Unterschiede in den α -Tocopherol-Gehalte zu beobachten.

Abb. 21: α-Tocopherol-Konzentration in der Leber. Männliche (m) und weibliche (w) Mäuse wurden 16 Wochen mit einer α-Tocopherol-defizienten oder -supplementierten Diät gefüttert. Die α-Tocopherol-Gehalte wurden mittels HPLC bestimmt. Dargestellt sind MW \pm SD. Die Daten wurden mittels Two Way ANOVA mit Bonferroni posttest analysiert. Eine vollständige Übersicht der statistischen Auswertung ist dem Anhang zu entnehmen (Tab. A3). ***p < 0,001 defiziente vs. supplementierte Gruppe.

3.3.4.3 α-Tocopherol-Gehalte in Großhirn und Kleinhirn

Im Vergleich der männlichen und weiblichen Mäuse gab es keine geschlechtsspezifischen Unterschiede in den α -Tocopherol-Gehalten (Abb. 22). Die Fütterung der supplementierten Diät führte zu einer Erhöhung der α -Tocopherol-Gehalte sowohl im Großhirn als auch im Kleinhirn. Dieser Anstieg war allerdings für die $Ttpa^{-/-}$ Mäuse nicht signifikant. Innerhalb der supplementierten Gruppen hatte der Genotyp einen hoch signifikanten Einfluss. So betrugen die α -Tocopherol-Gehalte im Vergleich zu den $Ttpa^{+/-}$ Mäusen nur noch 52-69% in den $Ttpa^{+/-}$ Mäusen und 6-10% in den $Ttpa^{-/-}$ Mäusen. Innerhalb der defizienten Gruppen waren die α -Tocopherol-Gehalte in den $Ttpa^{-/-}$ Mäusen im Vergleich zu den $Ttpa^{+/+}$ Mäusen signifikant auf 4-7% erniedrigt. Auffällig war, dass sowohl im Großhirn als auch im Kleinhirn die defizienten $Ttpa^{+/-}$ und $Ttpa^{+/-}$ Mäuse höhere α -Tocopherol-Gehalte aufwiesen als die supplementierten $Ttpa^{-/-}$ Mäuse (Kap. 3.3.4.5).

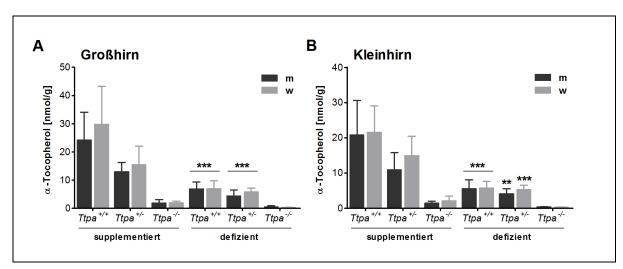


Abb. 22: α-Tocopherol-Konzentration in Großhirn und Kleinhirn.

Männliche (m) und weibliche (w) Mäuse wurden 16 Wochen mit einer α-Tocopherol-defizienten oder -supplementierten Diät gefüttert. Die α-Tocopherol-Gehalte in Großhirn (A) und Kleinhirn (B) wurden mittels HPLC bestimmt. Dargestellt sind MW \pm SD. Die Daten wurden mittels *Two Way ANOVA* mit *Bonferroni posttest* analysiert. Eine vollständige Übersicht der statistischen Auswertung ist dem Anhang zu entnehmen. (Tab. A3) *p < 0.05; **p < 0.01; ***p < 0.001 defiziente vs. supplementierte Gruppe.

3.3.4.4 α -Tocopherol-Gehalte in Herz, Skelettmuskel, Lunge und Niere

Beim Vergleich der zwei Diäten wiesen die supplementierten Mäuse signifikant höhere α-Tocopherol-Gehalte in Herz, Skelettmuskel, Lunge und Niere auf (Abb. 23). Innerhalb der supplementierten Gruppe gab es hinsichtlich der Genotypen signifikante Unterschiede, die in einer Abnahme der α-Tocopherol-Konzentration in den *Ttpa*^{+/-} und *Ttpa*^{-/-} Tieren resultierte. Verglichen mit den *Ttpa*^{+/-} Mäusen betrugen diese in männlichen und weiblichen *Ttpa*^{-/-} Tieren nur noch etwa 43-59% im Herzen, 24-31% in der Lunge, 23-43% in der Niere und 28-41% im Skelettmuskel. Innerhalb der defizienten Gruppen waren bezüglich des Genotyps keine signifikanten Unterschiede zu beobachten. Beim Vergleich der männlichen mit den weiblichen Mäusen konnten in Niere, Lunge und Herz Unterschiede in den α-Tocopherol-Gehalten der supplementierten Gruppen festgestellt werden. Dabei wiesen die weiblichen Mäuse höhere α-Tocopherol-Gehalte auf. Besonders deutlich war dies in der Niere zu beobachten, wo die α-Tocopherol-Gehalte in den *Ttpa*^{+/-} Mäusen um 50% erhöht waren und in den *Ttpa*^{-/-} Mäusen sogar um das 2,7-Fache anstiegen.

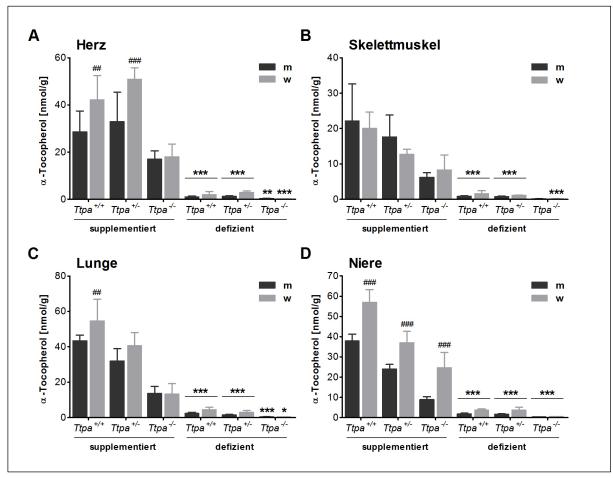


Abb. 23: α-Tocopherol-Konzentration in Herz, Skelettmuskel, Lunge und Niere. Männliche (m) und weibliche (w) Mäuse wurden 16 Wochen mit einer α-Tocopherol-defizienten oder -supplementierten Diät gefüttert. Die α-Tocopherol-Gehalte in Herz (A), Skelettmuskel (B), Lunge (C) und Niere (D) wurden mittels HPLC bestimmt. Dargestellt sind MW \pm SD. Die Daten wurden mittels Two Way ANOVA mit Bonferroni posttest analysiert. Eine vollständige Übersicht der statistischen Auswertung ist dem Anhang zu entnehmen (Tab. A3). **p < 0,01; ***p < 0,001 defiziente vs. supplementierte Gruppe. **p < 0,01; ***p < 0,001 weibliche vs. männliche Gruppe.

3.3.4.5 Vergleich der α -Tocopherol-Plasmaspiegel mit den α -Tocopherol-Gehalten in den extrahepatischen Organen

Beim Vergleich der Vitamin E-Analysen im Plasma und den extrahepatischen Organen fiel auf, dass die Abnahme der α -Tocopherol-Plasmaspiegel (Abb. 20) mit der Abnahme der α -Tocopherol-Gehalte in Herz, Skelettmuskel, Lunge und Niere (Abb. 23) korrelierte. Im Gegensatz dazu wurden im Großhirn und Kleinhirn der defizient gefütterten $Ttpa^{+/+}$ und $Ttpa^{+/-}$ Mäuse trotz geringerer α -Tocopherol-Plasmaspiegel höhere α -Tocopherol-Gehalte gefunden als in den supplementierten $Ttpa^{-/-}$ Mäusen (Abb. 22).

Daher wurden die α -Tocopherol-Gehalte von Leber, Plasma und den extrahepatischen Organen der supplementierten $Ttpa^{-/-}$ und der defizienten $Ttpa^{+/+}$ Mäuse zum besseren Vergleich zusammen abgebildet (Abb. 24).

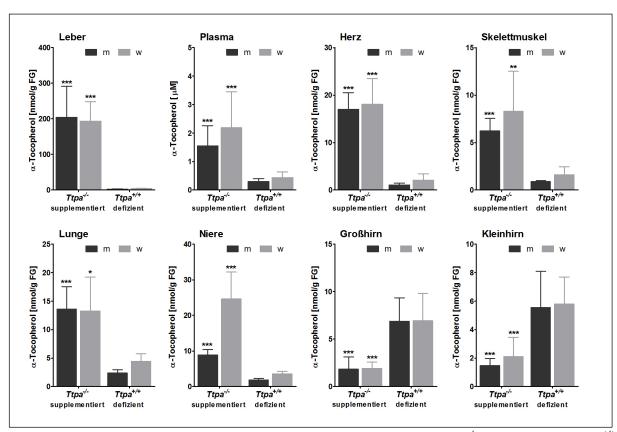


Abb. 24: Vergleich der α -Tocopherol-Gehalte zwischen supplementierten $Ttpa^{-/-}$ und defizienten $Ttpa^{-/-}$ Mäusen.

Männliche (m) und weibliche (w) Mäuse wurden 16 Wochen mit einer α-Tocopherol-defizienten oder -supplementierten Diät gefüttert und die α-Tocopherol-Gehalte mittels HPLC bestimmt. Die α-Tocopherol-Gehalte von Plasma und den extrahepatischen Organen der supplementierten $Ttpa^{-/-}$ und defizienten $Ttpa^{+/+}$ Mäuse wurden miteinander verglichen. Dargestellt sind MW ± SD. Die Daten wurden mittels zweiseitigem ungepaarten T-Test analysiert. *p < 0,05; **p < 0,01; ***p < 0,001 vs. defiziente Gruppe.

Es ist deutlich zu sehen, dass die α -Tocopherol-Gehalte von Plasma, Herz, Skelettmuskel, Lunge und Niere in den defizient gefütterten $Ttpa^{+/+}$ Mäusen im Vergleich zu den supplementierten $Ttpa^{-/-}$ Mäusen signifikant reduziert sind. Im Gegensatz dazu verhält es

sich in Großhirn und Kleinhirn genau umgekehrt. Dort sind die α -Tocopherol-Gehalte in den defizient gefütterten $Ttpa^{+/+}$ Mäusen signifikant erhöht.

3.3.5 Microarray-Analysen in Leber, Großhirn und Kleinhirn

Die Genexpressionsprofile von Leber, Großhirn und Kleinhirn der männlichen *Ttpa*^{+/+} und *Ttpa*^{-/-} Mäuse wurden mit Hilfe von Microarrays untersucht. Dazu wurde die RNA von jeweils sechs Mäusen pro Gruppe gepoolt und mit Affymetrix *NuGO_Mm1a520177* Arrays hybridisiert. Die Auswertung der Expressionsdaten erfolgte mit Hilfe der Affymetrix *GeneChip Operating Software* (Kap. 2.9.1). Tab. 12 zeigt die Ergebnisse der *GCOS Single Array* Analysen. Von den insgesamt 23.865 *probe sets* auf dem Array wurden durchschnittlich etwa 45,9% in der Leber, 54,9% im Großhirn und 52,2% im Kleinhirn detektiert.

Tab. 12: Affymetrix GCOS Single Array Analysen

Organ	Genotyp	Diät	Probe sets	present	Probe sets absent		Probe sets	Probe sets marginal	
			Anzahl	%	Anzahl	%	Anzahl	%	
Leber	Ttpa⁺′+	+ аТос	10.617	44,5	12.840	53,8	408	1,7	
	Ttpa⁻⁄-	+ aToc	11.081	46,4	12.382	51,9	402	1,7	
	Ttpa⁺′+	- αToc	10.986	46,0	12.469	52,2	410	1,7	
	Ttpa⁻⁄-	- αToc	11.150	46,7	12.272	51,4	443	1,9	
Großhirn	Ttpa⁺′+	+ aToc	13.363	56,0	10.115	42,4	387	1,6	
	Ttpa⁻⁄-	+ aToc	12.134	50,8	11.303	47,4	428	1,8	
	Ttpa⁺′+	- αToc	13.924	58,3	9.550	40,0	391	1,6	
	Ttpa⁻⁄-	- αToc	13.033	54,6	10.462	43,8	370	1,6	
Kleinhirn	Ttpa⁺′+	+ aToc	11.296	47,3	12.161	51,0	408	1,7	
	Ttpa⁻⁄-	+ aToc	13.141	55,1	10.350	43,4	374	1,6	
	Ttpa⁺′+	- αToc	12.385	51,9	11.131	46,6	349	1,5	
	Ttpa⁻′-	- αToc	12.961	54,3	10.546	44,2	358	1,5	

⁺ α Toc: α -Tocopherol-supplementiert; - α Toc: α -Tocopherol-defizient.

Die Expressionsdaten wurden mit Hilfe von *GCOS* paarweise verglichen (Tab. 13). Dabei wurde die Genexpression sowohl in Abhängigkeit von der Diät (supplementiert vs. defizient) als auch vom Genotyp (*Ttpa*^{+/+} vs. *Ttpa*^{-/-}) untersucht. Entsprechend der *GCOS* Kriterien wurden nur *probe sets*, deren Expression um einen Faktor ≥ 2 verändert war, berücksichtigt. Eine komplette Liste aller regulierten *probe sets* für die vier paarweisen Vergleiche der Leber ist dem Anhang zu entnehmen (Tab. A4-7). Für Großhirn (Tab. A8-11) und Kleinhirn (Tab. A12-15) sind jeweils die 25 *probe sets* mit dem höchsten *Fold change* im Anhang aufgelistet.

Durchschnittlich waren weniger als 1% der auf dem Array vorhandenen *probe sets* differentiell reguliert (Tab. 13). Die meisten regulierten *probe sets* (318) wurden im Kleinhirn beim Vergleich der supplementierten und defizienten *Ttpa*^{+/+} Mäuse gefunden. Verglichen damit wurden im Großhirn lediglich 78 regulierte *probe sets* identifiziert. Beim Vergleich der

defizienten *Ttpa*^{+/+} und *Ttpa*-^{-/-} Mäuse wurden in allen drei Organen mit 47 (Leber), 52 (Großhirn) und 47 (Kleinhirn) die wenigsten regulierten *probe sets* gefunden.

In der Leber konnten beim Vergleich der supplementierten und defizienten $Ttpa^{+/+}$ Mäuse insgesamt 95 probe sets (= 94 Gene) mit einem $FC \ge 2$ durch α -Tocopherol reguliert gefunden werden. Ein Vergleich mit den 465 α -Tocopherol-regulierten probe sets aus dem ersten Tierversuch (Kap. 3.1.2) ergab lediglich eine Übereinstimmung für Scd2 ($stearoyl-Coenzyme\ A\ desaturase\ 2$). Allerdings wurde Scd2 im ersten Versuch durch α -Tocopherol hochreguliert und im zweiten Versuch herunterreguliert.

Tab. 13: Affymetrix GCOS Comparison Array Analysen

Organ	Vergleich ¹	Anzahl der regulier	rten <i>Probe sets</i>		
		gesamt	in %	Increase	Decrease
Leber	wt+ vs. wt-	95	0,40	54	41
	ko+ vs. ko-	71	0,30	45	26
	wt+ vs. ko+	135	0,57	56	79
	wt- vs. ko-	47	0,20	14	33
Großhirn	wt+ vs. wt-	78	0,33	34	44
	ko+ vs. ko-	79	0,33	24	55
	wt+ vs. ko+	101	0,42	67	34
	wt- vs. ko-	52	0,22	47	5
Kleinhirn	wt+ vs. wt-	318	1,33	186	132
	ko+ vs. ko-	97	0,41	25	72
	wt+ vs. ko+	191	0,80	131	60
	wt- vs. ko-	47	0,20	25	22

wt+: *Ttpa*^{-/-} supplementiert; wt-: *Ttpa*^{-/-} defizient; ko+: *Ttpa*-/- supplementiert; ko-: *Ttpa*-/-

3.3.6 Real time PCR-Analysen in der Leber

Zur Überprüfung der aus den Microarray-Analysen hervorgegangenen Ergebnisse wurde die Expression ausgewählter Gene in der Leber mittels *real time* PCR untersucht. Darüberhinaus sollten auch bereits als durch α-Tocopherol reguliert beschriebene Gene überprüft und hinsichtlich eines Einflusses des *Ttpa* Genotyps untersucht werden.

3.3.6.1 Verifizierung der Microarray-Daten

Da die Expressionsanalysen in gepoolten RNA-Proben durchgeführt wurden, war eine Verifizierung der Ergebnisse aus den Microarray-Analysen unerlässlich. Zu diesem Zweck wurde die Expression ausgewählter Gene mittels *real time* PCR überprüft. Tab. 14 zeigt diese Gene zusammen mit den Ergebnissen aus der Microarray-Analyse und den *real time* PCR-Analysen. Von den zwölf untersuchten Genen konnten *Clps* und *Cpa1* aufgrund der zu geringen Expression in der Leber nicht mittels *real time* PCR untersucht werden. Lediglich für *Cxcl1* und *Dbp* konnte eine Änderung der Expression bestätigt werden (Abb. 25/26).

Die erstgenannte Gruppe fungierte in der GCOS Comparison Array Analyse jeweils als experimental array und die zweite Gruppe als baseline array (Kap. 2.9.1). Die Anzahl der hoch- bzw. herunterregulierten probe sets bezieht sich jeweils auf den experimental array im Vergleich zum baseline array.

Tab. 14: Ausgewählte Gene zur Überprüfung der hepatischen Genexpression mittels real time PCR.

Gen [#]	GenBank	G	Ergebnis			
		wt+ vs. wt-	ko+ vs. ko-	wt+ vs. ko+	wt- vs. ko-	real time PCR3
Amy2	NM_009669	NC	630,3	-388,0	NC	nicht verifiziert
Atf7	NM_146065	4,6	NC	NC	NC	nicht verifiziert
Clps	NM_025469	NC	32,0	-16,0	NC	nicht detektiert
Cpa1	NM_025350	NC	97,0	157,6	NC	nicht detektiert
Cxcl1	NM_008176	-1,6	2,5	-4,0	NC	verifiziert
Dbp	NM 016974	-2,8	NC	NC	2,8	verifiziert
Ela2a	_ NM 007919	NC	52,0	-27,9	NC	nicht verifiziert
Gm2a	_ NM 010299	-2,5	NC	NC	NC	nicht verifiziert
Gsta2	NM_008182	-3,0	NC	-3,0	NC	nicht verifiziert
Lgals1 ²	NM_008495	-1,4	-1,6	-1,3	-1,5	nicht verifiziert
Mgst3 ²	_ NM 025569	-1,7	-1,5	-1,6	-1,3	nicht verifiziert
Rbp1	NM_011254	-2,3	NC	-2,8	NC	nicht verifiziert

wt+: *Ttpa*^{-/-} supplementiert; wt-: *Ttpa*^{-/-} defizient; ko+: *Ttpa*-/- supplementiert; ko-: *Ttpa*-/-

Cxcl1 (chemokine (C-X-C motif) ligand 1) war laut Microarray in *Ttpa*-- Mäusen durch α-Tocopherol um den Faktor 2,5 hochreguliert. Dies konnte durch die *real time* PCR bestätigt werden (Abb. 25). Danach war die Expression in supplementierten *Ttpa*-- Mäusen im Vergleich zu den defizienten um das 3,4-fache erhöht. Laut Array wurde es zudem in supplementierten *Ttpa*-- Mäusen im Vergleich zu defizienten *Ttpa*-- Mäusen (-4,0) herunterreguliert.

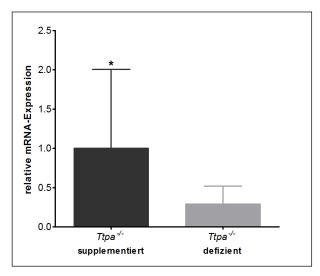
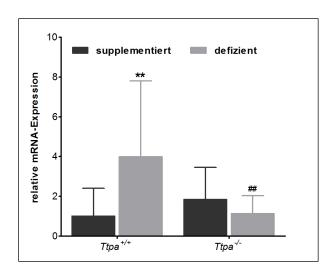


Abb. 25: Relative mRNA-Expression von *Cxcl1* in der Leber.

Die *Cxcl1* Expression wurde in männlichen *Ttpa* Mäusen bestimmt (n = 11). Dazu wurde aus der Leber die Gesamt-RNA isoliert, die mRNA in cDNA umgeschrieben und die *Cxcl1* Expression mittels *real time* PCR quantifiziert. Die Genexpression wurde auf das Referenzgen *Hprt1* normalisiert. Dargestellt sind MW \pm SD. Der MW der supplementierten *Ttpa* Gruppe wurde auf 1 gesetzt und die defiziente Gruppe im Verhältnis dazu abgebildet. Die Daten wurden mittels zweiseitigem ungepaarten T-Test analysiert. *p < 0,05.

Die Expression von *Dbp* (*D site of albumin promoter (albumin D-box) binding protein*) war laut Array-Analyse in $Ttpa^{+/+}$ Mäusen durch α -Tocopherol um den Faktor 2,8


[#] Die zugehörigen Gennamen sind dem Anhang zu entnehmen (Tab. A4-7).

¹ Die erstgenannte Gruppe fungierte in der *GCOS Comparison Array* Analyse jeweils als *experimental array* und die zweite Gruppe als *baseline array* (Kap. 2.9.1). Die angegebenen *Fold changes* (FC) beziehen sich jeweils auf den *experimental array* im Vergleich zum *baseline array*. NC: *no change*.

² Der FC dieser *probe sets* war zwar > -2, da sie aber in allen vier paarweisen Vergleichen reguliert waren, wurden sie in die *real time* PCR-Analysen eingeschlossen.

³ Für die Überprüfung der Genexpression von *Lgals1*, *Mgst3* und *Rbp1* wurden jeweils die 6 Mäuse, deren RNA für die Microarray-Analysen gepoolt worden war, verwendet. Für alle anderen Gene wurde die Analyse in 11 Mäusen pro Gruppe durchgeführt.

herunterreguliert. Beim Vergleich der defizienten Gruppen war es in *Ttpa*^{+/+} Mäusen im Vergleich zu *Ttpa*^{-/-} Mäusen um das 2,8-fache hochreguliert. Beides konnte durch die *real time* PCR bestätigt werden (Abb. 26). In den defizienten *Ttpa*^{+/+} Mäusen war die Expression 4-fach höher als in den supplementierten *Ttpa*^{+/+} Mäusen und etwa 3,5-fach höher als in den defizienten *Ttpa*^{-/-} Mäusen.

Abb. 26: Relative mRNA-Expression von *Dbp* in der Leber.

3.3.6.2 Cyp3a11

Laut Array-Analyse wurde das Cyp3a11 nur um den Faktor 1,23 in den $Ttpa^{+/+}$ Mäusen durch α -Tocopherol erhöht und schied somit, unter Berücksichtigung der GCOS-Kriterien (FC \geq 2), aus der weiteren Analyse aus. Da es jedoch bereits als durch α -Tocopherol reguliert beschrieben wurde, wurde die Expression sowohl in männlichen als auch weiblichen $Ttpa^{+/+}$ Mäusen überprüft (Abb. 27).

In den männlichen Mäusen führte die Supplementation mit α -Tocopherol zu einem signifikanten Anstieg (p = 0.035) der Cyp3a11 Expression um den Faktor 1,7. Im Gegensatz dazu war die Cyp3a11 mRNA nur geringfügig um den Faktor 1,2 in den weiblichen Mäusen erhöht. Dieser Effekt war jedoch nicht signifikant.

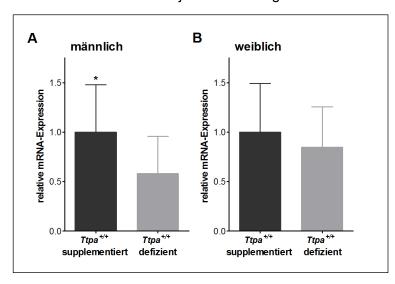
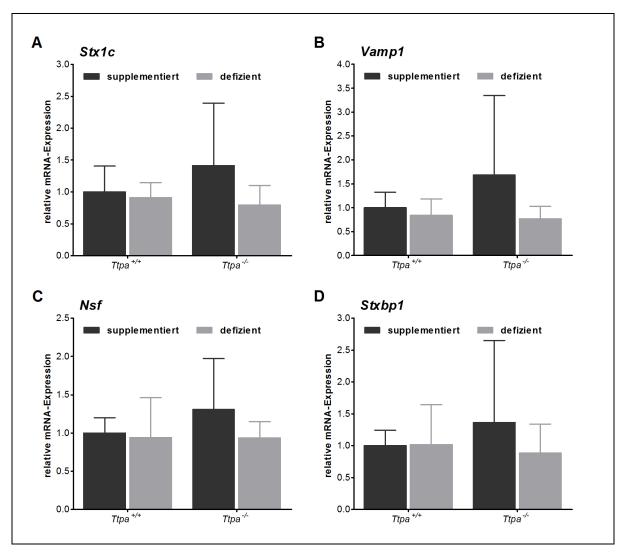



Abb. 27: Relative mRNA-Expression von *Cyp3a11* in der Leber.

Die Cyp3a11 Expression wurde in männlichen (A) und weiblichen (B) Mäusen bestimmt (n = 11). Dazu wurde aus der Leber die Gesamt-RNA isoliert, die mRNA in cDNA umgeschrieben und die Cyp3a11 Expression mittels real time PCR quantifiziert. Die Genexpression wurde auf das Referenzgen Hprt1 normalisiert. Dargestellt sind MW \pm SD. Der MW der supplementierten $Ttpa^{+/+}$ Gruppe wurde auf 1 gesetzt und die defiziente Gruppe im Verhältnis dazu abgebildet. Die Daten wurden mittels zweiseitigem ungepaarten T-Test analysiert. *p < 0.05.

3.3.6.3 Vesikelfusionsgene Stx1c, Nsf, Vamp1 und Stxbp1

Im ersten Mausversuch (Abb. 4/5) konnte gezeigt werden, dass Gene der vesikulären Fusionsmaschinerie (*Stx1c*, *Nsf*, *Vamp1*, *Stxbp1*) in der Leber durch α-Tocopherol hochreguliert wurden [176]. Laut Microarray-Analyse waren diese Gene im Vergleich der supplementierten mit den defizienten *Ttpa*^{+/+} Mäusen allerdings nicht reguliert. Diese Ergebnisse wurden mittels *real time* PCR bestätigt (Abb. 28). Zusätzlich wurden noch die *Ttpa*^{-/-} Mäuse in die Analyse miteinbezogen. Dabei zeigte sich bei allen vier Genen eine leichte Erhöhung der Expression in der defizienten *Ttpa*^{-/-} Gruppe im Vergleich zu den anderen drei Gruppen. Dieser Anstieg war allerdings nicht signifikant. Besonders auffällig sind die extrem hohen Standardabweichungen innerhalb dieser Gruppe.

Abb. 28: Relative mRNA-Expression von *Stx1c*, *Vamp1*, *Nsf* und *Stxbp1* in der Leber.

Die mRNA-Expression von *Stx1c* (A), *Vamp1* (B), *Nsf* (C) und *Stxbp1* (D) in der Leber von männlichen Mäusen wurde bestimmt (n = 6). Dazu wurde aus der Leber die RNA isoliert, in cDNA umgeschrieben und die mRNA-Expression mittels *real time* PCR quantifiziert. Die Genexpression wurde auf das Referenzgen *Hprt1* normalisiert. Dargestellt sind MW ± SD. Der MW der supplementierten *Ttpa**/+ Gruppe wurde auf 1 gesetzt und die übrigen Gruppen im Verhältnis dazu abgebildet. Die Daten wurden mittels *Two Way ANOVA* mit *Bonferroni posttest* analysiert. Es wurden keine signifikanten Unterschiede festgestellt.

3.3.6.4 Gene des Cholesterolstoffwechsels

In HepG2-Zellen konnte mittels Microarray-Analyse gezeigt werden, dass Gene des Cholesterolstoffwechsels durch α -Tocopherol hochreguliert wurden, was eine Inhibition der Cholesterolbiosynthese zur Folge hatte [175]. Keines dieser Gene wurde laut Microarray-Analyse in der Leber im Vergleich der männlichen $Ttpa^{+/+}$ Mäuse durch α -Tocopherol reguliert (Tab. 15).

Tab. 15: Effekt von α -Tocopherol auf die Expression von Genen des Lipidstoffwechsels

Genname	Symbol	GenBank	wt/+ vs. wt/-
7-dehydrocholesterol reductase	Dhcr7	NM_007856	NC
acetyl-Coenzyme A acetyltransferase 2	Acat3	NM_153151	NC
cytochrome P450, family 51	Cyp51	NM_020010	NC
farnesyl diphosphate synthetase	Fdps	NM_134469	NC
3-hydroxy-3-methylglutaryl-Coenzyme A reductase	Hmgcr	NM_008255	NC
3-hydroxy-3-methylglutaryl-Coenzyme A synthase 1	Hmgcs1	NM_145942	NC
hydroxysteroid (17-beta) dehydrogenase 7	Hsd17b7	NM_010476	NC
isopentenyl-diphosphate delta isomerase	ldi1	NM_145360	NC
lanosterol synthase	Lss	NM_146006	NC
sterol-C5-desaturase (fungal ERG3, delta-5-desaturase)	Sc5d	NM_172769	NC
low density lipoprotein receptor	LdIr	NM_010700	NC
phosphate cytidylyltransferase 2, ethanolamine	Pcyt2	NM_024229	NC
squalene epoxidase	Sqle	NM_009270	NC
farnesyl diphosphate farnesyl transferase 1	Fdft1	NM_010191	NC
stearoyl-Coenzyme A desaturase 1	Scd1	NM_009127	NC
sterol-C4-methyl oxidase-like	Sc4mol	NM_025436	NC

wt+: *Ttpa*^{+/+} supplementiert; wt-: *Ttpa*^{+/+} defizient; NC: *no change*.

Stellvertretend wurde die mRNA-Expression von *Ldlr* (*low density lipoprotein receptor*) und *Sqle* (*squalene epoxidase*) untersucht. Abb. 29 zeigt, dass α-Tocopherol keinen Einfluss auf die Expression dieser beiden Gene in der Leber hatte. Die Expression war nahezu unverändert.

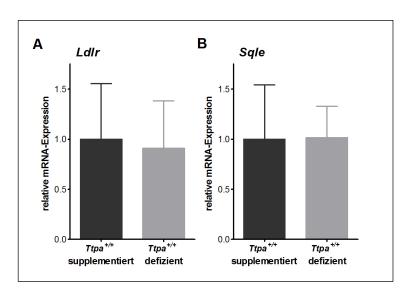


Abb. 29: Relative mRNA-Expression von *Ldlr* und *Sqle* in der Leber.

Die mRNA-Expression von *Ldlr* (A) und *Sqle* (B) in der Leber männlicher Mäuse wurde bestimmt (n = 10-11). Dazu wurde aus der Leber die Gesamt-RNA isoliert, in cDNA umgeschrieben und die mRNA-Expression mittels *real time* PCR quantifiziert. Die Genexpression wurde auf das Referenzgen *Hprt1* normalisiert. Dargestellt sind MW ± SD. Der MW der supplementierten *Ttpa*^{+/+} Gruppe wurde auf 1 gesetzt und die defiziente Gruppe im Verhältnis dazu abgebildet. Die Daten wurden mittels zweiseitigem ungepaarten T-Test analysiert. Es wurden keine signifikanten Unterschiede festgestellt.

3.3.7 Real time PCR-Analysen im Großhirn

Zur Überprüfung der aus den Microarray-Analysen hervorgegangenen Ergebnisse im Gehirn wurde die Expression von drei ausgewählten Genen im Großhirn mittels *real time* PCR untersucht (Tab. 16).

Tab. 16: Ausgewählte Gene zur Überprüfung der mRNA-Expression im Großhirn

Genname	Symbol	GenBank	GCOS Comparison Array Analysen (FC				
			wt+ vs. wt-	ko+ vs. ko-	wt+ vs. ko+	wt- vs. ko-	
endothelial differentiation, sphingolipid G-protein-coupled receptor, 8	Edg8	NM_053190	3,0	1,4	NC	-3,0	
neuronal PAS domain protein 4	Npas4	NM_153553	2,5	NC	NC	NC	
tyrosine hydroxylase	Th	NM_009377	NC	4,3	-3,2	NC	

wt+: *Ttpa*^{-/-} supplementiert; wt-: *Ttpa*^{-/-} defizient; ko+: *Ttpa*^{-/-} supplementiert; ko-: *Ttpa*^{-/-} defizient.

Edg8 (endothelial differentiation, sphingolipid G-protein-coupled receptor, 8) wurde laut Microarray in *Ttpa**/+ Mäusen durch α-Tocopherol um den Faktor 3 hochreguliert. Beim Vergleich der defizienten Gruppen war die Expression in den *Ttpa**/- Mäusen im Vergleich zu den *Ttpa**/+ Mäusen um den Faktor 3 erhöht. Diese Ergebnisse konnten durch die *real time* PCR jedoch nicht bestätigt werden (Abb. 30). Die Expression in den *Ttpa**/+ Mäusen war nahezu identisch. Dagegen war zwar die Expression beim Vergleich der defizienten Gruppen in den *Ttpa**/- Mäusen um den Faktor 1,4 erhöht, allerdings war dieser Effekt nicht signifikant. Entgegen der Array-Analyse konnte aber beim Vergleich der supplementierten Gruppen eine um den Faktor 1,9 signifikant erhöhte Expression in den *Ttpa**/- Mäusen festgestellt werden.

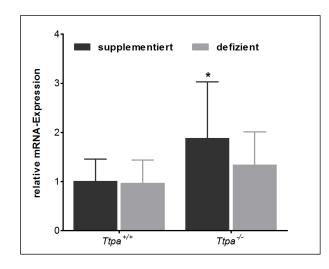
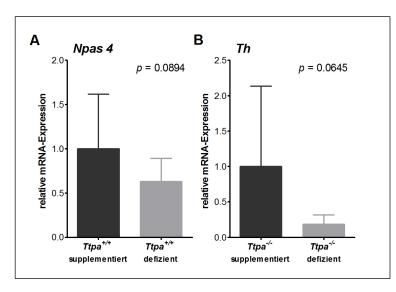


Abb. 30: Relative mRNA-Expression von *Edg8* im Großhirn.


Die *Edg8* Expression wurde Großhirn von männlichen $Ttpa^{*/*}$ und $Ttpa^{-/*}$ Mäusen bestimmt (n = 9-11). Dazu wurde die Gesamt-RNA isoliert, in cDNA umgeschrieben und die *Edg8* Expression mittels *real time* PCR quantifiziert. Die Genexpression wurde auf das Referenzgen *Hprt1* normalisiert. Dargestellt sind MW ± SD. Der MW der supplementierten $Ttpa^{*/*}$ Gruppe wurde auf 1 gesetzt und die anderen Gruppen im Verhältnis dazu abgebildet. Die Daten wurden mittels *Two Way ANOVA* mit *Bonferroni posttest* analysiert. *p < 0,05 vs. $Ttpa^{*/*}$ supplementiert.

Npas4 wurde laut Microarray-Analyse in Ttpa^{+/+} Mäusen durch α-Tocopherol um den Faktor 2,5 hochreguliert. Dies konnte tendenziell durch die *real time* PCR bestätigt werden

¹ Die erstgenannte Gruppe fungierte in der *GCOS Comparison Array* Analyse jeweils als *experimental array* und die zweite Gruppe als *baseline array* (Kap. 2.9.1). Die angegebenen *Fold changes* (FC) beziehen sich jeweils auf den *experimental array* im Vergleich zum *baseline array*. NC: *no change*.

(Abb. 31A), allerdings war der Effekt infolge der hohen Standardabweichungen nicht signifikant.

Th (tyrosine hydroxylase) wurde laut Array in den Ttpa^{-/-} Mäusen durch α-Tocopherol um den Faktor 4,3 hochreguliert. Dieser Effekt konnte durch die *real time* PCR-Analyse ebenfalls nur in der Tendenz bestätigt werden (Abb. 31B).

Abb. 31: Relative mRNA-Expression von *Npas4* und *Th* im Großhirn.

Die mRNA-Expression von Npas4 (A) und Th (B) im Großhirn männlicher Mäuse wurde bestimmt (n = 9-11). Dazu wurde die RNA isoliert, in cDNA umgeschrieben und die mRNA mittels time **PCR** quantifiziert. real Expression wurde auf das Referenzgen normalisiert. Dargestellt sind MW ± SD. Der MW der supplementierten Gruppe wurde auf 1 gesetzt und die defiziente Gruppe im Verhältnis dazu abgebildet. Die Daten wurden aufgrund signifikant unterschiedlicher Varianzen mittels zweiseitigem ungepaarten T-Test mit Welch's correction analysiert. Die Signifikanzniveaus sind angegeben. Es wurden keine signifikanten Unterschiede festgestellt.

4 Diskussion

4.1 Vitamin E und der vesikuläre Transport

Die genauen molekularen Mechanismen der Wirkung von Vitamin E im Organismus sind bislang unbekannt und damit auch die Ursachen für die bei Vitamin E-Defizienz auftretenden Symptome wie Ataxie und Infertilität. Als mögliche Erklärung stehen neben den antioxidativen Eigenschaften zunehmend die genregulatorischen Funktionen von Vitamin E im Fokus der Forschung. Speziell für α-Tocopherol konnte *in vivo* eine Beeinflussung der Genexpression auf mRNA-Ebene in verschiedenen Organen von Maus und Ratte gezeigt werden [93, 95, 139, 140]. Im Zentrum des ersten Teils dieser Arbeit stand daher die Untersuchung der genregulatorischen Funktionen von α-Tocopherol in der murinen Leber mit Hilfe von Microarrays. Neben α-Tocopherol-sensitiven Genen sollten zelluläre Prozesse identifiziert werden, die möglicherweise durch Vitamin E beeinflusst werden können. Ein funktioneller Effekt von α-Tocopherol sollte in einem entsprechenden *in vitro* Modell überprüft werden.

4.1.1 Identifizierung α-Tocopherol-sensitiver Gene in der murinen Leber

In den Mäusen konnten weder Anzeichen von Ataxie infolge einer Vitamin E-Defizienz noch Unterschiede in der Gewichtsentwicklung beobachtet werden, was in Übereinstimmung mit anderen Studien ist [91, 196]. Dies ist sehr wahrscheinlich auf die geringe Fütterungszeit zurückzuführen, die für eine Depletion der Vitamin E-Gehalte im Gehirn (Abb. 3C) nicht ausreichend war [96]. Wie erwartet, resultierte die Fütterung der α-Tocopherolsupplementierten Diät in einer Erhöhung der α-Tocopherol-Gehalte der Leber (Abb. 3B). In früheren Studien wurde bereits gezeigt, dass Unterschiede in den hepatischen α-Tocopherol-Gehalten die relative mRNA-Expression in der Leber beeinflussen können [93, 139]. Beim Vergleich der Genexpression der defizienten und der supplementierten Mäuse mittels Microarray-Analysen wurden insgesamt 387 durch α-Tocopherol differentiell exprimierte Gene in der murinen Leber identifiziert [176]. Funktionelle Clusteranalysen ergaben, dass eine überraschend hohe Anzahl der durch α-Tocopherol regulierten Gene in zelluläre Transportprozesse involviert war (Tab. 10). Insbesondere solche Gene, die eine Rolle bei vesikulären Transportvorgängen spielen, wurden in der supplementierten Gruppe durch α-Tocopherol hochreguliert (Tab. 11). Überraschend war, dass viele dieser Gene für synaptische Proteine kodieren, die eine wichtige Rolle in neurophysiologischen Prozessen, wie der Freisetzung von Neurotransmittern, spielen. Damit sind vermutlich auch die insgesamt relativ geringen Expressionslevel in der Leber zu erklären. Interessanterweise wurden einige dieser Gene in einer anderen Microarray-Analyse im Gehirn von Ttpa

Knockout-Mäusen, die infolge der TTPA Defizienz extrem niedrige α-Tocopherol-Gehalte im Gehirn aufwiesen, ebenfalls reguliert gefunden [93]. Viele der Gene, die in der Leber durch α-Tocopherol hochreguliert wurden, wurden im Cortex der *Ttpa*-- Mäuse im Vergleich zu den Wildtyp-Mäusen herunterreguliert (Tab. 11). In einer Studie an Ratten, die 14 Monate lang mit einer Vitamin E-defizienten Diät gefüttert wurden, konnte im cerebralen Cortex eine Änderung der mRNA-Expression von Genen, die für Ionenkanäle und Proteine, die am synaptischen Vesikeltransport und an der Regulation der G-Protein-vermittelten Signaltransduktion beteiligt sind, gefunden werden [197]. Allerdings wurde keine direkte Übereinstimmung mit den im Cortex der *Ttpa*-- Mäuse regulierten Gene gefunden. Als mögliche Ursachen wurden speziesspezifische Unterschiede oder die unterschiedliche Erzeugung der Vitamin E-Defizienz angeführt. Die im Cortex der Ratte beobachteten transkriptionellen Veränderungen korrelierten mit der Beeinträchtigung neurologischer Funktionen in den Vitamin E-defizienten Ratten [198]. Auch in den *Ttpa*-- Mäusen zeigten sich im Alter von einem Jahr Anzeichen von Ataxie und retinaler Degeneration [96]. Diese Symptome konnten durch α-Tocopherol-Supplementation vermindert werden.

Insgesamt weisen diese Studien und die Ergebnisse der Microarray-Analyse (Tab.10/11) auf eine zentrale Funktion von Vitamin E in biologischen Prozessen hin, bei denen die Membranfusion eine wichtige Rolle spielt. Da vor allem neuronale und neuromuskuläre Reizübertragungen von vesikulären Transportmechanismen abhängen, könnten die bekannten neurologischen Dysfunktionen bei Vitamin E-Defizienz mit einer inadäguaten Expression der beteiligten Proteine erklärt werden. Der Prozess der Membranfusion ist speziesübergreifend konserviert und wird durch die Interaktion von membranassoziierten Proteinen, den sogenannten SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptor), vermittelt [Übersicht in 199]. SNAREs sind sowohl auf der vesikulären Membran (vesicle SNAREs, v-SNAREs) als auch auf der Zielmembran (target SNAREs, t-SNAREs) lokalisiert (Abb. 32). v-SNAREs umfassen Mitglieder der VAMP-Proteinfamilie (vesicle-associated membrane protein), zu den t-SNAREs gehören Mitglieder der Syntaxinsowie der SNAP25-Familie (synaptosomal associated protein-25). Die Interaktion von Syntaxin mit VAMP und SNAP25 initiiert die Membranfusion unter Ausbildung eines stabilen ternären SNARE-Komplexes. Dieser Prozess wird durch eine Vielzahl von Proteinen reguliert, wie Complexin, Synaptotagmin, STXBP (syntaxin binding protein) und kleinen GTPasen der RAB-Familie [200, 201]. Nach der Freisetzung des Vesikelinhaltes wird der SNARE-Komplex durch die von aSNAP stimulierte ATPase-Aktivität von NSF (Nethylmaleimide sensitive fusion protein) dissoziiert, damit die SNARE-Proteine regeneriert werden und für eine weitere Exocytoserunde zur Verfügung stehen können.

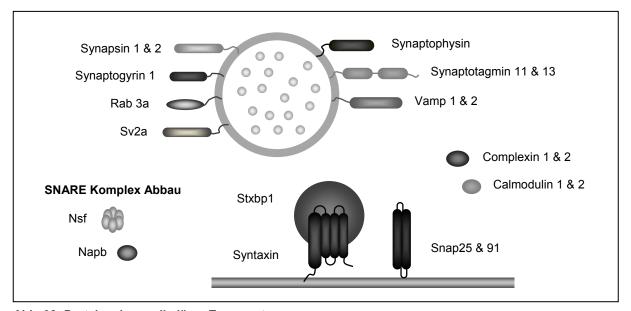


Abb. 32: Proteine des vesikulären Transports. Alle dargestellten Vertreter der vesikulären Fusionsmaschinerie wurden in der murinen Leber durch α -Tocopherol hochrequliert.

Interessanterweise wurden alle Gene, die für die oben beschriebenen Proteine kodieren, durch α-Tocopherol hochreguliert (Tab. 11). *Real time* PCR-Analysen konnten eine α-Tocopherol-abhängige Erhöhung der mRNA-Expression von *Nsf*, *Stx1c*, *Stxbp1* und *Vamp1* bestätigen (Abb. 4/5). Mit *Stx1c* wurde eine alternative Spleißvariante der neuronal exprimierten *Stx1a*-Isoform in der murinen Leber identifiziert (Abb. 6/7). Analog zum humanen STX1C fehlte dieser die für die Syntaxin-Familie charakteristische Transmembrandomäne [187]. Im Menschen konnte STX1C in Herz, Leber, Skelettmuskel und Niere detektiert werden. Eine funktionelle Charakterisierung von STX1C steht allerdings noch aus.

Vesikelvermittelte Transportvorgänge spielen eine wichtige Rolle bei einer Vielzahl von biologischen Prozessen. SNAREs vermitteln dabei nicht nur die synaptische Neurotransmitterfreisetzung, sondern sind auch am regulierten und konstitutiven Proteintransport in nicht-neuronalen Zellen beteiligt. So sind sie u. a. bei der Insulin-stimulierten Translokation von GLUT4 Glucosetransportern in Adipocyten [202], bei der Insulin-Sekretion von pankreatischen β-Zellen [203] sowie der Exocytose von Mastzellen [182] und Neutrophilen [204] involviert. Über Modulation der vesikulären Fusionsmaschinerie könnte Vitamin E daher diverse Prozesse beeinflussen. Birringer *et al.* fanden beispielsweise in *Ttpa*-/- Mäusen, deren α-Tocopherol-Plasmaspiegel im Vergleich zu den Wildtyp-Mäusen auf 34% reduziert waren, eine verbesserte Glucose-Toleranz infolge einer erhöhten Sekretion und Sensitivität von Insulin [205]. Ob dies auf die TTPA Defizienz oder aber auf die Vitamin E-Defizienz zurückzuführen war, bleibt jedoch noch zu klären.

Neben der sekretorischen Exocytose, die in spezialisierten Zellen unter Freisetzung spezifischer Produkte stattfindet, spielt auch die nicht-sekretorische Exocytose eine wichtige Rolle im Organismus [206, 207]. Die wichtigsten Funktionen umfassen dabei die Insertion

von Membranproteinen (Rezeptoren, Ionenkanäle und Transporter) sowie die Regulation der Oberflächenspannung der Zellmembran, die u.a. bei der Ausdehnung von neuronalen Dendriten und Axonen eine Rolle spielt. Ob die beobachtete axonale Degeneration im Gehirn von AVED-Patienten, die infolge eines genetischen Defekts im TTPA Gen extrem geringe Vitamin E-Plasmaspiegel aufweisen und Ataxie entwickeln, auf eine Deregulation der nicht-sekretorischen Exocytose zurückzuführen sein könnte, bleibt zu untersuchen [208]. Über die zugrundeliegenden Mechanismen der genregulatorischen Funktionen von α-Tocopherol in der murinen Leber lässt sich nur spekulieren. Eine Möglichkeit besteht in der Beeinflussung der Regulation der Genexpression durch miRNAs (microRNAs) und siRNAs (small interfering RNAs) [Übersicht in 209]. Ein Einfluss von Vitamin E auf die Expression von miRNAs konnte bereits gezeigt werden. So resultierte die Vitamin E-Defizienz in der Leber von Ratten, die sechs Monate mit einer Vitamin E-defizienten Diät gefüttert wurden, in einer verringerten Expression von miR-122a und miR-125b [196]. Die reduzierte Expression von miR-122a, für die eine wichtige Rolle im Lipid-Metabolismus angenommen wird, korrelierte dementsprechend mit einer Abnahme der Cholesterol-Gehalte im Plasma der Ratten. Auch für Schlüsselkomponenten der Fusionsmaschinerie wurde gezeigt, dass ihre zellulären Level durch Transkriptionsfaktoren und regulatorische Moleküle wie miRNAs moduliert werden können [Übersicht in 210]. So wurde beispielsweise in pankreatischen β-Zellen ein Einfluss von miRNAs auf die Insulin-Sekretion durch Modulation der Expression von Proteinen, die in die Exocytose involviert sind, gefunden [211]. miR124a führte zu einer erhöhten Expression von SNAP25, Rab3A und Synapsin-1A und zu einer Abnahme von Rab27A. Neben miR124a wurde auch miR96 als möglicher Regulator der Expression von Proteinen, die eine wichtige Rolle bei der Exocytose von Insulin und der Freisetzung von anderen Hormonen und Neurotransmittern spielen, identifiziert. Ob die beobachtete Expressionsänderung von Komponenten der vesikulären Fusionsmaschinerie durch α-Tocopherol in der murinen Leber auf eine Regulation der Expression von miRNAs zurückzuführen ist, bedarf der weiteren Klärung.

4.1.2 Vitamin E und die Mastzelldegranulation

Zur Überprüfung eines funktionellen Einflusses von Vitamin E auf vesikuläre Transportprozesse wurde die Mastzelllinie RBL-2H3 verwendet. Initiale Analysen zur Vitamin E-Aufnahme ergaben, dass die Zellen sowohl α- als auch β-Tocopherol mit einer ähnlichen Effizienz akkumulierten (Abb. 8). Die Aufnahme erfolgte wahrscheinlich über den LDLR oder den SR-B1, wie bereits für verschiedene Zelllinien gezeigt wurde [39, 44, 152, 212-214]. Eine Metabolisierung von Vitamin E konnte nicht festgestellt werden. Vermutlich ist dies auf das Fehlen von CYP-Enzymen zurückzuführen. Diese spielen eine wichtige Rolle

beim Fremdstoffmetabolismus in Hepatocyten und initiieren den Vitamin E-Abbau durch Katalyse der ω-Hydroxylierung der Seitenkette [47].

Eine Inkubation der Zellen mit α -Tocopherol resultierte in einer konzentrationsabhängigen Erhöhung der stimulierten Sekretion (Abb. 10). Die Frage nach dem zugrundeliegenden Mechanismus konnte abschließend nicht beantwortet werden. Daher sollen an dieser Stelle verschiedene Möglichkeiten aufgezeigt werden, wie α -Tocopherol die Mastzelldegranulation möglicherweise beeinflussen kann.

Genregulatorische Funktion von Vitamin E

Für eine Vielzahl von Genen konnte eine transkriptionelle Regulation durch α-Tocopherol gefunden werden, wenngleich die genauen molekularen Mechanismen größtenteils unbekannt sind [Übersicht in 138]. Bei der Exocytose in RBL-2H3 Zellen spielen verschiedene Proteine wie Nsf, Cplx2, Snap23 und Stx3 eine wichtige Rolle [180, 182, 189-193]. Allerdings konnten real time PCR-Analysen keinen Hinweis auf eine transkriptionelle Regulation dieser Gene durch α-Tocopherol finden (Abb. 11). Dennoch kann eine transkriptionelle Regulation der Mastzellexocytose durch Vitamin E nicht ausgeschlossen werden. In COS7-Zellen resultierte beispielsweise die Inkubation mit α-Tocopherol in der nukleären Translokation von TAP und der transkriptionellen Aktivierung von Reportergenen [70]. Auch in murinen Mastzellen konnte TAP exprimiert gefunden werden, wo es hauptsächlich im Cytosol lokalisiert war [215]. α-Tocopherol hatte jedoch keinen Einfluss auf die subzelluläre Lokalisation des endogenen TAP. Ebensowenig konnte in HepG2-Zellen eine α-Tocopherol-abhängige nukleäre Translokation von TAP beobachtet werden. Allerdings führte die Inkubation von BMCMCs (bone marrow-derived cultured mast cells) mit α-Tocopherol zu einem signifikanten Anstieg der basalen sowie der LPS-induzierten Sekretion von TNFα. Der zugrundeliegende Mechanismus blieb unklar, doch wurde über eine erhöhte Synthese der inflammatorischen Mediatoren in den Mastzellen spekuliert. Funaba et al. fanden in murinen BMCMCs eine durch Activin A/TGFβ1 induzierte TAP mRNA-Expression [216]. Zudem konnte TAP die Transkription von Reportergenen steigern. Eine Vitamin E-abhängige physiologische Rolle von TAP in Mastzellen bleibt jedoch noch zu klären. Weitere Analysen ergaben, dass bereits eine einstündige Inkubation der RBL-2H3 Zellen sowohl mit α- als auch mit β-Tocopherol in einer erhöhten Sekretion der β-Hexosaminidase resultierte (Abb. 14). Dies lässt eine Regulation der Exocytose durch Vitamin E auf transkriptioneller Ebene eher unwahrscheinlich erscheinen und weist auf andere Mechanismen hin.

Modulation der Signaltransduktion durch Vitamin E

Eine Modulation von Enzymaktivitäten und Signaltransduktionsvorgängen durch Vitamin E konnte bereits vielfach gezeigt werden [Übersicht in 127]. Auch die Regulation vieler Proteine, die an der Mastzelldegranulation beteiligt sind, erfolgt auf posttranslationaler Ebene durch Phosphorylierung bzw. Dephosphorylierung. Serin/Threonin Phosphatasen wie die PP2A spielen diesbezüglich eine wichtige regulatorische Rolle [Übersicht in 217]. So resultierte in RBL-2H3 Zellen eine Inhibition der PP2A in einer Abnahme sowohl der Antigenals auch der Ca²⁺-Ionophor-induzierten Sekretion [218, 219]. Dies wies auf einen regulatorischen Effekt der PP2A auf Komponenten der Signalkaskade stromabwärts der Ca²⁺-Mobilisation hin. Zudem wurde gezeigt, dass die transiente Translokation der PP2A zur Plasmamembran sowie deren Aktivierung essentiell für die Degranulation waren [218]. Die Vermutung liegt nahe, dass Vitamin E über eine Regulation der PP2A-Aktivität einen Einfluss auf die Exocytose ausüben könnte. In glatten Muskelzellen konnte z. B. eine Aktivierung der PP2A durch α-Tocopherol aber nicht durch β-Tocopherol beobachtet werden [128, 130]. Diese resultierte in einer Dephosphorylierung und damit Inaktivierung der PKCα. Auch für α-Tocopherylsuccinat konnte eine PP2A-Aktivierung gezeigt werden zugrundeliegende Mechanismus der Aktivierung der PP2A ist bislang jedoch unbekannt. Wie die PP2A spielt auch die PKC eine wichtige Rolle als Regulator der Mastzelldegranulation, wobei die verschiedenen Isoformen diesbezüglich sehr unterschiedliche Aktivitäten aufweisen können. In RBL-2H3 Zellen wurden sowohl die Ca²⁺abhängigen α - und β - als auch die Ca²⁺-unabhängigen δ -, ϵ - und ζ -PKC-Isoformen gefunden [221]. Während die Stimulation der Sekretion hauptsächlich durch die PKC-Isoformen ß und δ vermittelt wurde, inhibierten die Isoformen α und ϵ die Antigen-induzierte Hydrolyse von Inositolphospholipiden. Ein Einfluss von Vitamin E auf die Aktivität der PKC konnte bereits in diversen Zelllinien gezeigt werden. So führte α-Tocopherol zur Inhibition der Aktivität der PKC in glatten Muskelzellen [125, 128-131], humanen Monocyten [132, 133], Microgliazellen [134], Endothelzellen [136], Thrombocyten [222] und humanen Fibroblasten [135]. In einigen dieser Studien konnte eine spezifische Inhibition der PKCα-Isoform durch α-Tocopherol gezeigt werden. Dagegen hatten in murinen Epithelzellen weder α- noch γ-Tocopherol eine inhibierende Wirkung auf die PKCα, während andere Vitamin E-Formen wie δ-Tocopherol sowie α-, γ- und δ-Tocotrienol die PKCα-Aktivierung hemmten [137]. Eine spezifische Inhibition der PKCα durch α-Tocopherol in RBL-2H3 Zellen würde allerdings mit der beobachteten negativen Regulation der Mastzelldegranulation durch übereinstimmen [221] und eine mögliche Erklärung für die durch α-Tocopherol gesteigerte Degranulation bieten. Allerdings muss berücksichtigt werden, dass β-Tocopherol die Degranulation im gleichen Ausmaß erhöhte wie α-Tocopherol (Abb. 14). Es handelte sich in diesem Fall also nicht um einen α-Tocopherol-spezifischen Effekt.

Lipid rafts und Mastzelldegranulation

Da viele Signaltransduktionsvorgänge an der Membran stattfinden, könnte die in den RBL-2H3 Zellen beobachtete Degranulationssteigerung auf eine Beeinflussung der Membranstruktur und -stabilität durch Vitamin E zurückzuführen sein. Aufgrund seines lipophilen Charakters kommt Vitamin E hauptsächlich als Bestandteil von biologischen Membranen in der Zelle vor [223]. In der Membran tendiert Vitamin E zur Bildung von Clustern, wobei es bevorzugt in Phosphatidylcholin- und Phosphatidylethanolamin-reichen Domänen lokalisiert ist [165, 166]. Eine Funktion in der Membran wird auch durch die Beobachtung unterstützt, dass Trolox als hydrophiles Vitamin E-Analogon im Gegensatz zu α - und β -Tocopherol keinen Einfluss auf die Sekretion der β -Hexosaminidase hatte (Abb. 14C).

Ähnlich wie für *Lipid rafts* beschrieben, könnte Vitamin E die Aktivität von Enzymen an der Membran modulieren. Bei den *Lipid rafts* handelt es sich um Membranmikrodomänen, die mit Cholesterol and Glycosphingolipiden angereichert sind [194]. Es wird angenommen, dass sie als Plattform für Signaltransduktionsvorgänge an der Membran fungieren [224]. So spielen sie auch bei der Rezeptor-vermittelten Aktivierung hämatopoetischer Zellen wie Mastzellen, B-Lymphocyten und T-Lymphocyten eine Rolle. Die Antigen-induzierte Aggregation der FcɛRl Rezeptoren führte zur Rekrutierung der Rezeptoren in *raft* Domänen [225, 226]. Außerdem konnte sowohl in Mastzellen [180, 227] als auch in anderen sekretorischen Zellen [228-230] gezeigt werden, dass SNAREs mit *Lipid rafts* assoziiert vorliegen. Die Stimulation der Mastzellexocytose resultierte in einer Anreicherung von SNARE Komplexen in *Lipid rafts* [180].

Hinsichtlich eines Einflusses von Vitamin E auf die Rekrutierung von Proteinen in Membranmikrodomänen ist bislang wenig bekannt. In THP-1-Zellen inhibierte α-Tocopherylsuccinat die LPS-stimulierte Rekrutierung der SHIP Phosphatase in *Lipid rafts* [167]. Dies resultierte in einer verringerten MAPK-Aktivierung und TNFα-Produktion sowie einer Erhöhung der AKT/PKB-Aktivität. In CD4⁺-T-Zellen konnte die altersabhängige Abnahme der Bildung von Immunsynapsen durch Supplementation mit α-Tocopherol aufgehoben werden [231]. Dabei führte α-Tocopherol zu einer erhöhten Rekrutierung von Signalmolekülen in die Immunsynapse. Ein Zusammenhang mit *Lipid rafts* wurde nicht untersucht. Allerdings wurde bereits gezeigt, dass *Lipid rafts* essential für die Bildung effektiver Immunsynapsen sind [232]. Zudem kann oxidativer Stress die Assoziation von Proteinen mit *Lipid rafts* beeinträchtigen [233, 234]. So verhinderte z. B. die Glutathionabhängige Membrandislokation von LAT in T-Lymphocyten die Phosphorylierung von LAT und damit die Aktivierung von TCR (*T-cell receptor*)-vermittelten Signalwegen. Auch für die NADPH-Oxidase wird angenommen, dass *Lipid rafts* bei der Rekrutierung und Organisierung der cytosolischen phox-Untereinheiten an der Plasmamembran eine Rolle spielen [235, 236].

In Monocyten [132, 133] und Microgliazellen [134] konnte eine α -Tocopherol-abhängige Abnahme der O_2 --Produktion infolge einer verringerten Membrantranslokation von phox-Untereinheiten beobachtet werden.

Ob *Lipid rafts* auch bei der für die Exocytose essentiellen Membrantranslokation der PP2A [218] eine Rolle spielen und ob dies durch Vitamin E beeinflusst werden kann, bleibt abzuwarten. Ebenso muss ein Einfluss von Vitamin E auf die Membrantranslokation bzw. *Lipid raft* Rekrutierung von Signalmolekülen noch untersucht werden. Eine erste Analyse in RBL-2H3 Zellen konnte zeigen, dass die Inkubation mit α-Tocopherol einen Einfluss auf die Verteilung des Gangliosids G_{M1} in Membranmikrodomänen hatte (Abb. 15). G_{M1} wurde bereits in vielen Studien als Marker für *Lipid rafts* verwendet [180]. Analysen unter Verwendung des fluoreszenzmarkierten NBD-Tocopherol [237], das bereits zur zellulären Lokalisation von Vitamin E in Hepatocyten eingesetzt wurde [39], könnte Aufschluss über eine mögliche Assoziation von Vitamin E mit *Lipid rafts* geben.

Einfluss des intrazellulären Redoxstatus auf die Exocytose

Eine Regulation der Exocytose durch eine antioxidative Wirkungsweise von Vitamin E kann nicht ausgeschlossen werden. Bereits geringe ROS-Konzentrationen können eine physiologische Rolle als sekundäre Botenstoffe spielen [238-240]. So konnte in Endothelzellen gezeigt werden, dass der intrazelluläre Redoxstatus die Exocytose regulieren kann [241-243]. Sowohl NO als auch H₂O₂ resultierten in einer Abnahme der Exocytose von Weibel-Palade-Körpern durch Regulation der Aktivität von NSF. NO inhibierte den Abbau von SNARE-Komplexen durch S-Nitrosylierung wichtiger Cysteine von NSF, hatte jedoch keinen Einfluss auf die ATPase-Aktivität [242]. Im Gegensatz dazu führte H2O2 zu einer Inhibition der ATPase-Aktivität von NSF [243]. Die Konstruktion von H₂O₂-resistenten NSF-Mutanten identifizierte C264 als möglichen Redoxsensor von NSF. Auch in RBL-2H3 Zellen konnte gezeigt werden, dass NSF essentiell für die regulierte Exocytose ist [191]. So führte die Überexpression einer NSF-Mutante, der die ATPase-Aktivität fehlte, zu einer deutlichen Abnahme der regulierten Exocytose. Biochemische Analysen fanden die Ursache in einem reduzierten Abbau und einer Akkumulation von SNARE-Komplexen. Da Trolox trotz ähnlicher antioxidativer Eigenschaften wie α- und β-Tocopherol keinen Einfluss auf die Mastzelldegranulation hatte (Abb. 14), scheint eine Regulation der Exocytose über eine Modulation des intrazellulären Redoxstatus' durch Vitamin E in diesem Fall eher unwahrscheinlich.

Aufgrund der Vielfältigkeit der freigesetzten Mediatoren spielen Mastzellen eine wichtige Rolle in vielen verschiedenen biologischen Prozessen wie der Immunabwehr oder allergischen Reaktionen [244, 245]. Daher könnte Vitamin E durch Modulation der Sekretion

inflammatorischer Mediatoren eine Rolle bei der Immunabwehr und inflammatorischen Erkrankungen spielen. Gueck *et al.* fanden z. B. in Mastzellen eine Abnahme der basalen sowie Mastoparan-stimulierten Sekretion von Histamin und Prostaglandin D2 (PGD2) durch α-Tocopherol, was auf einen möglichen positiven Effekt von Vitamin E auf inflammatorische Erkrankungen schließen lassen würde [246].

4.2 Die *Ttpa* Knockout-Maus als genetisches Modell für Vitamin E-Defizienz

In einem zweiten Schwerpunkt dieser Arbeit sollte unter Verwendung der *Ttpa* Knockout-Maus als genetisches Modell für Vitamin E-Defizienz neben einer Untersuchung der Genexpression mittels Microarray- und *real time* PCR-Analysen auch der Einfluss des *Ttpa* Genotyps auf die Vitamin E-Verteilung in verschiedenen Organen der Maus überprüft werden.

4.2.1 Gewebsverteilung und hepatische Genexpression von TTPA

Neben der Leber mit der höchsten Expression konnte TTPA auch in anderen Organen wie Placenta, Uterus, Retina, Gehirn, Milz, Lunge und Niere gefunden werden [76, 78-82, 96, 247]. Bislang gab es allerdings keine quantitative Analyse bezüglich der Gewebsverteilung von TTPA. Eine Untersuchung der mRNA-Expression in zwölf verschiedenen Organen der Maus mittels *real time* PCR zeigte, dass nach der Leber (100%) die höchste TTPA Expression in Testis (12%), Niere (4%) und Kleinhirn (1,5%) zu finden war, während in allen anderen untersuchten Organen wie Lunge, Großhirn, Colon und Herz die Expression weniger als 1% betrug (Abb. 19). Infolge der geringen Expression in den extrahepatischen Geweben war eine Detektion auf Proteinebene nur in der Leber möglich (Abb. 18). In den *Ttpa*^{-/-} Mäusen konnte das Fehlen von TTPA in der Leber auf mRNA- und Proteinebene nachgewiesen werden (Abb. 17/18). Aufgrund der geringen TTPA Expression in den extrahepatischen Geweben eignen sich immunhistochemische Analysen besser, um die Expression und zusätzlich die subzelluläre Lokalisation von TTPA zu bestimmen.

Hinsichtlich einer möglichen Funktion von Ttpa in den extrahepatischen Organen ist bislang wenig bekannt. In der Leber vermittelt TTPA die Sekretion von RRR- α -Tocopherol ins Plasma [Übersicht in 33, 34]. Es wurde postuliert, dass α -Tocopherol seine hepatische Konzentration durch Beeinflussung der TTPA Genexpression modulieren kann [138]. Allerdings sind die Ergebnisse diesbezüglich bislang recht widersprüchlich. Fechner et al. konnten zeigen, dass die Supplementation Vitamin E-depletierter Ratten mit α - oder δ -Tocopherol in einem signifikanten Anstieg der TTPA mRNA-Expression in der Leber resultierte [142]. Dies würde physiologisch einen Sinn machen, da eine erhöhte Sekretion von α -Tocopherol infolge einer erhöhten TTPA Genexpression die depletierten

extrahepatischen Gewebe schnell mit Vitamin E versorgen würde. Eine Vitamin E-Depletion allein resultierte hingegen nicht in einer Änderung der TTPA mRNA-Expression [142]. Shaw & Huang konnten ebenfalls keine veränderte mRNA-Expression in der Leber von Ratten durch Vitamin E-Depletion feststellen [248]. Allerdings war die TTPA Proteinexpression in der Vitamin E-defizienten Gruppe signifikant reduziert. Kim et al. beobachteten dahingegen in Vitamin E-depletierten Ratten eine Erhöhung der TTPA mRNA auf 150%, während die Proteinexpression konstant blieb [249]. Die Supplementation der depletierten Ratten resultierte in einer Reduktion sowohl der mRNA- als auch der Proteinexpression von TTPA. In der Leber von Mäusen führte die Schlündelung mit γ-Tocotrienol (250 μg/d) für sieben Tage zu einem signifikanten Anstieg der TTPA mRNA, während α-Tocopherylacetat allein keinen Einfluss auf die Genexpression hatte [53]. In weiteren Studien konnte ebenfalls keine Änderung der TTPA Expression durch α-Tocopherol festgestellt werden [147, 250]. Auch die in dieser Arbeit durchgeführten Expressionsanalysen konnten keinen Einfluss von α-Tocopherol auf die hepatische TTPA mRNA-Expression zeigen (Abb. 17). Die bislang sehr widersprüchlichen Ergebnisse könnten auf die unterschiedlichen Versuchsbedingungen zurückzuführen sein, wie z. B. die Versuchsdauer, die Zusammensetzung des Futters sowie die unterschiedlichen Vitamin E-Gehalte der Diäten.

4.2.2 Einfluss der Diät auf die α-Tocopherol-Gehalte

Die Fütterung der Mäuse mit der α -Tocopherol-supplementierten Diät resultierte in deutlich höheren α -Tocopherol-Gehalten im Plasma (Abb. 20) und in verschiedenen Organen (Abb. 21/22/23). Während die α -Tocopherol-Konzentration in der Leber unabhängig vom Genotyp um den Faktor 100 stieg, konnten die α -Tocopherol-Gehalte der $Ttpa^{+/+}$ Mäuse im Plasma und den extrahepatischen Organen wie Herz, Skelettmuskel, Lunge und Niere nur um das 12 bis 30-fache gesteigert werden. Im Gehirn erhöhte sich der α -Tocopherol-Gehalt sogar lediglich um den Faktor 4. Auch in klinischen Studien resultierte die orale Supplementation mit α -Tocopherol nicht in einer deutlichen Erhöhung der α -Tocopherol-Gehalte in der cerebrospinalen Flüssigkeit. Dies wurde auf eine begrenzte Passage durch die Blut-Hirn-Schranke oder einen sehr schnellen α -Tocopherol-Metabolismus zurückgeführt [251].

Beim Vergleich der Vitamin E-Analysen der männlichen $Ttpa^{+/+}$ Mäuse aus dem ersten und zweiten Tierversuch wird deutlich, welchen Einfluss Versuchsparameter wie die Zusammensetzung des Futters, die Höhe der Vitamin E-Supplementation oder der Versuchszeitraum auf die Vitamin E-Absorption und damit die α -Tocopherol-Gehalte haben können. Trotz einer geringeren α -Tocopherol-Supplementation im zweiten Versuch (103,8 vs. 132,2 mg/kg RRR- α -Tocopherylacetat), wiesen Plasma (157%), Leber (163%) und Großhirn (166%) dieser Mäuse deutlich höhere α -Tocopherol-Gehalte auf (Vgl. Abb. 3 vs.

20/21/22). Ob dies letztendlich auf die längere Fütterungszeit (16 vs. 13 Wochen), die Höhe der α-Tocopherol-Supplementation oder die Futterzusammensetzung zurückzuführen ist, lässt sich nicht mit Bestimmtheit sagen. Es wurde bereits gezeigt, dass die intestinale Vitamin E-Absorption sowohl von der Fettzufuhr als auch der Dosis abhängig ist [9, 12]. So kann die Absorption bei gleichzeitig erhöhter Fettzufuhr gesteigert werden [12]. Die Diät im ersten Tierversuch wies beispielsweise einen geringeren Fettgehalt (30 vs. 50 g/kg) auf, was demnach ursächlich für die geringere Vitamin E-Aufnahme verantwortlich sein könnte. Des Weiteren wurde gezeigt, dass eine höhere Dosierung in einer verminderten Absorption resultieren kann [9]. Dass auch die Fütterungszeit bzw. das Alter der Tiere relevant sein können, zeigt die altersabhängige Zunahme der α-Tocopherol-Gehalte von Plasma, Leber und Gehirn von Mäusen [53, 252]. Diese Ergebnisse machen deutlich, wie schwierig der Vergleich verschiedener Tierversuche ist, bieten aber gleichzeitig auch eine Erklärung für die bisweilen recht geringe Reproduzierbarkeit von Daten aus anderen Tierversuchen. So konnte beispielsweise in den beiden Tierversuchen keine Übereinstimmung hinsichtlich der mittels Microarray analysierten α-Tocopherol-abhängigen Genexpression in der murinen Leber gefunden werden. Die im ersten Versuch beobachtete α-Tocopherol-abhängige Erhöhung der mRNA-Expression von Vertretern der vesikulären Fusionsmaschinerie (Abb. 4/5) konnte in diesem Sinne im zweiten Tierversuch nicht verifiziert werden (Abb. 28).

4.2.3 Einfluss des *Ttpa* Genotyps auf die α-Tocopherol-Gehalte

In der Leber konnten innerhalb der supplementierten bzw. defizienten Fütterungsgruppen keine Unterschiede in den α-Tocopherol-Gehalten zwischen den *Ttpa*^{+/+}, *Ttpa*^{+/-} und *Ttpa*^{-/-} Mäusen festgestellt werden (Abb. 21). Im Gegensatz dazu wurden in der supplementierten Fütterungsgruppe in den *Ttpa*^{-/-} Mäusen im Vergleich zu den *Ttpa*^{+/+} Mäusen deutlich reduzierte α-Tocopherol-Konzentrationen in Plasma (17-29%), Großhirn (6-8%), Kleinhirn (6-7%) und anderen Organen (23-59%) gefunden (Kap. 20/22/23). Auch Birringer *et al.* konnten keine Unterschiede in den hepatischen α-Tocopherol-Gehalten von *Ttpa*^{-/-} Mäusen feststellen [205]. In anderen Studien wurde in der Leber von *Ttpa*^{-/-} Mäusen im Vergleich zu *Ttpa*^{-/-} Mäusen eine geringfügige Abnahme der α-Tocopherol-Gehalte gefunden, die aber im Vergleich zu den anderen extrahepatischen Organen weniger stark ausfiel [83, 91-93]. So konnten Leonard *et al.* in *Ttpa*^{-/-} Mäusen eine Abnahme der α-Tocopherol-Konzentration in der Leber auf 39% beobachten, während das Plasma (5,4%) und die meisten Gewebe (2-20%) deutlich niedrigere α-Tocopherol-Konzentrationen aufwiesen [83]. Gohil *et al.* fanden ebenfalls eine geringere Abnahme der hepatischen α-Tocopherol-Gehalte auf 47% im Vergleich zu Plasma mit 7% und Cortex mit 1% [93].

Dass in der Leber keine Unterschiede in den α -Tocopherol-Gehalten in Abhängigkeit vom *Ttpa* Genotyp gefunden werden konnten (Abb. 21), steht im Einklang mit der bekannten

Funktion des TTPA. So ist es nicht in die Aufnahme von Vitamin E in die Hepatocyten involviert [36, 39]. Daher gelangt zunächst das gesamte Vitamin E unabhängig vom Ttpa Genotyp in die Leber. Hier spielt TTPA nun eine entscheidende Rolle beim intrazellulären Transport und der Sekretion von α-Tocopherol in die extrazellulären Kompartimente [36, 39, 84]. Aufgrund der hohen Affinität des TTPA zum *RRR*-α-Tocopherol wird dieses bevorzugt in der Leber zurückgehalten, während die anderen Vitamin E-Formen abgebaut und ausgeschieden werden [35]. Es wird vermutet, dass TTPA α-Tocopherol bindet und den Intermembrantransfer zwischen den Lysosomen und Transportvesikeln, die das Vitamin zur Plasmamembran befördern, ermöglicht [39]. Mutationen im TTPA Gen führten zu einer Abnahme der Sekretion von α-Tocopherol, was in einer Akkumulation von α-Tocopherol in den Lysosomen resultierte [84]. Daher führte das Fehlen von TTPA in den Ttpa Knockout-Mäusen infolge einer eingeschränkten Sekretion von α-Tocopherol letztlich zu einer deutlichen Abnahme der α-Tocopherol-Gehalte im Plasma (Abb. 20) und damit auch in den extrahepatischen Geweben (Abb. 22/23). Dass das Plasma und die extrahepatischen Organe dennoch nicht vollständig depletiert waren, ist vermutlich auf alternative Mechanismen der Vitamin E-Verteilung im Organismus zurückzuführen. So wird bereits ein geringer Teil des Vitamin E auf dem Weg zur Leber durch die endothelständige Lipoproteinlipase (LPL) aus den Chylomikronen freigesetzt und auf alle zirkulierenden Lipoproteine übertragen, wodurch es in verschiedene Gewebe wie Fett, Skelettmuskel und Gehirn gelangt [28-32]. Zudem besteht auch die Möglichkeit einer ABCA1-abhängigen Sekretion von α-Tocopherol, wie sie bereits für verschiedene Zelltypen gezeigt wurde [38, 39]. Darüberhinaus kann natürlich auch die Fütterungszeit sowie die Höhe der Supplementation mit α-Tocopherol einen Einfluss auf die α-Tocopherol-Konzentrationen haben. So beobachteten Yokota et al. in Ttpa-/- Mäusen, die 21 Monate lang mit einer Vitamin E-defizienten Diät gefüttert wurden, eine vollständige Depletion im Plasma und verschiedenen Geweben [96]. Dagegen resultierte eine Supplementation mit 600 mg RRR-α-Tocopherol/kg Futter in noch messbaren α-Tocopherol-Gehalten.

Dass das Fehlen der TTPA-vermittelten α -Tocopherol-Sekretion in den Knockout-Mäusen im Vergleich zu den Wildtyp-Mäusen nicht in höheren hepatischen α -Tocopherol-Gehalten resultierte (Abb. 21), ist auf den Metabolismus von Vitamin E zurückzuführen. So konnte in Mäusen gezeigt werden, dass α -Tocopherol seinen Metabolismus durch eine erhöhte Expression von Phase I, II und III Genen modulieren kann [147]. Die Supplementation mit α -Tocopherol resultierte in einer erhöhten Expression und Aktivität von verschiedenen CYP-Enzymen, die den Abbau von Vitamin E durch ω -Hydroxylierung der Seitenkette initiieren [144-148]. Des Weiteren wurde eine erhöhte Expression von ABC-Transportern wie MDR1 gefunden, für den bereits eine Rolle bei der Exkretion von α -Tocopherol gezeigt wurde [146, 147].

4.2.4 α-Tocopherol-Defizienz im Gehirn

Beim Vergleich der α-Tocopherol-Gehalte vom Plasma (Abb. 20) und den extrahepatischen Organen (Abb. 22/23) fiel auf, dass die Abnahme der α-Tocopherol-Plasmaspiegel mit einer Abnahme der α-Tocopherol-Konzentrationen in Herz, Skelettmuskel, Lunge und Niere korrelierte. Im Gegensatz dazu wiesen sowohl Großhirn als auch Kleinhirn der defizient gefütterten Ttpa+++ und Ttpa++- Mäuse trotz niedrigerer α-Tocopherol-Plasmaspiegel höhere α-Tocopherol-Gehalte auf als die supplementierten Ttpa-- Mäuse (Abb. 22/24). Dies lässt darauf schließen, dass TTPA trotz der geringen Expression in Großhirn und Kleinhirn (Abb. 19) eine wichtige Rolle bei der Aufnahme von α-Tocopherol ins Gehirn spielt, die in den *Ttpa*^{-/-} Mäusen auch nicht durch alternative Transportmechanismen kompensiert werden konnte. Über die genaue Lokalisation und Funktion von TTPA im Gehirn ist bislang sehr wenig bekannt. In AVED- und Alzheimer-Patienten konnte TTPA in den Purkinjezellen des Kleinhirns und den Pyramidalzellen des Hippocampus gefunden werden [78]. Daher wurde vermutet, dass TTPA eine Rolle bei der Versorgung von Neuronen mit α-Tocopherol spielt. Hosomi et al. fanden TTPA ebenfalls hauptsächlich im cerebralen Cortex der Ratte, allerdings nicht in den Purkinjezellen, sondern in den sie umgebenden Bergmanngliazellen [79]. Zusammen mit der Beobachtung eines Verlustes von Purkinjezellen in AVED-Patienten wurde auf eine Funktion von TTPA bei der Vitamin E-Versorgung der Purkinjezellen durch die Bergmanngliazellen geschlossen.

Die genauen molekularen Mechanismen des Vitamin E-Transports in die cerebrospinale Flüssigkeit und das Gehirn sind bislang unbekannt [253]. In Abhängigkeit von der Lipoproteinquelle und dem Zelltyp konnte eine Aufnahme von α-Tocopherol über den LDLR und den SR-B1 gezeigt werden [Übersicht in 11, 43]. Der LDLR scheint jedoch keine Rolle beim Vitamin E-Transport ins Gehirn zu spielen. So konnte in LDLR Knockout-Mäusen keine Abnahme der Vitamin E-Gehalte im Gehirn beobachtet werden [44]. Im Gegensatz dazu wird für den SR-B1 eine Rolle bei der Vitamin E-Aufnahme ins Gehirn angenommen. So konnte in vitro in Endothelzellen der Gehirnkapillaren gezeigt werden, dass SR-B1 die Aufnahme von HDL-assoziiertem α-Tocopherol erleichtert und damit den Transport von α-Tocopherol durch die Blut-Hirn-Schranke ermöglicht [213]. Dementsprechend wurde in SR-B1 Knockout-Mäusen trotz höherer α-Tocopherol-Plasmaspiegel eine Abnahme der α-Tocopherol-Gehalte im Gehirn festgestellt [44]. Auch für Afamin, dass in vivo in cerebrovaskulären Endothelzellen exprimiert gefunden wurde, konnte in vitro eine Funktion beim Transport von α-Tocopherol durch die Blut-Hirn-Schranke gezeigt werden [65]. PLTP, dass den Austausch von α-Tocopherol zwischen Lipoproteinen und Zellen vermittelt, ist ebenfalls im Gehirn exprimiert [41, 254]. Im Gehirn von PLTP Knockout-Mäusen konnte eine Abnahme der α-Tocopherol-Gehalte um 30% beobachtet werden [254]. Trotz dieser verschiedenen Möglichkeiten der Vitamin E-Aufnahme ins Gehirn scheint TTPA eine entscheidende Rolle bei der

Aufrechterhaltung der Vitamin E-Homöostase im Gehirn zu spielen. Die zugrundeliegenden molekularen Mechanismen sind bislang jedoch unbekannt.

4.2.5 Geschlechtsspezifische Unterschiede

Während bei den weiblichen Mäusen keine Unterschiede in der Gewichtsentwicklung in Abhängigkeit vom *Ttpa* Genotyp oder der Diät zu beobachten waren, wiesen die männlichen *Ttpa*-/- im Vergleich zu den *Ttpa*+/+ Mäusen unabhängig von der Diät zu allen Zeitpunkten ein höheres Gewicht auf (Abb. 16). Dies korrelierte mit einer ebenfalls erhöhten Futteraufnahme, besonders bei Fütterung der defizienten Diät. Im Gegensatz dazu konnten Birringer *et al.* weder in 6 noch in 36 Wochen alten Mäusen Unterschiede im Körpergewicht feststellen [205]. Allerdings wurde das Geschlecht der Mäuse nicht spezifiziert. Interessanterweise konnten sie in den *Ttpa*-/- Mäusen eine verbesserte Glucose-Toleranz infolge einer erhöhten Sekretion und Sensitivität von Insulin feststellen. Ob es einen Zusammenhang zwischen TTPA und dem Glucose-Metabolismus gibt, bedarf weiterer Untersuchungen.

Bezüglich der α-Tocopherol-Gehalte in verschiedenen Organen konnten ebenfalls geschlechtsspezifische Unterschiede festgestellt werden. So wiesen die weiblichen Mäuse innerhalb der supplementierten Fütterungsgruppe höhere α-Tocopherol-Konzentrationen in Niere, Lunge und Herz auf (Abb. 23). Am deutlichsten und konsistentesten war dies in der Niere zu beobachten, wo die Gehalte in den $Ttpa^{+/-}$ und $Ttpa^{+/-}$ Mäusen um 50% und in den $Ttpa^{-/-}$ Mäusen sogar um 170% erhöht waren. Diese Unterschiede korrelierten allerdings nicht mit den α-Tocopherol-Plasmaspiegeln, die für beide Geschlechter ähnlich waren (Abb. 20). Ebensowenig konnten geschlechtsspezifische Unterschiede in den α-Tocopherol-Konzentrationen von Leber (Abb. 21), Skelettmuskel (Abb. 23B), Großhirn und Kleinhirn (Abb. 22) gefunden werden.

Auch in anderen Studien konnten geschlechtsspezifische Unterschiede bezüglich der α -Tocopherol-Gehalte festgestellt werden. So fanden Oommen *et al.* höhere α -Tocopherol-Gehalte im Plasma männlicher Mäuse, die allerdings nicht in höheren α -Tocopherol-Konzentrationen in peripheren Organen wie der Lunge resultierten [255]. Gohil *et al.* beobachteten in Leber, Herz und verschiedenen Gehirnregionen von weiblichen $Ttpa^{+/+}$ Mäusen signifikant erhöhte α -Tocopherol-Gehalte [92]. Auch in der Leber von weiblichen Ratten wurden höhere α -Tocopherol-Gehalte gemessen, während die männlichen Tiere erhöhte α -Tocopherol-Plasmaspiegel aufwiesen [256].

Die zugrundeliegenden Mechanismen für die beobachteten geschlechtsspezifischen Unterschiede sind bislang unbekannt. Aufgrund der sehr unterschiedlichen Ergebnisse liegt die Vermutung nahe, dass verschiedene Versuchsparameter wie die Zusammensetzung des Futters, die zugesetzte α-Tocopherol-Konzentration sowie die unterschiedliche Länge des Versuchszeitraumes zumindest teilweise für die Unterschiede verantwortlich sind.

Zusätzlich könnten auch andere Faktoren eine Rolle spielen. Der Metabolismus von Vitamin E wird durch verschiedene CYPs initiiert [47, 257]. Für einige Mitglieder der CYP2B und CYP3A Familien konnte eine geschlechtsspezifische Expression gezeigt werden [258-260]. So war z. B. die mRNA von CYP3A9 in weiblichen Ratten in der Leber 28-fach und in der Lunge 3,8-fach erhöht [259]. Die Behandlung mit Östrogen verursachte einen signifikanten Anstieg von CYP3A9 in der Leber und eine verminderte Expression in der Niere. Allerdings bleibt eine Rolle von CYP3A9 im Metabolismus von Vitamin E noch zu untersuchen. Neben dem Metabolismus könnte auch die Sekretion und die zelluläre Aufnahme von α-Tocopherol in die peripheren Organe durch das Geschlecht beeinflusst werden. Dabei spielen sowohl ABCA1 als auch verschiedene Lipoproteinrezeptoren wie SR-B1 und LDLR eine Rolle [11]. In proximalen tubulären Zellen der Niere konnte eine durch Cholesterol induzierte Hochregulation von ABCA1 und Herunterregulation von SR-B1 gezeigt werden [261]. Es wurde vermutet, dass dies bei der physiologischen Regulation der Cholesterol-Homöostase zur Vermeidung einer Akkumulation von Cholesterol in der Niere eine Rolle spielen könnte. In männlichen Ratten wurden neben höheren α-Tocopherol-Plasmaspiegeln auch erhöhte Cholesterol-Konzentrationen gemessen [256]. Diese könnten demzufolge in einer Abnahme der α-Tocopherol-Gehalte der Niere infolge einer erhöhten ABCA1-abhängigen Sekretion und einer verringerten SR-B1-vermittelten Aufnahme resultieren.

4.2.6 Genexpressionsanalysen in der Leber

4.2.6.1 Vitamin E und CYPs

Es wurde postuliert, dass Vitamin E die Expression von Enzymen, die in seinen eigenen Metabolismus involviert sind, regulieren kann [Übersicht in 138]. Dazu gehören u. a. CYPs [143-147], ABC-Transporter [146, 147], TTPA [142, 249] und SR-B1 [152, 153]. Laut Microarray-Analysen konnte allerdings in keinem der zwei Mausversuche eine Regulation der Expression dieser Gene durch α -Tocopherol gefunden werden.

Den CYPs kommt eine besonders wichtige Rolle im Vitamin E-Metabolismus zu. Sie initiieren den Abbau von Vitamin E durch ω -Hydroxylierung der Seitenkette [47]. Bislang konnte für CYP3A [45, 48, 49] und CYP4F2 [50] eine Funktion im Metabolismus gezeigt werden. Für CYP3A-Enzyme ist bekannt, dass sie durch ihre eigenen Substrate über Aktivierung des PXR (*pregnane X receptor*) induziert werden können [262]. In HepG2-Zellen konnte z. B. eine Erhöhung der mRNA-Expression von CYP3A4 und CYP3A5 durch γ -Tocotrienol beobachtet werden [143]. Ebenso konnte eine Induktion der Genexpression von *Cyp3a11*, dem murinen Homolog des humanen CYP3A4, durch α -Tocopherol in der Leber von Mäusen gezeigt werden [144-147]. Der PXR spielt eine zentrale Rolle in der transkriptionellen Regulation von CYP3A4 [262]. Im Gegensatz zu den Tocopherolen konnte

für alle vier Tocotrienole eine spezifische Bindung und Aktivierung des PXR gezeigt werden [263]. Allerdings konnte in HepG2-Zellen ebenfalls eine PXR-Aktivierung durch Tocopherole gezeigt werden, wenngleich diese im Vergleich zu den Tocotrienolen deutlich geringer war [143].

Laut Microarray-Analyse wurde Cyp3a11 in den männlichen Ttpa+/+ Mäusen nur um den Faktor 1,23 durch α-Tocopherol erhöht und schied unter Anwendung der stringenten GCOS Kriterien (FC ≥ 2) zur Auswertung der Microarray-Daten aus der weiteren Analyse aus. Mittels real time PCR-Analyse konnte allerdings ein signifikanter 1,7-facher Anstieg der Cyp3a11 Expression durch α-Tocopherol beobachtet werden (Abb. 27A). In den weiblichen Mäusen konnte dagegen nur eine Erhöhung um den Faktor 1,2 gefunden werden, die nicht signifikant war (Abb. 27B). Im Gegensatz dazu fanden Traber et al. in weiblichen Mäusen eine signifikant höhere Korrelation zwischen der Cyp3a Proteinexpression und der hepatischen α-Tocopherol-Konzentration im Vergleich zu männlichen Mäusen [145]. Die insgesamt relativ geringe Erhöhung der Expression um den Faktor 1,7 im Vergleich zu anderen Studien könnte einerseits auf die geringere Supplementation (155 IE/kg Futter) der Mäuse mit Vitamin E zurückzuführen sein. So fanden Mustacich et al. eine vierfache Erhöhung der hepatischen Cyp3a11 mRNA durch Fütterung einer hochsupplementierten Diät (1000 IE/kg Futter) über fünf Wochen [146]. Andererseits wurde in den Mäusen aus dem ersten Tierversuch durch Kluth et al. sowohl in der adäquaten (22 IE/kg Futter) als auch in der supplementierten Gruppe (197 IE/kg Futter) eine gegenüber der defizienten Gruppe (7 IE/kg Futter) um den Faktor 2,5 erhöhte Cyp3a11 mRNA gemessen [144]. Daher kann angenommen werden, dass neben der supplementierten Vitamin E-Menge auch andere Faktoren wie z. B. die Futterzusammensetzung eine Rolle spielen.

4.2.6.2 Vitamin E und der Cholesterolmetabolismus

Durch Arteriosklerose verursachte Erkrankungen zählen zu den Haupttodesursachen in der westlichen Gesellschaft [Übersicht in 264]. Neben einer genetischen Prädisposition erhöhen hoher Blutdruck, Diabetes, Rauchen sowie eine Cholesterol- und Lipid-reiche Nahrung die Wahrscheinlichkeit der Entstehung von Arteriosklerose und damit assoziierten Erkrankungen. Auf zellulärer Ebene konnte eine Inhibition der Proliferation glatter Muskelzellen, der Thrombocytenaggregation, der Monocytenadhäsion, der Oxidation von LDL, der oxLDL-Aufnahme und der Cytokinproduktion durch Vitamin E beobachtet werden. Alle diese Reaktionen sind in der Entstehung und Progression der Arteriosklerose involviert. Eine Regulation des Cholesterolstoffwechsels könnte einen Erklärungsansatz für eine potentielle antiarteriosklerotische Wirkung von Vitamin E liefern. Allerdings sind sowohl die *in vitro* als auch die *in vivo* Daten diesbezüglich widersprüchlich.

Valastyan et al. konnten in HepG2-Zellen einen Einfluss von Vitamin E auf den Cholesterolstoffwechsel beobachten [175]. Die Inkubation mit α-Tocopherol führte zu einer reduzierten mRNA-Expression von Genen des Cholesterolstoffwechsels wie Squalenepoxidase und der HMG-CoA-Reduktase (HMGCR), dem geschwindigkeitsbestimmenden Enzym der Cholesterolbiosynthese. Außerdem wurde die Expression des LDL-Rezeptors (LDLR), der für den Cholesteroltransport verantwortlich ist, gehemmt. Dies resultierte in einer Inhibition der de novo Cholesterolbiosynthese. Die transkriptionelle Aktivität von α-Tocopherol wurde auf eine Inhibition der proteolytischen Aktivierung des Transkriptionsfaktors SREBP2 (sterol regulatory element-binding protein 2) zurückgeführt. Im Gegensatz dazu konnten Song & DeBose-Boyd in SV589-Zellen eine Inhibition der proteolytischen SREBP2-Aktivierung nur durch δ-Tocotrienol beobachten [265]. Sowohl γals auch δ-Tocotrienol förderten die Ubiquitinierung und Degradation von HMGCR. Im Gegensatz dazu hatten weder die Tocopherole noch α-Tocotrienol einen Effekt auf die Degradation der Reduktase oder die SREBP-Prozessierung. Pal et al. stellten einen biphasischen Effekt von α-Tocopherol in HepG2-Zellen fest [266]. Bis zu einer Konzentration von 50 μM führte α-Tocopherol zu einem Anstieg der mRNA-Menge, der Proteinexpression und der Bindeaktivität von LDLR sowie der mRNA-Expression von HMGCR. Höhere α-Tocopherol-Konzentrationen resultierten hingegen in einer Angleichung an die Kontrollzellen. Dieser Effekt war spezifisch für α-Tocopherol. Im Gegensatz dazu führten alle getesteten Konzentrationen von γ- und δ-Tocopherol zu einer Abnahme der mRNA-Menge, der Proteinexpression sowie der Bindeaktivität von LDLR. Eine Abnahme der Cholesterol-Level durch die Inhibition der Aktivität und der Proteinexpression von HMGCR durch α- und γ-Tocotrienol konnte ebenfalls in HepG2-Zellen beobachtet werden [267, 268].

In vivo konnte in einigen Studien gezeigt werden, dass eine erhöhte Vitamin E-Aufnahme in einer Reduktion der Cholesterol-Gehalte im Plasma von Ratte [269], Hamster [270] und Kaninchen [271] resultierte. Im Gegensatz dazu konnten Witt *et al.* keinen signifikanten Einfluss von Vitamin E auf den Cholesterol-Gehalt im Plasma von Ratten feststellen [153]. Andere fanden sogar einen hypercholesterolemischen Effekt von α-Tocopherol im Hamster [272]. Die in dieser Arbeit durchgeführten Microarray-Analysen in der murinen Leber konnten hinsichtlich eines Einflusses von α-Tocopherol auf den Cholesterolstoffwechsel auch keine neuen Erkenntnisse liefern. Laut Array-Analyse hatte α-Tocopherol keinen Einfluss auf die Expression von Genen des Cholesterolstoffwechsels (Tab. 15). Dies konnte durch *real time* PCR-Analysen bestätigt werden, die weder für die Squalenepoxidase noch für den LDL-Rezeptor eine veränderte mRNA-Expression feststellen konnten (Abb. 29).

Insgesamt lassen sich die Ergebnisse dieser Studien schwer vergleichen. So können z. B. speziesspezifische Unterschiede nicht ausgeschlossen werden. Außerdem differieren die Versuche sowohl in Versuchszeitraum als auch verwendeter Vitamin E-Form. Diese

Faktoren könnten ursächlich für die unterschiedlichen Effekte von Vitamin E bezüglich des Cholesterolstoffwechsels verantwortlich sein.

Eine andere Ursache könnte in der circadianen Regulation der Cholesterol-Homöostase liegen. In Säugetieren werden viele physiologische und verhaltensbiologische Parameter wie Herzfrequenz, Körpertemperatur, arterieller Blutdruck, endokrine Funktionen metabolische Prozesse circadian reguliert [273]. Circadiane Oszillatoren in peripheren Zellen vermitteln die rhythmische Physiologie durch circadiane Transkriptionsfaktoren. Dazu gehören z. B. die drei PAR-domain basic leucine zipper (PAR bZip) Transkriptionsfaktoren DBP, TEF und HLF [274]. Diese kontrollieren die Expression einer Vielzahl von Enzymen und Regulatoren, die bei der Detoxifikation und dem Metabolismus von Xenobiotika eine Rolle spielen, wie CYPs, Carboxylesterasen, Sulfotransferasen und CAR (constitutive androstane receptor). PAR bZip Dreifachknockout-Mäuse reagieren daher hypersensitiv auf Xenobiotika.

Für einige wichtige Gene der hepatischen Cholesterol-Homöostase wie HMGCR, CYP7A1 und LDLR konnte eine Beeinflussung der Genexpression durch die circadiane Uhr gefunden werden [275]. Die Inhibition der circadianen Regulation resultierte in einer reduzierten und arhythmischen Genexpression sowie in der Akkumulation von Cholesterol in der Leber von Mäusen. Für CYP7A1, dem geschwindigkeitsbestimmenden Enzym bei der Umwandlung von Cholesterol in Gallensäuren, konnte bereits eine transkriptionelle Regulation durch den Transkriptionsfaktor DBP gezeigt werden [276]. DBP wurde ursprünglich als *albumin Delement*-bindender Faktor beschrieben und kommt ubiquitär in fast allen Geweben vor, wobei die Expression in der Leber am höchsten ist [Übersicht in 277]. Aufgrund der circadian regulierten Transkription ist DBP in der Leber von Nagetieren morgens nahezu undetektierbar und erreicht am Abend sein Maximum (DBP Level etwa 100:1).

Interessanterweise konnte mittels Microarray-Analyse ein Einfluss von α-Tocopherol auf die *Dbp* mRNA-Expression in der murinen Leber festgestellt (Tab. 14) und mittels *real time* PCR bestätigt werden (Abb. 26). Demnach wurde die Expression in den *Ttpa*^{+/+} Mäusen durch α-Tocopherol reduziert. Außerdem wurde die Expression auch durch den *Ttpa* Genotyp beeinflusst. In der defizienten Gruppe resultierte die *Ttpa* Defizienz in einer verringerten *Dbp* Expression. Somit könnte α-Tocopherol über den Transkriptionsfaktor DBP einen Einfluss auf den Cholesterolstoffwechsel ausüben. Natürlich muss auch berücksichtigt werden, dass die *Dbp* Expression, bedingt durch die circadiane Regulation, im Tagesverlauf extrem zunimmt. Daher kann nicht ausgeschlossen werden, dass die beobachteten Unterschiede in der mRNA-Expression zumindest teilweise tageszeitlich bedingt sind. Ein Einfluss von Vitamin E auf die *Dbp* Expression bedarf daher weiterer Untersuchungen.

4.2.6.3 Identifizierung weiterer α-Tocopherol-regulierter Gene

Die Identifizierung differentiell exprimierter Gene mittels Microarray-Analyse bedarf in jedem Fall der Verifizierung durch andere Methoden, wie z. B. der *real time* PCR. Speziell bei der Verwendung gepoolter RNA-Proben zur Analyse der globalen Genexpression ist eine Überprüfung unverzichtbar.

Die Interpretation der Ergebnisse aus den Microarray-Analysen im Großhirn und Kleinhirn ist schwierig, weil diese nicht die zelluläre Vielfalt innerhalb dieser Strukturen berücksichtigen. Die Analyse der Expressionsmuster von etwa 20.000 Genen im adulten Gehirn der Maus mittels *in situ* Hybridisierung ergab, dass ungefähr 70% der Gene in weniger als 20% der gesamten Zellen exprimiert waren [279]. Insofern müssen die Ergebnisse der Array-Analyse mit Vorsicht betrachtet werden und bedürfen einer Verifizierung durch *real time* PCR-Analysen. Ein Vergleich mit der von Gohil *et al.* im Cortex von *Ttpa* Mäusen durchgeführten Microarray-Analyse konnte keine Übereinstimmung hinsichtlich der differentiellen Genexpression finden [93]. Neben den unterschiedlichen Versuchsparametern war sicherlich auch die Verwendung unterschiedlicher Gehirnbereiche für die Expressionsanalyse ursächlich für die unterschiedlichen Ergebnisse verantwortlich.

4.3 Ausblick

Die in dieser Arbeit dargestellten Ergebnisse verdeutlichen, dass Vitamin E seine essentielle Funktion für den menschlichen und tierischen Organismus auf sehr vielfältige Weise ausüben kann. Neben einer transkriptionellen Regulation der Genexpression besteht die Möglichkeit der posttranslationalen Modulation von Enzymaktivitäten. Aufgrund seiner antioxidativen Eigenschaften kann auch eine Beeinflussung von zellulären Signalkaskaden über den intrazellulären Redoxstatus erfolgen. Hinsichtlich des lipophilen Charakters von Vitamin E scheint es naheliegend, dass eine membranstabilisierende Wirkung ebenso von Bedeutung ist. Zur weiteren Untersuchung der molekularen Mechanismen des Einflusses von Vitamin E auf exocytotische Prozesse stellen die RBL-2H3 Zellen ein geeignetes *in vitro*

Modell dar. Eine Analyse der subzellulären Lokalisation von Vitamin E wäre in Hinblick auf eine mögliche Assoziation mit Membranmikrodomänen wie den Lipid rafts von Interesse. Zudem könnte eine Untersuchung des Einflusses von Vitamin E Translokation/Rekrutierung von wichtigen Komponenten der Signalkaskade an die Zellmembran weitere Einblicke gewähren. Besonders interessant wären dabei die PP2A, da bereits eine Aktivierung durch Vitamin E in anderen Zellen gefunden werden konnte, sowie die SNAREs SNAP23, STX4 und VAMP2, für die eine wichtige Rolle in der Mastzellexocytose gezeigt werden konnte. Da die PKC eine zentrale Stellung innerhalb einer Vielzahl von zellulären Signalwegen einnimmt, sollte weiterhin untersucht werden, ob Vitamin E die Aktivität der verschiedenen PKC-Isoformen beeinflussen kann.

5 Zusammenfassung

Die Suche nach einer spezifischen Funktion von Vitamin E dauert seit seiner Entdeckung an. So sind die zugrundeliegenden molekularen Mechanismen der Essentialität von Vitamin E für den Organismus bis zum heutigen Tag immer noch unbekannt. Während zunächst ausschließlich die antioxidative Funktion von Vitamin E untersucht wurde, stehen heute die nicht-antioxidativen genregulatorischen Funktionen von Vitamin E im Mittelpunkt der Forschung. Von den acht natürlich vorkommenden Vitamin E-Formen besitzt RRR- α -Tocopherol aufgrund der hepatischen Diskriminierung durch das α -Tocopheroltransferprotein (Ttpa) *in vivo* die höchste biologische Aktivität und stellt die dominierende Vitamin E-Form im Plasma und Gewebe dar.

Zur Untersuchung der genregulatorischen Funktionen von α-Tocopherol mit dem Ziel der Identifizierung α-Tocopherol-sensitiver Gene in vivo wurden männliche C57BL/6J Mäuse 13 Wochen mit einer α-Tocopherol-defizienten, -adäquaten oder -supplementierten Diät gefüttert. Die Analyse der hepatischen Genexpression mit Hilfe von Oligonucleotide Microarrays identifizierte 387 differentiell exprimierte Gene. Funktionelle Clusteranalysen stellten einen Einfluss von α-Tocopherol auf zelluläre Transportprozesse fest. Insbesondere solche Gene, die an vesikulären Transportvorgängen beteiligt sind, wurden größtenteils durch α-Tocopherol hochreguliert. Überraschend war, dass viele dieser Gene für Proteine kodieren, die in neurophysiologischen Prozessen wie der Neurotransmitterfreisetzung eine wichtige Rolle spielen. Mittels real time PCR konnte eine α-Tocopherol-abhängige Erhöhung der Expression von Nsf (N-ethylmaleimide sensitive fusion protein), Vamp1 (vesicleassociated membrane protein 1), Stx1c (Syntaxin 1C) und Stxbp1 (syntaxin binding protein 1) bestätigt werden. Mit Stx1c wurde eine alternative Spleißvariante der neuronalen Stx1a-Isoform in der Leber identifiziert, wie sie bereits für den Menschen beschrieben wurde. Untersuchung eines funktionellen Einflusses von Vitamin E auf vesikuläre Transportprozesse wurde die sekretorische Mastzelllinie RBL-2H3 verwendet. Die Inkubation der Zellen mit α-Tocopherol resultierte in einer konzentrationsabhängigen Erhöhung der stimulierten Sekretion. Ein Hinweis auf eine transkriptionelle Regulation der Exocytose durch α-Tocopherol konnte nicht gefunden werden. Weitere Analysen ergaben, dass bereits eine einstündige Inkubation sowohl mit α - als auch β -Tocopherol in einer erhöhten Sekretion resultierte, während Trolox, ein hydrophiles Vitamin E-Analogon, keinen Einfluss auf die Exocytose hatte. Dies wies auf eine membranständige Funktion von Vitamin E hin. Ein möglicher Zusammenhang mit Membranmikrodomänen (Lipid rafts), für die eine Rolle als Plattform bei Signaltransduktionsvorgängen an der Membran diskutiert wird, könnte einen Erklärungsansatz liefern. Erste Analysen zeigten, dass eine Inkubation der Zellen mit αTocopherol zu einer veränderten Verteilung des *Lipid raft* Markers G_{M1} in Membranfraktionen führte.

Im zweiten Teil der Arbeit wurde zur Untersuchung der Funktion des hepatischen α-Tocopheroltransferproteins (Ttpa) die Ttpa Knockout-Maus als genetisches Modell für Vitamin E-Defizienz verwendet. Die Mäuse wurden 16 Wochen mit einer α-Tocopheroldefizienten bzw. -supplementierten Diät gefüttert. Eine quantitative Analyse der Ttpa Gewebsverteilung mittels real time PCR ergab, dass Ttpa nach der Leber (100%) die höchste Expression in Testis (12%), Niere (4%) und Kleinhirn (1,5%) aufwies. Ein Einfluss von α-Tocopherol auf die hepatische *Ttpa* mRNA-Expression konnte nicht gefunden werden. Die Ttpa Defizienz resultierte in einer Abnahme der α-Tocopherol-Gehalte im Plasma und den extrahepatischen Organen. Trotz Supplementation und höherer α-Tocopherol-Plasmaspiegel wiesen Großhirn und Kleinhirn der *Ttpa*^{-/-} Mäuse im Vergleich zu den defizient gefütterten Ttpa++ Mäusen niedrigere α-Tocopherol-Konzentrationen auf, was auf eine Funktion von Ttpa bei der Aufnahme von α-Tocopherol ins Gehirn schließen lässt. Die Genexpression in Leber, Großhirn und Kleinhirn von männlichen *Ttpa*+/+ und *Ttpa*-/- Mäusen wurde mit Hilfe von Oligonucleotide Microarrays analysiert. In der Leber der Ttpa+/+ Mäuse wurden 94 durch α-Tocopherol differentiell exprimierte Gene identifiziert. Allerdings konnte keine Übereinstimmung mit der Expressionsanalyse aus dem ersten Tierversuch gefunden werden. Aufgrund der Verwendung von gepoolten RNA-Proben bleibt eine Verifizierung der Gene abzuwarten. Erste Analysen in der Leber konnten zwei neue Gene identifizieren, deren Expression sowohl durch α-Tocopherol als auch den *Ttpa* Genotyp beeinflusst wurde. Dabei handelte es sich um Cxcl1 (chemokine (C-X-C motif) ligand 1) und Dbp (D site of albumin promoter (albumin D-box) binding protein). Eine physiologische Funktion der Regulation dieser Gene durch α-Tocopherol und *Ttpa* muss weiter untersucht werden.

Mit Hilfe von Microarray-Analysen konnte eine Vielzahl von potentiellen α -Tocopherolregulierten Genen *in vivo* identifiziert werden. Ob es sich dabei tatsächlich um eine transkriptionelle Regulation der Genexpression durch α -Tocopherol handelt, muss abschließend geklärt werden. Ein Einfluss von α -Tocopherol auf vesikuläre Transportvorgänge, die auch bei der synaptischen Freisetzung von Neurotransmittern eine Rolle spielen, würde einen möglichen Erklärungsansatz für die bei Vitamin E-Defizienz auftretenden neurologischen Funktionsstörungen bieten. Die RBL-2H3 Zellen stellen in dieser Hinsicht ein geeignetes Modell für weitere mechanistische Untersuchungen zum Einfluss von Vitamin E auf den vesikulären Transport dar.

6 Literaturverzeichnis

- [1] Evans HM, Bishop KS. On the existence of a hitherto unrecognized dietary factor essential for reproduction. *Science* 1922; 56: 650-51.
- [2] Sure B. Dietary requirements for reproduction. II. The existence of a specific vitamin for reproduction. *J Biol Chem* 1924; 58: 693-709.
- [3] Evans HM, Emerson OH, Emerson GA. The isolation from wheat germ oil of an alcohol, alphatocopherol, having the properties of vitamin E. *J Biol Chem* 1936; 113: 319-32.
- [4] Fernholz E. On the constitution of alpha-tocopherol. *J Am Chem Soc* 1938; 60: 700-05.
- [5] Karrer P, Fritzsche H, Ringier BH, Salomon H. Synthese des alpha-Tocopherols. *Helv Chim Acta* 1938; 21: 820-25.
- [6] Cheng Z, Sattler S, Maeda H, Sakuragi Y, Bryant DA, DellaPenna D. Highly divergent methyltransferases catalyze a conserved reaction in tocopherol and plastoquinone synthesis in cyanobacteria and photosynthetic eukaryotes. *Plant Cell* 2003; 15: 2343-56.
- [7] Collakova E, DellaPenna D. Isolation and functional analysis of homogentisate phytyltransferase from Synechocystis sp. PCC 6803 and Arabidopsis. *Plant Physiol* 2001; 127: 1113-24.
- [8] Weimann BJ, Weiser H. Functions of vitamin E in reproduction and in prostacyclin and immunoglobulin synthesis in rats. *Am J Clin Nutr* 1991; 53: 1056S-60S.
- [9] DGE. Referenzwerte für die Nährstoffzufuhr. Umschau/Braus, Frankfurt am Main 2000.
- [10] Kayden HJ, Traber MG. Absorption, lipoprotein transport, and regulation of plasma concentrations of vitamin E in humans. *J Lipid Res* 1993; 34: 343-58.
- [11] Rigotti A. Absorption, transport, and tissue delivery of vitamin E. *Mol Aspects Med* 2007; 28: 423-36.
- [12] Jeanes YM, Hall WL, Ellard S, Lee E, Lodge JK. The absorption of vitamin E is influenced by the amount of fat in a meal and the food matrix. *Br J Nutr* 2004; 92: 575-9.
- [13] Blomstrand R, Forsgren L. Labelled tocopherols in man. Intestinal absorption and thoracic-duct lymph transport of dl-alpha-tocopheryl-3,4-14C2 acetate dl-alpha-tocopheramine-3,4-14C2 dl-alpha-tocopherol-(5-methyl-3H) and N-(methyl-3H)-dl-gamma-tocopheramine. *Int Z Vitaminforsch* 1968; 38: 328-44.
- [14] Brisson L, Castan S, Fontbonne H, Nicoletti C, Puigserver A, Ajandouz el H. Alpha-tocopheryl acetate is absorbed and hydrolyzed by Caco-2 cells comparative studies with alpha-tocopherol. *Chem Phys Lipids* 2008; 154: 33-7.
- [15] Mathias PM, Harries JT, Peters TJ, Muller DP. Studies on the in vivo absorption of micellar solutions of tocopherol and tocopheryl acetate in the rat: demonstration and partial characterization of a mucosal esterase localized to the endoplasmic reticulum of the enterocyte. *J Lipid Res* 1981; 22: 829-37.
- [16] Muller DP, Manning JA, Mathias PM, Harries JT. Studies on the intestinal hydrolysis of tocopheryl esters. *Int J Vitam Nutr Res* 1976; 46: 207-10.
- [17] Nakamura T, Aoyama Y, Fujita T, Katsui G. Studies on tocopherol derivatives: V. Intestinal absorption of several d,1-3,4-3H2-alpha-tocopheryl esters in the rat. *Lipids* 1975; 10: 627-33.
- [18] Gallo-Torres HE. Obligatory role of bile for the intestinal absorption of vitamin E. *Lipids* 1970; 5: 379-84.
- [19] Sokol RJ, Heubi JE, Iannaccone S, Bove KE, Balistreri WF. Mechanism causing vitamin E deficiency during chronic childhood cholestasis. *Gastroenterology* 1983; 85: 1172-82.
- [20] Reboul E, Klein A, Bietrix F, Gleize B, Malezet-Desmoulins C, Schneider M, Margotat A, Lagrost L, Collet X, Borel P. Scavenger receptor class B type I (SR-BI) is involved in vitamin E transport across the enterocyte. *J Biol Chem* 2006; 281: 4739-45.

- [21] Narushima K, Takada T, Yamanashi Y, Suzuki H. Niemann-pick C1-like 1 mediates alphatocopherol transport. *Mol Pharmacol* 2008; 74: 42-9.
- [22] Kiyose C, Muramatsu R, Fujiyama-Fujiwara Y, Ueda T, Igarashi O. Biodiscrimination of alphatocopherol stereoisomers during intestinal absorption. *Lipids* 1995; 30: 1015-8.
- [23] Traber MG, Burton GW, Hughes L, Ingold KU, Hidaka H, Malloy M, Kane J, Hyams J, Kayden HJ. Discrimination between forms of vitamin E by humans with and without genetic abnormalities of lipoprotein metabolism. *J Lipid Res* 1992; 33: 1171-82.
- [24] Traber MG, Kayden HJ. Preferential incorporation of alpha-tocopherol vs gamma-tocopherol in human lipoproteins. *Am J Clin Nutr* 1989; 49: 517-26.
- [25] Anwar K, Kayden HJ, Hussain MM. Transport of vitamin E by differentiated Caco-2 cells. *J Lipid Res* 2006; 47: 1261-73.
- [26] Anwar K, Iqbal J, Hussain MM. Mechanisms involved in vitamin E transport by primary enterocytes and in vivo absorption. *J Lipid Res* 2007; 48: 2028-38.
- [27] Reboul E, Trompier D, Moussa M, Klein A, Landrier JF, Chimini G, Borel P. ATP-binding cassette transporter A1 is significantly involved in the intestinal absorption of alpha- and gamma-tocopherol but not in that of retinyl palmitate in mice. *Am J Clin Nutr* 2009; 89: 177-84.
- [28] Abe C, Ikeda S, Uchida T, Yamashita K, Ichikawa T. Triton WR1339, an Inhibitor of Lipoprotein Lipase, Decreases Vitamin E Concentration in Some Tissues of Rats by Inhibiting Its Transport to Liver. *J Nutr* 2007; 137: 345-50.
- [29] Goti D, Balazs Z, Panzenboeck U, Hrzenjak A, Reicher H, Wagner E, Zechner R, Malle E, Sattler W. Effects of lipoprotein lipase on uptake and transcytosis of low density lipoprotein (LDL) and LDL-associated alpha-tocopherol in a porcine in vitro blood-brain barrier model. J Biol Chem 2002; 277: 28537-44.
- [30] Nakamura T, Reicher H, Sattler W. Comparison of RRR-alpha- and all-rac-alpha-tocopherol uptake by permanent rat skeletal muscle myoblasts (L6 cells): effects of exogenous lipoprotein lipase. *Lipids* 1998; 33: 1001-8.
- [31] Sattler W, Levak-Frank S, Radner H, Kostner GM, Zechner R. Muscle-specific overexpression of lipoprotein lipase in transgenic mice results in increased alpha-tocopherol levels in skeletal muscle. *Biochem J* 1996; 318 (Pt 1): 15-9.
- [32] Traber MG, Olivecrona T, Kayden HJ. Bovine milk lipoprotein lipase transfers tocopherol to human fibroblasts during triglyceride hydrolysis in vitro. *J Clin Invest* 1985; 75: 1729-34.
- [33] Kaempf-Rotzoll DE, Traber MG, Arai H. Vitamin E and transfer proteins. *Curr Opin Lipidol* 2003; 14: 249-54.
- [34] Traber MG, Arai H. Molecular mechanisms of vitamin E transport. *Annu Rev Nutr* 1999; 19: 343-55.
- [35] Hosomi A, Arita M, Sato Y, Kiyose C, Ueda T, Igarashi O, Arai H, Inoue K. Affinity for alphatocopherol transfer protein as a determinant of the biological activities of vitamin E analogs. *FEBS Lett* 1997; 409: 105-8.
- [36] Arita M, Nomura K, Arai H, Inoue K. alpha-tocopherol transfer protein stimulates the secretion of alpha-tocopherol from a cultured liver cell line through a brefeldin A-insensitive pathway. *Proc Natl Acad Sci U S A* 1997; 94: 12437-41.
- [37] Minehira-Castelli K, Leonard SW, Walker QM, Traber MG, Young SG. Absence of VLDL secretion does not affect alpha-tocopherol content in peripheral tissues. *J Lipid Res* 2006; 47: 1733-8.
- [38] Oram JF, Vaughan AM, Stocker R. ATP-binding cassette transporter A1 mediates cellular secretion of alpha-tocopherol. *J Biol Chem* 2001; 276: 39898-902.
- [39] Qian J, Morley S, Wilson K, Nava P, Atkinson J, Manor D. Intracellular trafficking of vitamin E in hepatocytes: the role of tocopherol transfer protein. *J Lipid Res* 2005; 46: 2072-82.
- [40] Perugini C, Bagnati M, Cau C, Bordone R, Paffoni P, Re R, Zoppis E, Albano E, Bellomo G. Distribution of lipid-soluble antioxidants in lipoproteins from healthy subjects. II. Effects of in vivo supplementation with alpha-tocopherol. *Pharmacol Res* 2000; 41: 67-74.

- [41] Kostner GM, Oettl K, Jauhiainen M, Ehnholm C, Esterbauer H, Dieplinger H. Human plasma phospholipid transfer protein accelerates exchange/transfer of alpha-tocopherol between lipoproteins and cells. *Biochem J* 1995; 305 (Pt 2): 659-67.
- [42] Hacquebard M, Vandenbranden M, Malaisse WJ, Ruysschaert JM, Deckelbaum RJ, Carpentier YA. Vitamin E transfer from lipid emulsions to plasma lipoproteins: mediation by multiple mechanisms. *Lipids* 2008; 43: 663-71.
- [43] Mardones P, Rigotti A. Cellular mechanisms of vitamin E uptake: relevance in alpha-tocopherol metabolism and potential implications for disease. *J Nutr Biochem* 2004; 15: 252-60.
- [44] Mardones P, Strobel P, Miranda S, Leighton F, Quinones V, Amigo L, Rozowski J, Krieger M, Rigotti A. Alpha-tocopherol metabolism is abnormal in scavenger receptor class B type I (SR-BI)-deficient mice. *J Nutr* 2002; 132: 443-9.
- [45] Birringer M, Drogan D, Brigelius-Flohé R. Tocopherols are metabolized in HepG2 cells by side chain omega-oxidation and consecutive beta-oxidation. *Free Radic Biol Med* 2001; 31: 226-32.
- [46] Birringer M, Pfluger P, Kluth D, Landes N, Brigelius-Flohé R. Identities and differences in the metabolism of tocotrienols and tocopherols in HepG2 cells. *J Nutr* 2002; 132: 3113-8.
- [47] Parker RS, Sontag TJ, Swanson JE, McCormick CC. Discovery, characterization, and significance of the cytochrome P450 omega-hydroxylase pathway of vitamin E catabolism. *Ann N Y Acad Sci* 2004; 1031: 13-21.
- [48] Ikeda S, Tohyama T, Yamashita K. Dietary sesame seed and its lignans inhibit 2,7,8-trimethyl-2(2'-carboxyethyl)-6-hydroxychroman excretion into urine of rats fed gamma-tocopherol. *J Nutr* 2002; 132: 961-6.
- [49] Parker RS, Sontag TJ, Swanson JE. Cytochrome P4503A-dependent metabolism of tocopherols and inhibition by sesamin. *Biochem Biophys Res Commun* 2000; 277: 531-4.
- [50] Sontag TJ, Parker RS. Cytochrome P450 omega-hydroxylase pathway of tocopherol catabolism. Novel mechanism of regulation of vitamin E status. *J Biol Chem* 2002; 277: 25290-6.
- [51] Traber MG, Atkinson J. Vitamin E, antioxidant and nothing more. *Free Radic Biol Med* 2007; 43: 4-15.
- [52] Brigelius-Flohé R, Traber MG. Vitamin E: function and metabolism. *Faseb J* 1999; 13: 1145-55.
- [53] Kluth D. Vom Antioxidanz zum Genregulator: Transkriptionelle Regulation von Phase I- und Phase II-Enzymen durch Vitamin E und antioxidative sekundäre Pflanzeninhaltsstoffe. Dissertation Universität Potsdam, 2006.
- [54] Traber MG, Elsner A, Brigelius-Flohé R. Synthetic as compared with natural vitamin E is preferentially excreted as alpha-CEHC in human urine: studies using deuterated alpha-tocopheryl acetates. *FEBS Lett* 1998; 437: 145-8.
- [55] Blatt DH, Leonard SW, Traber MG. Vitamin E kinetics and the function of tocopherol regulatory proteins. *Nutrition* 2001; 17: 799-805.
- [56] Dutta-Roy AK, Gordon MJ, Leishman DJ, Paterson BJ, Duthie GG, James WP. Purification and partial characterisation of an alpha-tocopherol-binding protein from rabbit heart cytosol. *Mol Cell Biochem* 1993; 123: 139-44.
- [57] Dutta-Roy AK, Leishman DJ, Gordon MJ, Campbell FM, Duthie GG. Identification of a low molecular mass (14.2 kDa) alpha-tocopherol-binding protein in the cytosol of rat liver and heart. *Biochem Biophys Res Commun* 1993; 196: 1108-12.
- [58] Heiser M, Hutter-Paier B, Jerkovic L, Pfragner R, Windisch M, Becker-Andre M, Dieplinger H. Vitamin E binding protein afamin protects neuronal cells in vitro. *J Neural Transm Suppl* 2002: 337-45.
- [59] Voegele AF, Jerkovic L, Wellenzohn B, Eller P, Kronenberg F, Liedl KR, Dieplinger H. Characterization of the vitamin E-binding properties of human plasma afamin. *Biochemistry* 2002; 41: 14532-8.

- [60] Kempna P, Zingg JM, Ricciarelli R, Hierl M, Saxena S, Azzi A. Cloning of novel human SEC14p-like proteins: ligand binding and functional properties. *Free Radic Biol Med* 2003; 34: 1458-72.
- [61] Stocker A, Zimmer S, Spycher SE, Azzi A. Identification of a novel cytosolic tocopherol-binding protein: structure, specificity, and tissue distribution. *IUBMB Life* 1999; 48: 49-55.
- [62] Ye X, Ji C, Yin G, Tang R, Zeng L, Gu S, Ying K, Xie Y, Zhao RC, Mao Y. Characterization of a human Sec14-like protein cDNA SEC14L3 highly homologous to human SPF/TAP. *Mol Biol Rep* 2004; 31: 59-63.
- [63] Zimmer S, Stocker A, Sarbolouki MN, Spycher SE, Sassoon J, Azzi A. A novel human tocopherol-associated protein: cloning, in vitro expression, and characterization. *J Biol Chem* 2000; 275: 25672-80.
- [64] Jerkovic L, Voegele AF, Chwatal S, Kronenberg F, Radcliffe CM, Wormald MR, Lobentanz EM, Ezeh B, Eller P, Dejori N, et al. Afamin is a novel human vitamin E-binding glycoprotein characterization and in vitro expression. *J Proteome Res* 2005; 4: 889-99.
- [65] Kratzer I, Bernhart E, Wintersperger A, Hammer A, Waltl S, Malle E, Sperk G, Wietzorrek G, Dieplinger H, Sattler W. Afamin is synthesized by cerebrovascular endothelial cells and mediates alpha-tocopherol transport across an in vitro model of the blood-brain barrier. J Neurochem 2009; 108: 707-18.
- [66] Panagabko C, Morley S, Hernandez M, Cassolato P, Gordon H, Parsons R, Manor D, Atkinson J. Ligand specificity in the CRAL-TRIO protein family. *Biochemistry* 2003; 42: 6467-74.
- [67] Stocker A, Tomizaki T, Schulze-Briese C, Baumann U. Crystal structure of the human supernatant protein factor. *Structure* 2002; 10: 1533-40.
- [68] Manor D, Atkinson J. Is tocopherol associated protein a misnomer? *J Nutr Biochem* 2003; 14: 421-2; author reply 23.
- [69] Porter TD. Supernatant protein factor and tocopherol-associated protein: an unexpected link between cholesterol synthesis and vitamin E (review). *J Nutr Biochem* 2003; 14: 3-6.
- [70] Yamauchi J, Iwamoto T, Kida S, Masushige S, Yamada K, Esashi T. Tocopherol-associated protein is a ligand-dependent transcriptional activator. *Biochem Biophys Res Commun* 2001; 285: 295-9.
- [71] Catignani GL. An alpha-tocopherol binding protein in rat liver cytoplasm. *Biochem Biophys Res Commun* 1975; 67: 66-72.
- [72] Catignani GL, Bieri JG. Rat liver alpha-tocopherol binding protein. *Biochim Biophys Acta* 1977; 497: 349-57.
- [73] Sato Y, Arai H, Miyata A, Tokita S, Yamamoto K, Tanabe T, Inoue K. Primary structure of alpha-tocopherol transfer protein from rat liver. Homology with cellular retinaldehyde-binding protein. *J Biol Chem* 1993; 268: 17705-10.
- [74] Sato Y, Hagiwara K, Arai H, Inoue K. Purification and characterization of the alpha-tocopherol transfer protein from rat liver. *FEBS Lett* 1991; 288: 41-5.
- [75] Yoshida H, Yusin M, Ren I, Kuhlenkamp J, Hirano T, Stolz A, Kaplowitz N. Identification, purification, and immunochemical characterization of a tocopherol-binding protein in rat liver cytosol. *J Lipid Res* 1992; 33: 343-50.
- [76] Arita M, Sato Y, Miyata A, Tanabe T, Takahashi E, Kayden HJ, Arai H, Inoue K. Human alphatocopherol transfer protein: cDNA cloning, expression and chromosomal localization. *Biochem J* 1995; 306 (Pt 2): 437-43.
- [77] Kuhlenkamp J, Ronk M, Yusin M, Stolz A, Kaplowitz N. Identification and purification of a human liver cytosolic tocopherol binding protein. *Protein Expr Purif* 1993; 4: 382-9.
- [78] Copp RP, Wisniewski T, Hentati F, Larnaout A, Ben Hamida M, Kayden HJ. Localization of alpha-tocopherol transfer protein in the brains of patients with ataxia with vitamin E deficiency and other oxidative stress related neurodegenerative disorders. *Brain Res* 1999; 822: 80-7.
- [79] Hosomi A, Goto K, Kondo H, Iwatsubo T, Yokota T, Ogawa M, Arita M, Aoki J, Arai H, Inoue K. Localization of alpha-tocopherol transfer protein in rat brain. *Neurosci Lett* 1998; 256: 159-62.

- [80] Jishage K, Arita M, Igarashi K, Iwata T, Watanabe M, Ogawa M, Ueda O, Kamada N, Inoue K, Arai H, et al. Alpha-tocopherol transfer protein is important for the normal development of placental labyrinthine trophoblasts in mice. *J Biol Chem* 2001; 276: 1669-72.
- [81] Kaempf-Rotzoll DE, Horiguchi M, Hashiguchi K, Aoki J, Tamai H, Linderkamp O, Arai H. Human placental trophoblast cells express alpha-tocopherol transfer protein. *Placenta* 2003; 24: 439-44.
- [82] Müller-Schmehl K, Beninde J, Finckh B, Florian S, Dudenhausen JW, Brigelius-Flohé R, Schuelke M. Localization of alpha-tocopherol transfer protein in trophoblast, fetal capillaries' endothelium and amnion epithelium of human term placenta. *Free Radic Res* 2004; 38: 413-20.
- [83] Leonard SW, Terasawa Y, Farese RV, Jr., Traber MG. Incorporation of deuterated RRR- or all-rac-alpha-tocopherol in plasma and tissues of alpha-tocopherol transfer protein--null mice. *Am J Clin Nutr* 2002; 75: 555-60.
- [84] Qian J, Atkinson J, Manor D. Biochemical consequences of heritable mutations in the alphatocopherol transfer protein. *Biochemistry* 2006; 45: 8236-42.
- [85] Cavalier L, Ouahchi K, Kayden HJ, Di Donato S, Reutenauer L, Mandel JL, Koenig M. Ataxia with isolated vitamin E deficiency: heterogeneity of mutations and phenotypic variability in a large number of families. *Am J Hum Genet* 1998; 62: 301-10.
- [86] Gotoda T, Arita M, Arai H, Inoue K, Yokota T, Fukuo Y, Yazaki Y, Yamada N. Adult-onset spinocerebellar dysfunction caused by a mutation in the gene for the alpha-tocopherol-transfer protein. *N Engl J Med* 1995; 333: 1313-8.
- [87] Hentati A, Deng HX, Hung WY, Nayer M, Ahmed MS, He X, Tim R, Stumpf DA, Siddique T, Ahmed. Human alpha-tocopherol transfer protein: gene structure and mutations in familial vitamin E deficiency. *Ann Neurol* 1996; 39: 295-300.
- [88] Mariotti C, Gellera C, Rimoldi M, Mineri R, Uziel G, Zorzi G, Pareyson D, Piccolo G, Gambi D, Piacentini S, et al. Ataxia with isolated vitamin E deficiency: neurological phenotype, clinical follow-up and novel mutations in TTPA gene in Italian families. *Neurol Sci* 2004; 25: 130-7.
- [89] Ouahchi K, Arita M, Kayden H, Hentati F, Ben Hamida M, Sokol R, Arai H, Inoue K, Mandel JL, Koenig M. Ataxia with isolated vitamin E deficiency is caused by mutations in the alphatocopherol transfer protein. *Nat Genet* 1995; 9: 141-5.
- [90] Schuelke M, Mayatepek E, Inter M, Becker M, Pfeiffer E, Speer A, Hubner C, Finckh B. Treatment of ataxia in isolated vitamin E deficiency caused by alpha-tocopherol transfer protein deficiency. *J Pediatr* 1999; 134: 240-4.
- [91] Terasawa Y, Ladha Z, Leonard SW, Morrow JD, Newland D, Sanan D, Packer L, Traber MG, Farese RV, Jr. Increased atherosclerosis in hyperlipidemic mice deficient in alpha -tocopherol transfer protein and vitamin E. *Proc Natl Acad Sci U S A* 2000; 97: 13830-4.
- [92] Gohil K, Oommen S, Quach HT, Vasu VT, Aung HH, Schock B, Cross CE, Vatassery GT. Mice lacking alpha-tocopherol transfer protein gene have severe alpha-tocopherol deficiency in multiple regions of the central nervous system. *Brain Res* 2008; 1201: 167-76.
- [93] Gohil K, Schock BC, Chakraborty AA, Terasawa Y, Raber J, Farese RV, Jr., Packer L, Cross CE, Traber MG. Gene expression profile of oxidant stress and neurodegeneration in transgenic mice deficient in alpha-tocopherol transfer protein. *Free Radic Biol Med* 2003; 35: 1343-54.
- [94] Yamaoka S, Kim HS, Ogihara T, Oue S, Takitani K, Yoshida Y, Tamai H. Severe Vitamin E deficiency exacerbates acute hyperoxic lung injury associated with increased oxidative stress and inflammation. *Free Radic Res* 2008; 42: 602-12.
- [95] Vasu VT, Hobson B, Gohil K, Cross CE. Genome-wide screening of alpha-tocopherol sensitive genes in heart tissue from alpha-tocopherol transfer protein null mice (ATTP(-/-)). *FEBS Lett* 2007; 581: 1572-8.
- [96] Yokota T, Igarashi K, Uchihara T, Jishage K, Tomita H, Inaba A, Li Y, Arita M, Suzuki H, Mizusawa H, et al. Delayed-onset ataxia in mice lacking alpha -tocopherol transfer protein: model for neuronal degeneration caused by chronic oxidative stress. *Proc Natl Acad Sci U S A* 2001; 98: 15185-90.

- [97] Cummings MJ, Mattill HA. The auto-oxidation of fats with reference to their destructive effect on vitamin E. *J Nutr* 1931; 3: 421–32.
- [98] Mattill HA. Antioxidants. Annu Rev Biochem 1947; 16: 177–92.
- [99] Olcott HS, Emerson OH. Antioxidants and the autoxidation of fats. IX. The antioxidant properties of the tocopherols. *J Am Chem Soc* 1937; 59: 1008–09.
- [100] Tappel AC, Zalkin H. Inhibition of lipide peroxidation in mitochondria by vitamin E. *Arch Biochem Biophys* 1959; 80: 333–36.
- [101] Kamal-Eldin A, Appelqvist LA. The chemistry and antioxidant properties of tocopherols and tocotrienols. *Lipids* 1996; 31: 671-701.
- [102] Bowry VW, Mohr D, Cleary J, Stocker R. Prevention of tocopherol-mediated peroxidation in ubiquinol-10-free human low density lipoprotein. *J Biol Chem* 1995; 270: 5756-63.
- [103] Bruno RS, Leonard SW, Atkinson J, Montine TJ, Ramakrishnan R, Bray TM, Traber MG. Faster plasma vitamin E disappearance in smokers is normalized by vitamin C supplementation. Free Radic Biol Med 2006; 40: 689-97.
- [104] Buettner GR. The pecking order of free radicals and antioxidants: lipid peroxidation, alphatocopherol, and ascorbate. *Arch Biochem Biophys* 1993; 300: 535-43.
- [105] Lass A, Sohal RS. Electron transport-linked ubiquinone-dependent recycling of alphatocopherol inhibits autooxidation of mitochondrial membranes. Arch Biochem Biophys 1998; 352: 229-36.
- [106] Neuzil J, Stocker R. Free and albumin-bound bilirubin are efficient co-antioxidants for alphatocopherol, inhibiting plasma and low density lipoprotein lipid peroxidation. *J Biol Chem* 1994; 269: 16712-9.
- [107] Leedle RA, Aust SD. The effect of glutathione on the vitamin E requirement for inhibition of liver microsomal lipid peroxidation. *Lipids* 1990; 25: 241-5.
- [108] Bowry VW, Ingold KU, Stocker R. Vitamin E in human low-density lipoprotein. When and how this antioxidant becomes a pro-oxidant. *Biochem J* 1992; 288 (Pt 2): 341-4.
- [109] Kontush A, Finckh B, Karten B, Kohlschutter A, Beisiegel U. Antioxidant and prooxidant activity of alpha-tocopherol in human plasma and low density lipoprotein. J Lipid Res 1996; 37: 1436-48
- [110] Stocker R. The ambivalence of vitamin E in atherogenesis. *Trends Biochem Sci* 1999; 24: 219-23.
- [111] Weinberg RB, VanderWerken BS, Anderson RA, Stegner JE, Thomas MJ. Pro-oxidant effect of vitamin E in cigarette smokers consuming a high polyunsaturated fat diet. *Arterioscler Thromb Vasc Biol* 2001; 21: 1029-33.
- [112] Burk RF, Christensen JM, Maguire MJ, Austin LM, Whetsell WO, Jr., May JM, Hill KE, Ebner FF. A combined deficiency of vitamins E and C causes severe central nervous system damage in guinea pigs. *J Nutr* 2006; 136: 1576-81.
- [113] Hill KE, Montine TJ, Motley AK, Li X, May JM, Burk RF. Combined deficiency of vitamins E and C causes paralysis and death in quinea pigs. *Am J Clin Nutr* 2003; 77: 1484-8.
- [114] Hill KE, Motley AK, Li X, May JM, Burk RF. Combined selenium and vitamin E deficiency causes fatal myopathy in guinea pigs. *J Nutr* 2001; 131: 1798-802.
- [115] Hensley K, Benaksas EJ, Bolli R, Comp P, Grammas P, Hamdheydari L, Mou S, Pye QN, Stoddard MF, Wallis G, et al. New perspectives on vitamin E: gamma-tocopherol and carboxyelthylhydroxychroman metabolites in biology and medicine. *Free Radic Biol Med* 2004; 36: 1-15.
- [116] Albanes D, Heinonen OP, Taylor PR, Virtamo J, Edwards BK, Rautalahti M, Hartman AM, Palmgren J, Freedman LS, Haapakoski J, et al. Alpha-Tocopherol and beta-carotene supplements and lung cancer incidence in the alpha-tocopherol, beta-carotene cancer prevention study: effects of base-line characteristics and study compliance. *J Natl Cancer Inst* 1996; 88: 1560-70.

- [117] Gaziano JM, Glynn RJ, Christen WG, Kurth T, Belanger C, MacFadyen J, Bubes V, Manson JE, Sesso HD, Buring JE. Vitamins E and C in the prevention of prostate and total cancer in men: the Physicians' Health Study II randomized controlled trial. *Jama* 2009; 301: 52-62.
- [118] Hodis HN, Mack WJ, LaBree L, Mahrer PR, Sevanian A, Liu CR, Liu CH, Hwang J, Selzer RH, Azen SP. Alpha-tocopherol supplementation in healthy individuals reduces low-density lipoprotein oxidation but not atherosclerosis: the Vitamin E Atherosclerosis Prevention Study (VEAPS). *Circulation* 2002; 106: 1453-9.
- [119] Karlson EW, Shadick NA, Cook NR, Buring JE, Lee IM. Vitamin E in the primary prevention of rheumatoid arthritis: the Women's Health Study. *Arthritis Rheum* 2008; 59: 1589-95.
- [120] Lee IM, Cook NR, Gaziano JM, Gordon D, Ridker PM, Manson JE, Hennekens CH, Buring JE. Vitamin E in the primary prevention of cardiovascular disease and cancer: the Women's Health Study: a randomized controlled trial. *Jama* 2005; 294: 56-65.
- [121] Sesso HD, Buring JE, Christen WG, Kurth T, Belanger C, MacFadyen J, Bubes V, Manson JE, Glynn RJ, Gaziano JM. Vitamins E and C in the prevention of cardiovascular disease in men: the Physicians' Health Study II randomized controlled trial. *Jama* 2008; 300: 2123-33.
- [122] Törnwall ME, Virtamo J, Korhonen PA, Virtanen MJ, Albanes D, Huttunen JK. Postintervention effect of alpha tocopherol and beta carotene on different strokes: a 6-year follow-up of the Alpha Tocopherol, Beta Carotene Cancer Prevention Study. *Stroke* 2004; 35: 1908-13.
- [123] Virtamo J, Pietinen P, Huttunen JK, Korhonen P, Malila N, Virtanen MJ, Albanes D, Taylor PR, Albert P. Incidence of cancer and mortality following alpha-tocopherol and beta-carotene supplementation: a postintervention follow-up. *Jama* 2003; 290: 476-85.
- [124] Yusuf S, Dagenais G, Pogue J, Bosch J, Sleight P. Vitamin E supplementation and cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study Investigators. *N Engl J Med* 2000; 342: 154-60.
- [125] Boscoboinik D, Szewczyk A, Hensey C, Azzi A. Inhibition of cell proliferation by alphatocopherol. Role of protein kinase C. *J Biol Chem* 1991; 266: 6188-94.
- [126] Mahoney CW, Azzi A. Vitamin E inhibits protein kinase C activity. *Biochem Biophys Res Commun* 1988; 154: 694-7.
- [127] Zingg JM. Modulation of signal transduction by vitamin E. *Mol Aspects Med* 2007; 28: 481-506.
- [128] Azzi A, Boscoboinik D, Clement S, Ozer NK, Ricciarelli R, Stocker A, Tasinato A, Sirikci O. Signalling functions of alpha-tocopherol in smooth muscle cells. *Int J Vitam Nutr Res* 1997; 67: 343-9.
- [129] Clement S, Tasinato A, Boscoboinik D, Azzi A. The effect of alpha-tocopherol on the synthesis, phosphorylation and activity of protein kinase C in smooth muscle cells after phorbol 12-myristate 13-acetate down-regulation. *Eur J Biochem* 1997; 246: 745-9.
- [130] Ricciarelli R, Tasinato A, Clement S, Ozer NK, Boscoboinik D, Azzi A. alpha-Tocopherol specifically inactivates cellular protein kinase C alpha by changing its phosphorylation state. *Biochem J* 1998; 334 (Pt 1): 243-9.
- [131] Tasinato A, Boscoboinik D, Bartoli GM, Maroni P, Azzi A. d-alpha-tocopherol inhibition of vascular smooth muscle cell proliferation occurs at physiological concentrations, correlates with protein kinase C inhibition, and is independent of its antioxidant properties. *Proc Natl Acad Sci U S A* 1995; 92: 12190-4.
- [132] Cachia O, Benna JE, Pedruzzi E, Descomps B, Gougerot-Pocidalo MA, Leger CL. alphatocopherol inhibits the respiratory burst in human monocytes. Attenuation of p47(phox) membrane translocation and phosphorylation. *J Biol Chem* 1998; 273: 32801-5.
- [133] Venugopal SK, Devaraj S, Yang T, Jialal I. Alpha-tocopherol decreases superoxide anion release in human monocytes under hyperglycemic conditions via inhibition of protein kinase C-alpha. *Diabetes* 2002; 51: 3049-54.
- [134] Egger T, Hammer A, Wintersperger A, Goti D, Malle E, Sattler W. Modulation of microglial superoxide production by alpha-tocopherol in vitro: attenuation of p67(phox) translocation by a protein phosphatase-dependent pathway. *J Neurochem* 2001; 79: 1169-82.

- [135] Ricciarelli R, Maroni P, Ozer N, Zingg JM, Azzi A. Age-dependent increase of collagenase expression can be reduced by alpha-tocopherol via protein kinase C inhibition. *Free Radic Biol Med* 1999; 27: 729-37.
- [136] Martin-Nizard F, Boullier A, Fruchart JC, Duriez P. Alpha-tocopherol but not beta-tocopherol inhibits thrombin-induced PKC activation and endothelin secretion in endothelial cells. *J Cardiovasc Risk* 1998; 5: 339-45.
- [137] Sylvester PW, McIntyre BS, Gapor A, Briski KP. Vitamin E inhibition of normal mammary epithelial cell growth is associated with a reduction in protein kinase C(alpha) activation. *Cell Prolif* 2001; 34: 347-57.
- [138] Azzi A, Gysin R, Kempna P, Munteanu A, Villacorta L, Visarius T, Zingg JM. Regulation of gene expression by alpha-tocopherol. *Biol Chem* 2004; 385: 585-91.
- [139] Barella L, Muller PY, Schlachter M, Hunziker W, Stocklin E, Spitzer V, Meier N, de Pascual-Teresa S, Minihane AM, Rimbach G. Identification of hepatic molecular mechanisms of action of alpha-tocopherol using global gene expression profile analysis in rats. *Biochim Biophys Acta* 2004; 1689: 66-74.
- [140] Nier B, Weinberg PD, Rimbach G, Stocklin E, Barella L. Differential gene expression in skeletal muscle of rats with vitamin E deficiency. *IUBMB Life* 2006; 58: 540-8.
- [141] Roy S, Lado BH, Khanna S, Sen CK. Vitamin E sensitive genes in the developing rat fetal brain: a high-density oligonucleotide microarray analysis. *FEBS Lett* 2002; 530: 17-23.
- [142] Fechner H, Schlame M, Guthmann F, Stevens PA, Rustow B. alpha- and delta-tocopherol induce expression of hepatic alpha-tocopherol-transfer-protein mRNA. *Biochem J* 1998; 331 (Pt 2): 577-81.
- [143] Landes N, Pfluger P, Kluth D, Birringer M, Ruhl R, Bol GF, Glatt H, Brigelius-Flohé R. Vitamin E activates gene expression via the pregnane X receptor. *Biochem Pharmacol* 2003; 65: 269-73
- [144] Kluth D, Landes N, Pfluger P, Müller-Schmehl K, Weiss K, Bumke-Vogt C, Ristow M, Brigelius-Flohé R. Modulation of Cyp3a11 mRNA expression by alpha-tocopherol but not gamma-tocotrienol in mice. *Free Radic Biol Med* 2005; 38: 507-14.
- [145] Traber MG, Siddens LK, Leonard SW, Schock B, Gohil K, Krueger SK, Cross CE, Williams DE. Alpha-tocopherol modulates Cyp3a expression, increases gamma-CEHC production, and limits tissue gamma-tocopherol accumulation in mice fed high gamma-tocopherol diets. *Free Radic Biol Med* 2005; 38: 773-85.
- [146] Mustacich DJ, Gohil K, Bruno RS, Yan M, Leonard SW, Ho E, Cross CE, Traber MG. Alphatocopherol modulates genes involved in hepatic xenobiotic pathways in mice. *J Nutr Biochem* 2008.
- [147] Mustacich DJ, Leonard SW, Devereaux MW, Sokol RJ, Traber MG. Alpha-tocopherol regulation of hepatic cytochrome P450s and ABC transporters in rats. *Free Radic Biol Med* 2006; 41: 1069-78.
- [148] Sidorova YA, Ivanova EV, Grishanova AY, Lyakhovich VV. Dose-dependent effect of alphatocopherol on activity of xenobiotic metabolizing enzymes in rat liver. *Bull Exp Biol Med* 2003; 136: 38-41.
- [149] Devaraj S, Hugou I, Jialal I. Alpha-tocopherol decreases CD36 expression in human monocyte-derived macrophages. *J Lipid Res* 2001; 42: 521-7.
- [150] Ricciarelli R, Zingg JM, Azzi A. Vitamin E reduces the uptake of oxidized LDL by inhibiting CD36 scavenger receptor expression in cultured aortic smooth muscle cells. *Circulation* 2000; 102: 82-7.
- [151] Venugopal SK, Devaraj S, Jialal I. RRR-alpha-tocopherol decreases the expression of the major scavenger receptor, CD36, in human macrophages via inhibition of tyrosine kinase (Tyk2). *Atherosclerosis* 2004; 175: 213-20.
- [152] Kolleck I, Schlame M, Fechner H, Looman AC, Wissel H, Rustow B. HDL is the major source of vitamin E for type II pneumocytes. *Free Radic Biol Med* 1999; 27: 882-90.

- [153] Witt W, Kolleck I, Fechner H, Sinha P, Rustow B. Regulation by vitamin E of the scavenger receptor BI in rat liver and HepG2 cells. *J Lipid Res* 2000; 41: 2009-16.
- [154] Teupser D, Thiery J, Seidel D. Alpha-tocopherol down-regulates scavenger receptor activity in macrophages. *Atherosclerosis* 1999; 144: 109-15.
- [155] Aratri E, Spycher SE, Breyer I, Azzi A. Modulation of alpha-tropomyosin expression by alpha-tocopherol in rat vascular smooth muscle cells. *FEBS Lett* 1999; 447: 91-4.
- [156] Azzi A, Aratri E, Boscoboinik D, Clement S, Ozer NK, Ricciarelli R, Spycher S. Molecular basis of alpha-tocopherol control of smooth muscle cell proliferation. *Biofactors* 1998; 7: 3-14.
- [157] Chojkier M, Houglum K, Lee KS, Buck M. Long- and short-term D-alpha-tocopherol supplementation inhibits liver collagen alpha1(I) gene expression. *Am J Physiol* 1998; 275: G1480-5.
- [158] Theriault A, Chao JT, Gapor A. Tocotrienol is the most effective vitamin E for reducing endothelial expression of adhesion molecules and adhesion to monocytes. *Atherosclerosis* 2002; 160: 21-30.
- [159] Yoshikawa T, Yoshida N, Manabe H, Terasawa Y, Takemura T, Kondo M. alpha-Tocopherol protects against expression of adhesion molecules on neutrophils and endothelial cells. *Biofactors* 1998; 7: 15-9.
- [160] Chang SJ, Lin JS, Chen HH. Alpha-tocopherol downregulates the expression of GPIIb promoter in HEL cells. *Free Radic Biol Med* 2000; 28: 202-7.
- [161] Li-Weber M, Giaisi M, Treiber MK, Krammer PH. Vitamin E inhibits IL-4 gene expression in peripheral blood T cells. *Eur J Immunol* 2002; 32: 2401-8.
- [162] Gysin R, Azzi A, Visarius T. Gamma-tocopherol inhibits human cancer cell cycle progression and cell proliferation by down-regulation of cyclins. *Faseb J* 2002; 16: 1952-4.
- [163] Li-Weber M, Weigand MA, Giaisi M, Suss D, Treiber MK, Baumann S, Ritsou E, Breitkreutz R, Krammer PH. Vitamin E inhibits CD95 ligand expression and protects T cells from activationinduced cell death. J Clin Invest 2002; 110: 681-90.
- [164] Atkinson J, Epand RF, Epand RM. Tocopherols and tocotrienols in membranes: a critical review. *Free Radic Biol Med* 2008; 44: 739-64.
- [165] Quinn PJ. Is the distribution of alpha-tocopherol in membranes consistent with its putative functions? *Biochemistry (Mosc)* 2004; 69: 58-66.
- [166] Kagan VE, Quinn PJ. The interaction of alpha-tocopherol and homologues with shorter hydrocarbon chains with phospholipid bilayer dispersions. A fluorescence probe study. *Eur J Biochem* 1988; 171: 661-7.
- [167] Cuschieri J, Bulger E, Biligren J, Garcia I, Maier RV. Vitamin E inhibits endotoxin-mediated transport of phosphatases to lipid rafts. *Shock* 2007; 27: 19-24.
- [168] Landes N. Vitamin E: elucidation of the mechanism of side chain degradation and gene regulatory functions. Dissertation Universität Potsdam, 2005.
- [169] Rozen S, Skaletsky H. Primer3 on the WWW for general users and for biologist programmers. *Methods Mol Biol* 2000; 132: 365-86.
- [170] Marshall OJ. PerlPrimer: cross-platform, graphical primer design for standard, bisulphite and real-time PCR. *Bioinformatics* 2004; 20: 2471-2.
- [171] Eccleston E, Leonard BJ, Lowe JS, Welford HJ. Basophilic leukaemia in the albino rat and a demonstration of the basopoietin. *Nat New Biol* 1973; 244: 73-6.
- [172] Kulczycki A, Jr., Isersky C, Metzger H. The interaction of IgE with rat basophilic leukemia cells. I. Evidence for specific binding of IgE. *J Exp Med* 1974; 139: 600-16.
- [173] Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. *J Immunol Methods* 1983; 65: 55-63.
- [174] Wong-Lee JG, Lovett M. Rapid and sensitive PCR method for identification of mycoplasma species in tissue culture. Washington D. C.: American Society for Microbiology, 1993.

- [175] Valastyan S, Thakur V, Johnson A, Kumar K, Manor D. Novel transcriptional activities of vitamin E: inhibition of cholesterol biosynthesis. *Biochemistry* 2008; 47: 744-52.
- [176] Nell S, Bahtz R, Bossecker A, Kipp A, Landes N, Bumke-Vogt C, Halligan E, Lunec J, Brigelius-Flohe R. PCR-verified microarray analysis and functional in vitro studies indicate a role of alpha-tocopherol in vesicular transport. *Free Radic Res* 2007; 41: 930-42.
- [177] Grompe M, St-Louis M, Demers SI, al-Dhalimy M, Leclerc B, Tanguay RM. A single mutation of the fumarylacetoacetate hydrolase gene in French Canadians with hereditary tyrosinemia type I. *N Engl J Med* 1994; 331: 353-7.
- [178] Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. *Anal Biochem* 1976; 72: 248-54.
- [179] Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. *Nature* 1970; 227: 680-5.
- [180] Puri N, Roche PA. Ternary SNARE complexes are enriched in lipid rafts during mast cell exocytosis. *Traffic* 2006; 7: 1482-94.
- [181] Radeva G, Sharom FJ. Isolation and characterization of lipid rafts with different properties from RBL-2H3 (rat basophilic leukaemia) cells. *Biochem J* 2004; 380: 219-30.
- [182] Vaidyanathan VV, Puri N, Roche PA. The last exon of SNAP-23 regulates granule exocytosis from mast cells. *J Biol Chem* 2001; 276: 25101-6.
- [183] Liu G, Loraine AE, Shigeta R, Cline M, Cheng J, Valmeekam V, Sun S, Kulp D, Siani-Rose MA. NetAffx: Affymetrix probesets and annotations. *Nucleic Acids Res* 2003; 31: 82-6.
- [184] Hosack DA, Dennis G, Jr., Sherman BT, Lane HC, Lempicki RA. Identifying biological themes within lists of genes with EASE. *Genome Biol* 2003; 4: R70.
- [185] Dennis G, Jr., Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA. DAVID: Database for Annotation, Visualization, and Integrated Discovery. *Genome Biol* 2003; 4: P3.
- [186] Bennett MK, Calakos N, Scheller RH. Syntaxin: a synaptic protein implicated in docking of synaptic vesicles at presynaptic active zones. *Science* 1992; 257: 255-9.
- [187] Jagadish MN, Tellam JT, Macaulay SL, Gough KH, James DE, Ward CW. Novel isoform of syntaxin 1 is expressed in mammalian cells. *Biochem J* 1997; 321 (Pt 1): 151-6.
- [188] Gerst JE. SNAREs and SNARE regulators in membrane fusion and exocytosis. *Cell Mol Life Sci* 1999; 55: 707-34.
- [189] Blank U, Cyprien B, Martin-Verdeaux S, Paumet F, Pombo I, Rivera J, Roa M, Varin-Blank N. SNAREs and associated regulators in the control of exocytosis in the RBL-2H3 mast cell line. *Mol Immunol* 2002; 38: 1341-5.
- [190] Paumet F, Le Mao J, Martin S, Galli T, David B, Blank U, Roa M. Soluble NSF attachment protein receptors (SNAREs) in RBL-2H3 mast cells: functional role of syntaxin 4 in exocytosis and identification of a vesicle-associated membrane protein 8-containing secretory compartment. *J Immunol* 2000; 164: 5850-7.
- [191] Puri N, Kruhlak MJ, Whiteheart SW, Roche PA. Mast cell degranulation requires Nethylmaleimide-sensitive factor-mediated SNARE disassembly. *J Immunol* 2003; 171: 5345-52.
- [192] Tadokoro S, Kurimoto T, Nakanishi M, Hirashima N. Munc18-2 regulates exocytotic membrane fusion positively interacting with syntaxin-3 in RBL-2H3 cells. *Mol Immunol* 2007; 44: 3427-33.
- [193] Tadokoro S, Nakanishi M, Hirashima N. Complexin II facilitates exocytotic release in mast cells by enhancing Ca2+ sensitivity of the fusion process. *J Cell Sci* 2005; 118: 2239-46.
- [194] Simons K, Ikonen E. Functional rafts in cell membranes. Nature 1997; 387: 569-72.
- [195] Foster LJ, De Hoog CL, Mann M. Unbiased quantitative proteomics of lipid rafts reveals high specificity for signaling factors. *Proc Natl Acad Sci U S A* 2003; 100: 5813-8.
- [196] Gaedicke S, Zhang X, Schmelzer C, Lou Y, Doering F, Frank J, Rimbach G. Vitamin E dependent microRNA regulation in rat liver. *FEBS Lett* 2008; 582: 3542-6.

- [197] Hyland S, Muller D, Hayton S, Stoecklin E, Barella L. Cortical gene expression in the vitamin E-deficient rat: possible mechanisms for the electrophysiological abnormalities of visual and neural function. *Ann Nutr Metab* 2006; 50: 433-41.
- [198] Hayton SM, Kriss T, Wade A, Muller DP. Effects on neural function of repleting vitamin Edeficient rats with alpha-tocopherol. *J Neurophysiol* 2006; 95: 2553-9.
- [199] Jahn R, Sudhof TC. Membrane fusion and exocytosis. Annu Rev Biochem 1999; 68: 863-911.
- [200] Li L, Chin LS. The molecular machinery of synaptic vesicle exocytosis. Cell Mol Life Sci 2003; 60: 942-60.
- [201] Rizo J, Sudhof TC. Snares and Munc18 in synaptic vesicle fusion. *Nat Rev Neurosci* 2002; 3: 641-53.
- [202] Cheatham B, Volchuk A, Kahn CR, Wang L, Rhodes CJ, Klip A. Insulin-stimulated translocation of GLUT4 glucose transporters requires SNARE-complex proteins. *Proc Natl Acad Sci U S A* 1996; 93: 15169-73.
- [203] Boyd RS, Duggan MJ, Shone CC, Foster KA. The effect of botulinum neurotoxins on the release of insulin from the insulinoma cell lines HIT-15 and RINm5F. *J Biol Chem* 1995; 270: 18216-8.
- [204] Mollinedo F, Calafat J, Janssen H, Martin-Martin B, Canchado J, Nabokina SM, Gajate C. Combinatorial SNARE complexes modulate the secretion of cytoplasmic granules in human neutrophils. *J Immunol* 2006; 177: 2831-41.
- [205] Birringer M, Kuhlow D, Pfluger PT, Landes N, Schulz TJ, Glaubitz M, Florian S, Pfeiffer A, Schuelke M, Brigelius-Flohe R, et al. Improved glucose metabolism in mice lacking alphatocopherol transfer protein. *Eur J Nutr* 2007; 46: 397-405.
- [206] Chieregatti E, Meldolesi J. Regulated exocytosis: new organelles for non-secretory purposes. *Nat Rev Mol Cell Biol* 2005; 6: 181-7.
- [207] Cocucci E, Lorusso A, Ongania GN, Klajn A, Meldolesi J. Non-secretory exocytoses in the brain. *J Physiol Paris* 2006; 99: 140-5.
- [208] Yokota T, Uchihara T, Kumagai J, Shiojiri T, Pang JJ, Arita M, Arai H, Hayashi M, Kiyosawa M, Okeda R, et al. Postmortem study of ataxia with retinitis pigmentosa by mutation of the alphatocopherol transfer protein gene. *J Neurol Neurosurg Psychiatry* 2000; 68: 521-5.
- [209] Wu L, Belasco JG. Let me count the ways: mechanisms of gene regulation by miRNAs and siRNAs. *Mol Cell* 2008; 29: 1-7.
- [210] Abderrahmani A, Plaisance V, Lovis P, Regazzi R. Mechanisms controlling the expression of the components of the exocytotic apparatus under physiological and pathological conditions. *Biochem Soc Trans* 2006; 34: 696-700.
- [211] Lovis P, Gattesco S, Regazzi R. Regulation of the expression of components of the exocytotic machinery of insulin-secreting cells by microRNAs. *Biol Chem* 2008; 389: 305-12.
- [212] Balazs Z, Panzenboeck U, Hammer A, Sovic A, Quehenberger O, Malle E, Sattler W. Uptake and transport of high-density lipoprotein (HDL) and HDL-associated alpha-tocopherol by an in vitro blood-brain barrier model. *J Neurochem* 2004; 89: 939-50.
- [213] Goti D, Hrzenjak A, Levak-Frank S, Frank S, van der Westhuyzen DR, Malle E, Sattler W. Scavenger receptor class B, type I is expressed in porcine brain capillary endothelial cells and contributes to selective uptake of HDL-associated vitamin E. *J Neurochem* 2001; 76: 498-508.
- [214] Tachikawa M, Okayasu S, Hosoya K. Functional involvement of scavenger receptor class B, type I, in the uptake of alpha-tocopherol using cultured rat retinal capillary endothelial cells. *Mol Vis* 2007; 13: 2041-7.
- [215] Ikeda T, Murakami M, Funaba M. Expression of tocopherol-associated protein in mast cells. *Clin Diagn Lab Immunol* 2004; 11: 1189-91.
- [216] Funaba M, Murakami M, Ikeda T, Ogawa K, Tsuchida K, Sugino H. Identification of tocopherol-associated protein as an activin/TGF-beta-inducible gene in mast cells. *Biochim Biophys Acta* 2006; 1763: 900-6.

- [217] Sim AT, Ludowyke RI, Verrills NM. Mast cell function: regulation of degranulation by serine/threonine phosphatases. *Pharmacol Ther* 2006; 112: 425-39.
- [218] Ludowyke RI, Holst J, Mudge LM, Sim AT. Transient translocation and activation of protein phosphatase 2A during mast cell secretion. *J Biol Chem* 2000; 275: 6144-52.
- [219] Ludowyke RI, Warton K, Scurr LL. Inhibition of antigen and calcium ionophore induced secretion from RBL-2H3 cells by phosphatase inhibitors. *Cell Biol Int* 1998; 22: 855-65.
- [220] Neuzil J, Weber T, Schroder A, Lu M, Ostermann G, Gellert N, Mayne GC, Olejnicka B, Negre-Salvayre A, Sticha M, et al. Induction of cancer cell apoptosis by alpha-tocopheryl succinate: molecular pathways and structural requirements. *Faseb J* 2001; 15: 403-15.
- [221] Ozawa K, Yamada K, Kazanietz MG, Blumberg PM, Beaven MA. Different isozymes of protein kinase C mediate feedback inhibition of phospholipase C and stimulatory signals for exocytosis in rat RBL-2H3 cells. *J Biol Chem* 1993; 268: 2280-3.
- [222] Freedman JE, Farhat JH, Loscalzo J, Keaney JF, Jr. alpha-tocopherol inhibits aggregation of human platelets by a protein kinase C-dependent mechanism. *Circulation* 1996; 94: 2434-40.
- [223] Wang X, Quinn PJ. The location and function of vitamin E in membranes (review). *Mol Membr Biol* 2000; 17: 143-56.
- [224] Dykstra M, Cherukuri A, Sohn HW, Tzeng SJ, Pierce SK. Location is everything: lipid rafts and immune cell signaling. *Annu Rev Immunol* 2003; 21: 457-81.
- [225] Holowka D, Sheets ED, Baird B. Interactions between Fc(epsilon)RI and lipid raft components are regulated by the actin cytoskeleton. *J Cell Sci* 2000; 113 (Pt 6): 1009-19.
- [226] Kovarova M, Tolar P, Arudchandran R, Draberova L, Rivera J, Draber P. Structure-function analysis of Lyn kinase association with lipid rafts and initiation of early signaling events after Fcepsilon receptor I aggregation. *Mol Cell Biol* 2001; 21: 8318-28.
- [227] Pombo I, Rivera J, Blank U. Munc18-2/syntaxin3 complexes are spatially separated from syntaxin3-containing SNARE complexes. *FEBS Lett* 2003; 550: 144-8.
- [228] Chamberlain LH, Burgoyne RD, Gould GW. SNARE proteins are highly enriched in lipid rafts in PC12 cells: implications for the spatial control of exocytosis. *Proc Natl Acad Sci U S A* 2001; 98: 5619-24.
- [229] Chamberlain LH, Gould GW. The vesicle- and target-SNARE proteins that mediate Glut4 vesicle fusion are localized in detergent-insoluble lipid rafts present on distinct intracellular membranes. J Biol Chem 2002; 277: 49750-4.
- [230] Gil C, Soler-Jover A, Blasi J, Aguilera J. Synaptic proteins and SNARE complexes are localized in lipid rafts from rat brain synaptosomes. *Biochem Biophys Res Commun* 2005; 329: 117-24.
- [231] Marko MG, Ahmed T, Bunnell SC, Wu D, Chung H, Huber BT, Meydani SN. Age-associated decline in effective immune synapse formation of CD4(+) T cells is reversed by vitamin E supplementation. *J Immunol* 2007; 178: 1443-9.
- [232] Bromley SK, Burack WR, Johnson KG, Somersalo K, Sims TN, Sumen C, Davis MM, Shaw AS, Allen PM, Dustin ML. The immunological synapse. *Annu Rev Immunol* 2001; 19: 375-96.
- [233] Gringhuis SI, Leow A, Papendrecht-Van Der Voort EA, Remans PH, Breedveld FC, Verweij CL. Displacement of linker for activation of T cells from the plasma membrane due to redox balance alterations results in hyporesponsiveness of synovial fluid T lymphocytes in rheumatoid arthritis. *J Immunol* 2000; 164: 2170-9.
- [234] Gringhuis SI, Papendrecht-van der Voort EA, Leow A, Nivine Levarht EW, Breedveld FC, Verweij CL. Effect of redox balance alterations on cellular localization of LAT and downstream T-cell receptor signaling pathways. *Mol Cell Biol* 2002; 22: 400-11.
- [235] Yang B, Rizzo V. TNF-alpha potentiates protein-tyrosine nitration through activation of NADPH oxidase and eNOS localized in membrane rafts and caveolae of bovine aortic endothelial cells. *Am J Physiol Heart Circ Physiol* 2007; 292: H954-62.
- [236] Vilhardt F, van Deurs B. The phagocyte NADPH oxidase depends on cholesterol-enriched membrane microdomains for assembly. *Embo J* 2004; 23: 739-48.

- [237] Nava P, Cecchini M, Chirico S, Gordon H, Morley S, Manor D, Atkinson J. Preparation of fluorescent tocopherols for use in protein binding and localization with the alpha-tocopherol transfer protein. *Bioorg Med Chem* 2006; 14: 3721-36.
- [238] Cai H, Harrison DG. Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. *Circ Res* 2000; 87: 840-4.
- [239] Finkel T. Redox-dependent signal transduction. FEBS Lett 2000; 476: 52-4.
- [240] Goldschmidt-Clermont PJ, Moldovan L. Stress, superoxide, and signal transduction. *Gene Expr* 1999; 7: 255-60.
- [241] Lowenstein CJ, Tsuda H. N-ethylmaleimide-sensitive factor: a redox sensor in exocytosis. *Biol Chem* 2006; 387: 1377-83.
- [242] Matsushita K, Morrell CN, Cambien B, Yang SX, Yamakuchi M, Bao C, Hara MR, Quick RA, Cao W, O'Rourke B, et al. Nitric oxide regulates exocytosis by S-nitrosylation of N-ethylmaleimide-sensitive factor. *Cell* 2003; 115: 139-50.
- [243] Matsushita K, Morrell CN, Mason RJ, Yamakuchi M, Khanday FA, Irani K, Lowenstein CJ. Hydrogen peroxide regulation of endothelial exocytosis by inhibition of N-ethylmaleimide sensitive factor. *J Cell Biol* 2005; 170: 73-9.
- [244] Galli SJ, Nakae S, Tsai M. Mast cells in the development of adaptive immune responses. *Nat Immunol* 2005; 6: 135-42.
- [245] Metcalfe DD, Baram D, Mekori YA. Mast cells. Physiol Rev 1997; 77: 1033-79.
- [246] Gueck T, Aschenbach JR, Fuhrmann H. Influence of vitamin E on mast cell mediator release. Vet Dermatol 2002; 13: 301-5.
- [247] Yokota T, Shiojiri T, Gotoda T, Arita M, Arai H, Ohga T, Kanda T, Suzuki J, Imai T, Matsumoto H, et al. Friedreich-like ataxia with retinitis pigmentosa caused by the His101Gln mutation of the alpha-tocopherol transfer protein gene. *Ann Neurol* 1997; 41: 826-32.
- [248] Shaw HM, Huang C. Liver alpha-tocopherol transfer protein and its mRNA are differentially altered by dietary vitamin E deficiency and protein insufficiency in rats. *J Nutr* 1998; 128: 2348-54.
- [249] Kim HS, Arai H, Arita M, Sato Y, Ogihara T, Inoue K, Mino M, Tamai H. Effect of alphatocopherol status on alphatocopherol transfer protein expression and its messenger RNA level in rat liver. *Free Radic Res* 1998; 28: 87-92.
- [250] Bella DL, Schock BC, Lim Y, Leonard SW, Berry C, Cross CE, Traber MG. Regulation of the alpha-tocopherol transfer protein in mice: lack of response to dietary vitamin E or oxidative stress. *Lipids* 2006; 41: 105-12.
- [251] Pappert EJ, Tangney CC, Goetz CG, Ling ZD, Lipton JW, Stebbins GT, Carvey PM. Alphatocopherol in the ventricular cerebrospinal fluid of Parkinson's disease patients: dose-response study and correlations with plasma levels. *Neurology* 1996; 47: 1037-42.
- [252] Cuddihy SL, Ali SS, Musiek ES, Lucero J, Kopp SJ, Morrow JD, Dugan LL. Prolonged alphatocopherol deficiency decreases oxidative stress and unmasks alpha-tocopherol-dependent regulation of mitochondrial function in the brain. *J Biol Chem* 2008; 283: 6915-24.
- [253] Spector R, Johanson CE. Vitamin transport and homeostasis in mammalian brain: focus on Vitamins B and E. *J Neurochem* 2007; 103: 425-38.
- [254] Desrumaux C, Risold PY, Schroeder H, Deckert V, Masson D, Athias A, Laplanche H, Le Guern N, Blache D, Jiang XC, et al. Phospholipid transfer protein (PLTP) deficiency reduces brain vitamin E content and increases anxiety in mice. *Faseb J* 2005; 19: 296-7.
- [255] Oommen S, Vasu VT, Leonard SW, Traber MG, Cross CE, Gohil K. Genome wide responses of murine lungs to dietary alpha-tocopherol. *Free Radic Res* 2007; 41: 98-109.
- [256] Chen HW, Cook LR, Hendrich S. Gender and dietary fat affect alpha-tocopherol status in F344/N rats. *Lipids* 1992; 27: 844-6.
- [257] Brigelius-Flohe R. Vitamin E and drug metabolism. *Biochem Biophys Res Commun* 2003; 305: 737-40.

- [258] Konno Y, Sekimoto M, Nemoto K, Degawa M. Sex difference in induction of hepatic CYP2B and CYP3A subfamily enzymes by nicardipine and nifedipine in rats. *Toxicol Appl Pharmacol* 2004; 196: 20-8.
- [259] Anakk S, Ku CY, Vore M, Strobel HW. Insights into gender bias: rat cytochrome P450 3A9. J Pharmacol Exp Ther 2003; 305: 703-9.
- [260] Sakuma T, Endo Y, Mashino M, Kuroiwa M, Ohara A, Jarukamjorn K, Nemoto N. Regulation of the expression of two female-predominant CYP3A mRNAs (CYP3A41 and CYP3A44) in mouse liver by sex and growth hormones. *Arch Biochem Biophys* 2002; 404: 234-42.
- [261] Johnson A, Manor D. The transcriptional signature of vitamin E. Ann N Y Acad Sci 2004; 1031: 337-8.
- [262] Kliewer SA. The nuclear pregnane X receptor regulates xenobiotic detoxification. J Nutr 2003; 133: 2444S-47S.
- [263] Zhou C, Tabb MM, Sadatrafiei A, Grun F, Blumberg B. Tocotrienols activate the steroid and xenobiotic receptor, SXR, and selectively regulate expression of its target genes. *Drug Metab Dispos* 2004; 32: 1075-82.
- [264] Munteanu A, Zingg JM, Azzi A. Anti-atherosclerotic effects of vitamin E--myth or reality? *J Cell Mol Med* 2004; 8: 59-76.
- [265] Song BL, DeBose-Boyd RA. Insig-dependent ubiquitination and degradation of 3-hydroxy-3-methylglutaryl coenzyme a reductase stimulated by delta- and gamma-tocotrienols. *J Biol Chem* 2006; 281: 25054-61.
- [266] Pal S, Thomson AM, Bottema CD, Roach PD. Alpha-tocopherol modulates the low density lipoprotein receptor of human HepG2 cells. *Nutr J* 2003; 2: 3.
- [267] Parker RA, Pearce BC, Clark RW, Gordon DA, Wright JJ. Tocotrienols regulate cholesterol production in mammalian cells by post-transcriptional suppression of 3-hydroxy-3-methylglutaryl-coenzyme A reductase. *J Biol Chem* 1993; 268: 11230-8.
- [268] Pearce BC, Parker RA, Deason ME, Qureshi AA, Wright JJ. Hypocholesterolemic activity of synthetic and natural tocotrienols. *J Med Chem* 1992; 35: 3595-606.
- [269] Chen LH, Liao S, Packett LV. Interaction of dietary vitamin E and protein level of lipid source with serum cholesterol level in rats. *J Nutr* 1972; 102: 729-32.
- [270] Raederstorff D, Elste V, Aebischer C, Weber P. Effect of either gamma-tocotrienol or a tocotrienol mixture on the plasma lipid profile in hamsters. *Ann Nutr Metab* 2002; 46: 17-23.
- [271] Komaratat P, Chupukcharoen N, Wilairat P. Effect of vitamin E on cholesterol plasma lipoprotein distribution and metabolism in rabbit. *Int J Vitam Nutr Res* 1985; 55: 167-71.
- [272] Khor HT, Ng TT. Effects of administration of alpha-tocopherol and tocotrienols on serum lipids and liver HMG CoA reductase activity. *Int J Food Sci Nutr* 2000; 51 Suppl: S3-11.
- [273] Gachon F, Fonjallaz P, Damiola F, Gos P, Kodama T, Zakany J, Duboule D, Petit B, Tafti M, Schibler U. The loss of circadian PAR bZip transcription factors results in epilepsy. *Genes Dev* 2004; 18: 1397-412.
- [274] Gachon F, Olela FF, Schaad O, Descombes P, Schibler U. The circadian PAR-domain basic leucine zipper transcription factors DBP, TEF, and HLF modulate basal and inducible xenobiotic detoxification. *Cell Metab* 2006; 4: 25-36.
- [275] Kudo T, Kawashima M, Tamagawa T, Shibata S. Clock mutation facilitates accumulation of cholesterol in the liver of mice fed a cholesterol and/or cholic acid diet. *Am J Physiol Endocrinol Metab* 2008; 294: E120-30.
- [276] Lavery DJ, Schibler U. Circadian transcription of the cholesterol 7 alpha hydroxylase gene may involve the liver-enriched bZIP protein DBP. *Genes Dev* 1993; 7: 1871-84.
- [277] Cereghini S. Liver-enriched transcription factors and hepatocyte differentiation. *Faseb J* 1996; 10: 267-82.
- [278] Stefanovic L, Stefanovic B. Mechanism of direct hepatotoxic effect of KC chemokine: sequential activation of gene expression and progression from inflammation to necrosis. *J Interferon Cytokine Res* 2006; 26: 760-70.

[279] Lein ES, Hawrylycz MJ, Ao N, Ayres M, Bensinger A, Bernard A, Boe AF, Boguski MS, Brockway KS, Byrnes EJ, et al. Genome-wide atlas of gene expression in the adult mouse brain. *Nature* 2007; 445: 168-76.

7 Anhang

Tab. A1: TV1 - In vesikuläre Transportprozesse involvierte α -Tocopherol-regulierte Gene

Gensymbol	Genname	GenBank	FC
Abca3	ATP-binding cassette, sub-family A (ABC1), member 3	NM_013855	-4,8
App	amyloid beta (A4) precursor protein	NM_007471	3,5
Arf3	ADP-ribosylation factor 3	NM_007478	2,9
Atp1a2	ATPase, Na+/K+ transporting, alpha 2 polypeptide	NM_178405	21,5
Atp1b2	ATPase, Na+/K+ transporting, beta 2 polypeptide	NM_013415	15,7
Calm1	calmodulin 1	NM_009790	4.1
Calm2	calmodulin 2	NM_007589	2.9
Cplx1	complexin 1	NM_007756	9,0
Cplx2	complexin 2	NM_009946	17,6
Cubn	cubilin (intrinsic factor-cobalamin receptor)	XM_130038	-11,7
Grin1	glutamate receptor, ionotropic, NMDA1 (zeta 1)	NM_008169	8,4
Kif1b	kinesin family member 1B	NM_008441	3,4
Kns2	kinesin 2	NM_008450	40,2
Mbp	myelin basic protein	NM_010777	23,7
Mobp	myelin-associated oligodendrocytic basic protein	NM_008614	77,9
Mt3	metallothionein 3	NM_013603	8,0
Napb	N-ethylmaleimide sensitive fusion protein attachment protein beta	NM_019632	14,1
Ndn	necdin	NM_010882	21,6
Nsf	N-ethylmaleimide sensitive fusion protein	NM_008740	7,7
Plp1	proteolipid protein (myelin) 1	NM_011123	9,7
Rab3a	RAB3A, member RAS oncogene family	NM_009001	28,6
Rab6b	RAB6B, member RAS oncogene family	NM_173781	9,5
Rab11b	RAB11B, member RAS oncogene family	NM_008997	3,6
Sgne1	secretory granule neuroendocrine protein 1, 7B2 protein	NM_009162	14,2
Snap25	synaptosomal-associated protein 25	NM_011428	20,4
Snap91	synaptosomal-associated protein 91	NM_013669	23,7
Snca	synuclein, alpha	NM_009221	23,3
Sncb	synuclein, beta	NM_033610	4,3
Stx1a	syntaxin 1A (brain)	NM_016801	3,9
Stxbp1	syntaxin binding protein 1	NM_009295	7,3
Sv2a	synaptic vesicle glycoprotein 2 a	NM_022030	3,6
Syn1	synapsin I	NM_013680	3,4
Syn2	synapsin II	NM_013681	6,9
Syngr1	synaptogyrin 1	NM_009303	6,7
Syp	synaptophysin	NM_009305	6,6
Syt11	synaptotagmin 11	NM_018804	5,0
Syt13	synaptotagmin 13	 NM_030725	7,1
Vamp1	vesicle-associated membrane protein 1	NM_009496	9,4
Vamp2	vesicle-associated membrane protein 2	NM_009497	3,6

Tab. A2: TV2 - α -Tocopherol-Konzentrationen in Plasma und verschiedenen Organen

Organ	supplement	tiert					defizient					
	Ttpa ^{+/+}	n	Ttpa⁺⁄-	n	Ttpa⁻/-	n	Ttpa⁺′+	n	Ttpa⁺′-	n	Ttpa⁻⁄-	n
Männliche Mäuse	9											
Plasma												
9 w	8,6 ± 3,6	15	6.8 ± 3.3	14	1,6 ± 0,8	9	0,52 ± 0,18	14	$0,42 \pm 0,20$	12	$0,14 \pm 0,09$	11
12 w	$8,9 \pm 3,9$	15	$6,7 \pm 3,4$	14	1,8 ± 1,1	10	0,27 ± 0,19	13	0,21 ± 0,12	12	0.06 ± 0.04	10
16 w	$8,9 \pm 4,2$	12	$7,6 \pm 3,4$	14	1,6 ± 0,7	11	0,29 ± 0,11	14	0,21 ± 0,14	13	0.03 ± 0.02	10
Leber	229,5 ± 85,0	15	218,9 ± 91,5	14	204,0 ± 86,9	11	$2,5 \pm 0,9$	14	$2,2 \pm 0,5$	13	$1,7 \pm 0,8$	11
Großhirn	$24,2 \pm 9,9$	12	12,9 ± 3,4	13	1,8 ± 1,3	9	$6,9 \pm 2,5$	13	4,3 ± 2,1	12	$0,48 \pm 0,42$	9
Kleinhirn	20,8 ± 9,8	12	10,9 ± 4,9	12	1,5 ± 0,5	9	5,6 ± 2,5	14	4,1 ± 1,4	13	0,36 ± 0,18	9
Herz	28,6 ± 8,9	5	32,8 ± 12,6	5	17,0 ± 3,5	5	1,1 ± 0,4	5	$1,3 \pm 0,3$	5	$0,33 \pm 0,12$	5
Skelettmuskel	22,2 ± 10,4	5	17,6 ± 6,3	5	6,2 ± 1,3	5	0,87 ± 0,12	5	$0,74 \pm 0,23$	5	$0,17 \pm 0,06$	5
Lunge	43,4 ± 3,2	5	32,0 ± 7,0	5	13,6 ± 4,0	5	$2,4 \pm 0,6$	5	1,6 ± 0,3	5	$0,43 \pm 0,12$	5
Niere	37,9 ± 3,4	5	23,9 ± 2,4	5	8,9 ± 1,5	5	1,8 ± 0,5	5	1,6 ± 0,3	5	0,36 ± 0,11	5
Weibliche Mäuse	•											
Plasma												
9 w	9.9 ± 3.3	10	7.3 ± 2.6	11	2.9 ± 1.2	13	0.60 ± 0.33	8	0.58 ± 0.24	13	0.10 ± 0.07	9
12 w	10.0 ± 1.9	10	6.9 ± 1.7	10	2.8 ± 1.5	12	0.60 ± 0.20	11	0.43 ± 0.22	13	0.06 ± 0.05	12
16 w	8.8 ± 2.2	10	5.8 ± 1.4	12	2.2 ± 1.3	13	0.43 ± 0.20	11	0.38 ± 0.11	13	0.04 ± 0.02	12
Leber	265.6 ± 112	10	246.1 ± 96.4	12	193.4 ± 54.5	13	4.0 ± 1.0	11	3.9 ± 0.8	13	2.0 ± 0.5	12
Großhirn	29.7 ± 13.5	9	15.5 ± 6.5	12	1.9 ± 0.7	11	6.9 ± 2.9	10	5.8 ± 1.3	12	0.25 ± 0.12	10
Kleinhirn	21.5 ± 7.6	8	14.9 ± 5.5	12	2.1 ± 1.3	10	5.8 ± 1.9	10	5.3 ± 1.3	12	0.28 ± 0.12	9
Herz	42.3 ± 10.3	5	50.9 ± 4.8	5	18.1 ± 5.4	5	2.0 ± 1.3	5	3.0 ± 0.6	5	0.26 ± 0.03	5
Skelettmuskel	20.0 ± 4.6	5	12.7 ± 1.4	5	8.3 ± 4.2	5	1.6 ± 0.8	5	1.1 ± 0.1	5	0.20 ± 0.02	5
Lunge	54.5 ± 12.3	5	40.6 ± 7.4	5	13.2 ± 6.0	5	4.4 ± 1.4	5	2.9 ± 1.0	5	0.43 ± 0.07	5
Niere	57.0 ± 6.3	5	37.0 ± 5.7	5	24.6 ± 7.6	5	3.6 ± 0.7	5	3.7 ± 1.4	6	0.48 ± 0.11	5

Männliche und weibliche $Ttpa^{*/*}$, $Ttpa^{*/*}$ und $Ttpa^{*/*}$ Mäuse wurden 16 Wochen mit einer α-Tocopherol-supplementierten (103,82 ± 43,88 mg RRR-α-Tocopherylacetat/kg Futter) oder -defizienten (0,606 ± 0,264 mg RRR-α-Tocopherylacetat/kg Futter) Diät gefüttert. Nach 9, 12 und 16 Wochen (w) erfolgte eine retroorbitale Blutentnahme. Die α-Tocopherol-Gehalte im Plasma und verschiedenen Organen wurden mittels HPLC bestimmt. Die Anzahl (n) der für die HPLC-Analysen verwendeten Tiere ist angegeben. Die α-Tocopherol-Gehalte sind in μM (Plasma) bzw. nmol/mg FG (Gewebe) angegeben. Dargestellt sind MW ± SD.

Tab. A3: TV2 - Statistische Analyse der α-Tocopherol-Gehalte in Plasma und verschiedenen Organen der Maus

	Geschlecht	Diät			Genotyp						Geschlecht	Ħ				
		supplementiert vs. defizient	ntiert vs.		<i>Ttpa⁺</i> ⁴ vs.	Ttpa⁺′⁺ vs. Ttpa⁺′⁻ vs. Ttpa⁻′⁻	Ttpa⁴-				männlich	männlich vs. weiblich	ے			
					dns	supplementiert	t		defizient		dns	supplementiert	Į.		defizient	
		wt	het	ko	wt/het	wt/ko	het/ko	wt/het	wt/ko	het/ko	wt	het	ko	wt	het	ko
Plasma																
м 6	٤	* *	* * *	ns	SU	* *	* *	su	ns	us	0	ç	2	0	0	2
	*	* * *	* * *	*	*	* * *	* * *	su	SU	ns	S	2	IIS	SII	SII	SE
12 w	ш	* * *	* * *	su	*	* * *	* * *	su	su	su	Ç	Ç	Š	Ç	Ç	Ç
	>	* *	* * *	* *	* * *	* *	* *	us	NS	us	<u>s</u>	2	2	2	2	2
16 w	ш	* * *	* * *	ns	SU	* * *	* * *	su	su	su	Ç	Ç	Ç	Ç	Ç	ç
	>	* * *	* * *	* * *	* * *	* * *	* * *	ns	SU	su	S	2	SI	S	S	2
Leber	ш	* * *	* * *	* * *	SU	su	su	su	su	su	Ç	Ç	Ç	Ç	Ç	2
	>	* *	* * *	* *	SU	*	ns	su	NS	us	<u>s</u>	2	2	2	2	<u>s</u>
Großhirn	ш	* * *	* * *	ns	* * *	* * *	* * *	su	* *	su	0	Ç	2	2	2	ç
	>	* *	* * *	ns	* * *	* *	* *	ns	*	us	<u>o</u>	<u> </u>	2	2	2	
Kleinhirn	ш	* * *	*	su	* *	* * *	* * *	su	*	su	Š	Ç	Š	Š	Š	Š
	>	* *	* * *	ns	* * *	* *	* * *	ns	*	* *	<u>s</u>	<u> </u>	2	2	2	<u>s</u>
Herz	ш	* * *	* * *	*	SU	*	* *	su	SU	su	*	**	2	0	0	ç
	>	* *	* * *	* *	*	* *	* * *	ns	NS	us			2	2	2	<u>0</u>
Skelettmuskel	ш	* *	* * *	su	SU	* *	* *	su	su	su	0	2	ú	ú	ú	Ç
	Μ	**	**	* *	* *	* *	*	ns	ns	ns	2	2	SII	2	2	2
Lunge	ш	* *	* * *	* *	* * *	* *	* *	su	SU	su	* *	G	ú	ü	ü	G
	W	* *	***	*	*	* *	* *	ns	ns	ns		2	SII	2	2	2
Niere	ш	* *	* * *	* * *	* * *	* *	* *	su	SU	su	* *	* *	* *	ú	ú	Ç
	W	* *	***	* *	* * *	* *	* *	ns	ns	ns				2	2	2

Männliche (m) und weibliche (w) *Ttpa*** (wt), *Ttpa*** (het) und *Ttpa*** (het) und *Ttpa*** (ko) Mäuse wurden 16 Wochen mit einer α-Tocopherol-supplementierten (103,82 ± 43,88 mg *RRR*-α-Tocopherol-gebenter) bzw. -defizienten (0,606 ± 0,264 mg *RRR*-α-Tocopherol-gebenter) Diät gefüttert. Nach 9, 12 und 16 Wochen (w) erfolgte eine retroorbitale Blutentnahme. Die α-Tocopherol-Gebenter in Plasma und verschiedenen Organen wurden mittels HPLC bestimmt. Die statistische Analyse erfolgte mittels *Two Way ANOVA* mit *Bonferroni posttest.* **p* < 0,05; ***p* < 0,01; ****p* < 0,001; ns: nicht signifikant.

99

Tab. A4: TV2 - In der Leber regulierte Gene - $Ttpa^{+/+}$ supplementiert vs. $Ttpa^{+/+}$ defizient

ab. A4. TVZ - III dei	Leber regulierte Gene - Tipa Supplementiert vs. Tipa	delizient	
Probe set ID	Genname	Gensymbol	FC
1415927_at	actin, alpha, cardiac	Actc1	3.2
1437645_at	activating transcription factor 7	Atf7	4.6
1417889_at	apolipoprotein B editing complex 2	Apobec2	13.9
1419312_at	ATPase, Ca++ transporting, cardiac muscle, fast twitch 1	Atp2a1	13.9
1420279_at	CDNA sequence BC048599	BC048599	3.0
1417614_at	creatine kinase, muscle	Ckm	3.5
1453092_at	cysteine-rich C-terminal 1	Crct1	3.2
1458361_at	DNA cross-link repair 1C, PSO2 homolog (S. cerevisiae)	Dclre1c	7.0
NuGO_emt075040_at	dual specificity phosphatase 13	Dusp13	2.0 2.1
1417951_at 1444259 at	enolase 3, beta muscle	Eno3 AW495222	2.1
1421534 at	Expressed sequence AW495222 fibroblast growth factor inducible 15	Fin15	2.0
1417872 at	four and a half LIM domains 1	FhI1	2.0
1448194 a at	H19 fetal liver mRNA	H19	6.5
1450091_at	immunoglobulin mu binding protein 2	lghmbp2	2.3
1418735 at	keratin 4	Krt4	29.9
1433783_at	LIM domain binding 3	Ldb3	26.0
1420183_at	loricrin	Lor	2.1
1422626_at	matrix metallopeptidase 16	Mmp16	3.2
NuGO_emt032227_at	murinoglobulin 4	Mug4	2.5
1451203 at	myoglobin	Mb	22.6
1448371 at	myosin light chain, phosphorylatable, fast skeletal muscle	Mylpf	11.3
1426650_at	myosin, heavy polypeptide 8, skeletal muscle, perinatal	Myh8	445.7
1452651_a_at	NOVEL	U6	9.2
1455345_at	PHD finger protein 15	Phf15	2.0
1458405_at	predicted gene, EG330503	EG330503	7.0
NuGO_emt069071_at	predicted gene, ENSMUSG00000055465	ENSMUSG00000055465	12.1
NuGO_emt072427_at	predicted gene, ENSMUSG00000057924	ENSMUSG00000057924	13.0
NuGO_emt093337_x_at	predicted gene, OTTMUSG00000005138	OTTMUSG00000005138	2.1
1452284_at	protein tyrosine phosphatase, receptor type Z, polypeptide 1	Ptprz1	7.5
1429858_at	RIKEN cDNA 1700011E24 gene	1700011E24Rik	4.6
1456248_at	RIKEN cDNA 2310002A05 gene	2310002A05Rik	10.6
1453568_at	RIKEN cDNA 2310032F03 gene	2310032F03Rik	3.2
1452312_at	RIKEN cDNA 2810002D19 gene	2810002D19Rik	2.1
1431872_at	RIKEN cDNA 4930449A18 gene	4930449A18Rik	18.4
1431617_at	RIKEN cDNA 4933405E24 gene	4933405E24Rik	8.0
1432389_at	RIKEN cDNA 4933438A12 gene	4933438A12Rik	2.3
1436867_at	sarcalumenin	Srl	4.3
1420884_at	sarcolipin	SIn	64.0 34.3
NuGO_emt087310_x_at	similar to zinc finger protein 124 (LOC630579), mRNA small muscle protein, X-linked	NP_001034328.2	78.8
1418095_at 1417884 at	solute carrier family 16 (monocarboxylic acid transporters), member 6	Smpx Slc16a6	4.9
NuGO emt092926 at	spermatogenesis associated 22	Spata22	2.5
1436324 at	START domain containing 9	Stard9	7.0
1417464 at	troponin C2, fast	Tnnc2	222.9
1416889 at	troponin I, skeletal, fast 2	Tnni2	39.4
1450118 a at	troponin T3, skeletal, fast	Tnnt3	18.4
NuGO_emt076897_at	vomeronasal 1 receptor, H6	V1rh6	21.1
1421701 at	vomeronasal 2, receptor, 16	V2r16	6.5
1423424 at	zinc finger protein of the cerebellum 3	Zic3	22.6
1423495_at	2-4-dienoyl-Coenzyme A reductase 2, peroxisomal	Decr2	-2.5
1443147_at	acyl-CoA thioesterase 3	Acot3	-3.0
1434855_at	amidohydrolase domain containing 2	Amdhd2	-2.0
1416250_at	B-cell translocation gene 2, anti-proliferative	Btg2	-2.5
1417408_at	coagulation factor III	F3	-3.5
1424971_at	coiled-coil domain containing 99	Ccdc99	-3.2
1418174_at	D site albumin promoter binding protein	Dbp	-2.8
1417065_at	early growth response 1	Egr1	-2.8
1422916_at	fibroblast growth factor 21	Fgf21	-2.1
1417821_at	G7e protein	D17H6S56E-5	-2.0
1421040_a_at	glutathione S-transferase, alpha 2 (Yc2)	Gsta2	-2.0
1421041_s_at	glutathione S-transferase, alpha 2 (Yc2)	Gsta2	-3.0
1427473_at	glutathione S-transferase, mu 3	Gstm3	-2.1
1416188_at	GM2 ganglioside activator protein	Gm2a	-2.5
1449519_at	growth arrest and DNA-damage-inducible 45 alpha	Gadd45a	-2.0
1433508_at	Kruppel-like factor 6	Klf6	-2.1 -29.9
1416513_at 1451884_a_at	laminin, beta 2 LSM2 homolog, U6 small nuclear RNA associated (S. cerevisiae)	Lamb2 Lsm2	-29.9 -2.3
1419254 at	methylenetetrahydrofolate dehydrogenase (NAD+ dependent).	Mthfd2	-2.3 -2.0
1413234_at	methenyltetrahydrofolate cyclohydrolase	Wullaz	-2.0
NuGO emt086318 at	olfactory receptor 1348	Olfr1348	-2.8
NuGO emt077023 at	olfactory receptor 1340	Olfr860	-27.9
1449018 at	profilin 1	Pfn1	-2.5
1448138_at	protein phosphatase 2A, regulatory subunit B (PR 53)	Ppp2r4	-2.0
1420603 s at	retinoic acid early transcript 1E	Raet1d	-2.0
1448754_at	retinol binding protein 1, cellular	Rbp1	-2.3
1423655 a at	RIKEN cDNA 1500010J02 gene	1500010J02Rik	-2.8
1460298_at	RIKEN cDNA 4930483J18 gene	4930483J18Rik	-2.8
1459962 at	RIKEN cDNA 4930523C07 gene	4930523C07Rik	-2.5
1433223_at	RIKEN cDNA 5830442K09 gene	5830442K09Rik	-17.1
1451822 a at	secernin 2	Scrn2	-2.0
1418490 at	serine dehydratase-like	Sdsl	-2.0
	similar to Ferritin light chain 1 (Ferritin L subunit 1) (LOC669415), mRNA	EG383891	-2.6
Nugo_emt090861 at	Similar to remaining it chain in (remain Loubanit i) (Locobo-15), mixiva	E000001	
NuGO_emt090861_at 1422757_at	solute carrier family 5 (neutral amino acid transporters, system A),	Slc5a4b	-3.5

1415823 at	stearoyl-Coenzyme A desaturase 2	Scd2	-2.0
1422993 s at	THO complex 4	Thoc4	-2.0
1420867_at	transmembrane emp24 domain trafficking protein 2	Tmed2	-2.1
1426434_at	transmembrane protein 43	Tmem43	-2.1
1426065_a_at	tribbles homolog 3 (Drosophila)	Trib3	-2.0
1451548_at	uridine phosphorylase 2	Upp2	-2.0
1425356_at	zinc finger protein 142	Zfp142	-7.5
1443002_at	zinc finger RNA binding protein	Zfr	-6.5

Tab. A5: TV2 - In der Leber regulierte Gene - *Ttpa*-/- supplementiert vs. *Ttpa*-/- defizient

Probe set ID	Genname	Gensymbol	FC
1416055_at	amylase 2, pancreatic	Amy2	630.3
1438833_at	cancer susceptibility candidate 5	Casc5	26.0
1417257_at	carboxyl ester lipase	Cel	10.6
1428062_at	carboxypeptidase A1	Cpa1	97.0
1454623_at	carboxypeptidase A2, pancreatic	Cpa2	24.3
1428102_at	carboxypeptidase B1	NP_083982.1 Cdc27	181.0 2.1
1426076_at	cell division cycle 27 homolog (S. cerevisiae) chemokine (C-X-C motif) ligand 1	Cxcl1	2.1
1419209_at 1431763 a at	chymotrypsin-like	Ctrl	104.0
1448220 at	chymotrypsinogen B1	Ctrb1	26.0
1415805_at	colipase, pancreatic	Clps	32.0
1417413 at	CUB and zona pellucida-like domains 1	Cuzd1	2.1
1418287_a_at	deleted in malignant brain tumors 1	Dmbt1	2.1
1423693 at	elastase 1, pancreatic	Ela1	2.6
1448281_a_at	elastase 2A	Ela2a	52.0
1415884 at	elastase 3, pancreatic	Ela3	6.5
1428304_at	establishment of cohesion 1 homolog 2 (S. cerevisiae)	Esco2	2.8
1422735_at	forkhead box Q1	Foxq1	2.0
1435606_at	galactose-3-O-sulfotransferase 4	Gal3st4	4.6
1449452_a_at	glycoprotein 2 (zymogen granule membrane)	Gp2	19.7
1419109_at	histidine rich calcium binding protein	Hrc	3.2
1415837_at	kallikrein 1	Klk1	22.6
1427747_a_at	lipocalin 2	Lcn2	2.1
1422643_at	monooxygenase, DBH-like 1	Moxd1	2.6
1433431_at	pancreatic lipase	Pnlip	52.0
1415777_at	pancreatic lipase related protein 1	Pnliprp1	36.8
1448186_at	pancreatic lipase-related protein 2	Pnliprp2	73.5
1453418_at	procollagen, type XXIV, alpha 1	Col24a1	9.8
1417682_a_at	protease, serine, 2	Prss2	21.1
1428952_at	protein disulfide isomerase associated 2	Pdia2	7.5
1415905_at	regenerating islet-derived 1	Reg1 1810010M01Rik	21.1
1428358_at	RIKEN cDNA 1810010M01 gene	1810049H19Rik	8.6 104.0
NuGO_emt064324_at 1454572 at	RIKEN cDNA 1810049H19 gene RIKEN cDNA 2810414N06 gene	2810414N06Rik	2.0
1430175 at	RIKEN cDNA 4930588G05 gene	4930588G05Rik	2.1
1445717 at	RIKEN cDNA 430000000 gene	E130108L08Rik	2.1
1450788 at	serum amyloid A 1	Saa1	4.6
1449326 x at	serum amyloid A 2	Saa2	6.1
NuGO_emt087510_at	similar to Pancreatic alpha-amylase precursor (PA) (1,4-alpha-D-glucan	Q8C5B4_MOUSE	222.9
	glucanohydrolase) (LOC671344)		
1451228 a at	syncollin	Sycn	21.1
1415954 at	trypsin 4	Try4	1552
1426399_at	von Willebrand factor A domain containing 1	Vwa1	27.9
1444528_at	zinc finger protein 316	Zfp316	6.1
1435471_at	zinc finger protein 708	Zfp708	2.0
1417956_at	cell death-inducing DNA fragmentation factor, alpha subunit-like effector A	Cidea	-3.0
1416953_at	connective tissue growth factor	Ctgf	-2.6
1419590_at	cytochrome P450, family 2, subfamily b, polypeptide 9	Cyp2b9	-8.6
1423257_at	cytochrome P450, family 4, subfamily a, polypeptide 14	Cyp4a14	-2.0
NuGO_emt037065_at	dynein, axonemal, heavy chain 10	Dnahc10	-5.3
1427683_at	early growth response 2	Egr2	-2.0
1423085_at	ephrin B3	Efnb3	-7.0
1418918_at	insulin-like growth factor binding protein 1	Igfbp1	-2.1
1425322_at	interferon zeta	Ifnz	-17.1
1433508_at	Kruppel-like factor 6	Klf6	-2.0
1418288_at	lipin 1	Lpin1	-2.5
1416930_at	lymphocyte antigen 6 complex, locus D	Ly6d Mtmr11	-2.3 -2.3
1460550_at	myotubularin related protein 11		
1421037_at NuGO_emt040983_at	neuronal PAS domain protein 2 olfactory receptor 6	Npas2 Olfr6	-2.8 -2.8
1429783 at	PDZ and LIM domain 5	Pdlim5	-2.6 -2.6
1429763_at 1428923_at	protein phosphatase 1, regulatory (inhibitor) subunit 3G	Ppp1r3g	-2.6 -2.8
1426925_at 1436359 at	ret proto-oncogene	Ret	-2.6 -10.6
1450559_at 1454906 at	retinoic acid receptor, beta	Rarb	-10.6
1434900_at	RIKEN cDNA 9030218A15 gene	9030218A15Rik	-16.0
1419404 s at	seven in absentia 1A	Siah1a	-2.1
1448562 at	uridine phosphorylase 1	Upp1	-2.1
1421716 at	vomeronasal 1 receptor, D6	V1rd6	-3.0

Tab. A6: TV2 - In der Leber regulierte Gene - *Ttpa*^{+/+} supplementiert vs. *Ttpa*^{-/-} supplementiert

Probe set ID	Cenname Sene - Ttpa supplementiert vs. Ttpa	Gensymbol	FC
1415927 at	actin, alpha, cardiac	Actc1	22.6
1428444 at	ankyrin repeat and SOCS box-containing protein 2	Asb2	2.6
1421655 a at	chemokine (C-C motif) receptor 4	Ccr4	9.8
1417614_at	creatine kinase, muscle	Ckm	4.6
1453092 at	cysteine-rich C-terminal 1	Crct1	7.0
1418709 at	cytochrome c oxidase, subunit VIIa 1	Cox7a1	2.0
_	· ·		2.5
1419590_at	cytochrome P450, family 2, subfamily b, polypeptide 9	Cyp2b9	2.5
1448724_at	cytokine inducible SH2-containing protein	Cish	
1418287_a_at	deleted in malignant brain tumors 1	Dmbt1	3.0
1441115_at	DNA segment, Chr 18, ERATO Doi 232, expressed	D18Ertd232e	2.0
1460162_at	DNA segment, Chr 8, ERATO Doi 124, expressed	D8Ertd124e	11.3
1430320_at	dystrophin, muscular dystrophy	Dmd	2.6
1421534_at	fibroblast growth factor inducible 15	Fin15	2.3
1417872_at	four and a half LIM domains 1	FhI1	2.1
1418374_at	FXYD domain-containing ion transport regulator 3	Fxyd3	10.6
1448194_a_at	H19 fetal liver mRNA	H19	4.3
NuGO_emt029686_at	hyperpolarization-activated, cyclic nucleotide-gated K+ 3	Hcn3	2.3
1418735_at	keratin 4	Krt4	19.7
1433783_at	LIM domain binding 3	Ldb3	13.9
1420183_at	loricrin	Lor	2.5
1422626_at	matrix metallopeptidase 16	Mmp16	3.5
1451203_at	myoglobin	Mb	29.9
1448371_at	myosin light chain, phosphorylatable, fast skeletal muscle	Mylpf	5.7
1426650 at	myosin, heavy polypeptide 8, skeletal muscle, perinatal	Myh8	157.6
1435355_at	nebulin	Néb	3.7
1421037 at	neuronal PAS domain protein 2	Npas2	3.0
1422050_at	NK1 transcription factor related, locus 2 (Drosophila)	Nkx1-2	4.0
1452651 a at	NOVEL	U6	24.3
1439797 at	peroxisome proliferator activator receptor delta	Ppard	6.1
1421144_at	retinitis pigmentosa GTPase regulator interacting protein 1	Rpgrip1	2.0
1437729_at	ribosomal protein L27a	Rpl27a	2.1
	·	1700034J05Rik	6.5
1429875_at	RIKEN cDNA 1700034J05 gene		
1456248_at	RIKEN cDNA 2310002A05 gene	2310002A05Rik	4.6
1456393_at	RIKEN cDNA 2310002J21 gene	2310002J21Rik	2.0
1445437_at	RIKEN cDNA 2310015A05 gene	2310015A05Rik	7.0
1452312_at	RIKEN cDNA 2810002D19 gene	2810002D19Rik	2.0
1430883_at	RIKEN cDNA 4933402C05 gene	4933402C05Rik	34.3
1434136_at	RIKEN cDNA 6332401O19 gene	6332401O19Rik	4.3
1455645_at	RIKEN cDNA 8030451F13 gene	8030451F13Rik	2.8
1455666_at	RIKEN cDNA A030001O10 gene	A230042K10Rik	2.8
1460033_at	RIKEN cDNA C030002C11 gene	mmu-mir-29b-2	2.3
1431353_at	RIKEN cDNA C330050A14 gene	C330050A14Rik	2.0
1420884 at	sarcolipin	SIn	39.4
1418095 at	small muscle protein, X-linked	Smpx	5.7
1436043_at	sodium channel, voltage-gated, type VII, alpha	Scn7a	2.5
1442408 at	sulfatase 2	Sulf2	2.1
1456398 at	taurine upregulated gene 1	Tug1	2.1
NuGO_emt090728_s_at	T-cell receptor alpha V gene segment	TRAV15D-1/DV6D-1	21.1
1427284_a_at	tocopherol (alpha) transfer protein	Ttpa	34.3
1417464 at	troponin C2, fast	Tnnc2	147.0
1416889_at	troponin I, skeletal, fast 2	Tnni2	52.0
1450118 a at	troponin T3, skeletal, fast	Tnnt3	3.2
1447266_at	UTP18, small subunit (SSU) processome component, homolog (yeast)	Utp18	13.9
1438714 at	zinc finger protein 207	Zfp207	2.0
1423495 at	2-4-dienoyl-Coenzyme A reductase 2, peroxisomal	Decr2	-2.6
1416055 at	amylase 2, pancreatic		-388
		Amy2	
1423061_at	armadillo repeat gene deleted in velo-cardio-facial syndrome	Arvef	-2.0
1434028_at	aryl hydrocarbon receptor nuclear translocator 2	Arnt2	-13.9
1451095_at	asparagine synthetase	Asns	-3.2
1424890_at	basonuclin 1	Bnc1	-4.9
1416250_at	B-cell translocation gene 2, anti-proliferative	Btg2	-2.3
1417257_at	carboxyl ester lipase	Cel	-13.0
1428062_at	carboxypeptidase A1	Cpa1	-158
1454623_at	carboxypeptidase A2, pancreatic	Cpa2	-11.3
1428102_at	carboxypeptidase B1	NP_083982.1	-104
1451777_at	cDNA sequence BC013672	BC013672	-2.6
1416777_at	CEA-related cell adhesion molecule 12	Ceacam12	-16.0
1448314_at	cell division cycle 2 homolog A (S. pombe)	Cdc2a	-2.5
1419209 at	chemokine (C-X-C motif) ligand 1	Cxcl1	-4.0
1431763_a_at	chymotrypsin-like	Ctrl	-84.4
1448220 at	chymotrypsinogen B1	Ctrb1	-21.1
1415805_at	colipase, pancreatic	Clps	-16.0
1417413 at	CUB and zona pellucida-like domains 1	Cuzd1	-4.9
1416076_at	cyclin B1, related sequence 1 / cyclin B1 / predicted gene, EG434175 / similar to cyclin B1	Ccnb1 / Ccnb1-rs1 / EG434175 / LOC667005	-2.5
1423475 at	cyclin M2	Cnnm2	-3.2
1425258 at	cystatin 11	Cst11	-3.2 -21.1
1427981_a_at	cysteine sulfinic acid decarboxylase	Csad	-2.8
1438743_at	cytochrome P450, family 7, subfamily a, polypeptide 1	Cyp7a1	-2.3
1427022_at	DEAD (Asp-Glu-Ala-Asp) box polypeptide 42	Ddx42	-2.0
1452902_at	dehydrogenase/reductase (SDR family) member 13	Dhrs13	-2.0
1417065_at	early growth response 1	Egr1	-2.0
1423693_at	elastase 1, pancreatic	Ela1	-2.5
1448281_a_at	elastase 2A	Ela2a	-27.9
1415884_at	elastase 3, pancreatic	Ela3	-7.0

14040001	Calbaratha AO	F0	0.0
1431900_a_at	forkhead box A3	Foxa3	-2.0
1451325_at	forty-two-three domain containing 1	Fyttd1	-3.0
1451285_at	fusion, derived from t(12;16) malignant liposarcoma (human)	Fus	-2.1
1417821_at	G7e protein	D17H6S56E-5	-2.6
1421041_s_at	glutathione S-transferase, alpha 2 (Yc2)	Gsta2	-3.0
1427473_at	glutathione S-transferase, mu 3	Gstm3	-2.6
1449452_a_at	glycoprotein 2 (zymogen granule membrane)	Gp2	-17.1
1423639_at	histamine receptor H 2	Hrh2	-3.2
NuGO_emt077094_at	Immunoglobulin Kappa light chain V gene segment	IGKV8-16	-3.0
1415837_at	kallikrein 1	Klk1	-4.6
1427747_a_at	lipocalin 2	Lcn2	-5.7
1451884_a_at	LSM2 homolog, U6 small nuclear RNA associated (S. cerevisiae)	Lsm2	-2.0
1450352_at	melatonin receptor 1A	Mtnr1a	-2.1
1427079 at	microtubule-associated protein, RP/EB family, member 3	Mapre3	-2.0
1422643 at	monooxygenase, DBH-like 1	Moxd1	-4.6
1420438 at	orosomucoid 2	Orm2	-3.0
1433431 at	pancreatic lipase	Pnlip	-147
1415777 at	pancreatic lipase related protein 1	Pnliprp1	-8.6
1448186 at	pancreatic lipase-related protein 2	Pnliprp2	-48.5
1450689 at	predicted gene, EG436523	EG436523	-5.7
1449018 at	profilin 1	Pfn1	-2.6
NuGO emt006662 at	prolactin-like protein C 2	Prlpc2	-5.3
1417682 a at	protease, serine, 2	Prss2	-12.1
1428952 at	protein disulfide isomerase associated 2	Pdia2	-2.6
1423774 a at	protein regulator of cytokinesis 1	Prc1	-11.3
1415905 at	regenerating islet-derived 1	Reg1	-27.9
1426897 at	regulator of chromosome condensation 2	Rcc2	-2.8
1448754 at	retinol binding protein 1, cellular	Rbp1	-2.8
1419016 at	RIKEN cDNA 1700034I23 gene	1700034I23Rik	-3.2
1428358 at	RIKEN cDNA 1810010M01 gene	1810010M01Rik	-36.8
NuGO emt064324 at	RIKEN cDNA 1810049H19 gene	1810049H19Rik	-1783
1428739 at	RIKEN cDNA 2310040A07 gene	2310040A07Rik	-2.3
1455170 at	RIKEN cDNA 2810001G20 gene	2810001G20Rik	-7.5
1429896 at	RIKEN cDNA 5830408B19 gene	5830408B19Rik	-22.6
1451822 a at	secernin 2	Scrn2	-2.5
1418490 at	serine dehydratase-like	Sdsl	-2.6
1415938_at	serine peptidase inhibitor, Kazal type 3	Spink3	-2.8
1410936_at	serum amyloid A 1	Saa1	-2.0 -6.1
1449326 x at	serum amyloid A 2	Saa2	-0.1 -9.2
1450826_a_at	serum amyloid A 3	Saa3	-2.3
NuGO emt087510 at	similar to Pancreatic alpha-amylase precursor (PA) (1,4-alpha-D-glucan	Q8C5B4_MOUSE	-2.3 -362.0
NuGO_emilo67510_at		Q6C3B4_IVIOUSE	-302.0
1416560 ot	glucanohydrolase) (LOC671344)	Clo12o2	2.4
1416560_at	solute carrier family 13 (sodium-dependent dicarboxylate transporter),	Slc13a3	-2.1
1454000	member 3	0	45.0
1451228_a_at	syncollin	Sycn	-45.3
NuGO_emt092421_at	T-cell receptor alpha V gene segment	TRAV12-3	-5.7
1417370_at	trefoil factor 3, intestinal	Tff3	-4.9
1415954_at	trypsin 4	Try4	-137.2
1448147_at	tumor necrosis factor receptor superfamily, member 19	Tnfrsf19	-4.3

Tab. A7: TV2 - In der Leber regulierte Gene - *Ttpa**/+ defizient vs. *Ttpa*-/- defizient

Probe set ID	Genname	Gensymbol	FC
1435435_at	cortactin binding protein 2	Cttnbp2	9.2
1418174_at	D site albumin promoter binding protein	Dbp	2.8
1418287_a_at	deleted in malignant brain tumors 1	Dmbt1	11.3
1422735_at	forkhead box Q1	Foxq1	2.0
NuGO_emt079156_x_at	Immunoglobulin heavy chain V gene segment	IGHV1-11	21.1
1418835_at	pleckstrin homology-like domain, family A, member 1	Phlda1	2.3
NuGO_emt051985_at	predicted gene, EG236844	EG236844	24.3
1428809_at	RIKEN cDNA 1810010H24 gene	1810010H24Rik	2.1
1453707_at	RIKEN cDNA 4930480G23 gene	4930480G23Rik	22.6
1437534_at	similar to protease (LOC545238), mRNA	NP_001030069.1	7.5
1449831_at	Tctex1 domain containing 1	Tctex1d1	8.6
1427284_a_at	tocopherol (alpha) transfer protein	Ttpa	19.7
1450477_at	5-hydroxytryptamine (serotonin) receptor 2C	Htr2c	-6.5
1431255_at	calreticulin 3	Calr3	-2.3
1456127_at	canopy 1 homolog (zebrafish)	Cnpy1	-10.6
1427324_at	cDNA sequence BC022593	BC022593	-2.6
1437684_at	cDNA sequence BC025546	BC025546	-19.7
1417956_at	cell death-inducing DNA fragmentation factor, alpha subunit-like effector A	Cidea	-4.0
1419590_at	cytochrome P450, family 2, subfamily b, polypeptide 9	Cyp2b9	-2.5
NuGO_emt037065_at	dynein, axonemal, heavy chain 10	Dnahc10	-4.3
1449307_at	dysbindin (dystrobrevin binding protein 1) domain containing 1	Dbndd1	-2.0
1456258_at	empty spiracles homolog 2 (Drosophila)	Emx2	-2.8
1454674_at	fasciculation and elongation protein zeta 1 (zygin I)	Fez1	-5.7
NuGO_emt039695_at	Fras1 related extracellular matrix protein 3	Frem3	-3.0
1453869_at	hypothetical protein LOC328277	LOC328277	-2.0
1416930_at	lymphocyte antigen 6 complex, locus D	Ly6d	-2.3
1450719_at	meprin 1 alpha	Mep1a	-2.1
1434678_at	muscleblind-like 3 (Drosophila)	Mbnl3	-2.1
1420838_at	neurotrophic tyrosine kinase, receptor, type 2	Ntrk2	-2.1
NuGO_emt049940_at	olfactory receptor 173	Olfr173	-8.6
1451810_at	open reading frame 63	ORF63	-29.9
1424290_at	oxidative stress induced growth inhibitor family member 2	Osgin2	-3.5
1459259_at	predicted gene, EG328264	EG328264	-6.1
1442945_at	RIKEN cDNA 2010109K09 gene	2010109K09Rik	-2.1

1444353_at	RIKEN cDNA C030040A22 gene	C030040A22Rik	-12.1
NuGO_emt055994_at	RIKEN cDNA D830014E11 gene	D830014E11Rik	-2.0
NuGO_emt091810_at	SET binding protein 1	Setbp1	-21.1
1417415_at	solute carrier family 6 (neurotransmitter transporter, dopamine), member 3	Slc6a3	-11.3
1446636_at	tensin 3	Tns3	-2.5
1430330 at	widely-interspaced zinc finger motifs	Wiz	-3.5

Tab. A8: TV2 - Im Großhirn regulierte Gene - $Ttpa^{+/+}$ supplementiert vs. $Ttpa^{+/+}$ defizient

Probe set ID	Genname	Gensymbol	FC
1443050_at	cDNA sequence BC032265	BC032265	10.6
1442295 at	Actin related protein 2/3 complex, subunit 2	Arpc2	3.5
NuGO emt067644 at	RIKEN cDNA 9330159N05 gene	9330159N05Rik	3.5
1436843 at	RIKEN cDNA C430048L16 gene	C430048L16Rik	3.2
1449365 at	endothelial differentiation, sphingolipid G-protein-coupled receptor, 8	Edg8	3.0
1419404 s at	seven in absentia 1A	Siah1a	3.0
1427152 at	glutamine and serine rich 1	Qser1	2.8
1436473 at	zinc finger protein 248	Zfp248	2.8
1417540 at	E74-like factor 1	Elf1	2.5
1459372_at	neuronal PAS domain protein 4	Npas4	2.5
1428386 at	acyl-CoA synthetase long-chain family member 3	Acsl3	2.3
1439501 at	calcium binding atopy-related autoantigen 1	Cbara1	2.3
1433856 at	histidine acid phosphatase domain containing 1	Hisppd1	2.3
1433960 at	interferon stimulated exonuclease gene 20-like 2	Isg20I2	2.3
1438921 at	Ataxia telangiectasia and Rad3 related	Atr	2.1
1452163_at	E26 avian leukemia oncogene 1, 5' domain	Ets1	2.1
1444835 at	cDNA sequence BC030499	BC030499	2.0
1437668 at	Chemokine (C-C motif) receptor-like 1	Ccrl1	2.0
1435493 at	desmoplakin	Dsp	2.0
1427683 at	early growth response 2	Egr2	2.0
1433944 at	HECT domain containing 2	Hectd2	2.0
1434746 at	MAX gene associated	Mga	2.0
1416118 at	tripartite motif-containing 59	Trim59	2.0
		Ythdc2	2.0
1437357_at	YTH domain containing 2		2.0
1418820_s_at	zinc finger, CCHC domain containing 10	Zcchc10	
1420786_a_at	RNA binding motif protein, Y chromosome, family 1, member A1	Rbmy1a1	-26.0
1420753_at	tolloid-like	TII1	-26.0
NuGO_emt054434_at	olfactory receptor 474	Olfr474	-19.7
1430891_at	dual specificity phosphatase 12	Dusp12	-16.0
1415862_at	tyrosinase-related protein 1	Tyrp1	-13.0
1456858_at	G protein-coupled receptor 149	Gpr149	-12.1
1419343_at	solute carrier family 15 (oligopeptide transporter), member 1	Slc15a1	-11.3
1458895_at	expressed sequence C80008	C80008	-8.0
1417976_at	adenosine deaminase	Ada	-7.5
NuGO_emt072035_x_at	olfactory receptor 486	Olfr486	-5.7
1419437_at	single-minded homolog 2 (Drosophila)	Sim2	-4.9
1450145_at	ankyrin repeat domain 5	Ankrd5	-4.6
1424688_at	cAMP responsive element binding protein 3-like 3	Creb3l3	-4.6
1429888_a_at	heat shock protein 2	Hspb2	-4.6
NuGO_emt058139_s_at	solute carrier family 38, member 6	Slc38a6	-4.6
NuGO_emt076250_at	olfactory receptor 1014	Olfr1014	-3.5
1425970 a at	Ros1 proto-oncogene	Ros1	-3.2
1460480 at	RIKEN cDNA 1600014E20 gene	1600014E20Rik	-3.0
1438248 at	proprotein convertase subtilisin/kexin type 5	Pcsk5	-2.8
NuGO emt068632 at	predicted gene, OTTMUSG0000008584	OTTMUSG00000008584	-2.6
1423123 at	RAD54 like (S. cerevisiae)	Rad54l	-2.6
1427509 at	BAI1-associated protein 3	Baiap3	-2.5
NuGO_emt077173_s_at	developmental pluripotency associated 1	Dppa1	-2.5
1450135 at	frizzled homolog 3 (Drosophila)	Fzd3	-2.5
	pipecolic acid oxidase	Pipox	-2.5

Tab. A9: TV2 - Im Großhirn regulierte Gene - *Ttpa*--- supplementiert vs. *Ttpa*--- defizient

Probe set ID	Genname	Gensymbol	FC
1435314_at	tryptophan hydroxylase 2	Tph2	10.6
1420546_at	tyrosine hydroxylase	Th	4.3
1417415_at	solute carrier family 6 (neurotransmitter transporter, dopamine), member 3	Slc6a3	4.0
1429361_at	pro-melanin-concentrating hormone	Pmch	3.5
1439622_at	Ras association (RalGDS/AF-6) domain family 4	Rassf4	3.0
1436359_at	ret proto-oncogene	Ret	3.0
1418304_at	protocadherin 21	Pcdh21	2.6
1449927 at	S100 calcium binding protein A5	S100a5	2.6
1419606_a_at	troponin T1, skeletal, slow	Tnnt1	2.6
1433578 at	predicted gene, EG545758	EG545758	2.5
1416318_at	serine (or cysteine) peptidase inhibitor, clade B, member 1c	Serpinb1c	2.5
1426215 at	dopa decarboxylase	Ddc	2.3
1434797_at	RIKEN cDNA 6720469N11 gene	6720469N11Rik	2.3
1417122 at	vav 3 oncogene	Vav3	2.3
1437357_at	YTH domain containing 2	Ythdc2	2.3
1424098 at	ELOVL family member 7, elongation of long chain fatty acids (yeast)	Elovl7	2.1
1434008 at	sodium channel, type IV, beta	Scn4b	2.1
1416468 at	aldehyde dehydrogenase family 1, subfamily A1	Aldh1a1	2.0
1460006 at	AT motif binding factor 1	Atbf1	2.0
1458058 at	RIKEN cDNA 7030407E18 gene	7030407E18Rik	2.0
1441656 at	RIKEN cDNA B930068K11 gene	B930068K11Rik	2.0
1459627_at	Sterol-C4-methyl oxidase-like	Sc4mol	2.0

1437556 at	zinc finger homeodomain 4	Zfhx4	2.0
NuGO emt086788 x at	olfactory receptor 719	Olfr719	-29.9
1448281 a at	elastase 2A	Ela2a	-27.9
1446368 at	RIKEN cDNA 9130221J18 gene	9130221J18Rik	-17.1
1449235_at	Fas ligand (TNF superfamily, member 6)	Fasl	-11.3
NuGO_emt077580_at	olfactory receptor 1148	Olfr1148	-10.6
NuGO_emt072035_x_at	olfactory receptor 486	Olfr486	-9.2
NuGO_emt056222_at	olfactory receptor 600	Olfr600	-9.2
NuGO_emt071605_s_at	olfactory receptor 822	Olfr822	-8.6
NuGO_emt067768_at	predicted gene, ENSMUSG00000054618	ENSMUSG00000054618	-7.5
1421565_at	roundabout homolog 3 (Drosophila)	Robo3	-7.5
NuGO_emt062555_at	olfactory receptor 1121	Olfr1121	-7.0
1446110_at	DNA segment, Chr 3, ERATO Doi 711, expressed	D3Ertd711e	-6.1
1458115_at	RIKEN cDNA 4930512H18 gene	4930512H18Rik	-5.7
NuGO_emt041007_at	RIKEN cDNA 9430022F06 gene	9430022F06Rik	-5.7
1419423_at	stabilin 2	Stab2	-4.0
1439727_at	chloride channel calcium activated 6	Clca6	-3.7
1453801_at	thioesterase superfamily member 5	Them5	-3.7
NuGO_emt060374_at	vomeronasal 1 receptor, E11	V1re11	-3.5
1456008_at	leucine rich repeat containing 8 family, member E	Lrrc8e	-3.2
1434767_at	expressed sequence C79407	C79407	-3.0
NuGO_emt062314_at	olfactory receptor 770	Olfr770	-3.0
1447532_at	RIKEN cDNA 1700025G04 gene	1700025G04Rik	-3.0
1432396_at	RIKEN cDNA 3110018I06 gene	3110018I06Rik	-3.0
1450803_at	neurotrophin 3	Ntf3	-2.8
1431806at	RIKEN cDNA 4931408D14 gene	4931408D14Rik	-2.8

Tab. A10: TV2 - Im Großhirn regulierte Gene - *Ttpa**/+ supplementiert vs. *Ttpa**/-

Probe set ID	Genname	Gensymbol	FC
1454196 at	RIKEN cDNA 4930568A13 gene	4930568A13Rik	45.3
1449984 at	chemokine (C-X-C motif) ligand 2	Cxcl2	29.9
NuGO emt068730 at	predicted gene, ENSMUSG0000060603	ENSMUSG00000060603	29.9
NuGO emt067969 at	similar to solute carrier family 7 (cationic amino acid transporter, y+	NP 001004153.1	18.4
14400_cmto0/303_at	system), member 3 (LOC245128)	141 _00 100 + 100.1	10.4
1443695_at	hyaluronic acid binding protein 2	Habp2	16.0
1420424_at	RIKEN cDNA 1700054O13 gene	1700054O13Rik	16.0
NuGO_emt033771_at	opsin 1 (cone pigments), medium-wave-sensitive (color blindness, deutan)	Opn1mw	14.9
NuGO emt062166 at	olfactory receptor 1032	Olfr1032	12.1
NuGO emt027269 at	growth differentiation factor 8	Gdf8	9.8
NuGO emt066340 at	predicted gene, ENSMUSG00000053739	ENSMUSG00000053739	9.8
1422050 at	NK1 transcription factor related, locus 2 (Drosophila)	Nkx1-2	8.0
NuGO emt044937 at	lectin, mannose-binding 1 like	Lman1I	7.0
		Pou2f3	7.0 5.7
NuGO_emt053888_at	POU domain, class 2, transcription factor 3		
NuGO_emt068448_at	predicted gene, ENSMUSG00000055072	ENSMUSG00000055072	5.7
NuGO_emt031086_at	olfactory receptor 109	Olfr109	4.9
NuGO_emt084967_at	predicted gene, ENSMUSG00000066331	ENSMUSG00000066331	4.9
1431543_at	RIKEN cDNA 9130001E16 gene	9130001E16Rik	4.6
1451171_at	RIKEN cDNA 2310008H04 gene	2310008H04Rik	4.0
1456034_at	tetratricopeptide repeat domain 18	Ttc18	4.0
1438872_at	cDNA sequence BC050188	BC050188	3.7
NuGO_emt050541_at	olfactory receptor 697	Olfr697	3.7
1431870 at	RIKEN cDNA 4930463O16 gene	4930463O16Rik	3.5
1448575_at	interleukin 7 receptor	II7r	3.2
NuGO emt049719 at	olfactory receptor 478	Olfr478	3.2
1449457 at	acyl-CoA thioesterase 12	Acot12	3.0
1456858 at	G protein-coupled receptor 149	Gpr149	-19.7
1438100 at	RIKEN cDNA 4921530D09 gene	4921530D09Rik	-10.6
1424797_a_at	paired-like homeodomain transcription factor 2	Pitx2	-5.7
1449927 at	S100 calcium binding protein A5	S100a5	-5.7
1428683 at	RIKEN cDNA A930016P21 gene	A930016P21Rik	-4.6
		Slc6a3	-4.6 -4.6
1417415_at	solute carrier family 6 (neurotransmitter transporter, dopamine), member 3		
1436359_at	ret proto-oncogene	Ret	-4.3
1438884_at	RIKEN cDNA D830007B15 gene	D830007B15Rik	-3.2
1435314_at	tryptophan hydroxylase 2	<u>T</u> ph2	-3.2
1420546_at	tyrosine hydroxylase	Th	-3.2
1426215_at	dopa decarboxylase	Ddc	-3.0
1429361_at	pro-melanin-concentrating hormone	Pmch	-3.0
1439622_at	Ras association (RalGDS/AF-6) domain family 4	Rassf4	-2.6
1418304_at	protocadherin 21	Pcdh21	-2.5
1428379_at	solute carrier family 17 (sodium-dependent inorganic phosphate	Slc17a6	-2.5
N:-00t000450 -t	cotransporter), member 6	Contat	0.0
NuGO_emt022150_at	CART prepropeptide	Cartpt	-2.3
1442379_at	predicted gene, EG574403	EG574403	-2.3
NuGO_emt075245_at	Unc-13 homolog C (Munc13-3) (Fragment)	UN13C_MOUSE	-2.3
1460006_at	AT motif binding factor 1	Atbf1	-2.1
1442865_at	diacylglycerol kinase kappa	Dgkk	-2.1
1440383_at	DNA cross-link repair 1B, PSO2 homolog (S. cerevisiae)	Dclre1b	-2.1
1438042_at	short stature homeobox 2	Shox2	-2.1
1417788 at	synuclein, gamma	Sncg	-2.1
1427509_at	BAI1-associated protein 3	Baiap3	-2.0
1443017_at	cytoplasmic polyadenylation element binding protein 2	Cpeb2	-2.0

Tab. A11: TV2 - Im Großhirn regulierte Gene - $Ttpa^{+/+}$ defizient vs. $Ttpa^{-/-}$ defizient

Probe set ID	Genname	Gensymbol	FC
1440250_at	procollagen, type IV, alpha 4	Col4a4	24.3
NuGO_emt036960_at	zinc finger protein 456	E130120F12Rik	24.3
1421669_at	sulfotransferase family 3A, member 1	Sult3a1	14.9
1430891_at	dual specificity phosphatase 12	Dusp12	9.2
1432715_at	leucine rich repeat protein 1, neuronal	Lrrn1	7.0
1454513_at	RIKEN cDNA 9430031J08 gene	9430031J08Rik	7.0
1441316_at	wingless related MMTV integration site 8b	Wnt8b	6.5
1425230_at	N-acetylglutamate synthase	Nags	6.1
1440546_at	RIKEN cDNA 9630002D21 gene	9630002D21Rik	4.9
1423123_at	RAD54 like (S. cerevisiae)	Rad54l	4.6
NuGO_emt038006_at	amino carboxymuconate semialdehyde decarboxylase	Acmsd	4.3
1451424_at	gamma-aminobutyric acid (GABA-A) receptor, pi	Gabrp	4.0
NuGO emt068903 at	RIKEN cDNA 9330175E14 gene	9330175E14Rik	4.0
NuGO_emt090155_at	olfactory receptor 457	Olfr457	3.7
1437794_at	calcineurin binding protein 1	Cabin1	3.2
1422295_at	myelodysplasia syndrome 1 homolog (human)	Mds1	3.2
1438544_at	RIKEN cDNA 1700001G11 gene	1700001G11Rik	3.0
1453645_at	RIKEN cDNA 2700046A07 gene	2700046A07Rik	3.0
1454341_at	RIKEN cDNA 4933404I11 gene	4933404I11Rik	3.0
1454123 at	RIKEN cDNA 4933406K04 gene	4933406K04Rik	3.0
NuGO_emt069553_at	RIKEN cDNA A230083G16 gene	A230083G16Rik	3.0
1429086 at	grainyhead-like 2 (Drosophila)	Grhl2	2.8
1431674_at	RIKEN cDNA 2610303G11 gene	2610303G11Rik	2.8
1432321 at	cellular nucleic acid binding protein 2	Cnbp2	2.6
1432483 at	AT rich interactive domain 2 (Arid-rfx like)	Arid2	2.5
1437534 at	similar to protease (LOC545238)	NP 001030069.1	-29.9
1449365_at	endothelial differentiation, sphingolipid G-protein-coupled receptor, 8	Edg8	-3.0
1433914_at	expressed sequence Al747699	Al747699	-2.1

Tab. A12: TV2 - Im Kleinhirn regulierte Gene - *Ttpa*^{+/+} supplementiert vs. *Ttpa*^{+/+} defizient

Probe set ID	Genname	Gensymbol	FC
NuGO_emt078517_x_at	olfactory receptor 191	Olfr191	90.5
1447665_at	leucine rich repeat and Ig domain containing 2	Lingo2	27.9
1453914_at	predicted gene, ENSMUSG0000007852	ENSMUSG00000007852	27.9
1445452 at	Tnf receptor-associated factor 1	Traf1	26.0
1426171 x at	killer cell lectin-like receptor, subfamily A, member 7	Klra7	24.3
1439594 at	RIKEN cDNA D130062J10 gene	D130062J10Rik	21.1
NuGO_emt045342_s_at	kinesin family member C1	Kifc1	19.7
1438617_at	serine (or cysteine) peptidase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin), member 7	Serpina7	19.7
1416776 at	crystallin, mu	Crym	18.4
NuGO emt071807 s at	olfactory receptor 1385	Olfr1385	18.4
1452001 at	nuclear factor, erythroid derived 2	Nfe2	14.9
1441335 at	RIKEN cDNA 4930474N05 gene	4930474N05Rik	13.9
1418043 at	ATP-binding cassette, sub-family C (CFTR/MRP), member 5	Abcc5	13.0
NuGO emt019616 at	intercellular adhesion molecule 5, telencephalin	Icam5	13.0
1436268 at	dendrin	Ddn	12.1
1417337_at	erythrocyte protein band 4.2	Epb4.2	12.1
NuGO emt054201 at	olfactory receptor 1018	Olfr1018	12.1
NuGO emt086232 at	vomeronasal 1 receptor, G9	V1rg9	12.1
1428022 at	lipocalin 13	Lcn13	10.6
1425648 at	tripartite motif-containing 60	Trim60	10.6
1429347 at	Bcl2-like 14 (apoptosis facilitator)	Bcl2l14	9.8
1431392 at	RIKEN cDNA 5730596B20 gene	5730596B20Rik	9.8
			9.6
1426308_at	methyl-CpG binding domain protein 3-like 1	Mbd3l1	
NuGO_emt089733_at	T-cell receptor alpha V gene segment	TRAV11D	9.2
1429875_at	RIKEN cDNA 1700034J05 gene	1700034J05Rik	7.5
1459884_at	cytochrome c oxidase, subunit VIIc	Cox7c	-19.7
1450723_at	ISL1 transcription factor, LIM/homeodomain	Isl1	-18.4
1431643_at	spermatogenesis associated glutamate (E)-rich protein 6, pseudogene 1	Speer6-ps1	-18.4
1444550_at	RIKEN cDNA 1110021J02 gene	1110021J02Rik	-12.1
1456359_at	peptidylprolyl isomerase domain and WD repeat containing 1	Ppwd1	-5.3
1422870_at	homeo box C4	Hoxc4	-4.3
1437214_at	leucine rich repeat transmembrane neuronal 4	Lrrtm4	-3.7
1430000_at	RIKEN cDNA B230117O15 gene	B230117O15Rik	-3.7
1418969_at	S-phase kinase-associated protein 2 (p45)	Skp2	-3.7
1457984_at	corticotropin releasing hormone	Crh	-3.5
1458667_at	RIKEN cDNA 4930519N13 gene	4930519N13Rik	-3.5
1451078_at	RIKEN cDNA 2510039O18 gene	2510039O18Rik	-3.2
1451044_at	survivor of motor neuron protein interacting protein 1	Sip1	-3.2
1457472 at	trinucleotide repeat containing 15	Tnrc15	-3.2
1418483 a at	glycoprotein galactosyltransferase alpha 1, 3	Ggta1	-3.0
1439263 at	hypothetical LOC14210	LOC14210	-3.0
1451846_at	nebulette	Nebl	-3.0
1438786 a at	RIKEN cDNA 2610021A01 gene	2610021A01Rik	-3.0
1433568 at	PAP associated domain containing 4	Papd4	-2.8
1429331 at	RIKEN cDNA 4632427E13 gene	4632427E13Rik	-2.8
1426405 at	ring finger protein 11	Rnf11	-2.8
1416267 at	short coiled-coil protein	Scoc	-2.8
1420821 at	sphingosine-1-phosphate phosphatase 1	Sgpp1	-2.8
1455901 at	synaptonemal complex protein 3	Chpt1	-2.8
		Tlr3	-2.8
1422781_at	toll-like receptor 3	IIIO	-2.0

Tab. A13: TV2 - Im Kleinhirn regulierte Gene - *Ttpa*^{-/-} supplementiert vs. *Ttpa*^{-/-} defizient

Probe set ID	Genname	Gensymbol	FC
1455909_at	RIKEN cDNA 9530002K18 gene	9530002K18Rik	19.7
1443269_at	RIKEN cDNA D130009B15 gene	D130009B15Rik	19.7
NuGO_emt055276_at	olfactory receptor 225	Olfr225	12.1
1431851_at	RIKEN cDNA 4930534P07 gene	4930534P07Rik	6.1
1426188_s_at	cDNA sequence BC005685	BC005685	5.7
NuGO_emt078532_s_at	trace amine-associated receptor 7D	Taar7d	5.3
1459329_at	tetratricopeptide repeat domain 7	Ttc7	3.5
NuGO_emt040210_at	transient receptor potential cation channel, subfamily M, member 8	Trpm8	3.5
1435399_at	RIKEN cDNA 2310068J10 gene	2310068J10Rik	3.2
NuGO_emt078879_at	defensin beta 50	Defb50	2.8
NuGO_emt087677_at	dynein, axonemal, heavy chain 7	Dnahc7	2.6
1458838_at	RIKEN cDNA 4732468M13 gene	4732468M13Rik	2.6
1424938 at	six transmembrane epithelial antigen of the prostate 1	Steap1	2.6
1445425 at	hypothetical gene supported by AK040104	LOC432958	2.5
1432454 at	RIKEN cDNA 2410137M14 gene	2410137M14Rik	2.5
1457541 at	A kinase (PRKA) anchor protein 14	Akap14	2.3
NuGO_emt054973_at	chitinase like protein 2	Bclp2	2.1
1418853 at	apolipoprotein N	Apon	2.0
1419017_at	corin	Corin	2.0
NuGO emt058979 at	FERM and PDZ domain containing 4	Frmpd4	2.0
1419061 at	ras homolog gene family, member D	Rhod	2.0
1448756 at	S100 calcium binding protein A9 (calgranulin B)	S100a9	-39.4
1422175 at	matrix metallopeptidase 1a (interstitial collagenase)	Mmp1a	-29.9
1444279 at	HECT, UBA and WWE domain containing 1	Huwe1	-13.0
1419394 s at	S100 calcium binding protein A8 (calgranulin A)	S100a8	-13.0
1442023 at	RIKEN cDNA A530030E21 gene	A530030E21Rik	-12.1
1420398 at	regulator of G-protein signaling 18	Rgs18	-9.8
1440549 at	RIKEN cDNA B230334L07 gene	B230334L07Rik	-9.8
1417415 at	solute carrier family 6 (neurotransmitter transporter, dopamine), member 3	Slc6a3	-7.5
1435366 at	RIKEN cDNA D430042O09 gene	D430042O09Rik	-7.0
1442032 at	cDNA sequence BC030500	BC030500	-6.5
1456353 at	suppressor of Ty 4 homolog 1 (S. cerevisiae)	Supt4h1	-6.1
1449218 at	cytochrome c oxidase, subunit VIIIb	Cox8b	-4.6
NuGO emt022150 at	CART prepropeptide	Cartpt	-4.3
1418762 at	CD55 antigen	Cd55	-4.0
1423853 at	RIKEN cDNA 6330527O06 gene	6330527O06Rik	-3.7
1417979 at	tenomodulin	Tnmd	-3.2
1457984 at	corticotropin releasing hormone	Crh	-3.0
1449254 at	secreted phosphoprotein 1	Spp1	-3.0
1452004 at	calcitonin/calcitonin-related polypeptide, alpha	Calca	-2.8
1433578 at	predicted gene, EG545758	EG545758	-2.8
1436231 at	RIKEN cDNA 2900052N01 gene	2900052N01Rik	-2.8
1436520 at	expressed sequence Al450948	Al450948	-2.6
1418415 at	homeo box B5	Hoxb5	-2.6
1422530 at	peripherin 1	Prph1	-2.6
1722000_at	реприени і	ιιριτι	-2.0

Tab. A14: TV2 - Im Kleinhirn regulierte Gene - *Ttpa**/* supplementiert vs. *Ttpa**/* supplementiert

Probe set ID	Genname	Gensymbol	FC
NuGO_emt078517_x_at	olfactory receptor 191	Olfr191	84.4
1429978_at	RIKEN cDNA 5830467E07 gene	5830467E07Rik	64.0
1439594_at	RIKEN cDNA D130062J10 gene	D130062J10Rik	45.3
1437232_at	bactericidal/permeability-increasing protein-like 2	Bpil2	32.0
1432711_at	RIKEN cDNA 4933425M03 gene	4933425M03Rik	24.3
1419729_at	testis expressed gene 11	Tex11	19.7
1419215_at	aldehyde oxidase 4	Aox4	18.4
1447665_at	leucine rich repeat and Ig domain containing 2	Lingo2	17.1
1432146_at	cation channel, sperm associated 3	Catsper3	16.0
1441335_at	RIKEN cDNA 4930474N05 gene	4930474N05Rik	16.0
1422814_at	asp (abnormal spindle)-like, microcephaly associated (Drosophila)	Aspm	13.9
1444921_at	DNA segment, Chr 15, ERATO Doi 466, expressed	D15Ertd466e	13.9
1457685_at	zinc finger protein 81	Zfp81	13.9
1438617_at	serine (or cysteine) peptidase inhibitor, clade A (alpha-1 antiproteinase,	Serpina7	13.0
	antitrypsin), member 7		
1418026_at	exonuclease 1	Exo1	12.1
NuGO_emt073059_at	olfactory receptor 494	Olfr494	12.1
NuGO_emt091481_at	zinc finger protein 72	Zfp72	12.1
1425290_at	syntaxin 19	Stx19	11.3
NuGO_emt054773_at	predicted gene, ENSMUSG00000044874	ENSMUSG00000044874	10.6
NuGO_emt081367_s_at	olfactory receptor 814	Olfr814	9.8
1422089_at	natural cytotoxicity triggering receptor 1	Ncr1	9.2
1418847_at	arginase type II	Arg2	8.6
1417415_at	solute carrier family 6 (neurotransmitter transporter, dopamine), member 3	Slc6a3	8.0
1423276_at	immunoglobulin-like domain containing receptor 1	lldr1	5.7
NuGO_emt041000_at	transmembrane protein 16B	Tmem16b	5.7
1455151_at	A kinase (PRKA) anchor protein (yotiao) 9	Akap9	-7.5
1422011_s_at	X-linked lymphocyte-regulated protein PM1	XLR_MOUSE	-6.5
1430764_at	RIKEN cDNA 1700023F06 gene	1700023F06Rik	-5.7
1458667_at	RIKEN cDNA 4930519N13 gene	4930519N13Rik	-5.7
1418969_at	S-phase kinase-associated protein 2 (p45)	Skp2	-4.6
1448876_at	Ellis van Creveld gene homolog (human)	Evc	-4.3
1438344_at	RIKEN cDNA 4833424O15 gene	4833424O15Rik	-3.5
1427053_at	ABI gene family, member 3 (NESH) binding protein	Abi3bp	-3.2
1451078_at	RIKEN cDNA 2510039O18 gene	2510039O18Rik	-3.0

1441743_at	paired box gene 3	Pax3	-2.8
1437372_at	cleavage and polyadenylation specific factor 6	Cpsf6	-2.6
1453782 at	RIKEN cDNA 3021401C12 gene	3021401C12Rik	-2.6
1449519 at	growth arrest and DNA-damage-inducible 45 alpha	Gadd45a	-2.5
1459984_at	melanoma inhibitory activity 3	Mia3	-2.5
1442744 at	RNA binding motif protein 39	Rbm39	-2.5
1435756_at	sterile alpha motif domain containing 10	Samd10	-2.5
1457472_at	trinucleotide repeat containing 15	Tnrc15	-2.5
1437118_at	UBP7_MOUSE Isoform 2 of Q6A4J8 - Mus musculus (Mouse)	Q6A4J8-2	-2.5
1455901_at	choline phosphotransferase 1 / synaptonemal complex protein 3	Chpt1	-2.3
1455337_at	FYVE, RhoGEF and PH domain containing 4	Fgd4	-2.3
1447927_at	macrophage activation 2 like	Mpa2l	-2.3
1435355_at	nebulin	Neb	-2.3
1427172_at	oral-facial-digital syndrome 1 gene homolog (human)	Ofd1	-2.3
1428078_at	RIKEN cDNA 0610013E23 gene	0610013E23Rik	-2.3
1438786_a_at	RIKEN cDNA 2610021A01 gene	2610021A01Rik	-2.3

Tab. A15: TV2 - Im Kleinhirn regulierte Gene - *Ttpa*+/- defizient vs. *Ttpa-/-* defizient

Probe set ID	Genname	Gensymbol	FC
1452475_at	proprotein convertase subtilisin/kexin type 5	Pcsk5	17.1
1456998_at	DNA binding protein with his-thr domain	Dbpht2	14.9
NuGO_emt078854_at	olfactory receptor 346	Olfr346	12.1
1427284_a_at	tocopherol (alpha) transfer protein	Ttpa	7.5
1446106_at	RIKEN cDNA 1700109G14 gene	1700109G14Rik	6.5
NuGO_emt087238_x_at	T-cell receptor alpha V gene segment	TRAV13-1	5.7
1448926_at	homeo box A5	Hoxa5	4.0
1422870_at	homeo box C4	Hoxc4	3.5
1418415_at	homeo box B5	Hoxb5	2.8
1450771_at	fucosyltransferase 9	Fut9	2.6
1451660_a_at	homeo box B6	Hoxb6	2.6
NuGO_emt061201_at	RIKEN cDNA 9430025M13 gene	9430025M13Rik	2.6
1456229_at	homeo box B3	Hoxb3	2.5
1439885_at	homeo box C5	Hoxc5	2.3
1437664_at	homeo box D3	Hoxd4	2.3
NuGO_emt071126_s_at	olfactory receptor 799	Olfr799	2.3
1421924_at	solute carrier family 2 (facilitated glucose transporter), member 3	Slc2a3	2.3
1457984_at	corticotropin releasing hormone	Crh	2.1
1433923_at	keratin 77	Krt77	2.1
1422196_at	5-hydroxytryptamine (serotonin) receptor 5B	Htr5b	2.0
NuGO_emt072427_at	predicted gene, ENSMUSG00000057924	ENSMUSG00000057924	2.0
1426318_at	serine (or cysteine) peptidase inhibitor, clade B, member 1b	Serpinb1b	2.0
1430804_at	solute carrier family 13 (sodium/sulphate symporters), member 1	Slc13a1	-22.6
1432797_at	RIKEN cDNA 2900060N12 gene	2900060N12Rik	-16.0
1416325_at	cysteine-rich secretory protein 1	Crisp1	-10.6
1452382_at	dynamin 3, opposite strand	Dnm3os	-10.6
NuGO_emt050963_at	interleukin 17C	II17c	-9.2
1441071_at	potassium voltage-gated channel, subfamily Q, member 5	Kcnq5	-5.3
1419394_s_at	S100 calcium binding protein A8 (calgranulin A)	S100a8	-5.3
1448756_at	S100 calcium binding protein A9 (calgranulin B)	S100a9	-4.6
NuGO_emt022150_at	CART prepropeptide	Cartpt	-4.0
1417415_at	solute carrier family 6 (neurotransmitter transporter, dopamine), member 3	Slc6a3	-3.7
1436268_at	dendrin	Ddn	-2.8
1437588_at	POU domain, class 4, transcription factor 2	Pou4f2	-2.8
1424797_a_at	paired-like homeodomain transcription factor 2	Pitx2	-2.6
1419606_a_at	troponin T1, skeletal, slow	Tnnt1	-2.5
1417979_at	tenomodulin	Tnmd	-2.3
1451511_at	3-hydroxyisobutyryl-Coenzyme A hydrolase	Hibch	-2.1
1440626_at	homeo box D13	Hoxd13	-2.1
1423231_at	neurogranin	Nrgn	-2.1
1418722_at	neutrophilic granule protein	Ngp	-2.1
1429049_at	NUAK family, SNF1-like kinase, 2	Nuak2	-2.1
1448886_at	GATA binding protein 3	Gata3	-2.0

Danksagung

An dieser Stelle möchte ich mich gerne bei allen bedanken, die mit Ihrer Hilfe und Unterstützung zum Zustandekommen dieser Arbeit beigetragen haben.

Frau Prof. Dr. Regina Brigelius-Flohé danke ich für die Bereitstellung des interessanten Themas sowie für die stete Diskussionsbereitschaft und Unterstützung auch in schwierigen Phasen dieser Arbeit.

Weiterhin möchte ich mich bei allen ehemaligen und jetzigen Mitarbeitern der Abteilung "Biochemie der Mikronährstoffe" für das nette Arbeitsklima, die gute Zusammenarbeit und die andauernde Hilfsbereitschaft bedanken, die mich immer gerne ins Labor kommen ließen. Stefanie Deubel, Jörg-Uwe Bittner und Elvira Krohn sei ganz herzlich für die praktische Unterstützung in allen experimentellen Belangen gedankt.

Ein ganz lieber Dank geht an Antje Banning, Anna Kipp, Maria Löwinger, Susanne Krehl, Tanja Dreja und Dirk Kluth für die Unterstützung, Aufmunterung, Hilfsbereitschaft und guten Ratschläge in allen Lebenslagen. Antje und Dirk sei auch für das flinke Korrekturlesen dieser Arbeit gedankt.

Ausdrücklich bedanken möchte ich mich an dieser Stelle auch bei "meinen" fleißigen Diplomanden Anja Boßecker, Ramona Bahtz und Sara Schumann sowie Ina Ott und Jana Hemmerling, die mit Ihrem unermüdlichen Einsatz das Vitamin E-Team in jeder Hinsicht bereichert und unterstützt haben.

Für die Betreuung der Mausversuche möchte ich mich beim MRL-Team und ganz besonders bei Elke Thom, Birgit Hase und Kerstin Weinert bedanken.

Ein großes Dankeschön geht an meine Familie für die stete Unterstützung und die permanente Aufmunterung in schwierigen Phasen.

Selbständigkeitserklärung

Hiermit versichere ich, dass ich die vorliegende Arbeit selbständig angefertigt und keine anderen als die angegebenen Quellen und Hilfsmittel dazu verwendet habe.

Sandra Nell Potsdam, im Februar 2009