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Cinderella obeyed,
but wept,
because she too would have liked to go with them to the dance,
and begged her step-mother to allow her to do so.
“Thou go, Cinderella!”
said she.
“Thou art dusty and dirty, and wouldst go to the festival?
Thou hast no clothes and shoes, and yet wouldst dance!”
As, however, Cinderella went on asking,
the step-mother at last said,
“I have emptied a dish of lentils into the ashes for thee,
if thou hast picked them out again in two hours, thou shalt go with us”
The maiden went through the back-door into the garden,
and called,
“You tame pigeons, you turtle-doves,
and all you birds beneath the sky,
come and help me to pick

The good into the pot,
The bad into the crop.

Then two white pigeons came in by the kitchen window,
and afterwards the turtle-doves,
and at last all the birds beneath the sky,
came whirring and crowding in,
and alighted amongst the ashes.
And the pigeons nodded with their heads and began
pick, pick, pick, pick,
and the rest began also
pick, pick, pick, pick,
and gathered all the good grains into the dish

cited from
Cinderella
in: Grimm’s Household Tales,
Translation by Taylor, Edgar in 1812,
Original tale: Aschenputtel (first published in 1812)
by Wilhelm Grimm (*1786, Hanau 1859, Berlin)
and Jacob Grimm (*1785, Hanau 1863, Berlin)
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CHAPTER 1. Abstract

The island of Java (Indonesia) belongs to the most densely populated regions on earth. Around
two million inhabitants of this island live permanently under the risk of volcanic eruptions origi-
nating from one of Java’s 35 active volcanoes. Among those, Merapi volcano, located in the cen-
tral part of the island, is the most feared, owing to its almost continuous activity and its especially
dangerous eruptive style. Merapi’s high-risk potential is the cause for concentrated national and
international research efforts in the field of volcano monitoring. Due to the close relationship
between the volcanic unrest and the occurrence of seismic events at Mt. Merapi, the monitoring of
Merapi’s seismicity plays an important role for recognizing major changes in the volcanic activ-

ity.

An automatic seismic event detection and classification system, which is capable to characterize
the actual seismic activity in near real-time, is an important tool which allows the scientists in
charge to take immediate decisions during a volcanic crisis. In order to accomplish the task of
detecting and classifying volcano-seismic signals automatically in the continuous data streams, a
pattern recognition approach has been used in this work. It is based on the method of hidden
Markov models (HMM), a technique, which has proven to provide high recognition rates at high
confidence levels in classification tasks of similar complexity (e.g. speech recognition). The
HMM-based classification of volcano-seismic event types represents a novelty in the field of seis-
mology. It is used in its simplest form, the discrete hidden Markov model (DHMM).

A prerequisite for any pattern recognition system is the appropriate representation of the input
data in order to allow a class-decision by means of a mathematical test function. Based on the
experiences from seismological observatory practice, a parametrization scheme of the seismic
waveform data is derived using robust seismological analysis techniques. The special configura-
tion of the newly installed digital seismic station network at Merapi volcano, a combination of
small-aperture array deployments surrounding Merapi’s summit region, allows to parametrize the
continuously recorded seismic wavefield with array methods. The signal parameters are analyzed
to determine their relevance for the discrimination of seismic event classes. As best suited for the
continuous automatic classification of volcano-seismic signals, the following set of short-term
seismic wavefield parameters is obtained in a sliding window-analysis at each array site: maxi-
mum waveform coherence and beampower via a broadband frequency wavenumber analysis; the
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incidence angle of an array-wide averaged polarization ellipsoid; a set of short term spectral
power estimates (sonogram) computed from the array-wide averaged amplitude spectra.

All wavefield parameters are summarized into a real-valued feature vector per time step. The time
series of this feature vector build the basis for the DHMM-based classification system. By apply-
ing a de-correlating and prewhitening transformation and further vector quantizing the feature
vectors with a previously trained vector codebook, the seismic wavefield can be represented as an
abstract, discrete symbol sequence with a finite alphabet. This sequence is subject to a maximum
likelihood test against the discrete hidden Markov models (DHMMSs), which have been learned
from a representative set of training sequences for each seismic event type of interest.

A time period from July, 1st to July, 5th, 1998 of rapidly increasing seismic activity prior to the
eruptive cycle between July, 10th and July, 19th, 1998 at Merapi volcano is selected for evaluating
the performance of this classification approach. Three distinct types of seismic events according
to the established classification scheme of the Volcanological Survey of Indonesia (VSI) have
been observed during this time period. Shallow volcano-tectonic events VTB (h < 2.5 km), very
shallow dome-growth related seismic events MP (h < 1 km) and seismic signals connected to
rockfall activity originating from the active lava dome, termed Guguran.

For each of the three observed event types a set of DHMMs have been trained by the Viterbi algo-
rithm using a selected set of seismic events with varying signal to noise ratios and signal dura-
tions. Additionally, two sets of discrete hidden Markov models have been derived for the seismic
noise, incorporating the fact, that the wavefield properties of the ambient vibrations differ consid-
erably during working hours and night time. In a first step, the recognition capabilities of the
DHMM-based classification approach are evaluated by re-classifying the set of training samples
(resubstitution method), providing an optimistic estimate of the true classification error. The rec-
ognition performance shows an almost optimal recognition rate of 99 %.

For the continuous recognition of volcano-seismic events in the time period between July, 1st to
July, 5th, 1998, the continuously recorded digital network data is parametrized and converted to a
discrete symbol sequence. Partial symbol strings are extracted from the symbol sequence in a slid-
ing window and tested against the available set of discrete hidden Markov models. The outcome
of the maximum likelihood test functions for each individual model is evaluated following two
different strategies. The time segment under consideration is classified a) to that seismic signal
class which is represented by the model providing highest probability, or b) to that seismic event
type, whose complete set of models provides the best average probability in the maximum likeli-
hood test.

It is found, that the best performance of the classification system is achieved when the average
probability of all models corresponding to one signal class is evaluated. By further pruning the
automatic detection list from too short detection windows, a total recognition accuracy of 67 % is
obtained. The mean false alarm (FA) rate can be given by 41 FA/class/day. However, variations in
the recognition capabilities for the individual seismic event classes are significant. Shallow vol-
cano-tectonic signals (VTB) show very distinct wavefield properties and (at least in the selected
time period) a stable time pattern of wavefield attributes. The DHMM-based classification per-
forms therefore best for VTB-type events, with almost 89 % recognition accuracy and 2 FA/day.

Seismic signals of the MP- and Guguran-classes are more difficult to detect and classify. For the
5-day period under consideration, around 64 % of MP-events and 74 % of Guguran signals are
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recognized correctly. The average false alarm rate for MP-events is 87 FA/day, whereas for Gugu-
ran signals 33 FA/day are obtained. However, the majority of missed events and false alarms for
both MP and Guguran events (especially short-lasting, low energetic Guguran events) are due to
confusion errors between these two event classes in the recognition process.

The confusion of MP and Guguran events is interpreted as being a consequence of the selected
parametrization approach for the continuous seismic data streams. The observed patterns of the
analyzed wavefield attributes for MP and Guguran events show a significant amount of similarity,
thus providing not sufficient discriminative information for the numerical classification. The sim-
ilarity of wavefield parameters obtained for seismic events of MP and Guguran type reflect the
commonly observed dominance of path effects on the seismic wave propagation in volcanic envi-
ronments. The propagation medium at volcanoes is known to be composed of heterogeneous and
thin layers of unconsolidated materials resulting in a complicated, highly-attenuating three-
dimensional structure with rough topography. Thus, as MP-type events as well as Guguran signals
are generated very close to the surface and nearly at the same location of the volcano (active lava
dome region), the seismic wavefield observed at some distance to the shallow source region of
MP and Guguran events is dominated by path effects.

The recognition rates obtained for the five-day period of increasing seismicity show, that the pre-
sented DHMM-based automatic classification system is a promising approach for the difficult
task of classifying volcano-seismic signals. Compared to standard signal detection algorithms, the
most significant advantage of the discussed technique is, that the entire seismogram is detected
and classified in a single step. The encouraging results motivated the implementation of the algo-
rithms in the real-time seismic signal analysis system Earthworm (USGS), which is currently
tested at the installations of the Volcanological Survey of Indonesia for the seismic monitoring
network of Merapi volcano.
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CHAPTER 2. Introduction

Merapi volcano, located in the central part of Java island, Indonesia, is considered to be one of the
most active and dangerous volcanoes of the world. The danger of Merapi evolves from its eruptive
behavior, which is mainly characterized by the frequent occurrence of pyroclastic flows and occa-
sional vulcanian eruptions. Due to its location in the magmatic arc of the subduction zone formed
by the Indo-Australian and Eurasian Plate boundary (see Fig. 2.1), Merapi’s magmatism is basal-
tic-andesitic, with SiQ contents ranging from 50 - 56 wt. % (Gertisser and Keller, 1998,
Andreastuti et al., 2000). In recent times, the viscous, highly crystalline lavas have formed repeat-
edly bulbous lava domes and thick stubby lava flows. Collapses of this viscous lava dome, which
can be caused by either gravitational instability or internal excess pressure, generate violent nuées
ardentes. Besides those so-called “Merapi-type nuées ardentes”, also fountain-collapse nuées
ardentes occurred in historical times, reaching even farther distances and transporting much more
material than the previous types of pyroclastic flows and surges. Together with huge debris flows
(Lahars) during the tropical rainy season the volcanic activity is a continuous threat to the highly
populated area at the volcano’s flanks and in the south of Merapi. Descriptions of historical erup-
tions since 1768 have been summarized by Voight et al. (2000a), while the prehistoric eruption
history during the past 10,000 years from archeological and geological data have been described
by Newhall et al. (2000).

Merapi’s frequent eruptive activity with typical recurrence rates of one to six years (e.g. Hidayat
et al., 2000) poses a high risk to the densely populated area at the volcano’s flanks. With around
one million inhabitants, the city of Yogyakarta is situated just 28 km to the south of the active
summit region and still belongs to the risk zone of Merapi. A major volcanic event will therefore
not only affect the local neighborhood, but might even have a severe impact on the socioeconomic
development of Central Java.

Due to its high risk potential, Merapi is one of 15 volcanoes declared as “Decade Volcanoes”, a
program proclaimed by thénternational Association ofVolcanology andChemistry of the

Earth’s Interior (IAVCEI) within the frame of UNESCO’d nternational Decade ofNatural
DisasterReduction(IDNDR) during the 1990’s. The main goals of this research program is to
improve the understanding of volcanic processes and mechanisms, to contribute to hazard assess-
ment and to improve prediction capabilities (Newhall et al., 1994).
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The aims of the IDNDR are addressed in the joint Indonesian-German cooperation plajeet

API (Mitigation, Evaluation, Risk Assessment an@rediction Improvement (Zschau et al.,
1998). Several scientific projects have been started in 1997 including petrological, geological,
geochemical and geophysical long-term investigations for both gathering necessary structural
information of Merapi and to establish monitoring baselines for the future. Due to the observation
that volcanic and seismic activity are often closely related to each other at Merapi volcano (Ratdo-
mopurbo, 2000, Ratdomopurbo and Poupinet, 2000, Voight et al., 2000b) the passive seismologi-
cal project is considered as very important among the different monitoring experiments.

3000
2500
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height in m.a.s.l.

o deep earthquakes (h > 200 km)
medium earthquakes (70 km < h <200 km)
shallow earthquakes (h < 70 km)

a active volcanoes

% location of Merapi-Merbabu complex

FIGURE 2.1: Three-dimensional perspective view of Merapi volcano (top) from SW, no vertical

exaggeration. Merapi volcano is located in Central Java (red star in detailed map view) and is one of 35
active volcanoes on Java island (red triangles). The global earthquake distribution (colored circles,
global earthquake data 1991-1998 NEIC, p>5) confines the convergent plate boundary between the

indo-australian plate and the eurasian plate. The increase of hypocenter depths to the north indicates
the Benioff-zone in the active subduction regime.

A new seismic network consisting of twelve seismic stations has been installed in July 1997, pro-
viding high-quality continuous digital recordings. The stations have been grouped at three differ-
ent locations forming small-aperture (mini) arrays with four seismometers each (central broad-
band and three surrounding short-period seismometers). Together, these mini arrays act as a seis-




Introduction

mographic network around the summit of Mt. Merapi allowing precise localization of seismic
sources by exploiting both the array and network properties of this configuration.

Recording continuously at all stations, the amount of accumulated digital data lies in the order of
several hundred MegaBytes per day (slightly dependent upon the dynamic range of signals which
influences the effectiveness of compression algorithms). To reduce the workload of visual data
analysis and to enable the detailed investigation of seismic signals of volcanic origin, there is the
need for a robust automatic event detection and classification system. The design of such a system
is the goal of this study.

Methods for robust seismic signal detection have been under investigation since the beginning of
digital seismology. Considering the enormous development in data acquisition and storage tech-
nology, it has become an issue of growing importance. Until some years ago the main aspect of
signal detection was to reduce the amount of the recorded digital data to manageable levels in
order to use the limited and expensive storage capacities economically. Nowadays, as digital stor-
age has become inexpensive and common digital acquisition systems allow recording of continu-
ous, high-resolution data streams at high sample rates, the use of detection algorithms can be seen
primarily in the task to flag signal segments of continuous data streams for subsequent automatic
and/or interactive analysis (Withers et al., 1998).

Main purpose of available seismic signal detection algorithms is the automatic detection and tim-
ing of body phase arrivals in seismogram recordings of tectonic earthquakes and artificial explo-
sions (chemical and nuclear). Seismic signals generated either by earthquakes or artificial
explosions show a compressional body wave type at the beginning of the observed seismograms,
normally characterized by sudden changes in both frequency and amplitude with reference to the
preceding seismic noise. The methods used for detecting such transient signals try to exploit these
characteristics by comparing short-time to long-time statistics of signal parameters and subse-
guent hypothesis testing.

Most studies in seismic signal classification have focused on the discrimination problem between
natural and artificial sources. This important task has mainly been applied in two domains, a) in
the context of pruning local and regional earthquake bulletins from recordings of quarry blast
explosions, and b) in the context of the verification of nuclear test ban treaties (CTBT, Hoffmann
et al., 1999) within a worldwide station network. Mostly spectral ratios of certain wave groups (P-
wave, S-wave, Lg-wave) have been used to accomplish this task. As a consequence, the wave-
groups under consideration have to be extracted beforehand, which in turn is still a major chal-
lenge to automatic processing algorithms.

Pattern recognition approaches, which aim to jointly detect and classify the complete seismo-
gram, have rarely been used in the context of seismic signal detection and classification. Joswig
(1990) developed a robust seismic event detector which is based on the comparison of spectral
images (sonogram) to a set of reference templates. Recently, Gendron et al. (2000) have applied
the discrete wavelet transform, combined with a wavelet based de-noising technique and a Baye-
sian classifier (MAP) for joint detection and classification of continuous seismogram recordings.

Taking into account the special nature of volcano-seismic events, a novel method for joint detec-
tion and classification of seismic signals of volcanic origin is presented in this study. Volcano-
genic quakes mostly appear to have emergent signal onsets and low signal to noise ratios. This
makes it difficult to adopt detection algorithms used for onset time estimation of seismic tran-
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sients in earthquake studies. The usually complex wavefield characteristics of volcano-seismic
signals, and - in the case of volcanic tremor - the absence of clear phase arrivals as well as the
great variability in signal duration suggest the use of a classification approach, which is capable to
incorporate context dependent information into the recognition process.

A recognition problem of comparable complexity is found in the field of digital speech process-
ing. Similar to volcano-seismic signals (i.e. volcanic tremor), the acoustic waveforms of speech
show great variability in both utterance length and signal characteristics. The current-state-of-the-
art approach in speech recognition is the stochastic modeling of time-varying short time features
of the acoustic observation by hidden Markov models (HMM, Rabiner and Juang, 1986, Rabiner,
1989). The hidden Markov modeling approach is capable to use the context-dependent informa-
tion for the recognition process and has proven to allow recognition rates up to 90-95% depending
on the specified recognition task (speaker-dependent or -independent recognition, laboratory or
noisy environment conditions, isolated word or continuous speech recognition, to name a few).

In speech recognition the parametrization of acoustic signals has been studied intensively in the
past decades. The investigation of the physics of speech production and the human perception of
speech have finally led to a mostly accepted form of acoustic signal parametrization, providing
good classification results in speech recognition tasks (for an overview see e.g. Deller et al.,
1993). In volcanic seismology, however, the problem of feature extraction and signal representa-
tion is still widely discussed. The source processes of seismic signals at active volcanoes and the
generation of seismic energy are still only poorly understood. A signal representation which
incorporates human expertise from routine observatory practice without any special assumptions
about the source processes is seen as an appropriate starting point for seismic signal parametriza-
tion. Hence, the seismic wavefield, which is observed simultaneously at a network of small-aper-
ture arrays will be described here by a limited number of seismological key parameters. Array
techniques provide information about the direction, coherency and strength of seismic signal
arrivals and are complemented by polarization attributes and spectral energy estimates.

In the context of speech recognition the corresponding task would be called “speaker-dependent
keyword-spotting in continuous speech”. Its goal is the identification of a small set of words
(vocabulary) with high confidence in continuous speech, uttered by a single speaker. Transferring
this to the given problem, the task could be best described as “volcano-dependent seismic event-
spotting in the continuously recorded seismic wavefield by the use of hidden Markov models”.
The parametrization of continuous seismological data streams and the use of HMMs for the detec-
tion and classification of the volcano-seismic signals occurring at Merapi volcano are presented in
the following.




CHAPTER 3. Seismic signals of volcanic origin

Volcanoes are the geologic manifestation of highly dynamic and complexly coupled physical and
chemical processes in the earth’s interior. Volcanic processes occur on a broad range of time
scales. The involved time constants may be as long as tens or hundreds of years (e.g. magma rise,
magmatic differentiation) or as short as fractions of seconds (e.g. fragmentation). Fast volcanic
processes, which take place within short time periods (~100 s to cs) may release seismic energy
directly (e.g. magma/gas movements, explosions), whereas slower processes may cause seismic
waves only indirectly (e.g. fracturing of volcanic edifice through stress changes caused by magma
rise).

Due to the complex nature of volcanic processes, a great variety of distinct seismic signals can be
observed at volcanoes. However, despite of the diversity of volcanoes regarding e.g. the geologi-
cal structure, size, the volatile content, or the chemical composition and physical properties of
volcanic products, there is the remarkable observation, that the majority of volcanogenic seismic
signals - although recorded in distinct volcanic environments - show comparable signal character-
istics from one volcano to another. It is this observation that has given rise to the idea that seismic
signals at active volcanoes share common source processes which are directly related to the inter-
nal driving forces of eruptive phenomena. Thus, the study of seismic sources at active volcanoes
is considered to be an important tool (among other disciplines of geoscientific research) to
improve the knowledge about the dynamics of active magmatic systems and the physics of their
corresponding driving processes. The indirect estimation of the physical properties of such sys-
tems and their connection to the eruptive behavior of volcanoes are of key interest for the wide
field of hazard mitigation (e.g. Chouet, 1996a).

A prerequisite for the detailed research on seismic signal generation is the classification of the
observed signals into event families. Besides the importance for evaluating seismic source models
and their relation to volcanic processes, classifying seismic signals on a routine basis provides a
way to quantify the activity state of a volcano. Classification schemes for individual volcanoes are
indispensable for revealing correlations between special types of seismicity and the correspond-
ing volcanic activity. Daily counts of individual seismic signal types are widely used in volcanic
observatories for taking decisions whether to raise or to lower volcanic alert levels and for com-
municating the activity state of a volcano to local authorities and the public. Hence, the seismic
monitoring of an active volcano, in combination with other monitoring techniques, is meant to
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provide a description of the present status of a volcano. It may additionally provide indications for
the difficult duty of eruption forecasting and to estimate the size of an eruption in progress (e.g.
McNutt, 1996).

3.1. Overview of volcano-seismic signals and terminology

Until now no consistent global classification scheme for volcano-seismic signals has been estab-
lished (McNutt, 1996). This is mostly due to the great variety of names which have been proposed
for volcano-seismic signal classes in the scientific literature. Most of the proposed terms have
been chosen according to the visual appearance of seismograms or by the use of descriptive
names indicating the striking characteristics of the seismograms’ signal parameters. In other cases
the names of event classes were selected by relating the supposed source process to the signal
under consideration. Additionally, several local terminologies, used in individual observatories,
have been introduced to the scientific literature, without taking into account already existing and
more general applying classification schemes, i.e. Minakami (1960, 1974), and Shimozuru
(1972).

The terminology introduced by Minakami (1960, 1974) is the most widely referenced volcano-
seismic signal classification. In his work from 1960, Minakami mainly investigated the hypo-
center depth distribution, the magnitude-frequency distribution, and the first motions of volcano-
seismic events recorded at several Japanese volcanoes. On this basis he distinguished four groups
of seismic event types: A-type, B-type, explosion quakes and volcanic tremor.

A-type: This event type shows clear P- and S-wave arrivals with dominant frequencies between
5 Hz to 15 Hz. Higher frequencies, which are likely to be produced in the seismic source are prob-
ably not recorded due to instrumental limitations (limit of passband in common seismograph-
telemetry systems) and high local attenuation effects (McNutt, 1996). In other homenclatures
(e.g. McNutt, 1996) the typical spectral range for A-type events motivated to choose the term
high-frequency event for this family of volcanic earthquakes. The hypocenter depth range for A-
type events as given by Minakami (1960) is 1-10 km.

The widely accepted source model for A-type events is shear failure or slip on pre-existing faults
within or below the volcanic edifice. The source mechanisms derived for A-type events show a
high double-couple portion, and therefore A-type events have also been termed “volcano-tectonic
events” (e.g. Power et al., 1994). In contrast to “normal” tectonic earthquakes, their volcanic
counterparts occur typically in swarms, rather than in mainshock-aftershock sequences (McNutt,
1996). A-type events have been related to the process of local stress-changes inside the volcanic
edifice, caused by injection (or withdrawal) of magma. The tectonic release of the accumulated
strain along fracture systems as seismic energy leads to A-type events.

B-type: B-type events have been reported to occur mostly in a swarm-type activity showing little
variation between the individual recorded waveforms (e.g. Minakami, 1960, McNutt, 1986,
Power et al., 1994, Chouet et al., 1994, Miller et al., 1998). Most characteristic are the emergent,
low-energetic signal onsets, monochromatic oscillating waveforms and the lack of clear S-wave
arrivals. Spectral analysis showed, that the seismic energy is mainly concentrated in narrow fre-
guency bands in the range between 1 Hz to 5 Hz. Hence, the terms low-frequency (LF) or long-
period (LP) event have been used as synonymous expressions for B-type events in other classifi-
cation schemes (McNutt, 1996, Power et al., 1994). The typical hypocenter depth for B-type
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events after Minakami (1960) is very shallow (less than 1 km), which has lead to the conclusion
(e.g. Minakami, 1960), that the observed spectral properties and the lack of clear S-wave arrivals
are due to the propagation of the seismic wavefield in the heterogeneous, unconsolidated, and
strongly attenuating shallow layers of the volcanic edifice. In few occasions deeper source loca-
tions of low-frequency events have been reported for Kilauea volcano (Aki and Koyanagi, 1981,
Shaw and Chouet, 1991). This fact and the similarity of spectral composition recorded at a large
number of stations gave reason for the assumption, that not path, but source effects are mainly
responsible for the characteristics of low-frequency events.

However, the physical source process of low-frequency events is still under discussion. It has been
observed very early, that B-type events and volcanic tremor (see below) share common character-
istics, i.e. they possess similar spectral content and the observed waveforms often show a har-
monic oscillating nature. Most authors agree that a non-destructive source process is responsible
for both the repeated swarm-like pattern of B-type events as well as for the occurrence of volcanic
tremor signals. Together with the observation, that B-type events and tremor occur in phases of
increased volcanic activity, a connection to mass transport processes in the volcanic feeding sys-
tem is considered as most probable cause for both low-frequency events and volcanic tremor.

Volcanic Tremor: Volcanic tremor is the collective name of continuous (sustained) signals
recorded at active volcanoes. Tremors mostly show no clear phase arrivals and have strongly vary-
ing signal durations, lasting from several tens of seconds to hours, days or even longer. The sig-
nals are characterized by peaky amplitude spectra mainly in the frequency range from 1 Hz to
5 Hz, although examples with higher frequency contents (> 5 Hz) have been observed. Distribu-
tions of the main frequency content and the durations for volcanic tremor signals recorded at over
100 volcanoes worldwide have been reviewed by McNutt (1992).

Many studies have been conducted to reveal the source process of volcanic tremor. As has been
mentioned before, the similarity of frequency spectra between low-frequency events and volcanic
tremor have led to the conclusion, that volcanic tremor is in fact a series of superimposed low-fre-
guency events at intervals of few seconds (e.g. Minakami, 1974, Koyanagi et al., 1987). The oscil-
lating nature of volcanic tremor signals (and low-frequency events), and the corresponding
sharply peaked amplitude spectra have been interpreted as resonance effects directly related to the
source process. Due to the observation, that the dominant frequency peaks are recorded simulta-
neously at different stations, major path and site effects, which would explain the peaky amplitude
spectra as well, have been ruled out as possible explanation. In the work of Aki et al. (1977) shal-
low volcanic tremor was explained as a result of a repeatedly excited fluid-filled crack vibration.
As excitation process of the crack vibration, the tensile opening of fractures in response to excess
magmatic pressure was discussed. This model was motivated from hydraulic fracturing experi-
ments, therefore the involved fluid was assumed to be single-phase. In further developments of
this model by Chouet (1981, 1985, 1986), and Chouet et al. (1987), it was concluded that the fluid
must be an active element in the motion of the source in order to explain the narrow-banded
nature of the spectral peaks of volcanic tremor. Other models have been developed e.g. by Seidl et
al. (1981) which were based on observations from Schick and Riuscetti (1973) and Riuscetti et al.
(1977) at Etna volcano. Seidl et al. (1981) discussed the interaction of gas and fluid in a two phase
fluid as volcanic tremor source. The overall shape of typical amplitude spectra of volcanic tremor
was modeled by seismic wave radiation from magma motions following a monopole flow pattern.
The sharp spectral peaks with narrow bandwidth have been attributed to resonance conditions
within fluid magma filled conduits. Schick (1988) pointed out that self-sustained pressure oscilla-
tions caused by two-phase flow instabilities is in accordance to the observed stable long-term
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characteristics of volcanic tremor. Another mechanism of self-sustained excitation of fluid flow
was proposed by Julian (1994), taking into account the interaction between unsteady flow of a vis-
cous incompressible fluid and the conduit walls. A qualitatively different explanation for the
occurrence of harmonic spectra observed at Semeru volcano has been given in a work from
Schlindwein et al. (1995). It was shown, that any repeated transient source process with regular
repetition intervals (of a few seconds), will produce a peaky amplitude spectrum. Consequently,
the single spectral peaks reflect the frequency of event repetition, rather than the individual tran-
sient source spectrum. In this model, the source spectrum of the individual transients is main-
tained by the overall spectral shape.

Explosion quakes: This group of volcano-seismic signals is a heterogeneous class of seismic
waveforms, which are recorded in connection with explosive eruptions. The observed waveforms
differ depending on eruption style and size. Often an air-shock phase can be observed in the corre-
sponding seismograms (e.g. McNutt, 1996). In most descriptions (e.g. Minakami, 1960, McNultt,
1986), the first arrival of an explosion quake shows some similarities to the waveforms of a B-
type event, regarding the frequency content and the oscillating nature. This observation was used
as an argument for the dominance of path effects for shallow volcanic events.

Minakami’s classification scheme was derived in a comparative analysis of seismic data from sev-
eral distinct volcanoes in Japan. Hence, this general nomenclature works well at most active vol-
canoes. In more detailed studies for individual volcanoes (e.g. Lahr et al., 1994, and Power et al.,
1994 for Redoubt volcano, Alaska; Latter, 1981, Sherburn et al., 1998 for White Island, New
Zealand; Miller et al., 1998 for Soufriére Hills, Montserrat), modifications have been proposed to
include other types of seismic signals which have not been addressed in Minakami’s work. A mix-
ture between Minakami’s A-type and B-type earthquakes has been repeatedly observed and the
term hybrid or mixed frequency event are commonly used for this event type (e.g. McNutt, 1996).
Some typical examples of vertical ground velocity recordings for the previously described event
types are given in Fig. 3.1.

It has to be noted, that Minakami’s work is based on the observations made with short-period seis-
mometers (corner frequencies around 1 Hz or higher), which have been the typical instrumenta-
tion used for monitoring seismic events at active volcanoes. However, in recent years, with the
development of affordable portable broadband seismograph systems, new characteristics of seis-
mic signals at active volcanoes have been observed. Transient seismic signals with dominant peri-
ods between several seconds to several tens of seconds have been observed at several volcanoes,
i.e. Stromboli (e.g. Neuberg et al., 1994, Dreier et al., 1994, Wassermann, 1997a, 1997b, Kirch-
dorfer, 1999), Mount Erebus (Rowe et al., 1998), Popocatépetl (Arciniega-Ceballos et al., 1999),
and recently Merapi (Hidayat et al., 2000). Those signals have mostly been termed very-long
period events (VLP) or even ultra-long period events (ULP).
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FIGURE 3.1: Typical examples of recordings of the vertical motion for volcano-seismic event types.
Seismograms a)-c) have been recorded at Redoubt volcano, seismograph 8 km from vent. a) A-type VT
event, hypocenter depth ca. 6.8 km, b) mixed-type or hybrid event, hypocenter depth -0.6 km (above sea
level) c) B-type or low-frequency, hypocenter depth -0.4 km; d) Explosion quakes with air wave arrival
recorded at Pavlov volcano, seismograph ~8.5 km from vent; e) B-type event at Pavlov volcano, same
station; a)-e) taken from McNutt (1996); f) strombolian explosion recorded at Arenal volcano,
seismograph ~2.2 km from vent, raw waveform g) same as f), but high-pass filtered at 5 Hz. A clear
airwave arrival can be noted at around 10 s; h) harmonic tremor sequence recorded at Arenal volcano;
f)-h) courtesy of W. Taylor (Observatorio de Vulcanologia de Arenal y Miravalles del Instituto
Costarricense de Electricidad, OSIVAM-ICE, San José, Costa Rica).

From the above review of source models, which have been suggested for both volcanic tremor and
low-frequency events, it must be concluded, that there is still no commonly accepted and gener-
ally applying physical model available. What remains is the fact, that all models propose the
involvement of unsteady fluid flow and mass transport processes in the shallow part of the volca-
nic edifice. Most authors assume therefore a direct connection between the eruption driving forces
within a volcano and the occurrence of volcanic tremor and/or low-frequency events. Hence,
those seismic event types are considered to play a key role not only in the context of understand-
ing the physics of the complex volcanic dynamics but also in the difficult task of forecasting
future volcanic eruptions with seismological monitoring techniques.

From several case studies of seismicity accompanying volcanic crisis, McNutt (1996) derived a
generic volcanic earthquake swarm model (compare Fig. 3.2). Based on the results of his compar-
ative study, McNutt concluded the following important points for the seismic monitoring of volca-
noes: a) a knowledge about the background seismicity - several years monitoring in quiet states of
the volcano - is indispensable for the evaluation of possible seismic precursors for volcanic erup-
tions; b) the use of three-component and broadband seismometers for improved monitoring and
for later detailed analysis; and c) the necessity for flexible monitoring strategies including other
geophysical long-term measures.
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FIGURE 3.2: Schematic diagram of the time history of a generic volcanic earthquake swarm model, re-
drawn after McNutt (1996). On top a qualitative graph of the seismicity rate during different stages of an
volcanic eruption cycle is shown. On bottom the main types of volcano-seismic events observed in each
stage and the supposed dominant processes are given.

3.2. Seismic signals at Merapi volcano

The local terminology and classification scheme of volcano-seismic signals at Merapi dates back
to the work of Shimozuru et al. (1969). In their work, Shimozuru et al. (1969) describe the obser-
vations from a short-term seismological experiment at Merapi volcano in 1968. Five distinct seis-
mic signal classes have been observed and are summarized as shown in Table 3.1.

TABLE 3.1 Classification of seismic signals at Merapi volcano after Shimozuru et al. (1969).

Type Apparent feature (dominant) Period [s] Remarks
1 double spindle 0.09-0.12 high frequency
2 double spindle 0.09-0.12, 0.24-0.36 high frequency is followed by low frequency
3 B-type 0.15-0.25 same as Minakami B-type class
4 many phases 0.25-0.30 related to lava dome activity,
5 elongated spindle 0.16-0.90 associated with lava avalanche

The seismic signal classification given by Shimozuru et al. (1969) is based on single station data
for only a limited observation period of three months. In 1982 a permanent short-period seismic
network has been installed as part of a collaboration between the Volcanological Survey of Indo-
nesia (VSI) and the Hawaiian Volcano Observatory (USGS-HVO). The data recorded during the
eruptive cycle in 1984 at this six station short period seismograph network have been the basis for
deriving a new classification scheme for seismic signals at Merapi volcano. Since then, this classi-
fication is used in the VSI to describe the seismic activity of Merapi. It has been summarized in
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the work of Ratdomopurbo (1995) and is shown in Table 3.2. Typical waveforms of the character-

istic volcano-seismic events of Merapi are displayed in Fig. 3.3 (Ratdomopurbo, 1995).

TABLE 3.2 Classification of volcano-seismic signals at Merapi volcano after Ratdomopurbo (1995)

domi Shimozuru et . .
ominant al. (1969) Minakami
Type Apparent feature frequency Remarks e iJivaIent equivalent
[Hz] q class
class
volcano-tectonic, hypo-
VTA clear P- and S-wave arrivals, 5-8 center deeper than 2.5 - not recorded - A - type
km below summit.
. - volcano-tectonic, hypo-
clear P-arrival similar to
VTB R center depth less than B-type-?- shallow A-type
no apparent S-wave arrival VTA 1.5km below summit
less impulsive onset than VT-
events, for a given amplitude, MHA
muItiMr':ase events have longer durations thal 3-4 related rtgv\ll?r\]/a dome type ﬁa;?sany
P VT-events, rapid amplitude decay 9 p
with distance from summit
monochromatic low-frequency con
LF (low- tent similar at all stations, short 5
frequency) duration and rapid spatial ampli- 1-2 . B-type - 7 - B - type
tude decay
} combination of
o observed only during
LHF ComblnatlonVoné_ F followed by the activity phase of not recorded S\;\debfok_
Merapi in 1990-1992 Y
type
Tremor long-lasting low-frequency tremo 1-2 -?- Tremor
type 5 - assoc.
Guguran typical durations between 60 and aslsocwrl]ted W!th roc_:k W'tT Iavs ava-
(Rockfall) 180 sec 1-20 avalanches originating anche.
' at the active lava dome| typeland 2 -
double spindle.

Two signal types reported for Merapi volcano have no correspondence in Minakami’s classifica-
tion scheme: the multiphase events (MP) and the rockfall signals (Guguran). It has been noted by
Hidayat et al. (2000), that MP events are similar to hybrid events recorded during phases of dome
growth, e.g. at Redoubt Volcano (Power et al., 1994) and Soufriére Hills Volcano (Miller et al.,
1998).

Whereas the source process of the rockfall related seismic events is known to be connected to the
gravitational collapse of parts of the active lava dome, detailed source models for the dome-
growth related MP events have not yet been found. Recently, Hidayat et al. (2000) have reported
interesting features of MP events deduced from recordings at a temporarily deployment of broad-
band seismometers at Merapi’s summit region. From the observation of very-long period pulses
(~ 4s) embedded in the MP events, they discussed subsurface gas pressurization and relaxation as
a possible source process, similar to work of Ohminato and Ereditato (1997) and Voight et al.
(1999). As an alternative, they considered episodic stick-slip movement of the magma in the con-
duit, assuming significant shear strength inside the highly viscous magma. A similar source
model for seismic events at Unzen volcano has been suggested by Goto (1999).
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FIGURE 3.3: Typical waveforms of seismic signal types recorded at Merapi after Ratdomopurbo (1995).
All waveforms are recorded at the short-period seismic station PUS, at ca. 1 km horizontal distance from
the active lava dome.

The background level of Merapi’s seismicity in periods of low volcanic activity was given by Rat-
domopurbo and Poupinet (2000) as less than eight events per month for VT-type events (both
VTA and VTB), with VTB events being five times more frequent than VTA ones. MP-type and
Guguran occurrence rates vary in the range of several tens to 1000 events per month, mostly
dependent on the activity state of the active lava dome. Occurrence of swarms of both deeper and
shallower VT-activity has been observed to precede periods of increased volcanic activity in sev-
eral occasions (Ratdomopurbo, 2000, Ratdomopurbo and Poupinet, 2000, Voight et al., 2000b). It
has been interpreted as the response of the volcanic edifice to the injection of new magma from
deeper crustal reservoirs. A very strong correlation to the volcanic unrest has been found for the
MP-type events during phases of rapid dome growth. However, sometimes phases of aseismic
dome growth have been observed, although they have been less frequent. Guguran activity
increases significantly during periods of dome buildup, and a close connection to the occurrence
of rockfall avalanches to the gravitational instability of the active lava dome is evident.

Two interesting seismicity patterns have been observed repeatedly at Merapi volcano. One is the
occurrence of VTB event swarms (within days or months) with completely identical waveforms
as shown in Fig. 3.4 (Ratdomopurbo, 1995, Poupinet et al., 1996, Wassermann and Ohrnberger,
2001). A set of identical waveforms has been termed multiplet and has been used to map small
temporal changes of the seismic velocity structure (Poupinet et al., 1996).
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FIGURE 3.4: Multiplet set of nearly identical waveforms of VTB-type events after Ratdomopurbo (1995).
Seismograms were recorded at station PUS (vertical component short period) between January and
September 1991 prior to the eruption of 1992.

The second interesting seismicity pattern observed at Merapi is the occurrence of rhythmic MP-
swarms with a duration of several days to weeks. The length of the inter-event time intervals, the
time between two successive MP-events, are remarkably stable on shorter time scales (within
hours). However, an evolution of the swarm is occasionally observed, with slowly decreasing or
increasing inter-event time intervals. In rare cases, the single MP-events merge so close together,
that the resulting seismogram is visually classified as volcanic tremor. This type of seismicity pat-
tern has been observed on analog recordings by Fadeli et al. (1991) and has been confirmed by
Budi (pers. comm.) for the digital recordings in the years 1996, 1997 and 1998. The observation is
similar to swarm activity known from Soufriére Hills volcano (Neuberg et al., 1998).
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CHAPTER 4. Pattern recognition for seismic
signal classification

As a result of the rapid development in computer technology in the last decades, pattern recogni-
tion has undergone a development from being“théput of theoretical research in the area of
statistics” (Theodoridis and Koutroumbas, 1998, p. 1) to a scientific discipline, which has gained
more and more interest because of its practical importance. Nowadays, pattern recognition appli-
cations can be found in nearly all branches of applied science, with the majority concentrating on
the fields of perception and man-machine communication, i.e. speech and image recognition. A
short introduction to general pattern recognition principles and for the specific application of seis-
mic signal classification is given in this chapter.

4.1. Definition of pattern recognition

Theodoridis and Koutroumbas (1998) define the teatiern recognitionin the introduction of
their text book as:Pattern recognitionis the scientific discipline whose goal is ttlassification

of objectsinto a number ofcategories or classes.. We will refer to these objects using the
generic ternmpatterns ... Pattern recognition is an integral part in mastachine intelligencesys-
tems built fordecision making’

Fukunaga (1990) stressed another important issue in his definition of pattern recodhiti®n:
felt that thedecision-making processes of a human beiage somewhat related to the recogni-
tion of patterns; ... The goal of pattern recognition isclarify these complicated mechanisms of
decision-making processesd toautomate these functions using computérs.

Furthermore, Fukunaga (1990) is specific in the choice of methods and tools required to achieve
the stated goals:.., we musffirst measure the observable characteristics of the samplél'hese

n measurements form a vector X ... the observation, x(i), varies ... and thex@jasea random
variable and X is a random vectar. Thus, pattern recognition, or decision-making in a broader
sense, may be considered aprblem of estimating density functions a high-dimensional

space andlividing the space into regions of categories or classBecause of this viewnathe-

matical statistic¥orms the foundation of this subject”
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Thus, the integral parts of a pattern recognition system can be summarized as follows: On the
basis of problem related information acquired from experiment or theory, a mathematical formu-
lation for a decision function has to be derived in order to categorize the given information into
several classes. The decision functions are obtained in a learning process by estimating density
functions from a representative set of training samples. The classification results obtained via the
automated algorithm should be similar to the results derived by a human expert, who is familiar
with the given classification task.

In the following it will be discussed in which way a pattern recognition approach can be used for
the task of seismic signal classification. Some of the basic mathematical definitions which will be
used in the discussion are given in the appendix A.

4.2. Detection and classification by statistical pattern recognition

The term detection is normally used for a classification problem involving two classes. The goal is
to find an automatic decision between parts of observations which are regarded as signal and
those which are not (noise) by the use of an appropriate mathematical formulation. Detection can
therefore be considered as the most simple but also the most important classification task of all.
However, the imprecise formulation of what exactly is to be considered noise can turn the detec-
tion problem into a more difficult task than a classification problem involving a large number of
well-defined signal classes.

In seismology the non-signal (noise) parts consist mainly of different types of ambient seismic
vibrations, generally termed “seismic noise”. Seismic noise is generated by both artificial (man
made noise, e.g. traffic, factory noise, instrumental noise) and natural sources (e.g., microseismic-
ity, wind, earth tides, temperature, barometric pressure). Thus, the nature of seismic noise obser-
vations has to be regarded as deterministic. Our feeling as seismologist about what is to be
considered seismic noise is therefore similar to a statement given by Scales and Snieder (1998):
“noise is that part of the data that we chose not to explain”

However, the definition of noise in terms of signal processing or mathematical formulation is dif-
ferent. Here, noise is considered to beuscorrelated, random sequence with well defined sta-
tistical properties which then turns out to be a problematic view considering the deterministic
nature of ambient vibrations. An interesting and more extensive discussion of this problem can be
found in Scales and Snieder (1998).

In the context of seismic signal detection, two different points of view can be taken. A rather com-
mon approach is to ignore the characteristics of real seismic noise and treat it as a random, uncor-
related process in the detection task. The expectation is then, that seismic noise at least tends to
have more properties in common with the statistical noise than any seismic signal of interest.

As an alternative approach, it may sometimes be convenient to refine the 'simple’ detection task to
a multi-classification problem by consideriri§ distinct seismic event typesNand different
noise signals. This multi-classification problem with = K + N classes enables a far better
approximation of the characteristics of seismic noise. A main drawback, however, is the need of
detailed information about the observed seismic noise characteristics for each Mf the  noise
classes, which may be difficult to obtain in real applications. A second major problem with this
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approach lies in the unrealistic implicit assumption, that all possible noise realizations are known
beforehand.

In the next sections general aspects of pattern recognition systems will be discussed for the multi-
class (M-class) problem. As each M-class problem includes the two-class problem as a special
case, the terms detection and classification need not to be distinguished further in this sense.

4.3. Elements of a pattern recognition system

The pattern recognition task can be divided into five main parts. The block diagram in Fig. 4.1
(modified after Theodoridis and Koutroumbas, 1998, p. 6, Figure 1.3) shows these elements of a
pattern recognition system in a sequentially ordered structure.

R 2 S O B L SR

feature feature classifier system
Sensor(s) = generation ™| selection ™| design [ evaluation

¥ / ¥ ¥

mO0°—» x00° y= (00— u,(3)

FIGURE 4.1:Block diagram of a pattern recognition system (modified after Theodoridis and
Koutroumbas, 1998). Measurements at one or several sensors provide the observatians  to be classified.
In the feature generation step signal parameters are extracted and summarized in a feature vectar . The
best features containing the most information regarding the classification task are selected by an
appropriate transform in the feature selection stepy = f(X) . The classifier is designed by searching
mathematical formulations for a set of decision functionsu, (y) with the goal of minimal classification
error. The real classification error is obtained in the system evaluation stage. The single stages within a
pattern recognition system are interrelated, here indicated by the arrows on top of the individual
processing blocks.

The first block in Fig. 4.1 represents the measurement procedure. A set of patterns is recorded
(observed) at several physical sensors providing the input data to be classified. In the given exam-
ple, S individual ph)ésical guantities are measured and the observed data is represented by an real-
valued vSectorrh 0O . The vector space spanned by the measurements  iswadsdrement
spacell .

In the feature generatiorstep, signal parameter estimates are calculated from the observed data.
Each single estimate is calledemture The entirety of all generated features are summarized in a
real-valuedeature vectorx 0 0° with dimensionD (i.e. the number of signal parameters esti-
mated). The vector spa(iéD spanned by the feature vextors s fesdkede vector spacer
sometimegparameter spacdn absence of a priori knowledge regarding the relevance of the indi-
vidual features (components of feature vector) for successful classification, as much information
as possible is included into the feature vector. The resulting number of reasonable feature candi-
dates may be large, leading to a high dimensionality of the feature vector space.
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In order to keep the dimension of the feature vector space in tractable limits for further process-
ing, thefeature selectiorstep evaluates the information content of the feature vector by statistical
analysis of the feature vector space. The final aim of the feature selection step is to reduce the
dimensionality of the feature vector space to thed<(D ) most significant features (or feature
combinations). Hence, this task can be seen as the search for an appropriate transformation func-
tiony = f(X) O n¢ following the constraint of maintaining the information contenkaf 0P at

its best. Under the assumption that the feature vectors are the result of a random process, the
transformatiorf (X) _is constructed Iarning statistical properties from@presentative sample

setX = {x|x O 0°,i=1,2 ...,M} 00O of feature vectors with finite sizé X is therefore
called a training set. As a result of the learning procedure, single features or feature combinations
with least information content regarding the classification task are discarded and a new vector is
formed. The resulting transformed feature vegter f(X) 0 O spans the vector §pace of
dimensiond < D (transformed feature vector space).

On basis of the transformed feature vectprs dlassifierhas to be constructed. For the multi-
class recognition task involving  distinct classes, a classifier consists of a set of discriminant
functionsu, (y) ,A = 1,...,K , and a subsequent decision rule. A widely used design criterion
for the estimation of the classifier is based on the objective to achieve a minimum error rate in the
classification system. Applying this criterion leads to the family of classifiers which are based on
Bayes’ rule, i.e. maximizing the a posteriori probability for the correct class decision. The classi-
fier is obtained byearning statistical properties from a representatikaning setY of feature
vectors in the transformed feature vector space, With {yi|yi O Dd, i=1,2..,M} 0O n¢ f
the class memberships of the single feature veglprs Y in  are known, the set is dabetleal
training set The methods for acquiring the statistical propertie¥of are then generally termed
supervised learning method$Jnsupervised learningstrategies (cluster techniques) have to be
used, if the class memberships are unknown and onlyrdabeledtraining set is available.
Finally, the overall performance of the pattern recognition system has to be quantifiedsysthe
tem evaluationstep (Fig. 4.1, rightmost block).

Although a sequential structure has been chosen for the graphical representation in Fig. 4.1, the
single stages forming a pattern recognition system are not independent from one another, which is
indicated by the arrow connections at the top of the figure. The results obtained at each stage may
make it necessary to return to one or several of the proceeding steps and rework the system again.
E.g. in case that the final system performance shows too high error rates it might be necessary to
extract additional features from the raw measurements, in order to provide more information for
the given classification task. Alternatively a modified feature selection criteria, or even another
type of classifier might improve the recognition result.

The following sub-sections introduce the individual elements of a pattern recognition system in
more detail. In 4.3.1. the accumulation of data, preprocessing and the representation of informa-
tion for the classification process by feature vectors are discussed. As the feature generation task
depends on the given classification problem, some remarks are included in subsection 4.3.1. how
to adopt this stage for seismic signals. Additionally a common approach for feature selection is
presented at the end of this subsection. The problem of classifier design is addressed in 4.3.2. and
the principles of estimating discriminant functions from training data are introduced. The last sub-
section 4.3.3. presents methods for evaluating the performance of a classification system.
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4.3.1. Feature generation and selection

The process of acquiring information from an underlying data set (measurement space), and the
estimation of the inherent information content within the obtained feature space are called feature
generation (sometimes feature extraction) and feature selection, respectively. Both steps are
regarded as the most important part of a pattern recognition system (e.g. Schukat-Talamazzini,
1995, p. 75, Niemann, 1990, p. 9).

In the feature generation step, individual signal parameters are calculated from the raw measure-
ments, which then build the basis for the subsequent classification process. Consequently, the sin-
gle features used for the data representation must contain valuable information for the
discrimination of classes. In case of a good knowledge about the underlying physical processes of
the data set, a possible strategy is to derive the parametrization from the theoretical background.
Alternatively, if the knowledge about the data production process is poor, a parametrization can be
chosen by taking into account human expertise or by mimicking human perception principles.

In the present context of seismic signal classification, the measurements consist of evenly sam-
pled, discrete time series. Those represent recordings of the ground motion at a seismograph sys-
tem proportional to ground displacement, velocity or acceleration depending on the deployed
instrument type. The seismogram contains information about the involved seismic source process,
the propagation medium and the instrument response. Whereas the theory of seismic wave propa-
gation is well-developed, and the instrument response is a known quantity, the location and nature
of the seismic source as well as the properties of the propagation medium are generally not well
constrained. It is therefore difficult to derive an appropriate parametrization solely from theoreti-
cal considerations.

The experiences from over 100 years of seismological observatory practice provide a good start-
ing point for a reasonable choice of signal parameters for the classification of seismic signals. An
important issue in the visual inspection of seismograms is the fact, that an observer is trained to
look at contextual information. Whereas detailed analysis of small seismogram portions provide
information about short-term signal attributes, the classification of the waveform can only be per-
formed by taking into account the variation of signal parameters over the whole duration of the
signal. An example is given in Fig. 4.2: the short time windows on the left show similar signal
characteristics and would be visually classified as a portion of seismic noise. However, viewing
the same signal windows within a larger time scale (Fig. 4.2 on the right) reveals that one of the
signals is actually part of a seismic event (MP-type signal recorded at 1.6 km distance at Merapi),
whereas the other waveform sample belongs to the preceding seismic noise. Consequently, for the
classification of seismic events it is important to include contextual information either in the sig-
nal representation process (feature generation step) or in the classifier approach.
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FIGURE 4.2: Waveform example demonstrating the importance of contextual information in seismogram
interpretation. In the left column two waveform samples are shown, which would be visually classified as
seismic noise. The same waveform windows are shown on the right side on a larger time scale within their
temporal context. From the contextual information, the lower seismogram sample is now clearly
recognized as part of a seismic transient signal (MP-type signal at Merapi volcano).

The choice of signal attributes for the purpose of detecting and classifying seismic events has

been the subject of numerous scientific research in the past. A review of the most commonly used
features which have been proposed in earthquake research is provided in section 4.4. At this point
it is sufficient to note that a variety of signal parameters can be derived from seismogram record-

ings, mostly based on knowledge sources from observatory practice as well as from consider-
ations regarding the theory of wave propagation and the corresponding seismogram structure.

At first sight, any signal parameter estimated from the raw data streams can be used to parame-
trize the seismic data. Without a priori knowledge about the relevance of individual signal param-
eters for the given classification task it is difficult to give preference to particular feature
estimates. Hence, in a first step, it is common practice to include as much features as possible into
the feature vector. However, the number of reasonable feature candidates may be high. In order to
keep the computational complexity of the following classifier design in tractable limits, the
dimensionality of the feature vector space has to be restricted to some reasonable size.

The feature selection step of a pattern recognition system consequently aims to select an optimal
subset of the previously acquired features for the classification task. One major difficulty in the
feature selection stage is to define an optimality criterion. A common approach (see e.g. discus-
sion in Niemann, 1983, p. 108) is based intuitively on the criterion of class separability in the fea-
ture vector space, i.e. to evaluate the discriminative power of the feature vectors.

A widely used method to reduce the dimensionality of the feature vector space while maintaining
the discriminative power of the feature vectors relies on the usage of linear transformations. The
Karhunen-Loeve (KL) expansion has shown to be suitable for deriving an appropriate transforma-
tion with the desired properties (Kittler and Young, 1973). The KL-expansion is based upon the
eigenvector analysis of the sample covariance matrix built from a training set of feature vectors.
The result of this analysis can be used to linearly transform the representation vectors into a new

24 Elements of a pattern recognition system



Pattern recognition for seismic signal classification

coordinate system in which the coordinate coefficients are mutually uncorrelated, and where the
information of the original feature vectors is mapped onto the first few axes of the new coordinate
system. It is then possible to use a new feature vector of reduced dimension, which approximates
the original representation vectors in a least square sense.

Consider the orlglnal feature vecter of dimensidn , andiet DBx® matrix forméal by
row- vectorscpi ooP , Which build an orthonormal ba5|s of the vector s@ce . Then any vector
X may be represented as an expansion of the form:

X = Zy,(pi, 4.1

i=1
. - AT . : .
with coefficientsy; = @ X . Using the incomplete expansion formula:

d
= Yi® withd<D, 4.2
i=1

for representingg by’  will lead to the mean approximation exgor , expressed as:

D
Z yi(APi

g, = E[|Xx=X|"] = E{
i=d+1

D D
}: T WEla = Y @Sk a3

i=d+1 i=d+1

Considering the feature vectar as a random variable, the expreSgign is the expectation or
the first statistical moment of the distribution function of the underlying random process (compare
appendix A.2). Furthermore, the matr& in the rightmost term of EQ 4.3 is equivalent to the
matrix of the second moments of the random distribution function (autocorrelation marix).
may be estimated from a set of training vec¥ors {)‘(l- |>‘(j O DD} ji=1..,3J like:

z X X 4.4

1—1

The matrix S = E[YXT] equals the sample covariance ma@ix E[(X— n)(x—p)T] if the
overall mearfl = E[X] of the tralnlng set |s the null vector. Minimiziggg  in EQ 4.3 is achieved
by solving the eigenvalue probleip = A, cpi . The matrix of second mom8nts can be written
as:

S=0 N0 =0 d. 4.5
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As S is a symmetric positive-definite matrix (compare EQ 4.4), all eigenvalues are real and posi-
tive. Sorting the eigenvalues; i,= 1,...,D , in descending order and inserting EQ 4.5 into
EQ 4.3 minimizes the mean expected egpr  in a least square sense:

& = Z A 4.6

As a consequence, the linear transformation:

§= %, 47

where® contains as columns the ordered set of eigenve?pﬁoﬁs: 1,...,D results in the KL
coordinate system as given in EQ 4.1. The coordinate coefficignts  are then mutually uncorre-
lated and it has been shown, that the components are sorted according to their degree of informa-
tion about the random variabke (e.g. Kittler and Young, 1973). A reduction of dimensionality is
achieved by dropping components with index higher thanD . An appropriate valde of is
usually found from arguments regarding the magnitude of the corresponding eigenvalues or by
trial and error. In practice, the transformation matrix is obtained from the eigenproblem solution
of the sample covariance mati& for the centralized vertor x—

The de-correlation transformation in EQ 4.7 may be further modified in order to obtain a new
coordinate system where the sample covariance matrix of the feature vgctors equals the unity
matrix | . This is an advantageous property if the following classifier approach is based on the
euclidean metric. The so-called prewhitening transformation is given by:

vy =AYk, 4.8

This transformation normalizes the individual componeyts  in the transformed feature vector
according to their respective standard deviation, WhICh in turn allows to use the euclidean metric
as a proper distance measure in the reduced vector ﬂ)ace (e.g. Deller et al., 1993, p. 62). The
importance of the normalization property of the transformation given by EQ 4.8 will become evi-
dent in the following subsection.

4.3.2. Classifier design, decision rule and data learning

The classifier design shall be discussed following the general idea of optimal classifiers. This

leads to the formulation of the Bayes’ classifier with minimal misclassification error. Hence, fea-

ture vectors, the feature vector space and class regions are studied within a probabilistic frame-

work. In order to be consistent with previous sections, the discussion is continued without loss of
. d

generality for random vectogs  of the reduced feature vector §pace
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Consider the real-valued feature vectQrsl n¢ , Which are assumed to be the result of a doubly
random process. The initial process selects khe -th class from a s&t of classes

Q ={Q4,Q,, ..., Qc}, with ana priori probability P(Q,) . The condition:

K
> P(Q) =1 4.9

K=1

must be met in order to define a stochastic experiment. Subsequently, a second, multivariate con-
tinuous stochastic process produces a feature vgctor as a member of the previously selected
classQ, according to the conditional probability density funci{y|Q, ) , with the normaliza-
tion constraint:

IP(§/|QK)dy =1. 4.10
[Id
The decision rule shall be formulated as a general fuzzy rule of theS(@my) , with:
K
S 8(Q3) = 1forallyC n®. 4.11
K=1

This fuzzy decision rule assigiys  not exactly to one class, but decides the class membeyship of
for classQ, with probabilityé(QKW) . L.e., the condition given by EQ 4.11 assuresyhat is
assigned to some class, i.e. it is not possible jthat is not assigned at all.

A cost matrixC = [ry, ]« -K:A = 1,...,K is defined, where the individug|,  quantify the
individual costs of erroneously assigning a vector originating from cfass to Class . The

probability, that a vectoy is assigned to the wrong class when applying the decisian rule can
be given by:

P00 = [ P(312)5(2,|9)dy 4.12
Dd

The mean cost per class is then obtained by:

K K
REIQ) = 3 nP@Q) = Y e [ PYIQ)3(0,|9)dy 4.13
A=1 A=1 Dd
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Hence, the total expected cd?(d) - also termed risk - when applying the decisian rule is then
calculated as:

K K
R) = 3 P(Q) Y N [A@NPEIQID = . 4.14
A=1 Dd

K=1

K K
[y {2 rAKP(QoP(wQK)}émxmdv

Dd)\zl K=1

The design criterion for the optimal decision rie is formulated as the minimization of the
expected cosR(0) as givenin EQ 4.14:

R(3) = min(R(3)) 4.15
Defining the test functions (or discriminant functions)(y) as the term in square brackets of
EQ 4.14:

K
uy(9) = Z NP(QIP(YQ,), forA = 1,...,K, 4.16

K=1

then the simple decision rule:

Sy = I O = mim0) 417
00 else

satisfies EQ 4.15 (a proof is given e.g. in Niemann, 1983). It is noteworthy that EQ 4.17 enables a
deterministic assignment of to a cla® , although the initial formulation has been a fuzzy
rule.

For the special choice of the individual costs

r = 0,and

e = 1, forAzxk,

it can been shown (proof e.g. in Niemann, 1983), that choosing the test functions like:

P(Q,)P(Vy|Q P(Q,)P(Vy|Q
0 () = K( MP(YQ)) _ ( A;(;)W A)

S PQIPGIR)

K=1

= P(Q,]9) 4.18
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leads to the following optimal decision rule:

o= 1O TGO
[0 else

EQ 4.18 and EQ 4.19 describe the optimal classifier in terms of the minimal expected error rate.
As the denominator in EQ 4.18 is independent of the class ikdex , it is normally not evaluated in
the calculation of the test function. The optimal classifier decides for a €ass given the obser-
vation vectory by choosing the maximum of theposteriori probabilitiesP(Q, |y) with the
Bayes’ rule. Therefore this classifier is also called the maximum a posteriori (MAP) classifier, or
Bayes’ classifier.

The MAP classifier relies on the values of the a priori probabilifS, ) and the conditional
probability density function®(y|Q,) k = 1,...,K , which are usually unknown for the given
classification problem. However, given the availability of a finite training set of representative fea-
ture vectorsy = {yi|yi O00%,i=12..,M} 00 ,and with the assumption that the individual
training samples fronY have been produced independently by the stochastic process under con-
sideration, it is possible to approximate the optimal classifier on basis of this training set (labelled
or unlabeled). The quality of approximation is mostly controlled by the Blze  of the training set
Y.

There are generally three basic approaches for the estimation of Bayes’ classifiers from a training
set: a) statistical classifiers, b) distribution free classifiers, and c) non-parametric classifiers. The
family of hidden Markov models, which will be introduced in Chapter 5., represent a special type
of a context dependent statistical classifier. As hidden Markov models have been selected for the
present classification task, only the statistical classifiers are introduced here. Detailed background
on distribution free and non-parametric classifiers can be found e.g in the textbooks of Fukunaga
(1990) or Schukat-Talamazzini (1995).

For the group of statistical classifiers, it is assumed, that the unknown conditional probability den-
sity functionsP(y|Q,) belong to a family of parametric density functi¢i(y|©)|© U Mg}

Then the class dependent parameter vediyrs taken from an appropriate misiifold are esti-
mated from the given training set.

The most commonly used form for a parametric density function is the multivariate gaussian den-
sity function, given by:

1 1 T -1
P(310) = P(3IRa C) = DOIRGC) = exp (9 - M) C (7~ ) | 420
[|2rC,| 2
SuperscriptT  denotes vector transpopg, énd are the class dependent mean vectors and

covariance matrices, respectively, which have to be estimated from the training sg}. Let  be par-
ticular estimates of the a priori densitiB¢Q,) . Then, by inserting EQ 4.20 into EQ 4.18, further
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taking the logarithm and multiplying by2 , the normal distribution classifier test function is
derived as:

U() = —2logp, +10g|2MC,| + (¥ —P) C (T ) - 4.21

The decision rule is now turned into a decision for the minimal outcome of the test function in
EQ 4.21, as EQ 4.18 has been multiplied with a negative quantity. EQ 4.21 can be simplified by
dropping the first two terms on the right side. The resulting classifier is called Mahalanobis classi-
fier, as the test function equals the definition of the Mahalanobis distance (e.g. Theodoridis and
Koutroumbas, 1998, p. 25):

dy = (T-R0) C(T—Re) = U (3). 4.22

If further all classes share a common covariance matrixde~= C Uk , then the classifier is
called minimum distance classifier. If even @l} are equal to the unity mhtrix , then the classi-
fier reduces to the euclidian distance classifier. Recalling the discussion of the prewhitening trans-
formation in section 4.3.1., it becomes evident, that the advantage of this transform lies in the
simplifications gained in the classifier design.

LetY = {Y;, Y, ..., Y} be alabeled training set with, = {y,;|y,; U 0%i=12 .., N.

K = 1,...,K, being theK disjunct subsets of feature vectors assigned to the individual classes.
Then, estimates of the a priori densitipg  , and the parameters of the multivariate gaussian dis-
tribution fi', , C', , can be obtained in a maximum likelihood sense as:

Py = —— 4.23
> Ne
K=1
NK
.1
Ry = N—Ki;?m, and 4.24
NK
| T
Ck - N_K Z (yKi_ﬁK)(yKi_pK) . 4.25

i=1

In EQ 4.23 to EQ 4.25N, is the number of individual sample vecigrsi =,1, ..., N, which
have been labeled according to the production ckass  (membefs of ). With the class-specific
parameter estimateg, [, , a@, , it is possible to construct the individual test functions
u.(y) for the classification problem as given in EQ 4.21.

For the task of learning a classifier from an unlabeled training set, the following difficulty is
encountered. Both the parameters of the parametric multivariate density function (e.g. gaussian)
and the assignments of the individual feature vectors within the training set are unknown. Hence,
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assuming a special form of the multivariate parametric density fun®i(ono) just allows the
statement that the set of feature vectors is distributed according to the marginal density:

K
P(YIDO) =% pP(¥1O4), 4.26

wherep is the vector of a priori probabilities with componepgs= P(Q,) Kk 5 1,...,K . The
problem of uniquely identifying the parameteps a®d  can be solved (for density function
which build a basis of the functional space) in a maximum likelihood sense by an iterative proce-
dure known as the expectation-maximization-algorithm (EM-algorithm, Dempster et al., 1977).
The EM-algorithm is a widely used technique, which is especially suited to estimate parameters
from an incomplete data set. In the current context the missing part of the data is the unknown
class labeling information of the individual features in the training set.

Using the EM-algorithm to estimate the parameters of the multivariate normal density function
from an unlabeled training set of si2¢ , leads to the following estimation formulas for a single
iteration step. Given an previous (or initial) estimateppf a@d , the a posteriori probability
Vi = P(QK|7) is calculated by:

L PPGe)
" Zp)\P(m@)\)

4.27

EQ 4.27 is called the E-step of the EM-algorithm. The new estimates of the parametpr sets and
© are then derived in the M-step via:

N

. 1

P = NZViK’ 4.28
i=1

N
, 1
Py = —— Z Yi Vi, and 4.29

ZyiK i=1
T

N
1 1 ] 1 T
Ch==— > ViR -R) - 4.30
Yik i=1
|
Hence, obtaining estimates of the class dependent paranpgtes, , C\and , the classifier can

be designed as before by inserting the estimates in EQ 4.21.
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Remarks:

The goal of a vector quantizing scheme (e.g. the LBG-algorithm, section 5.5.1.) is to obtain an
optimal partitioning of the feature vector space into cluster regions via unsupervised learning. A
vector quantizer can be seen as a special form of the EM-algorithm, if the class dependent covari-
ance matrices are conditionedtoh@qd = |  , and if the euclidean distance measure is used. Fur-
thermore it is also possible to derive the parameter training algorithm for the class of hidden
Markov models via the EM-algorithm.

Despite of its popularity, the multivariate normal distribution density function is sometimes not a
good choice for real-world classification problems. It imposes a severe limitation on the statistical
properties of the underlying random process, i.e. the distribution is unimodal, elliptical-symmet-
ric, and the density values only depend on the Mahalanobis distance (EQ 4.22), and hence
decrease exponentially witth,, . In order to approximate arbitrary density functions, the multi-
variate gaussian mixture density can be used instead as a parametric density function:

N

P(31©) = P(¥ 6o { A Cavdy) = ) D (VIR Cu) 4.31

v=1

The multivariate gaussian mixture density for each class is then a linear combination of multi-
variate gaussian densities, with mixture weiggts  , ahd modes. The condition for the mix-
ture weightsc,, is given by:

Z Coy = 1 4.32

The higher the number of modé$, , the better the approximation of an arbitrary density func-
tion. However, the number of parametepg{  ahg ) which have to be estimated from a given
training set is such increased significantly. The problem of identifying parameters of multivariate
mixture gaussian density functions is equivalent to the problem of estimating parameters of the
multivariate gaussian density function from an unlabeled training set. The analogy becomes
apparent, if the components,  of the a priori probability veqior  are associated with the mix-
ture weightsc,,, of EQ 4.31.

4.3.3. System evaluation

The objective of the system evaluation stage of a pattern recognition system is to estimate the
classification error probability from a finite test set of feature vectors. The test set has to be
obtained independently from the training set, which has been used for the classifier design. An
estimate of the error probabilitlP(e)',  for clasg,  is obtained by simply counting the number
of misclassified feature vectoeg  for this class and normalizing by the number of class members
N -

K*

e

P(e), = -Ni 4.33
K
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This procedure is called therror counting approach It has been shown (e.g. Theodoridis and
Koutroumbas, 1998) that the total error probabilRye)' foMa  -class problem - Rfth, )

being the occurrence probability of clasg - is calculated as:
M e
- 1
P(e)' = Z P(ooK)Ni 4.34
i=1

EQ 4.34 is an unbiased, but only asymptotically consistent estimatoiN(for oo ) of the true
class error probability?(e) . Therefore for small testing sets, the estimate may not be reliable. A
minimum size of the test sell,,, as a function of the true error probalf(ty) has been
derived from Guyon et al. (1998N,;,, is estimated so that the true error probabfley does
not exceed the estimate of the error probabikte)’ by more than a fragition P( ef with a

guaranteed probability (confidenck} a
prob{ P(e =P(e)'+P(e)} <a 4.35
For typical values o anfl a( =0.0B, =0.,,, approximates to:

_ 100
min~ P(e) 4.36
EQ 4.36 provides therefore an approximate formula for the minimum size of a test set with 95 %
confidence, that the true error probabili®(e) does not exceed the Pgep/ (1 —3) (oris:
P(e)' by 25 %). E.g. foiP(e) =0.09N,,, has to be in the order of 2000 (!).
Unfortunately, the number of samples available for both testing and training is limited. Especially
in the discussed application of seismic signal classification, the number of observations for a cer-
tain event type may be small (in the order of some tens or even less). Therefore the limited size of
the data set has to be exploited as good as possible for both training and testing. Three common
approaches for estimation of the classification error probability from a finite data set are pre-
sented:

Resubstitution Method: For both training and testing the same data set is used. It was shown by
Foley (1972), that this procedure provides an optimistic estimate (underestimation) of the true
error probability. The amount of bias is a function of the rdflol / , whdre is the number of
samples in the data set ahd the dimension of the feature vectorsNBoth N &and / have to be
large (N 1 larger than 3) to provide a reasonable estimate of the true error probability (Theodori-
dis and Koutroumbas, 1998, p. 342). The resubstitution method provides a lower bound for the
true Bayesian error in case of a Bayesian classifier (e.g. Fukunaga, 1990, p. 220).

Holdout Method: Two subsets are built from the data set in order to obtain independent sets for
training and testing. This method is seen as problematic, as no optimal rule can be given how to
split the data set, i.e. how many samples of the set are used for training, and how many for testing.
The classification error estimate obtained is higher than the true error probability and provides an
upper bound of the Bayesian error.
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Leave-one-out Method: In this method the finite size of the data set is used most efficiently, yet
the independency between training and test set is maintained. The training is perforidedlon
samples of the data set, and then the excluded sample is tested. For each misclassification an error
is counted. AfterN repetitions all samples have been tested independent of the training data. As
the holdout method, the estimated classification error is an upper bound of the true bayesian error.
The main drawback of the leave-one-out method is its high computational requirements, as the
classifier has to be estimatdd  times.

4.4. Review of pattern recognition methods applied in seismology

Pattern recognition techniques have a long tradition in seismology and an extended overview
about this topic has been given by Joswig (1996). Most of the published work has concentrated on
three domains. The detection of weak seismic signals, the problem of seismic phase identification,
and the discrimination between natural earthquake signals and artificial explosion seismograms.
The problem of weak local earthquake recognition and the discrimination between local earth-
guakes and quarry blast signals recorded either at a single or at a small network of seismic stations
IS an important issue in terms of seismic risk evaluation. 'Clean’ bulletins with low magnitude of
completeness values are of crucial importance for the evaluation of magnitude-frequency distribu-
tions and mean return times for damaging earthquakes. On a global scale, the discrimination
between tectonic earthquakes and nuclear explosion signals recorded at regional or teleseismic
distances is still a major challenge in the context of nuclear test ban treaty verification (Compre-
hensive Nuclear-Test-Ban Treaty, CTBT, Hoffmann et al., 1999). Reliable automatic algorithms
are of considerable interest within these problem domains in order to a) reduce the workload in
routine observatory practice (detection and phase identification problem), to b) provide pruned
earthquake bulletins on both local and global scales on an automatic basis and to contribute to the
monitoring problem of nuclear underground explosions (discrimination problem). It has to be
noted, that in the area of volcano seismology only few studies have been published regarding the
automatic seismic signal classification within the framework of pattern recognition.

Seismic signal classification in earthquake analysis has been addressed in almost all cases as a
two-stage process. The task has been split into the simpler detection problem and the subsequent
categorization of detected time segments into event classes. Hence, the parametrization of seismic
signals on the waveform level has been discussed in the context of automatic signal detection and
phase identification algorithms. The choice of classifier functions and the implementation of pat-
tern recognition systems have been mostly addressed in studies investigating the discrimination
problem.

The choice of signal attributes which have been proposed in literature within the context of seis-
mic event detection depend on the type of available input data. The summary is hence divided into
three parts: signal parametrization (feature generation) for a) single station single component
recordings (SSSC), b) single station three component seismograms (SS3C), and c) multi-station
single/three component data (MSS/3C). (Due to the extent bibliography which can be found for
this special topic, the review has been restricted to the most common approaches in the further).

Features from SSSC dataHypothesis testing is the most common approach for the detection

and onset time estimation of seismic phases in single trace data. Freiberger (1963) was the first to
use a likelihood ratio detection statistic based on the Neyman-Pearson criterion (see e.g. Fuku-
naga, 1990, p. 59) to test the presence of a transient signal in seismic noise from the short term
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mean squared amplitude. Since Vanderkulk et al. (1965), a comparison of short term average to
long term average signal attributes build the basis for detection statistics on a scalar variable. This
type of signal detectors are commonly known as STA/LTA (short-term average to long-term aver-
age ratio) trigger algorithms and have been reviewed by Allen (1982), Joswig (1990), and recently
by Withers et al. (1998). The parametrization of the seismograms comprises different filtering
approaches to enhance signal to noise ratios and further short-term averaging either the squared
(e.g. Swindell and Snell, 1977) or the absolute amplitude values (Vanderkulk et al., 1965). Other
signal detector implementations have been based on the weighted sum between the trace ampli-
tude and the first order derivative of the amplitude (e.g. Stewart, 1977, Allen, 1978) or on the seis-
mic envelope (Baer and Kradolfer, 1987). Besides energy attributes, information of the frequency
content of seismograms have been used for hypothesis testing as well. Anderson (1978) e.g. made
use of an estimate of zero crossings and Shensha (1977) developed a detector algorithm based on
a weighted sum of power spectral density coefficients. The concept of STA/LTA detector algo-
rithms is easily extended to any kind of available data (SS3C, e.g. Withers et al., 1998).

Features from SS3C datalf single station three component records are available, the polariza-
tion attributes of seismic signals have been investigated and used for seismic phase characteriza-
tion. The sample covariance matrix, which is formed from the three dimensional vector of seismic
motion within a short analysis window, is generally used to determine the polarization behavior of
seismic signals (Flinn, 1965). The solution of the eigenvalue problem for the covariance matrix
leads to the formulation of the best fitting polarization ellipsoid in a least square sense, where the
eigenvectors provide information about the orientation, and the connected eigenvalues describe
the form of the ellipsoid.

The most widely used parameter for the detection of body-wave arrivals from three component
data is a measure of the degree of linear polarization, derived from the ratio of eigenvalues (e.qg.
Montalbetti and Kanasewich, 1970, Jurkevics, 1988). Alternatively, measures of linear polariza-
tion are obtained on basis of regression analysis (Roberts et al., 1989, Bopp, 1992). Less frequent,
the deflection angle calculated under the assumption of an compressional body-wave type
(Jurkevics, 1988, Roberts et al., 1989), the magnitude of the largest eigenvalue (Magotra et al.,
1987), or the simple ratio of vertical to horizontal signal power (e.g. Jurkevics, 1988), have been
the basis for seismic phase detectors.

Features from MSS/3C data:A detector for single component array data has been presented by
Blandford (1974) and is based on a measure of coherence for a plane wave signal arrival across an
array. The coherence measure used in the study of Blandford (1974) is the semblance coefficient
(Neidell and Taner, 1971) calculated in the time domain. The semblance coefficient is approxi-
mately F-distributed, which allows to derive thresholds for signal detection on a theoretical basis.
The signal detector after Blandford (1974) has therefore been termed F-detector. Most studies in
the field of array analysis methods aimed to enhance the signal to noise ratios of seismic phases
by the use of stacking techniques. Well-known examples are delay and sum beamforming tech-
niques in both time and frequency domains or n-th-root stacks. In most cases, however, the result-
ing features which have been subsequently exploited for signal detection or classification
purposes are enhanced energy attributes of the local seismic wavefield crossing an array of seis-
mic stations. Further signal parameters which can be obtained from array analysis methods are the
apparent velocity and the direction of wave propagation for a plane wave arrival. This information
has been mainly used for characterizing seismic phases and in the context of automatic hypo-
center determination efforts (e.g. Bache et al., 1993). The use of 3-component array data has been
rarely addressed in literature. Jurkevics (1988), e.g., improved the stability of polarization esti-
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mates for single stations by averaging the single station sample covariance matrices within an
array configuration.

The use of a variety of classifier functions have been proposed in literature for the discrimination
and classification of seismic events. Examples can be given for linear classifiers (e.g. Shumway,
1982, 1996, Wister, 1993, Kushnir et al., 1999), quadratic classifiers (e.g. Kushnir et al., 1999)
neural network classifiers (e.g. Musil and Plesinger, 1996, Falsaperla et al., 1996, Fedorenko et
al., 1999, Tarvainen, 1999), cross-correlation techniques (Joswig, 1990, Wassermann, 1997a), and
Bayesian classification approaches (e.g. Kushnir, 1990, Gendron et al., 2000). The majority of
classification techniques are based on a set of phase attributes, such as amplitude ratios, spectral
ratios, phase slowness, and polarization attributes of individual phases. Considering the goals of
seismic event detection and classification algorithms in the context of regional and teleseismic
earthquake analysis, these phase related attributes are of major interest and additionally well
suited for subsequent location of the observed events. However, in local earthquake analysis as
well as in volcanic seismology these approaches pose a major problem, because of the difficulties
to clearly identify seismic phases. Thus, techniques, which make use of the complete seismogram
information without the need of a priori phase segmentation appear to be better suited for auto-
matic classification of local seismic events. Most interesting in the context of automatic seismic
signal classification on continuous data streams are those approaches which are capable to process
the input data in a sliding analysis technique and are not dependent on the precise alignment of
seismograms. Two approaches which match the stated requirements are the methods presented by
Joswig (1990) and Gendron et al. (2000).

A conceptually interesting approach, which allows joint signal detection and classification of the
complete seismic waveform, was introduced by Joswig (1990). In his work, Joswig (1990) used a
pattern matching approach based on a smoothed time-frequency representation of the single-trace
seismogram recording, termed sonogram by the author. Introducing an additional noise adaption
technigue on the sonogram images and reducing the dynamic range of the spectral amplitudes to a
small number of discrete values, Joswig mimicked the process of human cognition (Joswig,
1994). Detection and classification is achieved in a single step by applying a two-dimensional
cross-correlation between the observed sonogram and a set of reference sonogram templates.
Additional thresholding is used to reject false detections. An extension of the sonogram detector
for three component seismograms has been investigated by Klumpen and Joswig (1993) for the
re-evaluation of local earthquake data. Analog to the sonogram detector of Joswig (1990) the
basis for the automated evaluation of seismic events are time-frequency images of seismogram
attributes. Whereas in the former approach these attributes were connected to the seismic signal
energy, in the work of Klumpen and Joswig (1993), polarization attributes of the three-component
records are displayed as time-frequency images. In the signal processing stage, only the eigenvec-
tor connected to the largest eigenvalue is considered and a rotation into the ray-coordinate system
is performed. Analog to the sonogram detector, a noise adaption technique is used. The final rep-
resentation of the 3 component recording consists in a set of binary images corresponding to
generic polarization pattern of P, SH, and SV portions of the seismic signal.

Recently, Gendron et al. (2000) suggested the use of wavelet transform coefficients as an appro-
priate way to parametrize seismic signals for detection and classification purposes. Detection is
achieved by hypothesis testing of the wavelet coefficients within each scale of the time-scale (fre-

quency) plane. After detection, the positions of signal start, peak energy and signal end in the dis-

crete wavelet transformed seismogram (time and scale, i.e. frequency band) are used for
classification on basis of a trained MAP-classifier.
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4.5. A novel strategy for the classification of volcano-seismic signals

In this study a widely used pattern recognition approach named hidden Markov model (HMM) is
adopted for the classification of seismic signals of volcanic origin. Most research on this special
type of context dependent classification approach has been conducted in the field of speech recog-
nition. The proven success of HMM-based methods in modern speech recognition applications
has given rise to the popularity of hidden Markov models in other pattern recognition tasks. Since
today, HMM applications have been published in many classification problems, e.g. analysis of
gene sequences (e.g. Churchill, 1992, Haussler et al., 1994), classification of electrocardiograms
(Thoraval et al., 1994, Koski, 1996), character recognition (Vlontzos and Kung, 1992), face iden-
tification (Samaria and Young, 1994) or sonar signal classification (Kundu et al., 1994).

The use of hidden Markov models for the special problem of classifying volcano-seismic signals
has been motivated in first place by the analogy between the speech recognition task and the prob-
lem of identifying transient seismic signals. In both cases, the final aim is to detect and classify
transient signal parts within an one-dimensional continuous discrete time series. The individual
waveforms belonging to a single signal class (e.g. utterances of a word in speech recognition) are
very heterogeneous, i.e. they show great variability regarding the signal length, signal strength,
spectral composition or other signal characteristics. Hidden Markov models, i.e., represent a sto-
chastic approach which is capable to address the typically observed variabilities of speech wave-
forms (or equivalently volcano-seismic signal recordings). Although in principle HMMs are
closely connected to dynamic time warping (DTW) approaches (e.g. Ney, 1984), they allow a
more generalized representation of signal classes due to the availability of efficient training algo-
rithms. The necessity of an extensive database of reference templates in DTW algorithms, which
may be described by a single HMM, have led to the revolutionary replacement of DTW tech-
niques by HMM-based classification approaches in speech recognition applications during the
mid 1980’s (e.g. Deller et al., 1993).

An example of the similarity of acoustic and seismic waveforms is shown in Fig. 4.3. Two pairs of
similar waveforms are displayed. Without considering the different time scales, it is not possible
to distinguish the acoustic (left) from the seismic (right) waveforms.
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FIGURE 4.3: Comparison of waveforms for speech (left column) and volcano-seismic signals (right
column). The upper left signal show the microphone recording of the unvoiced fricative “s” in “(s)ee”, and
the lower left waveform is a typical realization of the vowel “I” in “(I)t” (figures from Deller et al., 1993).
On the upper right panel, a typical MP-type event recorded at Merapi volcano is displayed. The lower left
waveform is a portion of starting volcanic tremor observed at Arenal volcano. All figures have arbitrary
amplitude units.

Especially for seismic signals of volcanic origin this close correlation to the speech signal regard-
ing the visual appearance is not by chance. Considering the physics of speech production and the
previously discussed ideas (see 3.1.) for the generation of seismic signals at volcanoes, i.e. B-type
events and volcanic tremor signals, an interesting analogy is recognized. The excitation mecha-
nism in both cases (well-known for the speech production and supposed process for volcano-seis-
mic signals) may be described by turbulence or instability of a fluid flow process. Resonance
effects are considered to play an important role in both the modulation of the speech signal as well
as the seismic signal. In speech the resonances occur within the vocal tract, whereas resonances of
cracks, cavities or conduits have been discussed for volcanic tremor and or B-type volcanic
events.

Considering the similar characteristics of acoustic and seismic signals of volcanic origin and fur-
ther taking into account the special properties of hidden Markov models with respect to their
capability of representing complex temporal structures within an relatively simple stochastic
model, a hidden Markov model based classification approach seems to be especially suitable for
the detection and classification of volcano-seismic signals.
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CHAPTER 5. Hidden Markov models

The basic ideas and characteristics of hidden Markov models have been summarized in the arti-
cles of Rabiner and Juang (1986), Rabiner (1989) and are described in detail in the textbooks by
Deller et al. (1993) and Schukat-Talamazzini (1995). As this probabilistic approach for signal
classification of discrete time series has - to the author’s knowledge - not yet been used in the area
of seismology, the principles of hidden Markov models are introduced in quite some detail. The
notation used in the following is mostly adopted from the tutorial paper of Rabiner (1989).

5.1. First-order discrete Markov processes

A dynamical system shall be described at every time stepl, 2, ..., T by the mearstatéa
variable g, taken from a finite seQ= { S, S,, ..., Sy} containiny distinct statg§s . A dis-
crete Markov process is then defined as a probabilistic proces€over . At each time step a transi-
tion from one state to all other states is allowed and the likelihoods of occurrence of the
transitions are described by transition probabilities associated with the state. Let the actual state
be denoted ag; , then the system can be fully described in a general probabilistic sense by speci-
fying g, and all predecessor statgs ;,9;_,, ..., 0; the system has entered ever before, begin-
ning attimet = 1 with state; . In the special casedadcrete, first-order Markov chainsnly

the current and the last preceding state are taken into account, i.e.

|
PG = Sj|%-1=S:U—2= S -] = PG =Sj|q_,=S] >t

Considering the whole process as independent in absolute time (stationarity), the system can be
described by the use of EQ 5.1 and the real-valstade transition probabilitiesaij g are
defined as:

a; = Plq =S|9,_1=S], 1<i,j<N. 59

In order to realize a stochastic experiment the state transition probabdijjties have to obey (ful-
fill) the stochastic constraints:
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8;20, and 5.3.a

2 a; = 1. 5.3.b

The a; are then summarized in the state transition probability distribution mettlztx[aij
of sizeNxN .

]NxN

Furthermore, the probabilities of the initial state variatple  at the begin of the process have to be
specified. TheN probabilities fon;  being in stée  are summarized in the real-viaitiat
state distributionvectornt 00 , with:

=P =5). 5.4
The 1t are required to obey (fulfill) the constraints

. >0, and 5.5.a

N
Z m = 1. 5.5.b
i=1

The outcome of this stochastic experiment results in an observation sequence for a specified time
lengthT which can be denoted gg q,, ..., Q;, ..., 0y . Rabiner (1989) called this stochastic pro-
cess an ‘observable Markov model’, as at each time step the process outputs an observable event
(the given state itself).

5.2. Extension to discrete hidden Markov models

Consider now the same stochastic process as in 5.1.. Again there exists a finite set of states
Q ={S,S,...,Sy} and a probabilistic process d@  produces a sequence of state variables

;. i.e.:
q = qll q21 ---,qt, ---qu, th Q . 5.6

The transition probabilitieaij between states in the sequence are defined as in EQ 5.2 with prop-
erties as given in EQ 5.3.a and EQ 5.3.b. The definition of initial state probabilities can be
recalled by EQ 5.4 and constraints as in EQ 5.5.a and EQ 5.5.b.

On top of this primary process (discrete, first-order Markov chain) a second stochastic process is
defined by drawing a discrete observation symbuw} taken from a finite set

K ={vyV, ...,vy} oflengthM according to atate dependent probability distributiofulis-

crete probability density function).
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For the observer of such a process only the discrete observation symbol s€quence  ®f length
O =00,..,0; 5.7

is visible, while the underlying state sequergge is hidden. Assuming statistically independency
between successive symbols within the sequédce |, i.e. the current sgnbol depends only on
the current statg, , the production probability of the symbol sequ@&nce s given by:

!
P(Oy[O;.-0y_ 1, Gy.-G) = P(Oy[d) >8

The state dependent symbol probability for emitting symipl while being in state shall be
denoted as:

bj = bj(vi) = P(O= v |a = S)). 5.9

The real-valuedb; 000 can be summarized in thembol probability distributionmatrix

B = [bylym Of sizeNxM . Theb,, follow the stochastic constraints:
b; =0, and 5.10.a
ijk =1 for 1<j<N and 1<sks< M. 5.10.b

In the following the termsbjk bj(k) ant(Ot) = bj(Ot =V,) = bjk will be used equivalently
depending if the matrix components of B are addressed or reference to a certain observation sym-
bol at timet is made.

The complete (double) stochastic process is nadisttete hidden Markov model (DHMM)as

the output symbols are taken from a discrete set of output symbols, and the underlying state vari-
able sequence which is the outcome of the discrete first-order Markov process is not observable
(hidden). The model is described by the number of possible gtates |, the number of possible out-
put symbolsM , the initial state probability distributian , the state transition probability distribu-
tion matrix A and the symbol probability distribution matikx . For fixed dimensibhs &hd |,

a hidden Markov model is written in short notation as:

A = (T4 A B). 5.11
After outlining the formalism for discrete hidden Markov models, the use of this stochastic model

for classification shall be discussed. This leads to the formulation of the three problems for hidden
Markov models (e.g. Rabiner and Juang, 1986).

5.3. The three problems for hidden Markov models

As seen in the previous section 5.2., a hidden Markov model can be considered as a parametriza-
tion of a doubly embedded stochastic process which produces a time sequence of observations as

The three problems for hidden Markov models 41



Hidden Markov models

output. The usage of HMMs for classification will become obvious if answers to the following
problems (Rabiner, 1989) can be given:

a) Evaluation problem: A stochastic experiment has produced the observation sequence
O = Oy, O, ..., O; and a hidden Markov mode&l = (7, A, B) is given. The evaluation prob-
lem raises the question of how to compute the conditional probalbi(ity|A) , that the observa-
tion sequence has been produced by the maddel ? Alternatively, the question can be put this way:
given a model and the observation seque@ce , how is the model judged? If several competing
models are available, the solution to this problem leads directly to the classification problem. The
probability measure®?(O|A)  will then provide a measure for choosing the model which best
matches the observation.

b) Problem of optimal state sequenceThe sequenc® = O,, O,, ..., O; was observed and a
hidden Markov modeh = (T, A, B) is given. The problem of optimal state sequence deals with
the question of how to specify the most probable underlying state sequence that has produced the
observationO . l.e., how to estimate that state sequéneeiy, iy, ..., it out of all possible state
sequences| = 0;, 0, ..., Gy , Which is optimal in some meaningful sense? The answer to this
question allows to uncover the hidden part of the model. Furthermore an alternative approach for
the evaluation problem (5.3.1.) is derived when trying to address the problem of the optimal state
sequence.

c) Training problem: Given the model parameters &f = (T, A, B) and some observation

O = 04 0,, ..., O, the training problem poses the question of how to adjust the model param-
etersA ,B , andt in order to maximize the probability meas(®|A) ? Obviously, the solution
to this problem will provide a method to train modals  out of a set of time sequences observed in
some experiment. As will be shown later, the training problem can be solved very efficiently and
is considered as one of the major advantages of hidden Markov models in comparison to other
approaches in pattern recognition problems.

5.3.1. Solution to the evaluation problem

Following the argumentation in Deller et al. (1993, p. 686), the “most natural measure of likeli-
hood” for a givenA and some observatiGn  would be the conditional probaBi(ityO) pro-
viding a measure of how good the data can explain the model. However, the available training
data does not allow to compute this quantity. Instead, what is usually observed is the probability
that a given modeh  will generate certain output sequexes |, rather than the converse. Thus the
conditional probabilityP(O|A) can be specified from the data set, butR{at O) . Recalling
that the conditional probabilitieB(O|A) af{A|O) can be written as:

P(O|M) = E’ip%)ﬂ, and 512
P(A|O) = PF(,%), 5.13
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where the termP(O,A) denotes the joint probability@f akd occurring together. Then, by
combining EQ 5.12 and EQ 5.13, the formulation of Bayes rule is obtained:

P(O[A)P(A)

POO) =~

5.14

It is evident, that choosing a modkl , which maximizes the left side in EQ 5.14, will also maxi-
mize the right side of EQ 5.14. The normalization teRtO) denotes the probability, that the
observation sequend@ is observed in the experiment. As it is independent of thexmodel |, itis
usually not used for the calculation 8(A|O) (see also EQ 4.18 in 4.3.2. for the Bayes’ classi-
fier). If the a priori probabilitied?(A) are assumed to be equal for all models , than the condi-

tional probability P(O|A) serves equally well as an evaluation measurd>{aqO) . The term
P(OJA) is often called maximum likelihood probability. The task of hidden Markov model eval-
uation is then equivalent to finding an expression for calculating the probabB{|i®jA) from a

given observation sequente = O,, O,, ..., O; and a given madel (1, A, B)

The probability of every possible state sequehce of lefigth  can be evaluated in a straight-for-
ward way. Given a (fixed) state sequerce i, i, ..., It , being a single and valid realization of
g, the conditional probability?( O] I, A) is a formulation of the probability tf&t  has been pro-
duced by modeh following the state sequernce . This probability can be expressed intuitively

by the state dependent symbol output probabillj€®,) as:
P(O|LLA) = bil(Ol)biz(Oz)...biT(OT) 5.15
The probability of a single state sequerice i, iy, ..., i1 can be computed using the character-

istics of the underlying discrete Markov process as:

P(IA) L TE= T TIRTRR: 5.16

3 Ir_alt

The joint probability ofO and giveld , or in other words the probability tRat  &nd occur
simultaneously given the modgl , is calculated as the product of EQ 5.15 and EQ 5.16, i.e.:

P(O, I|]A) = P(O|1,A)P(I|A) 5.17

Then the desired probabilit(O|A) is obtained by summing the joint probabilRi@s, 1|A)
over all possible state sequences:

P(O|A) = ;P(o, I[A) = ;P(OU,)\)P(IM) 5.18

Z m by (O)a by (0,)...a by (Or)

iy

EQ 5.18 is then interpreted as follows: at the begin of the process the system startsiip state  with
probability 1t . The first symboD; is generated with probabllhy(ol) . Then a transition is

made from stlatelal to statg  with probabiliéy; . Now the sym@gl is emitted with proba-
bility b, (02) State transition and symbol genératlon is then continued until the final transition
from s,tatelT ; tostate; with probabllltatI . The last symla} in the sequence is gen-
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erated with probabilityoiT(OT) . The summation over all possible state sequences results in the
probability P(OJA) . It is evident why this approach is sometimes called “any path” method
(Deller et al., 1993).

In this direct computation a total number (2T — 1)NT multiplications anl-1 additions
are necessary to evalug®¢O|A) (Rabiner, 1989). Even for small modelsizes  and short obser-
vation lengthsT the number of calculations involved becomes intractable. Fortunately, an effi-
cient method is known for calculating(O|A)  which is called forward-backward algorithm and
was introduced in the work of Baum and Eagon (1967) and Baum and Sell (1968).

The cost of computations can be reduced dramatically by defining the vaua(le (often
referred to as forward variable):

a.(i) = P(0,0,...0,i; = S1|)\). 5.19
EQ 5.19 can be interpreted as the probability of the partial observation sequence beginning at

timet = 1 and ending in stat§ = i, attime instant giventhe madel . The computation of
a.(i) is achieved inductively by:

Initialization step: a4 (i) = 1bh,(0;), 1<i<N 5.20.a
N
Induction: o, q1(j) = {Z at(i)aij}bj(ot”), 5.20.b
i=1

Termination: P(O|A) = Z a(i) 5.20.c
i=1
In a similar way the backward variabf&(i)  which describes the probability of the partial obser-

vation sequence beginning at tinhe 1 to the end, given Sate i, at time instant and the
modelA , is defined as:

B.(i) = P(Ot+1ot+2"'OT|it =S, A). 5.21
The induction scheme is then:

Initialization step: B(i) = 1, 1<i<N 5.22.a
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N
Induction: B.(i) = Z 3 bj(ot+1)Bt+1(j)’ 5.22.b
j=1

1<i<N, T-1=t=1

N
Termination: P(O|A) = Z ;b (01)B,(J) 5.22.C
=1

Please note, that for the evaluation problem either the forward varealfi¢ or the backward

variable 3,(i) (EQ 5.20.c and EQ 5.22.c, respectively) can be used. For the training problem,

however, which is closely connected to the evaluatioRD|A) , both variables are necessary as
is shown in section 5.3.3..

The cost of computations can be reduced M{N+ 1)(T-1)+ N multiplications and
N(N-1)(T —1) additions (Rabiner, 1989).

5.3.2. Solution to the problem of the optimal state sequence

The solution to the problem of finding an optimal state sequence leads to a technique which is
often used for both the evaluation (section 5.3.1.) and training problem (section 5.3.3.), the so-
called Viterbi algorithm (Viterbi, 1967, Forney, 1973).

As was stated by Rabiner (1989) the difficulty in finding a solution to the given problem lies in the
definition of “optimal state sequence”. Several criteria for optimality can be given, but here only
the following criterion is considered. The optimal state sequence shall be determined by choosing
those stated, that appear to be individually most likely. This criterion will maximize the
expected number of correct individual states.

Taking a deterministic point of view and postulating that %he observation sequ&nce has been
produced by exactly one of all possible state sequehde§) of I&ngth , then all those state
sequence$ , which maximize the observation dependent a posteriori probability:

_ P(G, 1]A)
P(I|O,A) = PO 5.23
have to be considered as a solution to the problem.PA®|A), is independent of the state

sequencé , the search for the best (optimal) single state sedjuence  can be obtained by:

P(O, I'|A) = max_P(O,1|A) =: P (OJA) 5.24
10Q

The quantityP*(O|)\) is then a modified probability measure, which differs from the production
probability P(O]A) presented in section 5.3.1.. Nevertheless it was shownP{@tA ) and
P (OJ|A) are strongly correlated (Merhav and Ephraim, 1991) and in practice this modified prob-
ability measure is often used in hidden Markov model applications (e.g. speech recognition sys-
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tems, Schukat-Talamazzini, 1995, Picone, 1990). In general several seqth?ences which meet
EQ 5.24 may exist. The Viterbi-Algorithm gives an efficient implementation for solving the opti-
mality problem.

Instead of the forward variable (i) (EQ 5.19), now the quantities to compute are the maximal
probabilitiesd, (i) for generating the partial observation sequéhce O,, O,, ..., O, ending at
timet and being in state = S, given the modlel

9,(i) = MR Q.0 y...iy M]1 0Q" with i, =S 5.25
0 0

Similar to the principles of dynamic programming (e.g. DTW Dynamic Time Warping algo-
rithms), thed (i) are computed recursively, keeping track of the best path by the rafiix

After termination, the single best path (optimal state sequence or most likely single state
sequence) is determined by backtracking. In detail the algorithm can be written:

Initialization:
91(j) = mb;(O,), and 5.26.a
W,(j) =0, forallj =1,...,N 5.26.b
Recursion:
9i4400) = max (St(i)aij)bj(OHl), and 5.27.a
W () = argmiax (St(i)aij),for allj =1,...,N 5.27.b
Termination:
P'(OA) = max 9+(j), and 5.28.a
i; = argr?ax 91(]) 5.28.b

Fort = T-1,...,1, the optimal single state sequence is derived by backtracking:

*

It = Lpt+1(|t+1) 5.29

The solution to the problem of optimal state sequence is therefore given by EQ 5.29. At the same
time a modified probability measure for the evaluation problem of section 5.3.1. is given by
EQ 5.28.a. In practice, the Viterbi algorithm is often preferred for the evaluation problem as it
requires slightly less computations than the number of calculations involved by the forward (or
backward) variable. Another advantage is found in the practical implementation of the Viterbi-
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algorithm. It is connected to the critical point of adequately addressing the high dynamic range
required for the calculation of the probability measures. The point of adequate scaling is
addressed in more detail in appendix B. There it will be shown that by the use of the Viterbi algo-
rithm the problem of scaling can be solved more efficient when compared to the forward-back-
ward algorithm.

5.3.3. Solution of the training problem

To give an answer to the training problem, a proper estimate of the statistical parametérs ( ,
and B ) of a discrete observation hidden Markov moléf, A, B) has to be obtained from a
given training sequence. As before, the ‘dimensions’ of the hidden Markov model are given by
the numbemN of states and the numibdér  of discrete observation symbols. Furthermore one sin-
gle observatior©O of lengtlh is available as training sequence.

The given problem is solved by maximizing the likelihood objective function (e.g. Schukat-
Talamazzini, 1995), formulated as:

Lymm(A) = logP(OJA) = log Z P(O, I|A) 5.30
10Q"
Unfortunately, no closed form for maximizing EQ 5.30 analytically is known. Considering the

convex manifoldM, :

U

[

it can be shown that maximizing EQ 5.30 is equal to a nonlinear optimization problem with linear
constraints. The iterative re-estimation formulas known as Baum-Welch algorithm have been
introduced by Baum and Petrie (1966) and Baum and Eagon (1967). The algorithm is also often
called forward-backward algorithm as the previously defined forward and backward variables
a.(i) andB,(i) (EQ5.19 and EQ 5.21) are used for estimating the model parameters.

In the following the Baum-Welch re-estimation formulas are presented for a given start \pdel
and a single training observation sequefice  of lefigth

Define the a posteriori probability of a transition from stgte  to Siate  attime tas:

P(i; =S, 041 = S, OlA)
P(OJA) '

1<t<T

& (1, 1) = P(iy=S,11+1= 5|0, A) = 5.32
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&.(i, ) is then equivalent to the expected number of transitions from §ate  toState  at time
instantt within the observation sequer@@e  given the initial magel . By the use of forward and
backward variables (i) ar@(i) , EQ 5.32is expressed as:

5.33

_ (Db (O, DBy i) _ 0()ayh (01 1By 1(i)
N

P(OIA) —
S @ ()Bi(1)

i=1

EI(I’J)

The a,(i) andB(i) are calculated following EQ 5.20.a - EQ 5.20.c and EQ 5.22.a - EQ 5.22.c
for the initial model\, and the given training sequefxe

Further the quantity, (i) is defined as:
v, (i) = P(i; = $|O,)\) 5.34

which is equivalent to the a posteriori probability of the system being in §ate  at time ibstant
given the initial modeh, and the observation sequédce

The following equality is true fot <t<T -1

N
(i) = S &G0, ). 5.35
j=1
Inserting EQ 5.33 into EQ 5.35 and further simplification by using EQ 5.2 () is obtained
as.
: :
) = %gm(i)ai,-Nb,-(om)Bm(j)g: a B () e
S S amB® Y o)
O izl t t O iZl t t

The Baum-Welch re-estimation formulas for the improved model parameterg of , denoted as
T, éij andb;(k) are then calculated as follows.

The re-estimated initial state probabilitie§  (given the modgel  and the training seq@ence )
are given by:

= y,(i), (1<i<N) 5.37

If expressed in words, EQ 5.37 translates to the expected number of transitions fror§ state  in
the first time step = 1
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The transition probabilitiea‘ij can be estimated by:

T-1 T-1
TEGD T aabi(OL, DB (i)
' 1 —t=1

— t=
ajj = 72

= , 5.38

1
Y¢(i) > a()B()
t=1

t=1

which is equal to the expected number of transitions from skte  to sﬁte divided by the
expected number of transitions froB  to any state. Put in other words, this is the expected fre-
guency of occurrence of state transitiam (given the maggl and the observation sequence
0).

Finally for the improved observation output probabilitiégk) , the following estimation formula
is used:

T T
> ViOXIO =kl S a(i)B()X[O = K]
b-i(k)=t21 —t=1

T T
S (i) Y a()By(0)
t=1 t=1

Hereinx[...] denotes a characteristic function which evaluatels to  in case that the expression
within brackets is true, otherwisg ...] = 0 . Then EQ 5.39 can be translated to the expected fre-
quency of occurrence of symb&l  while the system is in state  (given the magdel and the

training sequenc® ).

5.39

It has been shown (Baum and Sell, 1968), that the given re-estimation formulas lead to an
improvement of the model parameters in the sense that a growth of the ML-objective function
Lyvm(A) (EQ 5.30) is always true:

L A1(T8 A, B)) = Ly (Ao(T A, B)) 5.40

A convergence ot ,,,,(A) to a local maximum can therefore be guaranteed. If a global maxi-
mum is to be obtained in the iterative process, depends on the initial start ipdel . For practical
implementation the following scheme is suggested (Deller, et al., 1993):

Initialization: Choose an arbitrary seed modgj
Recursion, fol = 0,1, ... do:
A) UseA; andO to compute EQ 5.33 and EQ 5.35.

B) Update the new model parameters A9y, ; according to EQ 5.37 - EQ 5.39.
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C) It will be true thatP(OJA| . ;) 2P(OJA)) .
If P(O[A; 1) —P(OJA)) 2 €, returnto 1.) else STOP.

Repeat the procedure A)-C) with different seed models to find a favorable maximum of
P(O|A).

Alternatively to the Baum-Welch (or forward-backward) algorithm presented above, it is also pos-
sible to make use of the modified Viterbi meas&ér€O|A) as defined in EQ 5.24 for the re-esti-
mation of model parameters. The so-called Viterbi training is implemented as follows (e.g.
Schukat-Talamazzini, 1995):

Initialization: Choose an arbitrary seed modef = (T, &;, bjy)
Recursion, fol = 0,1, ... do:
A) Estimate the optimal state sequerht:e as:

P(O, I'[A) = max{P(O, I|A)}
10Q

using the Viterbi algorithm outlined in section 5.3.2. (EQ 5.26.a - EQ 5.29).

B) Calculate the expected number of initial, transition and output probabilﬁpsz‘iij , and
bj(k) by:
= x[i; =S], 5.41.a
T-1
aj = Zx[i t=§,I t+1:Sj],and 5.41.b
t=1
T-1
bJ(Vk) = 2 X[| t = SJ’ Ot = Vk] . 541.c
t=1
C) Normalize the quantities; a; ,arj(v,) and update the model parametera;; ,  and
b'j(k) by:
N
T, = Fri/z Y, 5.42.a
i=1
N
a'ij = E_iij/ Z éij ,and 5.42.b
i=1
50 The three problems for hidden Markov models



Hidden Markov models

M
b'i(vi) = bj(v)/ Z bj(vy) - 5.42.C
k=1
D) Seth,; = (1t aj, by) . ltwill be true thaP (O]A, ;) = P (O[A)
If P (O|A;.1)—P (O|A)) =€, return to i) else STOP.

Repeat the procedure A)-D) with different seed models to find a favorable maximum of
P (OJA).

The presented approaches for the training of discrete hidden Markov models have been discussed
for the case, that a single training sequence is available. An extension to multiple training
sequences is straight-forward and is not presented here (see e.g. Deller et al., 1993, pp. 718-720).
The training methods are based on the maximum likelihood approach. It is important to note, that
the ML-training approach does not include any means of “negative training”. The model parame-
ters are adjusted in the training process to maximize the probaBi(i§|A) of generating the
observation for which it is “responsible”. Therefore, the model is trained to respond favorably to
its own class, but it is not improved with respect to discriminate against observation sequences
produced from a competing model. Strategies, which have been developed especially for provid-
ing good discrimination properties of the trained models, are the so-called minimum discrimina-
tion information (MDI) approach (Ephraim et al., 1989) and the maximum average mutual
information approach (MMI, e.g. Bahl et al., 1986). As those methods have not been used in the
presented classification system, they are not further discussed at this point. Practical issues
regarding sections 5.3.1. - 5.3.3. will be discussed in section 5.5..

5.4. The use of hidden Markov models in classification problems

Knowing the solutions to the three basic problems of hidden markov models, the application of
hidden markov models to the problem of classification is straightforward. As discussed previously
in 4.3.2. for a classification system, it is necessary to design a classifier which is composed of a
set of discriminant functions on the input data (generally a feature vector, here: discrete observa-
tion sequence) together with an appropriate decision rule. In most cases the decision rule will be a
maximum or minimum decision on the outcome of the discriminant function.

The solution to the evaluation problem provides now the conditional probability measure
P(OJA), giving the probability, that a discrete symbol sequence (input data) has been produced
by a given discrete hidden Markov model. Recalling the derivation of the optimal classifier in sec-
tion 4.3.2. and replacing the discrete classgs (i.e. random processes) by a set of hidden
Markov modelA, in EQ 4.18, it is evident, th&(O|A)  already can be chosen as the discrimi-
nant function in case of equal a priori probabilities of model occurrdt(@e . Hence, for distin-
guishing K classesK  distinct hidden Markov modals , with= 1, ..., K have to be
provided to test the observed symbol sequedice O;, ..., O under consideration against all K
models. The model providing the highest probability score is chosen as classification result.

Furthermore, the solution to the training problem for hidden Markov models provides a tool to
design a classifier by means of supervised learning. Herein, a training set of symbol sequences for
a single clasx is selected to learn the parameters of the hidden Markov Model representing
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the classk . Figure 5.1 summarizes the use of hidden Markov models in a simple classification
problem.

discrete symbol
observation sequences

training sets

Parameter

Estimation
Baum-Welch or Markov Models | |

Viterbi training Ay Az A LR

Probability
Measure

P(OIA)

Maximum

FIGURE 5.1: Simple classification approach using hidden Markov models. In a first phase, L training sets
are selected from the discrete symbol observation sequences. K distinct hidden Markov models are trained
using the Baum-Welch or Viterbi training approach. For the recognition task, the discrete symbol
sequences are tested against the K hidden Markov models. The model with highest probability is selected
as classification result.

5.5. Practical considerations for the design of a hidden Markov model
classification system

The introduction on discrete hidden Markov models is now completed with some considerations
and remarks about the practical implementation of hidden Markov models. First, a method will be
introduced, which allows to produce discrete symbol sequences from a sequence of real-valued
feature vectors. The subsequent chapters provide information on the choice of model topologies
and model dimension, strategies for initializing seed models for the supervised training proce-
dure, and the necessary scaling of probabilities in the evaluation procedure to prevent underflow
during computation.

5.5.1. Production of discrete observation sequences by vector quantization

Until now it has been ignored that the input for a discrete hidden Markov model has to be a dis-
crete observation sequence, both for training and evaluating. Hence, a method must be specified,
which allows to construct a discrete symbol sequence from the sequence of real-valued feature
vectorsx 0 0° . This task can be accomplished by the use of a well established technique origi-
nally developed in the area of signal compression and which is knovectas quantization

. . . . . . D
A vector quantizer is a mapping functian  from tBe -dlmen[s)lonal real-valued vector Bpace
into a finite setC = {t;, C,, ..., G} of prototype vectotgs 0 0~ C s called the codebook of
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the vector quantizer. Each vectri] 0P is then assigned to one of the prototype vectors from
the codeboolC by:

Do C = {8 b}

= 5.43
0 X - q(¥
The operatoq is called a partition of the vector spﬁge Knto disjunctgells
=v.0..0ve . Y, = {RaR) =&} . 5.44
+ +

Hence, the production of a discrete valued symbol from a real-valued feature vector is obtained by
the mapping function of an appropriately designed vector quantizer, when assigning the feature
vector to the index of its prototype vector from the codebook. However, information about the
exact position of the feature vector in the feature vector space is lost in the quantization process.
Therefore, the aim of the quantization process is to approximate the vectors by its representa-
tive prototype vectok = g(X) with minimal quantization error (distortion). In order to evaluate
the expected dlstortlon of a vector quantizer, an appropriate distance fudcﬁprx ) (metric)
has to be defined of°

Let the distribution of vectorg  ifl°  be given by the continuous density fund@px) . The
expected distortiom , which is subject to minimization is then written as:

K
e = E[dX qX)] = § O R tK)Poom 5.45
K—l

No closed solution for the optimal vector quantizer can be given. However, two necessary condi-
tions for the cell structure (i) and the codebook (ii), respectively, can be given for the vector quan-
tizer with minimal distortion.

(i) From EQ 5.45 it can be seen, that the quantizer chooses always the closest prototype vector as

representative, with respect to the given distance mead{ure, ...) . The mapping funpction
partitions the vector space into cellg C), ..., Yk (C) by

N 0 . 0
Y(C) = EXDDD| d(x g )= mlni(d(X ti))% 5.46
For a fixed codeboolC , the partitio¥i;(C), ..., Yc(C)  given by EQ 5.46 provides minimal

guantization error.

(if) The cell centroide(Y, ) , which is the vectdr  with minimal expected distance from its cell
members, is always the representatiye  of¥gll , i.e.:

E[d(X |X 0 Y,] = min {E[d(X y)|X 0 Y]} 5.47
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Thus, for a fixed partitiory;(C), ..., Y (C) , the set of cell centroi{:ié(YK)| K=12..,K}
represents the codebook with minimal distortion.

A vector quantizer is then constructed by an iterative procedure, which alternately performs an
optimization of the partition given a fixed codebook and an optimization of the codebook given a
fixed partition. For the euclidean distance measure a frequently used algorithm is a procedure sug-
gested by Linde et al. (1980), which is called LBG-algorithm named after their authors Linde,
Buzo and Gray. The LBG-algorithm can be outlined as follows:

Choose size of codebook (fixed quantity and not subject to improvement by iteration)
A) Choose initial codeboog V)= {CK(0)|K =1, ..,K}
B) Fori = 1,2 ...:

C.1) assign all training vectorg O X O [ ° toits corresponding representative and estimate the
new partitiony” = ¥,(cl ™) fork = 1,...,K .

C.2) calculate the new codebo6k”?  with the cell centrofds: % y X
Ng %0 v®
If the convergence criteria is fulfilled, stop, eise i +1 , and return to C.1)

The resulting codebook after iteration is only locally optimal. A good initial codebook estimate is
required to obtain the globally optimal codebook.

The vector quantization is an unsupervised classification (hard-clustering) approach. In order to
partition the space into a fixed number of disjunct regions (cells), it learns the continuous density
function P(X) from an unlabeled training set of feature vectors according to the optimality cri-
terion of minimal distortion.

From the discussion in section 4.3.2. about the design of statistical classifiers it follows, that in
case that the final partition in the iteration process contains feature vector samples distributed fol-
lowing multivariate gaussian densities with unity covariance matrices, the minimization of the
euclidean distance measure in the vector quantization process approximates the optimal classifier.

5.5.2. Model dimension and model topology

Unfortunately there exists no concise answer to the question of how to choose an appropriate
model dimension for a given classification problem. The number of independent parameters in a
hidden Markov model is directly correlated to the number of sthtes  and number of discrete
observations symbols . Wherels  is normally a fixed quantity and depends on the process,
which generates the observation sequences beforehand (see section 5.5.1.), the ¢hoice of to be
used for the realization of a hidden Markov moaleA\, B, 1) is left to the user.

The initial state distribution vectat hd$é—1 independent parameters (because of the stochas-
tic constraints in EQ 5.5.a and EQ 5.5.b). Without imposing any further constraints to the ele-
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mentsa;, of the state transition probability matAx  (see below discussion for model topologies),
A containsN(N-1) free parameters (recalling conditions EQ 5.3.a and EQ 5.3.b), whereas the
symbol output probability matriB possesddéM — 1) degrees of freedom (taking into account
constraints EQ 5.10.a and EQ 5.10.b). The total number of free parameters, which are subject to
the %reviously described training process (section 5.3.3.) is therefore approximately of the order
of N” (exactly, there artl” + NM - N—-1 independent parameters). This implies especially, that
for a robust estimation of the model parameters by training, the required number of available sam-
ples in the training set grows significantly wih

It is easy to imagine, that the amount of flexibility for modeling observation sequences grows with
the number of states  iN(A, B, 1) . Therefore the choice for an appropriate dimeNsion of a
hidden Markov model will always be a compromise between the reasonable try to keep the num-
ber of free parameters as small as possible and the desired modeling flexilility of

It has been proposed to estim@le  on heuristic knowledge about the physical background of the
specific classification task. Especially in the area of isolated word recognition it is commonly
accepted that for a first choice & , the number of distinct acoustic phenomena (sounds or
phones) in an utterance of a word is in general a good starting point (e.g. Rabiner, 1989, Picone,
1990). As an extreme choice, the number of states is selected as high as the average number of
time frames in a set of observation sequences (Picone, 1990).

The term topology in the context of hidden Markov model theory is used to describe the pattern of
allowable state transitions. Up to now, the most general model topology, the so-called ergodic
topology, has been assumed implicitly throughout this chapter. For the ergodic model topology no
other constraint besides the stochastic condition (EQ 5.3.a and EQ 5.3.b) restrict the possible val-
ues ofg;; . The state transition probability matix = [&;] is completely filled veiffw 0 for

all 1<i,j<N.Anexample of an ergodic DHMM witN = 3 arMd = 7 is givenin Fig. 5.2.
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FIGURE 5.2: Example of the discrete hidden Markov model of dimensionN = 3 andM = 7 with
ergodic topology. Colored circles depict the statesS;, S, and; . The transition probabilities; are
displayed as colored arrows to indicate the connectlon with the correspondlng states. The coloréd boxes
show the state dependent, discrete symbol output probability densitiels,(k)  as bar plots. The horizontal
axes corresponds to the index of the vector codebookQC whereas the vertical axes indicates the
occurrence probability of this symbol P(VQCQC) ).

Hidden Markov models with a left-right topology have received high attention in speech recogni-
tion applications. For the class of left-right models only transitions from lower numbered states to
higher numbered states are allowed. The state transition probablllty rrA’&al'sle[a1 ] meets then
the condition thaia =0 for>] andi 20 for<sj i = , N ). The state transition
probability matrle has the structure of an upper triangle matrlx and especially the element
ayy = 1.Asaresult, the state indexél  can not be left any more, once it has been entered. This
state is therefore called an absorbing state of the model. Furthermore, it has to be assured, that the
state sequence starts in the first state at timetstepl , therefore the initial state probabilities are
setto:ry = 1 ,andt =0 for = 2,...,N

Left-right models enforce causality in the hidden markov process and have been found to perform
well for modeling observation sequences which are obtained from a causal physical process, e.g.
utterances of words in the isolated word recognition problem (Picone, 1990, Deller et al., 1993).
For the problem of seismic signal classification, left-right models seem to be an appropriate
choice, as seismograms (similar to speech signals, see section 4.5.) clearly possess a causal time
structure.

Choosing a left-right topology has two positive side-effects. The number of independent model
parameters ilA is reduced approximately by a factor of two (exekt%ly -1/2 less free parame-
ters), which is advantageous in case of a limited finite training set for the robustness of parameter
estimation. Furthermore, by decoding the hidden state sequence with the Viterbi algorithm (see
section 5.3.2.), a meaningful segmentation of the input observation sequence may be achieved, if
the number of states is similar to the expected number of physical events within the sequence. An
example of a 4-state left-right model is given in Fig. 5.3.
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FIGURE 5.3: General left-right discrete hidden Markov model. Number of statesN = 4 . Symbols and
variables are equivalent to Fig. 5.2. The causal structure of the state transition probabilities prohibits, that
previous states are entered again.

Special cases of left-right models are the Bakis- and linear topology. For the Bakis-model (Bakis,
1976), only transitions from the current state to the two succeeding states are allowed, i.e.
8 =0 fori>j andi+2<j,anda; #0 fori<j<i+2 i(j =1,...,N ). The number of
independent parameters/  for the Bakis-model redu@No . Even more restrictive is the lin-
ear model, which allows only self-transitions and transitions to the succeeding state, therefore
a; = Ofori>j andi+1<j, andg; #0 onlyfom; and ;,, .Onl)N free parameters have

to be trained for the state transition probability ma#ix

Further approaches for reducing the high dimensional parameter space of hidden Markov models
have been proposed, e.g. state tying (e.g. Young, 1992) and interpolation techniques (Jelinek and
Mercer, 1980). As those techniques have not been used here in the latter application for the task of
seismic signal classification, they are beyond the scope of this introductory text. Detailed descrip-
tions can be found in Rabiner, 1989, Deller et al., 1993, or Schukat-Talamazzini, 1995.

5.5.3. Initialization of seed models for hidden Markov model training

In the training procedure as outlined in section 5.3.3. the goal is to find the global maximum of the
maximum likelihood cost function. Although the training procedure guarantees to find a maxi-
mum in the cost function it is not assured that the solution obtained is the global maximum -
therefore a good initial seed model located in the local neighborhood of the global maximum in
the parameter space is highly desirable for starting the iterative training process. It has been
shown experimentally, that the initial values for the state transition probabitties and for the
initial state probabilitiest, are not critical in the training procedure (Deller et al., 1993). There-
fore both a random initialization or equally distributed values show similar performance. The ini-
tial values for the symbol output probabilitietgk , however, prove to have a more significant
influence on the quality of the trained model. It is generally recommended to initialize the state
dependent symbol output probabilities by prior segmentation of the training set, and estimation of
a priori discrete probability density functions from the data (data driven initialization).
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CHAPTER 6. Passive seismological experiment at
Merapi volcano

The passive seismological experiment within the joint Indonesian German cooperation project
MERAPI (MechanisnEvaluationRisk Assessment ariéredictionl mprovement) started in 1994

with the installation of a single broadband sensor at the WNW flank of Merapi volcano (Beisser et
al., 1996). Since then, both broadband and short period sensors have been added to form a net-
work for monitoring the volcano-seismic signals and for the feasibility of seismic source model
studies. In this chapter, the previously discussed principles of a hidden Markov model based clas-
sification approach are applied to the continuously recorded data streams at Merapi’s seismologi-
cal network.

6.1. The seismic monitoring network at Merapi volcano

The main objectives of the seismological experiment at Merapi volcano within the MERAPI
project are: a) long-term continuous monitoring of Merapi’s seismic activity as a tool for early
warning, and b) to characterize and parametrize the sources of seismic activity at Merapi volcano.
In order to accomplish these tasks with a manageable number of seismic stations, a conceptually
novel network configuration has been used. The station geometry consists of a network of three
small-aperture seismic arrays, each of which equipped with one central broadband seismic sen-
sors and three regular short-period seismometers as satellite stations. The choice of this configura-
tion has been motivated by the results of earlier studies.

The use of broadband instruments stems a.o. from the repeated observations of very long period
events (e.g. Neuberg et al., 1994, Wassermann, 1997a, Rowe et al., 1998, Kirchdorfer, 1999, see
also section 3.1.) mainly at volcanoes with explosive activity of strombolian type. Whether simi-
lar signals exist also at a volcano like Merapi, having higher viscous magmas with smaller volatile
contents, is one of the questions to be answered by the long-term observation. The modelling of
seismic source processes requires accurately determined hypocenters and the knowledge of the
radiated seismic wavefield. The small-aperture arrays arranged in a network geometry allow to
sample the seismic wavefield simultaneously at three sites, which comprise the volume of
expected seismic source generation. They further contribute to the problem of locating seismic
sources in a volcanic environment. The determination of hypocenter locations of seismic signals
of volcanic origin is a difficult problem due to the observed emergent signal-onsets and the com-
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plex nature of the wave propagation in the heterogeneous and clearly three-dimensional structures
of the volcanic edifice. With data recorded at a network of broadband stations at Stromboli vol-
cano, Wassermann (1997a) demonstrated how to adopt a waveform migration approach for locat-
ing seismic sources of volcanic origin, while avoiding the need of seismic phase picking. With the
installation of a network of small-aperture arrays at Merapi similar techniques for seismic source
localization based on array techniques can be applied (Almendros et al., 1999, Saccorotti and Del
Pezzo, 2000, Wassermann and Ohrnberger, 2001).

The seismic network has been implemented in three major steps. During the initial phase of the
MERAPI project, three single broadband seismometers of type STS-2 were installed in the years
1994 to 1995 by the GeoForschungsZentrum Potsdam (GFZ, Beisser et al., 1996). The selected
sites are located at the west-north-western flank (KLT), at the northern flank (GRW) and in the
south-west-south (KEN) of Merapi’'s active summit region at altitudes between 1400 m.a.s.l.
(KEN) up to 2000 m.a.s.l. (GRW). The three stations build a small network with reasonable azi-
muthal coverage and horizontal distances from the active lava dome of Merapi volcano between
1.6 km and 3 km (compare Fig. 6.1, star symbols). Inter-station distances of this network are
between 2 km to 4 km.
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FIGURE 6.1: Distribution of seismic stations at Mt. Merapi. White stars indicate the location of a three
component broadband-sensor. White circles represent three-component short-period seismometer
locations. The station distribution was designed as a combined array-network geometry. The aim is to
maximize the capabilities for estimating the wavefield properties with a reasonable number of seismic
stations. Digital elevation model (DEM) after Gerstenecker et al., 1998.
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In the second phase, during a two-months field campaign in June and July 1997, each site was
additionally equipped with three Mark L4-3D three component short-period seismometers (cir-
cles in Fig. 6.1) surrounding the central broadband station, now forming a mini-array with station
distances ranging from 80 m up to 250 m. The realization of a triangle shaped geometry providing
both a reasonable azimuthal and slowness resolution for the array analysis could be achieved
fairly well for the site GRW in the north of Merapi’s summit region. However, due to the topo-
graphic conditions, at the western flank at site KLT only an rather elongated triangle shaped con-
figuration could be established, whereas at the southeastern site KEN only a quasi-linear
geometry could be realized. An additional broadband sensor has been installed temporarily in

July 1997 for a site survey close to the active lava dome at location PAS (compare Fig. 6.1).

TABLE 6.1 Station information for the seismological network between July 1997 and March 2000

Name Longitude Latitude Height Sensor corner critical Generator Unit-id /
1 1 a.m.s.l. frequency damping constant Channel
[m] [Hz] h [Vs/m]
KLTO Z 0.008333 0.707 1500 7651/1
KLTO N 110.43265 -7.53221 1890 STS-2 0.008333 0.707 1500 7651 /2
KLTO E 0.008333 0.707 1500 7651/3
KLT1 zZ 1.022 0.700 283.1 7651 /4
KLT1 N 110.43450 -7.53242 1961 L4-3D 1.044 0.700 285.8 7651/5
KLT1 E 1.013 0.700 284.3 7651/6
KLT2 Z 1.019 0.700 274.8 7652 /1
KLT2 N 110.43183 -7.53291 1851 L4-3D 1.036 0.700 274.4 7652 /2
KLT2 E 1.005 0.700 274.4 7652 /3
KLT3 Z 1.024 0.700 288.2 7652 /4
KLT3 N 110.43081 -7.53125 1807 L4-3D 1.051 0.700 283.5 765215
KLT3 E 1.018 0.700 289.0 7652 /6
GRWO Z 0.008333 0.707 1500 7655/1
GRWO N 110.45150 -7.52161 2045 STS-2 0.008333 0.707 1500 7655/ 2
GRWO E 0.008333 0.707 1500 7655/3
GRW1 z 0.990 0.700 271.7 7655/4
GRW1 N 110.45164 -7.52305 2114 L4-3D 1.019 0.700 275.2 7655/5
GRW1E 1.016 0.700 275.2 7655/6
GRW2 zZ 1.015 0.700 271.7 7656 /1
GRW2 N 110.45069 -7.52081 1995 L4-3D 1.041 0.700 286.6 7656/ 2
GRW2 E 1.045 0.700 283.1 7656 /3
GRW3 z 1.028 0.700 266.5 7656 / 4
GRW3 N 110.45249 -7.52165 2015 L4-3D 1.028 0.700 277.2 7656 /5
GRW3 E 1.029 0.700 276.4 7656 / 6
KENO Z 0.008333 0.707 1500 7653 /1
KENO N 110.45855 -7.56531 1400 STS-2 0.008333 0.707 1500 7653 /2
KENO E 0.008333 0.707 1500 7653 /3
KEN1 Z 1.025 0.700 276.8 7653 /4
KEN1 N 110.45805 -7.56408 1430 L4-3D 1.013 0.700 282.3 765315
KEN1 E 1.016 0.700 283.5 7653 /6
KEN2 Z 1.009 0.700 270.9 7654 /1
KEN2 N 110.45871 -7.56585 1385 L4-3D 1.019 0.700 275.6 7654 /2
KEN2 E 1.027 0.700 271.7 7654 /3
KEN3 Z 1.024 0.700 282.3 7654/ 4
KEN3 N 110.45884 -7.56701 1371 L4-3D 1.015 0.700 282.7 7654 /5
KEN3 E 1.025 0.700 282.7 7654/ 6
PASO Z 0.008333 0.707 1500 3622 /24
PASO N 110.44947 -7.53702 2650 CMG-3T 0.008333 0.707 1500 3622 / N4
PASO E 0.008333 0.707 1500 3622/ E4

The seismic monitoring network at Merapi volcano
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In August 1998, a permanent broadband station was deployed permanently at the same location.
The station was equipped with a new data logger type and a digital telemetry unit for testing pur-
poses. The station names, station coordinates, sensor types, seismometer characteristics and data
logger unit IDs for the time period from July 1997 to March 2000 are given in Table 6.1.

The digital data acquisition system at each array site (KLT, GRW, and KEN) consisted of two six-
channel data loggers (RefTek 72A-07/6) equipped with 24 bit delta-sigma A/D digitizer boards,
providing a usable dynamic range of 130 dB (nominal 144 dB). The time signal of one GPS-clock
(RefTek 111A-02) was split and sent to both data loggers for appropriate time synchronization
within a single array and the whole network. The power supply was guaranteed by several 50 W
solar panels buffered by two 40 Ah (later 65 Ah) dry gel batteries. The data was recorded to exter-
nal hard disks with a capacity of 2 GB for each data logger. The hard disks were replaced on a
routine basis every 20 to 30 days by scientists and technicians from the geophysical laboratory of
the Gadjah Mada University in Yogyakarta. Recording mode was continuous and the sampling
rate for all stations was set to 50 Hz (40 Hz between November 1997 and July 1998). A sketch of
the data acquisition system setup can be seen in Fig. 6.2.

Solarpanels

GPS-receiver

2 GB Hard Disk
I Seismometer 2

| ___—

Seismometer 3

40 (65) Ah

dry gel batte RefTek Data Logger

FIGURE 6.2: Central data acquisition, data storage and power supply at the single mini-array sites. All
equipment was placed in a concrete bunker close to the central broadband sensor vault. S: SCSI
connectors; P: Power connectors; 1-3, 4-6: channel connectors.

The continuously recorded data was converted to GSE format (GSE Wave Form Data Format,
1990), segmented in 1 hour files, and finally archived on CD-ROMs. The waveform files are
inserted into the database system GIANT (Rietbrock and Scherbaum, 1998) and have been ana-
lyzed interactively with the software package PITSA (Scherbaum and Johnson, 1994). Automatic
analysis on the continuous data streams was performed by custom software modules accessing the
waveforms via the GIANT database.
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In the third phase of the project (after March 2000) the seismic network has been re-configured
according to the results obtained from the first years of continuous operation. Most important
changes have been the closing down of the array site KEN and the establishment of a new array
site at the location PAS. The geometry of the mini array KLT has been optimized in order to
enhance the azimuthal resolution capabilities of the configuration. The copper wire cables, which
were used for the seismometer signal transmission to the data loggers, have been the cause of
repeated damage of the electronic equipment by lightning induced excess voltage. As a conse-
guence signal transmission between the seismic sensors and the central data acquisition site has
been changed to fibre optic cables. Additionally the data acquisition system has been changed at
all locations in order to allow the transmission of the recorded data directly to the observatory
center of the Volcanological Survey of Indonesia (VSI) in Yogyakarta via digital telemetry units.

6.2. Description of available data set

The harsh environmental conditions at Merapi volcano caused occasionally equipment damage,
especially during the tropical rainy season. Besides power failures during long times of complete
clouding, the main problem encountered was excess-voltage by lightning which destroyed solar
panels, A/D channel boards, GPS-clocks and devices for splitting the time signal. The availability
of continuous data recordings for the single seismic stations is given in Fig. 6.3 for the time period
from July 1997 to September 1998.

Time [days]
0 50 100 150 200 250 300 350 - 400 450

KEN3
KEN2
KEN1
KENO
GRW3 °
GRW2 °
GRW1
GRWO
KLT3

KLT2

KLT1 -
KLTO -

L S T AL A L DAL
0 50 100 150 200 250 300 350 400 450
Time [days]

FIGURE 6.3: Display of station availability of Merapi’'s seismic network in the time period from July
1997 to September 1998. Time is given in number of days since 1997/07/01. The box indicates the time
period of accelerated increase of seismic activity at begin of July 1998 prior to the eruptions taking
place at July, 10th and July, 19th, 1998 (marked by arrows). Missing data are due to instrument damage
by lightning induced excess-voltage and power outages caused by strong clouding.

After the eruption in January 1997, Merapi entered into a stage of calm volcanic activity. The cor-
responding seismic activity during 1997 until end of June 1998 was relatively low. During this
time period only a small number of low energetic signals could be observed in the continuously
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recorded data at the newly installed seismic network. A confirmation of Merapi’s seismic signal
classification scheme (Ratdomopurbo, 1995, Purbawinata et al., 1997, Ratdomopurbo and Poupi-
net, 2000) from visual data control was difficult during this time period. Only few of the wave-
forms could be identified as being of Guguran or MP-type. None of the other signal types, VTA,
VTB, LF, and tremor could be recognized.

At the end of June 1998, a phase of rapidly increasing seismicity was observed and together with
observations of increasing tilt and rockfall activity a change in the volcanic activity could be rec-
ognized, finally culminating in a sequence of large pyroclastic flows between July, 11th and July,
19th, 1998 (local time). In this stage of high seismicity accompanying the increasing volcanic
activity, three types of seismic signals could be observed and associated with the classification
scheme of VSI: dome-growth related MP events, Guguran events associated with rock avalanches
and VTB, shallow volcano tectonic events probably connected to injection of new magmatic
material prior to the eruptions of July, 11th and July, 19th. Just one single LF-type event and one
92 minute tremor episode occurring shortly before the eruption at July, 19th were reported by
VSI. Whereas the LF-type event could be identified in the registrations from the digital network
data, there was no clear indication for the occurrence of volcanic tremor.
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FIGURE 6.4: Daily number of event types from 1998/06/15 to 1998/08/11 on a logarithmic scale (source:
VSI, 1998). Arrows with associated number indicate time of official announcement of volcanic alert level
(e.g. Voight et al., 2000b). Prior to the occurrence of the eruptive activity, a rapid increase of seismicity was
observed, mainly dominated by MP- and Guguran-type events. A small swarm of shallow volcano-tectonic
events (VTB-type) was observed between 1998/07/03 and 1998/07/05. Time axis is given in local time.
Vertical lines enclose the time period which has been used for establishing a DHMM-based automatic
classification system (1998/07/01 to 1998/07/05 GMT).

A display of the daily number of events for VTB, MP and rockfall avalanches (Guguran) as
reported by the Merapi volcano observatory (VSI, 1998) is given in Fig. 6.4. The arrows indicate
the announcements of different stages of volcanic alert level to the local authorities and the public
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(Voight et al., 2000b). The alert levels issued were based on results of seismicity, tilt and visual
rockfall observations.

The data recorded in the time period between July, 1st and July, 5th, 1998 has been used to
develop a discrete hidden Markov model based continuous automatic classification system for
volcano-seismic signals. For the purpose of detailed feature analysis, the training of codebooks
and individual hidden Markov models a set of training samples has been selected interactively
from the continuous data streams. In Fig. 6.5 to Fig. 6.7, all samples of the individual training sets
for VTB-type (Fig. 6.5), MP-type (Fig. 6.6), and Guguran-type (Fig. 6.7) events are shown. The
waveforms have been recorded at the vertical component of the short-period seismometer KLT1,
which is the closest station to Merapi's summit (Fig. 6.1). In the left column of each plot, the
waveforms are normalized with respect to the maximum amplitude of all events, whereas in the
right column the same events have been normalized to the maximum amplitude within each indi-
vidual event. The most homogeneous training set available is the sample set of VTB events
(Fig. 6.5). The seismograms displayed for the MP-class (Fig. 6.6) demonstrate still a very homo-
geneous group of waveforms samples, whereas the Guguran training samples show very distinct
characteristics regarding the signal length, signal strength and envelope shapes (Fig. 6.7). Finally,
in order to demonstrate the differences of signal shapes, signal lengths and relative amplitude
scaling between the individual event classes and for a greater number of seismic stations within
the new seismic monitoring network of Merapi, a six minute waveform example containing a reg-
istration of each of these event types is displayed in Fig. 6.8.
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FIGURE 6.5: Set of 30 training samples for VTB-type events. In the left column all waveforms are scaled to
the maximum amplitude of the set, whereas in the right column all waveforms are scaled to the maximum
in the individual trace window. Start times of the signal waveforms recorded at station KLT1 (Z-
component only) are displayed for each event on the right. All events have been selected from the time
period between 1998/07/03 and 1998/07/05. Note the waveform similarity over the whole seismogram length
and very late prominent phase arrivals common to all event recordings.
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FIGURE 6.6: Set of 30 training samples for MP-type events. In the left column all waveforms are scaled to
the maximum amplitude of the set, whereas in the right column all waveforms are scaled to the maximum
in the individual trace window. Start times of the signal waveforms recorded at station KLT1 (Z-component
only) are displayed for each event on the right. All events have been selected from the time period between
1998/07/01 and 1998/07/02. Waveform similarity is less pronounced if compared to the VTB event class.

However, very late prominent phase arrivals are common to most event recordings.
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FIGURE 6.7: Set of 30 training samples for Guguran-type events. In the left column all waveforms are
scaled to the maximum amplitude of the set, whereas in the right column all waveforms are scaled to the
maximum in the individual trace window. Start times of the signal waveforms recorded at station KLT1
(Z-component only) are displayed for each event on the right. All events have been selected from the time
period between 1998/07/01 and 1998/07/02. The waveforms in this class are very heterogeneous, most
important are differences in signal length, signal strength and envelope shape.
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FIGURE 6.8: Data example from beginning July, 1998, showing all three signal types VTB, MP and
Guguran together at the complete station network. In the left column the traces are normalized with
respect to the maximum amplitude in the whole network, whereas in the right column the same data
example is displayed normalized for each single channel.
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CHAPTER 7. Realization of a continuous
automatic classification system for
volcano-seismic signals at Merapi
volcano

In this chapter, the previously discussed principles of a hidden Markov model based classification
system are applied to the continuously recorded data streams at Merapi’s seismological network.
The data recorded in the time period between July, 1st and July, 5th, 1998 (see section 6.2.) have
been selected to develop a continuous signal parametrization scheme which will be introduced in
section 7.1. The individual wavefield parameters for the three seismic event types VTB, MP and
Guguran and the seismic noise are analyzed in order to select a set of primary features for the
classification task. A prewhitening transform as described in section 4.3.1. is derived from a train-
ing sample of feature vectors to allow a reduction of the dimensionality of the feature vector space
(section 7.2.). Subsequent vector quantization is necessary to obtain a discrete symbol sequence
out of the sequence of continuous valued feature vectors. Both the original and transformed fea-
ture vectors are used to construct codebooks (section 7.3.) with the LBG algorithm (section
5.5.1.). A set of DHMMs are trained for both signal and noise classes and an evaluation of classi-
fication performance is derived via the resubstitution method (compare section 4.3.3.) for the rec-
ognition of the isolated events in the training sets (section 7.4.). At the end of this chapter, a
strategy is given how to evaluate the classifier functions (DHMM probability measures) for the
continuous classification problem (section 7.5.).

7.1. Parametrization of continuous three component seismic data streams
in combined network/array geometry

According to the previously introduced scheme of a pattern recognition system in chapter 4.
(compare Fig. 4.1), features have to be generated from the continuous seismic data streams. Lack-
ing the knowledge which signal parameters are most appropriate for the classification of seismic
events at Merapi volcano, the description of the main characteristics of the recorded seismic
wavefield by short time estimates of seismological key parameters has been considered to provide
a useful data representation for the given classification problem. Standard analysis methods,
which are commonly used in observatories for earthquake analysis have been given preference to
more sophisticated signal processing schemes (e.g. MUSIC, AR-parameters) in order to obtain a
robust parametrization of the continuous time series. The availability of multiple station three
component data allows to extract continuous feature estimates from both array and polarization
analysis methods. Hence, the following methods have been automated for the analysis of continu-
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ous multiple station three component data and have been implemented to be suitable for real-time
computations on a single PC.

7.1.1. Broadband frequency wavenumber analysis (bbfk-analysis)

Assuming a plane wave with horizontal slowness vedor seg, + which propagates
through an (horizontal) array of stations, an estimate of the coherence of a plane wave arrival
within a given data window has been termed relative poR& (e.g. Kvaerna and Ringdahl,

1986), and is given by:

Khigh M ZD
Z a Z Z (W) exp(i T (s, s))| O
k =k m=1 U
RP(s, s)) = ou - - : 7.1
igh D

o0
M3 43

k= Koy M=

InEQ 7.1, theZ (w,) represent the discrete complex Fourier coefficients of the vertical compo-
nent seismogram for station  at discrete angular frequeagies . The term:

Tn(S Sy) = OXpSy + 0y S, 7.2

corresponds to the travel time delay for a plane wave arriving at station  measured relative to
the center of gravity of the arraxc¢g ), whedes,, ady,, denote the relative coordinates of
stationm with respect to theog . The discrete double sumin EQ 7.1 is evaluated owdr all  sta-
tions with indexm and over the limited frequency band from discrete angular frequency index
Kiow 10 Khigh-

EQ 7.1 can be interpreted as an approximate band-limited semblance calculation in the frequency
domain. The approximation is caused by the choice of the normalization term in the denominator,
which is here calculated as the sum of square amplitudes of the unshifted individual data win-
dows. In the exact definition of the semblance coefficient the station dependent time delays
T (Se sy) are applied to both the denominator and to the nominator. By doing so, the semblance
value can be interpreted as a normalized output to input energy ratio and is therefore a physically
meaningful quantity (Neidell and Taner, 1971). The approximate implementation of the sem-
blance calculation is motivated by a significant gain of computational speed. Omitting the multi-
plication of the phase term in the denominator allows to calculate the denominator just once per
time window, whereas for the exact implementation, the denominator has to be computed for each

Sy Sy pair.

Although EQ 7.1 is not an exact implementation of the semblance definition, the bias introduced
tends to be small, if the analyzed signal is of transient character and lies completely inside the
selected analysis window. By the use of an appropriate taper function, which is multiplied onto

the individual data windows in the time domain prior to Fourier transforming, the expected bias

can be reduced.

The calculation of the semblance value in the frequency domain bears two main advantages. First,
band limitation is achieved computational efficient by summing up only those discrete frequency
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components which lie in the desired frequency band, thus making obsolete the need of applying a
bandpass filter when implementing the semblance calculation in the time domain. Furthermore,
individual station delay times can be applied even for time shifts less than the sampling interval
by adding the phase term,(s,, sy) to the argument of the exponential function. However, care
must be taken to avoid wrap around effects of the signal for the time delays under consideration.
Zero padding in the time domain is therefore applied before Fourier transforming the signals.

In order to find the most coherent plane wave arrival for a given time window, a grid search over a
rectangular slowness grid is performed in the original algorithm implemented by Kvaerna and
Ringdahl (1986). The computational cost for this grid search depends on the grid spacing (resolu-
tion) and the maximum of horizontal slowness values, which is to be evaluated. In order to allow
the coherence estimates in real-time, a non-linear global optimization technique has been used in
this study. The combination of the simplex method and the simulated annealing optimization
(Press et al., 1992) for searching the maximal semblance within the slowness space proves to
reduce effectively the total number of evaluations of EQ 7.1 compared to the necessary calcula-
tions of a reasonably sized grid. As an additional advantage, the evaluation of the semblance value
is not longer restricted to discrete slowness grid points, because the cost function to be optimized
(EQ 7.1) is a continuous function &

After determination of the slowness vectggp = S8, +s8, ~ for the most coherent plane
wave arrival, the following additional parametéfs can be calculated

x
=
[(=]
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AP (AbsolutePower) is an estimate of the absolute band-limited delay-and-sum beampower cal-
culated in the frequency domain. The individual variables have the same meaning as in EQ 7.1,
and nfft represents the number of points of the fast fourier transform which is used throughout
for the computation of the discrete fourier spectra. In order to account for the large dynamic range
of the AP value, the logarithm of the beampower is taken and by further multiplying the expres-
sion with the factor 10, a dB-scale for the beam amplitude is obtained. The absolute value of the
horizontal slowness is calculated as:

[ 2 2
= = +
SRPmaX |§ RPmax SX Sy‘RPmaxy 74

whereas the direction of the plane wave frgnt  (backazimuth) is given by the angle of the slow-
ness vector measured against the geographical north ( -direction):

P(sy, Sy)RPmax = g_ ata"%%

7.5

Rpmax
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The four estimate®RP AP s ,amg provide information about the coherence, signal strength,
inverse apparent velocity and direction of wave propagation of the most coherent plane wave
arrival within a given time window and the specified frequency band.

A typical example of the outcome of the continuous broadband frequency wave-number analysis
is displayed in Fig. 7.1 for a 80 s waveform sample observed at the small-aperture array GRW.
The signal shown is a VTB type event recorded a few days before an eruption occurred at Merapi
volcano.
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FIGURE 7.1: Example of continuous broadband frequency wave-number analysis. The signal displayed
is a VTB-type event recorded at GRW-array. Only vertical components of GRW0, GRW1, and GRW2
have been used, as the seismometer GRW3 was out of operation during this recording period. The
seismograms are simulated to a common seismometer response (0.5 Hz corner frequency, 0.7 of critical
damping) and bandpass filtered from 0.5 Hz to 10 Hz. The frequency band for the bbfk-analysis was set
to 0.9-6.0 Hz. The signal parameters displayed are (from top to bottom): measure of coherency RP, the
measure of signal strength AP in a dB-scale, the horizontal slowness s in s/km, and the backazimuth of
the most coherent plane wave arrivalp in degrees from North. The darkness of individual symbols is
scaled with the value of RP, displaying darker colors for more coherent time windows.
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7.1.2. Polarization Analysis

Polarization analysis is performed using a robust array-wide estimate similar to the approach pre-
sented by Jurkevics (1988). It is an extension of the well-known algorithm by Flinn (1965) for a
single three-component station to three-component array data. In Flinn’s method a 3x3 covariance
matrix S = [ qk] for a data window containiny  time samples, is built from the auto- and cross-
variances of the three orthogonal components of motion. Mtk [xij] i =1 ..,N and

j = 1, 2, 3, denoting the data matrix of one data window, the calculation in the time domain is
written as:

- N
S=[S = X—N—X = {%Z inxik] 7.6

The matrix coefficients onk in EQ 7.6 describe the quadratic form of an ellipsoid. The principal
axis directions and lengths for this polarization ellipsoid can be obtained from the solution of the
algebraic eigenproblem f@ by:

(S-Afl) @ = 0, 7.7

wherel is the 3x3 identity matrix. The directions of the principal axes of the ellipsoid are given
by the eigenvectoréj , Whereas the axes lengths are specified by the eigeh\{alpes 1,23
The eigenvalues and their corresponding eigenvectors are ordered sugiethgt> A,

The following quantities (among others) have been used to describe the polarization characteris-
tics of the ground motion: the rectilinearity, the planarity, azimuth and incidence angle for a fixed
wave type.

The rectilinearity quantifies the degree of linearity of particle motion, and can be calculated by:

2+ A
SEyw 78

rect = 1-

For complete linear polarization, as theoretically expected for body wave types P, sub-critical SV
and SH-wavestect equals 1, whereas for a particle motion with no preferred direction (i.e. the
ellipsoid deteriorates to a sphedg, = A, = A; ), the rectilinearity evaluates to 0.

For wave types showing elliptical polarization, as e.g. Rayleigh waves or overcritical SV-waves,
the planarity is a useful quantity to compute:

2\
- 273 [
plan = 1—- =——— 7.9
O +A,0
The values of EQ 7.9 again lie in the rangé, 1] , indicating no preferred polarization

(plan = 0), and polarization in a plan@lan = 1 ), respectively.
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The estimate of azimuth and incidence angles depends on the assumed wave-type and the order-
ing of seismogram components in the covariance matrix. Let the order of componehtdlp&

(he.Z =1,N = 2,E = 3), then for the assumption of a P-wave arrival the azimuth of polar-
ization measured against north direction is given by:

sign(u4)
= atargjzl.— 7.10
% 315ign( up)H

The 1t ambiguity of theatan( ) function can be resolved by the use of the sign pof and the
reasonable assumption of an up-going ray path for a P-wave.

Finally, the incidence angle of a P-wave is calculated as:
Bp = acogu,| 7.11

The polarization analysis after Flinn (1965) is the formulation for a single three component sta-
tion record. Jurkevics (1988) modified this approach for three component station arrays, by intro-
ducing an ensemble avera§e fromie  single station covariance ma&yjces = 1, ..., M ,
like:

M

g L

S-MZSm 7.12
m=1

Jurkevics (1988) showed, that the scatter in polarization estimates can be reduced effectively by
applying EQ 7.12 to array data. He further demonstrated, that a proper time alignment of data
windows for the averaged covariance estimate is not critical to the stability of the obtained polar-
ization estimates, provided that the data window is of sufficient length (ca. five times of the domi-
nant signal period), and time delays of the prominent arrival within the array are less than one
third of the data window length. In his work Jurkevics additionally introduced a wide-band esti-
mate, which consisted in a balanced sum of covariance matrices calculated for a set of different
frequency bands. This procedure is not discussed in detail here, as it has not been used this study.

The polarization analysis is performed in a sliding window by calculating the individual station
covariance matrice§  as given in EQ 7.6. Then the individyal are averaged (EQ 7.12) for
each array site, and finally the polarization attributest plan ¢,, ,@gud are obtained via
EQ7.8-EQ7.11.

In Fig. 7.2 the same seismogram example as shown in Fig. 7.1, is analyzed in sliding windows
with the algorithm outlined above.
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FIGURE 7.2: Polarization analysis of the same data sample as displayed in Fig. 7.1. The darkness of
individual symbols is scaled by the value for the incidence angle, . Please note that the incidence angle
is the only signal parameter that shows some variation for the very first part of the observed signal. All
other parameters seem not to change significantly in comparison to the preceding seismic noise.

7.1.3. Sonogram Calculation

A standard method used for the description of seismic signals is the calculation of the amplitude
spectrum. A display of the time-varying frequency content can be obtained by the short-term fou-
rier transform (STFT), which is also often termed spectrogram or sonogram. The STFT has been
shown to be a useful tool for the characterization of volcano-seismic signals, and was used espe-
cially to obtain a visual display and a parametric description of event types (signal classes) (e.qg.
Lahretal., 1994, Chouet 1996b). A modified form of the STFT was used by Joswig (1990) for his
template-based pattern matching approach for local earthquake recognition. By smoothing the
short-term squared amplitude spectra in half-octave wide frequency bands, Joswig obtained a less
detailed display of the spectral evolution while maintaining the prominent characteristics of the
spectrogram. Introducing an additional noise adaption technique on the sonogram images and
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reducing the dynamic range of the spectral amplitudes to a small number of discrete values, he
mimicked the process of human vision (Joswig, 1994) and developed a very robust and successful
seismic event detector for single-trace data.

In this work, the calculation of a smoothed sonogram is used similar to the work of Joswig (1990)
to include the main spectral characteristics of the seismic wavefield into the data representation.
For each array site, the squared amplitude spectra of the vertical velocity recordings of the indi-
vidual stations are stacked and further a smoothing within half-octave wide frequency bands is
performed. Then -th spectral bahah, n=1,...,N can be written as:

7.13

Z(wy) is the complex fourier coefficient of station  at the discrete angular frequepcy . The
inner sum calculates the array-wide squared amplitude spectrum owdr all  stations within the
array, and the outer sum evaluates over the discrete angular frequency indiceshof the -th half-
octave wide band (fronk,,,,(n) tkhigh(n) ). In order to obtain a relative measure for the spec-
tral power bands, a normalization is performed by the value of the total power of the whole fre-
quency band under consideration (fragg,, (1) kmgh(N) ). Finally, to keep the dynamic range
in reasonable bounds, the natural logarithm is taken from this expression. Performed in a sliding
window analysis, this spectral analysis providés relative spectral amplitude values
hob,, ..., holby for each array site per time step. A display of a typical result of the sonogram
analysis for the same seismogram example as in Fig. 7.1 and Fig. 7.2, is shown in Fig. 7.3.
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FIGURE 7.3: Example of sonogram analysis for a VTB-type signal (same data sample as in Fig. 7.1 and
Fig. 7.2). Eight half-octave wide bands are used in this analysis and span the frequency range from 0.53 Hz
to 15 Hz. The frequency ranges of the individual bands are displayed on the right side of the figure. VTB
type events as recorded in the first days of July, 1998 typically show high spectral amplitudes in the range
from 2 Hz to 6 Hz (frequency bands 4 to 6).

7.2. Analysis of wavefield parameters for the classification system

The algorithms (as described above) for the continuous processing of the recorded array data have
been implemented as a stand-alone program ndicegal’ (continuous array processingyap
accesses the raw recordings via the database GIANT (Rietbrock and Scherbaum, 1998), performs
consistency checks of data continuity or missing data, allows for several preprocessing steps, and
finally applies one of the methods (bbfk, polarization analysis, sonogram processing) in a sliding
window analysis for the selected time period. To allow more flexibility in the computations the
settings for preprocessing steps as well as the method specific parameters are user configurable.
The results of calculations, i.e. the individual features, are stored frame by frame into an output
file for further processing. A flow chart of the main data processing steps within the software
modulecapis provided in Fig. 7.4.
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FIGURE 7.4: Flow chart of main processing steps ircapsoftware module. The uppermost block describes
the information retrieval from the GIANT database system. Besides the raw waveform data, station
specific information (geographical coordinates and instrument calibration) has to be retrieved. The
preprocessing block performs at first a check for data gaps and station dropouts. Then an offset removal is
applied to the total length of the selected data. In order to make the individual waveforms comparable
within the array, a simulation of a common instrument response is performed after Seidl (1980). The
optional prefiltering of the waveforms is implemented as a user configurable Butterworth bandpass filter.
The last block shows schematically the data processing in a sliding window. The step width between
successive analysis windows is dt, and the analysis is performed over the whole trace length from t=start to
t=end.

In order to extract an adequate parameter set for the wavefield characteristics observed at Merapi
volcano, test runs have been performed on many hours of continuous network data as well as for
several dozens of individual volcano-seismic events. In addition the results from interactive spec-
tral analysis and the evaluation of the array response functions with synthetic signals have been
taken into account for tuning the configurable preprocessing and method specific processing
parameters. The finally derived parameter settings have been summarized in Table 7.1.

The analysis methods discussed in sections 7.1.1. to 7.1.3. have been used extensively in the past
few years (e.g. Goldstein and Chouet, 1994, Almendros et al., 1997, 1999, Del Pezzo et al., 1997)
in order to improve the knowledge about the complex seismic wavefield observed at volcanoes
and to describe the characteristics of volcano-seismic signals. From the seismological point of
view, all of the discussed wavefield parameters provide information for the discrimination of the
known volcano-seismic signal classes at Mt. Merapi. However, the importance of the individual
signal parameter for the given classification task is yet unknown.
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TABLE 7.1 Fixed parameter set derived in test runs for the continuous parametrization of the seismic wavefield.
Preprocessing parameters: due to the heterogeneity in instrument deployment (both short-period and broadband
sensors) a simulation of a common instrument response after Seidl (1980) is applied.

Broadband frequency N~ .
Parameter wavenumber analysis polarization analysis sonogram
Seismometer simulation yes yes yes
corner frequency / 0.5 0.5 0.5
fraction of crit. damping 0.7 0.7 0.7
Butterworth bandpass filter yes yes no
zero-phase? yes yes -
lower corner frequency 0.5Hz 0.9
upper corner frequency 10.0 Hz 6.0
number of poles 8 8
Sliding window length 3s 15s 3s
step width dt 0.2s 0.2s 0.2s
taper function cosine taper - cosine taper
percentage taper 70 % - 70 %
number of freq.-bands: 8
hob,: 0.53 - 0.88 Hz
hob,: 0.79 - 1.31 Hz
hoby: 1.18 - 1.97 Hz
method specific frequency band: 0.9 - 6.0 Hz ) hoby: 1.78 - 2.96 Hz
parameters max. slowness: 3.0 s’/km hol; 2.67 - 4.44 Hz
hohys: 4.00 - 6.67 Hz
hoby,: 6.00 - 10.0 Hz
hobg: 9.00 - 15.0 Hz

To determine the usefulness and the discriminative power of the individually derived parameters
the following points have to be clarified. The first deals with the question regarding the robustness
of the individual feature estimates for commonly encountered limitations of the waveform data
quality and will be discussed in section 7.2.1.. Signal parameters which show unstable behavior
with respect to the quality of the input data have to be considered as at least uninformative, if not
as confusing for the classification process. Hence, features which can not be guaranteed to pro-
vide stable estimates must be excluded from the overall set of features. Secondly, it is necessary to
judge whether the signal parameters under consideration contain the necessary amount of infor-
mation to distinguish the seismic event classes. In section 7.2.2., a qualitative approach is used to
address this question.

7.2.1. Robustness of signal estimates

The important demand of robust and stable classification results for a system which works on con-
tinuous input data can only be achieved, if the acquired features prove to be sufficiently robust
against unexpected deterioration of the raw measurements. In order to allow a robust estimation
of the short term signal attributes, much care was taken in the numerical implementation of algo-
rithms and in the determination of adequate preprocessing/processing parameters. However, prob-
lems for the robustness of parameter estimates will be encountered in case of obscured or
incomplete waveform data. Common disturbances of seismogram recordings within Merapi’s
seismic monitoring network have been obtained from the visual data control during the first
months of continuous operation.
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From the visual analysis it has been recognized that three distinct situations have to be considered,
which affect the quality of input data and consequently may pose problems for the robustness of
signal estimates. The first one is the inevitable occurrence of sporadic noise bursts and short tran-
sient signals at single stations, which are mostly connected to man-made activity in the surround-
ing farm land. Due to the usage of array processing techniques, no major influence on the
robustness of the signal estimates will occur for this type of data limitations. However, besides the
occurrence of those uncorrelated and mostly low energetic ambient vibration signals, a second
type of data obscuring signals has been frequently observed. These signals are nearly perfect
spike signals and can be often correlated within the whole seismic network showing a maximal
time delay of one sample between the different array sites. The induction of electromagnetic
pulses into the signal cables has been considered as most plausible explanation for the spike
recordings, although the cause of this kind of noise signal is still unclear. The high-energetic and
correlated spikes cause a severe problem in the calculation of signal parameters. The energetically
dominating spike recordings lead to constant values for all of the estimated wavefield parameters
for the total duration of the analysis window. The attempt to include de-spiking algorithms in the
preprocessing step of the data showed no satisfactory improvements in the estimate of the signal
parameters. Consequently, much effort has been spent upon the attempt to reduce the strength and
number of spikes recorded. It was found, that an appropriate grounding of the seismometer signal
cable shield was sufficient to eliminate this problem (December, 1997).

The third situation leading to a deterioration of data quality is encountered, if single station drop-
outs occur in the monitoring network. Due to the harsh environmental conditions at Mt. Merapi
(see also section 6.2.), the temporarily failure of individual instruments, e.g. caused by insufficient
power supply or hardware damage, could not be completely avoided. Hence, during certain time
periods only recordings from a subset of the total small-aperture array configuration have been
available for the data analysis.

Whereas for the computation of polarization and spectral attributes even a single running station
is sufficient to obtain reasonable (although less robust) signal parameter estimates, at least three
stations must be available to allow the computation of all parameters in the bbfk method. Espe-
cially for the case that only registrations of less than three stations are available, the values for the
horizontal slowness and the backazimgth  provide no meaningful result. However, for two sta-
tions, the semblance calculation (RP), and the estimate of the signal strength (AP) as given by
EQ 7.1 and EQ 7.3 are still appropriate measures, which may be used for the classification.

A second critical point for the robustness of bbfk parameter estimates is due to the fact that the
array resolution properties depend on the array geometry. The influence of a reduced array config-
uration on the theoretical array response is shown in Fig. 7.5.
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FIGURE 7.5: Theoretical array response functions for a band-limited signal in the frequency range from
0.5 Hz to 10 Hz. The upper row shows the results for the complete small-aperture arrays KLT, GRW and
KEN, respectively (from left to right). Lower rows display the array response functions for a reduced
configurations with three stations only. The corresponding station geometry is shown for each plot on the
left side of the array response. The cross symbol gives the position of the center of gravity within the
configuration.

As expected, the shape of the array response changes significantly if one of the array stations is
missing. Nevertheless, even in the case of a reduced array geometry, the array response function
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shows still a sufficiently smooth behavior to allow the use of the implemented non-linear maxi-
mum search algorithm.

A major shortcoming has been found for the stability of RP-values calculated for different array
geometries (e.g. only three stations available instead of four). Although, the results of RP-calcula-
tions provide in all cases a meaningful measure of coherence, the range of the computed RP-val-
ues is not comparable between the different array configurations. An explanation for this behavior
can be given from the discussion in 7.1.1., where the similarity of RP-computation and the defini-
tion of the semblance coefficient has been noted. Hence, the basic statistics for the semblance
coefficient apply equally well for the RP-measure. Douze and Laster (1979) showed, that the sem-
blance statistics can be approximately related to a non-central F-distribution with degrees of free-
domv; ,v, and non-centrality paramefer . Those parameters can be expressed in terms of both
the bandwidth time product of the analyzed data window and the number of stations used for the
semblance calculation. Whereas the bandwidth time product is not subject to change in the con-
tinuous bbfk-analysis (see Table 7.1), the failure of a single station in the small-aperture array will
change the characteristics of the underlying distribution, hence the expected range of the relative
power measure. The dependency of the estimated RP-values on the number of available stations is
an undesirable shortcoming regarding the necessity of robust feature estimates for the classifica-
tion process. However, no satisfactory solution for this problem can be given in a straight forward
manner. Although the statistics for the semblance coefficient is approximately known, in the
present application only the maximal relative power within an analysis window is taken into con-
sideration. Therefore it would be necessary to derive an expression for the extreme value statistics
of the RP-coefficient as a function of the available number of stations. A more practical solution
might be obtained by evaluating synthetic test data in order to derive an empirical mapping func-
tion of the RP values range for different array configurations.

Focusing on the main aspect of this study, the investigation of the applicability of a hidden
Markov model based classification system, it was decided to use always the same station configu-
ration for the computation of signal parameters. Any inconsistencies of feature estimates which
are related to data recording problems are thus avoided. For the selected time span prior to Mt.
Merapi’s eruption in July 1998 (1998/07/01 to 1998/07/05), some stations were out of operation,
namely, KLT2 and KLT3 (broken data logger), GRW3 (seismometer failure), and horizontal com-
ponents of stations GRW2 and KEN3 (electronic noise on A/D channel boards).

7.2.2. Class-dependent feature characteristics and distributions

The evaluation of the discriminative power of the individual feature estimates for the classifica-
tion task has been obtained qualitatively by visually displaying certain properties of the signal
attributes. Recalling the structure of a discrete hidden Markov model classification system (com-
pare Fig. 5.1 in section 5.4.), it is necessary to check the class-dependent parameter distributions
for both the vector quantizing part of the classification system (time independent) as well as for
the context dependent hidden Markov modeling stage (time dependent).

The continuous data streams in the time period from 1998/07/01 to 1998/07/05 have been ana-
lyzed for each of the array sites GRW, KLT, and KEN with the software mochpeand the fixed
parameter settings as given in Table 7.1. In order to investigate the characteristics of the individual
signal parameters for each signal class separately, time segments of 120 s length have been
retrieved from the continuous results of tbap output files for all samples within the selected
training sets (compare section 6.2.). Five event classes are considered at this point: 30 samples of
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VTB type events (Fig. 6.5), 30 MP-type events (Fig. 6.6), 60 time windows containing seismic
noise, and two separate classes of Guguran type events. The heterogeneous training set for the
Guguran events has been divided into shorter and longer waveform samples, as the signal duration
seems the most apparent criterion for separation. Thus, the lowermost 15 samples of Fig. 6.7 with
signal durations less than 100 s build the “short Guguran” class (GS), and the 15 uppermost sam-
ples of Fig. 6.7 (longer than 100 s) are referred to as “long Guguran” class (GL) in the following.

A color coding scheme is introduced at this point for the different event classes and will be kept
throughout the following discussions. The VTB-class is displayed in red colors, the MP-class in
blue colors, the Noise-class (N) is shown in yellow tones, the GS type events are displayed in tur-
guoise colors and the GL samples are shown in green colors.

In order to compare the range of feature values for the different event classes, empirical probabil-
ity density functions have been obtained by the computation of histograms for each of the selected
training sets and signal parameters, respectively. Every single time step in the sliding window
analysis has been treated as an individual result of a random experiment. Thus, the distributions
show the time-independent range of feature values and the corresponding likelihood of occur-
rence. Therefore, a qualitative judgement of the clustering properties of the individual features for
different event classes can be obtained. For evaluating the discriminative power of signal esti-
mates in the hidden Markov modeling stage of the classification system, the context dependent
information of the individual features has to be considered. Hence, the individual time series of
the feature estimates have been aligned with respect to the apparent signal onset in each event
class separately. From the properly aligned time series, class-specific sample means and variances
have been calculated at each single time step and for all signal parameters, respectively. The
resulting mean time-patterns of the signal parameters for the different seismic event families
enable a qualitative valuation of class separability. The discrimination between event classes is the
better, the less the class-dependent time patterns overlap.

Fig. 7.6 shows for the array-site GRW the mean time patterns of the 16 signal parameters (solid
lines) together with their corresponding uncertainty regions (one standard deviation, dashed
lines). On the right-hand side of each time-pattern plot, the class dependent histograms of the sin-
gle features are shown. In order to enable a better visual discrimination of the individual seismic
event classes, the class-dependent feature patterns and histograms are plotted in the color of the
corresponding event class, as has been introduced above. The overall feature histogram for all
classes together has been drawn as black line. In the left part of Fig. 7.16 the signal parameters
obtained via the bbfk-method and the polarization analysis are displayed. The definitions of the
coherency measureP , the beampower estinfie , the horizontal slowness , and the backa-
zimuth of the most coherent plane wave arrigg) are givenby EQ 7.1 (p. 72), EQ 7.3 (p. 73),
EQ 7.4 (p. 73), and EQ 7.5 (p. 73), respectively. The mathematical formulations for the polariza-
tion attributesB, (incidence anglep,  (backazimuttgct (rectilinearity as measure of degree
of linear polarization), angblan (planarity of polarization ellipsoid) have been givenin EQ 7.11

(p. 76), EQ 7.10 (p. 76), EQ 7.8 (p. 75), and EQ 7.9 (p. 75). In the right half of Fig. 7.6 the eight
spectral energy attributdsob;, hobg as have been defined in EQ 7.13 (p. 78) are shown. The
frequency bands used for the calculatiomob, hokyg are given in Table 7.1.
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FIGURE 7.6: Time patterns of individual signal parameters for the different event-types recorded at
array-site GRW. Dashed lines indicate the limits of the uncertainty region (one standard deviation). On the
right hand side of each plot, the class-dependent feature distribution taken over all time frames is
displayed. The colors correspond to the different event types. The selected color coding scheme is: VTB <>
red, MP <> blue, long Gugurans GL <> green, short Gugurans GS <> turquoise, Noise N <> yellow. The
abbreviations used for the signal parameters correspond to their definitions as introduced in sections 7.1.1.
to 7.1.3. For more details of interpretation, see text.
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The following observations can be made from Fig. 7.6. In both the time-pattern display as well as
in the feature histograms it is recognized, that the absolute beamp®iver , and the logarithmic
spectral power estimatdwb, hobg  provide significant higher discrimination capabilities than
the rest of the calculated signal parameters. This result is by no means surprising, as amplitude
and frequency attributes have been the most important information for the visual seismogram
analysis in observatory practice. Taking a second look on the time-patterns of the parddketers
and®; , it can be noted that at least for the VTB-class (red color) in comparison to all other event
classes a significant deviation of the path is observed around the event onset time. Due to the short
time interval, in which this signal parameter deviation is apparent, it is not notable in the corre-
sponding histograms. A similar observation can be made for the polarization attrjiates and
rect, although the differences between VTB-class and the other event classes is less pronounced.
The signal estimates for the horizontal slownsss , and the backazimuths obtained via the bbfk
analysis@,,q, and the polarization analygis , respectively, do not show any valuable informa-
tion for the discrimination of event classes.

It must be noted, however, that the sample mean and variance are not an appropriate measure for
angular functions. Additionally, it is difficult to integrate the backazimuth parameigss and

@p in their angular form into the feature vector, as the euclidean distance, which is implicitly
assumed for the subsequent vector quantization process, provides no meaningful vector norm for
these parameters. Hence, the backazimuth paramgjgis  @-and  can not be regarded as useful
features in the numerical classification process, although they contain important information from
the seismological point of view (e.g. source receiver path geometry and interpretation of observed
wavetype).

The linear x-y plot of time-patterns in Fig. 7.6 seems to be of questionable value for distinguish-
ing closely spaced event classes. Thus, an alternative approach for displaying the class-dependent
time-patterns is presented in Fig. 7.7, which has been derived from a graphical technique named
polygon plot(Chambers and Kleiner, 1987). Now, the time axis is warped along a circle, whereas
the feature value range taken over all training sets [min,max] is scaled to the interval [0,1] and is
displayed on the radial axis from the circles’ origin.

For each feature estimate the class-dependent time-pattern is drawn as a black line on top of its
uncertainty region (one standard deviation), which is plotted in the color of the corresponding
event class. As the polygon plots are displayed separately for the distinct event classes, a better
visual discrimination of the time-patterns is achieved. Even small differences in the single class-
dependent patterns can be detected, as they result in a considerable change of size and shape of
the class dependent polygon plots. Therefore Fig. 7.7 enables a better judgement of the expected
separability of the individual classes in the classification process.

The outstanding properties of the VTB-event class have been already noted before, however, they
become even more apparent in the polygon plots. The narrow uncertainty regions which are rec-
ognized for nearly all parameters in the polygon plots of VTB type events for more than 30 s after
the signal onset (first quarter of circle, clockwise from top) are best explained by the homogeneity
of the selected training set. By comparing the individual polygon plots for the other event types,
the following characteristics can be observed. The GL-class shows quite distinctive behavior for
the signal parametersob; hob; , and less pronounced differences to other event types are
observed for the parametef® holy, hob; , dmolb; . For some of the signal parameters, i.e.
RP and®; , the polygons plotted for the MP-class show similarities with those of the VTB-type
class. For other features, however, the MP-class seems to share more properties with the GS event
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class (e.ghob; antiob, ). A similar ambiguity is noticed for the GS event class, as there are not
only individual features showing characteristics likely to MP-class, but also others, which are
visually more similar to the noise class.

FIGURE 7.7: Polygon plots (Chambers and Kleiner, 1987) for the class-dependent time-patterns of
individual feature estimates. The time axis is warped onto a circle, whereas the feature values are plotted in
the radial direction. Positive time is plotted in a negative mathematical sense. Black lines indicate the mean
time patterns plotted on top of the corresponding uncertainty regions in the color of the specific event class.
For better comparison of the polygon plots, the signal onset of the event classes have been aligned and
rotated so that the signal onset points to the top in each polygon plot. Even small differences in the mean
time patterns between event classes are observed by a considerable changes of the visual aspect of the
polygon plots. Patterns, that are easily distinguished for one event class when compared to others are
marked with (*). Details of the interpretation are given in the text.

From both Fig. 7.6 and Fig. 7.7 it is possible to judge the discriminative power of the single fea-
ture estimates qualitatively. Most important for the numerical classification process appear the
energy attributeAP together with the relative spectral power featbdg hoby . The signal
coherence estimaf@P , as well as the polarization attriiges  (incidence aegle), (rectilin-
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earity) andplan (planarity) contain additional information which allow to visually discriminate

the VTB-event class against all other seismic event classes. No apparent information for the seis-
mic class discrimination is contributed by the signal parameters (horizontal slowness), and the
backazimuth obtained via the bbfk and polarization analggjs, @nd , respectively. From the
polygon plot in Fig. 7.7 it is suggested, that the VTB class is most easily distinguished from all
other event types. Second best performs the GL-class in this aspect, whereas the MP-class events
and the GS events seem to contain similar wavefield properties and it is therefore expected, that
those event types pose difficulties for being classified at a high confidence level.

The qualitative interpretations so far have been made on basis of the signal parameters calculated
for the waveform samples recorded at the array-site GRW. The same procedure has been followed
for the remaining small-aperture arrays KLT and KEN in order to check the information content

of the single feature estimates at those recording sites. The resulting displays, however, turn out to
be nearly identical in their appearance if compared to the presented figures for array GRW. Hence,
all statements given above hold also for the wavefield parameters at sites KLT and KEN. No addi-
tional properties have been observed neither at the array KLT nor array KEN.

7.2.3. Feature vector used for classification

On the basis of robustness criteria (7.2.1.) and the qualitative interpretation of graphical displays
of the individual feature characteristics (7.2.2.) it has been possible to judge the relevance of the
wavefield parameters for the classification process. The following features have been selected as
components of the basic feature vector for each array:

 relative poweRP from bbfk analysis,

« absolute poweAP from bbfk analysis,

« incidence angl®, from polarization analysis, used in the fmm(ep/90°) ,
+ eight spectral power estimateeb; helby

The probability density distribution observed for the incidence afigle is heavily skewed. It can
be recognized from Fig. 7.6, that the most frequent observed values (maximum in histogram) lie
close to the upper limit of the valid feature value range. This is an undesired property regarding
the feature selection step by means of an optimal linear transform as well as the construction of a
vector codebook. In a strict sense, both of these processing steps depend on the assumption of
normally distributed feature vectors. Hence, it is common practice in pattern recognition applica-
tions to transform unfavorably distributed features in order to obtain a distribution which resem-
bles a closer approximation of the normal distribution. By using dicey ) transformation
function it is possible to obtain at least a two sided distribution for the signal par&peter

The remaining parametess @, @» rect ,apdan have been excluded according to the fol-
lowing argumentation:

« Both the time patterns and the class dependent histograms of the horizontal slewness
are highly overlapping. No pronounced properties peculiar to one signal class have been
noted for any of the analyzed event classes. Therefore, the wavefield parameter has
been judged as uninformative for the classification task.

« The backazimuth valug,,;  calculated via the bbfk-algorithm can not be considered for
the classification as the euclidean norm is not an appropriate vector norm for this param-
eter (necessary requirement for the vector quantization step). Additionally, for the array
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site KLT no meaningful value ofp,,, can be obtained due to limitations of the input
data (temporarily unavailable waveform data, compare discussion in 7.2.1.). Finally, no
perceivable event-specific characteristics could be observed in Fig. 7.6 or Fig. 7.7 for this
signal parameter.

« The wavefield parameteg, can be ruled out as candidate for the classification by anal-
ogy to feature@,,q . Due to its cyclic nature, the euclidean vector norm can not be
applied. Furthermore, no discriminative power has been recognized in the visual dis-
plays.

« The polarization attributesect (rectilinearity) anplan  (planarity) have been judged
as useful parameters at first hand. However, they provide a very similar information as
the incidence angl8, in the context of classification. Differences in the mean time pat-
tern of rect and plan have only been notified for the outstanding VTB event class.
However, it has been felt, that the discriminative power for these features is less pro-
nounced if compared to the polarization attrib8e . Thus, in order to not increase the
dimensional complexity of the classification problem without need, the rectilinearity and
planarity parameters have not been included into the primary feature vector.

The dimension of the resulting primary feature vector is 33 - 11 parameters for each of the three
arrays. The assignment between the wavefield parameters and individual components within the
feature vector is given in Table 7.2.

TABLE 7.2 Components of primary feature vector used for classification after individual feature analysis.

component number feature (wavefield parameter) / site

1 RP / GRW

2 AP / GRW

3 8p / GRW
4-11 hob, - hobg / GRW

12 RP /KLT

13 AP [ KLT

14 GP / KLT
15-22 hob; - hobg /KLT

23 RP / KEN

24 AP / KEN

25 GP / KEN
26-33 hob; - hobg /KEN

In order to reduce the dimensionality of the feature vector space, a prewhitening transformation is
applied to the original feature vector (compare section 4.3.1.). As the euclidean norm is used as
distance measure in the subsequent construction of a vector codebook, the normalization proper-
ties of the prewhitening transform allow a balanced weighting of feature components regardless
of their individual distributional parameters (mean and variance, respectively). The coefficients of
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the transformation matrix are obtained via solving the eigenproblem of the sample covariance
matrix estimated for a large sample set of original feature vectors.

Hence, all time samples of the event-specific training sets (see section 6.2.) have been included
into one single set of feature vectors for estimating the sample covariance matrix in the original
feature vector space. After solving the eigenproblem, the eigenvectors are sorted according to the
magnitude of their corresponding eigenvalues, from largest to smallest. Then each row has been
normalized with the square root of its corresponding eigenvalue (compare EQ 4.8 in section
4.3.1.). Applying the derived transform to the original feature vector yields a de-correlated and
normalized feature vector of equivalent dimension (33).

In order to reduce the dimension of the transformed feature vector space, two criteria have been
used to determine the number of feature componénts . As has been pointed out in section 4.3.1.,
one possible argument can be found from the magnitude distribution of the obtained eigenvalues
while constructing the transformation matrix. The smaller an eigenvglue  in comparison to the
largest eigenvalug, , the less important it is for the accurate representation of the original feature
vector. As a general rule, singular values which are six orders of magnitude smaller than the larg-
est eigenvalue are regarded as being numerically equivalent to zero, as it is the relative accuracy
of single-precision floating point operations for common computers. A threshold of 1.e-5 has
been used here for determining the index of the smallest “non-zero” eigenvalue. Applying this cri-
terion has resulted in the dimension =25 in the transformed feature vector space. However, in
the present data set, it has been even possible to extend the dimendion to =33, without running
into numerical stability problems.

The second criterion for estimating a reasonable valuelfor has been obtained, when the attempt
was made to visualize the effect of the prewhitening transform. Pairwise scatterplots (e.g. Cham-

bers and Kleiner, 1987) have been used to display the characteristics of both the original and the
transformed feature vector spaces (Fig. 7.8., sub-figures a) and b), respectively).

Each individual square in Fig. 7.8 displays the class-specific mean time patterns (in their respec-
tive colors) for a pair of feature components. The individual plots are arranged in an upper trian-
gle matrix for each sub-figure. Within each column one specific feature component is plotted on
the x-axes, whereas from bottom to top all other feature coordinates are plotted on the y-axis. The
range of the individual feature components is given at the bottom of each column and at the right
of each row, respectively. On top of each column and to the left of each row, histograms of the
corresponding signal parameters are displayed separately for each event-class (compare Fig. 7.6).

Comparing sub-figures a) and b) in Fig. 7.8, it can be observed, that the ranges are modified as
expected for the transformed feature components. Whereas in the original feature vector space the
ranges span nearly two orders of magnitude, the feature value ranges are much more homoge-
neous in figure b). Additionally it is felt, that the separation of the class-specific time patterns is
higher for the transformed feature vectors. l.e. for the feature combination 1 and 2 in sub-figure
b), both VTB and GL show clearly distinct trajectories with respect to the other classes. A pretty
good discrimination of time patterns in Fig. 7.8, sub-figure b) has been observed for feature indi-
ces lower than 8. Thus, by this visual interpretation, a value of 7 is suggested as a reasonable
choice ofd for reducing the dimension of the transformed feature vector space.
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FIGURE 7.8: Pairwise
scatter plots for the first
11 feature components
of a) the un-transformed
feature vector, and b) the
feature vector after
applying the prewhit-
ening transform. Each
individual square plot
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whereas from bottom to top all other feature coordinates are plotted on the y-axis. The range for each
feature component is therefore given just once on the bottom of each column and to the right of each row.
On top of each column and to the left of each row, the individual component histograms are given
separately for each event-class. Comparing a) and b) it can be observed, that the ranges are modified as
expected for the transformed feature components. Feature ranges are more homogeneous in figure b).
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In order to allow an evaluation of the influence of feature transformation and reduction of dimen-
sionality onto the overall classification performance, it has been decided to make use of all the
four feature vectors described so far. Thus, besides the original feature Veatgr ( compare

Table 7.2), the transformed, but dimensionally equivalent feature vector of dimension
d = D = 33 (“raw_pw33"), as well as the two transformed feature vectors of reduced dimen-
sionsd = 25 (raw_pw25”) andd = 7 (raw_pw07”) have been used for the subsequent clas-
sification task.

7.3. Training of vector codebooks

In the previous sections of this chapter a parametrization scheme for seismic waveform data at
Merapi volcano has been developed. The individual wavefield parameters have been analyzed
with respect to the robustness of the signal estimates as well as their inherent relevance for the
subsequent classification of seismic events. A set of four distinct feature vectors has been selected
based on both seismological argumentation and pattern recognition considerations.

These feature vectors build the basic input for the combined VQ/DHMM classification approach.
In order to estimate a codebook of representative vectors for the use in the vector quantization
stage of the classification system, an unlabeled training set of feature vectors must be available.
The training set, that has been used for estimating the prewhitening transform in section 7.2.3. has
been reevaluated for this purpose. Hence, all time samples taken over all class-specific training
sets (see section 6.2.) have been used for learning the codebook by means of the LBG-algorithm
(section 5.5.1.).

In order to start the iterative optimization procedure for the vector codebook, it is necessary to
specify the codebook size, a fixed quantity describing the number of prototype vectors to be esti-
mated. For determining a reasonable dimension of the vector codebook, the following trade-off
has to be taken into account. It is evident, that the approximation of the underlying density func-
tion of feature vectors within the feature vector space by a set of representative vectors (code-
book) is the better, the more codebook vectors are used. However, choosing a higher dimension
for the codebook in the vector quantization stage will also increase the number of parameters,
which have to be estimated in the hidden Markov model training. Therefore, the higher the num-
ber of free parameters within a hidden Markov model, the more training samples must be avail-
able to guarantee a robust estimate of model parameters in the training stage (compare 5.5.2.). In
contrast to speech recognition applications, where large databases of speech sequences can be
obtained easily in active experiments under laboratory conditions, it is difficult to acquire large-
sized training sets for (passively recorded) natural seismic signals. Thus, the generally limited
amount of available training samples within the present classification task forbids the use of high-
dimensional codebooks as well as the use of high-dimensional hidden Markov models.

Consequently, three small codebook sizes, containing 16, 32, and 64 prototype vectors, respec-
tively, have been used in this study. The latter two values are similar to the minimal values found
for simple speech recognition applications (e.g. Rabiner, 1989), where codebook dimensions typ-
ically range from 32 to 256. In total 12 combinations resulting from the four distinct feature vec-
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tors and the three different codebook sizes have to be considered for further processing. The

naming convention for the 12 codebooks is given in Table 7.3 for later reference.

TABLE 7.3 Nomenclature for combinations of feature vectors and codebook sizes for further processing.

codebook size

original feature
vector, D = 33

transformed feature
vector, d = 7

transformed feature
vector, d = 25

transformed feature
vector, d = D = 33

16 raw.ch16 raw_pw07.ch16 raw_pw25.cb16 raw_pw33.cb16
32 raw.cb32 raw_pw07.cb32 raw_pw25.cb32 raw_pw33.cb32
64 raw.ch64 raw_pw07.ch64 raw_pw25.ch64 raw_pw33.ch64

In order to minimize the effect of starting conditions on the quality of the final codebook estimate,
successive binary splitting of codebook vectors is used in the iteration process (e.g. Schukat-
Talamazzini, 1995).

After learning the codebooks, all individual time sequences of the available training sets have
been converted into symbol sequences by representing each feature vector per time window by an
ascii character connected to the entry number of the closest prototype vector in the codebook. An
attempt has been made to check the mapping properties of the vector quantization procedure by
calculating histograms from the quantized time sequences separately for each of the individual
event classes. As an example serves Fig. 7.9 for the codébmokpw?25.cbh32” (transformed

feature vector with reduced dimensidr= 25 , vector codebook size 32, compare Table 7.3).

0123456789ABCDEFGHIJKLMNOPQRSTUYV

relative frequency of occurrence

0 8 16 24 32
codebook entry number

FIGURE 7.9: Histogram of symbol occurrence for the individual event classes for the combination of 25
dimensional transformed feature vectors and 32 dimensional codebooKraw_pw25.cb32). In the upper
third of the figure the symbol table is given (represented by ascii characters). Red stars indicate the VTB-
class, blue squares depict the MP-class, green and turquoise diamonds represent classes GL and GS, yellow
triangles stand for the N-class (noise).
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By comparing the class-dependent symbol histograms it can be recognized, that single symbols
(.e.0,3,4,6,8, A C,D,K, O, S, T, and V) occur dominantly within a single event class (e.g. 4,

8, C, K, O, S for VTB-class). It can be concluded, that special time intervals of the class-wise fea-
ture patterns fall into distinct regions of the feature vector space, a behavior, which has been
already suggested in the pairwise scatterplots (Fig. 7.8). Therefore, it can be stated, that even in
this context-free (time-independent) view of the class-dependent wavefield patterns, a significant
amount of information is available for discriminating the given event classes. From the previous
discussions it is no surprise, that this characteristic is most clearly observed for the VTB event
class.

The histograms in Fig. 7.9 can be seen as averaged symbol output probabilities for the individual
event classes (compare 5.2.). Hence, it is felt, that hidden Markov models trained on this vector
guantized sequences, will allow a good discrimination of signal classes, as the context-dependent
information of the wavefield patterns is additionally included into the classification process.

7.4. Training of discrete hidden Markov models for seismic signal
classification

The estimation of the parameters of discrete hidden Markov models, as discussed in 5.3.3.,
requires for each model to be trained: a) a set of symbol sequences as input for the learning algo-
rithm, and b) the specification of model topology and model dimension, i.e. the number of states

to be used (compare 5.5.2.). Both the preparation of the training sets and the decision for an
appropriate model topology and dimension are discussed in the following.

Until now, just a single noise class has been considered for the classification system. However,
from the discussion in section 4.2., it must be concluded, that the variety of ambient vibration sig-
nals at Merapi volcano are probably not well represented by a single homogeneous class. From
the previous discussion of feature characteristics, there has been no special observation which
suggests the necessity of building distinct noise classes. However, during the interactive wave-
form analysis at the individual seismic network stations for the purpose of manually selecting
training sets, it has been observed, that the non-signal parts of the seismic records can be divided
at least into two main groups. Ambient vibrations recorded during working hours (local time)
show significant distinct wavefield parameter distributions as seismic noise recorded during night-
time. A display of this observation is provided in Fig. 7.10 for the array sites GRW and KLT. The
time evolution of wavefield parameter distributions for the complete 5-day period from 1998/07/
01 to 1998/07/05 has been obtained by computing histograms of the individual signal attributes
within 3-hour windows (54000 samples). The complete set of window frames within 3 hours is
evaluated, i.e. the time series have not been cleaned from transient seismic signals. However, as
the fraction of time windows containing seismic noise is clearly dominant in every case, the
resulting parameter density functions have been considered to represent mostly the characteristics
of the seismic noise. Strong shifts of the maximum of the individual parameter histograms can be
recognized from Fig. 7.10. Those variations are clearly correlated with the working hours of the
local population (local time is GMT+7h). Most pronounced are the observed variations for the
energy measuresAP  arfioy  heb; ), whereas the incidence ¥glue  and the relative power
RP are less affected. The differences between array sites GRW and KLT with respect to the abso-
lute size of the observed parameter shifts are to be explained by the proximity of the array sites to
local farm land. Whereas GRW is surrounded by tobacco plantations, at KLT only a small number
of farmers cut occasionally plants for their cattle. Hence, from the above observations, the train-
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ing set of the noise class has been divided into two subsets, one comprising samples recorded dur-
ing working hours (“noise-day”, ND), one containing solely samples acquired during night-time
(“noise-night”, NN).
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FIGURE 7.10: Time dependency of feature histograms at two array sites for the time period 1998/07/01 -
1998/07/05. Energy attributesap andhob, -ho show strong variations of their respective histogram
maximum. Observed variations are strongly correlated to human activity.
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For the training procedure of hidden Markov models, it is necessary to select the individual train-
ing sequences carefully. In order to provide a proper training set, the waveform samples have been
aligned (as shown in Fig. 6.5 to Fig. 6.7) and segmented to contain only the seismic event, exclud-
ing any part from the signal which does not correspond to the seismic event class under consider-
ation. This procedure is fairly easy accomplished for the event classes VTB and MP, which show
more impulsive signal onsets and a stronger similarity of waveforms when compared to the other
event classes (GL and GS). For the VTB class events, the segmentation length has been setto 45 s
for all samples, whereas for the MP class a common length of 40 s has been selected. For classes
GS and GL, the individual waveform samples have been segmented manually, thus the duration of
signals is variable within the training set. The signal lengths for the GS training set range from
45 s to 90 s, and for the GL-class from 105 s to 165 s, respectively. For the two noise classes, ND
and NN, respectively, two subsets have been constructed, one with 60 s length, and one with 20 s
length. The specifications of the individual training sets are given in Table 7.4, together with a
nomenclature for later reference.

TABLE 7.4 Naming convention of individual training sets for discrete hidden Markov model training.

duration of sequence:
recording length in [s] remarks
number of frames in symbol sequence

training set size

name of set (number of samples)

manual segmentation,
GUGU.LONG 15 105s-165s/525 - 825 upper 15 samples of Fig. 6.7.
01/07 - 02/07/1998

manual segmentation,
GUGU.SHORT 15 45s-90s/225-450 lower 15 samples of Fig. 6.7
01/07 - 02/07/1998

aligned to signal onset (Fig. 6.6),
MP.LONG 30 40s /200 segmented from signal start
01/07 - 02/07/1998

no alignment
ND.LONG 30 60 s /300 samples during local day time
01/07 - 02/07/1998

no alignment
ND.SHORT 30 20s/100 samples during local day time
01/07 - 02/07/1998

no alignment
NN.LONG 30 60 s /300 samples during local night time
01/07 - 02/07/1998

no alignment
NN.SHORT 30 20s/100 samples during local night time
01/07 - 02/07/1998

aligned to signal onset (Fig. 6.5),
VTB.LONG 30 45s /225 segmented from signal start
03/07 - 05/07/1998

After specifying start and end times of each waveform sample in the training sets, the respective
time series of the seismic network have been processed to obtain the time series of wavefield
parameters for these time windows. Those have been converted to discrete symbol sequences,
resulting in one training set for each of the available feature vector / codebook size combinations
(compare Table 7.3). Thus, in total 8*12 = 96 training sets were obtained, which built the basis for
estimating the discrete hidden Markov models.

Besides providing a proper training set, two parameters have to be specified for the training proce-
dure. The model topology and the dimension (i.e. number of states) of the model, which is to be
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learned (compare section 5.5.2.). The model topology has been fixed to general left-right models,
l.e. the matrix of transition probabilitied is restricted to an upper triangle matrix. Left-right
models have been preferred to the more flexible ergodic topology, because a) seismograms show
typically a causal time structure, b) the analogy between speech signals and seismic signals of
volcanic origin (discussion in 4.5.) and the fact, that left-right models have been the common
choice in speech recognition applications, and c) because of the lower degree of freedom for left-
right models in comparison to ergodic models with equal number of states.

Unfortunately, there exists no straight-forward rule, how to choose an appropriate model dimen-
sion for hidden Markov models (see section 5.5.2.). However, as the number of free parameters
which have to be estimated grows with the number of states in a discrete hidden Markov model,
an upper limit is given from the amount of available training data. In order to provide a reliable
estimate of the model parameters, a sufficiently large sample set is necessary if the model dimen-
sion is high. Sometimes it has been suggested to associate the number of states with the number of
distinct physical events within a time sequence, which is to be represented by a hidden Markov
model (e.g. number of phones in a word, e.g. Rabiner, 1989). Considering earthquake seismo-
grams, a reasonable choice of the model dimension could then be given by the number of distinct
seismic phases (e.g. P, S, Lg, etc.). Volcano-seismic signals, however, often lack clear phase arriv-
als. Nevertheless, the waveforms can often be divided into three main parts: signal onset, energy
maximum and coda. Thus, it has been felt, that at least three states should be taken into account
for modeling seismic signals of volcanic origin. However, as the signal durations within each seis-
mic event class may vary significantly (a property which is observed especially for the Guguran
events), a larger number of states may be necessary to model seismic signals of longer duration.
To begin with, it has been decided to train several models for each signal class with a variable
number of states and to decide at a later stage which models to use for the classification system.

The discrete hidden Markov models have been trained (and evaluated) with the Viterbi algorithm
(see section 5.3.2.). In order to start the iterative training procedure, an initial set of model param-
eters has to be specified (compare section 5.5.3.). The seed values for the initial state probability
vectorTt and the state transition probabilitids= a; have been obtained randomly. For the state
dependent output probabilitiés = b, both random and data driven initialization strategies have
been used. In the data driven initialization, the output probability distributions for all states have
been seeded by the same a priori discrete density function, which has been obtained from estimat-
ing the likelihood of symbol occurrence for the corresponding set of training sequences (as shown
in Fig. 7.9). However, in most cases, the random initialization showed a more favorable maximum
in the cost function after convergence. When using the data driven initialization approach for the
model training, convergence was reached very early, usually within two or three iteration steps.
Hence, it has been concluded, that in the case of the data driven initialization, the seed models lie
too close to an unfavorable local maximum of the cost function. Thus, in the further, model train-
ing has been performed only with randomly initialized models.

For each training set (as given in Table 7.4) a set of discrete hidden Markov models with variable
model dimension has been trained. A total number of 20 iterations have been sufficient in every
case to converge to a local maximum of the cost function. The resulting models have been named
according the following scheme for later referencéraihing set name”’feature vector
name”.’codebook size””’number of statese.g. ‘GUGU.LONG.raw_pw33.cb16.08pecifies a

model of the GL class, for the codebook of size 16 estimated on basis of the transformed feature
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vector with dimension 33. Table 7.5 provides a summary of the trained models including the

range of number of states which have been used for each signal class.

TABLE 7.5 Nomenclature of trained discrete hidden Markov models, 48 models per feature vector / codebook size

combination have been obtained.

ch32

ch64

chl16

GUGU.LONG.raw.cb32.05-12

GUGU.LONG.raw.cb64.05-12
GUGU.SHORT.raw.ch64.03-08

raw

GUGU.LONG.raw.cb16.05-12
GUGU.SHORT.raw.cbh16.03-08
MP.LONG.raw.cb16.03-08
ND.LONG.raw.cbh16.03-08
ND.SHORT.raw.cb16.02-06
NN.LONG.raw.cbh16.03-08
NN.SHORT.raw.cb16.02-06
VTB.LONG.raw.cb16.03-08

GUGU.SHORT.raw.cbh32.03-08
MP.LONG.raw.cb32.03-08
ND.LONG.raw.ch32.03-08
ND.SHORT.raw.cb32.02-06
NN.LONG.raw.ch32.03-08
NN.SHORT.raw.cb32.02-06
VTB.LONG.raw.cb32.03-08

MP.LONG.raw.cb64.03-08
ND.LONG.raw.cb64.03-08
ND.SHORT.raw.cb64.02-06
NN.LONG.raw.cb64.03-08
NN.SHORT.raw.cb64.02-06
VTB.LONG.raw.cb64.03-08

GUGU.LONG.raw_pw07.ch64.05-12

raw_pwO07

GUGU.SHORT.raw_pw07.cb16.03-0
MP.LONG.raw_pw07.cb16.03-08
ND.LONG.raw_pw07.cb16.03-08
ND.SHORT.raw_pw07.cb16.02-06
NN.LONG.raw_pw07.cb16.03-08
NN.SHORT.raw_pw07.cb16.02-06
VTB.LONG.raw_pw07.cb16.03-08

MP.LONG.raw_pw07.cb32.03-08
ND.LONG.raw_pw07.cb32.03-08
ND.SHORT.raw_pw07.cb32.02-06
NN.LONG.raw_pw07.cb32.03-08
NN.SHORT.raw_pw07.cb32.02-06
VTB.LONG.raw_pw07.cb32.03-08

GUGU.LONG.raw_pw25.cb32.05-12
B

GUGU.LONG.raw_pw07.cb16.05-17 GUGU.LONG.raw_pw07.cb32.05-12
B GUGU.SHORT.raw_pw07.cb32.03-08 GUGU.SHORT.raw_pw07.cb64.03-0

MP.LONG.raw_pw07.cb64.03-08
ND.LONG.raw_pw07.cbh64.03-08
ND.SHORT.raw_pw07.cb64.02-06
NN.LONG.raw_pw07.cbh64.03-08
NN.SHORT.raw_pw07.cb64.02-06
VTB.LONG.raw_pw07.cb64.03-08

GUGU.LONG.raw_pw25.cb64.05-12
GUGU.SHORT.raw_pw?25.cb64.03-0

raw_pw25

GUGU.LONG.raw_pw25.cb16.05-12
GUGU.SHORT.raw_pw25.cb16.03-0
MP.LONG.raw_pw25.cb16.03-08
ND.LONG.raw_pw25.cb16.03-08
ND.SHORT.raw_pw25.cb16.02-06
NN.LONG.raw_pw25.cb16.03-08
NN.SHORT.raw_pw25.cb16.02-06
VTB.LONG.raw_pw25.cb16.03-08

B

GUGU.SHORT.raw_pw25.cb32.03-0
MP.LONG.raw_pw25.cb32.03-08
ND.LONG.raw_pw25.cb32.03-08
ND.SHORT.raw_pw25.cb32.02-06
NN.LONG.raw_pw25.cb32.03-08
NN.SHORT.raw_pw25.cb32.02-06
VTB.LONG.raw_pw25.ch32.03-08

MP.LONG.raw_pw25.cb64.03-08
ND.LONG.raw_pw25.cb64.03-08
ND.SHORT.raw_pw25.cb64.02-06
NN.LONG.raw_pw25.cb64.03-08
NN.SHORT.raw_pw25.cb64.02-06
VTB.LONG.raw_pw25.ch64.03-08

GUGU.LONG.raw_pw33.cbh64.05-12

raw_pw33

GUGU.LONG.raw_pw33.cbh16.05-12
GUGU.SHORT.raw_pw33.cb16.03-0
MP.LONG.raw_pw33.cb16.03-08
ND.LONG.raw_pw33.cb16.03-08
ND.SHORT.raw_pw33.cb16.02-06
NN.LONG.raw_pw33.cb16.03-08
NN.SHORT.raw_pw33.cb16.02-06

GUGU.LONG.raw_pw33.cbh32.05-12
B GUGU.SHORT.raw_pw33.cb32.03-0
MP.LONG.raw_pw33.cb32.03-08
ND.LONG.raw_pw33.cb32.03-08
ND.SHORT.raw_pw33.cb32.02-06
NN.LONG.raw_pw33.cb32.03-08
NN.SHORT.raw_pw33.cb32.02-06

8 GUGU.SHORT.raw_pw33.cb64.03-0
MP.LONG.raw_pw33.cb64.03-08
ND.LONG.raw_pw33.ch64.03-08
ND.SHORT.raw_pw33.cb64.02-06
NN.LONG.raw_pw33.ch64.03-08
NN.SHORT.raw_pw33.cb64.02-06

VTB.LONG.raw_pw33.ch64.03-08

VTB.LONG.raw_pw33.ch32.03-08

VTB.LONG.raw_pw33.ch16.03-08

In order to select favorable models and the best feature vector / codebook size combination for the
classification task out of the total set of 48*12 = 576 models (see Table 7.5), it is important to
assess their respective discriminatory power. As the models are estimated separately on their cor-
responding training sets, no discriminative cross-information is supplied in the learning process.
Hence, a model which provides a high score for discrete symbol sequences within its own class is
not necessarily a model, which performs worse for symbol sequences belonging to another class.
However, a “good” model is expected to discriminate between competing classes, hence, it should

provide high scores for its own class, but low scores for any other class.

A suggestion has been made by Juang and Rabiner (1985), how to evaluate the discriminatory
by:

power between two models. They defined a distance measure between two modelsh, and

d(ApAy) = Tiznogp(ozpl)—|ogP(oz|>\2)].

of lerigth

7.14

being a member of the class repre-

EQ 7.14 may be interpreted as the mean probability difference per input frame between models

A, andA, , given a discrete symbol sequeize
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sented by the model, . In EQ 7.14, the distania,, A,) is negative, if mogel provides a
higher score for the symbol sequence from its own data set than the competingkpodel . Hence,
in case thatd(A4, A,) s positive, a misclassification has occurred. It is important to note, that the
distance measure is not symmetric, d@\, A,) # d(A,, A;)

In order to evaluate the discriminative power of the trained discrete hidden Markov models, the
distance measure from EQ 7.14 has been calculated for each pair of models and for each available
feature vector / codebook size combination. As test sequebges |, the sequences from the mod-
els’ corresponding training sets have been used. A mean probability distance between model pairs
are obtained by averaging over all samples of the training set. Hence, for 48 models per feature
vector / codebook size combination, a total of 2256 average model distances have been evaluated.
For better comparison, these model distances have been displayed in bar chart plots (Fig. 7.11 and
Fig. 7.12). In each row, all individual model distances between a specjfic (model names are
given on the left side of each row), and all other models  (model names given on the bottom of
each column) are depicted as bars of heigifA,, A,) . The discriminative power between two
models is therefore proportional to the bar heights.

The colored background in Fig. 7.11 and Fig. 7.12 indicates which specific model pair is shown.
As has been introduced in section 7.2., the GL class models are displayed in green colors, the GS
models in turquoise, MP models are plotted in blue tones and the models for the VTB class are
shown in red colors. For the four noise sets, ND.LONG, ND.SHORT, NN.LONG, and
NN.SHORT, yellow (ND) and grey (NN) tones have been used. Discrete hidden Markov models,
which have been trained for one and the same seismic signal class, are visually distinguished by
choosing a different brightness of the base model color. The brightness is proportional to the
model dimension, i.e. the number of states within the individual models. The upper left triangle
within each signal class is displayed in the color of the madel , whereas the color beneath the
vertical bars show the color of modal, . A visual representation of the resulting recognition
accuracy in the two-class problery Vs, Is given by the respective grey-shading of the bar,
from white to black. If none of the samples in the training set has been misclassified, i.e. for all
sequencesd(A;,A,) >0 , the bar is displayed in white. The darker the bar, the more misclassifi-
cations have occurred. For five or more misclassified samples in the training set, the bar is filled
black.

The example given in Fig. 7.11 and Fig. 7.12 shows the results for the feature vector / codebook
size combinatiorfraw_pwO07.cb64”. In Fig. 7.11 it can be clearly recognized, that all models
trained for the VTB event class discriminate very well against all other models. Second best per-
form models from the GL class, which show high values for the pair-wise distance with respect to
the majority of models trained for the MP, ND, NN, and VTB classes. Less discriminative power

is observed for GL-models as concerns models representing the seismic signal class GS. GS-class
models discriminate bad against models of GL-type and discrimination against MP-class models
appears to be critical. The models trained for the MP class are especially difficult to discriminate
against GS-class models, however, small distance values are also observed for models stemming
from the GL-class.
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“raw_pwO07.ch64”
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FIGURE 7.11: Display of average model distances as given by Juang and Rabiner (1985). Bar height is
proportional to the model distance -d(x;, A,) . Bar shading is proportional to the number of misclassified
training samples for the two-class evaluation of the training sets. The higher the bar, the better the
discrimination capabilities between the pair of models. From top to bottom, all models for the 4 event
classes GL, GS, MP, and VTB are displayed. From left to right all competing models are considered.
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“raw_pwO07.cbh64”
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FIGURE 7.12: Same as Fig. 7.11 for noise class models ND and NN. Display of average model distances as
given by Juang and Rabiner (1985). Bar height is proportional to the model distanced(r;,A,) . Bar
shading is proportional to the number of misclassified training samples for the two-class evaluation of the
training sets. The higher the bar, the better the discrimination capabilities between the pair of models.
From top to bottom, all models for the 4 model classes ND.LONG, ND.SHORT, NN.LONG, and
NN.SHORT are displayed. From left to right all competing models are shown.

Regarding the discriminative power between the discrete hidden Markov models trained on the
volcano-seismic signal classes (GL, GS, MP, and VTB) and those which represent the seismic
noise (ND and NN), in general a high average pairwise model distance is observed in Fig. 7.11.
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An interesting exception is found for models from the MP-class with respect to models trained for
seismic noise samples recorded during night time (NN). Here, significantly lower values have
been obtained for the distanced(A;, A,) , if compared to the discriminative power between the
other models (GL, GS, and VTB) and the NN-class, respectively.

This observation is also found in Fig. 7.12, when focussing on the distance values evaluated for
the combination NN-class models against models of the MP-class. However, the reduced discrim-
inative power is less pronounced, as all noise class models (ND and NN) show lower discrimina-
tion capabilities with respect to any of the models trained for the volcano-seismic signal classes
(GL, GS, MP, and VTB, respectively). Additionally it can be recognized, that the discrimination
between the individual noise models (ND vs. NN and vice versa) seems to pose some difficulties.
However, this result is of minor concern in the present context, as for the applicability of a usable
classification system it is of no special interest, which type of seismic noise is recognized.

Averaging all model distances within a single row in Fig. 7.11 and Fig. 7.12, respectively, a mean

distance of model, against any model is obtained as:
LN
d(A,) = N Z d(A;, Ay). 7.15

i=1

The summation in EQ 7.15 is restricted to those models , which have been trained on a differ-
enttraining setthan, .The valuA,) can be interpreted as a measure of the recognition capa-
bilities of model A, for symbol sequences which belong to its own class in the multi-class
recognition problem. The largel(A,) , the less the likelihood, that a sequence belongingto  is
classified to a competing model, which is equivalently expressed assséd event’Counting

the total number of misclassified samples from the training set within a single row allows thus to
estimate the expected number of missed events in the multi-class recognition task. On the con-
trary, averaging all two-model distances within one column for a specific model

M
0D = i S dgA), 7.16

=1

o

provides a means to judge the mean discriminative power of any model against thexpodel . The
larger the value ofi(A,) , the smaller is the likelihood, that a symbol sequence of any class is
falsely recognized as belongingdq  in the multi-class recognition problem. This type of recog-
nition error is usually termed‘dalse alarm” in detection theory. Hence, the sum of false classifi-
cations within an individual column provides an estimate of the number of false alarms, which
have been produced by modgl in the pairwise classification evaluation.

Both the row and column averaged model distances as given in EQ 7.15 and EQ 7.16 have been
visualized in Fig. 7.13 for all 48 models within each feature vector / codebook size combination.
The mean discriminative power with respect to errors of type “missed event” is displayed as an
arrow to the right with its length proportional @W(A,) . The vertical dashed lines are drawn in
intervals of 1 from the center line. The arrows’ color depicts the average percentage of “missed
events” from green (0 %) to red (10 % and above). The color scale is given on the bottom of the
figure. Equivalently, the mean discriminative power with respect to errors of type “false alarm” is
shown as an arrow to the left with its length proportional to the quadi(ly ) . The average per-
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centage of “false alarms” is given by the arrows’ color, analogue to the error percentage for
“missed events”. Each row corresponds to a single discrete hidden Markov model for all feature
vector / codebook size combinations. On the bottom of each column, the overall mdék,df
andd(A;) obtained by averaging over all models is displayed.

feature vector raw raw_pw33 raw_pw25 raw_pwO07

codebook sizecB16 cb32 64 cB16 cb32 cbe4 cB16 cb32 cpe4 cB16 cb32 ches
NN.SHORT.raw.ch16.02  <s=ifdi | <eeiid == Ke=p == K= Ke=p Ke=p K= ==b ==h >
NN.SHORT.raw.ch16.03 <= == e < <= K=t =P <K= = == = <D
NN.SHORT.raw.cb16.04 == < <= K= = = = = == =
NN.SHORT.raw.cb16.05 == <= < K= = <= =D —— = >
NN.SHORT.raw.cb16.06 = <= <= <= < <= = = == ==
NN.LONG.raw.ch16.03 <F=—> — <= <= < <= K= = —— — <G
NN.LONG.raw.ch16.04 < <= e s 4 <= < <A < = — — ==
NN.LONG.raw.ch16.05  <====> R == <= <= < <= <= = = < =
NN.LONG raw.cb16.06 = <= <= < <= = == <3 o=
NN.LONG.raw.cb16.07 == == <= = <= = = == == f==>
NN.LONG.raw.cb16.08 <= <= <= <= <= <= <t = =
ND.SHORT.raw.cbh16.02 —— === (=—m=p (= =t =t =) <= <& e
ND.SHORT.raw.cb16.03 —— === <= <m= = < ==t =t <! <& ==t
ND.SHORT.raw.cb16.04 <= == == = = > g <
ND.SHORT.raw.cb16.05 = <= e = (= (D e = (==
ND.SHORT.raw.ch16.06 = - K== < = <= ==y <= ==
ND.LONG.raw.cb16.03 <=t} K= (=i = = < s L =
ND.LONG raw.ch16.04 = ) = K= == = < = =t
ND.LONG.raw.cb16.05 == <= = == <= > =
ND.LONG.raw.ch16.06 = == == <= K== K== =
ND.LONG raw.cb16.07 = = = e <= = = ==
ND.LONG.raw.ch16.08 = = == == == <= &= === o = ==}
VTB.LONG.raw.ch16.03 = = == Kt
VTB.LONG.raw.ch16.04 = = == = e
VTB.LONG.raw.ch16.05 f=—=p =" <= =) <F== == eSS
VTB.LONG.raw.ch16.06 K= =i =y = == K== ===
VTB.LONG.raw.ch16.07 === =D === == =) === == ==
VTB.LONG.raw.cb16.08 === = = == == — <H== <= = <= =
MP.LONG.raw.cb16.03 == — K== =4 = <H = = <! K==t =
MP.LONG.raw.ch16.04 = == = = <> < > G D> <= ==
MP.LONG.raw.cb16.05 <« = == < < < =i o > = ==
MP.LONG.raw.cb16.06 = = K= < > < K> =D <« = ==
MP.LONG.raw.ch16.07 <+« = = < ‘= < £ = > < ==
MP.LONG.raw.ch16.08 +« <=2 K== - < > K= <> ™ <=
GUGU.SHORT .raw.ch16.03 <= <= = <> ! <> == <= <= =
GUGU.SHORT.raw.ch16.04 <= <= == <> <= <> <= == = <= ==
GUGU.SHORT .raw.ch16.05 <= <= <= > <> <> g == <F=> <= <=
GUGU.SHORT.raw.cb16.06 = <= == <> = <> <F= == > <= =
GUGU.SHORT.raw.cb16.07 | i<==} = <= < <= <> <= == <= <= <=
GUGU.SHORT.raw.ch16.08 = <> = <> < <+ <= <= <+ <= (==
GUGU.LONG.raw.cb16.05 == == o= <= ke= == = (= == K= K==
GUGU.LONG.raw.ch16.06 == == > K= K= = L—==> <= =i <= ==
GUGU.LONG.raw.cb16.07 <= == <= = =i <=t = <= G i) =i
GUGU.LONG raw.ch16.08 K== = <= = == <= 2> e == K== <H=>
GUGU.LONG.raw.cb16.09 = == <= =" == 2> <= == = == K=t <=
GUGU.LONG.raw.cb16.10 = == =5 = = — Ko (= = ) =
GUGU.LONG.raw.cb16.11 = = K== = = = == <= e = <=
GUGU.LONG.raw.cb16.12 == == <= == <= <« =D <= = <= <=

<> < < <> <> <> <> <> <> <= <> <>
average taken over all models 0% 2% 4% 6% 5% 10%

— distance vs. competing models for sequence of own class
G distance vs. competing models for sequence of other classes

FIGURE 7.13: Averaged model distances obtained from Fig. 7.11 and Fig. 7.12 for each feature vector /
codebook size combination. Arrows to the right specify the average model distance of the model against all
over models. Itis interpreted as a confidence measure, how well the model recognizes sequences of its own
class. Arrows to the left give the mean model distance between all competing models and the specified
model. This is a qualitative measure of how easy the model will erroneously recognize a sequence which
belongs to a competing class. The color shade of the arrows indicate the percentage of misclassification
(for arrows to the right), and the percentage of false alarms (for arrows to the left). The according color
scale is given on the right bottom of the figure. In order to select favorable models for the classification
task, the best choice are models associated with large, green, and preferably symmetrically distributed
arrows.

By comparing the results for the different feature vector / codebook size combinations, it is
observed, that - on average - the highest discriminatory power is obtained for the feature vector /
codebook size combinatiofiaw_pw25.cb64” and“raw_pw07.ch64”.

In order to obtain a first estimate of the classification performance, the training set for each feature
vector / codebook size combination has been re-classified by using all corresponding models.
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This recognition task is usually termed isolated recognition (i.e. in speech recognition applica-

tions: isolated word recognition, IWR). In the isolated recognition task the test sequences are
known to be precisely segmented and to contain just relevant signal parts for the classification, i.e.
no preceding or succeeding noise.

Two different evaluation strategies have been used in the isolated recognition task. The first one
has been termed “single_best” evaluation (in the following abbreviatedlsly) and is based on

the test functions given by the individual likelihood measucgP(O|A;)) for each mqdel
normalized to the lengtii  of the input sequer@e . Thus, the classifier is composed of the test
functionspy(i) and subsequent decision riilg, as given in the following equations:

, 1
Psp(i) = T109(P(O4y)), 7.17.a
Ksp = argmax{ pg(i)} - 7.17.b
|

The classification result is counted as correct, if the test sequ@nce  stems from the same training
set, which has been the input for training mo#le}, , providing the highest log likelihood mea-
sure pg, forO . E.g. a sequence from the training set VTB.LONG is said to be classified cor-
rectly, if any of the individual VTB-models maximizes the right-hand term in EQ 7.17.a.

An alternative evaluation strategy is based on a slightly different definition of the test functions,
given by:

NK

Pa(K) = -Nl— Z _Tl_log(P(O|)\Ki)), and the decision rule 7.18.a
Ki'=1

Koy = arngax{ P(K)}, K =1,...,8. 7.18.b

The classification resuk ,, is given as the index of that signal atass , which provides the max-
imum p,,, of the average log likelihood measure forld|]  models representing one and the
same seismic signal clags . E.g., a test sequéhce  of lehgth  taken from the training set
VTB.LONG is correctly classified, if the average likelihood for all VTB models (six models, i.e.

N, = 6) maximizes the right-hand term in EQ 7.18.a, even if a single model (e.g. for MP-class)
gives the highest individual log likelihood for the test sequenkg(() in EQ 7.17.a). This evalu-
ation method has been termed “average_best” (referenc&l/asn the further discussion) for
obvious reasons.
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recognized class————»
true cb16 ! ch32 ! cb64

class GL GS MP NDL NDS NNL NNS VTB I GL GS MP NDL NDS NNL NNS VTB I GL GS MP NDL NNS NNL NNS VTB
GL 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 : GL 0.93 0.07 0.00 0.00 0.00 0.00 0.00 0.00 : GL 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

GS 0.07 0.87 0.00 0.07 0.00 0.00 0.00 0.00 GS 0.20 0.80 0.00 0.00 0.00 0.00 0.00 0.00 GS 0.07 0.93 0.00 0.00 0.00 0.00 0.00 0.00

MP 0.00 0.13 0.87 0.00 0.00 0.00 0.00 0.00 | mP 0.00 0.10 0.90 0.00 0.00 0.00 0.00 0.00 | MP 0.00 0.10 0.90 0.00 0.00 0.00 0.00 0.00

= NDL { 000 0.00 0.00 0.17 0.43 0.30 0.10 0.00 I NDL 0.00 0.03 0.00 0.47 0.33 0.17 0.00 0.00 I NDL { 0.00 0.03 0.00 0.83 0.07 0.00 0.07 0.00

9 NDS { 0.00 0.00 0.03 0.13 0.20 0.60 0.03 0.00 | nos | .00 0.00 0.00 0.20 0.23 0.5 0.0 0.00 | os | 000 003 000 033 017 0.00 0.47 0.00

v NNL { 0.00 0.00 0.00 0.00 0.00 0.87 0.13 0.00 [ 0.00 0.00 0.00 0.03 0.07 0.67 0.23 0.00 | nne {000 000 0.00 0.00 0.03 0.70 027 0.00
NNS { 0.00 0.00 0.07 0.00 0.00 0.37 057 0.00 | NNs | 0.00 0.00 0.08 0.00 0.00 0.30 067 0.00 | nns | 000 0.00 0.00 0.00 0.00 057 0.43 0.00

VTB { 0.0 0.00 0.00 0.00 0.00 0.00 0.00 1.00 | vre 0.00 0.00 0.00 0.00 0.00 0.00 0.00/1.00 | vre 0.00 0.00 0.00 0.00 0.00 0.00 0.00|1.00

I I

GL GS MP NDL NDS NNL NNS VTB

GL 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 GL 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 GL 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
N GS 0.13 0.73 0.13 0.00 0.00 0.00 0.00 0.00 Gs 0.13 0.87 0.00 0.00 0.00 0.00 0.00 0.00 GS 0.07 0.93 0.00 0.00 0.00 0.00 0.00 0.00
% MP 0.00 0.00/1.00 0.00 0.00 0.00 0.00 0.00 MP 0.00 0.07 0.93 0.00 0.00 0.00 0.00 0.00 MP 0.00 0.00/1.00 0.00 0.00 0.00 0.00 0.00
Q-I NDL 0.00 0.00 0.23 0.50 0.13 0.13 0.00 0.00 NDL 0.00 0.00 0.00 0.60 0.23 0.13 0.03 0.00 NDL 0.00 0.00 0.00 0.77 0.13 0.10 0.00 0.00
=
E NNL 0.03 0.00 0.07 0.03 0.00 0.70 0.17 0.00 NNL 0.00 0.00 0.00 0.03 0.00 0.57 0.40 0.00 NNL 0.00 0.00 0.00 0.00 0.00 0.83 0.17 0.00

NNS 0.00 0.00 0.10 0.03 0.03 0.33 0.50 0.00 NNS 0.00 0.03 0.00 0.00 0.03 0.33 0.60 0.00 NNS 0.00 0.00 0.00 0.00 0.00 0.63 0.33 0.03

V1B 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 VTB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

I I
I I
I I
I I
I I
NDS 0.00 0.00 0.13 0.33 0.37 0.10 0.07 0.00 I NDS 0.00 0.00 0.00 0.30 0.37 0.30 0.03 0.00 I NDS 0.00 0.03 0.00 0.33 0.37 0.20 0.07 0.00
I I
I I
I I
I I

GL GS MP NDL NDS NNL NNS VTB

GL 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 GL 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 GL 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GS 0.07 0.87 0.07 0.00 0.00 0.00 0.00 0.00 GS 0.13 0.87 0.00 0.00 0.00 0.00 0.00 0.00 GS 0.07/0.93 0.00 0.00 0.00 0.00 0.00 0.00
MP 0.00 0.00 0.90 0.00 0.00 0.10 0.00 0.00 MP 0.00 0.03 0.93 0.03 0.00 0.00 0.00 0.00 MP 0.00 0.10 0.90 0.00 0.00 0.00 0.00 0.00

NDL 0.07 0.00 0.00 0.77 0.13 0.03 0.00 0.00 NDL 0.00 0.00 0.00 0.83 0.10 0.07 0.00 0.00

NDS 0.00 0.03 0.00 0.47 0.30 0.10 0.10 0.00 NDS 0.03 0.00 0.00 0.43 0.33 0.17 0.03 0.00 NDS 0.00 0.00 0.00 0.33 0.57 0.07 0.03 0.00

NNL 0.00 0.00 0.00 0.00 0.00 0.70 0.30 0.00 NNL 0.00 0.00 0.00 0.00 0.00 0.87 0.13 0.00 NNL 0.00 0.00 0.00 0.00 0.13 0.80 0.07 0.00

NNS 0.00 0.00 0.00 0.00 0.00 0.27 0.63 0.10 NNS 0.00 0.00 0.00 0.00 0.00 0.20 0.80 0.00 NNS 0.00 0.00 0.00 0.00 0.00 0.40 0.60 0.00

VTB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 VTB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 VTB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

GL GS MP NDL NDS NNL NNS VTB
GL 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 GL 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 GL 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GSs 0.20 0.73 0.07 0.00 0.00 0.00 0.00 0.00 GS 0.00 0.93 0.07 0.00 0.00 0.00 0.00 0.00 GS 0.07/0.93 0.00 0.00 0.00 0.00 0.00 0.00
MP 0.00 0.07 0.70 0.00 0.00 0.00 0.23 0.00 MP 0.00 0.00/1.00 0.00 0.00 0.00 0.00 0.00 MP 0.00 0.00/1.00 0.00 0.00 0.00 0.00 0.00

0.03 0.07 0.10 0.67 0.13 0.00 0.00 0.00 NDL 0.00 0.00 0.00 0.83 0.13 0.00 0.03 0.00 NDL 0.00 0.00 0.10 0.77 0.10 0.03 0.00 0.00

NDS 0.00 0.00 0.03 0.23 0.67 0.00 0.03 0.03 NDS 0.00 0.03 0.03 0.43 0.37 0.00 0.10 0.03

NNL 0.00 0.00 0.03 0.00 0.00 0.47 0.50 0.00 NNL 0.00 0.00 0.03 0.00 0.03 0.60 0.33 0.00 NNL 0.00 0.00 0.00 0.00 0.00 0.83 0.17 0.00

raw_pw33

NNS 0.00 0.00 0.03 0.00 0.03 0.17 0.77 0.00 NNS 0.00 0.00 0.03 0.03 0.00 0.30 0.63 0.00 NNS 0.00 0.00 0.00 0.00 0.00 0.67 0.33 0.00

VTB 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.97 V1B 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

I
I
I
I
I
I
I
I
I
I
GL GS MP NDL NDS NNL NNS VTB —I— GL GS MP NDL NDS NNL NNS VTB
I
I
I
I
I
I
I
| VTB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

1.0

FIGURE 7.14: Confusion matrices for“single-best” evaluation in the isolated recognition task (i.e. Hos
sequences are properly segmented). For every available data set, all 48 DHMMs are tested againstj
all sequences within the data set. The model providing highest probability is chosen as [,
classification result. As model training and test sets are identical, this is equivalent to the s
resubstitution method. The classification rate is given from 0. to 1. (0% to 100%). For better [

visualization, the range is color coded from white to green as given by the color scale on the right ..
of this figure caption. Further details are given in the text.
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FIGURE 7.15: Confusion matrices for “average-best’evaluation in the isolated recognition task [
(resubstitution method). For every available data set, all 48 DHMMs are tested against all [.:
sequences within the data set. The likelihood measures for all models, which represent one seismic-

signal class are averaged. The classification result is obtained as maximum of the averaged

0.5

likelihoods. The classification rate is given from 0. to 1. (0% to 100%). For better visualization, the o
range is color coded from white to green as given by the color scale on the right of this figure [

caption.
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Realization of a continuous automatic classification system for volcano-seismic signals at Merapi volcano

Using the same set of symbol sequences for both training and testing (resubstitution method) will
give an too optimistic estimate of the real classification error. However, it is possible to compare
the individual classification results obtained for the different combinations of feature vector and
codebook size. The confusion matrices for the isolated recognition of training sets v&bthe
paradigm are given in Fig. 7.14., and the results for'th& evaluation in Fig. 7.15, respectively.

In general very high recognition rates can be observed. As this is mainly an effect of the error
evaluation method (resubstitution method), these results are not to be interpreted with respect to
the absolute values. However, some general trends can be noted from Fig. 7.14 and Fig. 7.15.

For the isolated recognition task, tfeb” evaluation provides a better performance thari‘évé
approach. Additionally, a higher recognition accuracy is in general obtained for increasing code-
book sizes. Best recognized are VTB class events, followed by symbol sequences of the GL-class
training set. Confusion errors mostly occur between GS and GL class, GS and MP class and vice
versa, and between the individual noise classes. However, in the final classification system one is
neither concerned about confusion errors occurring between the different noise classes nor confu-
sions between the GL and GS class events. Hence, if none of these confusion errors is considered
as classification error, a nearly optimal recognition result of 99.3 % correct decisions is obtained
for the feature vector / codebook size combination “raw_pwO07.cb64” itsthie evaluation (con-

fusion matrix in 2nd row, 3rd column in Fig. 7.14). A similar performance of 99.1 % recognition
accuracy is gained for the same feature vector / codebook size combination followitaythe
paradigm.

7.5. Continuous automatic classification of volcano-seismic signals

After preparation of a set of discrete hidden Markov models for each seismic signal class and seis-
mic noise, respectively, the following approach has been taken for the automatic classification of
the continuous seismic network data between 1998/07/01 and 1998/07/05. From the previously
discussed evaluation of the models’ discriminatory power as well as from the classification results
obtained for the isolated recognition task, it has been decided to use the feature vector / codebook
size combinatioriraw_pw07.cb64”for the continuous classification problem.

The waveform data of the five-day time period between 1998/07/01 and 1998/07/05 (described in
section 6.2.) have been processed in a sliding window analysis to obtain a sequence of wavefield
attributes (compare Table 7.1 for processing parameters). In order to maintain file sizes in tracta-
ble limits in this offline-processing stage, the data has been divided into 3 hour segments. Due to
an unrecoverable error in the waveform conversion procedure, one 3 hour time segment from
1998/07/01 15:00 to 1998/07/01 18:00 could not be processed.

The resulting time sequence of primary feature vectors (as given in Table 7.2) has been trans-
formed, dimensionally reduced and vector quantized as described in sections 7.2. and 7.3., respec-
tively. For each seismic event class GL, GS, MP, and VTB, as well as for the noise classes ND and
NN, a set of six models has been used for classifying the resulting symbol sequence. For the event
classes GL, ND and NN more than 6 models are available, therefore a selection of the most appro-
priate models has been necessary. The criterion for the selection has been based on the discrimi-
nation capabilities of the individual models obtained from the averaged pairwise distance
measuresi(A,) ,and(A;) ,respectively (Fig. 7.13 in section 7.4.). For the ND and NN classes,
three models out of six trained on both the longer as well as the shorter training sets have been
selected.
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The five-day symbol sequence has been evaluated in a moving window analysis as sketched in
Fig. 7.16. A partial symbol string@[t,] of model dependent length is cut around a center
frame at timet,, . This string is evaluated with the Viterbi algorithm for each of the 36 discrete
hidden Markov models\; . The normalized likelihood measuiesT,)log(P(O[ tn]|)\i)) are
then computed at each tintg . After evaluating all partial symbol strings attfjme , the window
is shifted by a fixed amount of frames. Thus, for each model, a time series of probability mea-
sures is obtained. As in the isolated event recognition task, both a “single_ b&st) @nd
“average_best™@v” ) classification result has been computed (EQ 7.17.a and EQ 7.18.a in sec-
tion 7.4.). In the'sb” case, each center frame is classified according to the class membership of
the model providing the highest probability measure (compare EQ 7.17.b). Fahesvalua-

tion, the probability measure for all models comprising one single event class are averaged, and
the class providing the maximum averaged probability measure is taken as classification result for
the center frame at timg,  (equivalent to EQ 7.18.b).

th B time
.DOREMIFASOLASIBONOSENIDONDEESTOYNILAHORADETERMINARESTO. .
| MIFASOLASIDONOSENIDONDE]
OREMIFASOLASIJONOSENIDONDEEST !©st sequence for modg| length §

— & ___testsequence for modg| length

mid frame of test sequence, Q[t

FIGURE 7.16: Sketch of scanning procedure for the continuous DHMM-based recognition of seismic
events. For each modely, , a window of lengthr; is centered around the current mid frame[t] at
position t . The partial symbol string of length T is evaluated by computing the probability measure

(log(P(O[ tn]é)\ )/ T, . After all model probabilities have been computed, the mid frame of the test sequence

is shifted to a new position by a specified number of frames, -t , ,

The number of frames between successive evaluations of the probability measure has been set to
x = 25. This corresponds to a time interval of 5 s, as the wavefield attributes are computed every
0.2 s. The class-dependent time lengths of the partial symbol strings have been selected to be in
accordance to the mean symbol sequence lengths within the individual training sets. For VTB-
models,T has been set to 225 (45 s), MP-models have been tested against a partial symbol string
of length 200 (40 s). GL-class models have been evaluated for 700 frames (140 s), whereas the
partial symbol string length for GS-class models has been set to 400 (80 s). For noise models
trained on the sets ND.LONG, and NN.LONG, respectively, a symbol sequence length of 300
(60 s) has been used, whereas noise models trained on the sets ND.SHORT, and NN.SHORT have
been evaluated for a symbol string of length 100 (20 s).
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FIGURE 7.17: Result of continuous DHMM-based volcano-seismic event recognition fa 3 hour period
starting at 1998/07/02 09:00 GMT (lower left corner). Each row displays 30 minutes of recognition results.
The probability measure plotted on the bottom of each row is the averaged probability for all 6 models
representing each seismic event and noise class. Above the probability curves, the classification results for
the “average_best” evaluation is displayed by colored boxes, depicting the classified time segments in the
corresponding class colors. Above the “average_best” results, the classification result obtained for the
“single_best” approach is given. Representative waveforms for each array are plotted on top of the
classification result (KLT1 Z, GRW1 Z and KEN1 Z). Details are given in the text.

A representative result for both classification stratedigls’(and“av” ) is given in Fig. 7.17 for a
time period of 3 hours, starting from the lower left corner at 1998/07/02 09:00 GMT. Each row
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displays 30 minutes of the continuous recognition results. The averaged probability mpgsure

for each class (as given in EQ 7.18.a) is plotted as a graph on the bottom of each row. Directly
above the probability curves, the classification result for “dn¢ evaluation is displayed by
boxes, depicting the classified time segments in the color of the detected event type. Above the
“av” result, the classification results obtained for thig’ approach is displayed. In order to pro-

vide a means for visual verification of the classification results, representative waveforms are plot-
ted on top of the classified time segments, one seismogram for each array (KLT1-Z, GRW1-Z and
KEN1-2).

Comparing the classification results ftab” and“av” evaluation strategies in Fig. 7.17, it is
clearly observed, that tHsb” approach produces a large number of false alarms in the continu-
ous recognition task, whereas tlae” evaluation performs better in this respect. However, at first
sight, the classification results appear to be unsatisfying in both cases. Hence, in order to improve
this primary classification result, it is necessary to specify a set of post-processing rules.

Considering the short-lasting nature of the false alarms, a promising criterion for effectively
reducing the high false alarm rate is obtained by a sirfipiaimum-length-of-detectiontule for

each seismic event class. Excluding all event detections which are shorter than an event-specific
minimum length of detection allows to prune a large number of false detections from the primary
detection list. From visual control of the primary classification results, the following class-specific
values have been selected for th@nimum-duration” post-processor. The minimum time length

for event detections of type VTB has been set to 20 s. MP detections are only considered, if the
detection time exceeds 15 s, whereas for GS-type classified time segments a minimum duration of
30 s, and for GL-events 50 s is required, to judge the classified time interval as a valid detection
result. Using this specific set of values as the class-depefw@mntmum-duration” criterion, the
primary classification result of Fig. 7.17 is modified as shown in Fig. 7.18. Those time intervals,
which have been pruned from the primary detection list according to the minimum-duration crite-
rion have been left blank in the graphical display.

A significant improvement of the classification results is observed by comparing Fig. 7.17 and
Fig. 7.18, especially for thésb” evaluation approach. However, from the visual control of the
classification results for the whole five-day period, it has been concluded, tHaithelassifier

is to be preferred for the evaluation. Hence, only the pruned detection lists ‘@\theclassifica-

tion results have been used for estimating the recognition accuracy of the automatic DHMM-
based classification system.
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FIGURE 7.18: Pruned recognition result for the same time period as displayed in Fig. 7.17. It is clearly
observed, that a simple post-processing rule improves the classification results significantly. The minimum
duration criterion for a detection is sufficient to suppress the high number of false alarms obtained in the
“single-best” approach. The post-processing is less important for the average_best evaluation.
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CHAPTER 8. Discussion of results

8.1. Evaluation of system performance

A common approach to estimate the system performance of a pattern recognition system is the
error counting method (see section 4.3.3.). For a continuous recognition system, three types of
errors have to be considered: i)“missed event’error is encountered, if a seismic event is
observed, but is not recognized by the classification system. This type of error is also termed
“false rejection” in detector theory, as the hypothesis “signal present”, is erroneously rejected in
the recognition process; ii) an error of tyffalse alarm” (“false acceptance”)occurs, if no seis-

mic event is observed, but a detection is hypothesized by the recognition systemsiui)stitu-

tion” (“confusion”) error is found, if a seismic event is observed, but classified to a competing
class in the recognition process. A substitution error can be viewed equivalently as both an error
of type missed event for the true signal class and as a false alarm error for the hypothesized class.

The recognition accuracy of the DHMM-based classification system for seismic signals of volca-
nic origin at Merapi volcano has been estimated by visually verifying the automatically obtained
classifications for the time period between 1998/07/01 and 1998/07/05 (compare section 6.2.).
Following this approach for system evaluation, it is important to be aware of the following diffi-
culties. Although it is possible for a trained analyst to achieve a highly consist classification
result, there will still remain a considerable amount of misclassified or unclassified events. It must
be further noted, that the visual analysis reflects to a certain degree the subjective view of the
observer and may be not comparable to results given by another individual. In addition, although
the human cognition capabilities are extremely high, i.e the human eye is regarded as a powerful
natural pattern recognition system, there exists a certain limit considering the amount of informa-
tion which can be used in the human decision-making process. In case of the digital seismic net-
work data of Mt. Merapi, up to 36 single waveform traces are to be viewed in parallel for the
visual classification. It has been found, that consistent results are more difficult to obtain, when
the complete set of waveforms is used in the visual classification process. Therefore, the visual
control of the automatic classifications has been carried out by using a single representative wave-
form recorded at each array location.

From the above it must be concluded, that the visual classification of seismic signals by a human
observer can not be considered as an absolute error free reference for the evaluation of an auto-
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matic classification system. The recognition rates obtained by comparison between the automatic
approach and the visual classification by an analyst must be regarded as a rough estimate of the
true system performance. This in turn poses severe restrictions to any quantitative interpretation
of the values obtained for the recognition accuracy. However, qualitative conclusions are still pos-
sible and valid to give.

For the visual control of the systems’ recognition performance, the results of the continuous clas-
sification have been plotted similar to Fig. 7.18 in segments of three hours each. The classified
time segments, which have been obtained for the “average best” evaluation with subsequent
pruning according to the minimum-duration post-processing rule (see section 7.5.), have been
compared with the vertical short-period seismograms of stations KLT1, GRW1, and KEN1,
respectively. In order to count the relevant classification errors from the graphical displays, the
following procedure has been followed.

-t
Noise detection Class | detection Noise detection
- a) Class I: false alarm
Noise

\J v

b) T’\’\/lj‘ v~
D E Class I: false alarm +
(T2 missed event

Class | ] V

C) T, VT Class I: correct count

\/

Class Il d)—Ww/Te Class I false alarm

Class Il: missed event

(TeTy)/2

pruned interval

FIGURE 8.1: Example of error counting procedure in the visual control of the automatic classification
results. a) class | event is hypothesized, but only noise is present. A false alarm is counted for class I; b)
class | event is hypothesized and present, but the detection window is not properly aligned. Both a false
alarm and a missed event error is counted for class I; ¢) class | event is hypothesized and present. A correct
classification is credited for class I, as the detection window covers more than half of the signal and extends
to the begin of the waveform; d) class | event is hypothesized, but class Il signal is present. A false alarm
error is counted for class | and a missed event error is counted for class Il.

A classification has been considered as valid, if the detection window covers at least half of the
classified seismic transient. It has been further required that the detection window is extended to
either the begin or the end of the seismic signal. This procedure is similar to a scoring protocol
given by Wilpon et al. (1991) in the context of keyword spotting in speech recognition applica-
tions. A sketch of the error counting procedure is depicted in Fig. 8.1, describing four distinct sit-
uations. In example a) (on top), a false detection has occurred for a seismic sigGéss 1”

(one of VTB, MP, GS or GL). The occurrence of this event type has been hypothesized, but only
noise is observed in the visual display of the seismic waveforms. Therefore an error of type “false
alarm” is counted for the hypothesized event type. In case that an observed seismic event corre-
sponds to the automatic classification result, but the given detection window misses more than
half of the seismic waveform, the classification is rejected (example b) in Fig. 8.1). Both an error
of type “missed event” as well as an error of type “false alarm” is counted for the hypothesized
event class. The example in part c¢) of Fig. 8.1 shows a correct classification. The detection win-
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dow of the detected event class covers the major part of the observed seismic event, being a mem-
ber of the signal class suggested by the automatic recognition system. Finally, the situation
depicted in part d) of Fig. 8.1 shows an substitution error. A seismic event of'Glpss II” is

visually observed, whereas‘@lass I” event is hypothesized by the classification system. Thus,

an error of type “missed event” is counted f@lass II” , whereas fofClass I’ a “false alarm”

error has occurred.

Examples of this error counting procedure are given in Fig. 8.2 for typical results of the automatic
classification system. The average log likelihood measyrgs for the individual event classes

are displayed at the bottom of each sub-figure. The seismic waveforms of the vertical components
of the short-period stations KLT1, GRW1 and KEN1 are plotted on top of the primary classifica-
tion results‘av” (center) and the pruned detection liaV y neq (top). The time is given in sec-

onds from the start times of the respective three hour segments (given on the lower left corner of
each panel). The displayed examples have been chosen from four different days (both day- and
night-time segments).

The example shown in part a) of Fig. 8.2 illustrates a frequently observed result obtained via the
automatic classification algorithm. A single Guguran event is classified subsequently to both the
GL- and GS-class. Considering the analysis of the discrimination capabilities between the indi-
vidual hidden Markov models (Fig. 7.11 in section 7.4.), this has been an expected behavior of the
classification system. Recalling the initial aim of this study, it has not been a primary goal to dis-
tinguish between GL and GS classes, but to classify correctly Guguran events of any length. For
that reason it has been decided to join time segments classified to either GL or GS type if they
appear as connected detections consecutively in time. Hence, the classification results are consid-
ered correct (indicated by the lett&2” in Fig. 8.2) if the combined detection window covers a
seismic signal of type Guguran.

Example b) in Fig. 8.2 shows the occurrence of a substitution error. Considering the pruned clas-
sification resultav pyned , the first event (around 4100 s) is classified as being of type MP. How-
ever, in the visual analysis, this event has been verified as a small Guguran event. An error of type
missed event is counted for the Guguran class, and a false alarm error is issued for the MP-class
(indicated by lettersSM” and“F” in Fig. 8.2). This kind of substitution error has been observed
relatively often. A considerable percentage of the error counts (missed event and false alarm,
respectively) which have been evaluated for the MP- and GS-classes are due to substitution errors.
The next event which is observed in example b) is a small scale signal of unidentified nature
(around 4190 s). Signals with a very low signal to noise ratio (SNR < 3), which could not be visu-
ally classified have been regarded as equivalent to seismic noise in the error counting procedure.
Hence, no error is counted in the given example.

In example c¢), a situation is shown, where the late coda part of a Guguran event is misclassified as
being an MP-type event (MP detection window between 770 s to 800 s). It has been found that
this type of classification error occurs quite frequent. For example, a similar situation can be rec-
ognized in example b) of Fig. 8.2. The time segment between 4480 s and 4540 s has been classi-
fied as MP-type event, whereas the detection window covers both the late coda part of the
preceding Guguran event as well as an MP-event. In case of occurrence of such an erroneous
result, a false alarm has been counted for the MP-class.
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FIGURE 8.2: Examples of the error counting procedure. Probability curves for the averaged likelihood
P,y Of each class are given at the bottom; the primary classified time segments (“av”) are displayed in the
center and the pruned classification results (“ay, neq”) On the top (similar to Fig. 7.17 and Fig. 7.18)
Seismograms of KLT1, GRW1 and KEN1 (Z-components) are given for comparison. Waveforms have been
intentionally clipped in order to enhance small scale events. Time is given in seconds from the following
start times: a) 1998/07/02 09:00 GMT; b) 1998/07/03 21:00 GMT; c) 1998/07/04 12:00 GMT; d) 1998/07/05
12:00 GMT. Letters C, F, and M indicate correct classification results, false alarms and missed events,
respectively. Details are given in the text.
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Another problem which has been frequently encountered in the evaluation procedure of the auto-
matic classification results is given in the example d) of Fig. 8.2. The MP-detection window start-
ing around 3015 s and lasting until 3185 s covers at least three visually distinguishable seismic
events, two of which being of type MP. As just a single detection has been issued by the automatic
classification algorithm, just the first MP-event (starting at 3040 s) is counted as correct. The sec-
ond MP-signal (start at 3150 s) is counted as missed event, and the unidentified signal in the cen-
ter of the detection window (ca. at 3080 s) as false alarm.

The outlined error counting procedure has been carried out for the data segment from 1998/07/01
to 1998/07/05 in order to derive a representative statistic of the classification accuracy. The total
number of error counts and the average recognition rates for the individual event classes within
the five-day period are summarized in Table 8.1.

TABLE 8.1 Summary of system performance results. Class dependent recognition error counts as evaluated by
visual control and average recognition rates for the DHMM-based classification system.

Signal class MP Guguran VTB All Classes
total observed 1085 287 70 1442
correct 692 212 62 966
decisions 63.78 % 73.87 % 88.67 % 66.99 %
435/ 5 days 163 /5 days 10/5 days 608 / 5 days
false alarms 87/ day 32.6/ day 2/ day 121.6 / day
. 393 75 8 476
missed events 36.22 % 26.13 % 11.43 % 33.01 %

The recognition rates evaluated for the three seismic signal classes vary significantly. Highest rec-
ognition accuracy with around 89 % correct classifications is obtained for the VTB-event class.
More difficulties are encountered for the correct recognition of Guguran events (around 74 %)
and most difficult to recognize are the small-scale signals of MP-type (ca. 64 % of correct classi-
fications). This result is consistent with the observations made in the previous analysis steps. Con-
sidering the discussions of the relevance of individual wavefield attributes (Fig. 7.6 and Fig. 7.7 in
section 7.2.), the symbol distributions obtained for the different training sets in the vector quanti-
zation step (Fig. 7.9 in section 7.3.), and the analysis of the discriminative power between individ-
ual discrete hidden Markov models (Fig. 7.11 to Fig. 7.13 in section 7.4.), the presumed order
regarding the detectability of the individual event classes has been confirmed by the obtained rec-
ognition accuracies.

A more detailed information about the classification capabilities of the system can be obtained
when considering the temporal variation of the error counts for the individual signal classes. A
display of the error counts for MP, Guguran, and VTB-type events for the time period under con-
sideration is given in Fig. 8.3 as a bar chart plot. The number of visually verified automatic classi-
fications within each three hour segment is represented by grey-shaded bars (scale given on the
left). The number of missed events is depicted as white column plotted on top of the correct clas-
sifications. The total number of visually classified events corresponds therefore to the total height
of the grey and white bars together. The connected diamond symbols show the count of false
alarms within the respective time segments. The cumulative sums of the number of visually clas-
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sified events, correct automatic classifications and false alarms issued by the recognition system
are drawn as solid, dotted and dashed lines, respectively (scale is given on the right).
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FIGURE 8.3: Classification results for the time period from 1998/07/01 to 1998/07/05. Number of correct
classifications for time segments of three hours are displayed as grey bars. Number of missed event errors
are given as white column and number of false alarms within each time segment are depicted by the
connected diamond symbols. Cumulative sums of the total number of visually classified, correct automatic
decisions and number of false alarms are plotted as solid, dotted and dashed yellow lines (scale on the
right). Details and interpretations are given in the text.

Several observations can be made from Fig. 8.3. Most striking seems the significant temporal
increase of the number of missed event errors for the MP-event class. As the training samples for
the training of DHMMs for the MP-class have only been selected from the first two days of the
evaluated time period (1998/07/01 and 1998/07/02, compare Fig. 6.6 in section 6.2.) and the
observed increase of missed MP-events is especially noticed after the 3rd of July, it has been
hypothesized in the first, that this result may be an effect of systematic temporal changes of the
wavefield attributes for MP-type events. However, in the visual analysis of the individual wave-
forms, the supposed temporal evolution of waveforms could not be confirmed, although small
changes of the wavefield attributes may be difficult to detect by just comparing the raw wave-
forms for a set of individual stations. By analogy it might be argumented that a similar observa-
tion should exist for the VTB-event class. The training samples constituting the VTB training set
have been selected only from days 1998/07/03 to 1998/07/05. In addition, the VTB-set is even
more homogeneous than the MP-event training set. Thus, any deviations in the wavefield
attributes for VTB-events recorded in the first two days of July (1998/07/01 and 1998/07/02)
should produce a larger number of missed event errors for those days if compared to days 3 to 5.
However, this effect is not observed for the VTB event class results. Although this argumentation
is not sufficient to prove that the observed increase of missed event errors for the MP-event class
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is not connected to a systematic change of the wavefield attributes, it may be at least seen as an
indication that it is not the major cause for this observation.

It has been found that the increase of missed event errors for the MP-class is rather related to the
insufficient capability of the automatic recognition system to separate closely spaced events of
one and the same signal type. An example of this behavior has been given in part d) of Fig. 8.2.
The increase of the seismic activity which has been observed in the selected time interval was
mainly due to the increase of seismic events of type MP (compare Fig. 6.4 in section 6.2.). The
acceleration of the event rate for MP-type signals is accompanied by a significant decrease of the
inter-event time intervals between successive events. Additionally, in the visual classification it
has been noticed, that the MP-signals occur mostly in groups rather than as isolated events. At day
1998/07/05 peak rates of up to 40 MP-events per hour have been visually recognized with inter-
event spacings as short as a few seconds. It must be clearly stated, that - in its current implementa-
tion - the automatic classification system fails to provide an appropriate event count in this situa-
tion. It has to be mentioned, that this behavior is a common problem to most available signal
detection algorithms. Especially STA/LTA trigger algorithms show a significant reduction of
detection sensitivity for a certain time period when passing an energetic seismic transient (recov-
ery-time). Consecutive transients may be missed if they fall within the “shadow time” of the trig-
ger (e.g. Withers et al., 1998).

An explanation for the restricted time resolution capabilities of the DHMM-based classification
system can be given when considering discrete hidden Markov models as being a special kind of a
matched filter. Recalling the scanning procedure in Fig. 7.16, the partial symbol €find in
the sliding window analysis can be regarded as input and the likelihood measure as given by
EQ 7.18.a as output of this filter process. It is intuitively recognized, that the likelihood measure
shows a typical upward convex shaped “filter response” for a symbol sequence which matches the
discrete (tested) hidden Markov model. The response time is expected to be at maximum twice as
long as the model dependent test length of the symbol string. This statement can be experi-
mentally verified and is most clearly observed for the average likelihood curves obtained for
VTB-type events. Examples b)-d) in Fig. 8.2 demonstrate the expected shape of the “filter
response” and an overall response time of 90 s is observed in everylGase{ 45 S, compare
section 7.5.).

In order to improve the time resolution capabilities of the classification system for closely spaced
events, the following post-processing scheme is conceivable. For detection windows longer than
twice the test length of the corresponding symbol strings and model type, the number of local
maxima of the likelihood measure within the classified time segment provides an approximate
estimate of the number of individual events contained within the detection window. Additionally,
an upper limit of the true number of events is obtained by dividing the length of the detection win-
dow by the lengthT, of the class-dependent symbol string length. The divisia@ py provides
a lower limit of event occurrences within the classified time segment.

Alternatively, an improvement of the recognition rate for swarm-like occurrences of events might

be obtained by a refinement of the test lengths for the noise classes. Using only short partial sym-
bol strings when evaluating the likelihood measures for the noise DHMMs, the filter response
times of noise classes are reduced and shorter time segments between consecutive seismic events
may be correctly classified as noise. As a result, longer detection windows should be broken up
into a series of classified time segments.

Evaluation of system performance 119



Discussion of results

KEN1-Z
GRW1-Z
KLT1-Z
21 L 1
Pav S T S local maxima
-3
- Tdetection >
160 8220 8280 8340 8400 8460 8520
Time [s]
KEN1-Z
GRW1-Z
KLT1-Z
N \\\\//\ \"/—\/M\af\f\’\d\/w\i
2 L
paV \/\\//xffjf\ii‘?/777\’_/\f—//\/\\\\/\\
.31
160 8220 8280 8340 8400 8460 8520
Time [s]

FIGURE 8.4: Strategies for improving the time resolution capabilities of the DHMM-based recognition
system. Upper panel: Applying a post-processing rule for detection windows larger than twice the model
dependent test length, provides an estimate of the number of MP-events within the classified time segment
to be between 4 and 9 (compare text). Counting the local maxima of the likelihood measure results in an
event count of 7. Lower panel: Reducing the test length for noise class models enables an improved
separation of closely spaced events in the recognition process. The number of MP events would be
evaluated as 5. The reference count obtained from visual analysis has been given as 7 (white star symbols)
Further details are given in the text.

The suggested strategies have been applied to a data segment from day 1998/07/05 as given in
Fig. 8.4. A single MP-event detection window of 365 s length has been issued by the automatic
classification algorithm. Seven individual MP-events, three groups of two overlapping events and
one single event as indicated by the white stars in Fig. 8.4, have been visually classified for this
time segment. An additional wavegroup, located around 8370 s, could not be uniquely identified
(indicated by a question mark in the upper panel). Following the above described post-processing
rule, a minimum number of single events contained in this window can be given by 365s/80 s ~
4 events, whereas the upper boundary is estimatedss B80s ~ 9 eents. Counting the number

of local maxima, as shown in the upper panel of Fig. 8.4 by the vertical arrows, an event count of
7 is obtained. Although the evaluated event count is correct, the local maxima do not seem to be
properly aligned with respect to the individual signal centers. In the lower panel, the classification
has been re-evaluated with shorter time lengths for the noise classes. A time window of 20 s has
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been used for the NN.LONG, ND.LONG models and a 5 s symbol string for the NN.SHORT,
ND.SHORT models, respectively. Instead of a single MP-detection window, now 5 separated MP-
classifications are obtained by the automatic recognition system. A rather reasonable segmenta-
tion of the event boundaries which coincidences well with an analyst’s result is achieved for the
given example. Although the three groups of overlapping events can not be resolved, this strategy
appears to be better suited for improving the classification result as the previously discussed post-
processing rule.

Another important result is obtained from Fig. 8.3. For both MP and Guguran events a relatively
high number of false alarms and missed events is recognized. A considerable amount of the errors
of type false alarm and missed event which have been encountered for the MP and Guguran class
(especially short-lasting, low energetic Guguran events) are due to substitution errors between
these two event classes in the recognition process (compare Fig. 8.2, example b)). The frequent
confusion of MP and Guguran events has been interpreted as follows.

The basis for the numerical decision between the seismic event classes are the observed wavefield
parameters (feature vector). In the analysis of wavefield attributes in section 7.2.2. it has already
been noticed, that the distributional properties of several features indicate a strong similarity
between the wavefield characteristics for MP and small-scale Guguran events (GS). Conse-
qguently, the difficult discrimination between these event types has additionally been observed
when considering the class-dependent symbol distributions after vector quantization (Fig. 7.9 in
section 7.3.), and finally in the analysis of the discriminative power between the pairs of the
trained discrete hidden Markov models (Fig. 7.11 to Fig. 7.13 in section 7.4.). Hence, the frequent
confusion between MP and Guguran events in the recognition process have been regarded as
being mainly a result of the ambiguity in their corresponding wavefield parameters.

The observed wavefield similarities are caused by the strong influence of the propagation medium
on the seismic wavefield (“path-effect”), which is often observed in volcanic environments. The
near-surface structure of volcanoes is known to be composed of heterogeneous deposits of erup-
tive materials, i.e. thin layers of fine ash, unsorted blocky flows, etc., and irregular topography.
This three-dimensional complicated subsurface structure causes complex seismic wavefields due
to near-surface reverberations (e.g. Goldstein and Chouet, 1994), attenuation effects and single or
multiple scattering of waves within the propagation medium (e.g. Mayeda et al., 1992, Del Pezzo
et al., 1996), and the interaction of the seismic waves with the free surface (e.g. Ohminato and
Chouet, 1997, Neuberg and Pointer, 2000).

The results from an active seismic experiment at Mt. Merapi (Wegler et al., 1999) have revealed,
that seismic signals are highly attenuated by strong scattering of seismic energy in the frequency
range from 4 Hz to 20 Hz (Wegler, 1999, Wegler and Lihr, 2001). Wegler and Luhr (2001)
showed that the main characteristics of the seismic wavefield - i.e. the spindle-shaped seismogram
envelopes, the observed characteristics of the temporal and spatial decay of seismic energy, a
dominant polarization in the horizontal plane, and almost no coherent wave arrivals for neighbor-
ing stations - are well explained by the diffusion model for dominant multiple S-wave scattering.
Additionally, evidence for a depth-dependency of the scattering attenuation coefficients has been
given by the authors and has been interpreted in terms of a decreasing density of prominent scat-
terers with depth. It has been further hypothesized by Wegler and Luhr (2001) that multiple scat-
tering within the propagation medium are also responsible for the seismogram appearances of
natural seismic signals at Mt. Merapi.
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This hypothesis seems to be supported by the observed wavefield characteristics for the individual
event types (compare section 7.2.), which have been analyzed in the context of this study. Espe-
cially the difficult discrimination between MP and small scale Guguran events are probably
explained by multiple scattering along similar shallow source-receiver paths. Another indication
for the correctness of the multiple scattering assumption might be given by the observation, that
the late coda of all signal classes (GL, GS, and VTB) is often classified as MP-type signal.

After evaluating the classification statistics for each individual event class, the error counting pro-
cedure has been repeated in order to obtain a “pure” detection statistics, distinguishing only
between the seismic transient signal classes (MP, GL, GS, and VTB) and the seismic noise
classes, respectively. The number of correct detections, missed events and false alarms are given
in the following Fig. 8.5 for the individual 3 hour segments.
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FIGURE 8.5: Detection statistics obtained for re-evaluating the recognition results when considering any
of the transient seismic signal classes (VTB, MP, GS, and GL) as a single “event” class. Grey bars show the
number of correct detections for each 3 hour segment. White columns stand for missed detections and
diamond symbols depict the number of false alarms. Solid, dotted, and dashed black lines give the
cumulative number of correct, missed, and false detections. The horizontal bars below the time scale
indicate the local night time (19 h to 7 h). Further details are given in the text.

The overall statistics obtained for the detection problem (two-class problem) from Fig. 8.5 can be
given as ca. 82 % correct detections with an average false alarm rate of 55 FA/day. An interesting
temporal variation is observed for the number of false alarms in the detection statistics. In Fig. 8.5
it is recognized, that the number of false alarms is significantly larger during local night time
(12 hto 21 h GMT, columns 5 to 8 for each day). This observation is in accordance to the previ-
ously found lower discriminative power between the discrete hidden Markov models trained for
the NN-class training set and DHMMs trained for the seismic event classes MP, GS, GL, and
VTB (Fig. 7.12 in section 7.4.). Comparing the number of false alarms as displayed in Fig. 8.3,
the variation of false alarms is mainly observed for the seismic signal classes of MP and Guguran
class.

The temporal variation of false alarm errors is an rather unexpected result for the classification
system. It is even a contrary observation to the results which are known from routine observatory
practice. Standard automatic algorithms like STA/LTA detectors usually produce significantly less
false detections during night time. An explanation can be given for this result: standard trigger
algorithms rely on test statistics regarding the signal amplitude or signal energy. Hence, STA/LTA
detection techniques are sensitive to sporadic noise bursts which are mainly connected to human
activity and thus occur more frequent during day time. The typically observed reduction of “seis-
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mic noise transients” during night time lowers the probability of the occurrence of false alarms for
STA/LTA approaches.

On the other hand, no such straightforward explanation can be given for the results of the
DHMM-based recognition approach. The selected parametrization is based on time patterns of a
set of wavefield attributes and is not solely dependent on a measure of the signal energy. Thus, the
only conclusion to be drawn from this observation is the hypothesis, that the seismic wavefield
attributes of seismic noise recorded during night time shares significantly more similarities to the
seismic wavefield characteristics recorded for seismic signals of type MP and Guguran if com-
pared to the characteristics of seismic noise recorded during day time.

In a last step, an attempt has been made to compare the results of the automatic classification sys-
tem with the event counts as given by the scientists of the Merapi volcano observatory in Yogy-
akarta (MVO-VSI) for the same time period. In this comparison, it has to be taken into account,
that the seismogram readings at VSI are mainly based on the visual analysis of drum recordings
of the short-period vertical seismic station network of VSI. The dynamic range of recordings is
limited by the analog telemetry system and the resolution of the drum recorder unit. Hence, the
following figure Fig. 8.6 allows mainly to state that the number of visually observable seismic
events is significantly higher for the new digital seismic station network. Daily event counts as
provided by VSI are given as black columns, whereas the number of recognized events in the new
seismic network is depicted by the white bars. The grey columns stand for the correctly classified
events via the automatic classification approach.
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FIGURE 8.6: Comparison of daily event counts given by the Merapi volcano observatory (VSI, black
columns), from the visual analysis of the recordings at the new digital seismic monitoring network (Self,
white columns) and as obtained via the automatic classification approach (Auto, grey columns). Top panel:
VTB, middle panel: MP, lower panel: Guguran. As the daily event count at VSI is given in local time
(GMT+7h), and the analysis in this study has been based on GMT time, only the complete statistics for
days 2 to 5 in July, 1998 are given.

Evaluation of system performance 123



Discussion of results

8.2. Behavior of system for unknown signals

Seismic signals at active volcanoes are assumed to be in close connection to the dynamics of
magma transport and the active volcanic feeding system. As this - widely accepted - hypothesis
motivates in first place the monitoring of seismicity at active volcanoes for the difficult task of
eruption forecasting, it also implies an additional difficulty for the practical implementation of an
stable automatic seismic event classification system.

The active volcanic feeding systems - the supposed location of a variety of seismic source pro-
cesses at volcanoes - are known to undergo constant changes in time. Both slow mechanisms, e.g.
weakening of host country rock, stress accumulation, crack propagation (compare Voight, 1988,
1989, Cornelius and Voight, 1994, Kilburn and Voight, 1998), as well as fast volcanic processes
like magma pressurization, fragmentation, and volcanic eruptions may be responsible for signifi-
cant changes of the physical and chemical medium properties close to the magma ascent paths. A
considerable influence on the observation of specific seismic signal characteristics must be
expected in any case. A more evolving and systematic temporal alteration of the recorded wave-
forms of specific seismic event types may be expected in case of slow source migration (e.g. Lahr
et al., 1994, Power et al., 1994, Aspinall et al., 1998) or small changes of the physical properties
of the propagation medium (e.g. Poupinet et al., 1996). Drastic changes of seismic waveforms
and/or the occurrence of previously unknown seismic signal types may be related to fast ascent of
new magmatic material and significant stress re-distributions and/or changes of the geometry of
the volcanic feeding systems as caused by major explosive events.

Taking into account the expected change of volcano-seismic signal signatures, two principal ques-

tions have to be answered regarding the behavior of an automatic seismic classification system.
These questions are formulated as: a) What is the desired output of the system in case of observ-
ing a slightly altered or even unknown seismic signal? and b) What is the actual response of the

automatic recognition system when observing such kind of signals?

At first instance, an answer for question a) seems to be easy to give: an automatic system is
expected to provide similar results as a trained analyst would give in the same situation. However,
no concise statement can be given of how a human observer is going to judge an unknown signal?
No quantitative measure is available, what kind of waveform differences or individual deviations

in signal characteristics are tolerated by an analyst for still declaring an observed signal as being
of type X. Considering the process of visual seismogram analysis by a trained human observer it
must be even expected, that in the case of slow systematic temporal changes of signal waveforms,
an analyst most probably adapts small changes in the visual recognition process without really
being aware of it. For such a case a numerical decision function may even provide more reliable
results as an human observer, as it provides a means to quantify the deviation from the expected
signal classes. Hence, question b) as formulated above is directed to the special measure which is
provided by the classification method to quantify deviations from the originally expected signal
class.

As opposed to linear statistical classifier functions (e.g. linear discriminant analysis techniques,
LDA), where the euclidean distance of a feature vector from the class-wise sample means provide
a natural measure of deviation, the likelihood measures for a DHMM-based classification system
don’t allow to give a direct quantifiable measure for the actual deviation of an observed symbol
sequence. This is a consequence of both the non-linear characteristics of the hidden Markov
model approach as well as the maximume-likelihood training procedure, which does not allow to
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include discriminative information into the training process. However, for the presented DHMM-
based classification system it has been observed, that there exist certain time periods, at which the
likelihood measures for all available DHMMs show a concave upward shape and provide very
low probability scores. These time segments have been interpreted as observations (symbol
sequences) which are not very well matched by any of the available DHMMs. The question has
then to be asked: what threshold is valid for stating that an observed symbol sequence is not a
member of the tested hidden Markov model?

In order to obtain a reasonable threshold for rejecting the hypothesis of the presence of any of the
known signal classes, the following argumentation has been elaborated. Considering the straight-
forward calculation of the symbol production probability of a given discrete hidden Markov
model (EQ 5.18 in section 5.3.1.):

P(O[A) = ;P(O, IIA) = Z rq b; (O1)a, ;b (0,)...a by (Or),

R

it takes little thought to construct a model which provides a conditional probaBi(i@|A) that
just depends on the length of the test sequence, but not on the particular symbols which are con-
tained within the test sequence. An example for such a model is the single state iodel ( )
with m; =1, a;; =1 and a single uniform symbol output probability distribution
b,(k) = /M, whereM is the size of the finite alphabet of the symbol sequence (i.e. size of vec-
tor codebook). As there is just a single state involved in the specified model, the number of per-
mutations of possible state sequences is equal to 1. Then, the conditional prodR{dity)
evaluates for any possible test sequence of lefigth  to:

P(OJA) = b; (O4)b; (Oy)...1; (Or) = EM%

As there exists just a single possible state sequence, the mOdIerd Viterbi measure for the best
state sequence (O|A) equdt§O|A) and thus becc(mzéM) . Taking the logarithm of the
modified Viterbi measure and dividing further by the length of the test sequence, the test measure
1/T Oog(P (OJA)) is obtained. This is the actual form of the likelihood measure as has been
used throughout in the implemented classification system. The “uniform” model as introduced
above, evaluates then for any possible symbol sequence by the use of the length-normalized loga-
rithmic Viterbi measure to:

17
Iog(P (O|A)) = EM O- 1 TIogEMD IogEMD,

and is therefore a constant value. l.e., the “uniform” model allows no statement about the
observed symbol sequence. It can be therefore considered as a completely uninformative model
and has been termed zero-model (“zero information”) in the following. From heuristic argumenta-
tion it has been concluded, that a likelihood measure evaluated for any discrete hidden Markov
model which is lower than the conditional probability of the zero-model can not be regarded as a
test value which indicates an appropriate match between the presented symbol string and the
tested hidden Markov model. Hence, in case that the zero-model provides a higher probability
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than any competing model available, it can be concluded, that the tested symbol sequence does
not belong to any of the competing models.

The given threshold criterion has been applied to the results of the continuously evaluated condi-
tional probability curves for the individual discrete hidden Markov models. The finite size of the
symbol alphabet is 64, thus the threshold is calculatddgl/ 64) = -1,8 . Around 20 time seg-
ments have been found for the whole five day period, where all discrete hidden Markov models
provide a likelihood measure which is lower than this threshold for at least three consecutive time
steps (15 s). Those time segments have been regarded as “unknown events” and have been ana-
lyzed in more detail by visual inspection. It has been found, that one of those events is an impul-
sive high-frequency event, probably of VTA-type according to the classification scheme of VSI.
All other events show intermediate wavefield properties between MP-type signals and VTB-
events. Similar intermediate signal classes are known from other volcanoes like Redoubt volcano
in Alaska (Lahr et al., 1994, Power et al., 1994) and Soufriere Hills, Montserrat (Aspinall, 1998,
White et al., 1998) and have been termed hybrid events (compare also section 3.1.). A waveform
example of five “unknown” events is given in Fig. 8.7, together with a set of MP events and VTB
events, displayed in two different frequency bands. The intermediate character of the “hybrid”
events between MP and VTB class signals is recognized especially for the narrow-band filtered
seismograms (upper panel of Fig. 8.7).

Applying the above introduced threshold criterion to the class-dependent probability measures it
has been possible to recognize an unknown signal class. However, four additional seismic events
have been found in the investigated time period, which have not been recognized as being of an
unknown signal type. All of those are local or regional tectonic seismic events and have been
falsely recognized as either being of Guguran type (2 events), VTB type (1 event) or seismic noise
(1 event). From this observation it has to be concluded, that the threshold criterion for detecting
unknown signals must be considered as a sufficient, but not a necessary condition.
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FIGURE 8.7: Example set of seismic signals, which have been flagged as not being a member of any of the
trained seismic event classes. The unknown signal types show intermediate characteristics between the MP
and VTB-type events, and have been termed hybrid events (H?). In the lower panel seismograms are
displayed for a second order Butterworth bandpass filter between 0.5 and 10 Hz. The upper panel shows
the same seismograms in the frequency band between 0.7 and 1.5 Hz. The intermediate behavior of the
hybrid events is best recognized in the narrow-band filter of the upper panel. Similar to Fig. 6.5 - Fig. 6.8 in
section 6.2., the left columns display the absolute amplitude relations, whereas on the right, all
seismograms are normalized to the maximum within the trace. Further details are given in the text.
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8.3. Possible improvements of system performance

In the previous sections 8.1. and 8.2., it has been shown, that the DHMM-based recognition sys-
tem for automated volcano-seismic signals allows a correct classification of the majority of seis-
mic signals from the continuous data streams. Taking into account the straight-forward
implementation of the DHMM approach and the lack of experience regarding the usefulness of
this pattern recognition technique in this very specific seismological application, these results
have been considered as very encouraging. The classification system has therefore been imple-
mented in the real-time seismic analysis software system “Earthworm” (Johnson et al., 1995, see
also appendix C.). The automatic classification system is currently tested in the installations of the
Merapi Volcano Observatory of the Volcanological Survey of Indonesia in Yogyakarta.

Further improvements of the classification results may be achieved by considering each part of the
implemented pattern recognition approach. Three principal items have been regarded as espe-
cially suitable for system adjustments in the future: a) data acquisition robustness and strategy, b)
parametrization approach, c) improved concepts of the hidden Markov model classification tech-
nique.

Discussing the robustness of the individual signal parameters in section 7.2.1., it has been found,
that especially the wavefield attributes obtained via the bbfk method are sensitive to the unavail-
ability of individual waveforms within the station network. From the set of wavefield parameters
which have been finally selected to compose the feature vector (compare Table 7.2), the coher-
ence measurBP appears to be the most critical one regarding the robustness of estimates against
the temporal failure of single stations. Although no explicit test has been performed, how the rec-
ognition system will behave in case of missing waveform data for one or more stations, it is intu-
itively felt, that the system will fail to provide reasonable classification results due to the
introduced changes in the distributional characteristics of the feature vector patterns.

This implies a severe restriction for the applicability of the current implementation of the classifi-
cation system. Considering the harsh environmental conditions at Merapi volcano, the unavail-
ability of waveform data for a single or even several seismic stations cannot be completely
avoided. Especially critical appears to be the situation during a volcanic crisis, where station fail-
ure is frequently observed due to power shortages caused by ash-fall covering the solar panels.
Thus, for the practical implementation of the proposed classification system it is of considerable
interest to implement a strategy to deal with incomplete data sets. In this context it seems to be
necessary to implement a “backup”-system which does not depend on the waveform information
of the complete seismic network, but evaluates independently the seismic registrations of single
three component stations in a similar way as presented above.

It has been observed that the classification capabilities for lower-energetic signal classes MP and
small Guguran signals are limited due to the apparent similarities of the corresponding seismic
wavefield parameters. As this observation is mainly an effect of the strong influence of the wave
propagation medium, it seems to be necessary to acquire the waveform data as close as possible to
their supposed source locations. By doing so, the signal to noise ratios are improved which allows

a gualitative better estimate of the wavefield parameters. Additionally, the path-effects are
reduced and therefore the discrimination capabilities for small-sized event types are likely to be
improved. These considerations have been taken into account in the re-configuration of the seis-
mic station network at Merapi volcano in March 2000 (compare also section 6.1.). The seismic
mini array KEN located farthest from the active lava dome has been given up and a new seismic
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mini array has been installed at around 600 m horizontal distance from the main volcanic activity
center (location PAS in Fig. 6.1).

The selected parametrization approach has been found to be the most limiting factor for the out-
come of the recognition results. In fact, the wavefield parametrization ansatz is an adaption of
methods which are commonly used in the field of earthquake analysis. The especially heteroge-
neous and complex propagation medium at volcanoes makes it often difficult to interpret seismic
records in terms of “classical” seismic phases from its wavefield parameters. Wegler and Luhr
(2001) explained the seismic wave propagation for shallow artificial sources at Mt. Merapi in
terms of a diffusion process for multiple scattered S-waves. Assuming similar multiple scattering
processes to be valid for the seismic wave propagation of shallow natural seismic signals, the
most important information about the source-receiver path geometry is obtained from the tempo-
ral and the spatial decay of the seismogram envelopes (Wegler and Luhr, 2001). In order to
emphasize the shape of wavefield patterns, it is suggested to incorporate not only the static, but
also the dynamic information of the wavefield attributes into the feature vector. l.e. similar to
standards in speech recognition applications (e.g. Deller et al., 1993, Schukat-Talamazzini, 1995),
the feature vector could be enlarged by the first-order derivatives of the observed wavefield
attributes.

In order to allow a more appropriate wavefield parametrization of continuous data streams,
another strategy might be considered. Given the case that reasonably realistic seismograms can be
obtained synthetically by forward modeling (e.g. Ripperger et al., 2001), it might be possible to
derive a set of discriminating parameters from the analysis of the synthetic seismograms. A posi-
tive side effect may be obtained from the analysis of synthetic waveform data: it may allow to
enlarge or create training sets for the adequate training of signal class models and may even pro-
vide data sets for creating generic models for not yet observed signal classes. However, the com-
putational requirements for any realistic forward modeling algorithm, which is capable of taking
into account the special characteristics of the assumed source processes of volcano-seismic sig-
nals and the complex geological structures in volcanic environments may be still too high in order
to be a practical solution within this context.

Finally, improvements of the classification system can be obtained by refinements of the selected
classification approach. The implementation of a discrete hidden Markov model classification
system for volcano-seismic signals is similar to the early attempts of hidden Markov modelling in
the field of small vocabulary connected word recognition applications, i.e. automatic digit recog-
nition. A main drawback of the DHMM approach, however, is the need of a discrete valued sym-
bol sequence as input, which is usually obtained in a vector quantization step. As has been
discussed in section 5.5.1., the vector quantization step introduces an information loss (quantiza-
tion error) when representing the continuous valued feature vectors by its closest representative
vector from the given vector codebook. A straightforward concept for avoiding the necessity of
vector quantization is the use of continuous valued probability density functions of the form
bj(f(), j = 1,...,N (N equals the number of states) in the hidden Markov model approach. This
family of hidden Markov model has been called continuous hidden Markov models (CHMM, e.qg.
Rabiner, 1989, Picone, 1990). CHMMs are capable to model directly the sequence of feature vec-
tors without introducing additional information loss during a vector quantization step. However,
for a reasonably flexible approximation of the observed feature vector distributions, the state
dependent continuous probability density functions are normally described by the parametric
multivariate mixture gaussian density functions. A large number of training samples is required to
allow confident estimates of the continuous probability density functions within the training algo-
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rithms of the CHMMSs. Given the unavailability of large training sets in the context of seismic sig-

nal classification, the use of CHMM-based approaches seems to be questionable. Other strategies
may be successful to reduce the inevitable information loss in the vector quantization step. An
interesting modification may be achieved by replacing the linear LBG-algorithm by using non-
linear clustering approaches like the “self-organizing maps” (SOM, Kohonen, 1990) in combina-
tion with discrete hidden Markov models.

An additional shortcoming of the suggested DHMM approach is the training procedure which is
based on the maximization of a likelihood cost function. As has been pointed out before, in the
currently used form of the Viterbi training, no discriminative information is included into the
learning step, as each DHMM is optimized with respect to the training samples of its own class.
However, a strategy called “corrective training” has been suggested by Bahl et al. (1988) in order
to allow discriminative training for discrete hidden Markov modeling. Another interesting sugges-
tion has been made by Segura et al. (1994), who used multiple class-dependent vector codebooks
in combination with discrete hidden Markov models. In this approach, which has been termed
multiple vector codebook hidden Markov modeling (MVQHMM) by the authors, the discrimina-
tive information between individual classes is quantified within the vector quantization step by
making use of the average quantization error together with the conditional likelihood measures of
the DHMMs.

Considering the nature of the investigated classification task, the problem of identifying seismic
signal transients within continuous recordings of the seismic wavefield is closely connected to the
task of small vocabulary keyword detection in unconstrained speech within the field of speech
recognition. The currently implemented evaluation strategy for issuing the detection of a seismic
signal has been a straightforward extension of the methods used for isolated event recognition.
However, modern keyword recognition systems usually evaluate more complex scoring protocols
for locating the occurrence of a specific utterance within fluent speech. Most interesting in this
context is the use of finite state networks of parallel connected hidden Markov models which rep-
resent the individual keywords. The finite state network can be seen as a single large HMM with
special constraints of the transition probabilities. Using such large networks of interconnected
HMMs allow to detect keywords by decoding the optimal state sequence for the “large” HMM via
the Viterbi algorithm while scanning the observation (e.g. Rohlicek, 1995, Rose, 1996). The pres-
ence of a keyword is hypothesized, if the decoded state sequence contains state indices which are
connected to one of the keywords. Several advantages are gained by these techniques. Most
important is the fact, that the location of the keyword can be specified more precisely from the
entering and leaving states of the corresponding keyword. This property is of considerable interest
in the context of seismic signal classification and the applicability of similar techniques have to be
determined in the future.
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The subject of this study has been the development of an automatic classification system for seis-
mic signals of volcanic origin at Merapi volcano. In order to accomplish the given task, a special
pattern recognition approach, known as hidden Markov modeling, has been adapted from the field
of speech recognition. Taking into account the interesting analogy between the characteristics of
volcano-seismic signals, i.e. volcanic tremor, and the acoustic recordings of speech, and further
the proven success of hidden Markov model based speech recognition applications, this pattern
recognition technique has been considered as an attractive choice for the given problem.

“Hidden Markov models” (HMM) are a family of stochastic models which allow to describe con-
text dependent information, i.e. temporally structured patterns of a random variable within a well-
developed stochastic framework. HMMs are especially suitable to allow a generalized representa-
tion for a set of similar patterns with variable observation length. Hence, considering the variabil-
ity of volcano-seismic signals with respect to the signal length and the temporal structure of
seismic wavefield attributes, the use of hidden Markov models for the recognition of seismic sig-
nals of volcanic origin has been regarded as sufficiently flexible to allow a robust classification of
volcano-seismic signal classes.

As this special pattern recognition technique represents - to the author’s knowledge - a novelty in
the field of seismology, the HMM-based recognition approach has been introduced in detalil
together with the most important background information from statistical pattern recognition
principles. The HMM approach has been implemented in its simplest form, the discrete hidden
Markov model (DHMM). The principles of an DHMM-based classification system is described as
follows. Given a fixed parameter set for a specific DHMM and a discrete time series of abstract
symbols which are taken from a finite alphabet, it is possible to calculate the conditional probabil-
ity of how likely it is, that the observed symbol sequence has been produced by a stochastic model
as given by the DHMM. This likelihood test measure is equivalent to the mathematical test func-
tion of statistical classifiers in pattern recognition systems. As there further exist well-established
algorithms for adjusting the parameters of a DHMM in order to represent a specific set of symbol
sequences, DHMMs can be trained via a supervised learning paradigm. As the DHMM is only
capable to evaluate discrete symbol sequences, time series of real-valued feature vectors have to
be converted to discrete valued time series via a vector quantization step.
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One of the most important parts of any pattern recognition system is the representation of the
underlying input data, constituting the basis for the subsequent decision by a mathematical test
function, which is in this context the conditional probability measure for a discrete hidden
Markov model. The strategy for the parametrization of the continuous seismic data streams has
been based on the experiences from visual seismogram interpretation in seismological observa-
tory practice. A set of seismological key-parameters, which are calculated along the continuously
recorded seismic data streams in a sliding window analysis, has been considered as being most
appropriate for describing the temporal variations of the observed seismic wavefield. The special
geometry of the seismic network at Merapi volcano allowed the use of array techniques for the
computation of wavefield parameters at three different site locations surrounding Mt. Merapi’s
summit region.

The relevance of the individual wavefield attributes in the context of seismic signal classification
has been analyzed by considering the distributional characteristics of the individual wavefield
parameters. A set of 11 wavefield parameters have been found to contain an useful amount of
information for the discrimination of the seismic signal classes observed at Merapi volcano.
Hence, these wavefield parameters are used to describe the observed wavefield at each array-site.
The selected wavefield parameters are: a measure of wavefield coherence and signal strength of
the most coherent planar wave arrival crossing the array. The incidence angle of the array-wide
averaged polarization ellipsoid (calculated under the assumption of a P-wave arrival), and eight
relative spectral power values obtained from the array-wide averaged power spectral density with
subsequent smoothing in half-octave wide frequency bands. As an intermediate result, the contin-
uous recorded data streams within the digital seismic network at Merapi volcano are described by
a discrete time sequence of a 33-dimensional real-valued feature vector. A common approach has
been followed for reducing the dimensionality of the feature vector space and additional account-
ing for the differences of the dynamic range of the individual wavefield parameters. The so-called
prewhitening transformation, which is based on the Karhunen-Loeve transform with additional
re-normalization of the transformed coordinate system, has been used to accomplish this task.

In order to establish a DHMM-based recognition system, an interesting 5-day time period show-
ing an accelerating increase of the seismic activity prior to the eruption sequence of Mt. Merapi in
July 1998 has been selected from the continuous recordings of the newly installed digital seismic
monitoring network at Merapi volcano. Three seismic signal types of transient character have
been recognized according to the classification scheme of the Volcanological Survey of Indonesia
(VSI) for Merapi volcano. These signal types are: VTB, a volcano-tectonic event class with shal-
low hypocenter depth (h < 2 km), MP (multiphase), seismic events which have been described to
be in close relation to the growth of the active lava-dome and originate probably within the upper-
most part of the active lava dome (h < 1 km), and Guguran, the local terminology for a rockfall
type event, connected to the gravitational collapse of unstable parts of the active lava dome.

A small-sized set of representative events has been selected manually from the visual analysis for
each of the corresponding signal classes. Additionally an arbitrary set of seismic noise segments
has been chosen for representing a rejection class in the automatic recognition system. These
training sets have been used in order to analyze the properties of the wavefield parameters, to cal-
culate the coefficients of the prewhitening transform matrix, to construct a set of vector code-
books with varying dimensions for the vector quantization step and to finally train a set of discrete
hidden Markov models for each individual seismic event class and the seismic noise, respectively.
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Conclusion

Different combinations of feature vector dimensions and codebook sizes have been tested for the
classification system. Considering the results of the pair-wise discrimination capabilities between
the trained DHMMs for each feature vector / codebook size combination, and the evaluation of
the recognition performance for the isolated event recognition problem via the resubstitution
method, it has been possible to select the most suited combination of feature vector and codebook
size for the classification task.

For the classification of seismic events from the continuous data stream, a scanning procedure of
the vector quantized symbol sequence has been presented. It has been found, that the best recogni-
tion results could be obtained by evaluating the class-wise averaged conditional probability mea-
sures for a set of DHMMs representing one and the same signal class. An additional post-
processing rule has been established in order to prune the primary detection lists from misleading,
but short-lasting classifications.

The overall classification accuracy for the selected 5-day period has been evaluated by controlling
the automatically obtained classifications visually. The evaluated recognition rate for all seismic
signal classes has been quantified to be 67 % with an average number of false alarms per day of
122. The classification capabilities vary significantly for the individual event types. VTB-type
events can be recognized with around 89 % recognition accuracy and an average false alarm rate
of 2 FA/day. Guguran events, which build the most heterogeneous event class with respect of vari-
abilities regarding signal shape, signal length and signal strength, have been correctly classified in
74 % of all cases. The false alarm rate for this event class has been evaluated to be on average 33
FA/day. Most difficult seems the classification of the small-scale MP events, showing an average
recognition accuracy of 64 % with 87 FA/day.

Analyzing the temporal variations of the classification results within smaller 3 hour segments it
has been found, that a considerable amount of classification errors are due to ambiguous wave-
field properties for MP and Guguran event types, as well as to the insufficient capabilities of the
classification system to separate consecutive occurrences of closely spaced events of one and the
same signal type. A strategy has been described how the insufficient resolution capabilities of the
system for swarm like occurrences of events may be relaxed efficiently. The high number of false
alarms for both MP-type and Guguran-type events shows an interesting temporal variation. The
majority of false alarms are issued during local night time. No satisfactory explanation has been
found for this result and thus needs further investigation.

Automatic classification systems for seismic signals are mainly a domain of earthquake analysis.
To the author’s knowledge there exists no comparative study which has previously addressed this
problem in the context of volcano-seismic signal classification (except for special adjustments of
standard trigger algorithms). Thus, it is difficult to judge the quality of the obtained results. Con-
sidering the enormous difficulties when attempting to classify the selected time period visually,
and further taking into account the usually complex characteristics of the seismic wavefield in
volcanic environments, the automatically obtained classification results have been found to be
encouraging. Especially the acceptable recognition rate of 74 % for the very heterogeneous class
of Guguran events, with signal length variations between 60 s and 180 s and considerable differ-
ences in the shape of the signal envelopes demonstrates the powerful generalization properties of
the DHMM approach. In order to improve the recognition accuracies, several points have been
discussed. Most important in this context seems to be the re-evaluation of the selected parametri-
zation approach, as most of the erroneous decisions of the classification system are consistent
with ambiguous properties of the basic feature vector patterns.
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Conclusion

Although the recognition of single seismic events based on signal estimates of wavefield charac-
teristics has been the subject of this study, it should be not forgotten, that the final goal of seismic
investigations at volcanoes aims to contribute to eruption forecasting and hazard mitigation. In
analogy to speech recognition tasks, the actual interest in a speech recognition system for contin-
uously spoken language lies not in the correct decoding of a single word on the acoustic level, but
in the understanding of the message which is transported via speech. Interestingly the use of hid-
den Markov models have been especially important on higher levels of speech recognition sys-
tems, i.e. providing grammatical constraints for language models. This in turn allows the
speculation that hidden Markov model techniques may be an interesting technique for the analysis
of seismicity patterns at active volcanoes. Especially the understanding of seismicity patterns and
their correlation to the eruptive behavior might lead to significant improvements in hazard mitiga-
tion. To the author’s opinion HMM techniques might be even especially suitable for the investiga-
tion of multi-disciplinary databases of geophysical, geochemical, geological and environmental
monitoring parameters with respect to precursory phenomena of volcanic eruptions. As a starting
point for further research, it is therefore recommended to investigate the use of hidden Markov
model techniques for the joint analysis of the first results of the interdisciplinary monitoring
experiments at Mt. Merapi.
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CHAPTER 11, Appendices

A. Mathematical definitions in the context of pattern recognition

The following definitions are adapted from Fukunaga (1990, Chapter 2).
A.1 Distribution and density functions of a random vector

A random vectomwith n (random) variables shall be denoted in bold face letters as:

X = [Xq, Xy, ...,xn]T, 11.1

whereT denotes the transpose of the ve%:tor. An arbitrary point in the n-dimensional vector space
is denoted by the vectar = [ Xy, Xy, ..., X,] . Then, the random vector may be completely char-
acterized by therobability distribution function defined as:

P(Xgs Xoy ooy X)) = PI{X; <X, Xo S X, ooy X, S X} 11.2
Pr{ A} is said to be the probability of an eveqt . EQ 11.2 is written in short notation as:
P(X) = Pr{x<sx}. 11.3

The n -dimensional distribution functioR(X)  has the following properties (e.g. Bronstein and
Semendjajew, 1987, p. 668):

lim P(Xy,...,x,) =1,and lim P(xg,...,Xx,) =0 . 11.4
xlﬁ+oo Xla—OO
Xn_>+oo xn_.—oo
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Thedensity functionp(X) is defined as:

Pr{x; < X; <Xy +AXy, o0y, X, S X, S X+ AX}

P(%) = AJ(ilnl 0 AX,...AX, 115
-
which may be equivalently written as:
3"
p(X) = WP(?) 11.6

Hence, the probability distribution function can be equivalently expressed in terms of the density
function as an n-dimensional integral like:

X Xy Xn

P() = [P = [ - [ POV sy 117

It has to be noted, that the density function itself is not a probability, but must be multiplied by a
certain regionAx;...Ax,, (orAX ) to obtain a probability. The normalization constraints for the

density function are given by the properties of the probability distribution function as given in
EQ 11.4, and thus (e.g. Bronstein and Semendjajew, 1987, p. 669):

+00 +00
J’...J’p(xl, ooy Xp)dXq . dx, = 1 11.8

A.2 Moments of distributions

A random vectorx is completely described by its distribution or density function, respectively.
These functions, however, cannot always be determined easily. A more computable characteriza-
tion of a random vector, although less complete, is therefore given by the respective moments of a
distribution. Most important are the first and second moments. The first moment of a distribution
is also termed thexpected vectoor themean of a random vectaand is given by:

R = E[R] = J'ip(i)df(, 11.9

where the integral is evaluated over the whole vector space. The i-th compppent of the
expected vectopl is calculated as:

+00

W = Ixi p(X)dx = Ixi p(x)dx;, 11.10
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wherep(x;) is the marginal density of the i-th componert of , given by:

+o00 +o00
p(%) = J'...J'p()‘()dxl...dxi_ldxi+1...dxn. 11.11

Hence, each individual compongmt  of the expected vettor s calculated as the expected value
of the individual random variable with the marginal one-dimensional density.

The second moments and the second central moments of a distribution are given by the autocorre-
lation matrix S and the covariance matri@ , respectively. The more familiar formulation is the
second central moment , describing the expected deviation of the random vector from its
respective mean vectdC.  is given as:

. 1~ M1 Cqp -+ Cqp
C=E[R-MR-A)'] = E[F ... HXp =My o Xy—ly) | = ] 1112
B — 1, Cot - Cnn

The individual components;  of the covariance maflix  are then calculated as:

cj = EL(Xi =) (X —1))] = I...I(xi—pi)(xj—uj)p(xl, ey Xp)OXq..dX . 11,13

The diagonal elements;  of the covariance matrix are equivalent to the variances of the individ-
ual random variableg; , and the off-diagonal elements are given by the covariances of two ran-
dom variables; and;

The relation between the central second moments and the second moments is given by:

C = E[R-M)(R-)'] = E[xX']-E[RIp" -pE[R']+pp’ = s—pp’, 1114

aspl = E[xX] and the autocorrelation matrix S of the random vextor s defined as:

E[x,X4] ... E[X1X,]
S= gxR'] = 11.15
E[X.X4] ... E[X,X]
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B. Accounting for the dynamic range of computations in the eval-
uation and training of hidden Markov models

Both in the evaluation problem (section 5.3.1.) and in the training of discrete hidden Markov
models (section 5.3.3.) the calculation of the forward and/or backward variables as defined in
EQ 5.19 and EQ 5.21 of section 5.3.1. is required. In general, this involves the multiplication of a
large number of small quantities. It is easily recognized that the dynamic range of any computer is
not sufficient to manage this kind of computation. To avoid numerical underflow during calcula-
tions two different strategies are used in pracscaling and taking logarithm.

As the value of the forward variable,(j)  decreases exponentiallywith , a time dependent scal-
ing constant, is introduced (Devijver, 1985):

c, = 1 . 11.16
Zat(l)
|
Therefore, the scaled forward variablgj)  is calculated to:
. . a.(j)
a,(j) = cay(j) = = 11.17

PX:0)

The scaled forward variables are used then in the recursion instead, and numerical underflow is
effectively suppressed. The scaling constants  obtained for the forward variable can be used
also for the recursions for the backward varialfie@) , as their magnitude lies in the same range
as the forward variables,(j) . It can be shown (e.g. Rabiner, 1989) that the Baum-Welch re-esti-
mation formulas can be used with the scaled variables directly, as the time dependent constants
cancel out in the calculations.

However, for obtaining the likelihood measuP¢ O|A) , some care has to be taken. If the scaled
forward variables have been used in the recursions EQ 5.20.a to EQ 5.20.c, the termination evalu-
ates always to 1, as:

T N

N
Z ar(i) = |‘| Ctz a(i) =1 11.18

i=1 t=1 i=1
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Then, instead oP(O|A) , only the quantigg(P(OJA))

can be computed, because:

T N T
|_| C, Z ar(i) = |_| c,P(OA) =1, 0r 11.19
t=1 i=1 t=1
_ 1
P(O|A) = —= 11.20
[1¢
t=1
By taking the logarithm of EQ 11.20, it follows:
T
log[P(O|A)] = —Z C. 11.21
t=1
For the Viterbi algorithm and the alternate likelihood meaSB*reOp\) , the problem of numeri-

cal underflow can be relaxed even more efficiently, which is one of the reasons, why the Viterbi
algorithm has gained so much interest. By redefinition of EQ 5.25 to:

9.(i) = maxog R Q... Opiy i M1 0Q" with i, = sa 11.22
0 0

and initializing the Viterbi-algorithm by:
91(j) = log(m) +log(b;(0y)),

with the modified recursion step:

O, 1(1) = max (3(i) +log(a;)) +10g(b; (O, 1)),

the result for the modified Viterbi measure becomes:

logP (O|A) = max 9r(j)

11.23

11.24

11.25
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C. Implementation of DHMM-based classification-system into the
real-time seismic analysis environment Earthworm

The presented DHMM-based classification system has been implemented in a real-time seismic
analysis environment calledarthworm, which is used widely in the United States Geological
Survey (USGS) for the on-line monitoring of earthquakes in several state wide networks in the
U.S. (Johnson et al., 1995). The basic system concept of Earthworm consists of interacting indi-
vidual software modules, which communicate by message queues on so-called shared memory
segments and via TCP/IP protocols. It is therefore possible to run software modules on a distrib-
uted network of computers. Officially supported platforms are SunOS 5.5.x and higher for both
big-endian and little-endian machines, and Microsoft Windows NT for little-endian machines
only. Recently, within the scope of the seismological experiment of the MERAPI project, Earth-
worm has been ported to the open source operating system Linux, thanks to the programming
efforts of E. Schmidtke at the University of Potsdam, Germany.

Earthworm is a modular software system. Single software modules run independently from others
as own processes in the process tree of the operating system. For a reasonable data processing,
information has to be exchanged between the single modules. The communication between mod-
ules in an Earthworm system is realized by the usshafred memory segmentk Earthworm

they are calleddmessage rings"and can be seen as a virtual postbox in a reserved memory space

of the computer, which is allocated in the start-up phase of an Earthworm system. Modules can
use this postbox to share data and information by putting (retrieving) addressed messages into
(from) the message ring. The graphical representation for this communication principle is intro-
duced in Fig. 11.1.

Put
Message
Software Message

Module Ring

Retrieve
Message

FIGURE 11.1: Graphical representation of interprocess communication in Earthworm. The
rectangular box stands for an individual software module. The circle represents a message ring
(shared memory segment). Arrows pointing to the message ring indicate, that the software module
puts messages to the memory region of the message ring. Arrows pointing to the software modules
stand for message retrieval from the memory region.

Three additional software-modules have been implemented in the framework of Earthworm to
allow the on-line classification of volcano-seismic signals by discrete hidden Markov models at
the seismic monitoring network of Merapi volcano. The parametrization for the individual mini-
arrays is computed separately in the modwdat_array Data is requested in larger packets (e.g. 1
minute) from the standard Earthworm modulave _serverVThe wave_serverV module acts as a
waveform buffering server and provides waveform data to requests of software clients (e.g. the
cont_array module). This waveform data segments are pre-processed, and then parametrized
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using the methods introduced in sections 7.1.1. to 7.1.3.. The raw features for each processed time
window are time-stamped and sent as message on a new message ring called FEAT_RING.

The two-step procedure for the array-processing is shown in Fig. 11.2. In a first step, a longer data
window is requested from the wave_serverV, which is called the primary data window in the fol-
lowing. If the request could be satisfied by the wave_serverV module, the preprocessing steps,
including offset removal, seismometer simulation and bandpass filtering, are applied to the com-
plete waveform data within the primary data window. Subsequently, a smaller time window is
successively shifted along the seismic waveforms in the limits of the primary window. Within this
secondary sliding data window, all array-processing methods are applied. At each time step, the
result of the array analysis is stored in an output file. Additionally a time-stamped message of type
TYPE_FEAT is created and put into the shared memory region FEAT _RING. If the last second-
ary window has been processed, a new primary data window will be requested from the
wave_serverV module.

DATA REQUEST AND PREPROCESSING LEVEL

request primary data window preprocessing of primary data
from wave_serverV module _> window (parameters given in
T, =>Tjsq , With preproc.cfg)

Ti+1 =T; + WindowLength

ARRAY PROC. LEVEL

i++ cut secondary sliding window
T; =T, - OverlapTime from preprocessed primary
data window:

tj => tj+l , with
» tirg =tj + WINLEN phurkssono

YES

L1 < Tis

FIGURE 11.2: Data processing in Earthworm module cont_array. In the data request and processing
level, primary data windows are requested from the wave_serverV module. After preprocessing a
sliding window analysis is performed within the array processing level on the preprocessed data. If the
last secondary data window has been reached, a the next primary data window has to be requested
from the wave_serverV module.

The wavefield parameters obtained during this processing are sent as messages to a shared mem-
ory region. For each array, and each time-step a new message is created. This output is the basis of
the detection and classification of single seismic events.

The second modulieat2symis responsible to read the messages sent out from each invocation of
the cont_array modules. It combines the raw features of each array within a single time window
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into a single real-valued vector, applies a prewhitening transformation according to a given trans-
formation matrix and vector quantizes the resulting feature vector with a given codebook.

Small time delays may occur between the individual invocations of the cont_array modules for
the array processing step. Therefore, the resulting messages may appear unsorted in the message
ring. The module feat2sym is responsible for collecting the messages from the FEAT_RING, and

to sort them according to their time-stamps in a doubly linked list. After reading a message, a
search is performed for messages with common time stamp in this doubly linked list. If an entry
exists for all specified arrays with common time-stamp, the wavefield parameters from the indi-
vidual arrays are joined together into a single parameter vector. This parameter vector is further
transformed by a given transformation matrix and finally vector quantized. Fig. 11.3 provides a
data flow chart for the feat2sym module.

Module feat2sym

retrieve messages
1 2 3 4 5 -

KLT || KLT || PAS || GRW]| PAS
TO T1 T2 TO TO
data || data || data || data || data FEAT_RING

sorting

4 2 5 2 3

GRW| KLT || PAS || KLT || PAS
To ||TO ||TO ||T1 ||T2 [
data || data || data || data || data

N put message
match i a

LCL-)R\N iLT E’AS combine é bol
data and ymbo

TO (TO |[TO |/ transform, [™] A

data || data || data quantize TO

FIGURE 11.3: Flow chart for the internal data processing in module feat2sym. Messages of type
TYPE_FEAT are retrieved from the FEAT_RING. The messages are sorted according to their time
stamp. If for a given time (e.g. TO) a message from each individual array processing is available, a
match is found. The data of the messages for this time step is combined, eventually transformed and
finally vector quantized. A message of type TYPE_VQ is created, time-stamped and put on the
shared memory region VQ_RING.

The result of the feat2sym processing on the wavefield parameter messages is a single symbol for
each time step, which represents the index of the closest (euclidean distance measure) codebook
vector. For each time step, a message of type TYPE_VQ is created and sent to the VQ_RING.
The created message contains a time-stamp, and the resulting symbol from the vector quantiza-
tion process. Additionally the list of contributing stations for the wavefield parameter estimation

Is specified in the header of a TYPE_VQ message. These messages are the input for the next pro-
cessing module, callezbnt_dhmm
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The module cont_dhmm reads the messages produced by the module feat2sym consecutively
from the message ring VQ_RING. cont_dhmm buffers a symbol sequence of predefined length
using the timestamp information of the messages. This partial symbol sequence is subsequently
tested against a list of hidden Markov models. Both evaluation strategies “single_best” and
“average_best”, as have been described in section 7.5., can be used. The minimum-duration post-
processing rule has been implemented as follows: at any time step, where the winner model is dif-
ferent from the winner model of the previous time step, a possible detection is hypothesized. The
duration of the detected time segment is compared to the given minimum duration threshold for
the corresponding winner class. If the detection is long enough to be accepted as valid classifica-
tion, a new message of type TYPE_EVENT is created. Besides the usual header information, this
message contains start and endtime of the event, and a label of the class name. The message is
then sent to the HYPO_RING memory region, where it can be used for further processing (i.e.
localization modules, event statistic modules, etc.).

A system diagram of the automatic classification part for the Earthworm installation at the Merapi
Volcano Observatory in Yogyakarta is depicted in Fig. 11.4.

Waveform buffer

I wave_serverV

Ethernet

I scream2ew

* Data input from telemetry network
I cont_array (3)

I cont_array (2)

I cont_array (1)

I cont_dhmm I‘

Automatic
detection and
classification

I feat2sym I

FIGURE 11.4: Description of the automatic classification part of the Earthworm installation at the Merapi
Volcano Observatory in Yogyakarta. The continuous waveform data is read from local area network which
connects the data acquisition computer for the telemetry network and the processing computer running
Earthworm. Trace data is buffered in the wave_serverV software module. “cont_array” is started for each
array and results are handed to the module “feat2sym” via a shared memory segment (FEAT_RING). The
results of the array processing are vector quantized and forwarded for the evaluation in the “cont_dhmm”
module. Further details are given in the text.
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