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...
Cinderella obeyed,

but wept,
because she too would have liked to go with them to the dance,

and begged her step-mother to allow her to do so.
“Thou go, Cinderella!”

said she.
“Thou art dusty and dirty, and wouldst go to the festival?
Thou hast no clothes and shoes, and yet wouldst dance!”

 As, however, Cinderella went on asking,
the step-mother at last said,

“I have emptied a dish of lentils into the ashes for thee,
if thou hast picked them out again in two hours, thou shalt go with us.”

The maiden went through the back-door into the garden,
and called,

“You tame pigeons, you turtle-doves,
and all you birds beneath the sky,

come and help me to pick

   The good into the pot,
     The bad into the crop.

Then two white pigeons came in by the kitchen window,
and afterwards the turtle-doves,

and at last all the birds beneath the sky,
came whirring and crowding in,
and alighted amongst the ashes.

And the pigeons nodded with their heads and began
pick, pick, pick, pick,

and the rest began also
pick, pick, pick, pick,

and gathered all the good grains into the dish
...

cited from
Cinderella

in: Grimm’s Household Tales,
Translation by Taylor, Edgar in 1812,

Original tale: Aschenputtel (first published in 1812)
by Wilhelm Grimm (*1786, Hanau -✝1859, Berlin)
and Jacob Grimm (*1785, Hanau -✝1863, Berlin)
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The island of Java (Indonesia) belongs to the most densely populated regions on earth. A
two million inhabitants of this island live permanently under the risk of volcanic eruptions or
nating from one of Java’s 35 active volcanoes. Among those, Merapi volcano, located in the
tral part of the island, is the most feared, owing to its almost continuous activity and its espe
dangerous eruptive style. Merapi’s high-risk potential is the cause for concentrated nation
international research efforts in the field of volcano monitoring. Due to the close relation
between the volcanic unrest and the occurrence of seismic events at Mt. Merapi, the monito
Merapi’s seismicity plays an important role for recognizing major changes in the volcanic a
ity.

An automatic seismic event detection and classification system, which is capable to chara
the actual seismic activity in near real-time, is an important tool which allows the scientis
charge to take immediate decisions during a volcanic crisis. In order to accomplish the ta
detecting and classifying volcano-seismic signals automatically in the continuous data stre
pattern recognition approach has been used in this work. It is based on the method of h
Markov models (HMM), a technique, which has proven to provide high recognition rates at
confidence levels in classification tasks of similar complexity (e.g. speech recognition).
HMM-based classification of volcano-seismic event types represents a novelty in the field o
mology. It is used in its simplest form, the discrete hidden Markov model (DHMM).

A prerequisite for any pattern recognition system is the appropriate representation of the
data in order to allow a class-decision by means of a mathematical test function. Based
experiences from seismological observatory practice, a parametrization scheme of the s
waveform data is derived using robust seismological analysis techniques. The special con
tion of the newly installed digital seismic station network at Merapi volcano, a combinatio
small-aperture array deployments surrounding Merapi’s summit region, allows to parametriz
continuously recorded seismic wavefield with array methods. The signal parameters are an
to determine their relevance for the discrimination of seismic event classes. As best suited
continuous automatic classification of volcano-seismic signals, the following set of short-
seismic wavefield parameters is obtained in a sliding window-analysis at each array site:
mum waveform coherence and beampower via a broadband frequency wavenumber analy
1
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incidence angle of an array-wide averaged polarization ellipsoid; a set of short term sp
power estimates (sonogram) computed from the array-wide averaged amplitude spectra.

All wavefield parameters are summarized into a real-valued feature vector per time step. Th
series of this feature vector build the basis for the DHMM-based classification system. By a
ing a de-correlating and prewhitening transformation and further vector quantizing the fe
vectors with a previously trained vector codebook, the seismic wavefield can be represente
abstract, discrete symbol sequence with a finite alphabet. This sequence is subject to a ma
likelihood test against the discrete hidden Markov models (DHMMs), which have been lea
from a representative set of training sequences for each seismic event type of interest.

A time period from July, 1st to July, 5th, 1998 of rapidly increasing seismic activity prior to
eruptive cycle between July, 10th and July, 19th, 1998 at Merapi volcano is selected for eval
the performance of this classification approach. Three distinct types of seismic events acc
to the established classification scheme of the Volcanological Survey of Indonesia (VSI)
been observed during this time period. Shallow volcano-tectonic events VTB (h < 2.5 km),
shallow dome-growth related seismic events MP (h < 1 km) and seismic signals connec
rockfall activity originating from the active lava dome, termed Guguran.

For each of the three observed event types a set of DHMMs have been trained by the Viterb
rithm using a selected set of seismic events with varying signal to noise ratios and signal
tions. Additionally, two sets of discrete hidden Markov models have been derived for the se
noise, incorporating the fact, that the wavefield properties of the ambient vibrations differ co
erably during working hours and night time. In a first step, the recognition capabilities o
DHMM-based classification approach are evaluated by re-classifying the set of training sa
(resubstitution method), providing an optimistic estimate of the true classification error. The
ognition performance shows an almost optimal recognition rate of 99 %.

For the continuous recognition of volcano-seismic events in the time period between July,
July, 5th, 1998, the continuously recorded digital network data is parametrized and converte
discrete symbol sequence. Partial symbol strings are extracted from the symbol sequence in
ing window and tested against the available set of discrete hidden Markov models. The ou
of the maximum likelihood test functions for each individual model is evaluated following
different strategies. The time segment under consideration is classified a) to that seismic
class which is represented by the model providing highest probability, or b) to that seismic
type, whose complete set of models provides the best average probability in the maximum
hood test.

It is found, that the best performance of the classification system is achieved when the a
probability of all models corresponding to one signal class is evaluated. By further prunin
automatic detection list from too short detection windows, a total recognition accuracy of 67
obtained. The mean false alarm (FA) rate can be given by 41 FA/class/day. However, variati
the recognition capabilities for the individual seismic event classes are significant. Shallow
cano-tectonic signals (VTB) show very distinct wavefield properties and (at least in the sel
time period) a stable time pattern of wavefield attributes. The DHMM-based classification
forms therefore best for VTB-type events, with almost 89 % recognition accuracy and 2 FA

Seismic signals of the MP- and Guguran-classes are more difficult to detect and classify. F
5-day period under consideration, around 64 % of MP-events and 74 % of Guguran signa
2
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recognized correctly. The average false alarm rate for MP-events is 87 FA/day, whereas for
ran signals 33 FA/day are obtained. However, the majority of missed events and false alar
both MP and Guguran events (especially short-lasting, low energetic Guguran events) are
confusion errors between these two event classes in the recognition process.

The confusion of MP and Guguran events is interpreted as being a consequence of the s
parametrization approach for the continuous seismic data streams. The observed pattern
analyzed wavefield attributes for MP and Guguran events show a significant amount of simi
thus providing not sufficient discriminative information for the numerical classification. The s
ilarity of wavefield parameters obtained for seismic events of MP and Guguran type reflec
commonly observed dominance of path effects on the seismic wave propagation in volcanic
ronments. The propagation medium at volcanoes is known to be composed of heterogeneo
thin layers of unconsolidated materials resulting in a complicated, highly-attenuating th
dimensional structure with rough topography. Thus, as MP-type events as well as Guguran s
are generated very close to the surface and nearly at the same location of the volcano (acti
dome region), the seismic wavefield observed at some distance to the shallow source reg
MP and Guguran events is dominated by path effects.

The recognition rates obtained for the five-day period of increasing seismicity show, that the
sented DHMM-based automatic classification system is a promising approach for the dif
task of classifying volcano-seismic signals. Compared to standard signal detection algorithm
most significant advantage of the discussed technique is, that the entire seismogram is d
and classified in a single step. The encouraging results motivated the implementation of the
rithms in the real-time seismic signal analysis system Earthworm (USGS), which is curr
tested at the installations of the Volcanological Survey of Indonesia for the seismic monit
network of Merapi volcano.
3
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Merapi volcano, located in the central part of Java island, Indonesia, is considered to be one
most active and dangerous volcanoes of the world. The danger of Merapi evolves from its er
behavior, which is mainly characterized by the frequent occurrence of pyroclastic flows and
sional vulcanian eruptions. Due to its location in the magmatic arc of the subduction zone fo
by the Indo-Australian and Eurasian Plate boundary (see Fig. 2.1), Merapi’s magmatism is
tic-andesitic, with SiO2 contents ranging from 50 - 56 wt. % (Gertisser and Keller, 199
Andreastuti et al., 2000). In recent times, the viscous, highly crystalline lavas have formed re
edly bulbous lava domes and thick stubby lava flows. Collapses of this viscous lava dome,
can be caused by either gravitational instability or internal excess pressure, generate violen
ardentes. Besides those so-called “Merapi-type nuées ardentes”, also fountain-collapse
ardentes occurred in historical times, reaching even farther distances and transporting muc
material than the previous types of pyroclastic flows and surges. Together with huge debris
(Lahars) during the tropical rainy season the volcanic activity is a continuous threat to the h
populated area at the volcano’s flanks and in the south of Merapi. Descriptions of historical
tions since 1768 have been summarized by Voight et al. (2000a), while the prehistoric eru
history during the past 10,000 years from archeological and geological data have been des
by Newhall et al. (2000).

Merapi’s frequent eruptive activity with typical recurrence rates of one to six years (e.g. Hid
et al., 2000) poses a high risk to the densely populated area at the volcano’s flanks. With a
one million inhabitants, the city of Yogyakarta is situated just 28 km to the south of the a
summit region and still belongs to the risk zone of Merapi. A major volcanic event will there
not only affect the local neighborhood, but might even have a severe impact on the socioeco
development of Central Java.

Due to its high risk potential, Merapi is one of 15 volcanoes declared as “Decade Volcano
program proclaimed by theInternational Association ofVolcanology andChemistry of the
Earth’s Interior (IAVCEI ) within the frame of UNESCO’sInternational Decade ofNatural
DisasterReduction(IDNDR) during the 1990’s. The main goals of this research program is
improve the understanding of volcanic processes and mechanisms, to contribute to hazard
ment and to improve prediction capabilities (Newhall et al., 1994).
5
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The aims of the IDNDR are addressed in the joint Indonesian-German cooperation projectMER-
API (Mitigation, Evaluation, Risk Assessment andPrediction Improvement) (Zschau et al.,
1998). Several scientific projects have been started in 1997 including petrological, geolo
geochemical and geophysical long-term investigations for both gathering necessary stru
information of Merapi and to establish monitoring baselines for the future. Due to the observ
that volcanic and seismic activity are often closely related to each other at Merapi volcano (R
mopurbo, 2000, Ratdomopurbo and Poupinet, 2000, Voight et al., 2000b) the passive seism
cal project is considered as very important among the different monitoring experiments.

A new seismic network consisting of twelve seismic stations has been installed in July 1997
viding high-quality continuous digital recordings. The stations have been grouped at three d
ent locations forming small-aperture (mini) arrays with four seismometers each (central b
band and three surrounding short-period seismometers). Together, these mini arrays act as
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FIGURE 2.1: Three-dimensional perspective view of Merapi volcano (top) from SW, no vertical
exaggeration. Merapi volcano is located in Central Java (red star in detailed map view) and is one of 35
active volcanoes on Java island (red triangles). The global earthquake distribution (colored circles,
global earthquake data 1991-1998 NEIC, mb>5) confines the convergent plate boundary between the
indo-australian plate and the eurasian plate. The increase of hypocenter depths to the north indicates
the Benioff-zone in the active subduction regime.
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mographic network around the summit of Mt. Merapi allowing precise localization of seis
sources by exploiting both the array and network properties of this configuration.

Recording continuously at all stations, the amount of accumulated digital data lies in the ord
several hundred MegaBytes per day (slightly dependent upon the dynamic range of signals
influences the effectiveness of compression algorithms). To reduce the workload of visua
analysis and to enable the detailed investigation of seismic signals of volcanic origin, there
need for a robust automatic event detection and classification system. The design of such a
is the goal of this study.

Methods for robust seismic signal detection have been under investigation since the beginn
digital seismology. Considering the enormous development in data acquisition and storage
nology, it has become an issue of growing importance. Until some years ago the main asp
signal detection was to reduce the amount of the recorded digital data to manageable le
order to use the limited and expensive storage capacities economically. Nowadays, as digit
age has become inexpensive and common digital acquisition systems allow recording of co
ous, high-resolution data streams at high sample rates, the use of detection algorithms can
primarily in the task to flag signal segments of continuous data streams for subsequent aut
and/or interactive analysis (Withers et al., 1998).

Main purpose of available seismic signal detection algorithms is the automatic detection an
ing of body phase arrivals in seismogram recordings of tectonic earthquakes and artificial e
sions (chemical and nuclear). Seismic signals generated either by earthquakes or a
explosions show a compressional body wave type at the beginning of the observed seismo
normally characterized by sudden changes in both frequency and amplitude with reference
preceding seismic noise. The methods used for detecting such transient signals try to explo
characteristics by comparing short-time to long-time statistics of signal parameters and s
quent hypothesis testing.

Most studies in seismic signal classification have focused on the discrimination problem be
natural and artificial sources. This important task has mainly been applied in two domains,
the context of pruning local and regional earthquake bulletins from recordings of quarry
explosions, and b) in the context of the verification of nuclear test ban treaties (CTBT, Hoffm
et al., 1999) within a worldwide station network. Mostly spectral ratios of certain wave group
wave, S-wave, Lg-wave) have been used to accomplish this task. As a consequence, the
groups under consideration have to be extracted beforehand, which in turn is still a major
lenge to automatic processing algorithms.

Pattern recognition approaches, which aim to jointly detect and classify the complete se
gram, have rarely been used in the context of seismic signal detection and classification. J
(1990) developed a robust seismic event detector which is based on the comparison of s
images (sonogram) to a set of reference templates. Recently, Gendron et al. (2000) have
the discrete wavelet transform, combined with a wavelet based de-noising technique and a
sian classifier (MAP) for joint detection and classification of continuous seismogram record

Taking into account the special nature of volcano-seismic events, a novel method for joint d
tion and classification of seismic signals of volcanic origin is presented in this study. Volc
genic quakes mostly appear to have emergent signal onsets and low signal to noise ratio
makes it difficult to adopt detection algorithms used for onset time estimation of seismic
7
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signals, and - in the case of volcanic tremor - the absence of clear phase arrivals as well
great variability in signal duration suggest the use of a classification approach, which is capa
incorporate context dependent information into the recognition process.

A recognition problem of comparable complexity is found in the field of digital speech proc
ing. Similar to volcano-seismic signals (i.e. volcanic tremor), the acoustic waveforms of sp
show great variability in both utterance length and signal characteristics. The current-state-o
art approach in speech recognition is the stochastic modeling of time-varying short time fe
of the acoustic observation by hidden Markov models (HMM, Rabiner and Juang, 1986, Ra
1989). The hidden Markov modeling approach is capable to use the context-dependent in
tion for the recognition process and has proven to allow recognition rates up to 90-95% depe
on the specified recognition task (speaker-dependent or -independent recognition, labora
noisy environment conditions, isolated word or continuous speech recognition, to name a f

In speech recognition the parametrization of acoustic signals has been studied intensively
past decades. The investigation of the physics of speech production and the human perce
speech have finally led to a mostly accepted form of acoustic signal parametrization, prov
good classification results in speech recognition tasks (for an overview see e.g. Deller
1993). In volcanic seismology, however, the problem of feature extraction and signal repre
tion is still widely discussed. The source processes of seismic signals at active volcanoes a
generation of seismic energy are still only poorly understood. A signal representation w
incorporates human expertise from routine observatory practice without any special assum
about the source processes is seen as an appropriate starting point for seismic signal para
tion. Hence, the seismic wavefield, which is observed simultaneously at a network of small-
ture arrays will be described here by a limited number of seismological key parameters.
techniques provide information about the direction, coherency and strength of seismic
arrivals and are complemented by polarization attributes and spectral energy estimates.

In the context of speech recognition the corresponding task would be called “speaker-dep
keyword-spotting in continuous speech”. Its goal is the identification of a small set of w
(vocabulary) with high confidence in continuous speech, uttered by a single speaker. Trans
this to the given problem, the task could be best described as “volcano-dependent seismic
spotting in the continuously recorded seismic wavefield by the use of hidden Markov mod
The parametrization of continuous seismological data streams and the use of HMMs for the
tion and classification of the volcano-seismic signals occurring at Merapi volcano are presen
the following.
8
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Volcanoes are the geologic manifestation of highly dynamic and complexly coupled physica
chemical processes in the earth’s interior. Volcanic processes occur on a broad range o
scales. The involved time constants may be as long as tens or hundreds of years (e.g. mag
magmatic differentiation) or as short as fractions of seconds (e.g. fragmentation). Fast vo
processes, which take place within short time periods (~100 s to cs) may release seismic
directly (e.g. magma/gas movements, explosions), whereas slower processes may cause
waves only indirectly (e.g. fracturing of volcanic edifice through stress changes caused by m
rise).

Due to the complex nature of volcanic processes, a great variety of distinct seismic signals
observed at volcanoes. However, despite of the diversity of volcanoes regarding e.g. the ge
cal structure, size, the volatile content, or the chemical composition and physical propert
volcanic products, there is the remarkable observation, that the majority of volcanogenic se
signals - although recorded in distinct volcanic environments - show comparable signal char
istics from one volcano to another. It is this observation that has given rise to the idea that se
signals at active volcanoes share common source processes which are directly related to th
nal driving forces of eruptive phenomena. Thus, the study of seismic sources at active volc
is considered to be an important tool (among other disciplines of geoscientific researc
improve the knowledge about the dynamics of active magmatic systems and the physics o
corresponding driving processes. The indirect estimation of the physical properties of suc
tems and their connection to the eruptive behavior of volcanoes are of key interest for the
field of hazard mitigation (e.g. Chouet, 1996a).

A prerequisite for the detailed research on seismic signal generation is the classification
observed signals into event families. Besides the importance for evaluating seismic source m
and their relation to volcanic processes, classifying seismic signals on a routine basis prov
way to quantify the activity state of a volcano. Classification schemes for individual volcanoe
indispensable for revealing correlations between special types of seismicity and the corres
ing volcanic activity. Daily counts of individual seismic signal types are widely used in volca
observatories for taking decisions whether to raise or to lower volcanic alert levels and for
municating the activity state of a volcano to local authorities and the public. Hence, the se
monitoring of an active volcano, in combination with other monitoring techniques, is mea
9
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provide a description of the present status of a volcano. It may additionally provide indication
the difficult duty of eruption forecasting and to estimate the size of an eruption in progress
McNutt, 1996).

3.1. Overview of volcano-seismic signals and terminology

Until now no consistent global classification scheme for volcano-seismic signals has been
lished (McNutt, 1996). This is mostly due to the great variety of names which have been pro
for volcano-seismic signal classes in the scientific literature. Most of the proposed terms
been chosen according to the visual appearance of seismograms or by the use of des
names indicating the striking characteristics of the seismograms’ signal parameters. In othe
the names of event classes were selected by relating the supposed source process to th
under consideration. Additionally, several local terminologies, used in individual observato
have been introduced to the scientific literature, without taking into account already existin
more general applying classification schemes, i.e. Minakami (1960, 1974), and Shim
(1972).

The terminology introduced by Minakami (1960, 1974) is the most widely referenced volc
seismic signal classification. In his work from 1960, Minakami mainly investigated the hy
center depth distribution, the magnitude-frequency distribution, and the first motions of volc
seismic events recorded at several Japanese volcanoes. On this basis he distinguished fou
of seismic event types: A-type, B-type, explosion quakes and volcanic tremor.

A-type: This event type shows clear P- and S-wave arrivals with dominant frequencies bet
5 Hz to 15 Hz. Higher frequencies, which are likely to be produced in the seismic source are
ably not recorded due to instrumental limitations (limit of passband in common seismog
telemetry systems) and high local attenuation effects (McNutt, 1996). In other nomencla
(e.g. McNutt, 1996) the typical spectral range for A-type events motivated to choose the
high-frequency event for this family of volcanic earthquakes. The hypocenter depth range f
type events as given by Minakami (1960) is 1-10 km.

The widely accepted source model for A-type events is shear failure or slip on pre-existing
within or below the volcanic edifice. The source mechanisms derived for A-type events sh
high double-couple portion, and therefore A-type events have also been termed “volcano-te
events” (e.g. Power et al., 1994). In contrast to “normal” tectonic earthquakes, their vol
counterparts occur typically in swarms, rather than in mainshock-aftershock sequences (M
1996). A-type events have been related to the process of local stress-changes inside the v
edifice, caused by injection (or withdrawal) of magma. The tectonic release of the accumu
strain along fracture systems as seismic energy leads to A-type events.

B-type: B-type events have been reported to occur mostly in a swarm-type activity showing
variation between the individual recorded waveforms (e.g. Minakami, 1960, McNutt, 1
Power et al., 1994, Chouet et al., 1994, Miller et al., 1998). Most characteristic are the eme
low-energetic signal onsets, monochromatic oscillating waveforms and the lack of clear S
arrivals. Spectral analysis showed, that the seismic energy is mainly concentrated in narro
quency bands in the range between 1 Hz to 5 Hz. Hence, the terms low-frequency (LF) or
period (LP) event have been used as synonymous expressions for B-type events in other c
cation schemes (McNutt, 1996, Power et al., 1994). The typical hypocenter depth for B
10 Overview of volcano-seismic signals and terminology
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events after Minakami (1960) is very shallow (less than 1 km), which has lead to the concl
(e.g. Minakami, 1960), that the observed spectral properties and the lack of clear S-wave a
are due to the propagation of the seismic wavefield in the heterogeneous, unconsolidate
strongly attenuating shallow layers of the volcanic edifice. In few occasions deeper source
tions of low-frequency events have been reported for Kilauea volcano (Aki and Koyanagi, 1
Shaw and Chouet, 1991). This fact and the similarity of spectral composition recorded at a
number of stations gave reason for the assumption, that not path, but source effects are
responsible for the characteristics of low-frequency events.

However, the physical source process of low-frequency events is still under discussion. It ha
observed very early, that B-type events and volcanic tremor (see below) share common cha
istics, i.e. they possess similar spectral content and the observed waveforms often show
monic oscillating nature. Most authors agree that a non-destructive source process is resp
for both the repeated swarm-like pattern of B-type events as well as for the occurrence of vo
tremor signals. Together with the observation, that B-type events and tremor occur in pha
increased volcanic activity, a connection to mass transport processes in the volcanic feedin
tem is considered as most probable cause for both low-frequency events and volcanic trem

Volcanic Tremor: Volcanic tremor is the collective name of continuous (sustained) sign
recorded at active volcanoes. Tremors mostly show no clear phase arrivals and have strongl
ing signal durations, lasting from several tens of seconds to hours, days or even longer. Th
nals are characterized by peaky amplitude spectra mainly in the frequency range from 1
5 Hz, although examples with higher frequency contents (> 5 Hz) have been observed. Dis
tions of the main frequency content and the durations for volcanic tremor signals recorded a
100 volcanoes worldwide have been reviewed by McNutt (1992).

Many studies have been conducted to reveal the source process of volcanic tremor. As ha
mentioned before, the similarity of frequency spectra between low-frequency events and vo
tremor have led to the conclusion, that volcanic tremor is in fact a series of superimposed lo
quency events at intervals of few seconds (e.g. Minakami, 1974, Koyanagi et al., 1987). The
lating nature of volcanic tremor signals (and low-frequency events), and the correspo
sharply peaked amplitude spectra have been interpreted as resonance effects directly relate
source process. Due to the observation, that the dominant frequency peaks are recorded s
neously at different stations, major path and site effects, which would explain the peaky amp
spectra as well, have been ruled out as possible explanation. In the work of Aki et al. (1977)
low volcanic tremor was explained as a result of a repeatedly excited fluid-filled crack vibra
As excitation process of the crack vibration, the tensile opening of fractures in response to e
magmatic pressure was discussed. This model was motivated from hydraulic fracturing e
ments, therefore the involved fluid was assumed to be single-phase. In further developme
this model by Chouet (1981, 1985, 1986), and Chouet et al. (1987), it was concluded that th
must be an active element in the motion of the source in order to explain the narrow-ba
nature of the spectral peaks of volcanic tremor. Other models have been developed e.g. by S
al. (1981) which were based on observations from Schick and Riuscetti (1973) and Riuscett
(1977) at Etna volcano. Seidl et al. (1981) discussed the interaction of gas and fluid in a two
fluid as volcanic tremor source. The overall shape of typical amplitude spectra of volcanic tr
was modeled by seismic wave radiation from magma motions following a monopole flow pa
The sharp spectral peaks with narrow bandwidth have been attributed to resonance con
within fluid magma filled conduits. Schick (1988) pointed out that self-sustained pressure os
tions caused by two-phase flow instabilities is in accordance to the observed stable long
Overview of volcano-seismic signals and terminology 11
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characteristics of volcanic tremor. Another mechanism of self-sustained excitation of fluid
was proposed by Julian (1994), taking into account the interaction between unsteady flow of
cous incompressible fluid and the conduit walls. A qualitatively different explanation for
occurrence of harmonic spectra observed at Semeru volcano has been given in a wor
Schlindwein et al. (1995). It was shown, that any repeated transient source process with r
repetition intervals (of a few seconds), will produce a peaky amplitude spectrum. Consequ
the single spectral peaks reflect the frequency of event repetition, rather than the individua
sient source spectrum. In this model, the source spectrum of the individual transients is
tained by the overall spectral shape.

Explosion quakes:This group of volcano-seismic signals is a heterogeneous class of se
waveforms, which are recorded in connection with explosive eruptions. The observed wave
differ depending on eruption style and size. Often an air-shock phase can be observed in the
sponding seismograms (e.g. McNutt, 1996). In most descriptions (e.g. Minakami, 1960, Mc
1986), the first arrival of an explosion quake shows some similarities to the waveforms of
type event, regarding the frequency content and the oscillating nature. This observation wa
as an argument for the dominance of path effects for shallow volcanic events.

Minakami’s classification scheme was derived in a comparative analysis of seismic data from
eral distinct volcanoes in Japan. Hence, this general nomenclature works well at most activ
canoes. In more detailed studies for individual volcanoes (e.g. Lahr et al., 1994, and Power
1994 for Redoubt volcano, Alaska; Latter, 1981, Sherburn et al., 1998 for White Island,
Zealand; Miller et al., 1998 for Soufrière Hills, Montserrat), modifications have been propos
include other types of seismic signals which have not been addressed in Minakami’s work. A
ture between Minakami’s A-type and B-type earthquakes has been repeatedly observed a
term hybrid or mixed frequency event are commonly used for this event type (e.g. McNutt, 1
Some typical examples of vertical ground velocity recordings for the previously described
types are given in Fig. 3.1.

It has to be noted, that Minakami’s work is based on the observations made with short-period
mometers (corner frequencies around 1 Hz or higher), which have been the typical instrum
tion used for monitoring seismic events at active volcanoes. However, in recent years, wi
development of affordable portable broadband seismograph systems, new characteristics
mic signals at active volcanoes have been observed. Transient seismic signals with domina
ods between several seconds to several tens of seconds have been observed at several v
i.e. Stromboli (e.g. Neuberg et al., 1994, Dreier et al., 1994, Wassermann, 1997a, 1997b,
dörfer, 1999), Mount Erebus (Rowe et al., 1998), Popocatépetl (Arciniega-Ceballos et al., 1
and recently Merapi (Hidayat et al., 2000). Those signals have mostly been termed very
period events (VLP) or even ultra-long period events (ULP).
12 Overview of volcano-seismic signals and terminology
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From the above review of source models, which have been suggested for both volcanic trem
low-frequency events, it must be concluded, that there is still no commonly accepted and g
ally applying physical model available. What remains is the fact, that all models propos
involvement of unsteady fluid flow and mass transport processes in the shallow part of the
nic edifice. Most authors assume therefore a direct connection between the eruption driving
within a volcano and the occurrence of volcanic tremor and/or low-frequency events. H
those seismic event types are considered to play a key role not only in the context of under
ing the physics of the complex volcanic dynamics but also in the difficult task of forecas
future volcanic eruptions with seismological monitoring techniques.

From several case studies of seismicity accompanying volcanic crisis, McNutt (1996) deri
generic volcanic earthquake swarm model (compare Fig. 3.2). Based on the results of his co
ative study, McNutt concluded the following important points for the seismic monitoring of vo
noes: a) a knowledge about the background seismicity - several years monitoring in quiet st
the volcano - is indispensable for the evaluation of possible seismic precursors for volcanic
tions; b) the use of three-component and broadband seismometers for improved monitorin
for later detailed analysis; and c) the necessity for flexible monitoring strategies including
geophysical long-term measures.

0 10 20 30
Time [s]

0 10 20 30 40 50 60
Time [s]

FIGURE 3.1: Typical examples of recordings of the vertical motion for volcano-seismic event types.
Seismograms a)-c) have been recorded at Redoubt volcano, seismograph 8 km from vent. a) A-type VT
event, hypocenter depth ca. 6.8 km, b) mixed-type or hybrid event, hypocenter depth -0.6 km (above sea
level) c) B-type or low-frequency, hypocenter depth -0.4 km; d) Explosion quakes with air wave arrival
recorded at Pavlov volcano, seismograph ~8.5 km from vent; e) B-type event at Pavlov volcano, same
station; a)-e) taken from McNutt (1996); f) strombolian explosion recorded at Arenal volcano,
seismograph ~2.2 km from vent, raw waveform g) same as f), but high-pass filtered at 5 Hz. A clear
airwave arrival can be noted at around 10 s; h) harmonic tremor sequence recorded at Arenal volcano;
f)-h) courtesy of W. Taylor (Observatorio de Vulcanologia de Arenal y Miravalles del Instituto
Costarricense de Electricidad, OSIVAM-ICE, San José, Costa Rica).

a)

b)

c)

d)

e)

f)

g)

h)
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3.2. Seismic signals at Merapi volcano

The local terminology and classification scheme of volcano-seismic signals at Merapi dates
to the work of Shimozuru et al. (1969). In their work, Shimozuru et al. (1969) describe the o
vations from a short-term seismological experiment at Merapi volcano in 1968. Five distinct
mic signal classes have been observed and are summarized as shown in Table 3.1.

The seismic signal classification given by Shimozuru et al. (1969) is based on single statio
for only a limited observation period of three months. In 1982 a permanent short-period se
network has been installed as part of a collaboration between the Volcanological Survey of
nesia (VSI) and the Hawaiian Volcano Observatory (USGS-HVO). The data recorded durin
eruptive cycle in 1984 at this six station short period seismograph network have been the ba
deriving a new classification scheme for seismic signals at Merapi volcano. Since then, this
fication is used in the VSI to describe the seismic activity of Merapi. It has been summariz

TABLE 3.1 Classification of seismic signals at Merapi volcano after Shimozuru et al. (1969).

Type Apparent feature (dominant) Period [s] Remarks

1 double spindle 0.09-0.12 high frequency

2 double spindle 0.09-0.12, 0.24-0.36 high frequency is followed by low frequency

3 B-type 0.15-0.25 same as Minakami B-type class

4 many phases 0.25-0.30 related to lava dome activity,

5 elongated spindle 0.16-0.90 associated with lava avalanche

Background HF swarm LF events Tremor

Explosion
earthquakes,

eruption
tremor

Deep HF
earthquakes

Types of
Seismicity

heat,
regional
stresses

magma
pressure,

transmitted
stresses

magmatic
heat,

fluid-filled
cavities

vesiculation,
interaction

with ground
water

fragmentation.
magma flow

magma
withdrawal,
relaxation

Dominant
processes

Seismicity
Rate

Eruption(s)

relative
quiescence

peak
rate

swarm
onset

post-eruption

Time

FIGURE 3.2: Schematic diagram of the time history of a generic volcanic earthquake swarm model, re-
drawn after McNutt (1996). On top a qualitative graph of the seismicity rate during different stages of an
volcanic eruption cycle is shown. On bottom the main types of volcano-seismic events observed in each
stage and the supposed dominant processes are given.
14 Seismic signals at Merapi volcano
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the work of Ratdomopurbo (1995) and is shown in Table 3.2. Typical waveforms of the chara
istic volcano-seismic events of Merapi are displayed in Fig. 3.3 (Ratdomopurbo, 1995).

Two signal types reported for Merapi volcano have no correspondence in Minakami’s class
tion scheme: the multiphase events (MP) and the rockfall signals (Guguran). It has been no
Hidayat et al. (2000), that MP events are similar to hybrid events recorded during phases of
growth, e.g. at Redoubt Volcano (Power et al., 1994) and Soufrière Hills Volcano (Miller e
1998).

Whereas the source process of the rockfall related seismic events is known to be connecte
gravitational collapse of parts of the active lava dome, detailed source models for the d
growth related MP events have not yet been found. Recently, Hidayat et al. (2000) have re
interesting features of MP events deduced from recordings at a temporarily deployment of b
band seismometers at Merapi’s summit region. From the observation of very-long period p
(~ 4s) embedded in the MP events, they discussed subsurface gas pressurization and relax
a possible source process, similar to work of Ohminato and Ereditato (1997) and Voight
(1999). As an alternative, they considered episodic stick-slip movement of the magma in the
duit, assuming significant shear strength inside the highly viscous magma. A similar s
model for seismic events at Unzen volcano has been suggested by Goto (1999).

TABLE 3.2 Classification of volcano-seismic signals at Merapi volcano after Ratdomopurbo (1995)

Type Apparent feature
dominant
frequency

[Hz]
Remarks

Shimozuru et
al. (1969)

equivalent
class

Minakami
equivalent

class

VTA clear P- and S-wave arrivals, 5 - 8
volcano-tectonic, hypo-
center deeper than 2.5

km below summit.
- not recorded - A - type

VTB clear P-arrival,
no apparent S-wave arrival

similar to
VTA

volcano-tectonic, hypo-
center depth less than
1.5km below summit

B - type - ? - shallow A-type

MP
multiphase

less impulsive onset than VT-
events, for a given amplitude, MP
events have longer durations than
VT-events, rapid amplitude decay

with distance from summit

3 - 4
related to lava dome

growth
type 4 - many

phases
-

LF (low-
frequency)

monochromatic low-frequency con-
tent similar at all stations, short
duration and rapid spatial ampli-

tude decay

1 - 2 - B-type - ? - B - type

LHF combination of LF followed by
VTB

observed only during
the activity phase of
Merapi in 1990-1992

not recorded

combination of
B-type fol-

lowed by A-
type

Tremor long-lasting low-frequency tremor 1 - 2 - - ? - Tremor

Guguran
(Rockfall)

typical durations between 60 and
180 sec.

1 - 20
associated with rock

avalanches originating
at the active lava dome

type 5 - assoc.
with lava ava-

lanche.
type 1 and 2 -

double spindle.

-

Seismic signals at Merapi volcano 15
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The background level of Merapi’s seismicity in periods of low volcanic activity was given by R
domopurbo and Poupinet (2000) as less than eight events per month for VT-type events
VTA and VTB), with VTB events being five times more frequent than VTA ones. MP-type
Guguran occurrence rates vary in the range of several tens to 1000 events per month,
dependent on the activity state of the active lava dome. Occurrence of swarms of both deep
shallower VT-activity has been observed to precede periods of increased volcanic activity i
eral occasions (Ratdomopurbo, 2000, Ratdomopurbo and Poupinet, 2000, Voight et al., 200
has been interpreted as the response of the volcanic edifice to the injection of new magm
deeper crustal reservoirs. A very strong correlation to the volcanic unrest has been found
MP-type events during phases of rapid dome growth. However, sometimes phases of as
dome growth have been observed, although they have been less frequent. Guguran
increases significantly during periods of dome buildup, and a close connection to the occu
of rockfall avalanches to the gravitational instability of the active lava dome is evident.

Two interesting seismicity patterns have been observed repeatedly at Merapi volcano. One
occurrence of VTB event swarms (within days or months) with completely identical wavefo
as shown in Fig. 3.4 (Ratdomopurbo, 1995, Poupinet et al., 1996, Wassermann and Ohrn
2001). A set of identical waveforms has been termed multiplet and has been used to map
temporal changes of the seismic velocity structure (Poupinet et al., 1996).

FIGURE 3.3: Typical waveforms of seismic signal types recorded at Merapi after Ratdomopurbo (1995).
All waveforms are recorded at the short-period seismic station PUS, at ca. 1 km horizontal distance from
the active lava dome.
16 Seismic signals at Merapi volcano
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The second interesting seismicity pattern observed at Merapi is the occurrence of rhythmi
swarms with a duration of several days to weeks. The length of the inter-event time interval
time between two successive MP-events, are remarkably stable on shorter time scales
hours). However, an evolution of the swarm is occasionally observed, with slowly decreasi
increasing inter-event time intervals. In rare cases, the single MP-events merge so close to
that the resulting seismogram is visually classified as volcanic tremor. This type of seismicity
tern has been observed on analog recordings by Fadeli et al. (1991) and has been confir
Budi (pers. comm.) for the digital recordings in the years 1996, 1997 and 1998. The observa
similar to swarm activity known from Soufrière Hills volcano (Neuberg et al., 1998).

FIGURE 3.4: Multiplet set of nearly identical waveforms of VTB-type events after Ratdomopurbo (1995).
Seismograms were recorded at station PUS (vertical component short period) between January and
September 1991 prior to the eruption of 1992.
Seismic signals at Merapi volcano 17



Seismic signals of volcanic origin
18 Seismic signals at Merapi volcano



CHAPTER 4. Pattern recognition for seismic
signal classification
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As a result of the rapid development in computer technology in the last decades, pattern re
tion has undergone a development from being the“output of theoretical research in the area o
statistics” (Theodoridis and Koutroumbas, 1998, p. 1) to a scientific discipline, which has ga
more and more interest because of its practical importance. Nowadays, pattern recognition
cations can be found in nearly all branches of applied science, with the majority concentrati
the fields of perception and man-machine communication, i.e. speech and image recognit
short introduction to general pattern recognition principles and for the specific application of
mic signal classification is given in this chapter.

4.1. Definition of pattern recognition

Theodoridis and Koutroumbas (1998) define the termpattern recognitionin the introduction of
their text book as: “Pattern recognitionis the scientific discipline whose goal is theclassification
of objects into a number ofcategories or classes. ... We will refer to these objects using th
generic termpatterns. ... Pattern recognition is an integral part in mostmachine intelligencesys-
tems built fordecision making.”

Fukunaga (1990) stressed another important issue in his definition of pattern recognition:“It is
felt that thedecision-making processes of a human beingare somewhat related to the recogn
tion of patterns; ... The goal of pattern recognition is toclarify these complicated mechanisms o
decision-making processes and toautomate these functions using computers.” .

Furthermore, Fukunaga (1990) is specific in the choice of methods and tools required to a
the stated goals:“..., we mustfirst measure the observable characteristics of the sample. ... These
n measurements form a vector X ... the observation, x(i), varies ... and thereforex(i) is a random
variable and X is a random vector... Thus, pattern recognition, or decision-making in a broad
sense, may be considered as aproblem of estimating density functionsin a high-dimensional
space anddividing the space into regions of categories or classes. Because of this view,mathe-
matical statistics forms the foundation of this subject.”
19
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Thus, the integral parts of a pattern recognition system can be summarized as follows: O
basis of problem related information acquired from experiment or theory, a mathematical fo
lation for a decision function has to be derived in order to categorize the given information
several classes. The decision functions are obtained in a learning process by estimating
functions from a representative set of training samples. The classification results obtained v
automated algorithm should be similar to the results derived by a human expert, who is fa
with the given classification task.

In the following it will be discussed in which way a pattern recognition approach can be use
the task of seismic signal classification. Some of the basic mathematical definitions which w
used in the discussion are given in the appendix A.

4.2. Detection and classification by statistical pattern recognition

The term detection is normally used for a classification problem involving two classes. The g
to find an automatic decision between parts of observations which are regarded as sign
those which are not (noise) by the use of an appropriate mathematical formulation. Detectio
therefore be considered as the most simple but also the most important classification task
However, the imprecise formulation of what exactly is to be considered noise can turn the d
tion problem into a more difficult task than a classification problem involving a large numbe
well-defined signal classes.

In seismology the non-signal (noise) parts consist mainly of different types of ambient se
vibrations, generally termed “seismic noise”. Seismic noise is generated by both artificial
made noise, e.g. traffic, factory noise, instrumental noise) and natural sources (e.g., microse
ity, wind, earth tides, temperature, barometric pressure). Thus, the nature of seismic noise
vations has to be regarded as deterministic. Our feeling as seismologist about what is
considered seismic noise is therefore similar to a statement given by Scales and Snieder
“noise is that part of the data that we chose not to explain”.

However, the definition of noise in terms of signal processing or mathematical formulation is
ferent. Here, noise is considered to be anuncorrelated, random sequence with well defined sta
tistical properties, which then turns out to be a problematic view considering the determin
nature of ambient vibrations. An interesting and more extensive discussion of this problem c
found in Scales and Snieder (1998).

In the context of seismic signal detection, two different points of view can be taken. A rather
mon approach is to ignore the characteristics of real seismic noise and treat it as a random,
related process in the detection task. The expectation is then, that seismic noise at least t
have more properties in common with the statistical noise than any seismic signal of intere

As an alternative approach, it may sometimes be convenient to refine the ’simple’ detection t
a multi-classification problem by considering distinct seismic event types and diffe
noise signals. This multi-classification problem with classes enables a far b
approximation of the characteristics of seismic noise. A main drawback, however, is the ne
detailed information about the observed seismic noise characteristics for each of the
classes, which may be difficult to obtain in real applications. A second major problem with

K N
M K N+=

N
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approach lies in the unrealistic implicit assumption, that all possible noise realizations are k
beforehand.

In the next sections general aspects of pattern recognition systems will be discussed for the
class (M-class) problem. As each M-class problem includes the two-class problem as a s
case, the terms detection and classification need not to be distinguished further in this sen

4.3. Elements of a pattern recognition system

The pattern recognition task can be divided into five main parts. The block diagram in Fig
(modified after Theodoridis and Koutroumbas, 1998, p. 6, Figure 1.3) shows these elemen
pattern recognition system in a sequentially ordered structure.

The first block in Fig. 4.1 represents the measurement procedure. A set of patterns is rec
(observed) at several physical sensors providing the input data to be classified. In the given
ple, individual physical quantities are measured and the observed data is represented by
valued vector . The vector space spanned by the measurements is calledmeasurement
space .

In the feature generationstep, signal parameter estimates are calculated from the observed
Each single estimate is called afeature. The entirety of all generated features are summarized
real-valuedfeature vector with dimension (i.e. the number of signal parameters es
mated). The vector space spanned by the feature vectors is calledfeature vector spaceor
sometimesparameter space. In absence of a priori knowledge regarding the relevance of the in
vidual features (components of feature vector) for successful classification, as much inform
as possible is included into the feature vector. The resulting number of reasonable feature
dates may be large, leading to a high dimensionality of the feature vector space.

sensor(s)
feature

generation
feature

selection
classifier
design

system
evaluation

m ℜS∈ x ℜD∈ y f x( )= ℜd D≤∈ uλ y( )

FIGURE 4.1: Block diagram of a pattern recognition system (modified after Theodoridis and
Koutroumbas, 1998). Measurements at one or several sensors provide the observations to be classified
In the feature generation step signal parameters are extracted and summarized in a feature vector . The
best features containing the most information regarding the classification task are selected by an
appropriate transform in the feature selection step . The classifier is designed by searching
mathematical formulations for a set of decision functions with the goal of minimal classification
error. The real classification error is obtained in the system evaluation stage. The single stages within a
pattern recognition system are interrelated, here indicated by the arrows on top of the individual
processing blocks.

m
x

y f x( )=
uλ y( )

S
m ℜS∈ m

ℜS

x ℜD∈ D
ℜD

x
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In order to keep the dimension of the feature vector space in tractable limits for further pro
ing, thefeature selectionstep evaluates the information content of the feature vector by statis
analysis of the feature vector space. The final aim of the feature selection step is to redu
dimensionality of the feature vector space to the ( ) most significant features (or fe
combinations). Hence, this task can be seen as the search for an appropriate transformatio
tion following the constraint of maintaining the information content of
its best. Under the assumption that the feature vectors are the result of a random proce
transformation is constructed bylearning statistical properties from arepresentative sample
set of feature vectors with finite size . is therefor
called a training set. As a result of the learning procedure, single features or feature combin
with least information content regarding the classification task are discarded and a new ve
formed. The resulting transformed feature vector spans the vector space
dimension  (transformed feature vector space).

On basis of the transformed feature vectors theclassifierhas to be constructed. For the mult
class recognition task involving distinct classes, a classifier consists of a set of discrim
functions , , and a subsequent decision rule. A widely used design crite
for the estimation of the classifier is based on the objective to achieve a minimum error rate
classification system. Applying this criterion leads to the family of classifiers which are base
Bayes’ rule, i.e. maximizing the a posteriori probability for the correct class decision. The cl
fier is obtained bylearning statistical properties from a representativetraining set of feature
vectors in the transformed feature vector space, with
the class memberships of the single feature vectors in are known, the set is called alabelled
training set. The methods for acquiring the statistical properties of are then generally ter
supervised learning methods. Unsupervised learningstrategies (cluster techniques) have to
used, if the class memberships are unknown and only anunlabeled training set is available.
Finally, the overall performance of the pattern recognition system has to be quantified in thsys-
tem evaluation step (Fig. 4.1, rightmost block).

Although a sequential structure has been chosen for the graphical representation in Fig. 4
single stages forming a pattern recognition system are not independent from one another, w
indicated by the arrow connections at the top of the figure. The results obtained at each stag
make it necessary to return to one or several of the proceeding steps and rework the system
E.g. in case that the final system performance shows too high error rates it might be neces
extract additional features from the raw measurements, in order to provide more informatio
the given classification task. Alternatively a modified feature selection criteria, or even an
type of classifier might improve the recognition result.

The following sub-sections introduce the individual elements of a pattern recognition syste
more detail. In 4.3.1. the accumulation of data, preprocessing and the representation of in
tion for the classification process by feature vectors are discussed. As the feature generati
depends on the given classification problem, some remarks are included in subsection 4.3.
to adopt this stage for seismic signals. Additionally a common approach for feature select
presented at the end of this subsection. The problem of classifier design is addressed in 4.3
the principles of estimating discriminant functions from training data are introduced. The last
section 4.3.3. presents methods for evaluating the performance of a classification system.

d d D≤

y f x( )= ℜd∈ x ℜD∈
x

f x( )
X xi xi ℜD

i 1 2 … M, , ,=,∈{ } ℜD⊂= M X

y f x( )= ℜd∈ ℜd

d D≤

y
K

uλ y( ) λ 1 … K, ,=

Y
Y yi yi ℜd

i 1 2 … M, , ,=,∈{ } ℜd⊂=
yi Y

Y
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4.3.1. Feature generation and selection

The process of acquiring information from an underlying data set (measurement space), a
estimation of the inherent information content within the obtained feature space are called fe
generation (sometimes feature extraction) and feature selection, respectively. Both ste
regarded as the most important part of a pattern recognition system (e.g. Schukat-Talam
1995, p. 75, Niemann, 1990, p. 9).

In the feature generation step, individual signal parameters are calculated from the raw me
ments, which then build the basis for the subsequent classification process. Consequently,
gle features used for the data representation must contain valuable information fo
discrimination of classes. In case of a good knowledge about the underlying physical proces
the data set, a possible strategy is to derive the parametrization from the theoretical backg
Alternatively, if the knowledge about the data production process is poor, a parametrization c
chosen by taking into account human expertise or by mimicking human perception principl

In the present context of seismic signal classification, the measurements consist of evenl
pled, discrete time series. Those represent recordings of the ground motion at a seismogra
tem proportional to ground displacement, velocity or acceleration depending on the dep
instrument type. The seismogram contains information about the involved seismic source pr
the propagation medium and the instrument response. Whereas the theory of seismic wave
gation is well-developed, and the instrument response is a known quantity, the location and
of the seismic source as well as the properties of the propagation medium are generally no
constrained. It is therefore difficult to derive an appropriate parametrization solely from theo
cal considerations.

The experiences from over 100 years of seismological observatory practice provide a good
ing point for a reasonable choice of signal parameters for the classification of seismic signa
important issue in the visual inspection of seismograms is the fact, that an observer is trai
look at contextual information. Whereas detailed analysis of small seismogram portions pr
information about short-term signal attributes, the classification of the waveform can only be
formed by taking into account the variation of signal parameters over the whole duration o
signal. An example is given in Fig. 4.2: the short time windows on the left show similar sig
characteristics and would be visually classified as a portion of seismic noise. However, vie
the same signal windows within a larger time scale (Fig. 4.2 on the right) reveals that one
signals is actually part of a seismic event (MP-type signal recorded at 1.6 km distance at Me
whereas the other waveform sample belongs to the preceding seismic noise. Consequently
classification of seismic events it is important to include contextual information either in the
nal representation process (feature generation step) or in the classifier approach.
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The choice of signal attributes for the purpose of detecting and classifying seismic even
been the subject of numerous scientific research in the past. A review of the most commonl
features which have been proposed in earthquake research is provided in section 4.4. At th
it is sufficient to note that a variety of signal parameters can be derived from seismogram re
ings, mostly based on knowledge sources from observatory practice as well as from con
ations regarding the theory of wave propagation and the corresponding seismogram struct

At first sight, any signal parameter estimated from the raw data streams can be used to p
trize the seismic data. Without a priori knowledge about the relevance of individual signal pa
eters for the given classification task it is difficult to give preference to particular fea
estimates. Hence, in a first step, it is common practice to include as much features as possi
the feature vector. However, the number of reasonable feature candidates may be high. In o
keep the computational complexity of the following classifier design in tractable limits,
dimensionality of the feature vector space has to be restricted to some reasonable size.

The feature selection step of a pattern recognition system consequently aims to select an o
subset of the previously acquired features for the classification task. One major difficulty i
feature selection stage is to define an optimality criterion. A common approach (see e.g. d
sion in Niemann, 1983, p. 108) is based intuitively on the criterion of class separability in the
ture vector space, i.e. to evaluate the discriminative power of the feature vectors.

A widely used method to reduce the dimensionality of the feature vector space while mainta
the discriminative power of the feature vectors relies on the usage of linear transformations
Karhunen-Loeve (KL) expansion has shown to be suitable for deriving an appropriate transf
tion with the desired properties (Kittler and Young, 1973). The KL-expansion is based upo
eigenvector analysis of the sample covariance matrix built from a training set of feature ve
The result of this analysis can be used to linearly transform the representation vectors into

0 1 2 3 4 5
Time [s]

0 10 20 30
Time [s]

FIGURE 4.2: Waveform example demonstrating the importance of contextual information in seismogram
interpretation. In the left column two waveform samples are shown, which would be visually classified as
seismic noise. The same waveform windows are shown on the right side on a larger time scale within their
temporal context. From the contextual information, the lower seismogram sample is now clearly
recognized as part of a seismic transient signal (MP-type signal at Merapi volcano).
24 Elements of a pattern recognition system



Pattern recognition for seismic signal classification

re the
inate
imates

y
ctor

tion or
pare
the

).

he
ed
itten
coordinate system in which the coordinate coefficients are mutually uncorrelated, and whe
information of the original feature vectors is mapped onto the first few axes of the new coord
system. It is then possible to use a new feature vector of reduced dimension, which approx
the original representation vectors in a least square sense.

Consider the original feature vector of dimension , and let be a matrix formed b
row-vectors , which build an orthonormal basis of the vector space . Then any ve

 may be represented as an expansion of the form:

, 4.1

with coefficients . Using the incomplete expansion formula:

 with , 4.2

for representing  by  will lead to the mean approximation error , expressed as:

4.3

Considering the feature vector as a random variable, the expression is the expecta
the first statistical moment of the distribution function of the underlying random process (com
appendix A.2). Furthermore, the matrix in the rightmost term of EQ 4.3 is equivalent to
matrix of the second moments of the random distribution function (autocorrelation matrix
may be estimated from a set of training vectors ,  like:

. 4.4

The matrix equals the sample covariance matrix if t
overall mean of the training set is the null vector. Minimizing in EQ 4.3 is achiev
by solving the eigenvalue problem . The matrix of second moments can be wr
as:

. 4.5

x D Φ DxD D
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As is a symmetric positive-definite matrix (compare EQ 4.4), all eigenvalues are real and
tive. Sorting the eigenvalues , , in descending order and inserting EQ 4.5
EQ 4.3 minimizes the mean expected error  in a least square sense:

. 4.6

As a consequence, the linear transformation:

, 4.7

where contains as columns the ordered set of eigenvectors , results in th
coordinate system as given in EQ 4.1. The coordinate coefficients are then mutually un
lated and it has been shown, that the components are sorted according to their degree of in
tion about the random variable (e.g. Kittler and Young, 1973). A reduction of dimensionali
achieved by dropping components with index higher than . An appropriate value of
usually found from arguments regarding the magnitude of the corresponding eigenvalues
trial and error. In practice, the transformation matrix is obtained from the eigenproblem sol
of the sample covariance matrix  for the centralized vector .

The de-correlation transformation in EQ 4.7 may be further modified in order to obtain a
coordinate system where the sample covariance matrix of the feature vectors equals th
matrix . This is an advantageous property if the following classifier approach is based o
euclidean metric. The so-called prewhitening transformation is given by:

. 4.8

This transformation normalizes the individual components in the transformed feature v
according to their respective standard deviation, which in turn allows to use the euclidean m
as a proper distance measure in the reduced vector space (e.g. Deller et al., 1993, p. 6
importance of the normalization property of the transformation given by EQ 4.8 will become
dent in the following subsection.

4.3.2. Classifier design, decision rule and data learning

The classifier design shall be discussed following the general idea of optimal classifiers
leads to the formulation of the Bayes’ classifier with minimal misclassification error. Hence,
ture vectors, the feature vector space and class regions are studied within a probabilistic
work. In order to be consistent with previous sections, the discussion is continued without lo
generality for random vectors  of the reduced feature vector space .

S
λi i 1 … D, ,=

εd

εd λi

i d 1+=

D
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Consider the real-valued feature vectors , which are assumed to be the result of a d
random process. The initial process selects the -th class from a set of cl

, with ana priori probability . The condition:

4.9

must be met in order to define a stochastic experiment. Subsequently, a second, multivaria
tinuous stochastic process produces a feature vector as a member of the previously s
class according to the conditional probability density function , with the normali
tion constraint:

. 4.10

The decision rule shall be formulated as a general fuzzy rule of the form , with:

 for all . 4.11

This fuzzy decision rule assigns not exactly to one class, but decides the class membersh
for class with probability . I.e., the condition given by EQ 4.11 assures that
assigned to some class, i.e. it is not possible, that  is not assigned at all.

A cost matrix , is defined, where the individual quantify th
individual costs of erroneously assigning a vector originating from class to class .
probability, that a vector is assigned to the wrong class when applying the decision rule
be given by:

4.12

The mean cost per class is then obtained by:

4.13

y ℜd∈
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Hence, the total expected cost - also termed risk - when applying the decision rule is
calculated as:

. 4.14

The design criterion for the optimal decision rule is formulated as the minimization of
expected cost  as given in EQ 4.14:

4.15

Defining the test functions (or discriminant functions) as the term in square bracke
EQ 4.14:

, for , 4.16

then the simple decision rule:

4.17

satisfies EQ 4.15 (a proof is given e.g. in Niemann, 1983). It is noteworthy that EQ 4.17 ena
deterministic assignment of to a class , although the initial formulation has been a f
rule.

For the special choice of the individual costs :

, and

, for ,

it can been shown (proof e.g. in Niemann, 1983), that choosing the test functions like:

4.18
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leads to the following optimal decision rule:

. 4.19

EQ 4.18 and EQ 4.19 describe the optimal classifier in terms of the minimal expected erro
As the denominator in EQ 4.18 is independent of the class index , it is normally not evalua
the calculation of the test function. The optimal classifier decides for a class given the o
vation vector by choosing the maximum of thea posteriori probabilities with the
Bayes’ rule. Therefore this classifier is also called the maximum a posteriori (MAP) classifie
Bayes’ classifier.

The MAP classifier relies on the values of the a priori probabilities and the conditio
probability density functions , , which are usually unknown for the giv
classification problem. However, given the availability of a finite training set of representative
ture vectors , and with the assumption that the individu
training samples from have been produced independently by the stochastic process und
sideration, it is possible to approximate the optimal classifier on basis of this training set (lab
or unlabeled). The quality of approximation is mostly controlled by the size of the training

.

There are generally three basic approaches for the estimation of Bayes’ classifiers from a tr
set: a) statistical classifiers, b) distribution free classifiers, and c) non-parametric classifier
family of hidden Markov models, which will be introduced in Chapter 5., represent a special
of a context dependent statistical classifier. As hidden Markov models have been selected
present classification task, only the statistical classifiers are introduced here. Detailed backg
on distribution free and non-parametric classifiers can be found e.g in the textbooks of Fuk
(1990) or Schukat-Talamazzini (1995).

For the group of statistical classifiers, it is assumed, that the unknown conditional probability
sity functions belong to a family of parametric density functions
Then the class dependent parameter vectors taken from an appropriate manifold a
mated from the given training set.

The most commonly used form for a parametric density function is the multivariate gaussian
sity function, given by:

4.20

Superscript denotes vector transpose, and are the class dependent mean vect
covariance matrices, respectively, which have to be estimated from the training set. Let b
ticular estimates of the a priori densities . Then, by inserting EQ 4.20 into EQ 4.18, fu

δ* Ωκ y( )
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taking the logarithm and multiplying by , the normal distribution classifier test function
derived as:

. 4.21

The decision rule is now turned into a decision for the minimal outcome of the test functio
EQ 4.21, as EQ 4.18 has been multiplied with a negative quantity. EQ 4.21 can be simplifi
dropping the first two terms on the right side. The resulting classifier is called Mahalanobis c
fier, as the test function equals the definition of the Mahalanobis distance (e.g. Theodorid
Koutroumbas, 1998, p. 25):

. 4.22

If further all classes share a common covariance matrix, i.e. , then the classifi
called minimum distance classifier. If even all are equal to the unity matrix , then the cl
fier reduces to the euclidian distance classifier. Recalling the discussion of the prewhitening
formation in section 4.3.1., it becomes evident, that the advantage of this transform lies
simplifications gained in the classifier design.

Let be a labeled training set with
, being the disjunct subsets of feature vectors assigned to the individual cla

Then, estimates of the a priori densities , and the parameters of the multivariate gaussi
tribution , , can be obtained in a maximum likelihood sense as:

, 4.23

, and 4.24

. 4.25

In EQ 4.23 to EQ 4.25, is the number of individual sample vectors , wh
have been labeled according to the production class (members of ). With the class-sp
parameter estimates , , and , it is possible to construct the individual test func

 for the classification problem as given in EQ 4.21.

For the task of learning a classifier from an unlabeled training set, the following difficult
encountered. Both the parameters of the parametric multivariate density function (e.g. gau
and the assignments of the individual feature vectors within the training set are unknown. H

2–
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assuming a special form of the multivariate parametric density function just allows
statement that the set of feature vectors is distributed according to the marginal density:

, 4.26

where is the vector of a priori probabilities with components , . T
problem of uniquely identifying the parameters and can be solved (for density func
which build a basis of the functional space) in a maximum likelihood sense by an iterative p
dure known as the expectation-maximization-algorithm (EM-algorithm, Dempster et al., 19
The EM-algorithm is a widely used technique, which is especially suited to estimate param
from an incomplete data set. In the current context the missing part of the data is the unk
class labeling information of the individual features in the training set.

Using the EM-algorithm to estimate the parameters of the multivariate normal density fun
from an unlabeled training set of size , leads to the following estimation formulas for a si
iteration step. Given an previous (or initial) estimate of and , the a posteriori probab

 is calculated by:

. 4.27

EQ 4.27 is called the E-step of the EM-algorithm. The new estimates of the parameter sets
 are then derived in the M-step via:

, 4.28

, and 4.29

. 4.30

Hence, obtaining estimates of the class dependent parameters , , and , the classi
be designed as before by inserting the estimates in EQ 4.21.
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Remarks:

The goal of a vector quantizing scheme (e.g. the LBG-algorithm, section 5.5.1.) is to obta
optimal partitioning of the feature vector space into cluster regions via unsupervised learni
vector quantizer can be seen as a special form of the EM-algorithm, if the class dependent
ance matrices are conditioned to hold , and if the euclidean distance measure is use
thermore it is also possible to derive the parameter training algorithm for the class of h
Markov models via the EM-algorithm.

Despite of its popularity, the multivariate normal distribution density function is sometimes n
good choice for real-world classification problems. It imposes a severe limitation on the stati
properties of the underlying random process, i.e. the distribution is unimodal, elliptical-sym
ric, and the density values only depend on the Mahalanobis distance (EQ 4.22), and
decrease exponentially with . In order to approximate arbitrary density functions, the m
variate gaussian mixture density can be used instead as a parametric density function:

4.31

The multivariate gaussian mixture density for each class is then a linear combination of m
variate gaussian densities, with mixture weights , and modes. The condition for the
ture weights  is given by:

4.32

The higher the number of modes , the better the approximation of an arbitrary density
tion. However, the number of parameters ( and ) which have to be estimated from a
training set is such increased significantly. The problem of identifying parameters of multiva
mixture gaussian density functions is equivalent to the problem of estimating parameters
multivariate gaussian density function from an unlabeled training set. The analogy bec
apparent, if the components of the a priori probability vector are associated with the
ture weights  of EQ 4.31.

4.3.3. System evaluation

The objective of the system evaluation stage of a pattern recognition system is to estima
classification error probability from a finite test set of feature vectors. The test set has
obtained independently from the training set, which has been used for the classifier desig
estimate of the error probability for class is obtained by simply counting the num
of misclassified feature vectors for this class and normalizing by the number of class me

:

4.33
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This procedure is called theerror counting approach. It has been shown (e.g. Theodoridis an
Koutroumbas, 1998) that the total error probability for a -class problem - with
being the occurrence probability of class  - is calculated as:

4.34

EQ 4.34 is an unbiased, but only asymptotically consistent estimator (for ) of the
class error probability . Therefore for small testing sets, the estimate may not be reliab
minimum size of the test set as a function of the true error probability has b
derived from Guyon et al. (1998). is estimated so that the true error probability d
not exceed the estimate of the error probability by more than a fraction of wi
guaranteed probability (confidence) :

4.35

For typical values of  and  ( =0.05, =0.2),  approximates to:

4.36

EQ 4.36 provides therefore an approximate formula for the minimum size of a test set with
confidence, that the true error probability does not exceed the ratio (o

 by 25 %). E.g. for =0.05,  has to be in the order of 2000 (!).

Unfortunately, the number of samples available for both testing and training is limited. Espe
in the discussed application of seismic signal classification, the number of observations for
tain event type may be small (in the order of some tens or even less). Therefore the limited s
the data set has to be exploited as good as possible for both training and testing. Three co
approaches for estimation of the classification error probability from a finite data set are
sented:

Resubstitution Method: For both training and testing the same data set is used. It was show
Foley (1972), that this procedure provides an optimistic estimate (underestimation) of the
error probability. The amount of bias is a function of the ratio / , where is the numbe
samples in the data set and the dimension of the feature vectors. Both and / have
large ( / larger than 3) to provide a reasonable estimate of the true error probability (Theo
dis and Koutroumbas, 1998, p. 342). The resubstitution method provides a lower bound f
true Bayesian error in case of a Bayesian classifier (e.g. Fukunaga, 1990, p. 220).

Holdout Method: Two subsets are built from the data set in order to obtain independent se
training and testing. This method is seen as problematic, as no optimal rule can be given h
split the data set, i.e. how many samples of the set are used for training, and how many for t
The classification error estimate obtained is higher than the true error probability and provid
upper bound of the Bayesian error.

P e( )' M P ωκ( )
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Leave-one-out Method: In this method the finite size of the data set is used most efficientl
the independency between training and test set is maintained. The training is performed on
samples of the data set, and then the excluded sample is tested. For each misclassification
is counted. After repetitions all samples have been tested independent of the training da
the holdout method, the estimated classification error is an upper bound of the true bayesia
The main drawback of the leave-one-out method is its high computational requirements,
classifier has to be estimated  times.

4.4. Review of pattern recognition methods applied in seismology

Pattern recognition techniques have a long tradition in seismology and an extended ove
about this topic has been given by Joswig (1996). Most of the published work has concentra
three domains. The detection of weak seismic signals, the problem of seismic phase identifi
and the discrimination between natural earthquake signals and artificial explosion seismog
The problem of weak local earthquake recognition and the discrimination between local e
quakes and quarry blast signals recorded either at a single or at a small network of seismic s
is an important issue in terms of seismic risk evaluation. ’Clean’ bulletins with low magnitud
completeness values are of crucial importance for the evaluation of magnitude-frequency di
tions and mean return times for damaging earthquakes. On a global scale, the discrimi
between tectonic earthquakes and nuclear explosion signals recorded at regional or tele
distances is still a major challenge in the context of nuclear test ban treaty verification (Com
hensive Nuclear-Test-Ban Treaty, CTBT, Hoffmann et al., 1999). Reliable automatic algori
are of considerable interest within these problem domains in order to a) reduce the worklo
routine observatory practice (detection and phase identification problem), to b) provide p
earthquake bulletins on both local and global scales on an automatic basis and to contribute
monitoring problem of nuclear underground explosions (discrimination problem). It has t
noted, that in the area of volcano seismology only few studies have been published regard
automatic seismic signal classification within the framework of pattern recognition.

Seismic signal classification in earthquake analysis has been addressed in almost all cas
two-stage process. The task has been split into the simpler detection problem and the subs
categorization of detected time segments into event classes. Hence, the parametrization of
signals on the waveform level has been discussed in the context of automatic signal detecti
phase identification algorithms. The choice of classifier functions and the implementation o
tern recognition systems have been mostly addressed in studies investigating the discrim
problem.

The choice of signal attributes which have been proposed in literature within the context of
mic event detection depend on the type of available input data. The summary is hence divide
three parts: signal parametrization (feature generation) for a) single station single comp
recordings (SSSC), b) single station three component seismograms (SS3C), and c) multi-
single/three component data (MSS/3C). (Due to the extent bibliography which can be foun
this special topic, the review has been restricted to the most common approaches in the fu

Features from SSSC data:Hypothesis testing is the most common approach for the detec
and onset time estimation of seismic phases in single trace data. Freiberger (1963) was the
use a likelihood ratio detection statistic based on the Neyman-Pearson criterion (see e.g.
naga, 1990, p. 59) to test the presence of a transient signal in seismic noise from the sho

N 1–

N

N
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mean squared amplitude. Since Vanderkulk et al. (1965), a comparison of short term aver
long term average signal attributes build the basis for detection statistics on a scalar variable
type of signal detectors are commonly known as STA/LTA (short-term average to long-term
age ratio) trigger algorithms and have been reviewed by Allen (1982), Joswig (1990), and re
by Withers et al. (1998). The parametrization of the seismograms comprises different filt
approaches to enhance signal to noise ratios and further short-term averaging either the s
(e.g. Swindell and Snell, 1977) or the absolute amplitude values (Vanderkulk et al., 1965).
signal detector implementations have been based on the weighted sum between the trace
tude and the first order derivative of the amplitude (e.g. Stewart, 1977, Allen, 1978) or on the
mic envelope (Baer and Kradolfer, 1987). Besides energy attributes, information of the frequ
content of seismograms have been used for hypothesis testing as well. Anderson (1978) e.g
use of an estimate of zero crossings and Shensha (1977) developed a detector algorithm b
a weighted sum of power spectral density coefficients. The concept of STA/LTA detector
rithms is easily extended to any kind of available data (SS3C, e.g. Withers et al., 1998).

Features from SS3C data:If single station three component records are available, the polar
tion attributes of seismic signals have been investigated and used for seismic phase chara
tion. The sample covariance matrix, which is formed from the three dimensional vector of se
motion within a short analysis window, is generally used to determine the polarization behav
seismic signals (Flinn, 1965). The solution of the eigenvalue problem for the covariance m
leads to the formulation of the best fitting polarization ellipsoid in a least square sense, whe
eigenvectors provide information about the orientation, and the connected eigenvalues de
the form of the ellipsoid.

The most widely used parameter for the detection of body-wave arrivals from three comp
data is a measure of the degree of linear polarization, derived from the ratio of eigenvalue
Montalbetti and Kanasewich, 1970, Jurkevics, 1988). Alternatively, measures of linear pola
tion are obtained on basis of regression analysis (Roberts et al., 1989, Bopp, 1992). Less fre
the deflection angle calculated under the assumption of an compressional body-wave
(Jurkevics, 1988, Roberts et al., 1989), the magnitude of the largest eigenvalue (Magotra
1987), or the simple ratio of vertical to horizontal signal power (e.g. Jurkevics, 1988), have
the basis for seismic phase detectors.

Features from MSS/3C data:A detector for single component array data has been presente
Blandford (1974) and is based on a measure of coherence for a plane wave signal arrival ac
array. The coherence measure used in the study of Blandford (1974) is the semblance coe
(Neidell and Taner, 1971) calculated in the time domain. The semblance coefficient is app
mately F-distributed, which allows to derive thresholds for signal detection on a theoretical b
The signal detector after Blandford (1974) has therefore been termed F-detector. Most stu
the field of array analysis methods aimed to enhance the signal to noise ratios of seismic
by the use of stacking techniques. Well-known examples are delay and sum beamforming
niques in both time and frequency domains or n-th-root stacks. In most cases, however, the
ing features which have been subsequently exploited for signal detection or classific
purposes are enhanced energy attributes of the local seismic wavefield crossing an array
mic stations. Further signal parameters which can be obtained from array analysis methods
apparent velocity and the direction of wave propagation for a plane wave arrival. This inform
has been mainly used for characterizing seismic phases and in the context of automatic
center determination efforts (e.g. Bache et al., 1993). The use of 3-component array data ha
rarely addressed in literature. Jurkevics (1988), e.g., improved the stability of polarization
Review of pattern recognition methods applied in seismology 35
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The use of a variety of classifier functions have been proposed in literature for the discrimin
and classification of seismic events. Examples can be given for linear classifiers (e.g. Shu
1982, 1996, Wüster, 1993, Kushnir et al., 1999), quadratic classifiers (e.g. Kushnir et al.,
neural network classifiers (e.g. Musil and Plesinger, 1996, Falsaperla et al., 1996, Fedore
al., 1999, Tarvainen, 1999), cross-correlation techniques (Joswig, 1990, Wassermann, 1997
Bayesian classification approaches (e.g. Kushnir, 1990, Gendron et al., 2000). The majo
classification techniques are based on a set of phase attributes, such as amplitude ratios,
ratios, phase slowness, and polarization attributes of individual phases. Considering the g
seismic event detection and classification algorithms in the context of regional and telese
earthquake analysis, these phase related attributes are of major interest and additional
suited for subsequent location of the observed events. However, in local earthquake anal
well as in volcanic seismology these approaches pose a major problem, because of the diffi
to clearly identify seismic phases. Thus, techniques, which make use of the complete seism
information without the need of a priori phase segmentation appear to be better suited for
matic classification of local seismic events. Most interesting in the context of automatic se
signal classification on continuous data streams are those approaches which are capable to
the input data in a sliding analysis technique and are not dependent on the precise alignm
seismograms. Two approaches which match the stated requirements are the methods pres
Joswig (1990) and Gendron et al. (2000).

A conceptually interesting approach, which allows joint signal detection and classification o
complete seismic waveform, was introduced by Joswig (1990). In his work, Joswig (1990) u
pattern matching approach based on a smoothed time-frequency representation of the sing
seismogram recording, termed sonogram by the author. Introducing an additional noise ad
technique on the sonogram images and reducing the dynamic range of the spectral amplitud
small number of discrete values, Joswig mimicked the process of human cognition (Jo
1994). Detection and classification is achieved in a single step by applying a two-dimens
cross-correlation between the observed sonogram and a set of reference sonogram tem
Additional thresholding is used to reject false detections. An extension of the sonogram de
for three component seismograms has been investigated by Klumpen and Joswig (1993)
re-evaluation of local earthquake data. Analog to the sonogram detector of Joswig (199
basis for the automated evaluation of seismic events are time-frequency images of seism
attributes. Whereas in the former approach these attributes were connected to the seismic
energy, in the work of Klumpen and Joswig (1993), polarization attributes of the three-comp
records are displayed as time-frequency images. In the signal processing stage, only the eig
tor connected to the largest eigenvalue is considered and a rotation into the ray-coordinate
is performed. Analog to the sonogram detector, a noise adaption technique is used. The fin
resentation of the 3 component recording consists in a set of binary images correspond
generic polarization pattern of P, SH, and SV portions of the seismic signal.

Recently, Gendron et al. (2000) suggested the use of wavelet transform coefficients as an
priate way to parametrize seismic signals for detection and classification purposes. Detec
achieved by hypothesis testing of the wavelet coefficients within each scale of the time-scal
quency) plane. After detection, the positions of signal start, peak energy and signal end in th
crete wavelet transformed seismogram (time and scale, i.e. frequency band) are us
classification on basis of a trained MAP-classifier.
36 Review of pattern recognition methods applied in seismology
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4.5. A novel strategy for the classification of volcano-seismic signals

In this study a widely used pattern recognition approach named hidden Markov model (HM
adopted for the classification of seismic signals of volcanic origin. Most research on this sp
type of context dependent classification approach has been conducted in the field of speech
nition. The proven success of HMM-based methods in modern speech recognition applic
has given rise to the popularity of hidden Markov models in other pattern recognition tasks.
today, HMM applications have been published in many classification problems, e.g. analy
gene sequences (e.g. Churchill, 1992, Haussler et al., 1994), classification of electrocardio
(Thoraval et al., 1994, Koski, 1996), character recognition (Vlontzos and Kung, 1992), face
tification (Samaria and Young, 1994) or sonar signal classification (Kundu et al., 1994).

The use of hidden Markov models for the special problem of classifying volcano-seismic si
has been motivated in first place by the analogy between the speech recognition task and th
lem of identifying transient seismic signals. In both cases, the final aim is to detect and cla
transient signal parts within an one-dimensional continuous discrete time series. The indiv
waveforms belonging to a single signal class (e.g. utterances of a word in speech recognitio
very heterogeneous, i.e. they show great variability regarding the signal length, signal str
spectral composition or other signal characteristics. Hidden Markov models, i.e., represent
chastic approach which is capable to address the typically observed variabilities of speech
forms (or equivalently volcano-seismic signal recordings). Although in principle HMMs
closely connected to dynamic time warping (DTW) approaches (e.g. Ney, 1984), they all
more generalized representation of signal classes due to the availability of efficient training
rithms. The necessity of an extensive database of reference templates in DTW algorithms,
may be described by a single HMM, have led to the revolutionary replacement of DTW t
niques by HMM-based classification approaches in speech recognition applications durin
mid 1980’s (e.g. Deller et al., 1993).

An example of the similarity of acoustic and seismic waveforms is shown in Fig. 4.3. Two pai
similar waveforms are displayed. Without considering the different time scales, it is not pos
to distinguish the acoustic (left) from the seismic (right) waveforms.
A novel strategy for the classification of volcano-seismic signals 37
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Especially for seismic signals of volcanic origin this close correlation to the speech signal re
ing the visual appearance is not by chance. Considering the physics of speech production
previously discussed ideas (see 3.1.) for the generation of seismic signals at volcanoes, i.e.
events and volcanic tremor signals, an interesting analogy is recognized. The excitation m
nism in both cases (well-known for the speech production and supposed process for volcan
mic signals) may be described by turbulence or instability of a fluid flow process. Reson
effects are considered to play an important role in both the modulation of the speech signal a
as the seismic signal. In speech the resonances occur within the vocal tract, whereas reson
cracks, cavities or conduits have been discussed for volcanic tremor and or B-type vo
events.

Considering the similar characteristics of acoustic and seismic signals of volcanic origin an
ther taking into account the special properties of hidden Markov models with respect to
capability of representing complex temporal structures within an relatively simple stoch
model, a hidden Markov model based classification approach seems to be especially suita
the detection and classification of volcano-seismic signals.

0 5
Time [s]

0 10
Time [s]

FIGURE 4.3: Comparison of waveforms for speech (left column) and volcano-seismic signals (right
column). The upper left signal show the microphone recording of the unvoiced fricative “s” in “(s)ee”, and
the lower left waveform is a typical realization of the vowel “I” in “(I)t” (figures from Deller et al., 1993).
On the upper right panel, a typical MP-type event recorded at Merapi volcano is displayed. The lower left
waveform is a portion of starting volcanic tremor observed at Arenal volcano. All figures have arbitrary
amplitude units.
38 A novel strategy for the classification of volcano-seismic signals
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The basic ideas and characteristics of hidden Markov models have been summarized in th
cles of Rabiner and Juang (1986), Rabiner (1989) and are described in detail in the textbo
Deller et al. (1993) and Schukat-Talamazzini (1995). As this probabilistic approach for s
classification of discrete time series has - to the author’s knowledge - not yet been used in th
of seismology, the principles of hidden Markov models are introduced in quite some detail
notation used in the following is mostly adopted from the tutorial paper of Rabiner (1989).

5.1. First-order discrete Markov processes

A dynamical system shall be described at every time step by the means of astate
variable taken from a finite set containing distinct states . A di
crete Markov process is then defined as a probabilistic process over . At each time step a
tion from one state to all other states is allowed and the likelihoods of occurrence o
transitions are described by transition probabilities associated with the state. Let the actua
be denoted as , then the system can be fully described in a general probabilistic sense by
fying and all predecessor states the system has entered ever before, b
ning at time with state . In the special case ofdiscrete, first-order Markov chainsonly
the current and the last preceding state are taken into account, i.e.

5.1

Considering the whole process as independent in absolute time (stationarity), the system
described by the use of EQ 5.1 and the real-valuedstate transition probabilities are
defined as:

. 5.2

In order to realize a stochastic experiment the state transition probabilities have to obey
fill) the stochastic constraints:

t 1 2 … T, , ,=
qt Q S1 S2 … SN, , ,{ }= N Si

Q

qt
qt qt 1– qt 2– … q1, , ,

t 1= q1

P qt Sj= qt 1– Si= qt 2– Sk= …, ,[ ] !
P qt Sj= qt 1– Si=[ ]=

aij ℜ∈

aij P qt Sj= qt 1– Si=[ ] , 1 i j, N≤ ≤=

aij
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, and 5.3.a

. 5.3.b

The are then summarized in the state transition probability distribution matrix
of size .

Furthermore, the probabilities of the initial state variable at the begin of the process have
specified. The probabilities for being in state are summarized in the real-valuedinitial
state distribution vector , with:

. 5.4

The  are required to obey (fulfill) the constraints

, and 5.5.a

. 5.5.b

The outcome of this stochastic experiment results in an observation sequence for a specifie
length which can be denoted as . Rabiner (1989) called this stochastic
cess an ‘observable Markov model’, as at each time step the process outputs an observab
(the given state itself).

5.2. Extension to discrete hidden Markov models

Consider now the same stochastic process as in 5.1.. Again there exists a finite set of
and a probabilistic process on produces a sequence of state vari

, i.e.:

, . 5.6

The transition probabilities between states in the sequence are defined as in EQ 5.2 with
erties as given in EQ 5.3.a and EQ 5.3.b. The definition of initial state probabilities ca
recalled by EQ 5.4 and constraints as in EQ 5.5.a and EQ 5.5.b.

On top of this primary process (discrete, first-order Markov chain) a second stochastic proc
defined by drawing a discrete observation symbol taken from a finite

of length according to astate dependent probability distribution(dis-
crete probability density function).

aij 0≥

aij

j 1=

N

∑ 1=

aij A aij[ ]NxN=
NxN

q1
N q1 Si

π ℜN∈

πi P q1 Si=( )=

πi

πi 0≥

πi

i 1=

N

∑ 1=

T q1 q2 … qt … qT, , , , ,

Q S1 S2 … SN, , ,{ }= Q
qt

q q1 q2 … qt … qT, , , , ,= qt Q∈

aij
πi

vk
K v1 v2 … vM, , ,{ }= M
40 Extension to discrete hidden Markov models



Hidden Markov models

ngth :

ency
nly on

ll be

ly
n sym-

e vari-
rvable
le out-
ibu-

,

odel
idden

etriza-
tions as
For the observer of such a process only the discrete observation symbol sequence  of le

5.7

is visible, while the underlying state sequence is hidden. Assuming statistically independ
between successive symbols within the sequence , i.e. the current symbol depends o
the current state , the production probability of the symbol sequence  is given by:

5.8

The state dependent symbol probability for emitting symbol while being in state sha
denoted as:

. 5.9

The real-valued can be summarized in thesymbol probability distributionmatrix
 of size . The  follow the stochastic constraints:

, and 5.10.a

. 5.10.b

In the following the terms , and will be used equivalent
depending if the matrix components of B are addressed or reference to a certain observatio
bol at time  is made.

The complete (double) stochastic process is nameddiscrete hidden Markov model (DHMM), as
the output symbols are taken from a discrete set of output symbols, and the underlying stat
able sequence which is the outcome of the discrete first-order Markov process is not obse
(hidden). The model is described by the number of possible states , the number of possib
put symbols , the initial state probability distribution , the state transition probability distr
tion matrix and the symbol probability distribution matrix . For fixed dimensions and
a hidden Markov model is written in short notation as:

. 5.11

After outlining the formalism for discrete hidden Markov models, the use of this stochastic m
for classification shall be discussed. This leads to the formulation of the three problems for h
Markov models (e.g. Rabiner and Juang, 1986).

5.3. The three problems for hidden Markov models

As seen in the previous section 5.2., a hidden Markov model can be considered as a param
tion of a doubly embedded stochastic process which produces a time sequence of observa

O T

O O1 O2 … OT, , ,=

q
O Ot

qt O

P Ot O1…Ot 1– q1…qt,( )
!

P Ot qt( )=

νk j

bjk bj vk( ) P Ot vk qt Sj==( )= =

bjk ℜ∈
B bjk[ ]NxM= NxM bjk

bjk 0≥

bjk
k

∑ 1 for 1 j N and 1 k M≤ ≤≤ ≤=

bjk bj k( ) bj Ot( ) bj Ot vk=( ) bjk= =

t

N
M π

A B N M

λ π A B, ,( )=
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output. The usage of HMMs for classification will become obvious if answers to the follow
problems (Rabiner, 1989) can be given:

a) Evaluation problem: A stochastic experiment has produced the observation sequ
and a hidden Markov model is given. The evaluation pro

lem raises the question of how to compute the conditional probability , that the obs
tion sequence has been produced by the model ? Alternatively, the question can be put th
given a model and the observation sequence , how is the model judged? If several com
models are available, the solution to this problem leads directly to the classification problem
probability measure will then provide a measure for choosing the model which
matches the observation.

b) Problem of optimal state sequence:The sequence was observed and
hidden Markov model is given. The problem of optimal state sequence deals
the question of how to specify the most probable underlying state sequence that has produ
observation . I.e., how to estimate that state sequence out of all possible
sequences , which is optimal in some meaningful sense? The answer to
question allows to uncover the hidden part of the model. Furthermore an alternative approa
the evaluation problem (5.3.1.) is derived when trying to address the problem of the optima
sequence.

c) Training problem: Given the model parameters of and some observat
, the training problem poses the question of how to adjust the model pa

eters , , and in order to maximize the probability measure ? Obviously, the solu
to this problem will provide a method to train models out of a set of time sequences observ
some experiment. As will be shown later, the training problem can be solved very efficiently
is considered as one of the major advantages of hidden Markov models in comparison to
approaches in pattern recognition problems.

5.3.1. Solution to the evaluation problem

Following the argumentation in Deller et al. (1993, p. 686), the “most natural measure of li
hood” for a given and some observation would be the conditional probability p
viding a measure of how good the data can explain the model. However, the available tra
data does not allow to compute this quantity. Instead, what is usually observed is the prob
that a given model will generate certain output sequences , rather than the converse. T
conditional probability can be specified from the data set, but not . Reca
that the conditional probabilities  and  can be written as:

, and 5.12

, 5.13

O O1 O2 … OT, , ,= λ π A B, ,( )=
P O λ( )

λ
λ O

P O λ( )

O O1 O2 … OT, , ,=
λ π A B, ,( )=

O I i1 i2 … iT, , ,=
q q1 q2 … qT, , ,=

λ π A B, ,( )=
O O1 O2 … OT, , ,=

A B π P O λ( )
λ

λ O P λ O( )

λ O
P O λ( ) P λ O( )

P O λ( ) P λ O( )

P O λ( ) P O λ,( )
P λ( )

-------------------=

P λ O( ) P O λ,( )
P O( )

-------------------=
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where the term denotes the joint probability of and occurring together. Then
combining EQ 5.12 and EQ 5.13, the formulation of Bayes rule is obtained:

. 5.14

It is evident, that choosing a model , which maximizes the left side in EQ 5.14, will also m
mize the right side of EQ 5.14. The normalization term denotes the probability, tha
observation sequence is observed in the experiment. As it is independent of the model
usually not used for the calculation of (see also EQ 4.18 in 4.3.2. for the Bayes’ cl
fier). If the a priori probabilities are assumed to be equal for all models , than the co
tional probability serves equally well as an evaluation measure for . The t

is often called maximum likelihood probability. The task of hidden Markov model ev
uation is then equivalent to finding an expression for calculating the probability fro
given observation sequence  and a given model .

The probability of every possible state sequence of length can be evaluated in a straig
ward way. Given a (fixed) state sequence , being a single and valid realizatio

, the conditional probability is a formulation of the probability that has been p
duced by model following the state sequence . This probability can be expressed intui
by the state dependent symbol output probabilities  as:

5.15

The probability of a single state sequence can be computed using the char
istics of the underlying discrete Markov process as:

. 5.16

The joint probability of and given , or in other words the probability that and oc
simultaneously given the model , is calculated as the product of EQ 5.15 and EQ 5.16, i.e

5.17

Then the desired probability is obtained by summing the joint probabilities
over all possible state sequences:

5.18

EQ 5.18 is then interpreted as follows: at the begin of the process the system starts in state
probability . The first symbol is generated with probability . Then a transition
made from state to state with probability . Now the symbol is emitted with pro
bility . State transition and symbol generation is then continued until the final trans
from state to state with probability . The last symbol in the sequence is g
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P O( )
-------------------------------=

λ
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λ I
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…aiT 1– iT
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O I λ O I
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probability . It is evident why this approach is sometimes called “any path” met
(Deller et al., 1993).

In this direct computation a total number of multiplications and additio
are necessary to evaluate (Rabiner, 1989). Even for small model sizes and short
vation lengths the number of calculations involved becomes intractable. Fortunately, an
cient method is known for calculating which is called forward-backward algorithm
was introduced in the work of Baum and Eagon (1967) and Baum and Sell (1968).

The cost of computations can be reduced dramatically by defining the variable (
referred to as forward variable):

. 5.19

EQ 5.19 can be interpreted as the probability of the partial observation sequence beginn
time and ending in state at time instant given the model . The computatio

 is achieved inductively by:

Initialization step: 5.20.a

Induction: 5.20.b

Termination: 5.20.c

In a similar way the backward variable which describes the probability of the partial ob
vation sequence beginning at time to the end, given state at time instant an
model , is defined as:

. 5.21

The induction scheme is then:

Initialization step: 5.22.a

biT
OT( )

P O λ( )

2T 1–( )N
T

N
T

1–
P O λ( ) N

T
P O λ( )

αt i( )

αt i( ) P O1O2…Ot i t Si λ=,( )=

t 1= Si i t= t λ
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α1 i( ) πibi O1( ) , 1 i N≤ ≤=

αt 1+ j( ) αt i( )aij

i 1=

N

∑ bj Ot 1+( ),

1 j N , 1 t≤ T 1–≤≤ ≤

=

P O λ( ) αT i( )
i 1=

N

∑=

βt i( )
t 1+ Si i t= t

λ

βt i( ) P Ot 1+ Ot 2+ …OT it Si λ,=( )=

βT i( ) 1 , 1 i N≤ ≤=
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Induction: 5.22.b

Termination: 5.22.c

Please note, that for the evaluation problem either the forward variable or the back
variable (EQ 5.20.c and EQ 5.22.c, respectively) can be used. For the training pro
however, which is closely connected to the evaluation of , both variables are necess
is shown in section 5.3.3..

The cost of computations can be reduced to multiplications a
 additions (Rabiner, 1989).

5.3.2. Solution to the problem of the optimal state sequence

The solution to the problem of finding an optimal state sequence leads to a technique wh
often used for both the evaluation (section 5.3.1.) and training problem (section 5.3.3.), th
called Viterbi algorithm (Viterbi, 1967, Forney, 1973).

As was stated by Rabiner (1989) the difficulty in finding a solution to the given problem lies in
definition of “optimal state sequence”. Several criteria for optimality can be given, but here
the following criterion is considered. The optimal state sequence shall be determined by cho
those states that appear to be individually most likely. This criterion will maximize
expected number of correct individual states.

Taking a deterministic point of view and postulating that the observation sequence has
produced by exactly one of all possible state sequences of length , then all those
sequences , which maximize the observation dependent a posteriori probability:

, 5.23

have to be considered as a solution to the problem. As is independent of the
sequence , the search for the best (optimal) single state sequence  can be obtained by

5.24

The quantity is then a modified probability measure, which differs from the produc
probability presented in section 5.3.1.. Nevertheless it was shown that

are strongly correlated (Merhav and Ephraim, 1991) and in practice this modified p
ability measure is often used in hidden Markov model applications (e.g. speech recognitio

βt i( ) aij
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N
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=

P O λ( ) π jbj O1( )β1 j( )
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tems, Schukat-Talamazzini, 1995, Picone, 1990). In general several sequences whic
EQ 5.24 may exist. The Viterbi-Algorithm gives an efficient implementation for solving the o
mality problem.

Instead of the forward variable (EQ 5.19), now the quantities to compute are the ma
probabilities for generating the partial observation sequence endin
time  and being in state , given the model :

5.25

Similar to the principles of dynamic programming (e.g. DTW Dynamic Time Warping al
rithms), the are computed recursively, keeping track of the best path by the matrix
After termination, the single best path (optimal state sequence or most likely single
sequence) is determined by backtracking. In detail the algorithm can be written:

Initialization:

, and 5.26.a

, for all 5.26.b

Recursion:

, and 5.27.a

, for all 5.27.b

Termination:

, and 5.28.a

5.28.b

For , the optimal single state sequence is derived by backtracking:

5.29

The solution to the problem of optimal state sequence is therefore given by EQ 5.29. At the
time a modified probability measure for the evaluation problem of section 5.3.1. is give
EQ 5.28.a. In practice, the Viterbi algorithm is often preferred for the evaluation problem
requires slightly less computations than the number of calculations involved by the forwar
backward) variable. Another advantage is found in the practical implementation of the Vit

I
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algorithm. It is connected to the critical point of adequately addressing the high dynamic r
required for the calculation of the probability measures. The point of adequate scalin
addressed in more detail in appendix B. There it will be shown that by the use of the Viterbi
rithm the problem of scaling can be solved more efficient when compared to the forward-b
ward algorithm.

5.3.3. Solution of the training problem

To give an answer to the training problem, a proper estimate of the statistical parameters (
and ) of a discrete observation hidden Markov model has to be obtained fro
given training sequence. As before, the ‘dimensions’ of the hidden Markov model are give
the number of states and the number of discrete observation symbols. Furthermore o
gle observation  of length  is available as training sequence.

The given problem is solved by maximizing the likelihood objective function (e.g. Schu
Talamazzini, 1995), formulated as:

5.30

Unfortunately, no closed form for maximizing EQ 5.30 analytically is known. Considering
convex manifold :

5.31

it can be shown that maximizing EQ 5.30 is equal to a nonlinear optimization problem with li
constraints. The iterative re-estimation formulas known as Baum-Welch algorithm have
introduced by Baum and Petrie (1966) and Baum and Eagon (1967). The algorithm is also
called forward-backward algorithm as the previously defined forward and backward vari

 and  (EQ 5.19 and EQ 5.21) are used for estimating the model parameters.

In the following the Baum-Welch re-estimation formulas are presented for a given start mod
and a single training observation sequence  of length .

Define the a posteriori probability of a transition from state  to state  at time t as:

5.32

π A
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N M
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ξt i j,( ) P it Si i t 1+ Sj O λ,=,=( )
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is then equivalent to the expected number of transitions from state to state at
instant within the observation sequence given the initial model . By the use of forward
backward variables  and , EQ 5.32 is expressed as:

5.33

The and are calculated following EQ 5.20.a - EQ 5.20.c and EQ 5.22.a - EQ 5
for the initial model  and the given training sequence .

Further the quantity  is defined as:

5.34

which is equivalent to the a posteriori probability of the system being in state at time insta
given the initial model  and the observation sequence .

The following equality is true for :

. 5.35

Inserting EQ 5.33 into EQ 5.35 and further simplification by using EQ 5.22.b, is obta
as:

5.36

The Baum-Welch re-estimation formulas for the improved model parameters of , denot
,  and  are then calculated as follows.

The re-estimated initial state probabilities (given the model and the training sequenc
are given by:

5.37

If expressed in words, EQ 5.37 translates to the expected number of transitions from state
the first time step .
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The transition probabilities  can be estimated by:

, 5.38

which is equal to the expected number of transitions from state to state divided b
expected number of transitions from to any state. Put in other words, this is the expecte
quency of occurrence of state transition (given the model and the observation seq

).

Finally for the improved observation output probabilities , the following estimation form
is used:

5.39

Herein denotes a characteristic function which evaluates to in case that the expre
within brackets is true, otherwise . Then EQ 5.39 can be translated to the expecte
quency of occurrence of symbol while the system is in state (given the model an
training sequence ).

It has been shown (Baum and Sell, 1968), that the given re-estimation formulas lead
improvement of the model parameters in the sense that a growth of the ML-objective fun

 (EQ 5.30) is always true:

5.40

A convergence of to a local maximum can therefore be guaranteed. If a global m
mum is to be obtained in the iterative process, depends on the initial start model . For pra
implementation the following scheme is suggested (Deller, et al., 1993):

Initialization: Choose an arbitrary seed model

Recursion, for  do:

A) Use  and  to compute EQ 5.33 and EQ 5.35.

B) Update the new model parameters for  according to EQ 5.37 - EQ 5.39.
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C) It will be true that .
If , return to 1.) else STOP.

Repeat the procedure A)-C) with different seed models to find a favorable maximu
.

Alternatively to the Baum-Welch (or forward-backward) algorithm presented above, it is also
sible to make use of the modified Viterbi measure as defined in EQ 5.24 for the re
mation of model parameters. The so-called Viterbi training is implemented as follows
Schukat-Talamazzini, 1995):

Initialization: Choose an arbitrary seed model .

Recursion, for  do:

A) Estimate the optimal state sequence  as:

using the Viterbi algorithm outlined in section 5.3.2. (EQ 5.26.a - EQ 5.29).

B) Calculate the expected number of initial, transition and output probabilities , a
 by:

, 5.41.a

, and 5.41.b

. 5.41.c

C) Normalize the quantities , , and and update the model parameters ,
 by:

, 5.42.a

, and 5.42.b
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I
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50 The three problems for hidden Markov models



Hidden Markov models

m of

cussed
ining
8-720).
, that
ame-
g the
ly to
ences
rovid-
ina-
tual
in the
issues

on of
ously
d of a
serva-
ill be a

sure
uced
sec-

hidden
rimi-
stin-
be
t all K
t.

ol to
ces for
enting
. 5.42.c

D) Set . It will be true that .
If , return to i) else STOP.

Repeat the procedure A)-D) with different seed models to find a favorable maximu
.

The presented approaches for the training of discrete hidden Markov models have been dis
for the case, that a single training sequence is available. An extension to multiple tra
sequences is straight-forward and is not presented here (see e.g. Deller et al., 1993, pp. 71
The training methods are based on the maximum likelihood approach. It is important to note
the ML-training approach does not include any means of “negative training”. The model par
ters are adjusted in the training process to maximize the probability of generatin
observation for which it is “responsible”. Therefore, the model is trained to respond favorab
its own class, but it is not improved with respect to discriminate against observation sequ
produced from a competing model. Strategies, which have been developed especially for p
ing good discrimination properties of the trained models, are the so-called minimum discrim
tion information (MDI) approach (Ephraim et al., 1989) and the maximum average mu
information approach (MMI, e.g. Bahl et al., 1986). As those methods have not been used
presented classification system, they are not further discussed at this point. Practical
regarding sections 5.3.1. - 5.3.3. will be discussed in section 5.5..

5.4. The use of hidden Markov models in classification problems

Knowing the solutions to the three basic problems of hidden markov models, the applicati
hidden markov models to the problem of classification is straightforward. As discussed previ
in 4.3.2. for a classification system, it is necessary to design a classifier which is compose
set of discriminant functions on the input data (generally a feature vector, here: discrete ob
tion sequence) together with an appropriate decision rule. In most cases the decision rule w
maximum or minimum decision on the outcome of the discriminant function.

The solution to the evaluation problem provides now the conditional probability mea
, giving the probability, that a discrete symbol sequence (input data) has been prod

by a given discrete hidden Markov model. Recalling the derivation of the optimal classifier in
tion 4.3.2. and replacing the discrete classes (i.e. random processes) by a set of
Markov model in EQ 4.18, it is evident, that already can be chosen as the disc
nant function in case of equal a priori probabilities of model occurrence . Hence, for di
guishing classes, distinct hidden Markov models , with have to
provided to test the observed symbol sequence under consideration agains
models. The model providing the highest probability score is chosen as classification resul

Furthermore, the solution to the training problem for hidden Markov models provides a to
design a classifier by means of supervised learning. Herein, a training set of symbol sequen
a single class is selected to learn the parameters of the hidden Markov model repres

b' j vk( ) bj vk( )/ bj vk( )
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the class . Figure 5.1 summarizes the use of hidden Markov models in a simple classifi
problem.

5.5. Practical considerations for the design of a hidden Markov model
classification system

The introduction on discrete hidden Markov models is now completed with some considera
and remarks about the practical implementation of hidden Markov models. First, a method w
introduced, which allows to produce discrete symbol sequences from a sequence of real-
feature vectors. The subsequent chapters provide information on the choice of model topo
and model dimension, strategies for initializing seed models for the supervised training p
dure, and the necessary scaling of probabilities in the evaluation procedure to prevent und
during computation.

5.5.1. Production of discrete observation sequences by vector quantization

Until now it has been ignored that the input for a discrete hidden Markov model has to be
crete observation sequence, both for training and evaluating. Hence, a method must be sp
which allows to construct a discrete symbol sequence from the sequence of real-valued f
vectors . This task can be accomplished by the use of a well established technique
nally developed in the area of signal compression and which is known asvector quantization.

A vector quantizer is a mapping function from the -dimensional real-valued vector space
into a finite set of prototype vectors . is called the codebook

κ

FIGURE 5.1: Simple classification approach using hidden Markov models. In a first phase, L training sets
are selected from the discrete symbol observation sequences. K distinct hidden Markov models are trained
using the Baum-Welch or Viterbi training approach. For the recognition task, the discrete symbol
sequences are tested against the K hidden Markov models. The model with highest probability is selected
as classification result.
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the vector quantizer. Each vector is then assigned to one of the prototype vectors
the codebook  by:

. 5.43

The operator  is called a partition of the vector space  into  disjunct cells :

. 5.44

Hence, the production of a discrete valued symbol from a real-valued feature vector is obtain
the mapping function of an appropriately designed vector quantizer, when assigning the f
vector to the index of its prototype vector from the codebook. However, information abou
exact position of the feature vector in the feature vector space is lost in the quantization pr
Therefore, the aim of the quantization process is to approximate the vectors by its repre
tive prototype vector with minimal quantization error (distortion). In order to evalu
the expected distortion of a vector quantizer, an appropriate distance function (m
has to be defined on .

Let the distribution of vectors in be given by the continuous density function . T
expected distortion , which is subject to minimization is then written as:

. 5.45

No closed solution for the optimal vector quantizer can be given. However, two necessary c
tions for the cell structure (i) and the codebook (ii), respectively, can be given for the vector q
tizer with minimal distortion.

(i) From EQ 5.45 it can be seen, that the quantizer chooses always the closest prototype ve
representative, with respect to the given distance measure . The mapping funct
partitions the vector space into cells  by

5.46

For a fixed codebook , the partition given by EQ 5.46 provides minim
quantization error.

(ii) The cell centroid , which is the vector with minimal expected distance from its c
members, is always the representative  of cell , i.e.:

5.47
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Thus, for a fixed partition , the set of cell centroids
represents the codebook with minimal distortion.

A vector quantizer is then constructed by an iterative procedure, which alternately perform
optimization of the partition given a fixed codebook and an optimization of the codebook giv
fixed partition. For the euclidean distance measure a frequently used algorithm is a procedu
gested by Linde et al. (1980), which is called LBG-algorithm named after their authors Li
Buzo and Gray. The LBG-algorithm can be outlined as follows:

Choose size of codebook (fixed quantity and not subject to improvement by iteration)

A) Choose initial codebook

B) For :

C.1) assign all training vectors to its corresponding representative and estimate
new partition , for .

C.2) calculate the new codebook  with the cell centroids .

If the convergence criteria is fulfilled, stop, else , and return to C.1)

The resulting codebook after iteration is only locally optimal. A good initial codebook estima
required to obtain the globally optimal codebook.

The vector quantization is an unsupervised classification (hard-clustering) approach. In or
partition the space into a fixed number of disjunct regions (cells), it learns the continuous de
function from an unlabeled training set of feature vectors according to the optimality
terion of minimal distortion.

From the discussion in section 4.3.2. about the design of statistical classifiers it follows, th
case that the final partition in the iteration process contains feature vector samples distribut
lowing multivariate gaussian densities with unity covariance matrices, the minimization o
euclidean distance measure in the vector quantization process approximates the optimal cla

5.5.2. Model dimension and model topology

Unfortunately there exists no concise answer to the question of how to choose an appro
model dimension for a given classification problem. The number of independent paramete
hidden Markov model is directly correlated to the number of states and number of dis
observations symbols . Whereas is normally a fixed quantity and depends on the pr
which generates the observation sequences beforehand (see section 5.5.1.), the choice of
used for the realization of a hidden Markov model  is left to the user.

The initial state distribution vector has independent parameters (because of the st
tic constraints in EQ 5.5.a and EQ 5.5.b). Without imposing any further constraints to the
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ments of the state transition probability matrix (see below discussion for model topolog
contains free parameters (recalling conditions EQ 5.3.a and EQ 5.3.b), wherea

symbol output probability matrix possesses degrees of freedom (taking into acc
constraints EQ 5.10.a and EQ 5.10.b). The total number of free parameters, which are sub
the previously described training process (section 5.3.3.) is therefore approximately of the
of (exactly, there are independent parameters). This implies especially,
for a robust estimation of the model parameters by training, the required number of available
ples in the training set grows significantly with .

It is easy to imagine, that the amount of flexibility for modeling observation sequences grows
the number of states in . Therefore the choice for an appropriate dimension
hidden Markov model will always be a compromise between the reasonable try to keep the
ber of free parameters as small as possible and the desired modeling flexibility of .

It has been proposed to estimate on heuristic knowledge about the physical background
specific classification task. Especially in the area of isolated word recognition it is comm
accepted that for a first choice of , the number of distinct acoustic phenomena (soun
phones) in an utterance of a word is in general a good starting point (e.g. Rabiner, 1989, P
1990). As an extreme choice, the number of states is selected as high as the average nu
time frames in a set of observation sequences (Picone, 1990).

The term topology in the context of hidden Markov model theory is used to describe the patte
allowable state transitions. Up to now, the most general model topology, the so-called er
topology, has been assumed implicitly throughout this chapter. For the ergodic model topolo
other constraint besides the stochastic condition (EQ 5.3.a and EQ 5.3.b) restrict the possib
ues of . The state transition probability matrix is completely filled with f
all . An example of an ergodic DHMM with  and  is given in Fig. 5.

aij A
A N N 1–( )

B N M 1–( )

N
2

N
2

NM N– 1–+

N

N λ A B π, ,( ) N

λ

N

N

aij A aij[ ]= aij 0≠
1 i j, N≤ ≤ N 3= M 7=
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Hidden Markov models with a left-right topology have received high attention in speech rec
tion applications. For the class of left-right models only transitions from lower numbered sta
higher numbered states are allowed. The state transition probability matrix meets
the condition that for and for ( ). The state transitio
probability matrix has the structure of an upper triangle matrix, and especially the ele

. As a result, the state indexed can not be left any more, once it has been entered
state is therefore called an absorbing state of the model. Furthermore, it has to be assured,
state sequence starts in the first state at time step , therefore the initial state probabilit
set to: , and  for .

Left-right models enforce causality in the hidden markov process and have been found to pe
well for modeling observation sequences which are obtained from a causal physical proces
utterances of words in the isolated word recognition problem (Picone, 1990, Deller et al., 1
For the problem of seismic signal classification, left-right models seem to be an appro
choice, as seismograms (similar to speech signals, see section 4.5.) clearly possess a cau
structure.

Choosing a left-right topology has two positive side-effects. The number of independent m
parameters in is reduced approximately by a factor of two (exactly /2 less free par
ters), which is advantageous in case of a limited finite training set for the robustness of para
estimation. Furthermore, by decoding the hidden state sequence with the Viterbi algorithm
section 5.3.2.), a meaningful segmentation of the input observation sequence may be achie
the number of states is similar to the expected number of physical events within the sequen
example of a 4-state left-right model is given in Fig. 5.3.
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FIGURE 5.2: Example of the discrete hidden Markov model of dimension and with
ergodic topology. Colored circles depict the states , and . The transition probabilities are
displayed as colored arrows to indicate the connection with the corresponding states. The colored boxes
show the state dependent, discrete symbol output probability densities as bar plots. The horizontal
axes corresponds to the index of the vector codebook , whereas the vertical axes indicates the
occurrence probability of this symbol ( ).
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Special cases of left-right models are the Bakis- and linear topology. For the Bakis-model (B
1976), only transitions from the current state to the two succeeding states are allowe

for and , and for ( ). The number of
independent parameters in for the Bakis-model reduce to . Even more restrictive is th
ear model, which allows only self-transitions and transitions to the succeeding state, the

for and , and only for and . Only free parameters ha
to be trained for the state transition probability matrix .

Further approaches for reducing the high dimensional parameter space of hidden Markov m
have been proposed, e.g. state tying (e.g. Young, 1992) and interpolation techniques (Jelin
Mercer, 1980). As those techniques have not been used here in the latter application for the
seismic signal classification, they are beyond the scope of this introductory text. Detailed de
tions can be found in Rabiner, 1989, Deller et al., 1993, or Schukat-Talamazzini, 1995.

5.5.3. Initialization of seed models for hidden Markov model training

In the training procedure as outlined in section 5.3.3. the goal is to find the global maximum o
maximum likelihood cost function. Although the training procedure guarantees to find a m
mum in the cost function it is not assured that the solution obtained is the global maxim
therefore a good initial seed model located in the local neighborhood of the global maximu
the parameter space is highly desirable for starting the iterative training process. It has
shown experimentally, that the initial values for the state transition probabilities and fo
initial state probabilities are not critical in the training procedure (Deller et al., 1993). Th
fore both a random initialization or equally distributed values show similar performance. The
tial values for the symbol output probabilities , however, prove to have a more signifi
influence on the quality of the trained model. It is generally recommended to initialize the
dependent symbol output probabilities by prior segmentation of the training set, and estimat
a priori discrete probability density functions from the data (data driven initialization).
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a33a22a11 a44
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FIGURE 5.3: General left-right discrete hidden Markov model. Number of states . Symbols and
variables are equivalent to Fig. 5.2. The causal structure of the state transition probabilities prohibits, that
previous states are entered again.

N 4=

aij 0= i j> i 2+ j< aij 0≠ i j i 2+≤ ≤ i j, 1 … N, ,=
A 2N

aij 0= i j> i 1+ j< aij 0≠ aii ai i 1+, N
A

aij
πi

bjk
Practical considerations for the design of a hidden Markov model classification system 57



Hidden Markov models
58 Practical considerations for the design of a hidden Markov model classification system



CHAPTER 6. Passive seismological experiment at
Merapi volcano
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The passive seismological experiment within the joint Indonesian German cooperation p
MERAPI (MechanismEvaluationRisk Assessment andPredictionImprovement) started in 1994
with the installation of a single broadband sensor at the WNW flank of Merapi volcano (Beiss
al., 1996). Since then, both broadband and short period sensors have been added to form
work for monitoring the volcano-seismic signals and for the feasibility of seismic source m
studies. In this chapter, the previously discussed principles of a hidden Markov model base
sification approach are applied to the continuously recorded data streams at Merapi’s seism
cal network.

6.1. The seismic monitoring network at Merapi volcano

The main objectives of the seismological experiment at Merapi volcano within the MER
project are: a) long-term continuous monitoring of Merapi’s seismic activity as a tool for e
warning, and b) to characterize and parametrize the sources of seismic activity at Merapi vo
In order to accomplish these tasks with a manageable number of seismic stations, a conce
novel network configuration has been used. The station geometry consists of a network o
small-aperture seismic arrays, each of which equipped with one central broadband seism
sors and three regular short-period seismometers as satellite stations. The choice of this con
tion has been motivated by the results of earlier studies.

The use of broadband instruments stems a.o. from the repeated observations of very long
events (e.g. Neuberg et al., 1994, Wassermann, 1997a, Rowe et al., 1998, Kirchdörfer, 19
also section 3.1.) mainly at volcanoes with explosive activity of strombolian type. Whether s
lar signals exist also at a volcano like Merapi, having higher viscous magmas with smaller vo
contents, is one of the questions to be answered by the long-term observation. The model
seismic source processes requires accurately determined hypocenters and the knowledg
radiated seismic wavefield. The small-aperture arrays arranged in a network geometry al
sample the seismic wavefield simultaneously at three sites, which comprise the volum
expected seismic source generation. They further contribute to the problem of locating se
sources in a volcanic environment. The determination of hypocenter locations of seismic s
of volcanic origin is a difficult problem due to the observed emergent signal-onsets and the
59
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plex nature of the wave propagation in the heterogeneous and clearly three-dimensional str
of the volcanic edifice. With data recorded at a network of broadband stations at Strombo
cano, Wassermann (1997a) demonstrated how to adopt a waveform migration approach fo
ing seismic sources of volcanic origin, while avoiding the need of seismic phase picking. Wit
installation of a network of small-aperture arrays at Merapi similar techniques for seismic s
localization based on array techniques can be applied (Almendros et al., 1999, Saccorotti a
Pezzo, 2000, Wassermann and Ohrnberger, 2001).

The seismic network has been implemented in three major steps. During the initial phase
MERAPI project, three single broadband seismometers of type STS-2 were installed in the
1994 to 1995 by the GeoForschungsZentrum Potsdam (GFZ, Beisser et al., 1996). The s
sites are located at the west-north-western flank (KLT), at the northern flank (GRW) and i
south-west-south (KEN) of Merapi’s active summit region at altitudes between 1400 m.
(KEN) up to 2000 m.a.s.l. (GRW). The three stations build a small network with reasonable
muthal coverage and horizontal distances from the active lava dome of Merapi volcano be
1.6 km and 3 km (compare Fig. 6.1, star symbols). Inter-station distances of this networ
between 2 km to 4 km.
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2000

20002000

FIGURE 6.1: Distribution of seismic stations at Mt. Merapi. White stars indicate the location of a three
component broadband-sensor. White circles represent three-component short-period seismometer
locations. The station distribution was designed as a combined array-network geometry. The aim is to
maximize the capabilities for estimating the wavefield properties with a reasonable number of seismic
stations. Digital elevation model (DEM) after Gerstenecker et al., 1998.
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In the second phase, during a two-months field campaign in June and July 1997, each si
additionally equipped with three Mark L4-3D three component short-period seismometers
cles in Fig. 6.1) surrounding the central broadband station, now forming a mini-array with st
distances ranging from 80 m up to 250 m. The realization of a triangle shaped geometry pro
both a reasonable azimuthal and slowness resolution for the array analysis could be ac
fairly well for the site GRW in the north of Merapi’s summit region. However, due to the to
graphic conditions, at the western flank at site KLT only an rather elongated triangle shaped
figuration could be established, whereas at the southeastern site KEN only a quasi
geometry could be realized. An additional broadband sensor has been installed tempora
July 1997 for a site survey close to the active lava dome at location PAS (compare Fig. 6.1

TABLE 6.1 Station information for the seismological network between July 1997 and March 2000

Name Longitude
[˚]

Latitude
[˚]

Height
a.m.s.l.

[m]

Sensor corner
frequency

[Hz]

critical
damping

h

Generator
constant

[Vs/m]

Unit-id /
Channel

KLT0 Z
KLT0 N
KLT0 E

110.43265 -7.53221 1890 STS-2
0.008333
0.008333
0.008333

0.707
0.707
0.707

1500
1500
1500

7651 / 1
7651 / 2
7651 / 3

KLT1 Z
KLT1 N
KLT1 E

110.43450 -7.53242 1961 L4-3D
1.022
1.044
1.013

0.700
0.700
0.700

283.1
285.8
284.3

7651 / 4
7651 / 5
7651 / 6

KLT2 Z
KLT2 N
KLT2 E

110.43183 -7.53291 1851 L4-3D
1.019
1.036
1.005

0.700
0.700
0.700

274.8
274.4
274.4

7652 / 1
7652 / 2
7652 / 3

KLT3 Z
KLT3 N
KLT3 E

110.43081 -7.53125 1807 L4-3D
1.024
1.051
1.018

0.700
0.700
0.700

288.2
283.5
289.0

7652 / 4
7652 / 5
7652 / 6

GRW0 Z
GRW0 N
GRW0 E

110.45150 -7.52161 2045 STS-2
0.008333
0.008333
0.008333

0.707
0.707
0.707

1500
1500
1500

7655 / 1
7655 / 2
7655 / 3

GRW1 Z
GRW1 N
GRW1 E

110.45164 -7.52305 2114 L4-3D
0.990
1.019
1.016

0.700
0.700
0.700

271.7
275.2
275.2

7655 / 4
7655 / 5
7655 / 6

GRW2 Z
GRW2 N
GRW2 E

110.45069 -7.52081 1995 L4-3D
1.015
1.041
1.045

0.700
0.700
0.700

271.7
286.6
283.1

7656 / 1
7656 / 2
7656 / 3

GRW3 Z
GRW3 N
GRW3 E

110.45249 -7.52165 2015 L4-3D
1.028
1.028
1.029

0.700
0.700
0.700

266.5
277.2
276.4

7656 / 4
7656 / 5
7656 / 6

KEN0 Z
KEN0 N
KEN0 E

110.45855 -7.56531 1400 STS-2
0.008333
0.008333
0.008333

0.707
0.707
0.707

1500
1500
1500

7653 / 1
7653 / 2
7653 / 3

KEN1 Z
KEN1 N
KEN1 E

110.45805 -7.56408 1430 L4-3D
1.025
1.013
1.016

0.700
0.700
0.700

276.8
282.3
283.5

7653 / 4
7653 / 5
7653 / 6

KEN2 Z
KEN2 N
KEN2 E

110.45871 -7.56585 1385 L4-3D
1.009
1.019
1.027

0.700
0.700
0.700

270.9
275.6
271.7

7654 / 1
7654 / 2
7654 / 3

KEN3 Z
KEN3 N
KEN3 E

110.45884 -7.56701 1371 L4-3D
1.024
1.015
1.025

0.700
0.700
0.700

282.3
282.7
282.7

7654 / 4
7654 / 5
7654 / 6

PAS0 Z
PAS0 N
PAS0 E

110.44947 -7.53702 2650 CMG-3T
0.008333
0.008333
0.008333

0.707
0.707
0.707

1500
1500
1500

3622 / Z4
3622 / N4
3622 / E4
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In August 1998, a permanent broadband station was deployed permanently at the same lo
The station was equipped with a new data logger type and a digital telemetry unit for testing
poses. The station names, station coordinates, sensor types, seismometer characteristics
logger unit IDs for the time period from July 1997 to March 2000 are given in Table 6.1.

The digital data acquisition system at each array site (KLT, GRW, and KEN) consisted of two
channel data loggers (RefTek 72A-07/6) equipped with 24 bit delta-sigma A/D digitizer bo
providing a usable dynamic range of 130 dB (nominal 144 dB). The time signal of one GPS-
(RefTek 111A-02) was split and sent to both data loggers for appropriate time synchroniz
within a single array and the whole network. The power supply was guaranteed by several
solar panels buffered by two 40 Ah (later 65 Ah) dry gel batteries. The data was recorded to
nal hard disks with a capacity of 2 GB for each data logger. The hard disks were replaced
routine basis every 20 to 30 days by scientists and technicians from the geophysical labora
the Gadjah Mada University in Yogyakarta. Recording mode was continuous and the sam
rate for all stations was set to 50 Hz (40 Hz between November 1997 and July 1998). A ske
the data acquisition system setup can be seen in Fig. 6.2.

The continuously recorded data was converted to GSE format (GSE Wave Form Data Fo
1990), segmented in 1 hour files, and finally archived on CD-ROMs. The waveform files
inserted into the database system GIANT (Rietbrock and Scherbaum, 1998) and have bee
lyzed interactively with the software package PITSA (Scherbaum and Johnson, 1994). Auto
analysis on the continuous data streams was performed by custom software modules acces
waveforms via the GIANT database.

+--
+--

2 GB Hard Disk

RefTek Data Logger

Seismometer 0

Seismometer 3

Seismometer 2

Seismometer 1

GPS-receiver

GPS-Splitterbox

1-3 1-34-6 4-6

P PP P

PP

S

S S

S

40 (65) Ah
dry gel battery

TT

Solarpanels

+--

FIGURE 6.2: Central data acquisition, data storage and power supply at the single mini-array sites. All
equipment was placed in a concrete bunker close to the central broadband sensor vault. S: SCSI
connectors; P: Power connectors; 1-3, 4-6: channel connectors.
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In the third phase of the project (after March 2000) the seismic network has been re-confi
according to the results obtained from the first years of continuous operation. Most impo
changes have been the closing down of the array site KEN and the establishment of a new
site at the location PAS. The geometry of the mini array KLT has been optimized in ord
enhance the azimuthal resolution capabilities of the configuration. The copper wire cables,
were used for the seismometer signal transmission to the data loggers, have been the c
repeated damage of the electronic equipment by lightning induced excess voltage. As a
quence signal transmission between the seismic sensors and the central data acquisition
been changed to fibre optic cables. Additionally the data acquisition system has been chan
all locations in order to allow the transmission of the recorded data directly to the observ
center of the Volcanological Survey of Indonesia (VSI) in Yogyakarta via digital telemetry u

6.2. Description of available data set

The harsh environmental conditions at Merapi volcano caused occasionally equipment da
especially during the tropical rainy season. Besides power failures during long times of com
clouding, the main problem encountered was excess-voltage by lightning which destroyed
panels, A/D channel boards, GPS-clocks and devices for splitting the time signal. The availa
of continuous data recordings for the single seismic stations is given in Fig. 6.3 for the time p
from July 1997 to September 1998.

After the eruption in January 1997, Merapi entered into a stage of calm volcanic activity. The
responding seismic activity during 1997 until end of June 1998 was relatively low. During
time period only a small number of low energetic signals could be observed in the continu

0 50 100 150 200 250 300 350 400 450
Time [days]

0 50 100 150 200 250 300 350 400 450
Time [days]

FIGURE 6.3: Display of station availability of Merapi’s seismic network in the time period from July
1997 to September 1998. Time is given in number of days since 1997/07/01. The box indicates the time
period of accelerated increase of seismic activity at begin of July 1998 prior to the eruptions taking
place at July, 10th and July, 19th, 1998 (marked by arrows). Missing data are due to instrument damage
by lightning induced excess-voltage and power outages caused by strong clouding.

KLT0

GRW1

KLT2
KLT1

GRW3
GRW2

GRW0
KLT3

KEN3

KEN0

KEN2
KEN1
Description of available data set 63



Passive seismological experiment at Merapi volcano

ignal
Poupi-
ve-
VTA,

er with
rec-
July,
anic
cation
anches

atic
d one
ed by
work

) as
icate
public

.

recorded data at the newly installed seismic network. A confirmation of Merapi’s seismic s
classification scheme (Ratdomopurbo, 1995, Purbawinata et al., 1997, Ratdomopurbo and
net, 2000) from visual data control was difficult during this time period. Only few of the wa
forms could be identified as being of Guguran or MP-type. None of the other signal types,
VTB, LF, and tremor could be recognized.

At the end of June 1998, a phase of rapidly increasing seismicity was observed and togeth
observations of increasing tilt and rockfall activity a change in the volcanic activity could be
ognized, finally culminating in a sequence of large pyroclastic flows between July, 11th and
19th, 1998 (local time). In this stage of high seismicity accompanying the increasing volc
activity, three types of seismic signals could be observed and associated with the classifi
scheme of VSI: dome-growth related MP events, Guguran events associated with rock aval
and VTB, shallow volcano tectonic events probably connected to injection of new magm
material prior to the eruptions of July, 11th and July, 19th. Just one single LF-type event an
92 minute tremor episode occurring shortly before the eruption at July, 19th were report
VSI. Whereas the LF-type event could be identified in the registrations from the digital net
data, there was no clear indication for the occurrence of volcanic tremor.

A display of the daily number of events for VTB, MP and rockfall avalanches (Guguran
reported by the Merapi volcano observatory (VSI, 1998) is given in Fig. 6.4. The arrows ind
the announcements of different stages of volcanic alert level to the local authorities and the
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FIGURE 6.4: Daily number of event types from 1998/06/15 to 1998/08/11 on a logarithmic scale (source:
VSI, 1998). Arrows with associated number indicate time of official announcement of volcanic alert level
(e.g. Voight et al., 2000b). Prior to the occurrence of the eruptive activity, a rapid increase of seismicity was
observed, mainly dominated by MP- and Guguran-type events. A small swarm of shallow volcano-tectonic
events (VTB-type) was observed between 1998/07/03 and 1998/07/05. Time axis is given in local time
Vertical lines enclose the time period which has been used for establishing a DHMM-based automatic
classification system (1998/07/01 to 1998/07/05 GMT).
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(Voight et al., 2000b). The alert levels issued were based on results of seismicity, tilt and v
rockfall observations.

The data recorded in the time period between July, 1st and July, 5th, 1998 has been u
develop a discrete hidden Markov model based continuous automatic classification syste
volcano-seismic signals. For the purpose of detailed feature analysis, the training of code
and individual hidden Markov models a set of training samples has been selected interac
from the continuous data streams. In Fig. 6.5 to Fig. 6.7, all samples of the individual training
for VTB-type (Fig. 6.5), MP-type (Fig. 6.6), and Guguran-type (Fig. 6.7) events are shown.
waveforms have been recorded at the vertical component of the short-period seismometer
which is the closest station to Merapi’s summit (Fig. 6.1). In the left column of each plot,
waveforms are normalized with respect to the maximum amplitude of all events, whereas
right column the same events have been normalized to the maximum amplitude within each
vidual event. The most homogeneous training set available is the sample set of VTB e
(Fig. 6.5). The seismograms displayed for the MP-class (Fig. 6.6) demonstrate still a very h
geneous group of waveforms samples, whereas the Guguran training samples show very
characteristics regarding the signal length, signal strength and envelope shapes (Fig. 6.7).
in order to demonstrate the differences of signal shapes, signal lengths and relative am
scaling between the individual event classes and for a greater number of seismic stations
the new seismic monitoring network of Merapi, a six minute waveform example containing a
istration of each of these event types is displayed in Fig. 6.8.
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FIGURE 6.5: Set of 30 training samples for VTB-type events. In the left column all waveforms are scaled to
the maximum amplitude of the set, whereas in the right column all waveforms are scaled to the maximum
in the individual trace window. Start times of the signal waveforms recorded at station KLT1 (Z-
component only) are displayed for each event on the right. All events have been selected from the time
period between 1998/07/03 and 1998/07/05. Note the waveform similarity over the whole seismogram length
and very late prominent phase arrivals common to all event recordings.
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FIGURE 6.6: Set of 30 training samples for MP-type events. In the left column all waveforms are scaled to
the maximum amplitude of the set, whereas in the right column all waveforms are scaled to the maximum
in the individual trace window. Start times of the signal waveforms recorded at station KLT1 (Z-component
only) are displayed for each event on the right. All events have been selected from the time period between
1998/07/01 and 1998/07/02. Waveform similarity is less pronounced if compared to the VTB event class.
However, very late prominent phase arrivals are common to most event recordings.
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FIGURE 6.7: Set of 30 training samples for Guguran-type events. In the left column all waveforms are
scaled to the maximum amplitude of the set, whereas in the right column all waveforms are scaled to the
maximum in the individual trace window. Start times of the signal waveforms recorded at station KLT1
(Z-component only) are displayed for each event on the right. All events have been selected from the time
period between 1998/07/01 and 1998/07/02. The waveforms in this class are very heterogeneous, mos
important are differences in signal length, signal strength and envelope shape.
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FIGURE 6.8: Data example from beginning July, 1998, showing all three signal types VTB, MP and
Guguran together at the complete station network. In the left column the traces are normalized with
respect to the maximum amplitude in the whole network, whereas in the right column the same data
example is displayed normalized for each single channel.

GRW0 Z

KEN1 E

KEN1 N

KEN1 Z

KEN0 E

KEN0 N

KEN0 Z

GRW1 E

GRW1 N

GRW1 Z

GRW0 E

GRW0 N

KLT0 E

KLT1 N

KLT1 Z

KLT1 E

KLT0 N

KLT0 Z

Guguran MP VTB
Description of available data set 69



Passive seismological experiment at Merapi volcano
70 Description of available data set



CHAPTER 7. Realization of a continuous
automatic classification system for
volcano-seismic signals at Merapi
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In this chapter, the previously discussed principles of a hidden Markov model based classifi
system are applied to the continuously recorded data streams at Merapi’s seismological ne
The data recorded in the time period between July, 1st and July, 5th, 1998 (see section 6.2
been selected to develop a continuous signal parametrization scheme which will be introdu
section 7.1. The individual wavefield parameters for the three seismic event types VTB, MP
Guguran and the seismic noise are analyzed in order to select a set of primary features
classification task. A prewhitening transform as described in section 4.3.1. is derived from a
ing sample of feature vectors to allow a reduction of the dimensionality of the feature vector s
(section 7.2.). Subsequent vector quantization is necessary to obtain a discrete symbol se
out of the sequence of continuous valued feature vectors. Both the original and transforme
ture vectors are used to construct codebooks (section 7.3.) with the LBG algorithm (se
5.5.1.). A set of DHMMs are trained for both signal and noise classes and an evaluation of c
fication performance is derived via the resubstitution method (compare section 4.3.3.) for th
ognition of the isolated events in the training sets (section 7.4.). At the end of this chap
strategy is given how to evaluate the classifier functions (DHMM probability measures) fo
continuous classification problem (section 7.5.).

7.1. Parametrization of continuous three component seismic data streams
in combined network/array geometry

According to the previously introduced scheme of a pattern recognition system in chap
(compare Fig. 4.1), features have to be generated from the continuous seismic data streams
ing the knowledge which signal parameters are most appropriate for the classification of se
events at Merapi volcano, the description of the main characteristics of the recorded se
wavefield by short time estimates of seismological key parameters has been considered to p
a useful data representation for the given classification problem. Standard analysis me
which are commonly used in observatories for earthquake analysis have been given prefere
more sophisticated signal processing schemes (e.g. MUSIC, AR-parameters) in order to o
robust parametrization of the continuous time series. The availability of multiple station t
component data allows to extract continuous feature estimates from both array and polari
analysis methods. Hence, the following methods have been automated for the analysis of co
71
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ous multiple station three component data and have been implemented to be suitable for re
computations on a single PC.

7.1.1. Broadband frequency wavenumber analysis (bbfk-analysis)

Assuming a plane wave with horizontal slowness vector which propag
through an (horizontal) array of stations, an estimate of the coherence of a plane wave
within a given data window has been termed relative power (e.g. Kvaerna and Ring
1986), and is given by:

. 7.1

In EQ 7.1, the represent the discrete complex Fourier coefficients of the vertical co
nent seismogram for station  at discrete angular frequencies . The term:

7.2

corresponds to the travel time delay for a plane wave arriving at station measured rela
the center of gravity of the array ( ), where and denote the relative coordinate
station with respect to the . The discrete double sum in EQ 7.1 is evaluated over all
tions with index and over the limited frequency band from discrete angular frequency i

 to .

EQ 7.1 can be interpreted as an approximate band-limited semblance calculation in the freq
domain. The approximation is caused by the choice of the normalization term in the denomi
which is here calculated as the sum of square amplitudes of the unshifted individual data
dows. In the exact definition of the semblance coefficient the station dependent time d

are applied to both the denominator and to the nominator. By doing so, the semb
value can be interpreted as a normalized output to input energy ratio and is therefore a phy
meaningful quantity (Neidell and Taner, 1971). The approximate implementation of the
blance calculation is motivated by a significant gain of computational speed. Omitting the m
plication of the phase term in the denominator allows to calculate the denominator just onc
time window, whereas for the exact implementation, the denominator has to be computed fo

,  pair.

Although EQ 7.1 is not an exact implementation of the semblance definition, the bias introd
tends to be small, if the analyzed signal is of transient character and lies completely insid
selected analysis window. By the use of an appropriate taper function, which is multiplied
the individual data windows in the time domain prior to Fourier transforming, the expected
can be reduced.

The calculation of the semblance value in the frequency domain bears two main advantages
band limitation is achieved computational efficient by summing up only those discrete frequ
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components which lie in the desired frequency band, thus making obsolete the need of app
bandpass filter when implementing the semblance calculation in the time domain. Further
individual station delay times can be applied even for time shifts less than the sampling in
by adding the phase term to the argument of the exponential function. However,
must be taken to avoid wrap around effects of the signal for the time delays under conside
Zero padding in the time domain is therefore applied before Fourier transforming the signa

In order to find the most coherent plane wave arrival for a given time window, a grid search o
rectangular slowness grid is performed in the original algorithm implemented by Kvaerna
Ringdahl (1986). The computational cost for this grid search depends on the grid spacing (r
tion) and the maximum of horizontal slowness values, which is to be evaluated. In order to
the coherence estimates in real-time, a non-linear global optimization technique has been u
this study. The combination of the simplex method and the simulated annealing optimiz
(Press et al., 1992) for searching the maximal semblance within the slowness space pro
reduce effectively the total number of evaluations of EQ 7.1 compared to the necessary ca
tions of a reasonably sized grid. As an additional advantage, the evaluation of the semblance
is not longer restricted to discrete slowness grid points, because the cost function to be opt
(EQ 7.1) is a continuous function in .

After determination of the slowness vector for the most coherent pl
wave arrival, the following additional parameters can be calculated:

7.3

(AbsolutePower) is an estimate of the absolute band-limited delay-and-sum beampowe
culated in the frequency domain. The individual variables have the same meaning as in E
and represents the number of points of the fast fourier transform which is used throu
for the computation of the discrete fourier spectra. In order to account for the large dynamic
of the value, the logarithm of the beampower is taken and by further multiplying the exp
sion with the factor 10, a dB-scale for the beam amplitude is obtained. The absolute value
horizontal slowness  is calculated as:

, 7.4

whereas the direction of the plane wave front (backazimuth) is given by the angle of the
ness vector measured against the geographical north ( -direction):

. 7.5
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The four estimates , , , and provide information about the coherence, signal stre
inverse apparent velocity and direction of wave propagation of the most coherent plane
arrival within a given time window and the specified frequency band.

A typical example of the outcome of the continuous broadband frequency wave-number an
is displayed in Fig. 7.1 for a 80 s waveform sample observed at the small-aperture array
The signal shown is a VTB type event recorded a few days before an eruption occurred at M
volcano.

RP AP s φ

0
120
240
360

0 10 20 30 40 50 60 70 80
Time [s]

0
1
2
3 20

40
60

0.5

1.0

0 10 20 30 40 50 60 70 80
Time [s]

FIGURE 7.1: Example of continuous broadband frequency wave-number analysis. The signal displayed
is a VTB-type event recorded at GRW-array. Only vertical components of GRW0, GRW1, and GRW2
have been used, as the seismometer GRW3 was out of operation during this recording period. The
seismograms are simulated to a common seismometer response (0.5 Hz corner frequency, 0.7 of critical
damping) and bandpass filtered from 0.5 Hz to 10 Hz. The frequency band for the bbfk-analysis was set
to 0.9-6.0 Hz. The signal parameters displayed are (from top to bottom): measure of coherency RP, the
measure of signal strength AP in a dB-scale, the horizontal slowness s in s/km, and the backazimuth of
the most coherent plane wave arrivalφ in degrees from North. The darkness of individual symbols is
scaled with the value of RP, displaying darker colors for more coherent time windows.
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7.1.2. Polarization Analysis

Polarization analysis is performed using a robust array-wide estimate similar to the approac
sented by Jurkevics (1988). It is an extension of the well-known algorithm by Flinn (1965) f
single three-component station to three-component array data. In Flinn’s method a 3x3 cova
matrix for a data window containing time samples, is built from the auto- and cro
variances of the three orthogonal components of motion. With , a

, denoting the data matrix of one data window, the calculation in the time doma
written as:

. 7.6

The matrix coefficients of in EQ 7.6 describe the quadratic form of an ellipsoid. The princ
axis directions and lengths for this polarization ellipsoid can be obtained from the solution o
algebraic eigenproblem for  by:

, 7.7

where is the 3x3 identity matrix. The directions of the principal axes of the ellipsoid are g
by the eigenvectors , whereas the axes lengths are specified by the eigenvalues ,
The eigenvalues and their corresponding eigenvectors are ordered such that .

The following quantities (among others) have been used to describe the polarization chara
tics of the ground motion: the rectilinearity, the planarity, azimuth and incidence angle for a
wave type.

The rectilinearity quantifies the degree of linearity of particle motion, and can be calculated

7.8

For complete linear polarization, as theoretically expected for body wave types P, sub-critic
and SH-waves, equals 1, whereas for a particle motion with no preferred direction (i.e
ellipsoid deteriorates to a sphere, ), the rectilinearity evaluates to 0.

For wave types showing elliptical polarization, as e.g. Rayleigh waves or overcritical SV-wa
the planarity is a useful quantity to compute:

7.9

The values of EQ 7.9 again lie in the range , indicating no preferred polariza
( ), and polarization in a plane ( ), respectively.
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The estimate of azimuth and incidence angles depends on the assumed wave-type and th
ing of seismogram components in the covariance matrix. Let the order of components be
(i.e. , , ), then for the assumption of a P-wave arrival the azimuth of po
ization measured against north direction is given by:

7.10

The ambiguity of the function can be resolved by the use of the sign of and
reasonable assumption of an up-going ray path for a P-wave.

Finally, the incidence angle of a P-wave is calculated as:

7.11

The polarization analysis after Flinn (1965) is the formulation for a single three componen
tion record. Jurkevics (1988) modified this approach for three component station arrays, by
ducing an ensemble average from the single station covariance matrices ,
like:

7.12

Jurkevics (1988) showed, that the scatter in polarization estimates can be reduced effectiv
applying EQ 7.12 to array data. He further demonstrated, that a proper time alignment o
windows for the averaged covariance estimate is not critical to the stability of the obtained p
ization estimates, provided that the data window is of sufficient length (ca. five times of the d
nant signal period), and time delays of the prominent arrival within the array are less tha
third of the data window length. In his work Jurkevics additionally introduced a wide-band
mate, which consisted in a balanced sum of covariance matrices calculated for a set of di
frequency bands. This procedure is not discussed in detail here, as it has not been used th

The polarization analysis is performed in a sliding window by calculating the individual sta
covariance matrices as given in EQ 7.6. Then the individual are averaged (EQ 7.1
each array site, and finally the polarization attributes , , , and are obtained
EQ 7.8 - EQ 7.11.

In Fig. 7.2 the same seismogram example as shown in Fig. 7.1, is analyzed in sliding win
with the algorithm outlined above.
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7.1.3. Sonogram Calculation

A standard method used for the description of seismic signals is the calculation of the amp
spectrum. A display of the time-varying frequency content can be obtained by the short-term
rier transform (STFT), which is also often termed spectrogram or sonogram. The STFT has
shown to be a useful tool for the characterization of volcano-seismic signals, and was used
cially to obtain a visual display and a parametric description of event types (signal classes
Lahr et al., 1994, Chouet 1996b). A modified form of the STFT was used by Joswig (1990) fo
template-based pattern matching approach for local earthquake recognition. By smoothi
short-term squared amplitude spectra in half-octave wide frequency bands, Joswig obtained
detailed display of the spectral evolution while maintaining the prominent characteristics o
spectrogram. Introducing an additional noise adaption technique on the sonogram imag
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FIGURE 7.2: Polarization analysis of the same data sample as displayed in Fig. 7.1. The darkness of
individual symbols is scaled by the value for the incidence angle . Please note that the incidence angle
is the only signal parameter that shows some variation for the very first part of the observed signal. All
other parameters seem not to change significantly in comparison to the preceding seismic noise.
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reducing the dynamic range of the spectral amplitudes to a small number of discrete valu
mimicked the process of human vision (Joswig, 1994) and developed a very robust and suc
seismic event detector for single-trace data.

In this work, the calculation of a smoothed sonogram is used similar to the work of Joswig (1
to include the main spectral characteristics of the seismic wavefield into the data represen
For each array site, the squared amplitude spectra of the vertical velocity recordings of the
vidual stations are stacked and further a smoothing within half-octave wide frequency ba
performed. The -th spectral band ,  can be written as:

7.13

is the complex fourier coefficient of station at the discrete angular frequency .
inner sum calculates the array-wide squared amplitude spectrum over all stations with
array, and the outer sum evaluates over the discrete angular frequency indices of the -t
octave wide band (from to ). In order to obtain a relative measure for the s
tral power bands, a normalization is performed by the value of the total power of the whole
quency band under consideration (from to ). Finally, to keep the dynamic ra
in reasonable bounds, the natural logarithm is taken from this expression. Performed in a s
window analysis, this spectral analysis provides relative spectral amplitude va

for each array site per time step. A display of a typical result of the sonog
analysis for the same seismogram example as in Fig. 7.1 and Fig. 7.2, is shown in Fig. 7.3
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7.2. Analysis of wavefield parameters for the classification system

The algorithms (as described above) for the continuous processing of the recorded array da
been implemented as a stand-alone program named“cap” (continuous array processing).Cap
accesses the raw recordings via the database GIANT (Rietbrock and Scherbaum, 1998), pe
consistency checks of data continuity or missing data, allows for several preprocessing step
finally applies one of the methods (bbfk, polarization analysis, sonogram processing) in a s
window analysis for the selected time period. To allow more flexibility in the computations
settings for preprocessing steps as well as the method specific parameters are user confi
The results of calculations, i.e. the individual features, are stored frame by frame into an o
file for further processing. A flow chart of the main data processing steps within the soft
modulecap is provided in Fig. 7.4.

0
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b n

0 10 20 30 40 50 60 70 80
Time [s]

0 10 20 30 40 50 60 70 80
Time [s]

FIGURE 7.3: Example of sonogram analysis for a VTB-type signal (same data sample as in Fig. 7.1 and
Fig. 7.2). Eight half-octave wide bands are used in this analysis and span the frequency range from 0.53 Hz
to 15 Hz. The frequency ranges of the individual bands are displayed on the right side of the figure. VTB
type events as recorded in the first days of July, 1998 typically show high spectral amplitudes in the range
from 2 Hz to 6 Hz (frequency bands 4 to 6).
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In order to extract an adequate parameter set for the wavefield characteristics observed at
volcano, test runs have been performed on many hours of continuous network data as wel
several dozens of individual volcano-seismic events. In addition the results from interactive
tral analysis and the evaluation of the array response functions with synthetic signals have
taken into account for tuning the configurable preprocessing and method specific proc
parameters. The finally derived parameter settings have been summarized in Table 7.1.

The analysis methods discussed in sections 7.1.1. to 7.1.3. have been used extensively in
few years (e.g. Goldstein and Chouet, 1994, Almendros et al., 1997, 1999, Del Pezzo et al.,
in order to improve the knowledge about the complex seismic wavefield observed at volc
and to describe the characteristics of volcano-seismic signals. From the seismological po
view, all of the discussed wavefield parameters provide information for the discrimination o
known volcano-seismic signal classes at Mt. Merapi. However, the importance of the indiv
signal parameter for the given classification task is yet unknown.

query GIANT database

preprocessing • offset removal
• seismometer simulation

• retrieve waveform data
• retrieve station coordinates
• retrieve calibration information

• bandpass filtering

• data consistency check:
   check for data gaps, missing stations

apply selected method
in sliding window

init: t1 = start, t2 = start+winlen

 t2<end

process window [t1,t2]

store t1, results

t1 = t1 + dt
t2 = t2 + dt

STOP

FIGURE 7.4: Flow chart of main processing steps incapsoftware module. The uppermost block describes
the information retrieval from the GIANT database system. Besides the raw waveform data, station
specific information (geographical coordinates and instrument calibration) has to be retrieved. The
preprocessing block performs at first a check for data gaps and station dropouts. Then an offset removal is
applied to the total length of the selected data. In order to make the individual waveforms comparable
within the array, a simulation of a common instrument response is performed after Seidl (1980). The
optional prefiltering of the waveforms is implemented as a user configurable Butterworth bandpass filter.
The last block shows schematically the data processing in a sliding window. The step width between
successive analysis windows is dt, and the analysis is performed over the whole trace length from t=start to
t=end.

YES

NO
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To determine the usefulness and the discriminative power of the individually derived param
the following points have to be clarified. The first deals with the question regarding the robus
of the individual feature estimates for commonly encountered limitations of the waveform
quality and will be discussed in section 7.2.1.. Signal parameters which show unstable be
with respect to the quality of the input data have to be considered as at least uninformative,
as confusing for the classification process. Hence, features which can not be guaranteed
vide stable estimates must be excluded from the overall set of features. Secondly, it is neces
judge whether the signal parameters under consideration contain the necessary amount o
mation to distinguish the seismic event classes. In section 7.2.2., a qualitative approach is u
address this question.

7.2.1. Robustness of signal estimates

The important demand of robust and stable classification results for a system which works o
tinuous input data can only be achieved, if the acquired features prove to be sufficiently r
against unexpected deterioration of the raw measurements. In order to allow a robust esti
of the short term signal attributes, much care was taken in the numerical implementation of
rithms and in the determination of adequate preprocessing/processing parameters. Howeve
lems for the robustness of parameter estimates will be encountered in case of obscu
incomplete waveform data. Common disturbances of seismogram recordings within Me
seismic monitoring network have been obtained from the visual data control during the
months of continuous operation.

TABLE 7.1 Fixed parameter set derived in test runs for the continuous parametrization of the seismic wavefield.
Preprocessing parameters: due to the heterogeneity in instrument deployment (both short-period and broadband
sensors) a simulation of a common instrument response after Seidl (1980) is applied.

Parameter Broadband frequency
wavenumber analysis polarization analysis sonogram

Seismometer simulation
corner frequency /

fraction of crit. damping

yes
0.5
0.7

yes
0.5
0.7

yes
0.5
0.7

Butterworth bandpass filter
zero-phase?

lower corner frequency
upper corner frequency

number of poles

yes
yes

0.5 Hz
10.0 Hz

8

yes
yes
0.9
6.0
8

no
-
-
-
-

Sliding window length 3 s 1.5 s 3 s

step width dt 0.2 s 0.2 s 0.2 s

taper function
percentage taper

cosine taper
70 %

-
-

cosine taper
70 %

method specific
parameters

frequency band: 0.9 - 6.0 Hz
max. slowness: 3.0 s/km

-

number of freq.-bands: 8
hob1: 0.53 - 0.88 Hz
hob2: 0.79 - 1.31 Hz
hob3: 1.18 - 1.97 Hz
hob4: 1.78 - 2.96 Hz
hob5: 2.67 - 4.44 Hz
hob6: 4.00 - 6.67 Hz
hob7: 6.00 - 10.0 Hz
hob8: 9.00 - 15.0 Hz
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From the visual analysis it has been recognized that three distinct situations have to be cons
which affect the quality of input data and consequently may pose problems for the robustn
signal estimates. The first one is the inevitable occurrence of sporadic noise bursts and sho
sient signals at single stations, which are mostly connected to man-made activity in the surr
ing farm land. Due to the usage of array processing techniques, no major influence o
robustness of the signal estimates will occur for this type of data limitations. However, besid
occurrence of those uncorrelated and mostly low energetic ambient vibration signals, a s
type of data obscuring signals has been frequently observed. These signals are nearly
spike signals and can be often correlated within the whole seismic network showing a ma
time delay of one sample between the different array sites. The induction of electromag
pulses into the signal cables has been considered as most plausible explanation for th
recordings, although the cause of this kind of noise signal is still unclear. The high-energet
correlated spikes cause a severe problem in the calculation of signal parameters. The energ
dominating spike recordings lead to constant values for all of the estimated wavefield param
for the total duration of the analysis window. The attempt to include de-spiking algorithms in
preprocessing step of the data showed no satisfactory improvements in the estimate of the
parameters. Consequently, much effort has been spent upon the attempt to reduce the stren
number of spikes recorded. It was found, that an appropriate grounding of the seismometer
cable shield was sufficient to eliminate this problem (December, 1997).

The third situation leading to a deterioration of data quality is encountered, if single station
outs occur in the monitoring network. Due to the harsh environmental conditions at Mt. Me
(see also section 6.2.), the temporarily failure of individual instruments, e.g. caused by insuffi
power supply or hardware damage, could not be completely avoided. Hence, during certai
periods only recordings from a subset of the total small-aperture array configuration have
available for the data analysis.

Whereas for the computation of polarization and spectral attributes even a single running s
is sufficient to obtain reasonable (although less robust) signal parameter estimates, at lea
stations must be available to allow the computation of all parameters in the bbfk method.
cially for the case that only registrations of less than three stations are available, the values
horizontal slowness and the backazimuth provide no meaningful result. However, for tw
tions, the semblance calculation (RP), and the estimate of the signal strength (AP) as giv
EQ 7.1 and EQ 7.3 are still appropriate measures, which may be used for the classification

A second critical point for the robustness of bbfk parameter estimates is due to the fact th
array resolution properties depend on the array geometry. The influence of a reduced array
uration on the theoretical array response is shown in Fig. 7.5.

s φ
82 Analysis of wavefield parameters for the classification system



Realization of a continuous automatic classification system for volcano-seismic signals at Merapi volcano

tions is
unction
As expected, the shape of the array response changes significantly if one of the array sta
missing. Nevertheless, even in the case of a reduced array geometry, the array response f

FIGURE 7.5: Theoretical array response functions for a band-limited signal in the frequency range from
0.5 Hz to 10 Hz. The upper row shows the results for the complete small-aperture arrays KLT, GRW and
KEN, respectively (from left to right). Lower rows display the array response functions for a reduced
configurations with three stations only. The corresponding station geometry is shown for each plot on the
left side of the array response. The cross symbol gives the position of the center of gravity within the
configuration.
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shows still a sufficiently smooth behavior to allow the use of the implemented non-linear m
mum search algorithm.

A major shortcoming has been found for the stability of RP-values calculated for different a
geometries (e.g. only three stations available instead of four). Although, the results of RP-ca
tions provide in all cases a meaningful measure of coherence, the range of the computed R
ues is not comparable between the different array configurations. An explanation for this be
can be given from the discussion in 7.1.1., where the similarity of RP-computation and the d
tion of the semblance coefficient has been noted. Hence, the basic statistics for the sem
coefficient apply equally well for the RP-measure. Douze and Laster (1979) showed, that the
blance statistics can be approximately related to a non-central F-distribution with degrees o
dom , and non-centrality parameter . Those parameters can be expressed in terms
the bandwidth time product of the analyzed data window and the number of stations used f
semblance calculation. Whereas the bandwidth time product is not subject to change in th
tinuous bbfk-analysis (see Table 7.1), the failure of a single station in the small-aperture arra
change the characteristics of the underlying distribution, hence the expected range of the r
power measure. The dependency of the estimated RP-values on the number of available sta
an undesirable shortcoming regarding the necessity of robust feature estimates for the cla
tion process. However, no satisfactory solution for this problem can be given in a straight for
manner. Although the statistics for the semblance coefficient is approximately known, in
present application only the maximal relative power within an analysis window is taken into
sideration. Therefore it would be necessary to derive an expression for the extreme value st
of the RP-coefficient as a function of the available number of stations. A more practical sol
might be obtained by evaluating synthetic test data in order to derive an empirical mapping
tion of the RP values range for different array configurations.

Focusing on the main aspect of this study, the investigation of the applicability of a hid
Markov model based classification system, it was decided to use always the same station c
ration for the computation of signal parameters. Any inconsistencies of feature estimates
are related to data recording problems are thus avoided. For the selected time span prior
Merapi’s eruption in July 1998 (1998/07/01 to 1998/07/05), some stations were out of oper
namely, KLT2 and KLT3 (broken data logger), GRW3 (seismometer failure), and horizontal c
ponents of stations GRW2 and KEN3 (electronic noise on A/D channel boards).

7.2.2. Class-dependent feature characteristics and distributions

The evaluation of the discriminative power of the individual feature estimates for the class
tion task has been obtained qualitatively by visually displaying certain properties of the s
attributes. Recalling the structure of a discrete hidden Markov model classification system
pare Fig. 5.1 in section 5.4.), it is necessary to check the class-dependent parameter distri
for both the vector quantizing part of the classification system (time independent) as well a
the context dependent hidden Markov modeling stage (time dependent).

The continuous data streams in the time period from 1998/07/01 to 1998/07/05 have bee
lyzed for each of the array sites GRW, KLT, and KEN with the software modulecapand the fixed
parameter settings as given in Table 7.1. In order to investigate the characteristics of the ind
signal parameters for each signal class separately, time segments of 120 s length hav
retrieved from the continuous results of thecap output files for all samples within the selecte
training sets (compare section 6.2.). Five event classes are considered at this point: 30 sam

ν1 ν2 µ
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VTB type events (Fig. 6.5), 30 MP-type events (Fig. 6.6), 60 time windows containing sei
noise, and two separate classes of Guguran type events. The heterogeneous training se
Guguran events has been divided into shorter and longer waveform samples, as the signal d
seems the most apparent criterion for separation. Thus, the lowermost 15 samples of Fig. 6
signal durations less than 100 s build the “short Guguran” class (GS), and the 15 uppermos
ples of Fig. 6.7 (longer than 100 s) are referred to as “long Guguran” class (GL) in the follow
A color coding scheme is introduced at this point for the different event classes and will be
throughout the following discussions. The VTB-class is displayed in red colors, the MP-cla
blue colors, the Noise-class (N) is shown in yellow tones, the GS type events are displayed
quoise colors and the GL samples are shown in green colors.

In order to compare the range of feature values for the different event classes, empirical pro
ity density functions have been obtained by the computation of histograms for each of the se
training sets and signal parameters, respectively. Every single time step in the sliding wi
analysis has been treated as an individual result of a random experiment. Thus, the distrib
show the time-independent range of feature values and the corresponding likelihood of o
rence. Therefore, a qualitative judgement of the clustering properties of the individual featur
different event classes can be obtained. For evaluating the discriminative power of signa
mates in the hidden Markov modeling stage of the classification system, the context depe
information of the individual features has to be considered. Hence, the individual time seri
the feature estimates have been aligned with respect to the apparent signal onset in eac
class separately. From the properly aligned time series, class-specific sample means and va
have been calculated at each single time step and for all signal parameters, respective
resulting mean time-patterns of the signal parameters for the different seismic event fa
enable a qualitative valuation of class separability. The discrimination between event classes
better, the less the class-dependent time patterns overlap.

Fig. 7.6 shows for the array-site GRW the mean time patterns of the 16 signal parameters
lines) together with their corresponding uncertainty regions (one standard deviation, d
lines). On the right-hand side of each time-pattern plot, the class dependent histograms of t
gle features are shown. In order to enable a better visual discrimination of the individual se
event classes, the class-dependent feature patterns and histograms are plotted in the colo
corresponding event class, as has been introduced above. The overall feature histogram
classes together has been drawn as black line. In the left part of Fig. 7.16 the signal para
obtained via the bbfk-method and the polarization analysis are displayed. The definitions
coherency measure , the beampower estimate , the horizontal slowness , and the
zimuth of the most coherent plane wave arrival are given by EQ 7.1 (p. 72), EQ 7.3 (p.
EQ 7.4 (p. 73), and EQ 7.5 (p. 73), respectively. The mathematical formulations for the pola
tion attributes (incidence angle), (backazimuth), (rectilinearity as measure of de
of linear polarization), and (planarity of polarization ellipsoid) have been given in EQ 7
(p. 76), EQ 7.10 (p. 76), EQ 7.8 (p. 75), and EQ 7.9 (p. 75). In the right half of Fig. 7.6 the e
spectral energy attributes - as have been defined in EQ 7.13 (p. 78) are shown
frequency bands used for the calculation of  -  are given in Table 7.1.

RP AP s
φbbfk

θP φP rect
plan

hob1 hob8
hob1 hob8
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FIGURE 7.6: Time patterns of individual signal parameters for the different event-types recorded at
array-site GRW. Dashed lines indicate the limits of the uncertainty region (one standard deviation). On the
right hand side of each plot, the class-dependent feature distribution taken over all time frames is
displayed. The colors correspond to the different event types. The selected color coding scheme is: VTB <>
red, MP <> blue, long Gugurans GL <> green, short Gugurans GS <> turquoise, Noise N <> yellow. The
abbreviations used for the signal parameters correspond to their definitions as introduced in sections 7.1.1.
to 7.1.3. For more details of interpretation, see text.
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The following observations can be made from Fig. 7.6. In both the time-pattern display as w
in the feature histograms it is recognized, that the absolute beampower , and the logar
spectral power estimates - provide significant higher discrimination capabilities
the rest of the calculated signal parameters. This result is by no means surprising, as am
and frequency attributes have been the most important information for the visual seismo
analysis in observatory practice. Taking a second look on the time-patterns of the paramete
and , it can be noted that at least for the VTB-class (red color) in comparison to all other
classes a significant deviation of the path is observed around the event onset time. Due to th
time interval, in which this signal parameter deviation is apparent, it is not notable in the c
sponding histograms. A similar observation can be made for the polarization attributes

, although the differences between VTB-class and the other event classes is less prono
The signal estimates for the horizontal slowness , and the backazimuths obtained via th
analysis and the polarization analysis , respectively, do not show any valuable info
tion for the discrimination of event classes.

It must be noted, however, that the sample mean and variance are not an appropriate mea
angular functions. Additionally, it is difficult to integrate the backazimuth parameters

in their angular form into the feature vector, as the euclidean distance, which is impli
assumed for the subsequent vector quantization process, provides no meaningful vector no
these parameters. Hence, the backazimuth parameters and can not be regarded a
features in the numerical classification process, although they contain important information
the seismological point of view (e.g. source receiver path geometry and interpretation of obs
wavetype).

The linear x-y plot of time-patterns in Fig. 7.6 seems to be of questionable value for disting
ing closely spaced event classes. Thus, an alternative approach for displaying the class-dep
time-patterns is presented in Fig. 7.7, which has been derived from a graphical technique
polygon plot(Chambers and Kleiner, 1987). Now, the time axis is warped along a circle, whe
the feature value range taken over all training sets [min,max] is scaled to the interval [0,1] a
displayed on the radial axis from the circles’ origin.

For each feature estimate the class-dependent time-pattern is drawn as a black line on to
uncertainty region (one standard deviation), which is plotted in the color of the correspon
event class. As the polygon plots are displayed separately for the distinct event classes, a
visual discrimination of the time-patterns is achieved. Even small differences in the single c
dependent patterns can be detected, as they result in a considerable change of size and
the class dependent polygon plots. Therefore Fig. 7.7 enables a better judgement of the ex
separability of the individual classes in the classification process.

The outstanding properties of the VTB-event class have been already noted before, howeve
become even more apparent in the polygon plots. The narrow uncertainty regions which ar
ognized for nearly all parameters in the polygon plots of VTB type events for more than 30 s
the signal onset (first quarter of circle, clockwise from top) are best explained by the homoge
of the selected training set. By comparing the individual polygon plots for the other event ty
the following characteristics can be observed. The GL-class shows quite distinctive behavi
the signal parameters - , and less pronounced differences to other event typ
observed for the parameters , , , and . For some of the signal parameter

and , the polygons plotted for the MP-class show similarities with those of the VTB-t
class. For other features, however, the MP-class seems to share more properties with the G
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class (e.g. and ). A similar ambiguity is noticed for the GS event class, as there a
only individual features showing characteristics likely to MP-class, but also others, which
visually more similar to the noise class.

From both Fig. 7.6 and Fig. 7.7 it is possible to judge the discriminative power of the single
ture estimates qualitatively. Most important for the numerical classification process appe
energy attribute together with the relative spectral power features - . The s
coherence estimate , as well as the polarization attributes (incidence angle), (re

hob3 hob4

FIGURE 7.7: Polygon plots (Chambers and Kleiner, 1987) for the class-dependent time-patterns of
individual feature estimates. The time axis is warped onto a circle, whereas the feature values are plotted in
the radial direction. Positive time is plotted in a negative mathematical sense. Black lines indicate the mean
time patterns plotted on top of the corresponding uncertainty regions in the color of the specific event class.
For better comparison of the polygon plots, the signal onset of the event classes have been aligned and
rotated so that the signal onset points to the top in each polygon plot. Even small differences in the mean
time patterns between event classes are observed by a considerable changes of the visual aspect of th
polygon plots. Patterns, that are easily distinguished for one event class when compared to others are
marked with (*). Details of the interpretation are given in the text.
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earity) and (planarity) contain additional information which allow to visually discrimina
the VTB-event class against all other seismic event classes. No apparent information for th
mic class discrimination is contributed by the signal parameters (horizontal slowness), an
backazimuth obtained via the bbfk and polarization analysis and , respectively. From
polygon plot in Fig. 7.7 it is suggested, that the VTB class is most easily distinguished from
other event types. Second best performs the GL-class in this aspect, whereas the MP-class
and the GS events seem to contain similar wavefield properties and it is therefore expecte
those event types pose difficulties for being classified at a high confidence level.

The qualitative interpretations so far have been made on basis of the signal parameters cal
for the waveform samples recorded at the array-site GRW. The same procedure has been fo
for the remaining small-aperture arrays KLT and KEN in order to check the information con
of the single feature estimates at those recording sites. The resulting displays, however, turn
be nearly identical in their appearance if compared to the presented figures for array GRW. H
all statements given above hold also for the wavefield parameters at sites KLT and KEN. No
tional properties have been observed neither at the array KLT nor array KEN.

7.2.3. Feature vector used for classification

On the basis of robustness criteria (7.2.1.) and the qualitative interpretation of graphical dis
of the individual feature characteristics (7.2.2.) it has been possible to judge the relevance
wavefield parameters for the classification process. The following features have been sele
components of the basic feature vector for each array:

• relative power  from bbfk analysis,

• absolute power  from bbfk analysis,

• incidence angle  from polarization analysis, used in the form ,

• eight spectral power estimates  - .

The probability density distribution observed for the incidence angle is heavily skewed. I
be recognized from Fig. 7.6, that the most frequent observed values (maximum in histogra
close to the upper limit of the valid feature value range. This is an undesired property rega
the feature selection step by means of an optimal linear transform as well as the constructio
vector codebook. In a strict sense, both of these processing steps depend on the assum
normally distributed feature vectors. Hence, it is common practice in pattern recognition ap
tions to transform unfavorably distributed features in order to obtain a distribution which re
bles a closer approximation of the normal distribution. By using the transforma
function it is possible to obtain at least a two sided distribution for the signal parameter .

The remaining parameters , , , , and have been excluded according to th
lowing argumentation:

• Both the time patterns and the class dependent histograms of the horizontal slown
are highly overlapping. No pronounced properties peculiar to one signal class have
noted for any of the analyzed event classes. Therefore, the wavefield parameter
been judged as uninformative for the classification task.

• The backazimuth value calculated via the bbfk-algorithm can not be considere
the classification as the euclidean norm is not an appropriate vector norm for this pa
eter (necessary requirement for the vector quantization step). Additionally, for the a
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site KLT no meaningful value of can be obtained due to limitations of the in
data (temporarily unavailable waveform data, compare discussion in 7.2.1.). Finall
perceivable event-specific characteristics could be observed in Fig. 7.6 or Fig. 7.7 fo
signal parameter.

• The wavefield parameter can be ruled out as candidate for the classification by
ogy to feature . Due to its cyclic nature, the euclidean vector norm can no
applied. Furthermore, no discriminative power has been recognized in the visua
plays.

• The polarization attributes (rectilinearity) and (planarity) have been jud
as useful parameters at first hand. However, they provide a very similar informatio
the incidence angle in the context of classification. Differences in the mean time
tern of and have only been notified for the outstanding VTB event cla
However, it has been felt, that the discriminative power for these features is less
nounced if compared to the polarization attribute . Thus, in order to not increas
dimensional complexity of the classification problem without need, the rectilinearity
planarity parameters have not been included into the primary feature vector.

The dimension of the resulting primary feature vector is 33 - 11 parameters for each of the
arrays. The assignment between the wavefield parameters and individual components wit
feature vector is given in Table 7.2.

In order to reduce the dimensionality of the feature vector space, a prewhitening transforma
applied to the original feature vector (compare section 4.3.1.). As the euclidean norm is us
distance measure in the subsequent construction of a vector codebook, the normalization
ties of the prewhitening transform allow a balanced weighting of feature components rega
of their individual distributional parameters (mean and variance, respectively). The coefficie

TABLE 7.2 Components of primary feature vector used for classification after individual feature analysis.

component number feature (wavefield parameter) / site

1  / GRW

2  / GRW

3  / GRW

4 - 11  -  / GRW

12  / KLT

13  / KLT

14  / KLT

15 - 22  -  / KLT

23  / KEN

24  / KEN

25  / KEN

26 - 33  -  / KEN
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the transformation matrix are obtained via solving the eigenproblem of the sample covar
matrix estimated for a large sample set of original feature vectors.

Hence, all time samples of the event-specific training sets (see section 6.2.) have been in
into one single set of feature vectors for estimating the sample covariance matrix in the or
feature vector space. After solving the eigenproblem, the eigenvectors are sorted according
magnitude of their corresponding eigenvalues, from largest to smallest. Then each row ha
normalized with the square root of its corresponding eigenvalue (compare EQ 4.8 in se
4.3.1.). Applying the derived transform to the original feature vector yields a de-correlated
normalized feature vector of equivalent dimension (33).

In order to reduce the dimension of the transformed feature vector space, two criteria have
used to determine the number of feature components . As has been pointed out in section
one possible argument can be found from the magnitude distribution of the obtained eigen
while constructing the transformation matrix. The smaller an eigenvalue in comparison t
largest eigenvalue , the less important it is for the accurate representation of the original f
vector. As a general rule, singular values which are six orders of magnitude smaller than the
est eigenvalue are regarded as being numerically equivalent to zero, as it is the relative ac
of single-precision floating point operations for common computers. A threshold of 1.e-5
been used here for determining the index of the smallest “non-zero” eigenvalue. Applying th
terion has resulted in the dimension =25 in the transformed feature vector space. Howe
the present data set, it has been even possible to extend the dimension to =33, without r
into numerical stability problems.

The second criterion for estimating a reasonable value for has been obtained, when the a
was made to visualize the effect of the prewhitening transform. Pairwise scatterplots (e.g. C
bers and Kleiner, 1987) have been used to display the characteristics of both the original a
transformed feature vector spaces (Fig. 7.8., sub-figures a) and b), respectively).

Each individual square in Fig. 7.8 displays the class-specific mean time patterns (in their re
tive colors) for a pair of feature components. The individual plots are arranged in an upper
gle matrix for each sub-figure. Within each column one specific feature component is plotte
the x-axes, whereas from bottom to top all other feature coordinates are plotted on the y-axi
range of the individual feature components is given at the bottom of each column and at the
of each row, respectively. On top of each column and to the left of each row, histograms o
corresponding signal parameters are displayed separately for each event-class (compare F

Comparing sub-figures a) and b) in Fig. 7.8, it can be observed, that the ranges are modi
expected for the transformed feature components. Whereas in the original feature vector sp
ranges span nearly two orders of magnitude, the feature value ranges are much more ho
neous in figure b). Additionally it is felt, that the separation of the class-specific time patter
higher for the transformed feature vectors. I.e. for the feature combination 1 and 2 in sub-
b), both VTB and GL show clearly distinct trajectories with respect to the other classes. A p
good discrimination of time patterns in Fig. 7.8, sub-figure b) has been observed for feature
ces lower than 8. Thus, by this visual interpretation, a value of 7 is suggested as a reas
choice of  for reducing the dimension of the transformed feature vector space.
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whereas from bottom to top all other feature coordinates are plotted on the y-axis. The range for each
feature component is therefore given just once on the bottom of each column and to the right of each row.
On top of each column and to the left of each row, the individual component histograms are given
separately for each event-class. Comparing a) and b) it can be observed, that the ranges are modified as
expected for the transformed feature components. Feature ranges are more homogeneous in figure b).
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FIGURE 7.8: Pairwise
scatter plots for the first
11 feature components
of a) the un-transformed
feature vector, and b) the
feature vector after
applying the prewhit-
ening transform. Each
individual square plot
contains the class-
specific mean time pat-
tern for a pair of feature
components plotted as
trajectories within the
corresponding 2-dimen-
sional hyperplane of the
feature vector space
(original and trans-
formed, respectively).
The plot is organized as
follows: Within each
column one specific
feature com-ponent is
plotted on the x-axes,
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In order to allow an evaluation of the influence of feature transformation and reduction of dim
sionality onto the overall classification performance, it has been decided to make use of a
four feature vectors described so far. Thus, besides the original feature vector (“raw” , compare
Table 7.2), the transformed, but dimensionally equivalent feature vector of dimen

(“raw_pw33” ), as well as the two transformed feature vectors of reduced dim
sions (“raw_pw25” ) and (“raw_pw07” ) have been used for the subsequent cla
sification task.

7.3. Training of vector codebooks

In the previous sections of this chapter a parametrization scheme for seismic waveform d
Merapi volcano has been developed. The individual wavefield parameters have been an
with respect to the robustness of the signal estimates as well as their inherent relevance
subsequent classification of seismic events. A set of four distinct feature vectors has been s
based on both seismological argumentation and pattern recognition considerations.

These feature vectors build the basic input for the combined VQ/DHMM classification appro
In order to estimate a codebook of representative vectors for the use in the vector quanti
stage of the classification system, an unlabeled training set of feature vectors must be ava
The training set, that has been used for estimating the prewhitening transform in section 7.2
been reevaluated for this purpose. Hence, all time samples taken over all class-specific tr
sets (see section 6.2.) have been used for learning the codebook by means of the LBG-alg
(section 5.5.1.).

In order to start the iterative optimization procedure for the vector codebook, it is necessa
specify the codebook size, a fixed quantity describing the number of prototype vectors to b
mated. For determining a reasonable dimension of the vector codebook, the following trad
has to be taken into account. It is evident, that the approximation of the underlying density
tion of feature vectors within the feature vector space by a set of representative vectors
book) is the better, the more codebook vectors are used. However, choosing a higher dim
for the codebook in the vector quantization stage will also increase the number of param
which have to be estimated in the hidden Markov model training. Therefore, the higher the
ber of free parameters within a hidden Markov model, the more training samples must be
able to guarantee a robust estimate of model parameters in the training stage (compare 5.5
contrast to speech recognition applications, where large databases of speech sequences
obtained easily in active experiments under laboratory conditions, it is difficult to acquire la
sized training sets for (passively recorded) natural seismic signals. Thus, the generally li
amount of available training samples within the present classification task forbids the use of
dimensional codebooks as well as the use of high-dimensional hidden Markov models.

Consequently, three small codebook sizes, containing 16, 32, and 64 prototype vectors, r
tively, have been used in this study. The latter two values are similar to the minimal values f
for simple speech recognition applications (e.g. Rabiner, 1989), where codebook dimension
ically range from 32 to 256. In total 12 combinations resulting from the four distinct feature

d D 33= =
d 25= d 7=
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tors and the three different codebook sizes have to be considered for further processin
naming convention for the 12 codebooks is given in Table 7.3 for later reference.

In order to minimize the effect of starting conditions on the quality of the final codebook estim
successive binary splitting of codebook vectors is used in the iteration process (e.g. Sc
Talamazzini, 1995).

After learning the codebooks, all individual time sequences of the available training sets
been converted into symbol sequences by representing each feature vector per time window
ascii character connected to the entry number of the closest prototype vector in the codebo
attempt has been made to check the mapping properties of the vector quantization proced
calculating histograms from the quantized time sequences separately for each of the ind
event classes. As an example serves Fig. 7.9 for the codebook“raw_pw25.cb32” (transformed
feature vector with reduced dimension , vector codebook size 32, compare Table 7

TABLE 7.3 Nomenclature for combinations of feature vectors and codebook sizes for further processing.

codebook size
original feature
vector,

transformed feature
vector,

transformed feature
vector,

transformed feature
vector,

16 raw.cb16 raw_pw07.cb16 raw_pw25.cb16 raw_pw33.cb16

32 raw.cb32 raw_pw07.cb32 raw_pw25.cb32 raw_pw33.cb32

64 raw.cb64 raw_pw07.cb64 raw_pw25.cb64 raw_pw33.cb64

D 33= d 7= d 25= d D 33= =

d 25=
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FIGURE 7.9: Histogram of symbol occurrence for the individual event classes for the combination of 25
dimensional transformed feature vectors and 32 dimensional codebook (“raw_pw25.cb32”). In the upper
third of the figure the symbol table is given (represented by ascii characters). Red stars indicate the VTB-
class, blue squares depict the MP-class, green and turquoise diamonds represent classes GL and GS, yello
triangles stand for the N-class (noise).
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By comparing the class-dependent symbol histograms it can be recognized, that single sy
(i.e. 0, 3, 4, 6, 8, A, C, D, K, O, S, T, and V) occur dominantly within a single event class (e.
8, C, K, O, S for VTB-class). It can be concluded, that special time intervals of the class-wise
ture patterns fall into distinct regions of the feature vector space, a behavior, which has
already suggested in the pairwise scatterplots (Fig. 7.8). Therefore, it can be stated, that e
this context-free (time-independent) view of the class-dependent wavefield patterns, a sign
amount of information is available for discriminating the given event classes. From the pre
discussions it is no surprise, that this characteristic is most clearly observed for the VTB
class.

The histograms in Fig. 7.9 can be seen as averaged symbol output probabilities for the indi
event classes (compare 5.2.). Hence, it is felt, that hidden Markov models trained on this
quantized sequences, will allow a good discrimination of signal classes, as the context-dep
information of the wavefield patterns is additionally included into the classification process.

7.4. Training of discrete hidden Markov models for seismic signal
classification

The estimation of the parameters of discrete hidden Markov models, as discussed in
requires for each model to be trained: a) a set of symbol sequences as input for the learnin
rithm, and b) the specification of model topology and model dimension, i.e. the number of s
to be used (compare 5.5.2.). Both the preparation of the training sets and the decision
appropriate model topology and dimension are discussed in the following.

Until now, just a single noise class has been considered for the classification system. Ho
from the discussion in section 4.2., it must be concluded, that the variety of ambient vibratio
nals at Merapi volcano are probably not well represented by a single homogeneous class
the previous discussion of feature characteristics, there has been no special observation
suggests the necessity of building distinct noise classes. However, during the interactive
form analysis at the individual seismic network stations for the purpose of manually sele
training sets, it has been observed, that the non-signal parts of the seismic records can be
at least into two main groups. Ambient vibrations recorded during working hours (local ti
show significant distinct wavefield parameter distributions as seismic noise recorded during
time. A display of this observation is provided in Fig. 7.10 for the array sites GRW and KLT.
time evolution of wavefield parameter distributions for the complete 5-day period from 1998
01 to 1998/07/05 has been obtained by computing histograms of the individual signal attri
within 3-hour windows (54000 samples). The complete set of window frames within 3 hou
evaluated, i.e. the time series have not been cleaned from transient seismic signals. Howe
the fraction of time windows containing seismic noise is clearly dominant in every case
resulting parameter density functions have been considered to represent mostly the charac
of the seismic noise. Strong shifts of the maximum of the individual parameter histograms c
recognized from Fig. 7.10. Those variations are clearly correlated with the working hours o
local population (local time is GMT+7h). Most pronounced are the observed variations fo
energy measures ( and - ), whereas the incidence value and the relative p

are less affected. The differences between array sites GRW and KLT with respect to the
lute size of the observed parameter shifts are to be explained by the proximity of the array s
local farm land. Whereas GRW is surrounded by tobacco plantations, at KLT only a small nu
of farmers cut occasionally plants for their cattle. Hence, from the above observations, the

AP hob1 hob8 θP
RP
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ed dur-
time
ing set of the noise class has been divided into two subsets, one comprising samples record
ing working hours (“noise-day”, ND), one containing solely samples acquired during night-
(“noise-night”, NN).
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FIGURE 7.10: Time dependency of feature histograms at two array sites for the time period 1998/07/01 -
1998/07/05. Energy attributes and - show strong variations of their respective histogram
maximum. Observed variations are strongly correlated to human activity.
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For the training procedure of hidden Markov models, it is necessary to select the individual
ing sequences carefully. In order to provide a proper training set, the waveform samples hav
aligned (as shown in Fig. 6.5 to Fig. 6.7) and segmented to contain only the seismic event, e
ing any part from the signal which does not correspond to the seismic event class under con
ation. This procedure is fairly easy accomplished for the event classes VTB and MP, which
more impulsive signal onsets and a stronger similarity of waveforms when compared to the
event classes (GL and GS). For the VTB class events, the segmentation length has been se
for all samples, whereas for the MP class a common length of 40 s has been selected. For
GS and GL, the individual waveform samples have been segmented manually, thus the dura
signals is variable within the training set. The signal lengths for the GS training set range
45 s to 90 s, and for the GL-class from 105 s to 165 s, respectively. For the two noise classe
and NN, respectively, two subsets have been constructed, one with 60 s length, and one wi
length. The specifications of the individual training sets are given in Table 7.4, together w
nomenclature for later reference.

After specifying start and end times of each waveform sample in the training sets, the resp
time series of the seismic network have been processed to obtain the time series of wa
parameters for these time windows. Those have been converted to discrete symbol seq
resulting in one training set for each of the available feature vector / codebook size combin
(compare Table 7.3). Thus, in total 8*12 = 96 training sets were obtained, which built the bas
estimating the discrete hidden Markov models.

Besides providing a proper training set, two parameters have to be specified for the training
dure. The model topology and the dimension (i.e. number of states) of the model, which is

TABLE 7.4 Naming convention of individual training sets for discrete hidden Markov model training.

name of set training set size
(number of samples)

duration of sequence:
recording length in [s]

number of frames in symbol sequence
remarks

GUGU.LONG 15 105 s - 165 s / 525 - 825
manual segmentation,

upper 15 samples of Fig. 6.7.
01/07 - 02/07/1998

GUGU.SHORT 15 45 s - 90 s / 225 - 450
manual segmentation,

lower 15 samples of Fig. 6.7
01/07 - 02/07/1998

MP.LONG 30 40 s / 200
aligned to signal onset (Fig. 6.6),

segmented from signal start
01/07 - 02/07/1998

ND.LONG 30 60 s / 300
no alignment

samples during local day time
01/07 - 02/07/1998

ND.SHORT 30 20 s / 100
no alignment

samples during local day time
01/07 - 02/07/1998

NN.LONG 30 60 s / 300
no alignment

samples during local night time
01/07 - 02/07/1998

NN.SHORT 30 20 s / 100
no alignment

samples during local night time
01/07 - 02/07/1998

VTB.LONG 30 45 s / 225
aligned to signal onset (Fig. 6.5),

segmented from signal start
03/07 - 05/07/1998
Training of discrete hidden Markov models for seismic signal classification 97
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learned (compare section 5.5.2.). The model topology has been fixed to general left-right m
i.e. the matrix of transition probabilities is restricted to an upper triangle matrix. Left-r
models have been preferred to the more flexible ergodic topology, because a) seismogram
typically a causal time structure, b) the analogy between speech signals and seismic sig
volcanic origin (discussion in 4.5.) and the fact, that left-right models have been the com
choice in speech recognition applications, and c) because of the lower degree of freedom f
right models in comparison to ergodic models with equal number of states.

Unfortunately, there exists no straight-forward rule, how to choose an appropriate model d
sion for hidden Markov models (see section 5.5.2.). However, as the number of free param
which have to be estimated grows with the number of states in a discrete hidden Markov m
an upper limit is given from the amount of available training data. In order to provide a reli
estimate of the model parameters, a sufficiently large sample set is necessary if the model
sion is high. Sometimes it has been suggested to associate the number of states with the nu
distinct physical events within a time sequence, which is to be represented by a hidden M
model (e.g. number of phones in a word, e.g. Rabiner, 1989). Considering earthquake s
grams, a reasonable choice of the model dimension could then be given by the number of d
seismic phases (e.g. P, S, Lg, etc.). Volcano-seismic signals, however, often lack clear phas
als. Nevertheless, the waveforms can often be divided into three main parts: signal onset,
maximum and coda. Thus, it has been felt, that at least three states should be taken into a
for modeling seismic signals of volcanic origin. However, as the signal durations within each
mic event class may vary significantly (a property which is observed especially for the Gug
events), a larger number of states may be necessary to model seismic signals of longer du
To begin with, it has been decided to train several models for each signal class with a va
number of states and to decide at a later stage which models to use for the classification s

The discrete hidden Markov models have been trained (and evaluated) with the Viterbi algo
(see section 5.3.2.). In order to start the iterative training procedure, an initial set of model p
eters has to be specified (compare section 5.5.3.). The seed values for the initial state prob
vector and the state transition probabilities have been obtained randomly. For the
dependent output probabilities both random and data driven initialization strategies
been used. In the data driven initialization, the output probability distributions for all states
been seeded by the same a priori discrete density function, which has been obtained from e
ing the likelihood of symbol occurrence for the corresponding set of training sequences (as s
in Fig. 7.9). However, in most cases, the random initialization showed a more favorable max
in the cost function after convergence. When using the data driven initialization approach fo
model training, convergence was reached very early, usually within two or three iteration s
Hence, it has been concluded, that in the case of the data driven initialization, the seed mod
too close to an unfavorable local maximum of the cost function. Thus, in the further, model t
ing has been performed only with randomly initialized models.

For each training set (as given in Table 7.4) a set of discrete hidden Markov models with va
model dimension has been trained. A total number of 20 iterations have been sufficient in
case to converge to a local maximum of the cost function. The resulting models have been
according the following scheme for later reference: “training set name”.”feature vector
name”.”codebook size”.”number of states”, e.g. “GUGU.LONG.raw_pw33.cb16.08”specifies a
model of the GL class, for the codebook of size 16 estimated on basis of the transformed f

A

π A aij=
B bjk=
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vector with dimension 33. Table 7.5 provides a summary of the trained models including
range of number of states which have been used for each signal class.

In order to select favorable models and the best feature vector / codebook size combination
classification task out of the total set of 48*12 = 576 models (see Table 7.5), it is importa
assess their respective discriminatory power. As the models are estimated separately on th
responding training sets, no discriminative cross-information is supplied in the learning pro
Hence, a model which provides a high score for discrete symbol sequences within its own c
not necessarily a model, which performs worse for symbol sequences belonging to another
However, a “good” model is expected to discriminate between competing classes, hence, it
provide high scores for its own class, but low scores for any other class.

A suggestion has been made by Juang and Rabiner (1985), how to evaluate the discrim
power between two models. They defined a distance measure between two models and

. 7.14

EQ 7.14 may be interpreted as the mean probability difference per input frame between m
and , given a discrete symbol sequence of length being a member of the class

TABLE 7.5 Nomenclature of trained discrete hidden Markov models, 48 models per feature vector / codebook size
combination have been obtained.

cb16 cb32 cb64

raw

GUGU.LONG.raw.cb16.05-12
GUGU.SHORT.raw.cb16.03-08

MP.LONG.raw.cb16.03-08
ND.LONG.raw.cb16.03-08
ND.SHORT.raw.cb16.02-06
NN.LONG.raw.cb16.03-08
NN.SHORT.raw.cb16.02-06
VTB.LONG.raw.cb16.03-08

GUGU.LONG.raw.cb32.05-12
GUGU.SHORT.raw.cb32.03-08

MP.LONG.raw.cb32.03-08
ND.LONG.raw.cb32.03-08
ND.SHORT.raw.cb32.02-06
NN.LONG.raw.cb32.03-08
NN.SHORT.raw.cb32.02-06
VTB.LONG.raw.cb32.03-08

GUGU.LONG.raw.cb64.05-12
GUGU.SHORT.raw.cb64.03-08

MP.LONG.raw.cb64.03-08
ND.LONG.raw.cb64.03-08
ND.SHORT.raw.cb64.02-06
NN.LONG.raw.cb64.03-08
NN.SHORT.raw.cb64.02-06
VTB.LONG.raw.cb64.03-08

raw_pw07

GUGU.LONG.raw_pw07.cb16.05-12
GUGU.SHORT.raw_pw07.cb16.03-08

MP.LONG.raw_pw07.cb16.03-08
ND.LONG.raw_pw07.cb16.03-08
ND.SHORT.raw_pw07.cb16.02-06
NN.LONG.raw_pw07.cb16.03-08
NN.SHORT.raw_pw07.cb16.02-06
VTB.LONG.raw_pw07.cb16.03-08
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higher score for the symbol sequence from its own data set than the competing model . H
in case that is positive, a misclassification has occurred. It is important to note, tha
distance measure is not symmetric, i.e. .

In order to evaluate the discriminative power of the trained discrete hidden Markov model
distance measure from EQ 7.14 has been calculated for each pair of models and for each a
feature vector / codebook size combination. As test sequences , the sequences from th
els’ corresponding training sets have been used. A mean probability distance between mod
are obtained by averaging over all samples of the training set. Hence, for 48 models per f
vector / codebook size combination, a total of 2256 average model distances have been eva
For better comparison, these model distances have been displayed in bar chart plots (Fig. 7
Fig. 7.12). In each row, all individual model distances between a specific (model name
given on the left side of each row), and all other models (model names given on the bott
each column) are depicted as bars of height . The discriminative power betwee
models is therefore proportional to the bar heights.

The colored background in Fig. 7.11 and Fig. 7.12 indicates which specific model pair is sh
As has been introduced in section 7.2., the GL class models are displayed in green colors,
models in turquoise, MP models are plotted in blue tones and the models for the VTB cla
shown in red colors. For the four noise sets, ND.LONG, ND.SHORT, NN.LONG,
NN.SHORT, yellow (ND) and grey (NN) tones have been used. Discrete hidden Markov mo
which have been trained for one and the same seismic signal class, are visually distinguis
choosing a different brightness of the base model color. The brightness is proportional
model dimension, i.e. the number of states within the individual models. The upper left tria
within each signal class is displayed in the color of the model , whereas the color benea
vertical bars show the color of model . A visual representation of the resulting recogn
accuracy in the two-class problem vs. is given by the respective grey-shading of th
from white to black. If none of the samples in the training set has been misclassified, i.e. f
sequences , the bar is displayed in white. The darker the bar, the more miscla
cations have occurred. For five or more misclassified samples in the training set, the bar is
black.

The example given in Fig. 7.11 and Fig. 7.12 shows the results for the feature vector / cod
size combination“raw_pw07.cb64”. In Fig. 7.11 it can be clearly recognized, that all mode
trained for the VTB event class discriminate very well against all other models. Second bes
form models from the GL class, which show high values for the pair-wise distance with resp
the majority of models trained for the MP, ND, NN, and VTB classes. Less discriminative po
is observed for GL-models as concerns models representing the seismic signal class GS. G
models discriminate bad against models of GL-type and discrimination against MP-class m
appears to be critical. The models trained for the MP class are especially difficult to discrim
against GS-class models, however, small distance values are also observed for models ste
from the GL-class.
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FIGURE 7.11: Display of average model distances as given by Juang and Rabiner (1985). Bar height is
proportional to the model distance . Bar shading is proportional to the number of misclassified
training samples for the two-class evaluation of the training sets. The higher the bar, the better the
discrimination capabilities between the pair of models. From top to bottom, all models for the 4 event
classes GL, GS, MP, and VTB are displayed. From left to right all competing models are considered.
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Regarding the discriminative power between the discrete hidden Markov models trained o
volcano-seismic signal classes (GL, GS, MP, and VTB) and those which represent the s
noise (ND and NN), in general a high average pairwise model distance is observed in Fig.
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FIGURE 7.12: Same as Fig. 7.11 for noise class models ND and NN. Display of average model distances a
given by Juang and Rabiner (1985). Bar height is proportional to the model distance . Bar
shading is proportional to the number of misclassified training samples for the two-class evaluation of the
training sets. The higher the bar, the better the discrimination capabilities between the pair of models.
From top to bottom, all models for the 4 model classes ND.LONG, ND.SHORT, NN.LONG, and
NN.SHORT are displayed. From left to right all competing models are shown.
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An interesting exception is found for models from the MP-class with respect to models traine
seismic noise samples recorded during night time (NN). Here, significantly lower values
been obtained for the distances , if compared to the discriminative power betwee
other models (GL, GS, and VTB) and the NN-class, respectively.

This observation is also found in Fig. 7.12, when focussing on the distance values evaluat
the combination NN-class models against models of the MP-class. However, the reduced di
inative power is less pronounced, as all noise class models (ND and NN) show lower discri
tion capabilities with respect to any of the models trained for the volcano-seismic signal cl
(GL, GS, MP, and VTB, respectively). Additionally it can be recognized, that the discrimina
between the individual noise models (ND vs. NN and vice versa) seems to pose some diffic
However, this result is of minor concern in the present context, as for the applicability of a u
classification system it is of no special interest, which type of seismic noise is recognized.

Averaging all model distances within a single row in Fig. 7.11 and Fig. 7.12, respectively, a m
distance of model  against any model  is obtained as:

. 7.15

The summation in EQ 7.15 is restricted to those models , which have been trained on a
ent training set than . The value can be interpreted as a measure of the recognition
bilities of model for symbol sequences which belong to its own class in the multi-c
recognition problem. The larger , the less the likelihood, that a sequence belonging to
classified to a competing model, which is equivalently expressed as a “missed event”. Counting
the total number of misclassified samples from the training set within a single row allows th
estimate the expected number of missed events in the multi-class recognition task. On th
trary, averaging all two-model distances within one column for a specific model :

, 7.16

provides a means to judge the mean discriminative power of any model against the model
larger the value of , the smaller is the likelihood, that a symbol sequence of any cla
falsely recognized as belonging to in the multi-class recognition problem. This type of re
nition error is usually termed a“false alarm” in detection theory. Hence, the sum of false class
cations within an individual column provides an estimate of the number of false alarms, w
have been produced by model  in the pairwise classification evaluation.

Both the row and column averaged model distances as given in EQ 7.15 and EQ 7.16 hav
visualized in Fig. 7.13 for all 48 models within each feature vector / codebook size combina
The mean discriminative power with respect to errors of type “missed event” is displayed
arrow to the right with its length proportional to . The vertical dashed lines are draw
intervals of 1 from the center line. The arrows’ color depicts the average percentage of “m
events” from green (0 %) to red (10 % and above). The color scale is given on the bottom o
figure. Equivalently, the mean discriminative power with respect to errors of type “false alarm
shown as an arrow to the left with its length proportional to the quantity . The average
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centage of “false alarms” is given by the arrows’ color, analogue to the error percentag
“missed events”. Each row corresponds to a single discrete hidden Markov model for all fe
vector / codebook size combinations. On the bottom of each column, the overall mean of
and  obtained by averaging over all models is displayed.

By comparing the results for the different feature vector / codebook size combinations,
observed, that - on average - the highest discriminatory power is obtained for the feature v
codebook size combinations“raw_pw25.cb64” and“raw_pw07.cb64”.

In order to obtain a first estimate of the classification performance, the training set for each fe
vector / codebook size combination has been re-classified by using all corresponding m
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FIGURE 7.13: Averaged model distances obtained from Fig. 7.11 and Fig. 7.12 for each feature vector /
codebook size combination. Arrows to the right specify the average model distance of the model against all
over models. It is interpreted as a confidence measure, how well the model recognizes sequences of its own
class. Arrows to the left give the mean model distance between all competing models and the specified
model. This is a qualitative measure of how easy the model will erroneously recognize a sequence which
belongs to a competing class. The color shade of the arrows indicate the percentage of misclassification
(for arrows to the right), and the percentage of false alarms (for arrows to the left). The according color
scale is given on the right bottom of the figure. In order to select favorable models for the classification
task, the best choice are models associated with large, green, and preferably symmetrically distributed
arrows.
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This recognition task is usually termed isolated recognition (i.e. in speech recognition ap
tions: isolated word recognition, IWR). In the isolated recognition task the test sequence
known to be precisely segmented and to contain just relevant signal parts for the classificatio
no preceding or succeeding noise.

Two different evaluation strategies have been used in the isolated recognition task. The fir
has been termed “single_best” evaluation (in the following abbreviated by “sb”) and is based on
the test functions given by the individual likelihood measures for each mode
normalized to the length of the input sequence . Thus, the classifier is composed of th
functions  and subsequent decision rule  as given in the following equations:

, 7.17.a

. 7.17.b

The classification result is counted as correct, if the test sequence stems from the same t
set, which has been the input for training model , providing the highest log likelihood m
sure for . E.g. a sequence from the training set VTB.LONG is said to be classified
rectly, if any of the individual VTB-models maximizes the right-hand term in EQ 7.17.a.

An alternative evaluation strategy is based on a slightly different definition of the test funct
given by:

, and the decision rule 7.18.a

, . 7.18.b

The classification result is given as the index of that signal class , which provides the
imum of the average log likelihood measure for all models representing one an
same seismic signal class . E.g., a test sequence of length taken from the traini
VTB.LONG is correctly classified, if the average likelihood for all VTB models (six models,

) maximizes the right-hand term in EQ 7.18.a, even if a single model (e.g. for MP-cl
gives the highest individual log likelihood for the test sequence ( in EQ 7.17.a). This ev
ation method has been termed “average_best” (referenced as“av” in the further discussion) for
obvious reasons.
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FIGURE 7.14: Confusion matrices for“single-best”evaluation in the isolated recognition task (i.e.
sequences are properly segmented). For every available data set, all 48 DHMMs are tested against
all sequences within the data set. The model providing highest probability is chosen as
classification result. As model training and test sets are identical, this is equivalent to the
resubstitution method. The classification rate is given from 0. to 1. (0% to 100%). For better
visualization, the range is color coded from white to green as given by the color scale on the right
of this figure caption. Further details are given in the text.
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FIGURE 7.15: Confusion matrices for “average-best”evaluation in the isolated recognition task
(resubstitution method). For every available data set, all 48 DHMMs are tested against all
sequences within the data set. The likelihood measures for all models, which represent one seismic
signal class are averaged. The classification result is obtained as maximum of the averaged
likelihoods. The classification rate is given from 0. to 1. (0% to 100%). For better visualization, the
range is color coded from white to green as given by the color scale on the right of this figure
caption.
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Using the same set of symbol sequences for both training and testing (resubstitution metho
give an too optimistic estimate of the real classification error. However, it is possible to com
the individual classification results obtained for the different combinations of feature vecto
codebook size. The confusion matrices for the isolated recognition of training sets via the“sb”
paradigm are given in Fig. 7.14., and the results for the“av” evaluation in Fig. 7.15, respectively
In general very high recognition rates can be observed. As this is mainly an effect of the
evaluation method (resubstitution method), these results are not to be interpreted with res
the absolute values. However, some general trends can be noted from Fig. 7.14 and Fig. 7

For the isolated recognition task, the“sb” evaluation provides a better performance than the“av”
approach. Additionally, a higher recognition accuracy is in general obtained for increasing
book sizes. Best recognized are VTB class events, followed by symbol sequences of the GL
training set. Confusion errors mostly occur between GS and GL class, GS and MP class an
versa, and between the individual noise classes. However, in the final classification system
neither concerned about confusion errors occurring between the different noise classes nor
sions between the GL and GS class events. Hence, if none of these confusion errors is con
as classification error, a nearly optimal recognition result of 99.3 % correct decisions is obt
for the feature vector / codebook size combination “raw_pw07.cb64” in the“sb” evaluation (con-
fusion matrix in 2nd row, 3rd column in Fig. 7.14). A similar performance of 99.1 % recogni
accuracy is gained for the same feature vector / codebook size combination following the“av”
paradigm.

7.5. Continuous automatic classification of volcano-seismic signals

After preparation of a set of discrete hidden Markov models for each seismic signal class an
mic noise, respectively, the following approach has been taken for the automatic classificat
the continuous seismic network data between 1998/07/01 and 1998/07/05. From the prev
discussed evaluation of the models’ discriminatory power as well as from the classification r
obtained for the isolated recognition task, it has been decided to use the feature vector / cod
size combination“raw_pw07.cb64” for the continuous classification problem.

The waveform data of the five-day time period between 1998/07/01 and 1998/07/05 (descri
section 6.2.) have been processed in a sliding window analysis to obtain a sequence of wa
attributes (compare Table 7.1 for processing parameters). In order to maintain file sizes in
ble limits in this offline-processing stage, the data has been divided into 3 hour segments. D
an unrecoverable error in the waveform conversion procedure, one 3 hour time segmen
1998/07/01 15:00 to 1998/07/01 18:00 could not be processed.

The resulting time sequence of primary feature vectors (as given in Table 7.2) has been
formed, dimensionally reduced and vector quantized as described in sections 7.2. and 7.3.,
tively. For each seismic event class GL, GS, MP, and VTB, as well as for the noise classes N
NN, a set of six models has been used for classifying the resulting symbol sequence. For the
classes GL, ND and NN more than 6 models are available, therefore a selection of the most
priate models has been necessary. The criterion for the selection has been based on the d
nation capabilities of the individual models obtained from the averaged pairwise dist
measures , and , respectively (Fig. 7.13 in section 7.4.). For the ND and NN cla
three models out of six trained on both the longer as well as the shorter training sets have
selected.

d λ2( ) d λ1( )
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The five-day symbol sequence has been evaluated in a moving window analysis as sketc
Fig. 7.16. A partial symbol string of model dependent length is cut around a ce
frame at time . This string is evaluated with the Viterbi algorithm for each of the 36 disc
hidden Markov models . The normalized likelihood measures
then computed at each time . After evaluating all partial symbol strings at time , the win
is shifted by a fixed amount of frames. Thus, for each model, a time series of probability
sures is obtained. As in the isolated event recognition task, both a “single_best” (“sb” ) and
“average_best” (“av” ) classification result has been computed (EQ 7.17.a and EQ 7.18.a in
tion 7.4.). In the“sb” case, each center frame is classified according to the class members
the model providing the highest probability measure (compare EQ 7.17.b). For the“av” evalua-
tion, the probability measure for all models comprising one single event class are average
the class providing the maximum averaged probability measure is taken as classification res
the center frame at time  (equivalent to EQ 7.18.b).

The number of frames between successive evaluations of the probability measure has bee
. This corresponds to a time interval of 5 s, as the wavefield attributes are computed

0.2 s. The class-dependent time lengths of the partial symbol strings have been selected t
accordance to the mean symbol sequence lengths within the individual training sets. For
models, has been set to 225 (45 s), MP-models have been tested against a partial symbo
of length 200 (40 s). GL-class models have been evaluated for 700 frames (140 s), where
partial symbol string length for GS-class models has been set to 400 (80 s). For noise m
trained on the sets ND.LONG, and NN.LONG, respectively, a symbol sequence length o
(60 s) has been used, whereas noise models trained on the sets ND.SHORT, and NN.SHOR
been evaluated for a symbol string of length 100 (20 s).
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FIGURE 7.16: Sketch of scanning procedure for the continuous DHMM-based recognition of seismic
events. For each model , a window of length is centered around the current mid frame at
position . The partial symbol string of length is evaluated by computing the probability measure

. After all model probabilities have been computed, the mid frame of the test sequence
is shifted to a new position by a specified number of frames, .
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row

A representative result for both classification strategies (“sb” and“av” ) is given in Fig. 7.17 for a
time period of 3 hours, starting from the lower left corner at 1998/07/02 09:00 GMT. Each

0 600 1200 1800
Time [s]

FIGURE 7.17: Result of continuous DHMM-based volcano-seismic event recognition for a 3 hour period
starting at 1998/07/02 09:00 GMT (lower left corner). Each row displays 30 minutes of recognition results.
The probability measure plotted on the bottom of each row is the averaged probability for all 6 models
representing each seismic event and noise class. Above the probability curves, the classification results for
the “average_best” evaluation is displayed by colored boxes, depicting the classified time segments in the
corresponding class colors. Above the “average_best” results, the classification result obtained for the
“single_best” approach is given. Representative waveforms for each array are plotted on top of the
classification result (KLT1 Z, GRW1 Z and KEN1 Z). Details are given in the text.
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Realization of a continuous automatic classification system for volcano-seismic signals at Merapi volcano
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displays 30 minutes of the continuous recognition results. The averaged probability measu
for each class (as given in EQ 7.18.a) is plotted as a graph on the bottom of each row. D
above the probability curves, the classification result for the“av” evaluation is displayed by
boxes, depicting the classified time segments in the color of the detected event type. Abo
“av” result, the classification results obtained for the“sb” approach is displayed. In order to pro
vide a means for visual verification of the classification results, representative waveforms are
ted on top of the classified time segments, one seismogram for each array (KLT1-Z, GRW1-
KEN1-Z).

Comparing the classification results for“sb” and “av” evaluation strategies in Fig. 7.17, it is
clearly observed, that the“sb” approach produces a large number of false alarms in the cont
ous recognition task, whereas the“av” evaluation performs better in this respect. However, at fi
sight, the classification results appear to be unsatisfying in both cases. Hence, in order to im
this primary classification result, it is necessary to specify a set of post-processing rules.

Considering the short-lasting nature of the false alarms, a promising criterion for effect
reducing the high false alarm rate is obtained by a simple“minimum-length-of-detection”rule for
each seismic event class. Excluding all event detections which are shorter than an event-s
minimum length of detection allows to prune a large number of false detections from the pri
detection list. From visual control of the primary classification results, the following class-spe
values have been selected for the“minimum-duration” post-processor. The minimum time lengt
for event detections of type VTB has been set to 20 s. MP detections are only considered,
detection time exceeds 15 s, whereas for GS-type classified time segments a minimum dura
30 s, and for GL-events 50 s is required, to judge the classified time interval as a valid dete
result. Using this specific set of values as the class-dependent“minimum-duration” criterion, the
primary classification result of Fig. 7.17 is modified as shown in Fig. 7.18. Those time inter
which have been pruned from the primary detection list according to the minimum-duration
rion have been left blank in the graphical display.

A significant improvement of the classification results is observed by comparing Fig. 7.17
Fig. 7.18, especially for the“sb” evaluation approach. However, from the visual control of t
classification results for the whole five-day period, it has been concluded, that the“av” classifier
is to be preferred for the evaluation. Hence, only the pruned detection lists of the“av” classifica-
tion results have been used for estimating the recognition accuracy of the automatic DH
based classification system.

pav
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Realization of a continuous automatic classification system for volcano-seismic signals at Merapi volcano
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FIGURE 7.18: Pruned recognition result for the same time period as displayed in Fig. 7.17. It is clearly
observed, that a simple post-processing rule improves the classification results significantly. The minimum
duration criterion for a detection is sufficient to suppress the high number of false alarms obtained in the
“single-best” approach. The post-processing is less important for the average_best evaluation.
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CHAPTER 8. Discussion of results
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8.1. Evaluation of system performance

A common approach to estimate the system performance of a pattern recognition system
error counting method (see section 4.3.3.). For a continuous recognition system, three ty
errors have to be considered: i) a“missed event”error is encountered, if a seismic event
observed, but is not recognized by the classification system. This type of error is also te
“false rejection” in detector theory, as the hypothesis “signal present”, is erroneously reject
the recognition process; ii) an error of type“false alarm” (“false acceptance”)occurs, if no seis-
mic event is observed, but a detection is hypothesized by the recognition system; iii) a “substitu-
tion” (“confusion”) error is found, if a seismic event is observed, but classified to a compe
class in the recognition process. A substitution error can be viewed equivalently as both an
of type missed event for the true signal class and as a false alarm error for the hypothesize

The recognition accuracy of the DHMM-based classification system for seismic signals of v
nic origin at Merapi volcano has been estimated by visually verifying the automatically obta
classifications for the time period between 1998/07/01 and 1998/07/05 (compare section
Following this approach for system evaluation, it is important to be aware of the following d
culties. Although it is possible for a trained analyst to achieve a highly consist classifica
result, there will still remain a considerable amount of misclassified or unclassified events. It
be further noted, that the visual analysis reflects to a certain degree the subjective view
observer and may be not comparable to results given by another individual. In addition, alth
the human cognition capabilities are extremely high, i.e the human eye is regarded as a po
natural pattern recognition system, there exists a certain limit considering the amount of info
tion which can be used in the human decision-making process. In case of the digital seism
work data of Mt. Merapi, up to 36 single waveform traces are to be viewed in parallel for
visual classification. It has been found, that consistent results are more difficult to obtain,
the complete set of waveforms is used in the visual classification process. Therefore, the
control of the automatic classifications has been carried out by using a single representative
form recorded at each array location.

From the above it must be concluded, that the visual classification of seismic signals by a h
observer can not be considered as an absolute error free reference for the evaluation of a
113
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matic classification system. The recognition rates obtained by comparison between the aut
approach and the visual classification by an analyst must be regarded as a rough estimat
true system performance. This in turn poses severe restrictions to any quantitative interpre
of the values obtained for the recognition accuracy. However, qualitative conclusions are sti
sible and valid to give.

For the visual control of the systems’ recognition performance, the results of the continuous
sification have been plotted similar to Fig. 7.18 in segments of three hours each. The cla
time segments, which have been obtained for the “average_best” evaluation with subse
pruning according to the minimum-duration post-processing rule (see section 7.5.), have
compared with the vertical short-period seismograms of stations KLT1, GRW1, and KE
respectively. In order to count the relevant classification errors from the graphical display
following procedure has been followed.

A classification has been considered as valid, if the detection window covers at least half
classified seismic transient. It has been further required that the detection window is exten
either the begin or the end of the seismic signal. This procedure is similar to a scoring pro
given by Wilpon et al. (1991) in the context of keyword spotting in speech recognition app
tions. A sketch of the error counting procedure is depicted in Fig. 8.1, describing four distinc
uations. In example a) (on top), a false detection has occurred for a seismic signal of“Class I”
(one of VTB, MP, GS or GL). The occurrence of this event type has been hypothesized, bu
noise is observed in the visual display of the seismic waveforms. Therefore an error of type
alarm” is counted for the hypothesized event type. In case that an observed seismic event
sponds to the automatic classification result, but the given detection window misses mor
half of the seismic waveform, the classification is rejected (example b) in Fig. 8.1). Both an
of type “missed event” as well as an error of type “false alarm” is counted for the hypothes
event class. The example in part c) of Fig. 8.1 shows a correct classification. The detection

FIGURE 8.1: Example of error counting procedure in the visual control of the automatic classification
results. a) class I event is hypothesized, but only noise is present. A false alarm is counted for class I; b)
class I event is hypothesized and present, but the detection window is not properly aligned. Both a false
alarm and a missed event error is counted for class I; c) class I event is hypothesized and present. A correct
classification is credited for class I, as the detection window covers more than half of the signal and extends
to the begin of the waveform; d) class I event is hypothesized, but class II signal is present. A false alarm
error is counted for class I and a missed event error is counted for class II.

t

(Te-Tb)/2

Tb Te
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dow of the detected event class covers the major part of the observed seismic event, being a
ber of the signal class suggested by the automatic recognition system. Finally, the situ
depicted in part d) of Fig. 8.1 shows an substitution error. A seismic event of type“Class II” is
visually observed, whereas a“Class I” event is hypothesized by the classification system. Th
an error of type “missed event” is counted for“Class II” , whereas for“Class I” a “false alarm”
error has occurred.

Examples of this error counting procedure are given in Fig. 8.2 for typical results of the autom
classification system. The average log likelihood measures“p av” for the individual event classes
are displayed at the bottom of each sub-figure. The seismic waveforms of the vertical compo
of the short-period stations KLT1, GRW1 and KEN1 are plotted on top of the primary classi
tion results“av” (center) and the pruned detection list“avpruned” (top). The time is given in sec-
onds from the start times of the respective three hour segments (given on the lower left cor
each panel). The displayed examples have been chosen from four different days (both da
night-time segments).

The example shown in part a) of Fig. 8.2 illustrates a frequently observed result obtained v
automatic classification algorithm. A single Guguran event is classified subsequently to bo
GL- and GS-class. Considering the analysis of the discrimination capabilities between the
vidual hidden Markov models (Fig. 7.11 in section 7.4.), this has been an expected behavior
classification system. Recalling the initial aim of this study, it has not been a primary goal to
tinguish between GL and GS classes, but to classify correctly Guguran events of any lengt
that reason it has been decided to join time segments classified to either GL or GS type i
appear as connected detections consecutively in time. Hence, the classification results are
ered correct (indicated by the letter“C” in Fig. 8.2) if the combined detection window covers
seismic signal of type Guguran.

Example b) in Fig. 8.2 shows the occurrence of a substitution error. Considering the pruned
sification result“avpruned” , the first event (around 4100 s) is classified as being of type MP. H
ever, in the visual analysis, this event has been verified as a small Guguran event. An error o
missed event is counted for the Guguran class, and a false alarm error is issued for the MP
(indicated by letters“M” and“F” in Fig. 8.2). This kind of substitution error has been observ
relatively often. A considerable percentage of the error counts (missed event and false
respectively) which have been evaluated for the MP- and GS-classes are due to substitution
The next event which is observed in example b) is a small scale signal of unidentified n
(around 4190 s). Signals with a very low signal to noise ratio (SNR < 3), which could not be v
ally classified have been regarded as equivalent to seismic noise in the error counting proc
Hence, no error is counted in the given example.

In example c), a situation is shown, where the late coda part of a Guguran event is misclassi
being an MP-type event (MP detection window between 770 s to 800 s). It has been foun
this type of classification error occurs quite frequent. For example, a similar situation can b
ognized in example b) of Fig. 8.2. The time segment between 4480 s and 4540 s has been
fied as MP-type event, whereas the detection window covers both the late coda part
preceding Guguran event as well as an MP-event. In case of occurrence of such an err
result, a false alarm has been counted for the MP-class.
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FIGURE 8.2: Examples of the error counting procedure. Probability curves for the averaged likelihood
of each class are given at the bottom; the primary classified time segments (“av”) are displayed in the

center and the pruned classification results (“avpruned”) on the top (similar to Fig. 7.17 and Fig. 7.18).
Seismograms of KLT1, GRW1 and KEN1 (Z-components) are given for comparison. Waveforms have been
intentionally clipped in order to enhance small scale events. Time is given in seconds from the following
start times: a) 1998/07/02 09:00 GMT; b) 1998/07/03 21:00 GMT; c) 1998/07/04 12:00 GMT; d) 1998/07/05
12:00 GMT. Letters C, F, and M indicate correct classification results, false alarms and missed events,
respectively. Details are given in the text.
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Another problem which has been frequently encountered in the evaluation procedure of the
matic classification results is given in the example d) of Fig. 8.2. The MP-detection window s
ing around 3015 s and lasting until 3185 s covers at least three visually distinguishable se
events, two of which being of type MP. As just a single detection has been issued by the auto
classification algorithm, just the first MP-event (starting at 3040 s) is counted as correct. Th
ond MP-signal (start at 3150 s) is counted as missed event, and the unidentified signal in th
ter of the detection window (ca. at 3080 s) as false alarm.

The outlined error counting procedure has been carried out for the data segment from 1998
to 1998/07/05 in order to derive a representative statistic of the classification accuracy. The
number of error counts and the average recognition rates for the individual event classes
the five-day period are summarized in Table 8.1.

The recognition rates evaluated for the three seismic signal classes vary significantly. Highe
ognition accuracy with around 89 % correct classifications is obtained for the VTB-event c
More difficulties are encountered for the correct recognition of Guguran events (around 7
and most difficult to recognize are the small-scale signals of MP-type (ca. 64 % of correct c
fications). This result is consistent with the observations made in the previous analysis steps
sidering the discussions of the relevance of individual wavefield attributes (Fig. 7.6 and Fig.
section 7.2.), the symbol distributions obtained for the different training sets in the vector qu
zation step (Fig. 7.9 in section 7.3.), and the analysis of the discriminative power between in
ual discrete hidden Markov models (Fig. 7.11 to Fig. 7.13 in section 7.4.), the presumed
regarding the detectability of the individual event classes has been confirmed by the obtaine
ognition accuracies.

A more detailed information about the classification capabilities of the system can be obt
when considering the temporal variation of the error counts for the individual signal class
display of the error counts for MP, Guguran, and VTB-type events for the time period under
sideration is given in Fig. 8.3 as a bar chart plot. The number of visually verified automatic cl
fications within each three hour segment is represented by grey-shaded bars (scale given
left). The number of missed events is depicted as white column plotted on top of the correc
sifications. The total number of visually classified events corresponds therefore to the total h
of the grey and white bars together. The connected diamond symbols show the count o
alarms within the respective time segments. The cumulative sums of the number of visually

TABLE 8.1 Summary of system performance results. Class dependent recognition error counts as evaluated by
visual control and average recognition rates for the DHMM-based classification system.

Signal class MP Guguran VTB All Classes

total observed 1085 287 70 1442

correct
decisions

692
63.78 %

212
73.87 %

62
88.67 %

966
66.99 %

false alarms 435 / 5 days
87 / day

163 / 5 days
32.6 / day

10 / 5 days
2 / day

608 / 5 days
121.6 / day

missed events 393
36.22 %

75
26.13 %

8
11.43 %

476
33.01 %
Evaluation of system performance 117



Discussion of results

system

poral
les for
f the
d the
been

of the
ave-
small
ave-

erva-
g set
even
efield
/02)
3 to 5.
tation
t class
sified events, correct automatic classifications and false alarms issued by the recognition
are drawn as solid, dotted and dashed lines, respectively (scale is given on the right).

Several observations can be made from Fig. 8.3. Most striking seems the significant tem
increase of the number of missed event errors for the MP-event class. As the training samp
the training of DHMMs for the MP-class have only been selected from the first two days o
evaluated time period (1998/07/01 and 1998/07/02, compare Fig. 6.6 in section 6.2.) an
observed increase of missed MP-events is especially noticed after the 3rd of July, it has
hypothesized in the first, that this result may be an effect of systematic temporal changes
wavefield attributes for MP-type events. However, in the visual analysis of the individual w
forms, the supposed temporal evolution of waveforms could not be confirmed, although
changes of the wavefield attributes may be difficult to detect by just comparing the raw w
forms for a set of individual stations. By analogy it might be argumented that a similar obs
tion should exist for the VTB-event class. The training samples constituting the VTB trainin
have been selected only from days 1998/07/03 to 1998/07/05. In addition, the VTB-set is
more homogeneous than the MP-event training set. Thus, any deviations in the wav
attributes for VTB-events recorded in the first two days of July (1998/07/01 and 1998/07
should produce a larger number of missed event errors for those days if compared to days
However, this effect is not observed for the VTB event class results. Although this argumen
is not sufficient to prove that the observed increase of missed event errors for the MP-even
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FIGURE 8.3: Classification results for the time period from 1998/07/01 to 1998/07/05. Number of correct
classifications for time segments of three hours are displayed as grey bars. Number of missed event errors
are given as white column and number of false alarms within each time segment are depicted by the
connected diamond symbols. Cumulative sums of the total number of visually classified, correct automatic
decisions and number of false alarms are plotted as solid, dotted and dashed yellow lines (scale on the
right). Details and interpretations are given in the text.
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is not connected to a systematic change of the wavefield attributes, it may be at least see
indication that it is not the major cause for this observation.

It has been found that the increase of missed event errors for the MP-class is rather related
insufficient capability of the automatic recognition system to separate closely spaced eve
one and the same signal type. An example of this behavior has been given in part d) of Fi
The increase of the seismic activity which has been observed in the selected time interva
mainly due to the increase of seismic events of type MP (compare Fig. 6.4 in section 6.2.)
acceleration of the event rate for MP-type signals is accompanied by a significant decrease
inter-event time intervals between successive events. Additionally, in the visual classificat
has been noticed, that the MP-signals occur mostly in groups rather than as isolated events.
1998/07/05 peak rates of up to 40 MP-events per hour have been visually recognized with
event spacings as short as a few seconds. It must be clearly stated, that - in its current imple
tion - the automatic classification system fails to provide an appropriate event count in this
tion. It has to be mentioned, that this behavior is a common problem to most available s
detection algorithms. Especially STA/LTA trigger algorithms show a significant reduction
detection sensitivity for a certain time period when passing an energetic seismic transient (
ery-time). Consecutive transients may be missed if they fall within the “shadow time” of the
ger (e.g. Withers et al., 1998).

An explanation for the restricted time resolution capabilities of the DHMM-based classifica
system can be given when considering discrete hidden Markov models as being a special ki
matched filter. Recalling the scanning procedure in Fig. 7.16, the partial symbol string
the sliding window analysis can be regarded as input and the likelihood measure as giv
EQ 7.18.a as output of this filter process. It is intuitively recognized, that the likelihood mea
shows a typical upward convex shaped “filter response” for a symbol sequence which match
discrete (tested) hidden Markov model. The response time is expected to be at maximum tw
long as the model dependent test length of the symbol string. This statement can be e
mentally verified and is most clearly observed for the average likelihood curves obtaine
VTB-type events. Examples b)-d) in Fig. 8.2 demonstrate the expected shape of the
response” and an overall response time of 90 s is observed in every case ( s, co
section 7.5.).

In order to improve the time resolution capabilities of the classification system for closely sp
events, the following post-processing scheme is conceivable. For detection windows longe
twice the test length of the corresponding symbol strings and model type, the number of
maxima of the likelihood measure within the classified time segment provides an approx
estimate of the number of individual events contained within the detection window. Addition
an upper limit of the true number of events is obtained by dividing the length of the detection
dow by the length of the class-dependent symbol string length. The division by prov
a lower limit of event occurrences within the classified time segment.

Alternatively, an improvement of the recognition rate for swarm-like occurrences of events m
be obtained by a refinement of the test lengths for the noise classes. Using only short partia
bol strings when evaluating the likelihood measures for the noise DHMMs, the filter resp
times of noise classes are reduced and shorter time segments between consecutive seism
may be correctly classified as noise. As a result, longer detection windows should be brok
into a series of classified time segments.

O tn[ ]

Tλ

TVTB 45=

Tλ 2Tλ
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The suggested strategies have been applied to a data segment from day 1998/07/05 as
Fig. 8.4. A single MP-event detection window of 365 s length has been issued by the auto
classification algorithm. Seven individual MP-events, three groups of two overlapping event
one single event as indicated by the white stars in Fig. 8.4, have been visually classified fo
time segment. An additional wavegroup, located around 8370 s, could not be uniquely iden
(indicated by a question mark in the upper panel). Following the above described post-proc
rule, a minimum number of single events contained in this window can be given by 365 s / 8
4 events, whereas the upper boundary is estimated as 365 s / 40s ~ 9 events. Counting the numbe
of local maxima, as shown in the upper panel of Fig. 8.4 by the vertical arrows, an event co
7 is obtained. Although the evaluated event count is correct, the local maxima do not seem
properly aligned with respect to the individual signal centers. In the lower panel, the classific
has been re-evaluated with shorter time lengths for the noise classes. A time window of 20
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FIGURE 8.4: Strategies for improving the time resolution capabilities of the DHMM-based recognition
system. Upper panel: Applying a post-processing rule for detection windows larger than twice the model
dependent test length, provides an estimate of the number of MP-events within the classified time segment
to be between 4 and 9 (compare text). Counting the local maxima of the likelihood measure results in an
event count of 7. Lower panel: Reducing the test length for noise class models enables an improved
separation of closely spaced events in the recognition process. The number of MP events would be
evaluated as 5. The reference count obtained from visual analysis has been given as 7 (white star symbols)
Further details are given in the text.
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been used for the NN.LONG, ND.LONG models and a 5 s symbol string for the NN.SHO
ND.SHORT models, respectively. Instead of a single MP-detection window, now 5 separated
classifications are obtained by the automatic recognition system. A rather reasonable seg
tion of the event boundaries which coincidences well with an analyst’s result is achieved fo
given example. Although the three groups of overlapping events can not be resolved, this st
appears to be better suited for improving the classification result as the previously discusse
processing rule.

Another important result is obtained from Fig. 8.3. For both MP and Guguran events a rela
high number of false alarms and missed events is recognized. A considerable amount of the
of type false alarm and missed event which have been encountered for the MP and Gugura
(especially short-lasting, low energetic Guguran events) are due to substitution errors be
these two event classes in the recognition process (compare Fig. 8.2, example b)). The fr
confusion of MP and Guguran events has been interpreted as follows.

The basis for the numerical decision between the seismic event classes are the observed w
parameters (feature vector). In the analysis of wavefield attributes in section 7.2.2. it has a
been noticed, that the distributional properties of several features indicate a strong sim
between the wavefield characteristics for MP and small-scale Guguran events (GS). C
quently, the difficult discrimination between these event types has additionally been obs
when considering the class-dependent symbol distributions after vector quantization (Fig.
section 7.3.), and finally in the analysis of the discriminative power between the pairs o
trained discrete hidden Markov models (Fig. 7.11 to Fig. 7.13 in section 7.4.). Hence, the fre
confusion between MP and Guguran events in the recognition process have been regar
being mainly a result of the ambiguity in their corresponding wavefield parameters.

The observed wavefield similarities are caused by the strong influence of the propagation m
on the seismic wavefield (“path-effect”), which is often observed in volcanic environments.
near-surface structure of volcanoes is known to be composed of heterogeneous deposits o
tive materials, i.e. thin layers of fine ash, unsorted blocky flows, etc., and irregular topogr
This three-dimensional complicated subsurface structure causes complex seismic wavefie
to near-surface reverberations (e.g. Goldstein and Chouet, 1994), attenuation effects and s
multiple scattering of waves within the propagation medium (e.g. Mayeda et al., 1992, Del P
et al., 1996), and the interaction of the seismic waves with the free surface (e.g. Ohminat
Chouet, 1997, Neuberg and Pointer, 2000).

The results from an active seismic experiment at Mt. Merapi (Wegler et al., 1999) have reve
that seismic signals are highly attenuated by strong scattering of seismic energy in the freq
range from 4 Hz to 20 Hz (Wegler, 1999, Wegler and Lühr, 2001). Wegler and Lühr (20
showed that the main characteristics of the seismic wavefield - i.e. the spindle-shaped seism
envelopes, the observed characteristics of the temporal and spatial decay of seismic en
dominant polarization in the horizontal plane, and almost no coherent wave arrivals for neig
ing stations - are well explained by the diffusion model for dominant multiple S-wave scatte
Additionally, evidence for a depth-dependency of the scattering attenuation coefficients has
given by the authors and has been interpreted in terms of a decreasing density of prominen
terers with depth. It has been further hypothesized by Wegler and Lühr (2001) that multiple
tering within the propagation medium are also responsible for the seismogram appearan
natural seismic signals at Mt. Merapi.
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This hypothesis seems to be supported by the observed wavefield characteristics for the ind
event types (compare section 7.2.), which have been analyzed in the context of this study.
cially the difficult discrimination between MP and small scale Guguran events are prob
explained by multiple scattering along similar shallow source-receiver paths. Another indic
for the correctness of the multiple scattering assumption might be given by the observation
the late coda of all signal classes (GL, GS, and VTB) is often classified as MP-type signal.

After evaluating the classification statistics for each individual event class, the error counting
cedure has been repeated in order to obtain a “pure” detection statistics, distinguishing
between the seismic transient signal classes (MP, GL, GS, and VTB) and the seismic
classes, respectively. The number of correct detections, missed events and false alarms a
in the following Fig. 8.5 for the individual 3 hour segments.

The overall statistics obtained for the detection problem (two-class problem) from Fig. 8.5 c
given as ca. 82 % correct detections with an average false alarm rate of 55 FA/day. An inter
temporal variation is observed for the number of false alarms in the detection statistics. In Fi
it is recognized, that the number of false alarms is significantly larger during local night
(12 h to 21 h GMT, columns 5 to 8 for each day). This observation is in accordance to the p
ously found lower discriminative power between the discrete hidden Markov models traine
the NN-class training set and DHMMs trained for the seismic event classes MP, GS, GL
VTB (Fig. 7.12 in section 7.4.). Comparing the number of false alarms as displayed in Fig
the variation of false alarms is mainly observed for the seismic signal classes of MP and Gu
class.

The temporal variation of false alarm errors is an rather unexpected result for the classifi
system. It is even a contrary observation to the results which are known from routine obser
practice. Standard automatic algorithms like STA/LTA detectors usually produce significantly
false detections during night time. An explanation can be given for this result: standard tr
algorithms rely on test statistics regarding the signal amplitude or signal energy. Hence, STA
detection techniques are sensitive to sporadic noise bursts which are mainly connected to
activity and thus occur more frequent during day time. The typically observed reduction of “
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FIGURE 8.5: Detection statistics obtained for re-evaluating the recognition results when considering any
of the transient seismic signal classes (VTB, MP, GS, and GL) as a single “event” class. Grey bars show the
number of correct detections for each 3 hour segment. White columns stand for missed detections and
diamond symbols depict the number of false alarms. Solid, dotted, and dashed black lines give the
cumulative number of correct, missed, and false detections. The horizontal bars below the time scale
indicate the local night time (19 h to 7 h). Further details are given in the text.
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mic noise transients” during night time lowers the probability of the occurrence of false alarm
STA/LTA approaches.

On the other hand, no such straightforward explanation can be given for the results o
DHMM-based recognition approach. The selected parametrization is based on time pattern
set of wavefield attributes and is not solely dependent on a measure of the signal energy. Th
only conclusion to be drawn from this observation is the hypothesis, that the seismic wav
attributes of seismic noise recorded during night time shares significantly more similarities t
seismic wavefield characteristics recorded for seismic signals of type MP and Guguran if
pared to the characteristics of seismic noise recorded during day time.

In a last step, an attempt has been made to compare the results of the automatic classificat
tem with the event counts as given by the scientists of the Merapi volcano observatory in Y
akarta (MVO-VSI) for the same time period. In this comparison, it has to be taken into acc
that the seismogram readings at VSI are mainly based on the visual analysis of drum reco
of the short-period vertical seismic station network of VSI. The dynamic range of recordin
limited by the analog telemetry system and the resolution of the drum recorder unit. Henc
following figure Fig. 8.6 allows mainly to state that the number of visually observable seis
events is significantly higher for the new digital seismic station network. Daily event coun
provided by VSI are given as black columns, whereas the number of recognized events in th
seismic network is depicted by the white bars. The grey columns stand for the correctly clas
events via the automatic classification approach.
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FIGURE 8.6: Comparison of daily event counts given by the Merapi volcano observatory (VSI, black
columns), from the visual analysis of the recordings at the new digital seismic monitoring network (Self,
white columns) and as obtained via the automatic classification approach (Auto, grey columns). Top panel:
VTB, middle panel: MP, lower panel: Guguran. As the daily event count at VSI is given in local time
(GMT+7h), and the analysis in this study has been based on GMT time, only the complete statistics for
days 2 to 5 in July, 1998 are given.
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8.2. Behavior of system for unknown signals

Seismic signals at active volcanoes are assumed to be in close connection to the dynam
magma transport and the active volcanic feeding system. As this - widely accepted - hypo
motivates in first place the monitoring of seismicity at active volcanoes for the difficult tas
eruption forecasting, it also implies an additional difficulty for the practical implementation o
stable automatic seismic event classification system.

The active volcanic feeding systems - the supposed location of a variety of seismic sourc
cesses at volcanoes - are known to undergo constant changes in time. Both slow mechanis
weakening of host country rock, stress accumulation, crack propagation (compare Voight,
1989, Cornelius and Voight, 1994, Kilburn and Voight, 1998), as well as fast volcanic proce
like magma pressurization, fragmentation, and volcanic eruptions may be responsible for s
cant changes of the physical and chemical medium properties close to the magma ascent p
considerable influence on the observation of specific seismic signal characteristics mu
expected in any case. A more evolving and systematic temporal alteration of the recorded
forms of specific seismic event types may be expected in case of slow source migration (e.g
et al., 1994, Power et al., 1994, Aspinall et al., 1998) or small changes of the physical prop
of the propagation medium (e.g. Poupinet et al., 1996). Drastic changes of seismic wave
and/or the occurrence of previously unknown seismic signal types may be related to fast as
new magmatic material and significant stress re-distributions and/or changes of the geom
the volcanic feeding systems as caused by major explosive events.

Taking into account the expected change of volcano-seismic signal signatures, two principa
tions have to be answered regarding the behavior of an automatic seismic classification s
These questions are formulated as: a) What is the desired output of the system in case of
ing a slightly altered or even unknown seismic signal? and b) What is the actual response
automatic recognition system when observing such kind of signals?

At first instance, an answer for question a) seems to be easy to give: an automatic sys
expected to provide similar results as a trained analyst would give in the same situation. How
no concise statement can be given of how a human observer is going to judge an unknown
No quantitative measure is available, what kind of waveform differences or individual devia
in signal characteristics are tolerated by an analyst for still declaring an observed signal as
of type X. Considering the process of visual seismogram analysis by a trained human obse
must be even expected, that in the case of slow systematic temporal changes of signal wav
an analyst most probably adapts small changes in the visual recognition process without
being aware of it. For such a case a numerical decision function may even provide more re
results as an human observer, as it provides a means to quantify the deviation from the ex
signal classes. Hence, question b) as formulated above is directed to the special measure w
provided by the classification method to quantify deviations from the originally expected s
class.

As opposed to linear statistical classifier functions (e.g. linear discriminant analysis techn
LDA), where the euclidean distance of a feature vector from the class-wise sample means p
a natural measure of deviation, the likelihood measures for a DHMM-based classification s
don’t allow to give a direct quantifiable measure for the actual deviation of an observed sy
sequence. This is a consequence of both the non-linear characteristics of the hidden M
model approach as well as the maximum-likelihood training procedure, which does not allo
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include discriminative information into the training process. However, for the presented DHM
based classification system it has been observed, that there exist certain time periods, at wh
likelihood measures for all available DHMMs show a concave upward shape and provide
low probability scores. These time segments have been interpreted as observations (s
sequences) which are not very well matched by any of the available DHMMs. The questio
then to be asked: what threshold is valid for stating that an observed symbol sequence is
member of the tested hidden Markov model?

In order to obtain a reasonable threshold for rejecting the hypothesis of the presence of any
known signal classes, the following argumentation has been elaborated. Considering the st
forward calculation of the symbol production probability of a given discrete hidden Mar
model (EQ 5.18 in section 5.3.1.):

,

it takes little thought to construct a model which provides a conditional probability
just depends on the length of the test sequence, but not on the particular symbols which ar
tained within the test sequence. An example for such a model is the single state model (
with , and a single uniform symbol output probability distributio

, where is the size of the finite alphabet of the symbol sequence (i.e. size of
tor codebook). As there is just a single state involved in the specified model, the number o
mutations of possible state sequences is equal to 1. Then, the conditional probability
evaluates for any possible test sequence of length  to:

.

As there exists just a single possible state sequence, the modified Viterbi measure for th
state sequence equals and thus becomes . Taking the logarithm o
modified Viterbi measure and dividing further by the length of the test sequence, the test me

is obtained. This is the actual form of the likelihood measure as has b
used throughout in the implemented classification system. The “uniform” model as introd
above, evaluates then for any possible symbol sequence by the use of the length-normalize
rithmic Viterbi measure to:

,

and is therefore a constant value. I.e., the “uniform” model allows no statement abou
observed symbol sequence. It can be therefore considered as a completely uninformative
and has been termed zero-model (“zero information”) in the following. From heuristic argum
tion it has been concluded, that a likelihood measure evaluated for any discrete hidden M
model which is lower than the conditional probability of the zero-model can not be regarded
test value which indicates an appropriate match between the presented symbol string a
tested hidden Markov model. Hence, in case that the zero-model provides a higher prob
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than any competing model available, it can be concluded, that the tested symbol sequenc
not belong to any of the competing models.

The given threshold criterion has been applied to the results of the continuously evaluated
tional probability curves for the individual discrete hidden Markov models. The finite size of
symbol alphabet is 64, thus the threshold is calculated as . Around 20 time
ments have been found for the whole five day period, where all discrete hidden Markov m
provide a likelihood measure which is lower than this threshold for at least three consecutive
steps (15 s). Those time segments have been regarded as “unknown events” and have be
lyzed in more detail by visual inspection. It has been found, that one of those events is an i
sive high-frequency event, probably of VTA-type according to the classification scheme of
All other events show intermediate wavefield properties between MP-type signals and
events. Similar intermediate signal classes are known from other volcanoes like Redoubt vo
in Alaska (Lahr et al., 1994, Power et al., 1994) and Soufrière Hills, Montserrat (Aspinall, 1
White et al., 1998) and have been termed hybrid events (compare also section 3.1.). A wav
example of five “unknown” events is given in Fig. 8.7, together with a set of MP events and
events, displayed in two different frequency bands. The intermediate character of the “hy
events between MP and VTB class signals is recognized especially for the narrow-band fi
seismograms (upper panel of Fig. 8.7).

Applying the above introduced threshold criterion to the class-dependent probability meas
has been possible to recognize an unknown signal class. However, four additional seismic
have been found in the investigated time period, which have not been recognized as being
unknown signal type. All of those are local or regional tectonic seismic events and have
falsely recognized as either being of Guguran type (2 events), VTB type (1 event) or seismic
(1 event). From this observation it has to be concluded, that the threshold criterion for dete
unknown signals must be considered as a sufficient, but not a necessary condition.

1 64⁄( )log 1 8,–≈
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FIGURE 8.7: Example set of seismic signals, which have been flagged as not being a member of any of the
trained seismic event classes. The unknown signal types show intermediate characteristics between the MP
and VTB-type events, and have been termed hybrid events (H?). In the lower panel seismograms are
displayed for a second order Butterworth bandpass filter between 0.5 and 10 Hz. The upper panel shows
the same seismograms in the frequency band between 0.7 and 1.5 Hz. The intermediate behavior of the
hybrid events is best recognized in the narrow-band filter of the upper panel. Similar to Fig. 6.5 - Fig. 6.8 in
section 6.2., the left columns display the absolute amplitude relations, whereas on the right, all
seismograms are normalized to the maximum within the trace. Further details are given in the text.
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8.3. Possible improvements of system performance

In the previous sections 8.1. and 8.2., it has been shown, that the DHMM-based recognitio
tem for automated volcano-seismic signals allows a correct classification of the majority of
mic signals from the continuous data streams. Taking into account the straight-for
implementation of the DHMM approach and the lack of experience regarding the usefulne
this pattern recognition technique in this very specific seismological application, these re
have been considered as very encouraging. The classification system has therefore been
mented in the real-time seismic analysis software system “Earthworm” (Johnson et al., 199
also appendix C.). The automatic classification system is currently tested in the installations
Merapi Volcano Observatory of the Volcanological Survey of Indonesia in Yogyakarta.

Further improvements of the classification results may be achieved by considering each par
implemented pattern recognition approach. Three principal items have been regarded a
cially suitable for system adjustments in the future: a) data acquisition robustness and strat
parametrization approach, c) improved concepts of the hidden Markov model classification
nique.

Discussing the robustness of the individual signal parameters in section 7.2.1., it has been
that especially the wavefield attributes obtained via the bbfk method are sensitive to the un
ability of individual waveforms within the station network. From the set of wavefield parame
which have been finally selected to compose the feature vector (compare Table 7.2), the
ence measure appears to be the most critical one regarding the robustness of estimates
the temporal failure of single stations. Although no explicit test has been performed, how th
ognition system will behave in case of missing waveform data for one or more stations, it is
itively felt, that the system will fail to provide reasonable classification results due to
introduced changes in the distributional characteristics of the feature vector patterns.

This implies a severe restriction for the applicability of the current implementation of the cla
cation system. Considering the harsh environmental conditions at Merapi volcano, the un
ability of waveform data for a single or even several seismic stations cannot be comp
avoided. Especially critical appears to be the situation during a volcanic crisis, where statio
ure is frequently observed due to power shortages caused by ash-fall covering the solar
Thus, for the practical implementation of the proposed classification system it is of conside
interest to implement a strategy to deal with incomplete data sets. In this context it seems
necessary to implement a “backup”-system which does not depend on the waveform inform
of the complete seismic network, but evaluates independently the seismic registrations of
three component stations in a similar way as presented above.

It has been observed that the classification capabilities for lower-energetic signal classes M
small Guguran signals are limited due to the apparent similarities of the corresponding se
wavefield parameters. As this observation is mainly an effect of the strong influence of the
propagation medium, it seems to be necessary to acquire the waveform data as close as po
their supposed source locations. By doing so, the signal to noise ratios are improved which
a qualitative better estimate of the wavefield parameters. Additionally, the path-effect
reduced and therefore the discrimination capabilities for small-sized event types are likely
improved. These considerations have been taken into account in the re-configuration of th
mic station network at Merapi volcano in March 2000 (compare also section 6.1.). The se
mini array KEN located farthest from the active lava dome has been given up and a new se
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mini array has been installed at around 600 m horizontal distance from the main volcanic ac
center (location PAS in Fig. 6.1).

The selected parametrization approach has been found to be the most limiting factor for th
come of the recognition results. In fact, the wavefield parametrization ansatz is an adapt
methods which are commonly used in the field of earthquake analysis. The especially het
neous and complex propagation medium at volcanoes makes it often difficult to interpret se
records in terms of “classical” seismic phases from its wavefield parameters. Wegler and
(2001) explained the seismic wave propagation for shallow artificial sources at Mt. Mera
terms of a diffusion process for multiple scattered S-waves. Assuming similar multiple scatt
processes to be valid for the seismic wave propagation of shallow natural seismic signa
most important information about the source-receiver path geometry is obtained from the te
ral and the spatial decay of the seismogram envelopes (Wegler and Lühr, 2001). In ord
emphasize the shape of wavefield patterns, it is suggested to incorporate not only the sta
also the dynamic information of the wavefield attributes into the feature vector. I.e. simila
standards in speech recognition applications (e.g. Deller et al., 1993, Schukat-Talamazzini,
the feature vector could be enlarged by the first-order derivatives of the observed wav
attributes.

In order to allow a more appropriate wavefield parametrization of continuous data stre
another strategy might be considered. Given the case that reasonably realistic seismograms
obtained synthetically by forward modeling (e.g. Ripperger et al., 2001), it might be possib
derive a set of discriminating parameters from the analysis of the synthetic seismograms. A
tive side effect may be obtained from the analysis of synthetic waveform data: it may allo
enlarge or create training sets for the adequate training of signal class models and may ev
vide data sets for creating generic models for not yet observed signal classes. However, th
putational requirements for any realistic forward modeling algorithm, which is capable of ta
into account the special characteristics of the assumed source processes of volcano-seism
nals and the complex geological structures in volcanic environments may be still too high in
to be a practical solution within this context.

Finally, improvements of the classification system can be obtained by refinements of the se
classification approach. The implementation of a discrete hidden Markov model classific
system for volcano-seismic signals is similar to the early attempts of hidden Markov modelli
the field of small vocabulary connected word recognition applications, i.e. automatic digit re
nition. A main drawback of the DHMM approach, however, is the need of a discrete valued
bol sequence as input, which is usually obtained in a vector quantization step. As has
discussed in section 5.5.1., the vector quantization step introduces an information loss (qu
tion error) when representing the continuous valued feature vectors by its closest represe
vector from the given vector codebook. A straightforward concept for avoiding the necess
vector quantization is the use of continuous valued probability density functions of the

, ( equals the number of states) in the hidden Markov model approach.
family of hidden Markov model has been called continuous hidden Markov models (CHMM,
Rabiner, 1989, Picone, 1990). CHMMs are capable to model directly the sequence of featur
tors without introducing additional information loss during a vector quantization step. Howe
for a reasonably flexible approximation of the observed feature vector distributions, the
dependent continuous probability density functions are normally described by the param
multivariate mixture gaussian density functions. A large number of training samples is requir
allow confident estimates of the continuous probability density functions within the training a

bj x( ) j 1 … N, ,= N
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rithms of the CHMMs. Given the unavailability of large training sets in the context of seismic
nal classification, the use of CHMM-based approaches seems to be questionable. Other st
may be successful to reduce the inevitable information loss in the vector quantization ste
interesting modification may be achieved by replacing the linear LBG-algorithm by using
linear clustering approaches like the “self-organizing maps” (SOM, Kohonen, 1990) in com
tion with discrete hidden Markov models.

An additional shortcoming of the suggested DHMM approach is the training procedure wh
based on the maximization of a likelihood cost function. As has been pointed out before,
currently used form of the Viterbi training, no discriminative information is included into
learning step, as each DHMM is optimized with respect to the training samples of its own c
However, a strategy called “corrective training” has been suggested by Bahl et al. (1988) in
to allow discriminative training for discrete hidden Markov modeling. Another interesting sug
tion has been made by Segura et al. (1994), who used multiple class-dependent vector cod
in combination with discrete hidden Markov models. In this approach, which has been te
multiple vector codebook hidden Markov modeling (MVQHMM) by the authors, the discrimi
tive information between individual classes is quantified within the vector quantization ste
making use of the average quantization error together with the conditional likelihood measu
the DHMMs.

Considering the nature of the investigated classification task, the problem of identifying se
signal transients within continuous recordings of the seismic wavefield is closely connected
task of small vocabulary keyword detection in unconstrained speech within the field of sp
recognition. The currently implemented evaluation strategy for issuing the detection of a se
signal has been a straightforward extension of the methods used for isolated event recog
However, modern keyword recognition systems usually evaluate more complex scoring pro
for locating the occurrence of a specific utterance within fluent speech. Most interesting in
context is the use of finite state networks of parallel connected hidden Markov models which
resent the individual keywords. The finite state network can be seen as a single large HMM
special constraints of the transition probabilities. Using such large networks of interconn
HMMs allow to detect keywords by decoding the optimal state sequence for the “large” HMM
the Viterbi algorithm while scanning the observation (e.g. Rohlicek, 1995, Rose, 1996). The
ence of a keyword is hypothesized, if the decoded state sequence contains state indices w
connected to one of the keywords. Several advantages are gained by these technique
important is the fact, that the location of the keyword can be specified more precisely from
entering and leaving states of the corresponding keyword. This property is of considerable in
in the context of seismic signal classification and the applicability of similar techniques have
determined in the future.
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The subject of this study has been the development of an automatic classification system fo
mic signals of volcanic origin at Merapi volcano. In order to accomplish the given task, a sp
pattern recognition approach, known as hidden Markov modeling, has been adapted from th
of speech recognition. Taking into account the interesting analogy between the characteris
volcano-seismic signals, i.e. volcanic tremor, and the acoustic recordings of speech, and
the proven success of hidden Markov model based speech recognition applications, this
recognition technique has been considered as an attractive choice for the given problem.

“Hidden Markov models” (HMM) are a family of stochastic models which allow to describe c
text dependent information, i.e. temporally structured patterns of a random variable within a
developed stochastic framework. HMMs are especially suitable to allow a generalized repre
tion for a set of similar patterns with variable observation length. Hence, considering the var
ity of volcano-seismic signals with respect to the signal length and the temporal structu
seismic wavefield attributes, the use of hidden Markov models for the recognition of seismi
nals of volcanic origin has been regarded as sufficiently flexible to allow a robust classificati
volcano-seismic signal classes.

As this special pattern recognition technique represents - to the author’s knowledge - a nov
the field of seismology, the HMM-based recognition approach has been introduced in
together with the most important background information from statistical pattern recogn
principles. The HMM approach has been implemented in its simplest form, the discrete h
Markov model (DHMM). The principles of an DHMM-based classification system is describe
follows. Given a fixed parameter set for a specific DHMM and a discrete time series of abs
symbols which are taken from a finite alphabet, it is possible to calculate the conditional prob
ity of how likely it is, that the observed symbol sequence has been produced by a stochastic
as given by the DHMM. This likelihood test measure is equivalent to the mathematical test
tion of statistical classifiers in pattern recognition systems. As there further exist well-establ
algorithms for adjusting the parameters of a DHMM in order to represent a specific set of sy
sequences, DHMMs can be trained via a supervised learning paradigm. As the DHMM is
capable to evaluate discrete symbol sequences, time series of real-valued feature vectors
be converted to discrete valued time series via a vector quantization step.
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One of the most important parts of any pattern recognition system is the representation
underlying input data, constituting the basis for the subsequent decision by a mathematic
function, which is in this context the conditional probability measure for a discrete hid
Markov model. The strategy for the parametrization of the continuous seismic data stream
been based on the experiences from visual seismogram interpretation in seismological ob
tory practice. A set of seismological key-parameters, which are calculated along the continu
recorded seismic data streams in a sliding window analysis, has been considered as bein
appropriate for describing the temporal variations of the observed seismic wavefield. The s
geometry of the seismic network at Merapi volcano allowed the use of array techniques fo
computation of wavefield parameters at three different site locations surrounding Mt. Mer
summit region.

The relevance of the individual wavefield attributes in the context of seismic signal classific
has been analyzed by considering the distributional characteristics of the individual wav
parameters. A set of 11 wavefield parameters have been found to contain an useful amo
information for the discrimination of the seismic signal classes observed at Merapi volc
Hence, these wavefield parameters are used to describe the observed wavefield at each ar
The selected wavefield parameters are: a measure of wavefield coherence and signal stre
the most coherent planar wave arrival crossing the array. The incidence angle of the array
averaged polarization ellipsoid (calculated under the assumption of a P-wave arrival), and
relative spectral power values obtained from the array-wide averaged power spectral densi
subsequent smoothing in half-octave wide frequency bands. As an intermediate result, the
uous recorded data streams within the digital seismic network at Merapi volcano are describ
a discrete time sequence of a 33-dimensional real-valued feature vector. A common approa
been followed for reducing the dimensionality of the feature vector space and additional acc
ing for the differences of the dynamic range of the individual wavefield parameters. The so-c
prewhitening transformation, which is based on the Karhunen-Loeve transform with addit
re-normalization of the transformed coordinate system, has been used to accomplish this t

In order to establish a DHMM-based recognition system, an interesting 5-day time period s
ing an accelerating increase of the seismic activity prior to the eruption sequence of Mt. Mer
July 1998 has been selected from the continuous recordings of the newly installed digital se
monitoring network at Merapi volcano. Three seismic signal types of transient character
been recognized according to the classification scheme of the Volcanological Survey of Indo
(VSI) for Merapi volcano. These signal types are: VTB, a volcano-tectonic event class with
low hypocenter depth (h < 2 km), MP (multiphase), seismic events which have been descri
be in close relation to the growth of the active lava-dome and originate probably within the u
most part of the active lava dome (h < 1 km), and Guguran, the local terminology for a roc
type event, connected to the gravitational collapse of unstable parts of the active lava dom

A small-sized set of representative events has been selected manually from the visual anal
each of the corresponding signal classes. Additionally an arbitrary set of seismic noise seg
has been chosen for representing a rejection class in the automatic recognition system.
training sets have been used in order to analyze the properties of the wavefield parameters
culate the coefficients of the prewhitening transform matrix, to construct a set of vector c
books with varying dimensions for the vector quantization step and to finally train a set of dis
hidden Markov models for each individual seismic event class and the seismic noise, respec
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Different combinations of feature vector dimensions and codebook sizes have been tested
classification system. Considering the results of the pair-wise discrimination capabilities bet
the trained DHMMs for each feature vector / codebook size combination, and the evaluati
the recognition performance for the isolated event recognition problem via the resubstit
method, it has been possible to select the most suited combination of feature vector and cod
size for the classification task.

For the classification of seismic events from the continuous data stream, a scanning proced
the vector quantized symbol sequence has been presented. It has been found, that the best
tion results could be obtained by evaluating the class-wise averaged conditional probability
sures for a set of DHMMs representing one and the same signal class. An additional
processing rule has been established in order to prune the primary detection lists from misle
but short-lasting classifications.

The overall classification accuracy for the selected 5-day period has been evaluated by cont
the automatically obtained classifications visually. The evaluated recognition rate for all se
signal classes has been quantified to be 67 % with an average number of false alarms per
122. The classification capabilities vary significantly for the individual event types. VTB-t
events can be recognized with around 89 % recognition accuracy and an average false ala
of 2 FA/day. Guguran events, which build the most heterogeneous event class with respect o
abilities regarding signal shape, signal length and signal strength, have been correctly class
74 % of all cases. The false alarm rate for this event class has been evaluated to be on ave
FA/day. Most difficult seems the classification of the small-scale MP events, showing an av
recognition accuracy of 64 % with 87 FA/day.

Analyzing the temporal variations of the classification results within smaller 3 hour segme
has been found, that a considerable amount of classification errors are due to ambiguous
field properties for MP and Guguran event types, as well as to the insufficient capabilities o
classification system to separate consecutive occurrences of closely spaced events of one
same signal type. A strategy has been described how the insufficient resolution capabilities
system for swarm like occurrences of events may be relaxed efficiently. The high number of
alarms for both MP-type and Guguran-type events shows an interesting temporal variation
majority of false alarms are issued during local night time. No satisfactory explanation has
found for this result and thus needs further investigation.

Automatic classification systems for seismic signals are mainly a domain of earthquake an
To the author’s knowledge there exists no comparative study which has previously address
problem in the context of volcano-seismic signal classification (except for special adjustme
standard trigger algorithms). Thus, it is difficult to judge the quality of the obtained results. C
sidering the enormous difficulties when attempting to classify the selected time period vis
and further taking into account the usually complex characteristics of the seismic wavefie
volcanic environments, the automatically obtained classification results have been found
encouraging. Especially the acceptable recognition rate of 74 % for the very heterogeneou
of Guguran events, with signal length variations between 60 s and 180 s and considerable
ences in the shape of the signal envelopes demonstrates the powerful generalization prope
the DHMM approach. In order to improve the recognition accuracies, several points have
discussed. Most important in this context seems to be the re-evaluation of the selected para
zation approach, as most of the erroneous decisions of the classification system are con
with ambiguous properties of the basic feature vector patterns.
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Although the recognition of single seismic events based on signal estimates of wavefield c
teristics has been the subject of this study, it should be not forgotten, that the final goal of se
investigations at volcanoes aims to contribute to eruption forecasting and hazard mitigati
analogy to speech recognition tasks, the actual interest in a speech recognition system for
uously spoken language lies not in the correct decoding of a single word on the acoustic lev
in the understanding of the message which is transported via speech. Interestingly the use
den Markov models have been especially important on higher levels of speech recognitio
tems, i.e. providing grammatical constraints for language models. This in turn allows
speculation that hidden Markov model techniques may be an interesting technique for the an
of seismicity patterns at active volcanoes. Especially the understanding of seismicity patter
their correlation to the eruptive behavior might lead to significant improvements in hazard m
tion. To the author’s opinion HMM techniques might be even especially suitable for the inves
tion of multi-disciplinary databases of geophysical, geochemical, geological and environm
monitoring parameters with respect to precursory phenomena of volcanic eruptions. As a s
point for further research, it is therefore recommended to investigate the use of hidden M
model techniques for the joint analysis of the first results of the interdisciplinary monito
experiments at Mt. Merapi.
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CHAPTER 11. Appendices
space
har-

and
A. Mathematical definitions in the context of pattern recognition

The following definitions are adapted from Fukunaga (1990, Chapter 2).

A.1 Distribution and density functions of a random vector

A random vector with  (random) variables shall be denoted in bold face letters as:

, 11.1

where denotes the transpose of the vector. An arbitrary point in the n-dimensional vector
is denoted by the vector . Then, the random vector may be completely c
acterized by theprobability distribution function, defined as:

. 11.2

 is said to be the probability of an event . EQ 11.2 is written in short notation as:

. 11.3

The -dimensional distribution function has the following properties (e.g. Bronstein
Semendjajew, 1987, p. 668):

, and . 11.4

n

x x1 x2 … xn, , ,[ ]T
=

T
x x1 x2 … xn, , ,[ ]T

=

P x1 x2 … xn, , ,( ) Pr x1 x1 x2 x2 … xn xn≤, ,≤,≤{ }=

Pr A{ } A

P x( ) Pr x x≤{ }=

n P x( )

P x1 … xn, ,( )
x1 +∞→

…
xn +∞→

lim 1= P x1 … xn, ,( )
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…
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lim 0=
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Thedensity function  is defined as:

11.5

which may be equivalently written as:

11.6

Hence, the probability distribution function can be equivalently expressed in terms of the de
function as an n-dimensional integral like:

11.7

It has to be noted, that the density function itself is not a probability, but must be multiplied
certain region (or ) to obtain a probability. The normalization constraints for
density function are given by the properties of the probability distribution function as give
EQ 11.4, and thus (e.g. Bronstein and Semendjajew, 1987, p. 669):

11.8

A.2 Moments of distributions

A random vector is completely described by its distribution or density function, respecti
These functions, however, cannot always be determined easily. A more computable charac
tion of a random vector, although less complete, is therefore given by the respective momen
distribution. Most important are the first and second moments. The first moment of a distrib
is also termed theexpected vector or themean of a random vector and is given by:

, 11.9

where the integral is evaluated over the whole vector space. The i-th component o
expected vector  is calculated as:

, 11.10

p x( )
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where  is the marginal density of the i-th component of , given by:

. 11.11

Hence, each individual component of the expected vector is calculated as the expected
of the individual random variable with the marginal one-dimensional density.

The second moments and the second central moments of a distribution are given by the aut
lation matrix and the covariance matrix , respectively. The more familiar formulation is
second central moment , describing the expected deviation of the random vector fro
respective mean vector.  is given as:

. 11.12

The individual components  of the covariance matrix  are then calculated as:

. 11.13

The diagonal elements of the covariance matrix are equivalent to the variances of the in
ual random variables , and the off-diagonal elements are given by the covariances of tw
dom variables  and .

The relation between the central second moments and the second moments is given by:

, 11.14

as  and the autocorrelation matrix S of the random vector  is defined as:

11.15

p xi( ) x
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B. Accounting for the dynamic range of computations in the eval-
uation and training of hidden Markov models

Both in the evaluation problem (section 5.3.1.) and in the training of discrete hidden Ma
models (section 5.3.3.) the calculation of the forward and/or backward variables as defin
EQ 5.19 and EQ 5.21 of section 5.3.1. is required. In general, this involves the multiplication
large number of small quantities. It is easily recognized that the dynamic range of any comp
not sufficient to manage this kind of computation. To avoid numerical underflow during calc
tions two different strategies are used in practice:scaling and taking logarithm.

As the value of the forward variable decreases exponentially with , a time dependent
ing constant  is introduced (Devijver, 1985):

11.16

Therefore, the scaled forward variable  is calculated to:

, 11.17

The scaled forward variables are used then in the recursion instead, and numerical under
effectively suppressed. The scaling constants obtained for the forward variable can be
also for the recursions for the backward variables , as their magnitude lies in the same
as the forward variables . It can be shown (e.g. Rabiner, 1989) that the Baum-Welch re
mation formulas can be used with the scaled variables directly, as the time dependent co
cancel out in the calculations.

However, for obtaining the likelihood measure , some care has to be taken. If the s
forward variables have been used in the recursions EQ 5.20.a to EQ 5.20.c, the termination
ates always to 1, as:

11.18

αt j( ) t
ct

ct
1

αt i( )
i

∑
-------------------=

α̃t j( )

α̃t j( ) ctαt j( )
αt j( )

αt i( )
i

∑
-------------------= =

ct
βt i( )

αt j( )

P O λ( )

α̃T i( )
i 1=

N

∑ ct αT i( )
i 1=

N

∑
t 1=

T

∏ 1= =
152



Appendices

eri-
iterbi
Then, instead of , only the quantity  can be computed, because:

, or 11.19

. 11.20

By taking the logarithm of EQ 11.20, it follows:

. 11.21

For the Viterbi algorithm and the alternate likelihood measure , the problem of num
cal underflow can be relaxed even more efficiently, which is one of the reasons, why the V
algorithm has gained so much interest. By redefinition of EQ 5.25 to:

, 11.22

and initializing the Viterbi-algorithm by:

, 11.23

with the modified recursion step:

, 11.24

the result for the modified Viterbi measure becomes:

. 11.25
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C. Implementation of DHMM-based classification-system into the
real-time seismic analysis environment Earthworm

The presented DHMM-based classification system has been implemented in a real-time s
analysis environment calledEarthworm, which is used widely in the United States Geologic
Survey (USGS) for the on-line monitoring of earthquakes in several state wide networks i
U.S. (Johnson et al., 1995). The basic system concept of Earthworm consists of interactin
vidual software modules, which communicate by message queues on so-called shared m
segments and via TCP/IP protocols. It is therefore possible to run software modules on a d
uted network of computers. Officially supported platforms are SunOS 5.5.x and higher for
big-endian and little-endian machines, and Microsoft Windows NT for little-endian mach
only. Recently, within the scope of the seismological experiment of the MERAPI project, E
worm has been ported to the open source operating system Linux, thanks to the program
efforts of E. Schmidtke at the University of Potsdam, Germany.

Earthworm is a modular software system. Single software modules run independently from
as own processes in the process tree of the operating system. For a reasonable data pro
information has to be exchanged between the single modules. The communication betwee
ules in an Earthworm system is realized by the use ofshared memory segments. In Earthworm
they are called“message rings”and can be seen as a virtual postbox in a reserved memory s
of the computer, which is allocated in the start-up phase of an Earthworm system. Module
use this postbox to share data and information by putting (retrieving) addressed messag
(from) the message ring. The graphical representation for this communication principle is
duced in Fig. 11.1.

Three additional software-modules have been implemented in the framework of Earthwo
allow the on-line classification of volcano-seismic signals by discrete hidden Markov mode
the seismic monitoring network of Merapi volcano. The parametrization for the individual m
arrays is computed separately in the modulecont_array. Data is requested in larger packets (e.g
minute) from the standard Earthworm modulewave_serverV. The wave_serverV module acts as
waveform buffering server and provides waveform data to requests of software clients (e.
cont_array module). This waveform data segments are pre-processed, and then param

Message
Ring

Software
Module

Put

Retrieve
Message

Message

FIGURE 11.1: Graphical representation of interprocess communication in Earthworm. The
rectangular box stands for an individual software module. The circle represents a message ring
(shared memory segment). Arrows pointing to the message ring indicate, that the software module
puts messages to the memory region of the message ring. Arrows pointing to the software modules
stand for message retrieval from the memory region.
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using the methods introduced in sections 7.1.1. to 7.1.3.. The raw features for each process
window are time-stamped and sent as message on a new message ring called FEAT_RING

The two-step procedure for the array-processing is shown in Fig. 11.2. In a first step, a longe
window is requested from the wave_serverV, which is called the primary data window in the
lowing. If the request could be satisfied by the wave_serverV module, the preprocessing
including offset removal, seismometer simulation and bandpass filtering, are applied to the
plete waveform data within the primary data window. Subsequently, a smaller time windo
successively shifted along the seismic waveforms in the limits of the primary window. Within
secondary sliding data window, all array-processing methods are applied. At each time ste
result of the array analysis is stored in an output file. Additionally a time-stamped message o
TYPE_FEAT is created and put into the shared memory region FEAT_RING. If the last sec
ary window has been processed, a new primary data window will be requested from
wave_serverV module.

The wavefield parameters obtained during this processing are sent as messages to a share
ory region. For each array, and each time-step a new message is created. This output is the
the detection and classification of single seismic events.

The second modulefeat2symis responsible to read the messages sent out from each invocati
the cont_array modules. It combines the raw features of each array within a single time wi

YES

j++

tj  = Ti

i++
Ti = Ti - OverlapTime

cut secondary sliding window
from preprocessed primary
data window:
tj  => tj+1 , with
tj+1 = tj + WINLEN bbfk/jurk/sono

tj+1 < Ti+1

request primary data window
from wave_serverV module

Ti => Ti+1 , with
Ti+1 = Ti + WindowLength

preprocessing of primary data
window (parameters given in
preproc.cfg)

DATA REQUEST AND PREPROCESSING LEVEL

ARRAY PROC. LEVEL

FIGURE 11.2: Data processing in Earthworm module cont_array. In the data request and processing
level, primary data windows are requested from the wave_serverV module. After preprocessing a
sliding window analysis is performed within the array processing level on the preprocessed data. If the
last secondary data window has been reached, a the next primary data window has to be requested
from the wave_serverV module.
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into a single real-valued vector, applies a prewhitening transformation according to a given
formation matrix and vector quantizes the resulting feature vector with a given codebook.

Small time delays may occur between the individual invocations of the cont_array module
the array processing step. Therefore, the resulting messages may appear unsorted in the
ring. The module feat2sym is responsible for collecting the messages from the FEAT_RING
to sort them according to their time-stamps in a doubly linked list. After reading a messa
search is performed for messages with common time stamp in this doubly linked list. If an
exists for all specified arrays with common time-stamp, the wavefield parameters from the
vidual arrays are joined together into a single parameter vector. This parameter vector is f
transformed by a given transformation matrix and finally vector quantized. Fig. 11.3 provid
data flow chart for the feat2sym module.

The result of the feat2sym processing on the wavefield parameter messages is a single sym
each time step, which represents the index of the closest (euclidean distance measure) co
vector. For each time step, a message of type TYPE_VQ is created and sent to the VQ_
The created message contains a time-stamp, and the resulting symbol from the vector qu
tion process. Additionally the list of contributing stations for the wavefield parameter estima
is specified in the header of a TYPE_VQ message. These messages are the input for the n
cessing module, calledcont_dhmm.

FEAT_RING

1

5
4

32retrieve messages
1
KLT
T0
data

2
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T1
data

3
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T2
data

4
GRW
T0
data

5
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T0
data

4
GRW
T0
data

2
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T0
data

5
PAS
T0
data

2
KLT
T1
data

3
PAS
T2
data

4
GRW
T0
data

2
KLT
T0
data

5
PAS
T0
data

sorting

match

combine
data and
transform,
quantize

1
Symbol
A
T0

VQ_RING

put message
1

Module feat2sym

FIGURE 11.3: Flow chart for the internal data processing in module feat2sym. Messages of type
TYPE_FEAT are retrieved from the FEAT_RING. The messages are sorted according to their time
stamp. If for a given time (e.g. T0) a message from each individual array processing is available, a
match is found. The data of the messages for this time step is combined, eventually transformed and
finally vector quantized. A message of type TYPE_VQ is created, time-stamped and put on the
shared memory region VQ_RING.
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The module cont_dhmm reads the messages produced by the module feat2sym conse
from the message ring VQ_RING. cont_dhmm buffers a symbol sequence of predefined l
using the timestamp information of the messages. This partial symbol sequence is subseq
tested against a list of hidden Markov models. Both evaluation strategies “single_best
“average_best”, as have been described in section 7.5., can be used. The minimum-duratio
processing rule has been implemented as follows: at any time step, where the winner mode
ferent from the winner model of the previous time step, a possible detection is hypothesized
duration of the detected time segment is compared to the given minimum duration thresho
the corresponding winner class. If the detection is long enough to be accepted as valid clas
tion, a new message of type TYPE_EVENT is created. Besides the usual header informatio
message contains start and endtime of the event, and a label of the class name. The me
then sent to the HYPO_RING memory region, where it can be used for further processing
localization modules, event statistic modules, etc.).

A system diagram of the automatic classification part for the Earthworm installation at the M
Volcano Observatory in Yogyakarta is depicted in Fig. 11.4.

WAVE_RING

FEAT_RING VQ_RING

scream2ew

wave_serverV

feat2sym

cont_dhmm

cont_array (3)

cont_array (2)

cont_array (1)

Automatic
detection and
classification

PICK_RING

FIGURE 11.4: Description of the automatic classification part of the Earthworm installation at the Merapi
Volcano Observatory in Yogyakarta. The continuous waveform data is read from local area network which
connects the data acquisition computer for the telemetry network and the processing computer running
Earthworm. Trace data is buffered in the wave_serverV software module. “cont_array” is started for each
array and results are handed to the module “feat2sym” via a shared memory segment (FEAT_RING). The
results of the array processing are vector quantized and forwarded for the evaluation in the “cont_dhmm”
module. Further details are given in the text.

Ethernet

Data input from telemetry network

Waveform buffer
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