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Abstract

This work proposes solutions for several issues pertaining to metabolic network modelling, rang-

ing from network reconstruction to multistability analysis to new modelling strategies coping with

unreliable kinetic parameters. The emphasis is on the close connection between structure and

dynamical behaviour of metabolic networks.

High-throughput data from various “omics” and sequencing techniques have rendered the au-

tomated metabolic network reconstruction a highly relevant problem. It is provably hard to find

a suitable and fully automated algorithm to solve a mathematical abstraction of a reconstruction

problem, that accounts for the uncertain, ambiguous and hence inherently probabilistic relations

between genes, enzymes, reactions and metabolites.

The biosynthetic capabilities of given genome-scale metabolic networks, i.e. the metabolites

that can be produced after providing some seed compounds, reflect prominent aspects of their

functionality. The reverse problem of determining a minimal set of metabolites that has to be

provided in order to obtain some desired target compounds, is also of importance, especially with

respect to identification of drug targets and biotechnological applications. This problem is shown

to be computationally hard, even after relaxation for approximation results.

A relevant property of metabolic networks viewed as dynamic systems is their capability to

support multistability, as it enables switching between different modes of operation as a response

to changing conditions. Chemical reaction network theory (CRNT) and its extensions provide

a powerful and mathematically sound framework to obtain multistability results derived directly

from the structure of a given network. CRNT is applied to compare and discriminate against

several models of the Calvin cycle.

The development of detailed kinetic models is often hampered by the lack of knowledge about

the kinetic properties of the involved enzymes and membrane transporters. This can be partly

overcome by reformulating the Jacobian matrix in terms of saturation parameters, which describe

the normalized influence of each metabolite on every reaction at steady state. Subsequent sampling

of saturation parameters is used to evaluate the functional role of allosteric feedback regulation in

the stabilization of the metabolic network. Furthermore, statistical measures for the relative impact

of enzymatic reactions on local stability of the steady state are derived.

Several modelling approaches derived from assuming different simplistic kinetic mechanisms

(mass-action, Michaelis-Menten, power-law, LinLog) are compared to a well established refer-

ence model of the human red blood cell. The quality of such simple models can be increased

significantly by choosing a small subset of reactions, for which detailed rate equations, including

allosterical effects, are established consecutively. The appropriate reactions are found by ranking

the reactions according to the above-mentioned measure for their respective influence on stability.
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Chapter 1

Introduction

1.1 Systems biology

Recent years have seen a shift from reductionist approaches towards a holistic and systemic view

of biological processes. This shift is entailed by the emergence of systems biology, although it is

not an easy task to find a widely accepted and precise definition or description for this term. The

elements of biological systems are complex, bearing an intrinsic complexity on the system-level

(Kitano, 2002a). Therefore, it is necessary to analyse the interactions of all parts of the system and

the implied dynamics in order to elicit conclusions for the whole (Kitano, 2002b).

On one hand, systems biology has its origins in molecular biology (Westerhoff and Palsson,

2004) and aims at understanding the interplay of cellular components such as metabolites, pro-

teins and genes. The recent success of genomics, proteomics and other “omics”-techniques ren-

ders genome-scale experiments possible and stimulates the increasingly important role of data

integration techniques (Hwang et al., 2005). On the other hand, computational and mathema-

tical modelling approaches are required for gaining in-depth insights into the organisation and

functioning of biological systems (Kahlem and Birney, 2006). Systems biology can therefore be

regarded as an integrative and interdisciplinary approach that tries to combine genome-scale data

with mathematical methods in order to model and simulate complex biological systems (Klipp

et al., 2005).

The work presented here takes such an interdisciplinary approach to study models of metabolic

networks. In particular, the connection between structure and dynamical behaviour of metabolic

networks is analyzed. As both structure and dynamics cannot be fully understood by inspection of

the network elements in isolation, the analysis considers the whole system.

1.2 Biological networks

Biological networks are abstract descriptions, which can capture many essential properties of var-

ious biological systems (Alon, 2003). In general, a network is defined by a set of elements and

a set of interactions between these elements. Following the notation from graph theory, they are

called the nodes and the edges of the network, respectively. If the interaction bears an intrinsic

directionality, the network is called directed, otherwise the network is undirected. Furthermore, if

the strength or capacity of an interaction should be described explicitly, a weight is assigned to the

edges.

The study of metabolic networks is of high relevance, because of their implications for the

basic understanding of living cells and organisms and for medical applications, especially with

respect to discovering drug targets (Guimerà et al., 2007b).
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As networks provide a natural means for modelling the interaction of elements, network-based

approaches have already been applied to many different fields of biology, from ecology to molecu-

lar biology (Calvano et al., 2005; Hood et al., 2004; Li et al., 2004). In the next section, prominent

examples of networks arising in various biological subfields are reviewed, without intending to be

exhaustive. This work focuses on metabolic networks, introduced in detail in Section 1.3, below.

1.2.1 Gene regulatory networks

Genes are regulated upstream by binding of specific transcription factors, which enable or prohibit

the expression (transcription) of the gene. A transcription factor is itself a product of an expressed

gene. Hence, the regulation of genes forms a network, where nodes represent genes and edges

describe regulations. The interaction between two genes is clearly directed from the gene that en-

codes the transcription factor towards the regulated gene. Therefore, the gene regulatory network

is directed. If a transcription factor is known to act as an activator or inhibitor on a particular gene,

the corresponding edge is assigned a positive or negative sign, respectively.

Chromatin Immunoprecipitation (ChIP) is used to scan the genome for DNA binding sites

of a particular protein of interest in vivo. Combined with microarray technology (ChIP-chip),

this method detects binding events of transcription factors to genes on a genome-scale level and

allows for direct readout of regulatory networks (Buck and Lieb, 2004). Limiting factors are the

availability of antibodies to the transcription factors of interest and the resolution of the analyzed

DNA fragments.

DNA microarrays measure the expression level of thousands of genes simultaneously. They

can be used to trace changes in gene expression under various conditions and at different time

points. Regulatory networks can be inferred from the obtained gene expression profiles by apply-

ing similarity measures on the gene expression patterns. Two genes are connected (coexpressed),

if the similarity of the expression patterns is above a significance threshold. For instance, a widely

used similarity measure is the correlation coefficient, employed by Stuart et al. (2003) on a com-

bined set of over 3000 microarrays from multiple model organisms (Homo sapiens, Caenorhabdi-

tis elegans, Drosophila melanogaster and Saccharomyces cerevisiae) to successfully predict gene

functions for evolutionary conserved coexpressed genes. Partial correlation (de la Fuente et al.,

2004) is another similarity measure, which can reduce the number of edges describing indirect

correlation. These edges might emerge between two genes, which are uncorrelated among them-

selves but strongly correlated to a common third one. As similarity measures are symmetric, the

inferred networks do not obtain directionality and hence lack to reproduce an important property

of gene regulatory networks. One approach to overcome this problem is to analyze correlation be-

tween expression patterns stemming from time series experiments. If two genes exhibit the same

expression profile except for a time-shift, then the ’early’ gene might be the cause for the response

of the ’late’ gene. In this case, a putative direction can be assigned to the corresponding edge of

the inferred regulatory network (Redestig et al., 2007).

Assuming coregulation of genes belonging to the same functional group, e.g. the encoded

proteins belong to a common protein complex, gene regulatory networks can also be used to

predict gene functions. This process is known as “guilt-by-association”. Comparison between

clusters in an inferred gene regulatory network and gene function according to the Gene Ontology

(GO) annotation showed reasonable accordance (Lee et al., 2004). Using an integrated approach,

DNA binding data can be combined with gene expression data to define groups of genes, which

are regulated by the same transcription factors and follow the same gene expression patterns (Bar-

Joseph et al., 2003). Such grouping identifies genes with similar biological function.
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1.2.2 Protein-protein interaction networks

Interactions between proteins are fundamental to the functioning and survival of every living cell.

They constitute the protein-protein interaction network, in which nodes represent proteins, and

edges connect nodes if the associated proteins bind to each other. As protein binding is symmetric,

the interaction network is undirected.

The two hybrid approach is used to experimentally detect proteins capable of interacting with

a given protein of interest in vivo (Chien et al., 1991). In this approach, a reporter gene such as

GFP, which is activated by binding of a transcription factor, is included into the genome using

genetic engineering. The transcription factor is split into two fragments, one of which is fused

to the protein of interest and the other one to a target protein. If the target protein interacts with

the protein of interest, the transcription factor will become functional. Hence, the reporter gene is

activated and produces a measurable signal.

Several model organisms such as S. cerevisiae (Schwikowski et al., 2000; Uetz et al., 2000)

or D. melanogaster (Giot et al., 2003) have already been analyzed systematically by testing thou-

sands of proteins for pairwise interaction using two hybrid approaches. However, these methods

are error-prone, so each derived interaction serves as a candidate and should be confirmed or dis-

carded by further experiments. To get a full understanding of the binding processes itself, it is

necessary to reveal the three-dimensional structure of the proteins, especially of the binding sites.

The structural information can then be mapped on metabolic pathways to estimate binding affini-

ties and kinetic parameters. Unfortunately, until now it is very time-consuming to obtain detailed

structural information (Aloy and Russell, 2006).

1.2.3 Further examples

Evolutionary relationships among different biological species or taxa compose a phylogenetic tree,

which is a connected and acyclic network. Each leaf node is labeled by a species and each internal

node stands for the most recent common ancestor of its decedent nodes. The estimated period of

time that passed since the differentiation of species can then be used as an edge-weight. Recent

work on phylogenetic trees tries to incorporate different kinds of “omics” data to gain further

insights into biological ancestry of species. Structural information of metabolic pathways is used

by Heymans and Singh (2003) to define a distance between species, from which a phylogenetic

tree can be derived by hierarchical clustering. The necessity to cope with evolutionary events such

as horizontal gene transfer, gene duplication and recombination as well as ambiguous sequence

data leads to phylogenetic networks (Huson and Bryant, 2006), which are not acyclic.

Food webs reflect the predator-pray relationships between different species within a given

ecosystem. High quality, comprehensive food webs can become very large and complex. Williams

et al. (2002) evaluated several aquatic and terrestrial ecosystems and showed by means of graph-

theory that species extinction or invasion affects species in a broader neighborhood than previously

thought. Rooney et al. (2006) addressed the question of stability of food webs, i.e. the ability to

respond to changes in the population sizes as well as in the carbon influx. Their results point out

the critical role of top predators and asymmetrical carbon influx to achieve stability, which was

observed across a range of different ecosystems.

In social networks, individuals are connected to each other if there exists a social relationship

between them, such as friendship or kinship. These type of networks are not yet in the focus

of systems biology, but can serve as an example of interdisciplinary research between sociology,

mathematics, and biology. For instance, Andre et al. (2007) proposed a method that helps to

contain a tuberculosis outbreak. They used the graph-theoretical concept of “betweenness” to

prioritize contact persons, that have to be screened and examined first in order to obtain maxi-

mum efficiency. A statistical approach is taken by Christakis and Fowler (2007) to show that the
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risk of becoming obese is significantly connected to the number of obese persons in your social

neighborhood, but independent from the geographical neighborhood.

1.3 Metabolic networks

Metabolism of living cells describes the complex and highly intertwined processes of subsequent

chemical conversion of compounds by enzymatic or spontaneous reactions. Metabolic networks

are comprised of metabolites as nodes and reactions as edges between them. For irreversible reac-

tions, the associated edges are directed according to the reaction’s direction. Reversible reactions

lead to a pair of edges pointing in opposite directions.

If metabolic networks are considered as describing a dynamic system, the edges are weighted

by fluxes, i.e., turnover rates of molecules. The fluxes depend on the concentrations of the sub-

strates and products of the reaction as well as on the concentration and thermodynamic properties

of the participating enzyme.

Traditionally, the analysis of metabolic networks is focused on metabolic pathways, which are

thought of, conceptually, as sets of reactions and metabolites that are functionally connected, such

as the Calvin cycle or the TCA cycle. However, a precise definition of a pathway is difficult to

formulate, especially with respect to delineation of pathways from one another. Nevertheless, to

obtain a global view on the functionality of the entire metabolism, pathways should not be ana-

lyzed in isolation but rather on a genome-scale level (Nicholson and Wilson, 2003). This poses the

general problem of metabolic modelling: the larger the network under consideration, the less ex-

perimentally validated biological knowledge on its constituting metabolites is available. Although

even for large networks the structure is often known to a large extent, the detailed dynamical

behaviour remains widely unknown.

1.3.1 Experimental methods and data generation

Numerous methods exist to measure kinetic parameters of enzymatic reactions (Bisswanger, 2002)

in vitro. For instance, enzyme assays are used to follow the course of the reaction, either directly

or indirectly, using coupled reactions, where the product of one reaction serves as a substrate for

another reaction. As enzymes are sensitive to many environmental conditions such as pH and

temperature, it is difficult to deduce in vivo kinetic parameters from these measurements.

Several techniques for high-throughput measurements of metabolites are now available, ren-

dering data integration even more important to gain further insights into metabolic networks (Kell,

2004). The most widely used approach is composed of a gas or liquid chromatographic separa-

tion step combined with mass spectroscopy (GC/MS and LC/MS, respectively). While GC/MS is

more accurate, LC/MS allows for analyzing a broader range of compounds, including secondary

metabolites (Fernie et al., 2004). However, in a typical GC/MS or LC/MS measurement, not all

detected compounds can be assigned a unique chemical structure. Another highly successful tech-

nique is nuclear magnetic resonance (NMR). In this technique, the fact that nuclear spin can lead

to different energy levels of the nucleus if exposed to a strong magnetic field, is exploited in a

nondestructive and noninvasive manner (Beckonert et al., 2007). The sensitivity of NMR is poor

compared to MS techniques, but the information obtained by these methods is complementary and

hence useful in getting a metabolic snapshot of the system at hand.

Besides metabolite concentrations, fluxes, i.e. rates of metabolite conversion, are crucial to un-

derstand network behaviour. Unlike metabolic concentrations, reaction rates are difficult to mea-

sure directly. Isotopic tracer techniques using 13C are well established and provide insights into

the flow of metabolites inside a network (Sauer, 2006). The basic idea is that after feeding labeled

isotopes for a limited time period to the system under study, the resulting isotope distributions
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throughout the network allows for reconstruction of the internal fluxes. However, this approach

is limited to steady state conditions and usually focuses on central metabolism. A nondestructive

method to detect fluxes is given by fluorescence resonance energy transfer (FRET). FRET sensors

are coupled with reporter proteins like GFP (green fluorescence protein) to monitor flux changes

in vivo (Wiechert et al., 2007). Because FRET sensors are genetically encoded, they allow for

subcellular resolution. However, a single FRET sensor can only monitor a few compounds at a

time, rendering this approach time- and labour-intensive.

1.3.2 Modelling and analysis of metabolic networks

The modelling of metabolic networks ultimately aims at describing the metabolism for whole

cells or even entire organisms in detail, including the kinetic parameters for all involved reactions.

Such a detailed description would allow for precise predictions of biological processes. However,

the available data might not be sufficient to model a metabolic network in such detail. Hence,

a suitable strategy for modelling the desired level of abstraction has to be chosen to answer the

biological questions at hand. The available methods range from pure structural approaches, which

only incorporate basic topological information about the network, to precise description of the

networks dynamics, including gene regulation (Wiechert, 2002). At present, detailed information

is only available for relatively small networks, while genome-scale models of cell metabolism are

still coarse.

Structural modelling is the simplest way to analyze metabolic networks that still yields valu-

able insights into the organisation and underlying building principle of the network topology. Only

the set of participating metabolites and the set of reactions, describing the conversion of metabo-

lites, are needed to build a graph representation of the metabolic network. Several variants for

constructing the graph are possible, each of which can be directed according to reversibility and

irreversibility of reactions. In a compound graph, each node corresponds to a metabolite and an

edge is drawn between two nodes if the corresponding metabolites are substrate and product of a

shared reaction. An almost dual description is given by the reaction graph. Here, each node repre-

sents a reaction and two nodes are connected by an edge if the product of one reaction serves as a

substrate for the other reaction. Alternatively, the metabolic network can be modelled as bipartite

graph, i.e. the set of nodes is split into two parts, representing the pool of metabolites and reac-

tions, respectively. Here, edges only occur between nodes of different parts. A metabolite node is

connected to a reaction node if the metabolite is either substrate or product of that reaction. Finally,

the compound graphs can be extended to hypergraphs by allowing edges to not only connect two

single nodes but two sets of nodes and hence allows for a consistent description of multi-substrate

reactions. Both compound and reaction graphs are ambiguous in the sense that different metabolic

networks can have the same compound or reaction graph. This problem is overcome by bipartite

or hypergraph representation. Furthermore, every bipartite graph can be uniquely converted into

a hypergraph, and vice versa (Deville et al., 2003). Well-established methods from graph theory

can be used to analyze the graph representation of a metabolic network with respect to degree

distribution, clustering coefficients, shortest paths and occurrence of motifs and modules, as will

be described in Section 1.4.

Structural models can be enriched by incorporating the stoichiometry of the metabolic net-

work, i.e. the quantitative relationship between substrates and products of each balanced reaction.

For many metabolic networks, even at a genome-scale level, the stoichiometry is known. It can

be summarized in a compact form as a stoichiometric matrix N . Each row and each column of

N corresponds to a metabolite and a reaction, respectively. The entries of N describe how many

molecules of each metabolite are produced or consumed by each reaction. As reaction rates take

place on a much faster time scale than for instance gene regulation, a pseudosteady state assump-

tion is justified (Llaneras and Picó, 2008). Hence, the metabolite concentrations are constant.
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Describing the fluxes through all reactions by ν, the steady state condition can be formulated as

N · ν = 0. Consequently, the null space of N defines the set of all flux vectors which satisfy the

steady state condition. Using thermodynamic information, i.e. knowledge about the irreversibil-

ity of reactions, the set of feasible flux vectors can be further restricted to the so-called flux cone

(Schilling et al., 1999). It is of high interest to describe the flux cone in biologically-relevant math-

ematical terms, as this might identify structural and functional building blocks of the metabolic

network. One prominent approach uses elementary flux modes, or EM for short (Schuster et al.,

1999). An EM is defined as a flux vector satisfying the steady state condition as well as additional

constraints on irreversible reactions. Furthermore, an EM is elementary in the sense that it cannot

be decomposed into smaller EMs. Hence, each EM describes a minimal set of reactions that can

operate at steady state. For a given metabolic network, the set of EMs is unique, but increases

drastically with network size. A different approach, called extreme pathways, was presented by

Schilling et al. (2000). Here, by splitting every reversible reaction into a forward and a backward

reaction, the flux cone is guaranteed to be pointed. The extreme pathways correspond to the ex-

treme rays of the pointed flux cone. It can be shown that the set of extreme pathways is a subset of

the set of EMs and that both sets are identical if the metabolic network does not contain reversible

reactions (Klamt and Stelling, 2003; Papin et al., 2004). Recently, a new approach using an outer

description of the flux cone – in contrast to EMs and extreme pathways which are both inner de-

scriptions – was introduced by Larhlimi and Bockmayr (2008). This description is minimal and

unique and significantly smaller compared to those obtained by EMs or extreme pathways.

Flux balance analysis (FBA) incorporates further constraints on the flux cone, such as maxi-

mal flux rates for every reaction (Varma and Palsson, 1994). FBA predicts the actual flux within

a metabolic network under the assumption that every metabolic network evolved towards opti-

mality with respect to an objective function. Although the true objective function is not known,

good predictions can be obtained from optimizing for biomass production using standard tech-

niques from linear optimization (Edwards et al., 2001). The response of a metabolic network

after mutation, especially after gene knockouts, can be analyzed by two extensions of FBA. One

approach, minimization of metabolic adjustment (MOMA), uses quadratic optimization to mini-

mize the Euclidean distance of flux vectors for the initial and the mutated network (Segrè et al.,

2002). The other approach, regulatory on/off minimization (ROOM), tries to minimize the number

of significant flux changes by using a mixed integer optimization problem (Shlomi et al., 2005).

While MOMA is more appropriate to describe the transient behaviour directly after gene knockout,

ROOM yields better predictions for the final behaviour after metabolic adjustment.

As reaction rates vary over time, metabolic networks constitute complex dynamic systems,

which is accounted for by kinetic modelling of metabolic networks. Here, the change of metabo-

lite concentrations over time is described as δS
δt = N · ν(S, k), where S denotes the vector of

concentrations, N the stoichiometric matrix, ν the reaction rates and k the vector of kinetic pa-

rameters for all reactions. Several kinetic properties are of interest, especially the stability of

steady states, which determines the robustness of the system under perturbations. The stability of

a steady state can be determined by analyzing the eigenvalues of the Jacobian matrix (Heinrich

and Schuster, 1996). If a metabolic network operates at steady state, it must be stable, as the sys-

tem is constantly perturbed. Furthermore, the number of steady states a network can obtain gives

insights about functionality under changing external conditions. Bifurcation analysis elucidates

the influence of the kinetic parameters k on the system and identifies critical parameter values at

which the behaviour changes drastically, e.g. switching from a stable to an unstable steady state

or allowing oscillations.

Metabolic control analysis (MCA) is a successful and widely used approach to describe the

distribution of the control of fluxes and metabolite concentrations throughout a given metabolic

network (Kacser and Burns, 1973; Heinrich and Rapoport, 1974). One of the main results of
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MCA demonstrates that control can be shared between different reactions, and, therefore, a rate

limiting step cannot be found in every metabolic network. MCA defines control coefficients, which

describe the relative change of fluxes and metabolite concentrations at steady state. It can be shown

that the control coefficients for fluxes and for concentrations sum up to 1 and 0, respectively,

stressing the analytical power and rigidity of MCA. Furthermore, local response of enzymes to

changing conditions like varying substrate or product concentrations are quantified in so called

elasticities. The elasticities are directly linked to the control coefficients by mathematically proven

connectivity theorems. More details and extensions to MCA are given in Heinrich and Schuster

(1996).

Explicit rate equations for every reaction are necessary if not only steady state behaviour but

also time courses are to be analyzed. These rate equations constitute a system of ordinary differ-

ential equation, but can be extended for instance by algebraic equations to describe fixed relations

between metabolites or stochastic differential equations to account for effects caused by molecules

which only occur at very low numbers. Numerical integration can then be used to elucidate tran-

sient behaviour of metabolic networks. Several standard reaction rates derived from molecular

enzyme mechanisms are available, mass-action kinetics and Michaelis-Menten kinetics being the

most prominent ones. The kinetic parameters of each reaction are either obtained from literature or

calculated by fitting to experimental data. Where available, knowledge about allosteric regulation

or influence of external parameters (such as pH) is incorporated into the rate equations by careful

modifications. However, such detailed knowledge can only be obtained for very few reactions,

rendering detailed kinetic modelling at a genome-scale level a challenging endeavor.

1.3.3 Databases

The amount of available data either from biological experiments or from theoretical predictions

related to biological systems in general and metabolic networks in particular is ever increasing.

Sophisticated databases are inevitable to organize, sort and manage this huge amount of data and

provide useful information. Several database projects dealing with various aspects of metabolic

networks are already successfully used as tools for network analysis. Results obtained from

such databases, especially genome-scale reconstruction of metabolic networks, have to be eval-

uated carefully due to non-unique metabolite identifiers and unbalanced reactions found in many

databases (Poolman et al., 2006). KEGG (Kanehisa et al., 2004) is a well-established collection

of databases and presents, among other things, information about many metabolic pathways, de-

fined as known network of functional significance. The MetaCyc database (Caspi et al., 2006)

provides more than 1100 curated metabolic pathways from primary and secondary metabolism

for over 1500 different organisms. Information on reactions and their regulation, metabolites and

enzymes together with their encoding genes is provided. Reactome (Joshi-Tope et al., 2005) is

a curated database focusing on pathways from Homo sapiens and provides advanced graphical

user interfaces. Biochemical and molecular information on all classified enzymes can be found in

the BRENDA database (Chang et al., 2009). The BioModels database (Novère et al., 2006) ac-

counts for the steadily increasing number of mathematical models for metabolic pathways. Here,

the models mainly consist of systems of differential equations together with the corresponding

set of kinetic parameters. The JWS-online repository for metabolic network models additionally

provides an interface to simulate and analyze models easily (Olivier and Snoep, 2004).

1.4 Network analysis

Networks of various size and composition arise in various fields of biology. This raises the ques-

tion of what biological conclusions can be inferred from the structure of these networks (Alm and
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Arkin, 2003). Surprisingly, many biological networks, especially those originated in cell biology,

exhibit characteristics, which are also found in other complex networks, arising in technological

or social domains.

Terms and definitions from graph theory are used to identify and describe these recurrent

characteristics. The degree of a node within a network is defined as the number of edges to

other nodes. A path between two nodes a and b is given by a sequence of nodes (x1, . . . , xn),
such that x1 = a, xn = b and there exists an edge between xi−1 and xi for all i = 2, . . . , n.

Shortest paths are defined straightforward. The neighbourhood of a node a is defined as the set

of nodes connected to a. The ratio between the number of edges connecting the nodes within the

neighbourhood divided by the number of edges that could possibly exist between them is called

the clustering coefficient of a.

One recurrent characteristic is the small-world property (Watts and Strogatz, 1998; Wagner

and Fell, 2001). A network exhibits this property if the average shortest path length is shorter and

the average clustering coefficient is larger than expected from random graphs. As a consequence,

any kind of information or signal can traverse a small-world network relatively fast. Another

frequent characteristic is the shape of the degree distribution P (k), which describes the fraction of

nodes with degree k, i.e. the probability of a randomly chosen node to have degree k. If the degree

distribution follows a power law, i.e. P (k) ∼ k−γ for a positive exponent γ, then the network is

said to be scale-free. Various biological networks have been shown to be scale-free (Barabási and

Oltvai, 2004; Jeong et al., 2000). Furthermore, due to the power law degree distribution, scale-free

networks exhibit a small number of nodes of high degree, referred to as hubs (Albert, 2005). These

hubs are thought to serve specific purposes depending on the network type. Scale-free networks

are very susceptible to failure of hubs, but highly robust to untargeted loss of randomly chosen

nodes (Jeong et al., 2001). Furthermore, there is practical evidence that certain combinatorial

optimization problems become tractable on networks of power law degree distribution (Ferrante

et al., 2008). However, some authors raise concern about biological networks truly being scale-

free, because the experimental data used to obtain these networks is highly biased (Hakes et al.,

2008; Khanin and Wit, 2006).

Besides being scale-free, many biological networks are found to be modular. Here, a module

– also named community – is not defined as a strictly separated subnetwork, but rather as a region

where nodes are highly connected to other nodes of the very same region and sparsely connected to

the rest of the network (Girvan and Newman, 2002). Modularity also allows for characterising the

role of each node, which might vary from peripheral nodes of low degree with all links to the same

module, to nodes which connect different modules, through to hubs connected homogeneously to

all modules (Guimerà and Amaral, 2005). The occurrence of each node type can in turn be used

to compare different complex networks (Guimerà et al., 2007a). In addition, nodes do not have to

belong to a single module alone, but can be part of several modules, which leads to a hierarchical

organisation of biological networks (Ravasz et al., 2002).

An effective method to analyse complex networks is to determine building blocks or so called

motifs of the network. Motifs are subnetworks that occur more often in a given network than

expected at random. Due to computational limitations, the networks are only scanned for very

small motifs. Nevertheless, motifs with a well-defined function can be found in gene regulatory

networks. For instance, small scale repetitive patterns associated with reduced response time of

autoregulated genes or bistability for feedback control (Lee et al., 2002), or feed-forward loops,

which account for processing external signals (Shen-Orr et al., 2002).

The work of Barabási and Albert (1999) sheds light on the underlying principles of network

structure and identifies two simple laws, which govern the generation of complex networks. First,

these networks result from a growth process, i.e. the number of participating nodes is not constant

but increases over time. For instance, as an organism evolves over an evolutionary time scale, the
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number of genes and hence the size of the gene regulatory network increases. Second, new nodes

tend to link to already highly-connected nodes, a phenomenon known as preferential attachment.

Based on gene duplication (Teichmann and Babu, 2004), a more biological explanation for the

structural properties of biological networks is given by Bhan et al. (2002).

1.5 Thesis outline

This work studies several problems concerning metabolic network modelling and provides means

to bridge the gap between different levels of abstraction. First, problems regarding the automatic

reconstruction of genome-scale network structures are addressed. Second, the network structure

is used to analyze biosynthetic and dynamic capabilities of metabolic networks. Finally, a strategy

is presented, which helps to develop kinetic models even for large networks by identifying crucial

reactions.

Chapter 2 covers general aspects of automated reconstruction of genome-scale metabolic net-

works and analyses the computational complexity of this problem (published in the present form as

Nikoloski et al. (2008a)). Chapter 3 examines structural methods to infer biosynthetic capabilities

of metabolic networks (Borenstein et al., 2008). Especially the problem of finding a minimal set of

substrates that have to be supplied to a metabolic network in order to produce certain predefined

target compounds is elucidated (published as Nikoloski et al. (2008b)). In Chapter 4, chemical

reaction network theory is used to compare different models of the Calvin cycle regarding their

capability to obtain multiple steady states. Although this method is based on the assumption of

mass-action kinetics, valuable insights about multistability can be obtained already from the struc-

ture of metabolic networks. Chapter 5 introduces structural kinetic modelling, a sampling tech-

nique to infer kinetic properties without knowing the explicit rate equations (published as Grimbs

et al. (2007a)). Furthermore, this method provides a ranking of reactions according to their im-

pact on stability of a given steady state. This method is applied to and evaluated on a model of

human erythrocytes. Chapter 6 compares strategies for kinetic modelling and uses the method

presented in the previous chapter to obtain models of suitable accuracy with moderate effort. This

approach is exemplified by hybrid models for hepatocytes and erythrocytes (published as Bulik

et al. (2009a)). Finally, a general conclusion is given in Chapter 7.





Chapter 2

Metabolic networks are NP-hard to

reconstruct

High-throughput data from various omics and sequencing techniques have rendered the automated

metabolic network reconstruction a highly relevant problem. Our approach reflects the inherent

probabilistic nature of the steps involved in metabolic network reconstruction. Here, the goal is to

arrive at networks which combine probabilistic information with the possibility to obtain a small

number of disconnected network constituents by reduction of a given preliminary probabilistic

metabolic network. We define automated metabolic network reconstruction as an optimization

problem on four-partite graphs (nodes representing genes, enzymes, reactions, and metabolites)

which integrates: (1) probabilistic information obtained from the existing process for metabolic

reconstruction from a given genome, (2) connectedness of the raw metabolic network, and (3)

clustering of components in the reconstructed metabolic network. The practical implications of

our theoretical analysis refer to the quality of reconstructed metabolic networks and shed light on

the problem of finding more efficient and effective methods for automated reconstruction. Our

main contributions include: a completeness result for the defined problem, polynomial-time ap-

proximation algorithm, and an optimal polynomial-time algorithm for trees. Moreover, we exem-

plify our approach by the reconstruction of the sucrose biosynthesis pathway in Chlamydomonas

reinhardtii.

2.1 Introduction

The availability of fully sequenced genomes, coupled with the development of effective bioin-

formatics methods for gene annotation, offers the possibility for reconstructing entire metabolic

networks. The problem of metabolic network reconstruction is clearly related to the precise un-

derstanding of the genetic basis for metabolic organization and regulation. While preliminary

metabolic networks have already been reconstructed solely based on gene annotation (Ma and

Zeng, 2003; Romero et al., 2005; Reed et al., 2006), this process may discard some available in-

formation: It is often the case that the function of genes is determined by the highest similarity

obtained through comparison to other already annotated organisms. However, in such practice,

alternative gene functions may result in smaller but still significant similarity (Green and Karp,

2004).

The following steps are crucial for reconstructing a metabolic network based on the genome

of a given organism: (I) establishing gene models, (II) sequence similarity search (e.g., BLAST),

(III) gene product annotation, with the help of available enzyme databases (e.g., KEGG, Expasy,

Brenda), (IV) enzyme-reaction association, with the help of reaction databases (e.g., KEGG LIG-

AND (Goto et al., 2002)), and (V) pathway mapping. The outcome from steps (I)-(IV) results in
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a preliminary metabolic network given by sets of: enzyme-gene relationships, reaction-enzyme

relationships, reactions, and metabolites, which make up the metabolic network. Finally, in step

(V), the identified reactions are mapped onto a collection of pathways (e.g., from KEGG (Kane-

hisa et al., 2004) or MetaCyc (Caspi et al., 2006)) to obtain a raw metabolic network. Currently,

this network is taken to be the reconstructed metabolic network for the organism whose genome

is considered as input to the process.

The preliminary metabolic network is furthermore carefully calibrated by the experimental

results reported in literature. This iterative manual process can be labor-intensive and time-

consuming. Even for fairly simple microorganisms such as Escherichia coli (Reed et al., 2003)

and Saccharomyces cerevisiae (Duarte et al., 2004), the metabolic networks reconstructed with

high-quality have taken years to assemble. There are ongoing research efforts to use the same

reconstruction methodology on the human genome, with variable success directly related to the

complexity of this task (Romero et al., 2005; Ma et al., 2007).

Assembling the preliminary metabolic network often employs prediction-based bioinformatics

methods and is, therefore, probabilistic. For instance, gene annotation is based on prediction,

yielding enzyme-gene relationships explicitly weighted with the accuracy of prediction (e.g., in the

range (0, 1]). Moreover, there may be an ambiguous relationship between enzymes and reactions

in the reaction databases, in the sense that an enzyme in a given organism may not catalyze a

reaction which is catalyzed by the same enzyme in another organism (Wu et al., 2006; Wang

et al., 2006). Hence, in the absence of precise human-curated knowledge, the enzyme-reaction

relationships for a given organism are also weighted with the accuracies of their computational

predictions. A threshold can be imposed to include the most relevant relationships. However, it is

often the case that only the highest-value predictions are included in the reconstructed metabolic

network. Therefore, the possibility that, for instance, a given gene codes for more than one enzyme

or that an enzyme catalyzes more than one reaction is often neglected. Finally, in step (V), only a

portion of a given pathway may be included, resulting in a disconnected metabolic network. This

shortcoming of the reconstruction process points at necessary clustering of connected reactions to

show their functional relationships.

Therefore, we can conclude that preliminary metabolic networks, taken as the reconstructed

counterparts, are often incomplete, since a large portion of available information is ignored by

overlooking its probabilistic nature. As a result, much manual validation and correction is needed.

To allow for inclusion of information with varying accuracy of prediction, here, we address the

problem of automated reconstruction of metabolic networks. We believe that there is a need for

formal definition of metabolic network reconstruction, whose analysis may result in new insights

of how to approach and resolve the problem at hand.

The existing approaches for reconstructing metabolic networks include (constraint-based) el-

ementary modes (Stelling et al., 2002) and flux balance analysis (FBA) (Edwards and Palsson,

2000a; Price et al., 2003). Elementary modes correspond to the smallest subnetworks that can

operate in steady state. FBA uses linear programming to obtain a single (not necessarily unique)

solution to an optimization problem (e.g., with growth per substrate uptake as a function to be

maximized) and can be used in the analysis of specific cell behaviors. On the other hand, ele-

mentary modes allow for investigation of the space of all meaningful physiological states, and

can be used to define control-effective fluxes via their respective efficiencies (relating a mode’s

output to the cost for establishing the mode). In addition, elementary modes can address cellular

regulation and can characterize some aspects of cellular behavior from metabolic network topol-

ogy. We point out that both approaches are structural in the sense that they require the topology

of a putative metabolic network together with its stoichiometry in order to elucidate mutant phe-

notypes, analyze network robustness, and to quantitatively predict functional features of genetic

regulation. The approach described here aims at metabolic network reconstruction which satisfies
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the biochemical balance constraints and relies solely on graph-theoretic concepts.

Contributions and organization. We define the automated reconstruction of metabolic net-

works as an optimization problem in Section 2.2. Our approach is exemplified in Section 2.3

by the reconstruction of the sucrose biosynthesis pathway for Chlamydomonas reinhardtii. The

results regarding the hardness of the problem are presented in Section 2.4. The practical implica-

tions of our theoretical analysis refer to the quality of reconstructed metabolic networks and shed

light on the problem of finding more efficient and effective methods for automated reconstruction.

Such methods can result in biologically relevant networks that may speed up the computational

analysis, but still require considerable effort for experimental validation. An optimal polynomial-

time algorithm for the problem restricted to trees is described and analyzed in Section 2.5, while

approximation results are shown in Section 2.6.

2.2 Problem definition

For the purpose of defining the formalism for metabolic network reconstruction, we require the

assembly of a preliminary metabolic network, which we call raw metabolic network. One tech-

nique for obtaining the raw metabolic network includes the steps described in Section 2.1: after

genes have been determined in step (I) and their similarity to genes from other organisms has been

established in step (II), the function of genes can be assigned in step (III). Step (III), in fact, results

in a set of enzymes that can catalyze a set of reactions. By using existing pathway databases,

one can then identify to which pathway(s) the found reactions belong. Often, the existing gene

annotation may cover a portion of the pathways, i.e., only few of the pathways’ reactions are ini-

tially included in the raw metabolic network. Other reactions may be included based on different

approaches: usage of experts’ knowledge or taxonomic distance between enzymes on pathways

from the used database (Peregrin-Alvarez et al., 2003). In order to allow for stoichiometrically

balanced reconstructed network, the raw metabolic network should not include stoichiometrically

unbalanced reactions proceeding from public databases. Moreover, based on metabolomic studies,

the raw metabolic network can be extended to include previously not present metabolites. In the

latter case, the raw metabolic network can include reactions that use these metabolites together

with the corresponding enzymes and known genes.

Here, the raw metabolic network is represented by a graphG, irrespective of the methods used

in its assembly. The node set ofG is a union of pairwise disjoint node sets (partitions) representing:

genes, enzymes, reactions, and metabolites. The edge set of G is a union of pairwise disjoint

edge sets describing gene-enzyme, enzyme-reaction, and reaction-metabolite relationships. Each

edge has a weight, representing the accuracy of prediction for a particular relationship (or, its

certainty). We assume that the accuracy is given by a real number from the interval (0, 1]. Some

possible methods to obtain the edge-weights include transformation of the E-value or the BLAST

score on the interval (0, 1] (Green and Karp, 2004) or usage of recent databases for biochemical

substructures and prediction of reaction-metabolite relationships (Kotera et al., 2008). However,

the formulation of our problem and the proposed approximations are independent of the employed

methods for the edge-weights. Edges of weight 0 are not included in the graph G.

In addition, if a reaction is spontaneous or is included without gene evidence, the raw metabolic

network is extended to include dummy gene and enzyme nodes corresponding to the reaction. We

point out that reactions included from public databases may not be chemically balanced (Poolman

et al., 2006). In this case, the raw metabolic network may still include some of the chemically

unbalanced reactions upon an expert’s opinion and in accordance with biochemical knowledge.

However, the formalism presented here does not aim at resolving this known issue of the publi-

cally available human-curated databases.
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We have chosen the four-partite graph representation as it provides the minimum number

of different entities sufficient for metabolic network reconstruction. The included entities are

sufficient for our task since the measurement of their respective quantities (e.g., gene expression,

fluxes, or metabolite concentrations) yields the minimum effort for validation of the reconstructed

network. The graph-theoretic representation employed here can be easily extended to include

other biologically relevant entities, such as mRNA, by providing an additional node-partition for

the new entity. However, we point out that our goal does not include elucidation of gene-regulatory

relationships and, thus, mRNA is presently excluded.

We assume that the biosynthetic capabilities of an organism are determined by the connect-

edness of its metabolic pathways; therefore, the reconstructed metabolic network we extract from

the raw network is based on the criterion of connectedness. In this respect, our approach to recon-

struction can be regarded as a reduction of a given raw metabolic network to obtain the topology

(structure) of a metabolic network for an investigated organism.

Automated metabolic network reconstruction is then the problem of extracting a subgraph, H ,

from a given raw metabolic network, G. Clearly, there are different types of subgraphs that can be

extracted depending on the optimization criterion used. Here, we employ connectedness, cluster-

ing, and high accuracy of the included relationships among metabolites, enzymes, and reactions

as biologically relevant criteria that subgraph H should satisfy.

We use the weakest definition of clustering via connectedness, already found as relevant for

metabolic network reconstruction from pathway mapping (Duarte et al., 2007). By this definition,

a node set represents a cluster if and only if it is connected. The weight of a cluster is simply the

sum of edge-weights included in the cluster. Due to sparse gene annotation with the increasing

complexity of an organism, one would also like to impose a bound (threshold) on the weight

of the clusters as the number of reactions that may not be connected to the rest of the network

(via a path from a gene to a metabolite) becomes larger. Maximization based on the weight of

the cluster would be of no use for the purpose of metabolic network reconstruction, as the entire

raw metabolic network is the solution to such optimization (analogous to the current practice in

metabolic network reconstruction). The idea that accuracy should be maximized could be included

in the formulation of our problems through a bound that must be satisfied by each of the clusters

included in a solution. On the other hand, minimization leads to a smaller number of clusters and,

therefore, implies a network of higher overall connectedness. We point out that the choice of the

bound can result in a grouping of small clusters which must be connected (to signify functional

relations), thus rendering the reconstruction as an iterative process starting with a small value for

the bound.

To address the hardness of automated metabolic network reconstruction, we define the general

problem and a biologically meaningful variant of automated metabolic network reconstruction.

In the general problem, we require that H: (1) contains all nodes (genes, enzymes, reactions,

and metabolites) and (2) has a small number of clusters of weight at least as large as some imposed

threshold. The problem of automated metabolic network reconstruction is then that of finding a

weight-constrained generalized edge cover, since all genes and reactions (with their enzymes and

metabolites) should be present in the reconstructed network, i.e., subgraph H .

It is often the case that a subset of metabolites present in an organism can be identified by

metabolomic techniques (Bölling and Fiehn, 2005). Knowledge about genes involved in metabo-

lism is readily available and may imply the subset of genes that should be reflected in the recon-

structed metabolic network. Therefore, in the biologically meaningful problem we require that H:

(1) contains this (possibly empty) subset of genes, to account for metabolic functions, (2) includes

all identified metabolites, and (3) contains those reactions and, consequently, the corresponding

activating enzymes, that will ensure connectedness and clustering of the network in the sense of

the general framework described above. As a result, the biologically meaningful problem is a
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version of the general problem restricted to a four-partite graph with some additional constraints,

explained in the formulation, shown below.

Given a graph G, an edge cover of G is a subset of edges S such that each node in G is

incident on an edge in S. In combinatorial terms, our problem has the following formulation:

Given a weighted graph G, we seek to find an edge cover S, such that each connected component

of the induced subgraph G[S] has weight at least B, where B is a given weight bound. An edge-

induced subgraph is a subset of edges of G together with any nodes that are incident on the given

edges. The reconstructed metabolic network is given by the induced subgraph G[S].

Formally, we address the following problem: Let G = (V,E) be a connected graph and let

w : E(G)→ R
+, so that w(e) denotes the weight of an edge e ∈ E(G). For a set of edges S, let

V (G[S]) denote the set of nodes in the graph induced by S in G.

GENERAL AUTOMATED METABOLIC NETWORK RECONSTRUCTION (GAMNR)

INSTANCE : Given a weighted graph G = (V,E), with edge-weights in the range

(0, 1], and a positive bound B.

PROBLEM : Find an edge cover S ⊆ E(G) such that the weight of each connected

component Hi of H = G[S] is at least B.

MEASURE : Weight of S, denoted by αw1,B .

(min)

For the biologically meaningful problem, we have the following formulation:

BIOLOGICALLY MEANINGFUL GAMNR (BMAMNR)

INSTANCE : Given a weighted four-partite graph G = (V,E), with edge-weights in

the range (0, 1], V (G) = M ∪R∪Z∪N , (M , set of metabolites, R, set

of reactions, Z, set of enzymes, and N , set of genes), a subset of genes

N ′ ⊂ N , a subset of metabolites M ′ ⊂M , and a positive bound B.

PROBLEM : Find a subset of edges S ⊆ E(G) such that the following five conditions

are satisfied:

1. For every u ∈ N ′, there exists an edge e ∈ S, such that e is

incident on u, i.e., every gene in the given subset N ′ is in the

reconstructed network;

2. For every u ∈ M ′, there exists an edge e ∈ S, such that e is

incident on u, i.e., every metabolite in the given subset M ′ is in

the reconstructed network;

3. For every e ∈ S, there exists a path Pxy in S on four nodes that

passes through e, such that x ∈ N and y ∈ M , i.e., each reac-

tion included in the solution consumes or produces at least one

metabolite and is catalyzed by at least one enzyme produced by

at least one gene;

4. For every w ∈ R ∩ V (G[S]) and any x ∈M , x, a neighbor of w,

the edge incident on x and w is in S, i.e., if a reaction is included

in the solution, then all of its metabolites are also in the solution;

5. The weight of each connected components Hi of H = G[S] is at

least B.
MEASURE : Weight of S, denoted by γw1,B , such that γw1,B > 0.

(min)
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Figure 2.1: Illustration of GAMNR and BMAMNR. Contrived raw metabolic network with edge

weights between 0 and 1 is shown in A. The nodes represent genes, enzymes, reactions and

metabolites (from top to bottom). The optimal solution for GAMNR (with boundB = 1.2) on this

example graph is highlighted in B by bold edges. The optimal solution consists of two separate

components, which can be extended to the minimum spanning tree by adding the dotted edge. For

BMAMNR, with N ′ = N and M ′ = M and a bound B = 1.2, two distinct optimal solutions can

be found (C). Both solutions (bold edges and dotted edges) consist of a single component each.

If just the highest value predictions for gene-enzyme relations are included, the solution would be

given by the gray edges, which lead to a disconnected network.

Figure 2.2: Choosing a bound in BMAMNR. The notation is the same as in Figure 2.1. Contrived

raw metabolic network with edge weights between 0 and 1 is shown in A. For the instance of

BMAMNR, N ′ and M ′ consist of the nodes marked in gray, which are to be necessarily included

in the solution. Note that a solution may as well contain other gene and metabolite nodes. The

optimal solution of weight γw1,B = 7.4 for bound B = 3 is disconnected, depicted with bold

edges in (B). Increasing the bound to B = 7.5 leads to a connected optimal solution of weight

γw1,B = 7.6, presented in (C).

Inclusion of condition 4 in the definition of BMAMNR together with the stoichiometrically

balanced construction of the raw metabolic network guarantees that any reaction that is in the

solution always appears with all of its metabolites (i.e., educts and products). As a result, a network

reconstructed according to the conditions of BMAMNR is guaranteed to be stoichiometrically

balanced.

Figure 2.1 illustrates our definitions of GAMNR and BMAMNR by depicting the optimal so-

lutions on an artificial raw metabolic network. Figure 2.2 demonstrates the influence of the value

for the bound B on a desired property of the reconstructed network (e.g., connectedness). The

connectedness arises as a result of the increase in the value of B from 3 to 7.5. We envision that

a practically applicable heuristic would start from a small value for B followed by an iterative in-

crease ofB based on expertise. Note that an edge-weight of 1 does not necessarily imply inclusion
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CHLRE CHLRE CHLRE CHLRE CHLRE CHLRE

18029 78737 81483 119219 149366 176209

5.4.2.2 1 0.33 1 1 0.34 0.984

2.7.7.9 0.41 1 0.41 0.04 0 0.83

2.4.1.14 0.08 0 0.31 0 0 1

2.4.1.13 0.11 0 0.38 0 0 0.87

3.1.3.24 0 0.04 0 0 1 0.2

Table 2.1: Transformed E-values on the interval from 0 to 1 for six genes from Chlamydomonas

reinhardtii and five possible enzymes.

of the edge in the solution. Moreover, the weights of edges incident on a given node do not sum

up to 1 as the weight represents accuracy of a relationship.

In Section 2.4 we establish that GAMNR and BMAMNR are NP-hard for any bound B, while

in Section 2.6 we give a polynomial-time approximation algorithm with a factor of 2 for the

unweighted case and a factor that depends on the bound B and the maximum edge-weight in the

weighted case for the GAMNR problem. Complexity results pertinent to BMAMNR are related

to the complexity of the GAMNR problem. We see the design of approximation algorithms for

GAMNR as a first step towards obtaining efficient approximation algorithms for BMAMNR.

2.3 Reconstruction of sucrose biosynthesis pathway in Chlamydomo-

nas reinhardtii

To illustrate the usefulness of the formalism presented in Section 2.2, we show the process of

reconstructing the sucrose biosynthesis pathway in Chlamydomonas reinhardtii as previously de-

scribed in May et al. (2008). The raw metabolic network for the sucrose biosynthesis pathway

in Chlamydomonas reinhardtii was obtained by first conducting a sequence similarity search for

six genes: CHLRE 18029, CHLRE 78737, CHLRE 81483, CHLRE 119219, CHLRE 149366,

and CHLRE 176209. Table 2.1 shows the transformed E-values on the interval from 0 to 1.

Five candidates for the reaction partition were identified, including: enzymatic reaction 5.4.2.2

catalyzed by phosphoglucomutase, 2.7.7.9 catalyzed by glucose-1-phosphate uridylyltransferase,

2.4.1.14 catalyzed by sucrose-phosphatase synthase, 3.1.3.24 catalyzed by sucrose-phosphatase,

and 2.4.1.13 catalyzed by sucrose synthase. For the purpose of illustrating the approach, we also

include the spontaneous reaction 5.1.3.15 to the raw metabolic network. Since a spontaneous re-

action should appear in any solution, we add a dummy gene node (CHLRE dum) connected via

an edge to 5.1.3.15. The raw metabolic network is presented in Figure 2.3. All weights of edges

between the enzyme partition (Z) and the reaction partition (R) are 1. The same holds for the

weights of edges between the reaction partition (R) and the metabolite partition (M ). For the

instance of BMAMNR, we set N ′ = N , i.e., all genes, due to expertise, are to be included in the

solution (Figure 2.4).

For the bound B = 22, the optimal solution of weight γw1,B = 22.83, found by exhaustive

search, is connected and includes all edges incident on reactions r1 to r5 and the edges of minimum

weight incident on each of the seven genes. Note that r6 is not in the optimal solution. This

solution represents exactly the sucrose synthesis pathway proposed by May et al. (2008). The

optimal solution of weight γw1,B = 28 for the instance of BMAMNR with bound B = 28 is given

by the bold edges as presented in Figure 2.3. For the same bound, a solution for BMAMNR of

weight γw1,B = 28.06 that includes all enzymes is highlighted by dashed edges, also shown in

Figure 2.3.
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Figure 2.3: Reconstruction of sucrose biosynthesis pathway in Chlamydomonas reinhardtii. The

raw metabolic network, G, with edge weights between 0 and 1 and nodes representing genes, en-

zymes, reactions and metabolites (from top to bottom). All weights of edges between the enzyme

partition (Z) and the reaction (R) partitions are 1. The same holds for the weights of edges between

the reaction partition (R) and the metabolite partition (M ). For the sake of clarity, the weight of

these edges are not shown here. The reaction associated with enzyme 5.1.3.15 is spontaneous; its

inclusion in any solution requires adding a dummy gene node CHLRE dum. Here, N ′ = N , i.e.,

all genes should be included in the solution. The optimal solution, found by exhaustive search, of

weight γw1,B = 28 for the instance of BMAMNR with bound B = 28 is given by the bold edges.

For the same bound, a solution for BMAMNR of weight γw1,B = 28.06 that includes all enzymes

is highlighted by dashed edges. Both solutions (bold edges and dashed edges) consist of a single

component each.

2.4 Complexity of automated metabolic network reconstruction

There are several problems closely related to the GAMNR problem: The most general problem–

set cover–is that of computing a minimum weighted subfamily F ′, given a family F of weighted

subsets of a base set U , such that every element of U is covered by some subset in F ′. The version

with set sizes bounded above by a constant k is known to be NP-hard (Karp, 1972) as well as MAX

SNP-hard (Papadimitriou and Yannakakis, 1991). The specializations of the set cover problem for

(weighted) graphs take the form of (weighted): edge cover, node cover, node dominating set and

edge dominating set problems and their restrictions in regards to connectedness. Of these, only the

weighted edge cover problem is known to be solvable in polynomial time (Edmonds and Johnson,

1970; Murty and Perin, 1982; Pulleyblank, 1996). Moreover, there is a clear connection between

edge cover and matchings (Gallai, 1959) as well as generalized matching and the corresponding

edge cover (Kirkpatrick and Hell, 1978) — a result we will repeatedly use in the next section.
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Figure 2.4: Sucrose biosynthesis pathway in Chlamydomonas reinhardtii. General sucrose

biosynthesis pathways. In Chlamydomonas reinhardtii, the sucrose biosynthesis is more likely

to operate via the reactions catalyzed by sucrose-phosphate synthase 2.4.1.14 and sucrose-

phosphatase 3.1.3.24 as proposed by May et al. (2008). The diagram is extracted from MetaCyc

(Caspi et al., 2006). It shows all metabolites, reactions with their corresponding EC numbers, and

the annotated genes.

The generalized matching problem can be cast as a weighted tree packing problem, called B-

tree packing, first discussed in Kirkpatrick and Hell (1978):

WEIGHTED TREE PACKING

INSTANCE : Given a weighted graph G = (V,E), with edge-weights in the range

(0, 1], and a positive bound B.

PROBLEM : Find a partition of V (G), P = {P1, . . . , Pk}, such that each G[Pi],
1 ≤ i ≤ k, contains a tree of weight at least B.

MEASURE : Number of subsets in the partition, denoted by βw1,B .

(max)

Given an unweighted graph G, the problem of finding a B-tree packing of maximum size is

already known to be NP-hard for B ≥ 2 (Kirkpatrick and Hell, 1978). For B = 1, the generalized

matching problem is equivalent to finding a maximum matching in G. According to the notational

convention from complexity theory, we will useB whenever we argue the complexity of GAMNR

and BMGAMNR. In the analysis of our approximation algorithms, B is substituted with t, i.e.,

t = B.

We review the following known Gallai type result connecting the maximum size of t-tree

packing to finding a minimum edge cover which induces connected components of size at least t
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from Fernau and Manlove (2006):

Theorem 2.4.1. Let G = (V,E) be a connected graph, where n = |V |, and let 1 ≤ t ≤ n − 1.

Then, for the minimum edge cover which induces a graph with connected components of size at

least t, α1,t and the maximum size of a t-tree packing β1,t the following holds:

α1,t + β1,t = n.

From the previous theorem and the result by Kirkpatrick and Hell, we have the following

corollary:

Corollary 2.4.2. The problem GAMNR is NP-hard for any positive B.

Proof. The restriction B = 2 and G a connected unweighted graph is NP-hard. GAMNR with

all weights 1 and bound B = 2 is then also NP-hard by restricting it to the unweighted case. By

rescaling of weights in the restriction, GAMNR in which all edge-weights are in the interval (0, 1]
and B > 0 is NP-hard.

Corollary 2.4.3. The problem GAMNR is NP-hard for any positive B even for bipartite graphs

of maximum degree 3.

Proof. The K-PATH PARTITION problem is NP-hard for bipartite graphs of maximum degree 3
for any k ≥ 3 (Monnot and Toulouse, 2007). Therefore, the problem of packing two-trees as an

instance of WEIGHTED TREE PACKING is also NP-hard on bipartite graphs of maximum degree

3.

We can now establish the following connection between BMAMNR and GAMNR, stated in:

Theorem 2.4.4. The problem BMAMNR is NP-hard for any positive B.

Proof. We establish a restriction from GAMNR to BMAMNR, for the unweighted case, in the

following way. Given an instance of GAMNR on a bipartite graph G of maximum degree 3,

we name one of the partitions R and the other Z. We extend graph G to get G′ by adding two

more subsets of nodes M and N , such that |M | = |R| and |N | = |Z|. Let M ′ = M and

N ′ = N . Furthermore, let the nodes in M and R (respectively, N and Z) be ordered m1, . . . ,ml

and r1, . . . , rl, where l = |M | = |R|. We then add l edges ei, 1 ≤ i ≤ l, to G′ such that ei is

incident on mi and ri. In a similar fashion, we add n − l, p = |Z| = |N | between the ordered

nodes of Z and N . Finally, we set the bound of BMAMNR to B′ = 2B + 1. The construction of

G′ and B′ can be carried out in polynomial time. Now, we can find a tree packing in G of size k
with the given boundB if and only if we can find an optimum tree packing inG′ of same size with

the given bound B′ = 2B + 1. Moreover, the edge cover in the first case will be of size n − k,

while in the second will be 2n−k (we add n nodes/edges). It is trivial to check that the edge cover

of G′ satisfies the five conditions of the BMAMNR problem and that all nodes from M ′ and N ′

are in the solution. By the construction, graph G′ is bipartite and of maximum degree 3.

If N ′ and M ′ were not included in the definition of BMAMNR, the problem would remain

NP-hard. The proof would have to be modified to add only one gene node connected to all en-

zymes, include only one metabolite node connected to all reactions, and to assign appropriate

weights for the added edges. Nevertheless, applications of the BMAMNR problem in real-world

reconstruction of metabolic network necessitate the addition of previous knowledge and experi-

mental data from omics techniques, reflected in the present formulation.

Corollary 2.4.5. The problem BMAMNR is NP-hard for any positive B even on graph of maxi-

mum degree 3.

Proof. It follows from Corollary 2.4.3 and the reduction used in Theorem 2.4.4.
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2.5 Polynomial-time algorithm for (edge-weighted) trees

For a t-tree packing problem on a given unweighted tree T , let k be the optimal (maximum) size

of the collection P . Moreover, let T ′ be the tree obtained by contraction of edges that belong to

any Ti in P . By counting the number of nodes and the number of edges, we have:

k =
n− x

t+ 1
, (2.1)

k =
n− 1− x′

t
, (2.2)

where x is the number of nodes not included in any Ti ∈ P and x′ is the number of edges in

T ′. An upper bound on k can then be determined by finding the smallest pair of positive integers

(smallest in the lexicographic ordering of the ordered pairs (x, x′)). We then have the theorem:

Theorem 2.5.1. The smallest pair in the lexicographic ordering of the solutions (x, x′) of the

Diophantine equation:

(t+ 1)x′ − tx = n− t− 1,

determines an upper bound to the optimum k.

Proof. The proof follows directly by equating the two expressions for k and observing that for

smallest x and x′ as solutions of the Diophantine equation k is maximized. The linear Diophantine

equation does not have solutions if and only if the number (n−t−1) is not a multiple of the greatest

common divisor of t+1 and t, as coefficients of the equation. Since t and t+1 are two consecutive

integers, n − t − 1 is always a multiple of the gcd(t, t+1) = 1. Therefore, the two numbers x and

x′ can be determined by the extended Euclidean algorithm.

The idea of iterative contraction of leaves and careful bookkeeping can also be extended to de-

vise an optimal algorithm for (weighted) trees. Algorithm 1 determines an optimal t-tree packing

of a (weighted) tree. Given a (weighted) tree T , let l(u) denote the label of node u. The algorithm

takes T and a number t, φ(T ) ≤ t ≤ w(T ), as input and returns k, the maximum size of a t-tree

packing in T . The initialization phase consists of lines 1 – 4, where k is set to 0 (i.e., the t-tree

packing is initially empty) and each node u ∈ T is given an initial label l(u) = 0. The main idea

of this dynamic algorithm is to minimize, at every step, the weight of edges not yet included in the

t-tree packing. In lines 6 – 11, we check whether there is a leaf u with label smaller than t in order

to decide whether or not to increase the number of trees packed in T . The label denotes the weight

of edges in the subtree rooted at (and contracted onto) u. If there is such a node, one can do the

necessary alteration of the parent’s label (line 9) and contract one more edge (line 10), since each

leaf has one parent to which it is connected via an edge. If all leaves are with labels greater than or

equal to t, we choose a leaf (together with its subtree) that minimizes the weight of unused edges

for inclusion in the t-tree packing (lines 12 – 22). Note that after each iteration of the while loop

(lines 5 – 23), in the unweighted case, the result is a tree with at least n− t− 1 nodes. We abuse

the notation, and use ”−” to denote contraction of an edge incident on a leaf x and removal of the

resulting loop-edge.
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Algorithm 1: Size of optimum t-tree packing of a tree

Input: T , tree on n nodes

t, φ(T ) ≤ t ≤ w(T )
Output: k, optimum size of t-tree packing

k ← 01

foreach node u ∈ T do2

l(u)← 03

end4

while T is not the empty graph do5

if there is a leaf u, l(u) < t then6

p← parent of u7

foreach leaf-child v of p do8

l(p)← l(p) + l(v) + w(epv)9

T ← T − {v}10

/* contracting the edge epv */

end11

else12

m← minimum of all leaf-labels13

x← leaf of label m14

if w(T − {x}) ≥ t then15

T ← T − {x}16

k ← k + 117

else18

T ← ∅19

k ← k + 120

end21

end22

end23

Proof of correctness for Algorithm 1: A packing ordering of node-disjoint subtrees (PODS) of

a tree T for a given integer t is a sequence C = (C1, C2, ..., Ck), such that: (1) ∀i, w(G[Ci]) =
∑

e∈E(G[Ci])
w(e) ≥ t and exactly (k − 1) edges from T not included in C, i.e., |E(T ) −

T [∪kl=1Cl]| = k − 1; (2) for each edge e in the tree T̃ [C], obtained by contraction of the ele-

ments of C, there exist i and j so that the two endpoints of each edge correspond to Ci and Cj ,
and (3) among all leaves in tree obtained from the induced subtree T̃ [

⋃n
l=iCl], Ci minimizes the

difference w(G[Ci])− t. For each i, 1 ≤ i ≤ k, the difference w(G[Ci])− t is defined as the cost

of the subtree Ci. A packing ordering of node-disjoint subtrees is called maximal if no element

of the sequence C can be partitioned to obtain a sequence C ′ with more elements. To show that

a maximal packing ordering of node-disjoint subtrees (MPODS) for a given T and an integer t
determines an optimal (maximum) solution, we use a proof by contradiction.

First, we need to establish some supporting arguments. Note that any sequence that satisfies

conditions (1) – (3) is output of the algorithm. Moreover, for a given sequence C of size k, T can

be rooted by planting T̃ [C] at a root that corresponds to Ck.

Suppose that k is the optimum given by the algorithm, and letC be its corresponding sequence.

For the same tree T , letC ′ be an optimal sequence of node-disjoint subtrees that satisfies condition

(1) and (2), but does not satisfy condition (3) and let C ′ be also of size k.

We claim that the sequence C ′ can be reordered to guarantee that
⋃n
l=iCl always induces a
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tree. One such ordering is given by the postorder traversal of the tree T̃ [C ′] rooted at any node.

We can obtain C from C ′ by the following steps: (a) Reorder C ′ by the postorder traversal

of T̃ [C ′] rooted at any node; (b) For each edge e ∈ T̃ [C], determine C ′
i to which e belongs; (c)

For each Ci, determine the subtree C ′
j that maximizes the weight of the intersection Ci ∩ C ′

j ,

1 ≤ j ≤ k. (d) Starting in a bottom-up fashion–from the leaves to the root, for each C ′
j that

contains an edge e from T̃ [C]: (d.i) update C ′
j to be the component obtained after the removal

of e that maximizes the intersection with the corresponding Ci (found in step 3), (d.ii) add the

other component to the parent of C ′
j in T̃ [C ′], (d.iii) remove edge e from C ′

j , (d.iv) add the edge

connecting C ′
j and its parent in T̃ [C ′] to the subtree corresponding to the parent. If no updating

is possible, re-root the tree at a child of the current root that minimizes the intersection with the

corresponding subtree from C. Since every e ∈ T̃ [C] in the algorithm above becomes an edge

in T̃ [C ′] (with the updated C ′) and the weight of such edges is not changed, T̃ [C] and T̃ [C ′] are

isomorphic and, hence, C and C ′ are equivalent.

This argument guarantees that, if the algorithm produces a sequence C of size k then any other

sequence of size k can be transformed to C. Let us now assume that k is not the optimal solution,

and there is another sequence C1 of size k+ 1. By our previous argument, C1 can be transformed

to satisfy conditions (1) – (3). This implies that the sequence would have been determined by the

algorithm, which is a contradiction.

For a given tree T and a number t, φ(T ) ≤ t ≤ w(T ), Algorithm 1 can easily be extended to

include finding the collection P . Moreover, this algorithm in conjunction with existing efficient

algorithms for minimum edge cover for weighted bipartite graphs (Edmonds and Johnson, 1970;

Murty and Perin, 1982; Pulleyblank, 1996) can be used to extract the edge cover–solution of the

GAMNR, as shown in Algorithm 2. This algorithm is based on the idea that any t-edge cover is

at least as big as a minimum edge-cover and employs the optimality of a tree-packing produced

by Algorithm 1.

Algorithm 2: Optimum t-edge cover and t-tree packing of a tree

Input: T , tree on n nodes

t, φ(T ) ≤ t ≤ w(T )
C, sequence, output of Algorithm 1

Output: αw1,t, optimum size of t-edge cover

Pi, 1 ≤ i ≤ k, optimum t-tree packing

S, t-edge cover

S ← ∅1

foreach Ci ∈ C do2

unmark all edges3

P ← minimum edge cover of Ci4

Pi ← ∅5

while w(Pi) < t do6

m← minimum weight of unmarked edge in Ci adjacent to T [Pi]7

x← edge of weight m in Ci adjacent to T [Pi]8

mark x9

Pi ← Pi ∪ {x}10

S ← S ∪ {x}11

end12

S ← S ∪ (P − Pi)13

end14

αw1,t ← w(S)15
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Proof of correctness for Algorithm 2 : Given a sequence C, output of Algorithm 1, let P be

a (weighted) minimum edge cover of Ci. Since all nodes of Ci are covered by P , a t-tree Pi (of

weight at least t) together with the edges of P − Pi gives a t-edge cover for Ci. We claim that

the minimality of αw1,t is guaranteed by: the minimality of the weighted edge cover, the fact that

each Ci contains a set of edges that induces a tree of weight at least t, and the greedy spanning

(sub)tree algorithm which at each step includes the edge of minimum weight. The cost of the tree

Pi is minimal, since lines 5–10 build a subtree by the Prim’s algorithm. If a node is not covered

by an edge in the tree, it is guaranteed to be covered by an edge in P −Pi. Note that this argument

leads to the result of Theorem 2.4.1 in the unweighted case.

2.6 Approximation results

For a given edge-weighted graphG, let φ(G) = min{w(e) | e ∈ E(G)}, Φ(G) = max{w(e) | e ∈
E(G)}, and w (G) =

∑

e∈E(G)w(e). Furthermore, let t be a parameter such that φ(G) ≤
t ≤ w (G). For given t and edge subset S ⊆ E(G) for which any induced connected compo-

nent Hi ⊂ G[S] satisfies w(Hi) ≥ t, we can say that S is also a (t − φ(G))-edge cover. Let

αw1,t = w(S) denote the optimum solution of GAMNR on an edge-weighted graph G with a given

bound t. Clearly, αw1,t ≥ t, since the edge cover S resulting in the optimum αw1,t induces at least

one connected component in G of weight at least t.
Let ψ denote the weight of a minimum spanning tree T in G. Motivated by a result in (Fernau

and Manlove, 2006), we observe that for any ψ
2 < t ≤ ψ, αw1,t = ψ. To obtain this claim, first

note that any minimum spanning tree T is a t-edge cover, which is an upper bound to the weight

of an optimal S; hence, w(S) ≤ ψ. If G[S] has two connected components, then w(S) ≥ 2t > ψ,

which is a contradiction. Therefore, G[S] is connected so that w(S) ≥ ψ, yielding the claim.

Moreover, for any t ≥ ψ, we have that αw1,t = t.
From these claims, we can establish the following theorem:

Theorem 2.6.1. GAMNR can be approximated within factor

• ρ = 2 for the unweighted case;

• ρ =
(

2 + Φ(G)
t max{i, j}

)

in the weighted case.

Proof. Let each node v of G be weighted with the minimum weight over all edges incident on

v, i.e., w′(v) = min{w(e) | e = {u, v}, u ∈ V (G), e ∈ E(G)}. For a minimum-weight edge

cover S′ we have that w(S′) ≥
∑

v w
′(v)

2 , since each edge from S′ covers exactly two nodes of G.

Therefore,
∑

v w
′(v) ≤ 2w(S′) ≤ 2w(S) = 2αw1,t.

The dynamic programming algorithm that we use for approximating the constrained edge

cover in G with a bound t is the same as the optimal Algorithms 1 and 2 presented in Section

2.5 taking as input the minimum spanning tree of G with the bound t. For the analysis of the

performance of this algorithm, one may show that the weight of the minimum spanning tree, ψ, is

at most

ψ ≤
∑

v

w′(v) +
∑

i

w(e∗i ).

where e∗i are added to the set of edges from which nodes get their weight assignment (by w′) in

order to get a connected induced subgraph.

Moreover, by running the optimal algorithms we get an edge cover, S#, satisfying the bound

t. Since S# is obtained from the minimum spanning tree by removing some edges, we get that:
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w(S#) = ψ −
∑

j

w(ẽj).

Therefore, we have:

w(S#) = ψ −
∑

j

w(ẽj)

≤
∑

v

w′(v) +
∑

i

w(e∗i )−
∑

j

w(ẽj)

≤ 2αw1,t +
∑

i

w(e∗i )−
∑

j

w(ẽj)

≤ 2αw1,t + max{i, j} (Φ(G)− φ(G))

For unweighted graphs Φ(G) = φ(G), and we have a 2-approximation algorithm. For weighted

graphs we can find a number s, such that Φ(G) − φ(G) = st. As αw1,t > t, we have a factor

(2+smax{i, j})-approximation algorithm for the weighted case. More precisely, since φ(G) ≥ 0

and t ≥ φ, we have a factor ρ =
(

2 + Φ(G)
t max{i, j}

)

.

2.7 Conclusion

We have defined the automated metabolic network reconstruction as an optimization problem that

couples the probabilistic outcome of various bioinformatics methods with existing knowledge

and experimental data. By reducing the raw metabolic network, the formulation mimics criteria

satisfied by reconstructed metabolic networks of high quality, namely, clustering in connected

subgraphs of specified accuracy. The idea that accuracy should be maximized is included in the

problem’s formulation via the bound (threshold) that must be satisfied by each of the clusters

included in a solution. Minimization leads to a smaller number of clusters and, therefore, implies

a network of higher overall connectedness.

Choosing a value for the bound imposes two, at times, opposing principles: (1) inclusion of

high-weight edges and (2) ensuring high network connectedness, while meeting the requirement

for the bound. Therefore, the choice for the value of the bound may affect the number of clusters,

and so the reconstruction process should be iterative, starting from a small value. Each iteration

should be evaluated by an expert in order to stop or resume the process at a higher value for the

bound.

The chosen criteria of clustering and connectedness ensure that the reconstructed metabolic

network would require little human validation. There could also be more than one possible result

from the automated reconstruction, depending on the threshold imposed on the weight of the iden-

tified clusters (weight of a cluster is the sum of edge-weights in the cluster). Since the outcome

of the reconstruction is a union of connected components, each component can be analyzed sepa-

rately to speed up the computational process, while the necessary experimental effort for validation

would remain unchanged.

The general problem, GAMNR, defined in Section 2.2, is closely related to finding a minimum

spanning tree and its extension to a constrained weighted edge cover. The biologically meaning-

ful problem, BMAMNR, also presented in Section 2.2, allows for integration of various types of

experimental data and biochemical knowledge to carry out the reconstruction of a metabolic net-

work. This is realized via the inclusion of a set of genes and metabolites, experimentally confirmed

to be involved in the metabolism of a given organism, in the definition of BMAMNR.
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We have established that both, the general and the biologically meaningful, automated re-

constructions of metabolic networks, although closely connected to the abovementioned simple

concepts, remain NP-hard for any given bound on the weight of the connected components in-

duced by a constrained weighted edge cover. In terms of approximating GAMNR on a uniformly

weighted graph G, we have provided a polynomial-time 2-approximation algorithm, based on

its connection to a minimum spanning tree in G. For the general weighted GAMNR, we have

devised a polynomial-time algorithm with approximation factor which depends on the bound t
and the maximum edge-weight in the raw metabolic network. Due to the established connection

between the two problems, the latter could be considered a first step towards developing an ap-

proximation algorithm for the biologically meaningful problem. Moreover, the relation among the

nestedness of constrained edge covers and weighted tree packing has been employed to devise a

polynomial-time algorithms that determine: (1) the optimal edge-cover—a solution to GAMNR

and (2) optimal weighted tree packing. This is a first polynomial-time algorithm for the t-edge

cover and t-tree packing for (weighted) trees.

We point out that reconstruction based on the graph representation of the raw metabolic net-

work does not require stoichiometric information. Since our approach aims at structural recon-

struction of metabolic networks, the stoichiometry can later be incorporated to support other stud-

ies (e.g. FBA). If a reaction in the raw metabolic network is chemically balanced, it remains so in

the reconstructed network (provided it is included in the solution). A reaction incorporated in the

raw metabolic network from public databases may not be chemically balanced. Our approach also

considers such reactions as it does not aim at resolving this known issue of the publically available

human-curated databases.

In Section 2.3, we exemplify the formalism on the reconstruction of the sucrose biosynthe-

sis pathway in Chlamydomonas reinhardtii. The practical implications of our theoretical analysis

refer to the quality of reconstructed metabolic networks: We believe that automated metabolic

network reconstruction, as formulated here, can be used to elicit metabolic networks of higher ac-

curacy. Functional annotation for alternatively spliced genes provides the possibility for inclusion

of more than only one enzyme per gene, which in turn enables enlargement of the sets of iden-

tified reactions. Any dummy gene nodes included in the raw metabolic network may give hints

for new investigations on the genome sequences regarding the search for alternative gene models.

On the other hand, such nodes may direct further in-depth similarity inspections to annotate a yet

undiscovered function of a given gene. Our results also have implications on planning knock-out

experiments: For instance, accurately identified relationships from genes to enzymes which allow

for two genes to produce the same enzyme would require simultaneous knock-outs of both genes

in order to study its effect on the metabolism.

Our theoretical analysis leaves space for finding more efficient and effective methods for au-

tomated reconstruction: The formulation of GAMNR and BMAMNR is only a first attempt to

formally address the problem of automated reconstruction. We are aware there could be other

criteria, besides clustering and connectedness, which can be employed in the study of metabolic

networks. This remains as one of the open problems to pursue.

Other open problems include the design of an polynomial-time approximation algorithm for

the biologically meaningful reconstruction. Applications of the approximation algorithm and the

very definition of GAMNR are directly dependent on the bound (threshold) B. We believe that,

for a given weighted graph G, a bound which combines the smallest weight, φ(G), number of

nodes, and the number of edges in G is one possible direction for further research. It would be

interesting to furthermore establish which of the invariants of G should be used to arrive at a

biologically meaningful bound.



Chapter 3

Hardness and approximability of the

inverse scope problem

For a given metabolic network, we address the problem of determining the minimum cardinality

set of substrate compounds necessary for synthesizing a set of target metabolites, called the in-

verse scope problem. We define three variants of the inverse scope problem whose solutions may

indicate minimal nutritional requirements that must be met to ensure sustenance of an organism,

with or without some side products. Here, we show that the inverse scope problems are NP-hard

on general graphs and directed acyclic graphs (DAGs). Moreover, we show that the general inverse

scope problem cannot be approximated within n1/2−ǫ for any constant ǫ > 0 unless P = NP. Our

results have direct implications for identifying the biosynthetic capabilities of a given organism

and for designing biochemical experiments.

3.1 Introduction

Availability of fully sequenced genomes for several organisms has rendered it possible to recon-

struct their metabolic networks and further characterize their biosynthetic capabilities. Identifying

the biosynthetic capabilities of a given organism is crucial for the development of cost-efficient

energy sources, as they are directly related to plant biomass (Tsantili et al., 2007; Nissen et al.,

2000; Burchhardt and Ingram, 1992). On the other hand, knowing the compounds necessary for

obtaining a desired product can be employed in designing optimal environmental conditions, in

the sense of minimizing the nutrients for biosynthesis, and for effective altering of bioprocesses to

assist the industrial manufacture of chemicals (Burton et al., 2002).

Several mathematical methods have been developed to study the biosynthetic capabilities of

metabolic networks, including: metabolic control analysis (Wildermuth, 2000), flux balance anal-

ysis (Bonarius et al., 1997), metabolic pathway analysis (Schilling et al., 1999), cybernetic mod-

eling (Kompala et al., 1984), biochemical systems theory (Savageau, 1969), to name just a few.

Many of these methods require detailed kinetic information to carry out the analysis — a condition

which is often impossible to satisfy.

A method which relies only on an available metabolic network and limited knowledge about

the stoichiometry of the included biochemical reactions has been recently developed and applied

to study the biosynthetic capabilities of various organisms (Ebenhöh et al., 2004; Handorf et al.,

2005). This method is based on the concept of a scope: The basic principle is that a reaction

can only operate if and only if all of its substrates are available as nutrients or can be provided

by other reactions in the network. Starting from the nutrients, called seed compounds, operable

reactions and their products are added to an expanding subnetwork of a given metabolic network.

This iterative process ends when no further reaction fulfills the aforementioned condition. The set
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of metabolites in the expanded subnetwork is called the scope of the seed compounds and repre-

sents all metabolites that can be in principle synthesized from the seed by the analyzed metabolic

network (Handorf et al., 2005).

The scope concept has been applied to a variety of problems, such as: hierarchical structuring

of metabolic networks (Handorf et al., 2006), comparison of metabolic capabilities of organism

specific networks (Ebenhöh et al., 2005), metabolic evolution (Ebenhöh et al., 2006), and changes

of metabolic capacities in response to environmental perturbations (Ebenhöh and Liebermeister,

2006).

In Handorf et al. (2008), the inverse problem was addressed as that of determining minimal

sets of seed compounds from which metabolites that are essential for cellular maintenance and

growth can be produced by a given metabolic network. There, a greedy algorithm was applied and

heuristics inspired by biological knowledge were introduced to determine biologically relevant

minimal nutrient requirements. Whereas by this approach a large number of minimal solutions

may be obtained, the minimum cardinality set of seed compounds remains unknown and moreover,

it is unclear how well this minimum was approximated by the proposed heuristic.

For a given metabolic network, we investigate the general inverse scope problem of deter-

mining the minimum cardinality set of seed compounds necessary for the synthesis of a specific

compound or a set of compounds. In particular, the latter set may comprise metabolic precursors

that an organism requires for maintenance or growth. Therefore, solving this inverse problem may

indicate minimal nutritional requirements that must be met to ensure sustenance of the organism.

The nutrients which can be provided in synthesis are often restricted to a specific set, in which

case we address the inverse problem with a forbidden set. In addition, we address the problem of

finding the minimum cardinality set of seed compounds that are necessary for synthesis of a given

set of compounds and, at the same time, guarantee that a specific set of compounds are not created

as side products. This is the inverse problem with two forbidden sets.

The problems addressed here have applications that span various fields: In a sensor network

with directed communications, one is interested in finding the minimum number of nodes that

can be used for fast delivery of information. In the field of computational geometry, one may

formulate the problem of determining the minimum number of flood-lights that can illuminate

a given polygon (Bagga et al., 1996), while in automated reasoning one may seek automated

deduction with minimum number of axioms (Duffy, 1991). We note that none of the related

variants has the constraint that all precursors must be present for an action to take place.

Contributions. Here, we show that the inverse scope problems are NP-hard on general graphs

and directed acyclic graphs (DAGs). We also demonstrate that the inverse scope problem with two

forbidden sets on general graphs cannot be approximated within n1/2−ǫ for any constant ǫ > 0
unless P = NP. In addition, we discuss the practical implications of the hardness of approximation

results.

3.2 Problem definition

A metabolic network is typically represented by a directed bipartite graphG = (V,E). The vertex

set of G can be partitioned into two subsets: Vr, containing reaction nodes, and Vm, comprised of

metabolite nodes, such that Vr ∪ Vm = V (G). The edges in E(G) are directed either from a node

u ∈ Vm to a node v ∈ Vr, in which case the metabolite u is called a substrate of the reaction v, or

from a node v ∈ Vr to a node u ∈ Vm, when u is called a product of the reaction v.

The scope concept is related to reachability in the metabolic network graph G: A reaction

node v ∈ Vr is reachable if all of its substrates are reachable. Given a subset S of metabolite

nodes, a node u ∈ Vm is reachable either if u ∈ S or if u is a product of a reachable reaction.

With these clarifications, we can present a precise mathematical formulation for the scope of a set
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of seed compounds:

Definition 3.2.1. Given a metabolic network G = (V,E) and a set S ⊆ Vm, the scope of S,

denoted by R(S), is the set of all metabolite nodes reachable from S.

For a given metabolic network G = (V,E) and a set S ⊆ Vm, the scope R(S) can be de-

termined in polynomial time of the order O(|E| · |V |), as can be established by analyzing the

following algorithm:

Algorithm 3: Scope for a set of seed metabolites S in a metabolic network G

Input: G = (Vm ∪ Vr, E), metabolic network

S, set of seed metabolites, S ⊆ Vm
Output: R(S), scope of S
mark all nodes in V (G) unreachable1

mark all nodes in Vr unvisited2

mark all nodes in S reachable3

repeat4

foreach node v ∈ Vr do5

if v is reachable then6

mark v as reachable7

end8

end9

if there is a reachable unvisited node v ∈ Vr then10

mark v visited11

mark successors of v reachable12

end13

until no reachable unvisited nodes in Vr14

R(S)← all reachable nodes in Vm15

We define the inverse scope problem as follows:

INVERSE SCOPE (IS)

INSTANCE : Given a metabolic network G = (V,E) and a subset of metabolites

P ⊆ Vm.

PROBLEM : Find a subset of metabolites S ⊆ Vm such that P ⊆ R(S).
MEASURE : Cardinality of S.

(min)

Often, there is a restriction to the subset of metabolites from which we would like to identify

S, the seed compounds synthesizing P . In that case, we address the inverse scope problem with a

forbidden set V (G)− S′, such that S ⊆ S′, defined below:

INVERSE SCOPE WITH A FORBIDDEN SET (ISFS)

INSTANCE : Given a metabolic network G = (V,E) and two subsets of metabolites

V (G)−S′, P ⊆ Vm, where V (G)−S′ is the forbidden set and P is the

set of products.

PROBLEM : Find a subset of metabolites S ⊆ S′ such that P ⊆ R(S).
MEASURE : Cardinality of S.

(min)

It is interesting to also consider the problem of determining the set of nutrients to be provided

in the synthesis of a given set of products while not yielding a pre-specified set of side products.
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The study of this problem may, for instance, indicate how to design a biochemical experiment to

minimize the effect of some undesirable compounds. To ensure that a specific set of metabolites

is not synthesized, we modify ISFS as follows:

INVERSE SCOPE WITH TWO FORBIDDEN SETS (IS2FS)

INSTANCE : Given a metabolic networkG = (V,E) and three subsets of metabolites

V (G)− S′, F, P ⊆ Vm, where V (G)− S′ and F are the forbidden sets

and P is the set of products.

PROBLEM : Find a subset of metabolites S ⊆ S′ such that P ⊆ R(S) and F ∩
R(S) = ∅.

MEASURE : Cardinality of S.

(min)

Remark 3.2.1. Note that by taking S′ = V (G) in ISFS, every instance of IS becomes an instance

of ISFS, and ISFS can be restricted to IS. In addition, every instance of IS2FS with F = ∅ is an

instance of ISFS. Therefore, IS2FS is the most general of the three problems.

For completeness, we show the decision versions of the three problems defined above:

INVERSE SCOPE DECISION (ISD)

INSTANCE : Given a metabolic network G = (V,E), subset of metabolites P ⊆ Vm,

and an integer K.

PROBLEM : Does there exist a subset of metabolites S ⊆ Vm such that P ⊆ R(S)
and |S| ≤ K.

INVERSE SCOPE WITH A FORBIDDEN SET DECISION (ISFSD)

INSTANCE : Given a metabolic network G = (V,E), two subsets of metabolites

V (G)−S′, P ⊆ Vm, where V (G)−S′ is the forbidden set and P is the

set of products, and an integer K.

PROBLEM : Does there exist a subset of metabolites S ⊆ S′ such that P ⊆ R(S)
and |S| ≤ K.

INVERSE SCOPE WITH TWO FORBIDDEN SETS DECISION (IS2FSD)

INSTANCE : Given a metabolic network G = (V,E), three subsets of metabolites

V (G)− S′, F, P ⊆ Vm, where V (G)− S′ and F are the forbidden sets

and P is the set of products, and an integer K.

PROBLEM : Does there exist a subset of metabolites S ⊆ S′ such that P ⊆ R(S),
F ∩R(S) = ∅, and |S| ≤ K.

In the next section we present the results regarding the NP-hardness of the three inverse scope

problems.

3.3 Hardness results

An optimization problem Π is shown to be NP-hard by establishing a polynomial time reduction

from a problem known to be NP-complete to the decision version of Π. First, we show that IS2FS

is NP-hard on a general graph by providing a reduction from MINIMUM DISTINGUISHED ONES

(MIN-DONES). We also show that ISFS is NP-hard even on DAGs by providing a reduction

from the SET COVER (SC) problem. In a similar way, we show that IS, too, is NP-hard when

restricted to DAGs. These results will later be used for obtaining the approximation results for the

three problems.
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Figure 3.1: Gadget for the construction of IS2FSD instance.

Theorem 3.3.1. INVERSE SCOPE WITH TWO FORBIDDEN SETS DECISION problem is NP-

complete.

Proof. First, we need to show that IS2FSD is in NP. Given an instance of IS2FSD with three

subsets of nodes S, F, P ⊆ Vm(G), one can find R(S), by employing Algorithm 3, and check

whether P ⊆ R(S), F ∩R(S) = ∅ and |S| ≤ K in polynomial time.

Next, we provide a reduction from the MIN-ONESD problem. An instance of the decision

version of MIN-ONES is given by a set of n variables Z, collection C of disjunctive clauses of 3

literals, and an integer K ′ (a literal is a variable or a negated variable in Z). The problem is then

to find a truth assignment for Z that satisfies every clause in C such that the number of variables

in Z that are set to true in the assignment is at most K ′.

Given an instance of MIN-ONESD, we can construct an instance of IS2FSD, a bipartite

directed graph G = (V,E) with V (G) = Vm ∪ Vr, three subsets of nodes S′, F, P ⊆ Vm(G), and

an integer K as follows: For each variable xi ∈ Z, we use the gadget shown in Figure 3.1. The

gadget is composed of six nodes yTi,1, yTi,2, xTi , xFi , pi, and fi connected through four reactions—

r1i with xTi and xFi as substrates and fi as a product, r2i with yTi,1 and yTi,2 as substrates and xTi
as a product, r3i with xTi as substrate and pi as a product, and r4i with xFi as substrate and pi as

a product. Moreover, for each clause in C we add a node cj . A node xTi is connected to cj via

a reaction if variable xi appears non-negated in cj ; similarly, a node xFi is connected to cj via a

reaction if variable xi appears negated in cj . Finally, we let S′ be composed of all yTi,1, yTi,2, and

xFi nodes, P be composed of all cj and pi nodes, while F be comprised of all fi nodes.

Note that xTi is reached if and only if its two corresponding nodes yTi,1 and yTi,2 are included as

substrates. Moreover, the inclusion of pi nodes in P and fi nodes in F ensures that exactly one of

the xTi and xFi is chosen. Therefore, to complete the construction, we set K = n+K ′.

A solution to MIN-ONESD can be transformed to a solution of IS2FSD of cardinality K =
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n+K ′ by taking those nodes yTi,1 and yTi,2 in S′ whose corresponding variable xi is set to TRUE in

the solution of MIN-ONESD. Moreover, the solution also includes the xFi whose value can be set

to FALSE. All cj nodes can be reached, since a solution to MIN-ONESD guarantees that at least

one literal in the clause cj has value TRUE. Similarly, all pi nodes are also reached. Moreover, a

valid truth assignment guarantees that no pair xTi and xFi is in the solution of MIN-ONESD; thus,

the nodes in F cannot be accessed.

Given a solution S to IS2FSD on G, the solution to MIN-ONESD can be obtained by as-

signing value TRUE to that variable xi in Z whose corresponding nodes yTi,1 and yTi,2 are in S;

the remaining variables are assigned value FALSE. Since all cj nodes are reachable, then each of

them has at least one directed path from a node in S and thus the value of the corresponding clause

is TRUE. Moreover, since no node in F is in the scope of S, the reconstructed truth assignment is

valid.

Since IS2FSD can be solved if and only if there is a solution to MIN-ONESD, we have the

NP-completeness of the problem in the theorem.

Corollary 3.3.2. The INVERSE SCOPE WITH TWO FORBIDDEN SETS problem is NP-hard on

general graphs.

For the inverse scope with a forbidden set we have:

Theorem 3.3.3. INVERSE SCOPE WITH A FORBIDDEN SET DECISION is NP-complete even on

DAGs.

Proof. The decision version of ISFS is in NP since for any given set of metabolites S, we can find

R(S), by using Algorithm 3, and check whether P ⊆ R(S) in polynomial time.

We provide a polynomial time reduction from the SCD problem: An instance of the SCD

problem is given by a collection C of subsets from a finite set U and an integer K ′. The problem

then is to determine whether there is a set cover for U of cardinality at most K ′, i.e. a subset

C ′ ⊆ C such that every element of U belongs to at least one member of C ′ and |C ′| ≤ K ′.

Given an instance of the SCD problem we design an instance of the ISFSD problem as follows:

First, we build the metabolic network G which must be bipartite. Let the number of subsets in the

collection C be denoted by p. For every subset Ci ∈ C we create a reaction node ri, 1 ≤ i ≤ p;

thus, we have p reaction nodes. Let the number of elements in U be denoted by n. For every

element xj ∈ U we create a metabolite node, denoted by xj , 1 ≤ j ≤ n. Furthermore, we create

p additional metabolite nodes, denoted by yi, 1 ≤ i ≤ p. Therefore, Vr = {ri | 1 ≤ i ≤ p} and

Vm = {xj | 1 ≤ j ≤ n} ∪ {yi | 1 ≤ i ≤ p}. Finally, we set P = {xj |1 ≤ j ≤ n}
A reaction ri is connected via a directed edge to a metabolite xj if and only if the subset Ci

corresponding to the node ri contains the element x represent by the node xj . Additionally, we

include a directed edge from yi to ri, 1 ≤ i ≤ n.

Finally, we set S′ = {yi | 1 ≤ i ≤ p} and let the integer K of the decision version of the

ISFS problem be equal to K ′. This construction can be completed in time polynomial in the size

of the SC instance. The construction is illustrated in Figure 3.2.

If we have a solution to the SC problem and it is given by a subset C ′, |C ′| ≤ K ′ then the

solution to the ISFS problem, the subset S ⊆ S′, is comprised of the nodes in {yi | 1 ≤ i ≤ p}
that are connected via a directed edge to reaction nodes ri representing the subsets in C ′, since

R(S) = P .

Conversely, if we have a solution to the ISFS problem, i.e., a subset S ⊂ S′, |S| ≤ K then

R(S) = P. The solution to the SC problem, a subset C ′ ⊆ C, can be obtained by including those

elements Ci ∈ C corresponding to the reaction nodes ri to which there exists an edge from yi ∈ S
in G.
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Figure 3.2: Instance of ISFS obtained from the instance of SC with U = {1, 2, 3, 4} and C =
{{1}, {2, 3}, {3, 4}, {2, 4}}.

Since the ISFS problem can be solved if and only if there is a solution to the SC problem,

we have the NP-completeness of the problem in the theorem. Furthermore, the polynomial time

construction results in an acyclic directed graphs (DAGs), so ISFSD is NP-complete on DAGs.

We then have the following corollary:

Corollary 3.3.4. The INVERSE SCOPE WITH A FORBIDDEN SET problem is NP-hard even on

DAGs.

We can use a similar approach as in the proof of Theorem 3.3.3 to obtain the following result:

Theorem 3.3.5. The INVERSE SCOPE problem is NP-hard even when restricted to DAGs.

Proof. The ISD problem is in NP even when restricted to DAGs: For any given set of metabolites

S and an integer K, we can find R(S), by using Algorithm 3, and check whether P ⊆ R(S) and

|S| ≤ K in polynomial time.

Given an instance of the SCD problem we design an instance of the ISD problem, a graph

G and an integer K, on DAGs as follows: First, we build the metabolic network G which must

be bipartite. Let the number of subsets in the collection C be denoted by p. For every subset

Ci ∈ C we create a metabolite node yi; thus, we have p metabolite nodes from this step of the

construction. Let the number of elements in U be denoted by n. For every element xj ∈ U we

create a metabolite node, denoted by x1
j , 1 ≤ j ≤ n.
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A metabolite yi is connected via a directed path of length 2 with a middle reaction node ri to

a metabolite x1
j if and only if the subset Ci, corresponding to the node yi, contains the element x

represented by the node xj . Additionally, we include p − 1 copies of each node x1
j , denoted by

xij , 2 ≤ i ≤ p, and connect them to the in-neighbors of x1
j . Finally, we let P contain all xij nodes

and K ′ = K. We increase the number of elements per set to ensure that only nodes among yi are

chosen as a solution to ISD, so that it can be transformed to a solution of SCD.

If we have a solution to the SCD problem and it is given by a subset C ′, |C ′| ≤ K ′ then the

solution to the ISD problem, the subset S ⊆ Vm, is comprised of the nodes in {yi | 1 ≤ i ≤ p}
representing the subsets in C ′, since R(S) = P .

Conversely, if we have a solution to the ISD problem, i.e., a subset S ⊆ Vm, |S| ≤ K, then

R(S) = P . The set C ′ can be obtained in the following way: Let S contains a node u from

{xij | 1 ≤ i ≤ p, 1 ≤ j ≤ n}. There are two cases: If u can be reached by some yi, then a

solution to SCD excludes this element from S. If u cannot be reached by some yi, then none of its

remaining p − 1 copies can be reached (p ≥ 2). Including one yi representing a set that contains

u can always decrease the cardinality of S by at least two. The solution to the SCD problem, a

subset C ′ ⊆ C, therefore includes those elements Ci ∈ C corresponding to the elements in S as

well as the nodes added by the algorithm to cover nodes from {xij | 1 ≤ i ≤ p, 1 ≤ j ≤ n} which

are initially included in S but are removed by the previous algorithm. It follows that |C ′| ≤ K ′.

Since the ISD problem can be solved if and only if there is a solution to the SCD problem,

we have the NP-completeness of the problem in the theorem. Furthermore, the polynomial time

construction results in an acyclic directed graphs (DAGs), so ISD is NP-complete on DAGs.

3.4 Approximation results

Let us recall a few definitions about approximability. Given an instance x of an optimization

problem A and a feasible solution y of x, we denote by m(x, y) the value of the solution y, and by

optA(x) the value of an optimum solution of x. Here, we consider minimization problems. The

performance ratio of the solution y for an instance x of a minimization problem A is

R(x, y) =
m(x, y)

optA(x)
.

For a constant ρ > 1, an algorithm is a ρ-approximation if for any instance x of the problem

it returns a solution y such that R(x, y) ≤ ρ. We say that an optimization problem is constant

approximable if, for some ρ > 1, there exists a polynomial-time ρ-approximation for it. APX is

the class of optimization problems that are constant approximable. An optimization problem has

a polynomial-time approximation scheme (a PTAS, for short) if, for every constant ǫ > 0, there

exists a polynomial-time (1 + ǫ)-approximation for it.

L-reduction was introduced as a transformation of optimization problems which keeps the

approximability features (Papadimitriou and Yannakakis, 1991). L-reductions in studies of ap-

proximability of optimization problems play a similar role to that of polynomial reductions in

the studies of computational complexity of decision problems. For completeness we include the

following definition:

Definition 3.4.1. Let A and B be two optimization problems. Then A is said to be L-reducible to

B if there are two constants α, β > 0 such that:

1. there exists a function, computable in polynomial time, which transforms each instance x
of A into an instance x′ of B such that optB(x′) ≤ α · optA(x),
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2. there exists a function, computable in polynomial time, which transforms each solution y′

of x′ into a solution y of x such that |m(x, y)− optA(x)| ≤ β · |m(x′, y′)− optB(x′)|.

Remark 3.4.1. This reduction preserves PTAS, i.e., if A is L-reducible to B and B has a PTAS

then A has a PTAS as well.

Remark 3.4.2. From the above, if δ is a lower bound of the worst-case approximation factor of A,

then ρ = δ
α·β is a lower bound of the worst-case relative error of B.

We employ L-reduction to obtain results about the lower bound of the worst-case approxima-

tion factor for IS2FS.

Theorem 3.4.2. INVERSE SCOPE WITH TWO FORBIDDEN SETS on a graph G with n nodes

cannot be approximated to within a factor of n1/2−ǫ in polynomial time for any constant ǫ > 0,

unless P = NP.

Proof. To construct an L-reduction, we first choose A to be MIN-ONES and B, IS2FS. Jonsson

(1998) has shown that MIN-ONES is NPO PB-complete, and is not approximable within |Z|1/2−ǫ

for any ǫ > 0. Given an instance x of MIN-ONES, we construct an instance x′ of IS2FS the

same as in Theorem 3.3.1. From the proof of Theorem 3.3.1, we have optB(x′) = n + optA(x),
so optB(x) ≤ optA(x′) and α = 1. Moreover:

|m(x, y)− optA(x)| ≤ |m(x′, y′)− optB(x′)|,

so β = 1. Thus, we have n1/2−ǫ for the lower bound of the worst-case approximation factor of

IS2FS by Remark 3.4.2.

Handorf et al. (2008) developed a heuristic for finding minimal sets of seed compounds from

which metabolites that are essential for cellular maintenance can be produced. As every minimum

set of seed compounds is also minimal, the heuristic can approximate the IS problem. The heuris-

tic takes as input an ordered list of all metabolites in a given metabolic network and a set of target

metabolites. It then continually removes a metabolite from the beginning of the list, while recal-

culating the scope of the remainder of the list. If the resulting scope does not contain the full target

set, the metabolite is inserted back in the list; otherwise, it remains permanently removed. Clearly,

the set of metabolites contained in the list after the exhaustive search represents a minimal seed, as

the removal of any metabolite would result in a scope that does not contain all target metabolites.

Since different orderings of the list may result in a different minimal set of seed metabolites, it is

not known how well this heuristic approximates the IS problem. It remains as an open problem to

develop provably good approximation algorithms for all of the addressed inverse scope problems.

3.5 Instances of IS and ISFS in P

IS and ISFS are solvable in polynomial time on trees. In a tree metabolic network, each metabo-

lite, other than the root, is a product of a reaction with only one substrate. In other words, a tree

metabolic network is a tree rooted in a metabolite node. Given a tree metabolic network T and

a node u, let Su be the set of predecessors of u. Given two sets S′, P ⊆ Vm(T ), the solution to

ISFS on T is given by the following greedy algorithm:
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Algorithm 4: Algorithm for ISFS on a tree

Input: T = (Vm ∪ Vr, E), metabolic tree network

P ⊆ Vm, set of metabolites

S′ ⊆ Vm, the set to choose seeds

Output: S, S ⊆ S′, such that P ⊆ R(S)
foreach node u ∈ P do1

find the set Su2

end3

S ← ∅4

L← order list of nodes from P5

while there is a node u ∈ L do6

while there is node v 6= u, v ∈ L with Sv ∩ Su ∩ S′ 6= ∅ do7

Su ← Su ∩ Sv ∩ S′ remove v from L8

end9

S ← S ∪ last common ancestor in Su10

remove u from L11

end12

output S13

The algorithm works by finding the last common ancestor for a subset of P as large as possible

(lines 6 – 12). Since this subset is reachable from one node only, its cardinality cannot be decreased

and the algorithm is optimal.

Given two directed graphs G and H , the Cartesian product G2H is a graph with node set

V (G) × V (H) such that there is an edge {(u1, v1), (u2, v2)} ∈ E(G2H) if and only if: (1)

u1 = u2 and {v1, v2} ∈ E(H) or (2) v1 = v2 and {u1, u2} ∈ E(G).
Given a tree metabolic network T in which each reaction has precisely one substrate and one

product, let T̃ be the tree obtained by the following steps: (1) for each reaction node, connect the

substrate with all the products, (2) remove reaction nodes. Note that T̃ includes only the metabolite

nodes of T . These tree will be called reduced.

Given a directed graph G, let Gs be the graph in which each edge of G is subdivided (while

keeping the direction of the edge). The nodes used in the subdivision can be treated as reaction

nodes, and all nodes in V (G) as metabolite nodes.

If there is a graph G which can be represented as subdivision of the directed product of T̃1 and

T̃2 in the instance of a ISFS with a set P , such that ISFS has a non-empty solution on T1 and T2,

then:

S((T̃12T̃2)s) = min {S(T1), S(T2)},

where S(T1) is a solution to ISFS with P mapped onto Vm(T1), and S(T2) is a solution to ISFS

with P mapped onto Vm(T2). Therefore, the problem is polynomially solvable if G can be ob-

tained by subdividing the Cartesian product of two reduced tree metabolic networks.

We anticipate that similar constructions may lead to ways of decomposing metabolic networks

into smaller parts on which the inverse scope problems may be polynomially solvable. However,

we leave this as an open problem and a direction for future research.

3.6 Discussion

The inverse scope problem discussed here is of great importance for biological research since

its solution allows to computationally predict minimal nutrient requirements for the cultivation of

organisms or to identify cost efficient combinations of substrates for biotechnological applications.
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The hardness of approximation results obtained in Section 3.4 bear some important implica-

tions to the application of the inverse scope problems. For a general graph, we show that IS2FS

cannot be approximated within n1/2−ǫ for any constant ǫ > 0 unless P = NP. The hardness of

approximation and parameterized complexity of IS and ISFS on general graphs remain as open

problems. Our conjecture is that their complexity on general graphs strongly depends on the exis-

tence of directed cycles in the given metabolic network.

Our results imply that divising an efficient approximation algorithm will depend on finding

biologically meaningful metabolic networks representations with no or a small number of cycles.

Analyses of real metabolic networks have demonstrated the abundance of directed cycles, which

result in high clustering and small average path length (Jeong et al., 2000). Furthermore, one may

observe that the directed cycles are predominantly induced on the ubiquitous compounds, such

as ATP and NADH. Under physiological conditions, a cell maintains such substances at rather

constant levels guaranteeing their availability to the many processes in which they are required.

It is therefore unrealistic to assume that these compounds have to be produced a priori. This al-

lows for an alteration of the network structure reflecting that ubiquitous compounds are always

available, while still describing the biochemical capabilities of the considered organism. Such a

reduction will considerably reduce the number of cycles. Another type of cylces results from the

representation of a metabolic network as bipartite graph, in which a reversible reaction is repre-

sented by two reaction nodes which are connected to an identical set of reactants with directions

of all corresponding edges reversed. This results in cycles of length four for each reversible reac-

tion. To remove such cycles without altering the biochemical capabilities of the network is more

challenging. A possible approach is to study networks with flux balance analysis to identify those

reactions which under physiological conditions always proceed in one direction. We are currently

working on applying our findings to metabolic networks obtained from the KEGG database.

In addition, our analysis demonstrates that the concerted interrelation of biochemical pro-

cesses responsible for efficient systematic adjustment of an organism to changing environmental

conditions are indeed complex and not yet well-understood.





Chapter 4

Structure and bistability

The number of organisms for which there exist preliminary genome-scale reconstructions of their

metabolic network, together with their coverage and accuracy, is rapidly growing (Reed et al.,

2006). Metabolic networks represent dynamic systems whose behaviour is difficult to predict

by visual inspection alone. Hence, computational approaches are inevitable in the analysis of

metabolic networks.

One relevant property of metabolic networks is their capability to exhibit multistability and,

consequently, a hysteresis behaviour, since it enables switching between different modes of op-

eration as a response to changing conditions. This also holds true for other biological networks,

especially signalling pathways (Angeli et al., 2004). Given a metabolic network consisting of

parameter-dependent reactions converting a set of metabolites, it is extremely difficult to deter-

mine for which regions of the parameter space, i.e. for which assignment to the present kinetic

parameters, multiple positive steady states can occur. This information might in turn prove useful

when discriminating and comparing several model candidates with respect to experimental data.

Chemical reaction network theory (CRNT), explained in more detail in this chapter, is a power-

ful and mathematically sound framework to obtain results about bistability. The main benefit of

CRNT is that it derives all results directly from the underlying structure of a metabolic network

and thus avoids tedious and largely incomplete numerical exploration of the parameter space.

4.1 Chemical Reaction Network Theory

The development of CRNT started in the early 70s with the work of Horn and Jackson (1972) and

ever since has been refined and extended by Feinberg (Feinberg, 1995a,b). Current extensions to

this theory are briefly presented in Section 4.1.3.

The key idea is as follows: although the system of ordinary differential equations describing

the dynamics of a metabolic network in terms of metabolite concentrations is in general non-

linear, assuming mass-action kinetics for every reaction introduces enough linearity to establish

fundamental results about multistability. More technically, the differential equations describe a

non-linear function in terms of metabolite concentrations. This function can also be expressed

with respect to complexes which are constituted of the left- and right-hand sides of each reaction.

CRNT precisely describes the conditions for this mapping to be linear and the consequences for

the occurrence of multiple positive steady states. The beauty of CRNT lies in the fact that these

conditions are solely dependent on the structure of the network, and most of them can easily be

calculated even for large networks.
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4.1.1 Introduction

To understand CRNT a few necessary concepts and definitions are briefly presented. For simplic-

ity, the notation will be slightly changed compared to Feinberg (1995a). A very good introduction

to CRNT appears in Gunawardena (2003).

Consider the following example reaction network with three species (metabolites) A,B, and

C and two reversible reactions:

A+B ⇄ 2C

C ⇄ 0 (4.1)

Under the assumption that the reaction network follows mass-action kinetics, each reaction vi is

dependent on one parameter ki and on the substrate concentrations:

v1 = k1 · [A] · [B],

v2 = k2 · [C]2,

v3 = k3 · [C],

v4 = k4. (4.2)

The changes of species concentration over time can then be expressed as a system of ordinary

differential equations:

˙[A] = −v1 + v2,

˙[B] = −v1 + v2,

˙[C] = 2v1 − 2v2 − v3 + v4. (4.3)

In matrix notation, system 4.3 can be rewritten as






˙[A]
˙[B]
˙[C]




 =





−1 1 0 0
−1 1 0 0
2 −2 −1 1



 ·







v1
v2
v3
v4






. (4.4)

Consequently, every reaction network with n species and r reactions can be written as

ẋ = N · v(k, x),

where x is a vector of size n containing the metabolite concentrations, v is a vector of size r
describing the reaction rates, and N is the stoichiometric n× r matrix. In general, the rank of N
is not maximal. Let s = rank(N), then the number of conservation relations within the reaction

network is n− s. In example 4.1, the rank is 2 and the only conservation relation is [A] = [B].
Furthermore, the combination of species which form together either the educts or the products

of a reaction are called complexes. In example 4.1, there are four complexes, namely A + B,

2C, C, and the zero complex 0, which accounts for having an open system with mass influx and

efflux. Note that C and 2C form different complexes because their stoichiometric coefficients are

not equal. Formally, let the set of species be denoted as S and the set of complexes as C. Each

complex y ∈ C is then a multiset of S. Moreover, each reaction can be written as y → y′ with

y, y′ ∈ C. A reaction network is defined in the following way:

Definition 4.1.1. A chemical reaction network is a 3-tupel (S, C,R), where S is a finite set of

species, C is a finite set of multisets of species, called complexes andR is a relation on C, denoted

as y → y′ for (y, y′) ∈ R and y, y′ ∈ C, which represents a reaction converting y into y′.
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This definition does allow for reaction networks in which mass conservation is violated, for

instance A ⇄ 2A. However, this does not affect the strength of the results.

The set of complexes can then be unambiguously partitioned into a set of linkage classes,

defined as maximal sets of complexes, which are only connected by reactions to complexes within

the same linkage class, but disconnected from other complexes.

Definition 4.1.2. Let N = (S, C,R) be a chemical reaction network and let y, y′ ∈ C. The

complex y is directly linked to y′, denoted as y ↔ y′, if either y → y′ ∈ R or y′ → y ∈ R.

Furthermore, y is linked to y′, denoted as y ∼ y′, if either y = y′ or there exist y1, . . . , ym ∈ C
with y = y1 ↔ y2 ↔ · · · ↔ ym = y′. Finally, y and y′ belong to the same linkage class, if and

only if y ∼ y′.

So the linkage classes are the equivalence classes under the equivalence relation ∼. The two

linkage classes of example 4.1 are {A+ B, 2C} and {C, 0}. The total number of linkage classes

in a reaction network is denoted by l.

Finally, the deficiency of a reaction network can be defined as:

Definition 4.1.3. Let N = (S, C,R) be a chemical reaction network and let N be the stoichio-

metric matrix associated to it. Let m = |C| be the number of complexes, s = rank(N) the rank

of the stoichiometric matrix and l the number of linkage classes. The deficiency δ of N is then

defined as

δ = m− l − s.

The deficiency of a linkage class in defined straightforward as the deficiency obtained from a

reaction network only comprised of this linkage class. Note that the deficiency is dependent on

the number of complexes, the number of linkage classes and the rank of the stoichiometric matrix,

all of which are fully described by the structure of the network alone. Hence, the deficiency is

independent of parameter values for k. To see that the deficiency is non-negative, suppose that

the number of linkage classes and the number of complexes are fixed. If two complexes within

a linkage class are connected by a new edge, i.e. if a new reaction is introduced, the rank of

the stoichiometric matrix is unaltered because the additional reaction is linearly dependent on

the already existing reactions forming the linkage class. Hence, two networks with the same

complexes and the same linkage classes have the same rank for their stoichiometric matrices.

Furthermore, one can construct a network which preserves a given set of compounds and linkage

classes and only consists of m − l reactions. Therefore, the rank of the stoichiometric matrix of

such a network is at most m− l, leading to the general inequality s ≤ m− l (Feinberg, 1995a).

Characterization of the deficiency

To get an intuition of what aspects of the structure are described by the deficiency, two differ-

ent classes of reaction networks are analyzed in more detail. The first class provides a partial

characterization of reaction networks of deficiency 0 and the second one allows to create reaction

networks of arbitrary large deficiency.

Definition 4.1.4. Let N = (S, C,R) be a chemical reaction network and let A,B ∈ C. A
and B are called disjunct from each other if supp(A) ∩ supp(B) = ∅, i.e. if the sets of species

constituting the two complexes A and B are disjunct. A reaction network N is called disjunct, if

all of its complexes are pairwise disjunct.

Theorem 4.1.5. If a reaction network is disjunct, then the deficiency is zero.

Several intermediate results are needed to prove this theorem.
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Lemma 4.1.6. LetN = (S, C,R) be a disjunct reaction network with m complexes C1, . . . , Cm.

LetN ∗ be another reaction network with species C∗ = {S1, . . . , Sm}, complexes C∗ = {{S1}, . . . ,
{Sm}} and reactions {Si} → {Sj} if and only if Ci → Cj in N . Then N ∗ is disjunct and

δ(G) = δ(G∗).

Proof. The network N ∗ is disjunct by construction. Furthermore, the number of complexes and

linkage classes is the same in both N and N ∗, so m = m∗ and l = l∗. Since N is disjunct, all

rows in the associated stoichiometric matrix belonging to the same complex are pairwise linearly

dependent and linearly independent of all other rows. Hence, each complex can be replaced by

a complex containing just one species, while the reactions between the complexes are preserved.

Therefore, the rank of the stoichiometric matrices associated with N and N ∗ respectively, is the

same. Hence, δ(N ) = δ(N ∗).

Lemma 4.1.7. For every disjunct reaction network N , the deficiency of the entire network is the

sum of deficiencies of the linkage classes.

Proof. The number of linkage classes is l and the number of complexes in the linkage classes sum

up to m. Since N is disjunct, the complexes can be reordered, such that the stoichiometric matrix

is in block diagonal form, where each block corresponds to one linkage class. The rank of the

stoichiometric matrix is the sum of the ranks of each block. Hence, the total rank s is the sum of

ranks obtained from the restriction of the stoichiometric matrix to each linkage class.

Lemma 4.1.8. Let N = (S, C,R) be a disjunct reaction network with only one linkage class.

Furthermore, let |R| = |C| − 1, i.e. the complexes are linked in a path. Then the deficiency of N
is 0.

Proof. Since G is disjunct, the stoichiometric matrix has full rank, i.e. m− 1. Therefore, δ(N ) =
m− 1− (m− 1) = 0.

The deficiency is dependent on the connectivity between complexes and not on the reactions

which establish the connections.

Lemma 4.1.9. Two reaction networks with the same complexes and the same linkage classes have

the same deficiency.

Proof. See Feinberg (1995a) Remark 2.9.

Finally, theorem 4.1.5 can be proved.

Proof of theorem 4.1.5. For a given reaction network N , a network N ∗ with δ(N ) = δ(N ∗) can

be created according to Lemma 4.1.6. The networkN ∗ is also disjunct, so the deficiency ofN ∗ is

the sum of the deficiencies of each linkage class (Lemma 4.1.7). Each linkage class of N ∗ can be

simplified to a path while preserving the deficiency (Lemma 4.1.9). Finally, Lemma 4.1.8 ensures

that the deficiency of each linkage class and hence the deficiency of the networkN itself is 0.

The following example shows how to construct a reaction network of arbitrary deficiency d
(Guberman, 2003).

Example 4.1.10.

A → B

2A → 2B
...

(d+ 1)A → (d+ 1)B
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Clearly, the deficiency d is achieved by interrelating complexes through common species.

Taking this example and theorem 4.1.5, the deficiency of a network can be seen as a characteristic

which describes the internal dependencies of complexes that do not arise from reactions but from

shared species that constitute the complexes.

4.1.2 Overview of existing theorems and findings

The deficiency of a reaction network allows to draw rigorous conclusions about multistability of

the network. However, the following overview of theorems does not cover all possible networks

and therefore some networks remain inconclusive. Extending CRNT to also cover the remaining

is an ongoing work.

Deficiency Zero Theorem

If the deficiency of a reaction network is zero, then, assuming mass-action kinetics for all reactions,

no set of positive parameter values for k exists that leads to multiple steady states. An example of

such a network was already given by 4.1.

Theorem 4.1.11 (Deficiency Zero Theorem). LetN = (S, C,R) be a chemical reaction network.

If the deficiency ofN is zero, then, under the assumption of mass-action kinetics,N cannot obtain

multiple positive steady states.

Proof. A proof of a slightly stricter version of this theorem can be found in Feinberg (1995a).

Deficiency One Theorem

The Deficiency Zero Theorem can be extended to networks of higher deficiency which satisfy

some additional mild conditions, that can be expressed by some further definitions. Each linkage

class can be further decomposed into strong linkage classes. These are defined as sets of com-

plexes, such that there exists a directed path between any two complexes within the same strong

linkage class. Furthermore, a strong linkage class is called terminal strong linkage class, if it con-

tains no complex that reacts to a complex in a different strong linkage class. See the following two

examples for clarification:

B ← A→ C, (4.5)

B ⇄ A→ C. (4.6)

In both examples, the reaction network consists of three complexes A, B, and C and one linkage

class. In example 4.5 there are three strong linkage classes {A},{B}, and {C} of which two are

terminal ({B} and {C}). In contrast, example 4.6 consists of only two strong linkage classes ({A,

B} and {C}) and one single terminal strong linkage class ({C}).
The Deficiency One Theorem can be applied to reaction networks for which the following

conditions are fulfilled:

(1) The deficiency of each linkage class is less or equal to one.

(2) The deficiencies of all linkage classes sum up to the deficiency of the entire network.

(3) Each linkage class contains precisely one terminal strong linkage class.

Again, for such a network, no positive parameter values for k exist that allow multistability.
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Theorem 4.1.12 (Deficiency One Theorem). Let N = (S, C,R) be a chemical reaction network

of deficiency δ and let L be the decomposition of C into linkage classes. Furthermore, let δL be

the deficiency of the network induced by L ∈ L. If

1. δL ≤ 1 ∀L ∈ L,

2.
∑

L∈L

δL = δ,

3. each linkage class contains precisely one terminal strong linkage class,

the reaction network N , taken with mass-action kinetics, can not obtain multiple positive steady

states.

Proof. A proof is given in Feinberg (1995a).

The usefulness of this theorem can be seen in the following example.

B + C → A→0 ⇄ B

l

C

A+ C ⇄D (4.7)

The deficiency of this example reaction network is 1 (m = 7, l = 2, s = 4), hence the Deficiency

Zero Theorem is not applicable. However, the deficiency of the upper and the lower linkage

class is 1 and 0, respectively, satisfying the first two conditions of the Deficiency One Theorem.

Furthermore, each linkage class contains only one terminal strong linkage class ({0, B,C} for the

upper linkage class and {A+C,D} for the lower one). Hence, the deficiency one theorem can be

applied and guarantees that network 4.7 cannot admit multiple steady states. See Feinberg (1995a)

for more examples showing the necessity of each of the three conditions.

Deficiency One Algorithm

The Deficiency One Theorem can be applied to reaction networks of any deficiency, as long as the

preconditions are met. However, there are even networks of deficiency 1, which do not fall into

this class. The following example was taken from Ellison (1998).

Example 4.1.13.

0 ⇄ A ⇄ B

2A+B ⇄ 3A

The deficiency is 1, but condition 2 of the deficiency one theorem is violated. For some of

these networks, the Deficiency One Algorithm can be applied to analyze the capacity for supporting

multiple positive steady states. For each network the algorithm constructs a set of linear inequality

systems. If any of these systems has a solution which satisfies some further mild conditions, the

network can exhibit multistability. Furthermore, the algorithm also provides the precise values for

the kinetic parameters k and the metabolite concentrations for the steady states.

Again, some more definitions are needed (Ellison, 1998).

Definition 4.1.14. Let n be the number of species in a reaction network N and M the corre-

sponding stoichiometric matrix. A vector v ∈ R
n is called sign compatible if there exists a vector

σ ∈ im(M) and some positive numbers pi such that vi = piσi for all i = 1, . . . , n.
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Definition 4.1.15. Let N = (S, C,R). A pair of complexes {y, y′} is called a cut pair if the

following two conditions are fulfilled:

1. y → y′ ∈ R or y′ → y ∈ R

2. Removing the reactions between y and y′ disconnects the linkage class containing both y
and y′.

Definition 4.1.16. A reaction network N = (S, C,R) is regular if it satisfies the following three

conditions:

1. For every y → y′ ∈ R, there exists a positive number αy→y′ such that

∑

y→y′∈R

αy→y′(y
′ − y) = 0

2. Each linkage class contains only one terminal strong linkage class.

3. If y → y′ ∈ R or y′ → y ∈ R, and y and y′ belong to the same terminal strong linkage

class, then {y, y′} is a cut pair.

For each regular reaction network of deficiency 1 the algorithm decides whether the network

has the capacity to support multiple steady states or not. In brief, the algorithm divides the set

of complexes into three different groups according to their membership to terminal strong link-

age classes. There are only finitely many possible decompositions into such groups. For each

decomposition a system of linear equalities and inequalities between the complexes is established,

depending on which of the three groups contains the complexes. The reaction network can obtain

multiple steady states if and only if at least one of the systems has a sign compatible solution. For

a full description of the Deficiency One Algorithm see Ellison (1998) or Feinberg (1988). The

application of this algorithm to example 4.1.13, for which the Deficiency One Theorem does not

apply, shows that this network cannot support multiple steady states.

Advanced Deficiency Algorithm

The Deficiency One Theorem can be generalized to be applicable to reaction networks of any

deficiency without further constraints (Ellison, 1998). However, the drawback of this Advanced

Deficiency Algorithm is that for some reaction networks a huge number of non-linear inequality

systems have to be solved. Even for networks of moderate size this can become computationally

intractable.

Similar to the Deficiency One Algorithm, the Advanced Deficiency Algorithm creates systems

of inequalities which have to be checked for falsifiability. The major difference is that here the

reactions and not the complexes are grouped together. The grouping is based on the concept of

colinearity classes, which are corresponding to linkage classes. In short, two reactions belong to

the same colinearity class, if the flux ratio between them is the same for all steady states.

Definition 4.1.17. An orientation O of a reaction network N = (S, C,R) is a subset of R, such

that O contains each irreversible reaction and precisely one direction of each reversible reaction

from R. Let MO be the stoichiometric matrix restricted to reactions in O and let (v1, . . . , vd)
be a basis of ker(MO). For each reaction y → y′ let viy→y′ denote the component of vi which

corresponds to y → y′. Then a vector wy→y′ can be defined as [v1
y→y′ , . . . , v

d
y→y′ ]. Two reactions

y → y′ and p→ p′ are in the same colinearity class if and only if there exists a non-zero number

c such that wy→y′ = cwp→p′ .
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There exist many different possibilities for grouping the reactions, leading to a huge number

of inequality systems which are in general non-linear. However, a sufficient but not necessary

condition is given in Ellison (1998) to guarantee linearity of all constructed inequality systems.

Again, the reaction network can obtain multiple steady states if and only if at least one of these

systems has a sign compatible solution. Therefore, even in case of non-linear inequalities it makes

sense to look at the linear part of the system alone, as unsatisfiability of the linear inequalities

implies unsatisfiability of the entire system. A clear characterization of reaction networks which

leads to purely linear systems as well as finding concise pruning rules for non-linear systems

remain as open problems.

Both the Deficiency One Algorithm and the Advanced Deficiency Algorithm are implemented

in the chemical reaction network toolbox (Feinberg and Ellison, 2000). However, the current

version is restricted to reaction networks of at most 20 complexes due to computational limitations,

which is already too small for most biological networks.

4.1.3 Advancements and extensions

Several approaches exist which either extend CRNT or are closely related to it. Two will be ex-

plained briefly. Also noteworthy are the algebraic approach presented by Gatermann and Wolfrum

(2005) and the work on consequences of multistability in subnetworks by Li (1997), although

somewhat restricted to reaction networks of very special structure.

Subnetwork analysis

Conradi et al. (2007) proposed a method to draw conclusions about multistationarity of a reaction

network by analyzing special subnetworks. In particular, they investigated subnetworks defined

by elementary flux modes (see Section 1.3.2) called stoichiometric generators. If the reaction net-

work consists of m complexes and r reactions, then Ic is defined as the m × r incidence matrix

of the complex network. Hence, each reaction is represented by a column of Ic with exactly one

entry −1 for the educt and one entry 1 for the product complex. All other entries are zero. An

elementary flux mode E is a stoichiometric generator if IcE 6= 0. For a stoichiometric generator

E it can be shown that if every linkage class of the subnetwork induced by E contains only one

terminal strong linkage class, then the deficiency one algorithm can be applied to the subnetwork.

If the subnetwork is capable of supporting two steady states, then these steady states might be ex-

tended to the initial network. Therefore, some further conditions arising from the implicit function

theorem have to be met, which can be tested by solving a system of linear equations. However,

if no multistability is found for any of the subnetworks, nothing can be concluded for the entire

network. Altogether, this approach allows to analyze reaction networks of previously intractable

sizes by decomposing them into sophisticated subnetworks. Still, even the calculation of all el-

ementary flux modes can be computational demanding (Klamt and Stelling, 2002; Acuña et al.,

2008).

SR-graphs

An important class of reaction networks, especially for biochemical engineers, is obtained from

the context of continuous flow stirred tank reactors (CFSTR). For a CFSTR, constant temperature

and pressure is assumed as well as constant import and export of all species. Although these

assumptions are far from biological settings, some of the results for CFSTR networks translate to

general reaction networks and, therefore, can be applied to metabolic networks.

Using CFSTR networks, Craciun and Feinberg (2005) introduce an algebraic approach by

defining a polynomial function p(c, k) associated with the reaction network, where c is the vec-
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tor of species concentration and k is the vector of kinetic parameters for the rate equations. This

function consists of the right-hand side of the system of differential equations under mass action

kinetics. It is shown that if p(c, k) is injective for all positive choices of k, the reaction network

cannot support multiple positive steady states. However, the opposite is not true unless the nonneg-

ativity condition for the steady states is dropped. For a given reaction network, p(c, k) is proved

to be injective if and only if all the coefficients in the expansion of det(∂p∂c (c, k)) are nonnegative.

Furthermore, a criterion is introduced which decides if a reaction network, for which p(c, k) is not

injective, can admit multiple positive steady states or not. This criterion is restricted to reaction

networks in the CFSTR context (all species can be exported) and can be calculated with the help

of standard computer algebra systems. However, one might additionally have to solve some time-

consuming polynomial optimization problems, rendering the calculation practically impossible.

A more graph-based approach was presented by Craciun and Feinberg (2006b), where multiple

steady states could be ruled out for reaction networks based on properties of the associated species-

reaction graph (SR-graph).

Definition 4.1.18. For a reaction network N = (S, C,R) the SR-graph GN is a bipartite, undi-

rected graph with one species node for every species in S and precisely one reaction node for

every reversible or irreversible reaction in R. A species node s is connected to a reaction node r
given by y → y′ or y ⇄ y′ if and only if s ∈ y or s ∈ y′ (so s is part of at least one of the two

complexes that constitute the reaction r). For s ∈ y the edge is assigned the complex label y and

the stoichiometric coefficient, which is the multiplicity of s in y. For s ∈ y′ the labeling is done

accordingly.

The structure of a SR-graph is of high interest, especially cycles within such a graph need

further classification.

Definition 4.1.19. Let N be a reaction network and GN its associated SR-graph. A pair of edges

adjacent to the same reaction node is called a c-pair if they bear the same complex labeling. If a

cycle contains an even number of c-pairs it is called an even-cycle; otherwise, it is an odd-cycle. If

alternating multiplication and division of stoichiometric coefficients of edges along a cycle gives

1, the cycle is called one-cycle. Two cycles are said to have an S-R intersection if their common

edges generate a simple path from a species to a reaction node or are a disjoint union of such paths.

Clearly, a cycle can be both an even-cycle and a one-cycle. Only odd-cycle and even-cycle are

mutually exclusive. For a given reaction network the SR-graph can be constructed easily and once

all the cycles are identified, they can be characterized according to the definition above. Finally,

with the help of the SR-graph it can be analyzed whether or not the reaction network can support

multiple positive steady states.

Theorem 4.1.20. Let N be a reaction network (in the context of CFSTR) and GN its associated

SR-graph. If all cycles of GN are odd-cycles or one-cycles and no two even-cycles have an S-R

intersection, the reaction network N has not the capacity for multiple positive steady states.

The proof of this theorem and a slightly stronger version of it can be found in Craciun and

Feinberg (2006b). Here, the results are still restricted to reaction networks in which all species

are imported and exported with a constant positive rate. This assumption can be dropped by using

entrapped species models (Craciun and Feinberg, 2006a), where the set of species is subdivided

into two disjunct sets, one containing the species that are imported and exported as in the CFSTR

context and the other one containing all other, entrapped, species without such transport reactions.

In that sense, every reaction network can be considered as an entrapped species model. Theorem

4.1.20 can be extended to such networks under the mild modification that multiple positive steady

states are not ruled out generally but degenerated steady states are still possible. Here, degenerated
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means that there are infinitely many other positive steady states in close proximity which are con-

sistent with possible conservation constraints on the entrapped species. Degenerated steady states

are pathological and do not reflect the intuition behind multistationarity in metabolic networks as

they arise from fragile mathematical artifacts (Craciun and Feinberg, 2006a; Feinberg, 1987).

So far, CRNT as well as SR-graphs are based on the assumption that all reactions within the

reaction network are governed by mass-action kinetics. One way to overcome this strong assump-

tion is to model each reaction on the level of enzyme catalysis. For instance, if an enzymatic

reaction A → B follows Michaelis-Menten kinetics, it can be replaced by the small network

A + E ⇆ AE → B + E, where E is the enzyme and AE is the intermediate complex build by

physical interaction between the enzyme and the substrate A. For all three reactions within the

new network mass-action kinetics can be assumed and hence CRNT or SR-graphs can be applied

to this new network. Several basic mechanisms for enzyme catalysis such as competitive or un-

competitive inhibition have been evaluated systematically by means of SR-graphs (Craciun et al.,

2006). As one might expect, the capacity for multiple positive steady states heavily depends on

the structural details of the analyzed mechanisms.

4.2 Bistability in the Calvin cycle

One of the most important metabolic pathways is the process of carbon fixation in chloroplast

stroma, which is known as the Calvin cycle. Under consumption of ATP and NADPH, CO2

is inserted into the metabolism to produce new carbon-rich molecules. The cycle consists of

three phases: (i) carboxylation, during which the enzyme RuBisCO adds CO2 to Ribulose-1,5-

bisphosphate (RuBP) to get two molecules of phosphoglycerate (PGA), (ii) reduction, convert-

ing the obtained PGA into glyceraldehyde-3-phosphate (GAP) and dihydroxyacetone phosphate

(DHAP), and (iii) regeneration, which recovers RuBP after several intermediate steps (Berg et al.,

2002).

Due to nonlinear interplay of the participating reactions and metabolites, the Calvin cycle is

a complex dynamic system. Like for any complex system, the question whether multiple steady

states can be achieved is of high interest. Although multistationarity was found in comparable

dynamic systems like cell cycle (Zwolak et al., 2004; Tyson et al., 2001), analysis of the Calvin

cycle with respect to multiple steady states is still fragmentary, not least because of difficulties

in obtaining experimental data. Pettersson and Ryde-Pettersson (1988) found two steady states

for their model, of which one was shown to be unstable and therefore considered to be of no

biological relevance. Nevertheless, the remaining stable steady state was in good accordance with

previous experiments (Flügge et al., 1980; Heldt et al., 1977). Poolman et al. (2000) also found two

steady states, which furthermore were confirmed experimentally (Poolman et al., 2001). However,

the two steady states occur in leafs of different age and therefore have different capacities of

utilizing the produced carbonhydrates (Olçer et al., 2001). It is still unclear to which extent these

results hold within one single leaf. A systematic approach was taken by Zhu et al. (2008), using

a sophisticated algorithm to find all roots of a system of polynomials. The application of this

approach to a very simplistic model of the Calvin cycle revealed 40 steady states, of which 39 were

biological infeasible due to extremely small or even negative metabolite concentrations. However,

their analysis was limited to a given set of kinetic parameters and their close vicinity.

4.3 Hierarchy of Calvin cycle models

The methods described in Sections 4.1.2 and 4.1.3 will be used to analyze the capacity for multiple

positive steady states over the entire parameter space of various Calvin cycle models. With respect

to their level of abstractions these models form a hierarchy, ranging from a very simple model
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(4.8)

Figure 4.1: Simple model of the Calvin cycle as presented in Zhu et al. (2008). RuBP: Ribu-

lose 1,5-bisphosphate; PGA: 3-Phosphoglycerate; DPGA: 1,3-Bisphosphoglycerate; GAP: Glyc-

eraldehyde 3-phosphate; Ru5P: Ribulose 5-phosphate.

of only five metabolites to an elaborate one including compartmentalization of metabolites and

additional pathways like sucrose synthesis.

4.3.1 Model of Zhu

The model of Zhu et al. (2008) contains only five internal metabolites, arranged as a cycle with

two additional transport reactions (Figure 4.1). The simplification of the regeneration phase to the

overall reaction k5 leads to non-integer stoichiometric coefficients, which therefore do not describe

the number of molecules participating in a single reaction.

Reaction network 4.8 has a deficiency of 1 and two linkage classes of deficiency 0 each.

Hence, neither the Deficiency Zero Theorem (Theorem 4.1.11) nor the Deficiency One Theorem

(Theorem 4.1.12) is applicable. One of the linkage classes ({PGA,DPGA,GAP, 0.6Ru5P, 0})
consists of two terminal strong linkage classes ({0.6Ru5P} and {0}), so the network is not regular

and hence violating the preconditions of the Deficiency One Algorithm. Applying the Advanced

Deficiency Algorithm to network 4.8 revealed multiple steady states. However, reaction networks

like 4.8 that fulfill conditions 1 and 3, but not condition 2 of definition 4.1.16 are to some extent

considered pathological, as they allow for an infinite number of steady states (Feinberg, 1995b,

1987, Appendix 4). More importantly, the capability of obtaining multiple steady states vanishes

even under very subtle changes in the network structure, which is why such networks do not

represent good model candidates.

A slightly different network is obtained by changing the stoichiometry of reaction k5 in net-

work 4.8 into:

5GAP
k5−→ 3Ru5P (4.9)

This modified network is of deficiency 1 and composed of two linkage classes of deficiency 0 each.

But in contrast to network 4.8 the Deficiency One Algorithm is now applicable. It guarantees that

no multiple positive steady states are possible, no matter what values of the mass-action kinetic

parameters are chosen. But even the existence of a single steady state is not ensured and depends

on some of the kinetic parameters. This can be seen by analysing the set of differential equations
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for network 4.9. The parameter k3

is varied and all other parameters are

fixed to 1. As k3 approaches 5 · k6,

the concentrations go to infinity. For

even smaller values of k3, no steady

state exists at all. All steady states

are unstable, as indicated by the dotted

lines. Ru5P and RuBP always have

the same concentration.

associated with the modified network.

dRu5P
dt

= −k1 · Ru5P + 3 · k5 · GAP 5

dRuBP
dt

= k1 · Ru5P − k2 · RuBP

dPGA
dt

= 2 · k2 · RuBP − k3 · PGA − k6 · PGA

dDPGA
dt

= k3 · PGA − k4 · DPGA

dGAP
dt

= k4 · DPGA − 5 · k5 · GAP 5 − k7 · GAP

(4.10)

To obtain the steady state solutions, the left-hand sides of 4.10 are set to zero. Expressing every

equation in terms ofRuBP leads toRu5P = k2
k1
·RuBP and PGA = 2·k2

k3+k6
·RuBP . Subsequent

substitutions give DPGA = k3
k4
· PGA = 2·k2·k3

k4·(k3+k6) · RuBP and GAP = 5

√
k2·
3·k5
·RuBP .

Finally, this leads to:

0 = k4 ·DPGA− k7 ·GAP − 5 · k5 ·GAP
5

=
2 · k2 · k3

(k3 + k6)
− k7 ·

5

√

k2

3 · k5
·RuBP −

5

3
· k2 ·RuBP

=

(

2 · k2 · k3

(k3 + k6)
− k7 ·

5

√

k2

3 · k5 ·RuBP 4
−

5

3
· k2

)

·RuBP

The latter equation has five distinct solutions, of which only one is positive as well as real, given

by

RuBP = 4

√
√
√
√

k2 · k5
7

3 · k5

(
2·k2·k3
k3+k6

− 5
3 · k2

)5

for 2·k2·k3
k3+k6

− 5
3 · k2 > 0 or equivalently k3 > 5 · k6. This imposes a lower threshold for k3 in terms

of k6. More precisely, if k3 is below this threshold, not even a single steady state can occur, no

matter what values are obtained for all remaining parameters k. Figure 4.2 shows the change of

steady state concentration for varying k3, while all other k’s are fixed to one.
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To analyze the stability of the steady state solution, one has to calculate the eigenvalues of the

Jacobian matrix J of system 4.10.

J =









−k1 0 0 0 15 · k5 ·GAP 4

k1 −k2 0 0 0
0 2 · k2 −k3 − k6 0 0
0 0 k3 −k4 0
0 0 0 k4 −25 · k5 ·GAP 4 − k7









The roots of the characteristic polynomial χJ(λ) = det(J − λ · E), where E stands for the

identity matrix, determine the eigenvalues of J . The characteristic polynomial can be calculated

by a subsequent minor expansion across the first row, leading to

χJ(λ) = (k1−λ)(−k2−λ)(−k3−k6−λ)(−k4−λ)(−25k5GAP
4−k7−λ)+30k1k2k3k4k5GAP

4

The expansion of χJ to the form χJ(λ) = α0λ
0 + α1λ

1 + α2λ
2 + α3λ

3 + α4λ
4 + α5λ

5

shows that α1 to α5 are negative. The remaining coefficient α0 can be expressed as α0 =
k1k2k4

(
k7 (−k3 − k6) + 5k5GAP

4 (k3 − 5k6)
)
. Substituting GAP 4 = k7

k5(
6k3

k3+k6
−5)

, obtained

from the steady state relation between RuBP and GAP , one finally gets α0 = 4k1k2k4k7(k3 +
k6). Hence, α0 is always positive. From Descartes’ rule of sign it follows that χJ(λ) has exactly

one positive root and therefore one positive eigenvalue. Consequently, the entire parameter space

of network 4.9 does not contain any stable steady states, which clearly makes this network an

extremely poor model.

So far, the analysis was based on assuming simple mass-action kinetics for all participating

reactions. This limitation can be overcome by breaking down more complex kinetic rate laws

into elementary enzymatic mechanisms, which in turn follow mass-action kinetics. Applying this

approach, network 4.8 can be rewritten as:

Ru5P + E1

k1
⇆

k2

Ru5PE1
k3−→ RuBP + E1

RuBP + E2

k4
⇆

k5

RuBPE2
k6−→ 2PGA+ E2

PGA+ E3

k7
⇆

k8

PGAE3
k9−→ DPGA+ E3

DPGA+ E4

k10
⇆

k11

DPGAE4
k12−→ GAP + E4

5GAP + E5

k13
⇆

k14

GAPE5
k15−→ 3Ru5P + E5

PGA+ E6

k16
⇆

k17

PGAE6
k18−→ E6

GAP + E7

k19
⇆

k20

GAPE7
k21−→ E7

(4.11)

Network 4.11 has a deficiency of 2 and is composed of seven linkage classes, each of defi-

ciency 0. Therefore, neither Deficiency Zero Theorem nor Deficiency One Theorem nor Defi-

ciency One Algorithm are applicable. Furthermore, since network 4.11 consists of 21 complexes,

it already exceeds the computational capabilities of the CRNT Toolbox (Feinberg and Ellison,

2000) to run the Advanced Deficiency Algorithm.

The SR-graph of network 4.11 is shown in Figure 4.3. It contains one large even-cycle, com-

prising ten consecutive c-pairs. Furthermore, alternate multiplication and division of the stoichio-

metric coefficients along the cycle does not give the result 1, so this cycle is not a one-cycle. Thus
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Figure 4.3: SR-graph of network 4.11. If not explicitly stated otherwise, the stoichiometric coeffi-

cients are always 1. The bold lines form an even-cycle which is not a one-cycle. Hence Theorem

4.1.20 cannot be applied and therefore no conclusions about multistability can be drawn from the

SR-graph.

the preconditions of Theorem 4.1.20 are violated, leaving the question of multiple positive steady

states open.

Subnetwork analysis revealed only two elementary modes for network 4.11, which arise from

shutting down one of the two transporter reactions 1. Both of them are capable of obtaining multi-

ple steady states, which can be calculated by the CRNT Toolbox. Furthermore, by means presented

by Conradi et al. (2007) these steady states of the subnetworks induced by the elementary modes

can be extended to the full network. To see this, consider the following system of differential

1νEM
1 = {3, 0, 3, 3, 0, 3, 5, 0, 5, 5, 0, 5, 1, 0, 1, 1, 0, 1, 0, 0, 0}

νEM
2 = {3, 0, 3, 3, 0, 3, 6, 0, 6, 6, 0, 6, 1, 0, 1, 0, 0, 0, 1, 0, 1}
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k1 = 1.3666169 k8 = 1 k15 = 0.26920841

k2 = 1 k9 = 10.30969 k16 = 1

k3 = 2.4579323 k10 = 6.1626543 k17 = 1

k4 = 0.99119923 k11 = 1 k18 = 1

k5 = 1 k12 = 6.6747969 k19 = 1.5770407

k6 = 2.0237445 k13 = 15.141035 k20 = 1

k7 = 9.9649223 k14 = 1 k21 = 1.7182818

Table 4.1: Parameter assignment for the system of differential equations 4.12 which allow for

multiple positive steady states. Parameters set to 1 are precisely those associated with reactions

that are not present in the first elementary mode which was used to construct a subnetwork. For

simplicity, all of these parameters are chosen to have the same value.

equation obtained from reaction network 4.11.

dRu5P
dt

= −k1 · Ru5P · E1 + k2 · Ru5PE1 + 3 · k15 · GAPE5

dE1

dt
= −k1 · Ru5P · E1 + k2 · Ru5PE1 + k3 · Ru5PE1

dRu5PE1

dt
= k1 · Ru5P · E1 − k2 · Ru5PE1 − k3 · Ru5PE1

dRuBP
dt

= k3 · Ru5PE1 − k4 · RuBP · E2 + k5 · RuBPE2

dE2

dt
= −k4 · RuBP · E2 + k5 · RuBPE2 + k6 · RuBPE2

dRuBPE2

dt
= k4 · RuBP · E2 − k5 · RuBPE2 − k6 · RuBPE2

dPGA
dt

= 2 · k6 · RuBPE2 − k7 · PGA · E3 + k8 · PGAE3 − k16 · PGA · E6 + k17 · PGAE6

dE3

dt
= −k7 · PGA · E3 + k8 · PGAE3 + k9 · PGAE3

dPGAE3

dt
= k7 · PGA · E3 − k8 · PGAE3 − k9 · PGAE3

dDPGA
dt

= k9 · PGAE3 − k10 · DPGA · E4 + k11 · DPGAE4

dE4

dt
= −k10 · DPGA · E4 + k11 · DPGAE4 + k12 · DPGAE4

dDPGAE4

dt
= k10 · DPGA · E4 − k11 · DPGAE4 − k12 · DPGAE4

dGAP
dt

= k12 · DPGAE4 − 5 · k13 · GAP 5 · E5 + 5 · k14 · GAPE5 − k19 · GAP · E7

+k20 · GAPE7

dE5

dt
= −k13 · GAP 5 · E5 + k14 · GAPE5 + k15 · GAPE5

dGAPE5

dt
= k13 · GAP 5 · E5 − k14 · GAPE5 − k15 · GAPE5

dE6

dt
= −k16 · PGA · E6 + k17 · PGAE6 + k18 · PGAE6

dPGAE6

dt
= k16 · PGA · E6 − k17 · PGAE6 − k18 · PGAE6

dE7

dt
= −k19 · GAP · E7 + k20 · GAPE7 + k21 · GAPE7

dGAPE7

dt
= k19 · GAP · E7 − k20 · GAPE7 − k21 · GAPE7

(4.12)

Using parameters shown in Table 4.1, this system does have the capability to obtain multiple

positive steady states as can be seen by the two steady states presented in Table 4.2. Furthermore,

Figure 4.4 shows the corresponding bifurcation diagram for some of the metabolites, using the

sum of the concentration of E3 and PGAE3 as bifurcation parameter.

Besides the simplicity of this model and the coarse modelling of the Michaelis-Menten kinet-

ics, one further concern arises from the parameter values and the steady state concentrations of the

metabolites. Since the applied method only aims at answering whether multiple positive steady

states might occur, the resulting values for the parameters and metabolite concentrations are clearly

outside any biological meaningful range. Furthermore, one of the two observed steady states is

unstable and hence of no biological relevance. However, there is some freedom in choosing those

parameters associated with reactions not included in the subnetwork induced by the elementary

mode under consideration. This can be further exploited to test whether multistability also occurs

for biological feasible parameter values and metabolite concentrations. Interestingly, an isolated
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metabolite steady state 1 steady state 2 metabolite steady state 1 steady state 2

Ru5P 1.8031031 6.3319974 E4 2.0319109 1.1136257

E1 2.6499371 1.2957393 DPGAE4 1.310466 2.2287516

Ru5PE1 1.8883671 3.242564 GAP 0.6439413 1.2921397

RuBP 2.1738771 7.6340526 E5 4.3510314 0.2296564

E2 3.2184725 1.573736 GAPE5 5.7470699 9.8684449

RuBPE2 2.2935102 3.9382467 E6 1.4641405 0.9364545

PGA 0.7319781 2.2714297 PGAE6 0.5358594 1.0635454

E3 1.3155187 0.7209939 E7 1.5754002 1.2367929

PGAE3 0.8484346 1.4429594 GAPE7 0.5885531 0.9271604

DPGA 0.8031938 2.4924215

Table 4.2: Two different positive steady states obtained from system 4.12 using the parameters

shown in Table 4.1. The first steady state is unstable while the second one is stable.
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reaction network of the form of A + E ⇆ AE −→ B, which is exactly the set of reactions that

were included into network 4.8 to simulate Michaelis-Menten kinetics, does not support multiple

steady states on its own (Craciun et al., 2006). Therefore, the fact that multiple steady states exist

for network 4.11 and not for network 4.8 does not arise from local structural properties but rather

from the overall structure of the entire network.

4.3.2 Models of Pettersson and Poolman

A more detailed model of the Calvin cycle was introduced by Pettersson and Ryde-Pettersson

(1988), consisting of 18 metabolites and 20 reactions, out of which 9 are irreversible. Here, the

three phases of the Calvin cycle as well as starch synthesis are described explicitly, whereas the

light reaction is modelled as an overall and simplified reaction converting ADP and P into ATP.

This model was extended by Poolman et al. (2001) who introduced, among other things, a starch

degradation reaction. The reaction network looks as follows, where reaction k32 only occurs in

Poolman’s model (Figure 4.5).
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Figure 4.5: Graphical representation of models of Pettersson and Ryde-Pettersson (1988)

and Poolman et al. (2001). The concentrations of CO2, P iext, PGAext, GAPext, DHAPext
and starch are kept constant. PGA, 3-phosphoglyceric acid; BPGA, 2,3-bisphosphoglyceric

acid; GAP, glyceraldehyde 3-phosphate; DHAP, dihydroxyacetone phosphate; FBP, fructose

1,6-bisphosphate; F6P, fructose 6-phosphate; G6P, glucose 6-phosphate; G1P, glucose 1-

phosphate; E4P, erythrose 4-phosphate; SBP, sedoheptulose 1,7-bisphosphate; S7P, sedoheptulose

7-phosphate; R5P, ribose 5-phosphate; X5P, xylulose 5-phosphate; RuSP, ribulose 5-phosphate;

RuBP, ribulose 1,5-bisphosphate.
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RuBP
k1−→ 2PGA R5P

k18

⇆
k19

Ru5P

PGA + ATP
k2

⇆
k3

BPGA + ADP X5P
k20

⇆
k21

Ru5P

BPGA
k4

⇆
k5

Pi + GAP Ru5P + ATP
k22−→ RuBP + ADP

GAP
k6

⇆
k7

DHAP F6P
k23

⇆
k24

G6P

GAP + DHAP
k8

⇆
k9

FBP G6P
k25

⇆
k26

G1P

FBP
k10−→ F6P + Pi G1P + ATP

k27−→ ADP + 2Pi

F6P + GAP
k11

⇆
k12

E4P + X5P PGA
k28−→ Pi

DHAP + E4P
k13

⇆
k14

SBP GAP
k29−→ Pi

SBP
k15−→ S7P + Pi DHAP

k30−→ Pi

S7P + GAP
k16

⇆
k17

X5P + R5P ADP + Pi
k31−→ ATP

Pi
k32−→ G1P

(4.13)

Both models consist of 32 complexes, but the model of Pettersson consists of 13 linkage

classes while the model of Poolman consists of only 12 linkage classes. Hence, the deficiencies for

the reaction networks are 3 and 4, respectively. In both cases, the deficiency of each linkage class

is 0 and therefore neither Deficiency Zero Theorem nor Deficiency One Theorem nor Deficiency

One Algorithm can be applied. Again, the size of this network already exceeds the computational

capability of the CRNT Toolbox.

Furthermore, also the approach using SR-graphs is not applicable for these models. As can

be seen in Figure 4.6, the SR-graph contains an even-cycle that is not a 1-cycle, thus violating the

conditions of theorem 4.1.20. On the other hand, subnetwork analysis of the model of Pettersson

reveals four elementary modes, which differ mainly in whether starch synthesis (k27) or one of the

three export reactions (k28 − k30) is used. All of the subnetworks induced by these elementary

modes contain at least 26 complexes, exceeding the capabilities of the currently available imple-

mentation of the Deficiency One Algorithm. Introducing the starch degradation step (k31) in the

model of Poolman extends the number of elementary modes to eight. However, except for a trivial

elementary mode composed of starch synthesis and degradation together with the light reaction

(k27, k31 and k32) which cannot admit multiple positive steady states, all other elementary modes

contain again at least 26 complexes. Altogether, even under simplified mass-action kinetics, the

question whether these models support multiple steady states remains open.

4.3.3 Extended model of the Calvin cycle

Zhu et al. (2007) extended the previous models by including the photosynthetic carbon oxygena-

tion pathway and sucrose synthesis. Several new reactions were added which take place in the

cytosol, leading to a compartmentation of the reaction network. Hence, every metabolite which

may appear in the stroma as well as in the cytosol is modelled as two distinct compounds, such as

3-phosphoglycerate (PGA and PGAc respectively) which results in a total of 31 compounds (Fig-

ure 4.7). However, the models of Poolman and Pettersson cannot be perfectly embedded into this

model, because here several metabolites are pooled together (e.g. GAP and DHAP). The reaction
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GAP BPGA PGA
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G1P
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v27

GAP + P BPGA

BPGA
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GAP + P

BPGA
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PGA+ATP

PGA+ATP

ADP + 2P

2 ADP + 2P

G1P +ATP

G1P +ATP

Figure 4.6: Part of the SR-

graph for the models of Pet-

tersson and Poolman. The

bold lines form an even-

cycle (two c-pairs labeled as

ADP + 2P and BPGA +

ADP), which is not a 1-cycle.

Therefore, Theorem 4.1.20

cannot be applied.

network is as follows:

RuBP
k1
−→ 2 PGA T3P

k22
−→ T3Pc 2 T3Pc

k40

⇆

k41

FBPc

PGA + ATP
k2

⇆

k3

DPGA PGA
k23
−→ PGAc FBPc

k42

⇆

k43

HexPc

DPGA
k4
−→ T3P RuBP

k24
−→ PGA + PGCA HexPc + UTPc

k44

⇆

k45

OPOPc + UDPGc

2 T3P
k5

⇆

k6

FBP PGCA
k25
−→ GCA HexPc + UDPGc

k46

⇆

k47

SUCPc

FBP
k7

⇆

k8

HexP GCEA + ATP
k26

⇆

k27

PGA SUCPc
k48

⇆

k49

SUCc

T3P + HexP
k9

⇆

k10

E4P + PenP GCEAc
k28

⇆

k29

GCEA F26BPc
k50
−→ HexPc

E4P + T3P
k11

⇆

k12

SBP GCAc
k30

⇆

k31

GCA HexPc + ATPc
k51

⇆

k52

F26BPc

SBP
k13

⇆

k14

S7P GCAc
k32
−→ GOAc ATPc

k53

⇆

k54

UTPc

S7P + T3P
k15

⇆

k16

2 PenP GOAc + SERc
k33

⇆

k34

GLY c + HPRc OPOPc
k55
−→ 0

PenP + ATP
k17

⇆

k18

RuBP HPRc
k35

⇆

k36

GCEAc SUCc
k56
−→ 0

0

k19

⇆

k20

ATP GOAc
k37

⇆

k38

GLY c PGAc
k57
−→ 0

HexP + ATP
k21
−→ 0 2 GLY c

k39
−→ SERc 0

k58
−→ ATPc

(4.14)

Network 4.14 is comprised of 49 complexes and 13 linkage classes. The rank of the stoichio-

metric matrix is 31, which produces a deficiency of 5 for the network. Furthermore, the deficiency

of each linkage class is 0. So Deficiency Zero Theorem, Deficiency One Theorem and Deficiency

One Algorithm are not applicable. The high number of complexes renders it impossible to use the

Advanced Deficiency Algorithm. Also, the analysis of the SR-graph does not resolve the ques-

tion of bistability as can be seen in Figure 4.8. The subnetwork analysis reveals five elementary

modes. Besides one futile cycle, they all consist of the core Calvin cycle plus one of the following

pathways: starch synthesis, PGA export, photosynthetic carbon oxygenation or sucrose synthesis.

Three of the subnetworks induced by each elementary mode cannot admit multiple positive steady

states. For the remaining two, the induced subnetworks are already too large to be handled by

the CRNT Toolbox. In summary, no definite answer can be given to the question whether this

extended model supports multiple steady states.

4.4 Conclusion

Multistability of a metabolic network is a very important and interesting dynamic property, as

it is the cause for a switchlike behaviour. However, it is not trivial to determine regions in the

parameter space in which multistability occurs. In that respect, the presented methods constitute
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Figure 4.7: Graphical representation of the extended model (Zhu et al., 2007). The nodes denoted

as ’starch’, ’source’ and ’sink’ serve as external metabolites. DPGA, 1,3-Bisphosphoglycerate;

E4P, Erythrose-4-phosphate; FBP, Fructose-1,6-bisphosphate; F26BP, Fructose-2,6-bisphosphate;

GCA, Glycolate; GCEA, Glycerate; GLY, Glycine; GOA, Glyoxylate; HexP, Hexose-phosphate,

includes Fructose-6-phosphate, Glucose-6-phosphate and GLucose-1-phosphate; HPR, Hydrox-

ypyruvate; OPOP, Pyrophosphate; PenP, sum of concentrations of Ribose-5-phosphate, Ribulose-

5-phosphate and Xylulose-5-phosphate; PGA, 3-phosphoglycerate; PGCA, Phosphoglycolate;

RuBP, Ribulose-1,5-bisphosphate; S7P, Seduheptulose-7-phosphate SBP, Seduheptulose-1,7-

bisphosphate SER, Serine; SUC, Succrose; SUCP, Sucrose phosphate; T3P, Triose-phosphate,

including Dihydroxyacetone-phosphate and Glyceraldehyde-3-phosphate

powerful means to investigate the entire parameter space of metabolic networks, at least under

the assumption of mass-action kinetics. Table 4.3 summarises the results obtained from applying

these methods to several models of the Calvin cycle, which differ in their level of abstraction as

well as in the number of considered reactions. For small networks definite results were found.

Interestingly, weakening the mass-action assumption by explicitly modelling enzyme mechanisms

leads to multiple positive steady states. However, no results could be found for the larger net-
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RuBP

v1

PGA

v15

PGAc

RuBP

2 PGA 2
PGA+ PGAc

RuBP

PGA+ PGAc

Figure 4.8: Part of the SR-graph for

the extended model shown in network

4.14. The depicted cycle forms an

even-cycle which is not a 1-cycle. Note

that although edges are labeled with

RuBP they do not form a c-pair as

they are not incident to a common reac-

tion node. Therefore, Theorem 4.1.20

cannot be applied.

works, mainly due to the limitations imposed by the CRNT Toolbox. Therefore, it is crucial to

improve the existing implementations of the Deficiency One Algorithm and the Advanced Defi-

ciency Algorithm. Especially the latter is of high importance, since it can, in principle, be applied

to all sorts of reaction networks but might require solving nonlinear systems. Furthermore, the

existing methods should be extended such that also the stability of the calculated steady states is

considered, since one is usually only interested in stable steady states.

model of Zhu with
mass-action kinetics
(network 4.9)

model of Zhu with
Michaelis-Menten
kinetics (network 4.11)

model of Pettersson/
Poolman (network
4.13)

extended model (net-
work 4.14)

species 5 19 18 31
complexes 9 21 32 49
reactions 7 21 31/32 58

Deficiency Zero
Theorem

not applicable not applicable not applicable not applicable

Deficiency One
Theorem

not applicable not applicable not applicable not applicable

Deficiency One Al-
gorithm

no multiple positive
steady states possible

not applicable not applicable not applicable

Advanced Defi-
ciency Algorithm

–
exceeds computational
capabilities

exceeds computational
capabilities

exceeds computational
capabilities

SR-graphs –

not applicable (contains
even-cycle that is not a
one-cycle)

not applicable (contains
even-cycle that is not a
one-cycle)

not applicable (contains
even-cycle that is not a
one-cycle)

subnetwork analy-
sis

–

2 elementary modes
subnetworks can admit
multiple positive steady
states and can be ex-
tended

4/7 elementary modes
all subnetworks exceed
computational capabili-
ties

5 elementary modes
two subnetworks ex-
ceed computational
capabilities

multiple positive
steady states

NO YES still open still open

Table 4.3: Summary of results regarding multiple positive steady states for several models of the

Calvin cycle. Only for the small networks definite results could be obtained. The analysis of the

larger networks is hampered by the limitations of the current implementation of deficiency 1 and

advanced deficiency algorithm.





Chapter 5

The stability and robustness of

metabolic states: Identifying stabilizing

sites in metabolic networks

The dynamic behavior of metabolic networks is governed by numerous regulatory mechanisms,

such as reversible phosphorylation, binding of allosteric effectors or temporal gene expression, by

which the activity of the participating enzymes can be adjusted to the functional requirements of

the cell. For most of the cellular enzymes, such regulatory mechanisms are at best qualitatively

known, whereas detailed enzyme-kinetic models are lacking. To explore the possible dynamic

behavior of metabolic networks in cases of lacking or incomplete enzyme-kinetic information, we

present a computational approach based on structural kinetic modelling. We derive statistical mea-

sures for the relative impact of enzyme-kinetic parameters on dynamic properties (such as local

stability) and apply our approach to the metabolism of human erythrocytes. Our findings show

that allosteric enzyme regulation significantly enhances the stability of the network and extends

its potential dynamic behavior. Moreover, our approach allows to differentiate quantitatively be-

tween metabolic states related to senescence and metabolic collapse of the human erythrocyte. We

think that the proposed method represents an important intermediate step on the long way from

topological network analysis to detailed kinetic modelling of complex metabolic networks.

5.1 Introduction

One of the most challenging goals of computational systems biology is the development of de-

tailed kinetic models to simulate and predict the dynamic response of metabolic networks towards,

for example, changes in kinetic parameters due to pharmacological interventions or variations of

environmental conditions. However, for complex metabolic networks comprised of several inter-

woven pathways, detailed kinetic modelling is usually not possible due to the inevitable lack of

knowledge about the kinetic properties of the involved enzymes and membrane transporters. In

this work, we extend a recently proposed method that bridges between topology-based approaches

and explicit kinetic models of metabolic networks (Steuer et al., 2006). In the face of lacking

or incomplete enzyme-kinetic information, we i) derive and compare statistical measures for the

relative impact of enzymatic reactions and parameters on the dynamic properties (such as local

stability) of metabolic networks; ii) evaluate the functional role of allosteric feedback regulation

in the stabilization of metabolic networks; and iii) propose measures to quantitatively evaluate the

stability and robustness properties of metabolic states.

Our approach is exemplified and validated using a representation of the metabolic network of
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the human erythrocyte. Due to the fundamental role of erythrocytes in the oxygen supply of cells,

as well as the relative simplicity of its metabolism, erythrocytes have been subject to extensive

experimental and theoretical research for decades. Numerous explicit mathematical models have

been developed since the late 1970s (Rapoport et al., 1976; Ataullakhanov et al., 1981; Holzhütter

et al., 1985; McIntyre et al., 1989; Joshi and Palsson, 1989; Ni and Savageau, 1996a; Mulquiney

and Kuchel, 1999; Nakayama et al., 2005), providing a suitable benchmark to assess the reliability

of our method.

Our approach is motivated by the increasing experimental accessibility of cellular characteris-

tics, such as metabolic fluxes and concentrations of metabolic intermediates (Fernie et al., 2004;

Goodacre et al., 2004; Sauer, 2004). Each metabolic state, characterized by a flux distribution and

metabolite concentrations, is associated with a unique spectrum of dynamic properties, as defined

by the ensemble of all possible kinetic models consistent with the respective state. Our main focus

thus lies on a quantitative characterization and comparison of the stability properties of metabolic

states.

In particular, transitions to instability, occurring via a loss of a stable steady state, were previ-

ously argued to play a crucial role in senescence and metabolic collapse of erythrocytes, and may

act as a primary signal for cell removal in patients with haemolytic anaemia (de Atauri et al., 2006;

Schuster and Holzhütter, 1995). While usually an investigation of such transitions necessitates

the construction of explicit kinetic models, our approach allows to draw quantitative conclusions

about the stability of metabolic states in response to an increased ATP demand, occurring, for ex-

ample, under conditions of osmotic or mechanic stress (Dariyerli et al., 2004; Kodı́cek, 1986). It

is demonstrated that different metabolic states, each satisfying the flux balance equation and ther-

modynamic constraints, can nonetheless show drastic differences in the ability to ensure stability

and maintain metabolic homeostasis.

As our method requires no detailed information about enzyme-kinetic rate equations and pa-

rameters, and due to its computational simplicity, it is applicable to large metabolic networks. In

particular, as the construction of explicit kinetic model is usually not feasible, our method signif-

icantly extends previous approaches to metabolic robustness, often based on topological or stoi-

chiometric considerations alone (Edwards and Palsson, 2000b; Tekir et al., 2006; Deutscher et al.,

2006; Stelling et al., 2002). We argue that dynamic aspects of metabolic networks are becoming

more and more important in view of modern techniques like siRNA knockdowns or genetic mod-

ifications (Bailey, 1991; Becker et al., 2005) to modify the activity of individual enzymes in vivo.

It has to be expected that such perturbations may give rise to fundamental changes in the dynamic

behavior of the underlying network.

5.2 Results

5.2.1 The parametrization of metabolic states

A metabolic network is a set of coupled chemical reactions and transports processes. Neglecting

spatial variations of the metabolite concentrations within the reactions compartments the time-

dependent changes of the metabolite concentrations can be described by a set of differential equa-

tions of the form Ṡ = Nν(S), where S denotes the m-dimensional vector of metabolite con-

centrations, N the m× r-dimensional stoichiometric matrix and ν(S), a r-dimensional vector of

enzyme kinetic reaction rates. In the case of lacking or incomplete enzyme-kinetic data and as-

suming the existence of a stationary state S0, the differential equation can be interpreted as linear

equation for the stationary reaction rates ν0 = ν(S0). The mass balance equation Nν0 = 0 pro-

vides the conceptual foundation for current stoichiometry-based approaches to metabolic network

analysis and brought forth a number of highly successful applications to determine the structure
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Figure 5.1: Energy and redox metabolism of the human erythrocyte and the proposed workflow:

The stoichiometry and the steady state concentrations and fluxes are extracted from existing mod-

els and available experimental data. The Jacobian matrix is established and the intervals for the

saturation parameters are specified according to available biological information and/or additional

constraints of interest. The saturation parameters are sampled repeatedly and the eigenvalues of

the Jacobian are evaluated. Abbreviations: Glc, glucose; Glc6P, glucose 6-phosphate; Fru6P, fruc-

tose 6-phosphate; Fru16P2, fructose 1,6-bisphosphate; GraP, glyceraldehyde 3-phosphate; DHAP,

dihydroxyacetone phosphate; 13P2G, 1,3-bisphosphoglycerate; 23P2G, 2,3-bisphosphoglycerate;

3PG, 3-phosphoglycerate; 2PG, 2-phosphoglycerate; PEP, phosphoenolpyruvate; PYR, pyru-

vate; LAC, lactate; 6PG, 6-phosphoglycanate; Ru5P, ribulose 5-phosphate; Xul5P, xylulose

5-phosphate; Rib5P, ribose 5-phosphate; S7P, sedoheptulose 7-phosphate; E4P, erythrose 4-

phosphate; PRPP, phosphoribosyl pyrophosphate; GSH, reduced glutathione; GSSG, oxidized

glutathione; GlcT, glucose transport; HK, hexokinase; GPI, glucose-6-phosphate isomerase; PFK,

phosphofructokinase; ALD, aldolase; TPI, triosephosphate isomerase; GAPD, glyceraldehyde

phosphate dehydrogenase; PGK, phosphoglycerate kinase; DPGM, 2,3-bisphosphoglycerate mu-

tase; DPGase, 2,3-bisphosphoglycerate phosphatase; PGM, 3-phosphoglycerate mutase; EN, eno-

lase; PK, pyruvate kinase; LDH(P), lactate dehydrogenase; Lact, lactate transport; AK adenylate

kinase; G6PD, glucose-6-phosphate dehydrogenase; 6PGD, 6-phosphogluconate dehydrogenase;

GSSGR, glutathione reductase; EP, ribose phosphate epimerase; KI, ribose phosphate isomerase;

TK, transketolase; TA, transaldolase; PRPPS, phosphoribosypyrophosphate synthetase; PRPPT,

phosphoribosypyrophosphate transport

and function of metabolic networks (Schuster et al., 1999; Stelling et al., 2002; Varma and Palsson,

1994). Recently, the flux-balance equation was supplemented with thermodynamic constraints,

providing a link between feasible flux distributions and metabolite concentrations (Kümmel et al.,

2006; Henry et al., 2006; Holzhütter, 2004; Hoppe et al., 2007).

However, the mass balance equation itself, along with its associated thermodynamic con-

straints, does not allow to draw any conclusions about the possible dynamics or potential insta-

bilities of a metabolic state. To obtain information about essential aspects of the dynamics, we
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thus augment the mass balance equation with the first-order expansion of the differential equation.

Given a metabolic system at a (possibly unknown and not necessarily unique) metabolic state,

characterized by ν0 and S0, the system of differential equations can be approximated by a Taylor

series expansion.

dS

dt
= Nν(S0)
︸ ︷︷ ︸

=0

+ N
∂ν

∂S

∣
∣
∣
∣
S0

︸ ︷︷ ︸

=:J

(
S − S0

)
+ . . . (5.1)

The first term describes the steady state properties of the system, as exploited by flux-balance

analysis to constrain the stoichiometrically feasible flux distributions. Along similar lines, taking

the next term of the expansion into account, the structure of the Jacobian matrix J determines and

constraints the possible dynamics of the system at each metabolic state.

Our method builds upon a statistical evaluation of the Jacobian matrix. Based on the formalism

of structural kinetic modelling (Steuer et al., 2006), we construct a parametric representation of the

Jacobian matrix, such that each element covers the comprehensive parameter space at a specific

metabolic state. In particular, the Jacobian matrix can be written as product of two matrices Λ

and θ
µ
x . The elements of the matrix Λ are fully specified by the metabolic state of the system. In

addition, the (usually unknown) elements of the matrix θ
µ
x , specify the relative saturation of each

enzyme with respect to its ligands and can be assigned to well defined intervals even when the

explicit functional form of the rate equations is not known. In the following, these matrix elements

are denoted saturation parameters θrm, where r stands for the reaction saturated by metabolite m.

A brief mathematical synopsis is given in Materials and Methods.

Evaluating the Jacobian matrix with respect to the (unknown) elements of the matrix θ
µ
x then

defines the spectrum or scope of dynamic behavior at the respective metabolic state. The proposed

workflow is summarized in Figure 5.1: First, the stoichiometry and a metabolic state ν0 and S0

are specified, based on available experimental data and existing mathematical models. Second,

an ensemble of models (Jacobians) is generated by assigning random values to the elements of

θ
µ
x , obeying the defined intervals. Evaluating the eigenvalues of the Jacobian matrix repetitively,

allows to investigate and compare the scope of dynamic behavior under different preconditions,

e.g., such as suppressed or absent allosteric regulation. In this respect, especially the largest real

part of the eigenvalues, denoted by λmax
Re , is of interest, as it relates to the slowest timescale of the

system and, if positive, implies (local) instability of the metabolic state. The metabolic state is

stable only if all eigenvalues have a negative real part (see also Materials and Methods).

5.2.2 The role of regulation

Allosteric regulation is one of the main mechanisms to control enzyme activity. Since allosteric

regulation occurs within metabolic networks as feedback or feedforward loops, it operates network

wide and affects the dynamic properties at a systems level. The presented approach is used to

analyze the effects of allosteric regulation on stability in a systematic way. Two sets of models

under different preconditions are created, both corresponding to the normal in vivo conditions of

the erythrocyte (see Figure 5.1 for a schematic representation of the energy and redox metabolism

of the human erythrocyte and the used abbreviations). Within the first set of models Cnoreg

all saturation parameters associated with allosteric effectors are fixed to zero, corresponding to

absence of regulatory interactions. In addition, a second set Creg is constructed by assigning all

saturation parameters, including those for allosteric regulation, to their respective intervals (see

Materials and Methods and the Supplementary information (Grimbs et al., 2007b) for details).

Each model (Jacobian) is evaluated according to its spectrum of eigenvalues, with λmax
Re > 0

implying instability of the metabolic state. In the case of absent allosteric regulation, correspond-

ing to the set Cnoreg, the proportion of dynamically stable models is approximately 81%. Thus,
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although the vast majority of models are stable, the proportion of unstable models cannot be ne-

glected. As dynamic stability is mandatory for the existence of the metabolic state, it indicates

a substantial risk for the unregulated network to be driven out of the observed steady state when

changes of the binding constants for the substrates occur for genetic or pharmacological reasons.

Within the whole set, no model (Jacobian) is found exhibiting more than one eigenvalue larger

than zero, suggesting that the occurrence of a Hopf bifurcation is at least rare under the precon-

dition of suppressed allosteric regulation. Since a Hopf bifurcation indicates the transition to

sustained oscillation, such dynamical behavior seems unlikely under these conditions.

Looking at the set Creg, thus including allosteric regulation, the proportion of stable models

shifts to 91%, which is significantly higher than in case of suppressed regulation (see Materials

and Methods). Similar observations were made by Ni and Savageau (1996b), where additional

regulation was introduced to a model to stabilize the steady state. Note that regulation is here only

defined qualitatively, i.e, the actual strength of each regulatory interaction is chosen randomly and

varies between the individual samples. Nonetheless, even without specific fine-tuning of param-

eters, allosteric regulation results in a higher proportion of stable networks. This is presumably

evolutionary advantageous, since a larger parameter subspace corresponding to stable models in-

creases the flexibility to optimize parameter towards additional requirements other than stability.

Within the set of unstable models, 592 out of 106 samples in Creg have two eigenvalues greater

than zero, in each case exhibiting complex conjugate imaginary parts. A smaller fraction (41

samples) show three eigenvalues larger than zero, pointing to bifurcations of higher co-dimension.

Though restricted to a very small region in parameter space, allosteric regulation thus expands

the scope of dynamical behavior by increasing the region in parameter space where oscillatory

or more complex dynamics can be expected. For comparison, the estimated probability density

functions of the largest real parts λmax
Re within the spectrum of eigenvalues are shown in Figure

5.2.

5.2.3 The ranking of parameters

Stability of a metabolic steady state is an emergent systemic property that is brought about by the

kinetic properties of all enzymes. Nevertheless, changes in the kinetic parameters of individual

enzymes may have quite differential impact on the stability of a given steady state. To evaluate

and compare the degree of influence of individual parameters and reactions on the stability and

response to perturbations, we rank the parameters according to several objective measures. Three
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Figure 5.3: All significant saturation parameters for both sets of models Cnoreg (absent allosteric

regulation, left plot) and Creg (included allosteric regulation, right plot). For brevity, only the

ranking according to the correlation coefficient is considered.

distinct measures are used and compared to each other, namely the (Pearson) correlation coef-

ficient, the mutual information and the Kolmogorov-Smirnov-test (KS-test), see Materials and

Methods for explicit definitions.

All three measures were evaluated for all saturation parameters for both sets of models Cnoreg

and Creg. Although the detailed ranking of the parameters is not identical, it is still consistent

with respect to all different measures. Figure 5.3 depicts the significant parameters for both sets

of models Cnoreg and Creg. Figure 5.4 exemplifies the influence of the most highly ranked

parameters on the stability of the metabolic state. Shown is the percentage of stable models within

the parameter space as a function of selected saturation parameters. For a more detailed discussion

and comparison of the different rankings see also Grimbs et al. (2007b).

The ranking of parameters allows for several significant conclusions about the role of regula-

tion within the metabolic network. First, almost all high ranked parameters are associated with

reactions involved in ATP production or consumption. Especially the PFK, HK and PK play an

important role in stabilizing the network. Interestingly, evaluating the set Cnoreg reveals that, al-

though no additional information about putative sites for allosteric regulation is included, mainly

those parameters are ranked very high that affect reactions that are known to be allosterically reg-

ulated (see Materials and Methods for a statistical verification of this assertion). We point out

that for the construction of Cnoreg only the stoichiometry and the metabolic state under normal

conditions were used. This emphasizes the usefulness of our approach to analyze metabolic net-

works that are not as well studied as the one of erythrocytes and where detailed information about

allosteric regulation is not available.

Several more observations can be made from the ranking of the parameters. First, the high

ranked parameters almost all belong to enzymes of the glycolytic pathway. Intriguingly, kinetic

alterations of the allosterically regulated enzyme G6PD which is known to control the flux through

the pentose phosphate pathway does not show significant impact on stability. This corresponds

with results from de Atauri et al. (2006), obtained from an explicit kinetic model. The authors show

that the metabolic network breaks down for low concentrations of the glycolytic enzymes, whereas

such a transition to instability does not occur if the enzymes of the pentose phosphate pathway are



5.2. RESULTS 67

−1 −0.8 −0.6 −0.4 −0.2 0

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

θPFK
Fru16P2

fr
eq

u
en

cy
o
f
st

a
b
le

m
o
d
el

s

A

0 0.2 0.4 0.6 0.8 1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

θPK
PEP

fr
eq

u
en

cy
o
f
st

a
b
le

m
o
d
el

s

B

−1 −0.8 −0.6 −0.4 −0.2 0

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

θHK
ADP

fr
eq

u
en

cy
o
f
st

a
b
le

m
o
d
el

s

C

0 1 2 3 4
0.4

0.5

0.6

0.7

0.8

0.9

1

θPFK
AMP

fr
eq

u
en

cy
o
f
st

a
b
le

m
o
d
el

s

D

−1 −0.8 −0.6 −0.4 −0.2 0
0.4

0.5

0.6

0.7

0.8

0.9

1

θHK
Glc6P

fr
eq

u
en

cy
o
f
st

a
b
le

m
o
d
el

s
E

0 1 2 3 4
0.4

0.5

0.6

0.7

0.8

0.9

1

θPK
Fru16P2

fr
eq

u
en

cy
o
f
st

a
b
le

m
o
d
el

s

F

Figure 5.4: Relationships between selected saturation parameters and the probability of stable

models. Shown is the case of suppressed allosteric regulation (A - C) and for included allosteric

regulation (D - F). In each case, a single saturation parameter is fixed while all other parameters

are chosen randomly. The dotted red line marks the overall averages, 81% in the case of Cnoreg

and 91% in the case of Creg. The plots D and F show saturation parameters associated with

allosteric regulation.

at very low concentrations. Second, all parameters associated with 23P2G as an allosteric effector

are relatively low ranked. This indicates that the main function of these regulatory mechanisms is

not to maintain or achieve stability.

5.2.4 Comparison with the explicit model

The availability of a comprehensive and well-established mathematical model of the erythrocyte

metabolism (Schuster and Holzhütter, 1995) allows to validate our method by comparing the rank-

ing of saturation parameters with results of metabolic control analysis (MCA, see Heinrich and

Schuster (1996)). As a metabolic instability of the erythrocyte may occur if the energy demand

exceeds the glycolytic ATP production we study the impact that changes in the kinetic parameters

of the various enzymes of the network have on ATP utilization. The relative change of the rate

of ATP utilization (vATPase) elicited by a (small) change of the Michaelis constant characterizing

affinity of metabolite M to enzyme E is given by the flux control coefficient

CATPase
KE

M

=
∂ ln νATPase

∂ lnKE
M

=
KE
M

νATPase

∂νATPase

∂KE
M

(5.2)

Note that negative values of the flux coefficient indicate that decreasing value of the Michaelis

constant (corresponding to increasing saturation) increases the rate of ATP production and thus

stabilizes the steady state. Calculating the flux control coefficient for all 85 Michaelis constants

occurring in the rate laws of the mathematical model and ranking them in ascending order reveals
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Figure 5.5: Values of the flux control coefficient defined by equation (5.2) plotted in ascending

order for the 85 Michaelis constants contained in the rate laws of kinetic model. Bold points

indicate the flux control coefficients for the explicitly depicted 20 Michaelis constants that upon

decrease (i.e. increase of saturation) exert the most stabilizing and destabilizing influence on ATP

supply, respectively.

that only 10 affinity parameters each contribute significantly to the energetic stabilization and

destabilization of the network (see Figure 5.5). Changes of the Michaelis constants for binding

of AMP and ATP to the phosphofructokinase (PFK) have by far the highest impact on the ATP

production. This underlines the well-known central regulatory importance of this enzyme for red

cell glycolysis. Remarkably, the set of 20 regulatory most relevant Michaelis constants determined

by metabolic control analysis of the basis of the full mathematical model comprises all saturation

parameters identified by our random sampling method.

5.2.5 Robustness of metabolic states

As yet our analysis has focused on the analysis of a single metabolic state corresponding to the

normal in vivo conditions of the erythrocyte. However, the energy metabolism of this cell has

to cope with large fluctuations of the ATP demand as the activity of the Na/K-ATPase, account-

ing for about 70% of the total ATP utilization, is greatly enhanced under conditions of osmotic

stress (Dariyerli et al., 2004) or mechanic stress exerted during passage of the cell through thin

capillaries (Kodı́cek, 1986). Moreover, because of lacking de novo protein synthesis the erythro-

cyte is extremely susceptible to enzyme deficiencies which typically result in an impairment of

glycolytic ATP production and subsequent break down (hemolysis) of the cell (Jacobasch and

Rapoport, 1996).

To demonstrate the discriminatory power of our approach to detect changes in the stability

properties of metabolic states, we thus consider a second metabolic state of the erythrocyte char-

acterized by an increased energy demand. To this end we use the kinetic model to calculate fluxes

and metabolite concentrations at a 6-fold higher energetic load as compared to the normal refer-

ence state. Switching from the normal in vivo state (kATPase = 1.6 mM/h) to the new steady state
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Figure 5.6: The probability density

functions of λmax
Re for two metabolic

states. Under increased energy load

(S0
2) a significantly higher percent-

age of unstable models is observed,

as compared to normal conditions

(S0
1). In both cases allosteric regu-

lation is included.

at increased energetic load (kATPase = 10 mM/h) , the glycolytic flux increases from 1.5 mM/h

to 2.33 mM/h (=155%) whereas the ATP concentration decreases from 1.6 mM to 0.56 mM (=

35%). These relative changes are in excellent agreement with experimental data (160% increase

of glycolytic flux at 35% decrease of ATP) obtained by successively decoupling glycolysis from

ATP consumption by means of arsenate titrations (Ataullakhanov et al., 1981).

The parametrization of the second state S0
2 is performed as described before, with all satura-

tion parameters, including allosteric regulation, sampled randomly from their respective intervals.

Figure 5.6 depicts the resulting distribution of the largest real eigenvalue λmax
Re within the spectra

of eigenvalues, as compared to the distribution under normal conditions (state S0
1). While for nor-

mal in vivo conditions, the proportion of stable models (Jacobians) was approximately 91%, this

value drops drastically to only about 13.2% for the second state S0
2 . This is in accordance with our

earlier observation that energy related reactions are most crucial with respect to stability, as well

as with the fact that in the detailed kinetic model of Schuster and Holzhütter (1995) the system is

able to compensate an increased energy load only up to an upper critical value, but breaks down

if the energy demand is increased any further. We emphasize that both states cannot be discrimi-

nated based on stoichiometric considerations alone: Both satisfy the flux-balance equation and are

consistent with thermodynamic constraints.

The proportion of unstable models alone, evaluated over the comprehensive parameter space

of a metabolic state, does not necessarily imply actual instability of the respective flux distribu-

tion. However, the proportion of unstable models has significant consequences for the ability of

the system to maintain the considered metabolic state at perturbations of enzyme-kinetic parame-

ters (Morohashi et al., 2002). To evaluate the robustness properties of both states quantitatively, we

consider two distinct scenarios: First, for both metabolic states random instances of stable models

are repeatedly selected from the parameter space and the set of parameters is subsequently per-

turbed within a given radius. The percentage of perturbations that remain stable, as a function of

the magnitude or radius of the perturbations, then serves as a quantitative measure of robustness.

See Figure 5.7A for a schematic representation. Second, to make the results for both metabolic

states more comparable, the parameter space from which random instances of models are selected

is restricted to a small interval with λmax
Re ∈ [0,−0.01] for both states. Again each parameter set is

perturbed with increasing radius and the frequency with which a given magnitude of perturbations

leads to instability is recorded. The results are shown in Figure 5.7.

Clearly, for both metabolic states the probability that a perturbation results in a loss of stabil-

ity increases with increasing magnitude of perturbations. However, starting (by construction) with
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Figure 5.7: The robustness of the two metabolic states. A stable point in parameter space is chosen

randomly. Within a given radius the point is perturbed several times. Each such perturbation is

checked for stability (A). 1000 stable points were chosen randomly with 10 perturbations each. A

radius of r allows the perturbation to vary within θ ± r · θ, where θ is the initially samples value

(B). In the second scenario, denoted as ’restricted’, only stable states close to the instability were

considered λmax
Re ∈ [−0.01, 0) (C).

initially 100% of stable models, the fraction of models that become unstable increases significantly

faster for the state S0
2 . This effect is even more pronounced in the second scenario. Here, the sta-

ble models for both metabolic states are initially restricted to similar real parts within the spectra

of the eigenvalues, and thus to similar distances to the bifurcation. Nonetheless, a perturbation of

the (initially stable) metabolic state S0
2 is much more likely to result in a transition to instability

than corresponding perturbations of the normal state S0
1 . In this sense, the in vivo metabolic state

S0
1 , and concomitantly also its observed flux distribution, is more robust than the second state

S0
2 . We emphasize again that our quantification of robustness does not involve any knowledge

about the explicit functional form of the rate equations or kinetic parameters. Nonetheless, dif-

ferent metabolic states can be clearly differentiated, based only on information about metabolite

concentrations and associated flux patterns. In this respect, our approach gives valuable insights

on the qualitative and quantitative dynamic behavior of metabolic states that cannot be obtained

by considering the stoichiometric balance equation alone and is also applicable to situations where

detailed knowledge about the explicit rate equations is not yet available.

5.3 Materials and Methods

5.3.1 Models of the human erythrocyte

To exemplify and validate our approach, we mainly draw upon a previously published model

of Schuster and Holzhütter (1995), consisting of 30 metabolites and 31 reactions (see Figure 5.1

for a schematic representation). The model was slightly modified to account for free inorganic

phosphate and additional transport reactions for the educt glucose, the intermediate phosphate and

the end products phosphoribosyl pyrophosphate, pyruvate and lactate. Mg-complexes were omit-

ted. All reactions, except ATPase, GSHox and PRPPT, were treated as reversible. As ATPase and

GSHox are merged overall reactions, describing energy consumption and oxidative load, product

inhibition for these reactions was not included, i.e., ADP and GSSG have no influence on ATPase

and GSHox, respectively.

The kinetic model was used to calculate the steady metabolic state of the human erythrocytes

under normal in vivo conditions (state S0
1). Metabolite concentrations and flux values are given

in Grimbs et al. (2007b). In addition to the normal in vivo state S0
1 , a second steady state S0

2 was
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calculated, corresponding to an increased energy demand of the cell. Analogous simulations were

performed previously to explore senescence and metabolic collapse of erythrocytes (Schuster and

Holzhütter, 1995; de Atauri et al., 2006). See also (Tekir et al., 2006) for an analysis of red-blood

cell enzymopathies based on stoichiometric analysis.

5.3.2 Structural kinetic modelling

Our analysis is based on a decomposition of the Jacobian matrix of a metabolic system at a state

S0 into a product of two matrices. Given a metabolic system consisting of m metabolites and

r reactions, the set of differential equations Ṡ = Nν(S) which describe the time-dependent

behavior of all metabolite concentrations Si(t) can be rewritten as

d

dt

Si(t)

S0
i

=
r∑

j=1

ν0
j

S0
i

Nij

︸ ︷︷ ︸

:=Λij

νj(S)

ν0
j

︸ ︷︷ ︸

:=µj(S)

(5.3)

where S0
i and ν0

j = νj(S
0) denote the metabolic state at which the system is to be evaluated.

Using the definitions given in (5.3) and the variable transformation xi(t) = Si(t)/S
0
i , the Jacobian

with respect to the normalized variables x is

Jx = Λθµ
x with θµ

x :=
∂µ

∂x

∣
∣
∣
∣
x0=1

(5.4)

The scaled Jacobian Jx is related to the original Jacobian by a simple similarity transformation

and it is fully specified by the parameter matrices Λ and θ
µ
x . The elements of Λ describe the time-

scales of the system, as specified by the metabolic state S0 and ν(S0). The (usually unknown)

elements of θ
µ
x are defined as the normalized derivatives of the reaction rates and, analogous

to the scaled elasticity coefficients of Metabolic Control Analysis, denote the effective kinetic

order or normalized saturation of each reaction with respect to its substrates. Each element θνS is

constrained to the interval of [0, 1] if the metabolite S is a substrate and [0,−1] if S is a product of

the reaction ν(S). Additional nonzero terms arise from allosteric regulation. Allosteric regulation

is included by assigning the corresponding parameter to intervals, such that θνS ∈ [0,−n] for

inhibition and θνS ∈ [0, n] for activation of a reaction ν by S, respectively. A detailed derivation is

given elsewhere (Steuer et al., 2006).

Statistical sampling of the parameter space

The stability and possible dynamics of the metabolic network are evaluated at a given metabolic

state, characterized by metabolite concentrations S0 and fluxes ν(S0). The vector of reaction

rates satisfies the steady state condition Nν(S0) = 0 and is described by r − rank(N) free

parameters. The vector of metabolite concentrations S0 is restricted by thermodynamic con-

straints (Kümmel et al., 2006; Henry et al., 2006) and approximated by values adapted from Schus-

ter and Holzhütter (1995). The metabolic state fully specifies the matrix Λ.

To evaluate the dynamic capabilities at a given metabolic state, the nonzero elements of the

matrix θ
µ
x are sampled from their predefined intervals (Steuer et al., 2006; Wang et al., 2004),

while the elements of the matrix Λ are restricted to the respective metabolic state. The schematic

workflow is shown in Figure 5.1.

Specifically, each reversible enzyme-kinetic reaction νi(S) is split into a forward ν+
i (S)

and backward rate ν−i (S) and described by the overall steady state flux ν0
i , the flux ratio γ =

ν−(S0)/ν+(S0), the steady state S0, as well as by a set of saturation parameters θνSi
. Though
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the method does not presuppose a specific functional form of the rate equations, we illustrate the

parametrization using a generic form of enzyme-kinetic rate equations, such as

A+B ↔ P +Q ν =
vm (AB − PQ/Keq)

f(A,B, P,Q)
, (5.5)

where f(A,B, P,Q) denotes a first order polynomial. The reaction is characterized by the net flux

ν0, the steady state concentrationsA0, B0, C0, D0, as well as the flux ratio γ = ν−/ν+, relating to

the (often accessible) equilibrium constantKeq. The four unknown saturation coefficients apply to

forward and backward rate separately, obeying the relationships θν
+

A ∈ [0, 1] and θν
−

A = θν
+

A −1 ∈

[0,−1] for substrates and θν
+

P ∈ [0,−1] and θν
−

P = θν
+

P + 1 ∈ [0, 1] for products, respectively.

The model of the erythrocyte is parametrized by 87 saturation parameters for substrate and

product dependencies of each reaction, as well as 10 additional parameters corresponding to al-

losteric regulation. See Grimbs et al. (2007b) for a detailed listing. The parameters are denoted

with reactions (superscript) and substrate (subscript) respectively, i.e., θPFK
Fru6P denotes the depen-

dence of the phosphofructokinase (PFK) on fructose 6-phosphate (Fru6P).

Stability and dynamics of metabolic states

Our method is based upon a statistical evaluation of the Jacobian matrix. In particular, a metabolic

state that satisfies the steady state condition Nν(S0) = 0 must not necessarily be stable. Rather,

its dynamic stability is determined by the eigenvalues of the Jacobian at the respective state. Each

eigenvalue describes the behavior of the system after an (infinitesimal) perturbation of the con-

centrations (Heinrich and Schuster, 1996). The possible dynamics in the vicinity of a metabolic

state are schematized in Figure 5.8: The metabolic state can either be i) a stable (attracting) steady

state, characterized by a largest real part of the eigenvalues λmax
Re < 0, ii) an unstable (repelling)

state, characterized by a positive largest real part λmax
Re > 0 within the spectrum of eigenvalues,

or, iii) a stable (attracting) focus, characterized by nonzero (complex conjugate) imaginary parts

λmax
Re ± λ

max
Im with λmax

Re < 0 and λmax
Im 6= 0, or iv) an unstable focus, characterized by a positive

real part λmax
Re > 0 and complex conjugate eigenvalues λmax

Im 6= 0.

Of particular interest are also transitions between the scenarios (bifurcations), most impor-

tantly the Hopf bifurcation, where a pair of complex conjugate eigenvalues cross the imaginary

axis (stable→ unstable focus) and bifurcations of the saddle-node type, where the largest real part

within the eigenvalues crosses the imaginary axis (stable node→ unstable saddle). Further types

of bifurcations are discussed in Steuer et al. (2006). We emphasize that stability does not imply

constancy of a metabolic state. Rather, local dynamic stability is mandatory for the existence of

the state, but all actual states will fluctuate around their average values (Steuer et al., 2003). All re-

ported results are robust against small deviations of metabolite concentrations and flux values, i.e.,

an analysis with small alterations of the metabolic state under normal conditions yields identical

results.

A simple example

To illustrate our approach, we briefly consider the simple example pathway depicted in Figure 5.9.

Within our approach, not assuming any further knowledge of the explicit rate equations and pa-

rameters, the system is parametrized by the matrices Λ and θ
µ
A

Λ =
[

ν0
1

A0 −
ν0
2

A0 −
ν0
3

A0

]

θ =





0
θµ2

A

θµ3

A



 , (5.6)
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Figure 5.8: The stoichiometric balance equation Nν0 = 0 does not imply actual stability of

a metabolic state. Though each of the depicted scenarios fulfills the steady state condition, the

dynamic behavior can be classified as (Heinrich and Schuster, 1996): i) stable node, ii) unstable

saddle iii) stable focus, corresponding to damped transient oscillations, and iv) unstable focus,

corresponding to (undamped) transient oscillations.

where Λ defined the metabolic state of the system, constraint by ν0
1 = ν0

2 + ν0
3 . For simplicity,

we assume linear dependence of ν2(A) on its substrate A, thus θµ2

A = 1. The parameter θµ3

A ∈
[1− n, 1] includes possible nonlinear inhibition of ν3(A) by its substrate A.

As the units of times and concentrations are arbitrary, we set ν0
1 := 1 and A0 = 1 without

loss of generality. The Jacobian at an observed metabolic state (specified by the matrix Λ) is thus

given as

J = −1 + ν0
3(1− θµ3

A ) . (5.7)

Figure 5.9 shows the region of stability of the observed state ν0
3 versus the (unknown) parameter

θµ3

A . More importantly, the observed metabolic state, here only characterized by ν0
3 , restricts the

stability properties of the state. For small flux the observed state is always stable, i.e., there exists

no set of parameters such that the state is unstable. However for high flux ν0
3 the system might

lose stability and is stable only in a small region of the (unknown) parameter space.

This behavior is again exemplified in Figure 5.10, using explicit differential equations. Starting

in the vicinity of the metabolic state {A0, ν0
3}, all other parameters are chosen randomly from the

comprehensive parameter space. For small ν0
3 (left plot), the system will always decay back to the

state. Hence, the steady state remains stable, independent of the actual value of θ3
A. However, for

large ν0
3 (right plot) the probability of instability increases. For some perturbations of θ3

A the steady

state becomes unstable, i.e. the initial state cannot be restored. The systems transits into a new

stable steady state with concentrations of A different from the initial value A = 1. In this sense,

the observed metabolic state puts constraints on the possible dynamics and allows to quantify the

existence size of unstable regions in parameter space. The perturbation analysis shows that the

metabolic state with small ν0
3 is more robust against changes in parameters than a metabolic state

with large ν0
3 .

5.3.3 The role of regulation

The evaluation of models (Jacobians) for Creg and Cnoreg was repeated 103 times and the per-

centage of unstable instances recorded. In both cases, the variance of the values, due to finite

sampling effects, was estimated numerically. A t-test was used to test the average values for both

cases Creg and Cnoreg against each other. The null hypothesis that the expectation value in case
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Figure 5.10: The time course of the concentrationA(t) using explicit kinetic simulations. Starting

in the vicinity of a metabolic state, the observed flux distribution puts constraints on the possible

dynamics of the pathway. For small ν0
3 (left plot), the system will always decay back to the state.

For large ν0
3 (right plot) the probability of instability increases.

of allowed allosteric regulation is equal or lower than in case of suppressed allostric regulation is

rejected with a p-value below 10−320. So allosteric regulation significantly increases the frequency

of stable models.

Furthermore, we tested if the observed increase is specific for the actual set of regulation pa-

rameters or if it can be achieved by any randomly chosen set of allosteric regulation parameters.

To this end, instead of the actual regulation parameters, 10 putative allosteric regulations were

selected randomly and the increase in the percentage of stable models was recorded. Most ran-

dom sets (∼ 85%) of regulation parameters lead to a decrease in the percentage of stable models,

demonstrating that not every possible arbitrary allosteric regulation has a positive effect on stabil-

ity.
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5.3.4 Ranking of parameters

To assess the relative impact of enzyme-kinetic parameters on the stability properties of a given

metabolic state, we employed and compared several measures of dependency.

The most common choice to detect dependencies between variables is the (Pearson) correla-

tion coefficient r, defined as

r(X,Y ) :=

∑n
i=1(xi − x)(yi − y)

√∑n
i=1(xi − x)

2
∑n

i=1(yi − y)
2

(5.8)

where xi and yi are n realizations of the random variables X and Y . Although the Pearson cor-

relation only detects linear dependencies, it holds the advantage that its sign specifies whether a

parameter must be increased or decreased to obtain a higher percentage of stable models. Nonethe-

less, the Pearson correlation suffers from several drawbacks, such as sensitivity to non-gaussian

and skewed distributions, making more elaborate measures necessary (Kumar and Shoukri, 2007).

A more general measure of dependency is given by the mutual information (Shannon, 1948),

defined as

I(X,Y ) = H(X) +H(Y )−H(X,Y ) , (5.9)

where H(X) =
∑

k pk(x) log pk(x) denotes the entropy of the variable X , measured from a

binned histogram such that each bin occurs with probability pk. The entropyH(X,Y ) denotes the

joint entropy of X and Y . Among its main advantages is that the mutual information is zero if and

only if both variables are statistically independent. Evaluating the mutual information between

network parameters and the resulting largest real part of the eigenvalue λmax
Re thus accounts for

arbitrary nonlinear dependencies and does not presuppose gaussian or uniform distribution of the

parameters. A detailed account of its numerical estimation is given elsewhere (Steuer et al., 2002).

Based on a slightly different concept, the Kolmogorov-Smirnov test is used to test for the

equality of two distributions. The null-hypothesis in the context of our analysis is as follows: If

a saturation parameter has no impact on the stability of the metabolic system, then its distribution

within the restricted subset of stable models equals (in a statistical sense) its initial distribution for

the comprehensive set of models. On the other hand, if the distribution of a parameter within the

restricted set of stable models shows a strong deviation from the initial distribution, a significant

dependency can be expected. In this sense, the KS-test tests whether two random variables X and

Y have the same distribution. The cumulative frequencies FX and FY and the maximal difference

D = sup
z∈R

|FX(z)− FY (z)| (5.10)

are calculated. If the test statistic D is greater than the critical value for the sample size, the null

hypothesis that both distributions are equal is rejected. Since D is always identically distributed,

the KS-test is independent of the distribution of X and Y. If the test rejects the null hypothesis,

given a sufficiently small p-value, the parameter under consideration has significant impact on

stability. All measures yielded consistent results, as depicted in Figure. 5.11.

Significance of ranking

To test for the significance of the correlation coefficient and the mutual information, we employed

a permutation test: The values of λmax
Re were randomly permuted in order to abolish any rela-

tionship between the saturation parameters and λmax
Re . This yielded mean values of the correlation

coefficient and the mutual information close to zero (< 5·10−5) and standard deviation of 3.1·10−3

and 2.5 · 10−4, respectively. The correlation coefficient and the mutual information for the high

ranked parameters are indeed significantly larger than those obtained in case of totally unrelated

saturation parameters.
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Figure 5.11: The ranking according to the correlation coefficient is plotted versus the ranking

according to mutual information in case of suppressed allosteric regulation (A). For the significant

parameters (red dots) the two measures give consistent result. The top ranking parameters from

a total of 87 are shown in B. The outlier θPRPPTPRPP is caused by nonlinear dependencies between

θPRPPTPRPP and λmax
Re . Note that θPRPPTPRPP is still high ranked under both measures.

To verify the assertion that there is an enrichment of actual feedback parameters in the top

ranking parameters, we conducted two statistical tests: i) For the ensemble of models with ab-

sent regulation (Cnoreg), we verify that high ranking parameters are primarily associated with

reactions that are actually allosterically regulated (PK, PFK, PK, G6PD and 6PDG). To this end,

we record the fraction of parameters associated with regulated reactions within the top k ranked

parameters. This number is then compared (statistically) to the number that must be expected if

the high-ranking parameters are indeed randomly distributed across all reactions. The results are

depicted in Figure 5.12A (as a function of k) and show a clear significant enrichment of parame-

ters associated with regulated reactions among the top ranking parameters. i) For the ensemble of

models including allosteric regulation (Creg), we evaluate if regulation parameters are statistically

overrepresented in the set of top ranking parameters. Again, we record the expected number of

regulation parameters within the k top-ranking parameters, based on a purely random distribution

of parameters. This value is compared to the actual number of regulation parameters within the

set of top-ranked parameters. The result is again significant and depicted in Figure 5.12B.

5.4 Discussion and Conclusions

A central goal of metabolic regulation is homeostasis, i.e. the maintenance of a stable quasi-

stationary state under largely varying external conditions. In this work we present a kinetic-free

approach that enables the identification of those enzymes and putative allosteric regulators having

the largest impact on the stability of experimentally observed metabolic steady states. Our analysis

was focused on three different aspects: First, the role of allosteric regulation was elucidated by

comparing the dynamic behavior of the network under suppressed and allowed allosteric regula-

tion. The proportion of stable models is significantly increased by allosteric regulation, showing

that feedback regulation has a stabilizing effect. Second, three statistical measures were intro-

duced to quantify the influence of enzymatic reactions and saturation parameters on stability in a

systematic way. The parameters were ranked according to these measures. Intriguingly, almost all

high ranked parameters are involved in one of the three reactions HK, PFK or PK, corresponding
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Figure 5.12: Probability of a parameter among the high ranked parameters to belong to a special

subset of parameters (for Cnoreg : parameters that correspond to allosterically regulated reactions

(A); for Creg : regulation parameters (B)). On the x-axis the number of parameters that are con-

sidered to be high ranked is shown (always beginning at the topmost). The results for the rankings

given by Cnoreg and Creg are denoted by the red stars. The blue crosses show the results for

shuffled rankings.

to those reactions that are indeed highly regulated and almost irreversible. We note that these re-

sults also hold when knowledge about allosteric regulation and irreversibility is not presupposed

in the initial analysis. Third, we provided a quantitative measure to analyze different metabolic

states with respect to their robustness towards perturbations in parameters. We compared the in

vivo state with a second metabolic state, corresponding to an increased energy demand of the cell.

With respect to robustness, the in vivo state is clearly superior, in accordance with the fact that

high energy demand will lead to a metabolic collapse of the red blood cell.

Our approach is essentially based on knowledge of the stoichiometry and the metabolic state

of the system. While detailed kinetic models are available for only very few metabolic networks,

knowledge of metabolite concentrations and flux distributions becomes increasingly experimen-

tally accessible (Fernie et al., 2004; Goodacre et al., 2004; Sauer, 2004). In this respect, we have

demonstrated that different metabolic states, only characterized by a flux distribution and metabo-

lite concentrations, are indeed associated with a unique spectrum of dynamic capabilities – and

can be differentiated based on their stability properties. As our method specifically samples the

parameter space associated with a given metabolic state, it can be directly related to experimental

observations and thus improves methods based on a straightforward sampling of kinetic parame-

ters within an explicit kinetic model (von Dassow et al., 2000).

In particular, we expect that recent efforts for biotechnological modifications of metabolic sys-

tems will concomitantly result in fundamental changes in the dynamic behavior of these networks.

While a desired flux distribution might be stoichiometrically feasible, unanticipated changes in

dynamic properties can lead to a failure of network function. The weak preconditions and the

semi-automatic and straightforward manner of its implementation thus make our approach a suit-

able starting point to elucidate and detect changes in dynamic properties of metabolic networks

for which the construction of detailed kinetic models is not yet possible.





Chapter 6

Kinetic hybrid models composed of

mechanistic and simplified enzymatic

rate laws - a promising method for

speeding up the kinetic modelling of

complex metabolic networks

Kinetic modelling of complex metabolic networks – a central goal of computational systems biol-

ogy – is currently hampered by the lack of reliable rate equations for the majority of the underlying

biochemical reactions and membrane transporters. On the basis of biochemically substantiated ev-

idence that metabolic control is exerted by a narrow set of key regulatory enzymes, we propose

here a hybrid modelling approach in which only the central regulatory enzymes are described

by detailed mechanistic rate equations, and the majority of enzymes are approximated by simpli-

fied (nonmechanistic) rate equations (e.g. mass-action, LinLog, Michaelis-Menten and power law)

capturing only a few basic kinetic features and hence containing only a small number of param-

eters to be experimentally determined. To check the reliability of this approach, we have applied

it to two different metabolic networks, the energy and redox metabolism of red blood cells, and

the purine metabolism of hepatocytes, using in both cases available comprehensive mechanistic

models as reference standards. Identification of the central regulatory enzymes was performed by

employing only information on network topology and the metabolic data for a single reference

state of the network (Grimbs et al., 2007a). Calculations of stationary and temporary states under

various physiological challenges demonstrate the good performance of the hybrid models. We

propose the hybrid modelling approach as a means to speed up the development of reliable kinetic

models for complex metabolic networks.

6.1 Introduction

Kinetic modelling is the only reliable computational approach to relate stationary and temporal

states of reaction networks to the underlying molecular processes. The ultimate goal of computa-

tional systems biology is the kinetic modelling of complete cellular reaction networks comprising

gene regulation, signalling and metabolism. Kinetic models are based on rate equations for the

underlying reactions and transport processes. However, even for whole cell metabolic networks–

although they have been under biochemical investigation for decades–only a low percentage of

enzymes and an even lower percentage of membrane transporters have been kinetically charac-
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terized to an extent that would allow us to set up physiologically feasible rate equations. For the

foreseeable future, full availability of ’true’ rate equations for all enzymes is certainly an illusion,

because of the lack of methods with which to efficiently gain insights into all kinetic effects con-

trolling a given enzyme in vivo. Currently, there is not even systematic in vitro screening for all

possible modes of regulation that a given enzyme is subjected to. In principle, such an approach

would imply the testing of all cellular metabolites as potential allosteric effectors, all cellular ki-

nases and phosphatases as potential chemical modifiers, and all cellular membranes as potential

activating or inactivating scaffolds. However, the experimental effort actually required can be dras-

tically reduced, considering that only a few metabolites exert significant regulation of enzymes,

and that the signature of phosphorylation sites and membrane-binding domains is similar in most

proteins studied so far. Another critical aspect regarding the use of mechanistic rate equations

developed for individual enzymes under test tube conditions is the need for subsequent tuning of

parameter values to take into account the influence of the cellular milieu, which is imperfectly

captured in the in vitro assay (Teusink et al., 2000; Wilkinson et al., 2008).

Therefore, instead of waiting for ’everything’, it has been proposed that we should start with

’something’ by using simplified rate equations that can be established with modest experimental

effort. At the extreme, parameters of such simplified rate equations can even be inferred from the

known stoichiometry of a biochemical reaction (Smallbone et al., 2007).

The predictive capacity of the approximate modelling approaches published so far has not been

critically tested for a broader range of perturbations that the considered network has to cope with

under physiological conditions. One objective of our work was thus to assess the range of physi-

ological conditions under which a kinetic model of erythrocyte metabolism based exclusively on

simplified rate equations may still adequately describe the system’s behaviour. This was done by

replacing the full mechanistic rate equations for the 25 enzymes and five transporters involved in

the model (Schuster and Holzhütter, 1995) by various types of simplified rate equations, and using

these simplified models to calculate stationary load characteristics with respect to changes in the

consumption of ATP and glutathione (GSH), the two cardinal metabolites that mainly determine

the integrity of the cell. The goodness of these simplified models was evaluated by using the so-

lutions of the full mechanistic model as the reference standard. In most cases that were tested,

the simplified models failed to reproduce the ’exact’ load characteristics even in a rather narrow

vicinity around the reference in vivo state.

A second, and even more important, goal of our work was to test a novel modelling approach

based on ’mixed’ kinetic models composed of detailed and simplified enzymatic rate equations.

Assuming a typical situation, where only the stoichiometry of the network and the fluxes as well

as metabolite concentrations of a specific steady state are known, we identified central regulatory

enzymes by using the recently proposed sampling method of structural kinetic modelling (SKM)

(Grimbs et al., 2007a). For the small number of regulatory enzymes, the full mechanistic rate equa-

tions were used, whereas all other enzymes were described by simplified rate equations as before.

These mixed kinetic models yielded significantly better load characteristics for almost all variants

of simplified rate equations tested. Hence, the development of kinetic hybrid models composed

of rate equations of different mechanistic strictness according to the regulatory importance of the

respective enzymes may be a meaningful strategy to economize the experimental effort required

for a mechanism-based understanding of the kinetics of complex metabolic networks.

The mathematical models described here have been submitted to the Online Cellular Systems

Modelling Database and can be accessed free of charge at http://jjj.biochem.sun.ac.

za/database/bulik/index.html.

http://jjj.biochem.sun.ac.za/database/bulik/index.html.
http://jjj.biochem.sun.ac.za/database/bulik/index.html.
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6.2 Results

6.2.1 Test case 1 - a metabolic network of erythrocytes

To investigate the suitability of different variants of kinetic network models considered in this

work, we have chosen a metabolic network of human erythrocytes for which detailed mechanistic

rate laws of the participating enzymes are available (Schuster and Holzhütter, 1995). The network

consists of 23 individual enzymatic reactions, five transport processes, and two overall reactions

representing two cardinal physiological functions of the network, the permanent re-production of

energy (ATP) and of the antioxidant GSH. The network comprises as main pathways glycolysis

and the hexose monophosphate shunt, consisting of an oxidative and nonoxidative part (Figure

6.1). Setting the blood concentrations of glucose, lactate, pyruvate and phosphate to typical in

vivo values creates a stable stationary working state of the system, which was taken as a reference

state for the adjustment of the simplified rate laws and for the construction of the Jacobian matrix

used for the analysis of stability. Enzymatic rate laws and other details of the full kinetic model

are given in Bulik et al. (2009b).

6.2.2 Comparing simplified and mechanistic rate equations for individual reactions

We first studied the differences associated with replacing the exact rate equations of the erythrocyte

network with the various types of simplified rate equations given in Table 6.1. In order to mimic the

most common situation where the regulatory in vivo control of an enzyme by allosteric effectors,

reversible phosphorylation and other mechanisms is not known, the simplified equations take into

account only the influence of substrates and products on the reaction rate. The rate of metabolic

enzymes determined by network perturbations of intact cells (Gombert and Nielsen, 2000; Speers

and Cravatt, 2004) is inevitably influenced by changes of their allosteric effectors. To mimic this

effect, fitting of the simplified rate equations to the ’true’ mechanistic rate equations was done by

varying the concentrations of reaction substrates and products as well as the concentrations of the

respective modifier metabolites occurring in the mechanistic rate equations (see below).

The mass-action (MA) rate law represents the simplest possible rate law taking into account

reversibility of the reaction and yielding a vanishing flux at thermodynamic equilibrium. It con-

tains as parameters only the unknown forward rate constant k and the thermodynamic equilibrium

constant (K), which does not depend on enzyme properties and is related to the standard Gibb’s

free energy ∆G0 of the reaction by K = exp(∆G0/RT ). A numerical value for K or ∆G0

can be determined from calorimetric or photometric measurements (Goldberg, 1999), or can be

computed from the structure of the participating metabolites (Forsythe et al., 1997). The numer-

ical value of the turnover rate constant k is commonly chosen such that the predicted flux rate

equals the measured flux rate in a given reference state of the network. In this way, the value of

k implicitly takes into account all unknown in vivo effects influencing the enzyme activity, such

as allosteric effectors, the ionic milieu, molecular crowding, or binding to other proteins or mem-

branes. The LinLog (LL) rate law (Delgado and Liao, 1992; Rottenberg, 1973) is inspired by the

concept of linear nonequilibrium thermodynamics, which sets the reaction rate proportional to the

thermodynamic driving force ∆G, the free energy change, which depends on the concentration

of the reactants in a logarithmic manner. Nielsen (1997) proposed adding additional logarithmic

concentration terms to include allosteric effectors. A further generalization was to neglect the

stoichiometric coupling of the coefficients of the logarithmic concentration terms dictated by the

free energy equation; that is, these coefficients are regarded as being independent of each other.

We also included a special stoichiometric variant of the LinLog model (LLst) recently proposed

by Smallbone et al. (2007), in which the coefficients of the logarithmic concentrations are simply

given by the stoichiometric coefficient of the respective metabolites. The power law (PL) was



82 CHAPTER 6. KINETIC HYBRID MODELS

HK

GPI

GSSGR

G6PD 6PGD

EP KI

PRPPS

TK1

TA

PFK

ALD

GAPDH

DPGM

PGK

DPGase

PGM

LDH

LDHP
PK

EN

P

P

23P2G

13P2G

2PG

3PG

PEP PYR LAC

Fru6P

ADP

ADP

AMPATP

NAD

ATP

ATP

ATP

ADP

DHAP GraP

NADH E4P

GraP S7P

X5P PRPP

NADPHNADP NADPHNADP

GSH GSSG

R5P

Ru5P6PG

Fru6P

Glc6P

Glc

Fru16P2

PT LACT

P
R
P
P
T

GlcT

PYRT

ATPase

GSHox

2 GSH

ATP ADP

GSSG

P

GlcT

PYRT LACTPT

P
R
P
P
T

AK

2 ADP

TK2

NADH NAD

NADPH NADP

ADP

ATP

Figure 6.1: Erythrocyte energy metabolism. Reaction scheme of erythrocyte energy metab-

olism comprising glycolysis, the pentose phosphate shunt and provision of reduced GSH. The

ATPase and GSH oxidase reactions are overall reactions representing the total ATP demand and

reduced GSH consumption. 1,3PG, 1,3-bisphosphoglycerate; 2,3PG, 2,3-bisphosphoglycerate;

2PG, 2-phosphoglycerate; 3PG, 3-phosphoglycerate; 6PG, 6-phosphoglycanate; 6PGD, 6-

phosphogluconate dehydrogenase; AK, adenylate kinase; ALD, aldolase; DPGase, 2,3-

bisphosphoglycerate phosphatase; DPGM, 2,3-bisphosphoglycerate mutase; E4P, erythrose 4-

phosphate; EN, enolase; EP, ribose phosphate epimerase; Fru1,6P2, fructose 1,6-bisphosphate;

Fru6P, fructose 6-phosphate; G6PD, glucose-6-phosphate dehydrogenase; Glc6P, glucose 6-

phosphate; GlcT, glucose transport; GPI, glucose-6-phosphate isomerase; GraP, glyceraldehyde

3-phosphate; DHAP, dihydroxyacetone phosphate; GSHox, glutathione oxidase; GSSG, oxidized

glutathione; GSSGR, glutathione reductase; HK, hexokinase; KI, ribose phosphate isomerase;

LAC, lactate; LACT, lactate transport; LDH, lactate dehydrogenase; PEP, phosphoenolpyruvate;

PFK, phosphofructokinase; PGK, phosphoglycerate kinase; PGM, 3-phosphoglycerate mutase;

PK, pyruvate kinase; PRPP, phosphoribosyl pyrophosphate; PRPPS, phosphoribosylpyrophos-

phate synthetase; PRPPT, phosphoribosylpyrophosphate transport; PYR, pyruvate; Rib5P, ribose

5-phosphate; Ru5P, ribulose 5-phosphate; S7P, sedoheptulose 7-phosphate; TA, transaldolase; TK,

transketolase; TPI, triose phosphate isomerase; Xul5P, xylulose 5-phosphate.
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Rate law Formula Comments

Linear mass action (MA) v = k ·

(
∏

i S
µi
i − 1

KEq

∏

i P
νi
i

)

Power law (PL) v = k
∏

i

(

Si

S0

i

)ai ∏

i

(

Pi

P0

i

)bi (∏

i S
µi
i − 1

KEq

∏

i P
νi
i

)

ai, bi - dimensionless constants

S0
i , P

0
i - concentrations of

substrates and products at a
stationary reference state

LinLog (LL) v = v0 ·

(

1 +
∑

i ai log

(

Si

S0

i

)

+
∑

i bi log

(

Pi

P0

i

))

ai, bi - empirical rate constants

v0, S0
i , P

0
i - flux and

concentrations of substrates
and products at a stationary
reference state

Michaelis-Menten (MM) v =
vmax

(
∏

i S
µi
i

−

1

KEq

∏

i P
νi
i

)

∏

i(1+aiSi)
µi+

∏

i(1+biPi)
νi

−1 ai, bi - inverse half-concentra-

tions of substrates and products

Table 6.1: Simplified rate expressions used in the kinetic model of erythrocyte metabolism.

Si and Pi denote the concentrations of the reaction substrates and products, respectively. The

integer constants µi and νi are the stoichiometric coefficients with which the ith substrate and

product enter the reaction. K denotes the thermodynamic equilibrium constant and k the catalytic

constant of the subject enzyme, and v the flux of the reaction. The empirical parameters ai and bi
have different meanings in the PL, LL and MM rate laws. The notation of the PL rate equation

differs from the conventional form in that the rate is here decomposed into an MA term and a

residual PL term. Hence, the PL exponents for substrates and products commonly used in most

applications correspond to ai +µi and bi + νi. The form of the MM equation used is based on the

assumption that all µi substrate molecules and νi product molecules bind simultaneously (and not

consecutively and not cooperatively) to the enzyme.

originally introduced by Savageau (1969). It has no mechanistic basis, i.e. it cannot be derived

from a binding scheme of enzymeligand interactions using basic rules of chemical kinetics, but

it provides a conceptual basis for the efficient numerical simulation and analysis of nonlinear ki-

netic systems (Voit and Radivoyevitch, 2000). The Michaelis-Menten (MM) equation was the first

mechanistic rate law that took into account a fundamental property of enzyme-catalysed reactions,

namely the formation of an enzyme-substrate complex explaining the saturation behaviour at in-

creasing substrate concentrations. The form of the MM rate law given in Table 6.1 refers to a

simplified reaction scheme in which the substrates and products bind to the enzyme in random

order and without cooperative effects, i.e. without mutually influencing their binding constants.

The simplified rate equations were parameterized as described in Experimental procedures.

For all 30 reactions of the network, the best-fit model parameters and the scatter plots of rates

calculated by means of the simplified and mechanistic rate law, respectively, are given in Bulik

et al. (2009b). In what follows, the distance between the paired values x̃i and xi (i = 1, 2, ...n) of

any variable X computed by the exact and the approximate model, respectively, is measured by

the normalized root mean square distance (NRMSD):

NRMSD(X) =

[∑n
i=1(xi − x̃i)

2

∑n
i=1 x̃

2
i

]1/2

Table 6.2 depicts the differences between the paired values of the exact and simplified rate laws.

Generally, all simplified rate laws provided a poor approximation of the exact one (differences

larger than 50%) for those reactions catalysed by regulatory enzymes such as HK, PFK, PK or

G6PD, which have in common the fact that they are controlled by multiple effectors. For example,
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the rate of G6PD is allosterically controlled by Glc6P, ATP and 2,3-bisphosphoglycerate. More-

over, the enzyme uses free NADP and NADPH as substrates, whereas in the cell a large proportion

of the pyridine nucleotides is protein bound. Obviously, simplified rate equations that do not ex-

plicitly take into account such regulatory effects fail to provide good approximations to the ’true’

rate equations.

Averaging the NRMSD values across the 30 reactions of the network ranks the four types of

simplified rate equations tested as follows: MM and PL perform best, with the PL approach result-

ing in slightly smaller average NRMSD values, and the MM approach describing more enzyme

kinetics with the highest accuracy. The LL approach takes third place, followed by MA. This

ranking is not unexpected, considering that the mathematical structure of the PL rate equations al-

lows better fitting to complex nonlinear kinetic data than the linear or bilinear MA rate equations.

Intriguingly, the LL rate law was able to reproduce the exact rates in sufficient quality for none of

the reactions except the ATPase reaction. On the other hand, the quality achieved with the LL rate

law fluctuated less from one reaction to the other than with the other simplified rate laws.

6.2.3 Calculation of stationary system states calculated with approximate models

To check how the inaccuracies of the simplified rate laws translate into inaccuracies of the whole

network model, we calculated stationary metabolite concentrations and fluxes at varying values of

four model parameters (in the following referred to as load parameters) defining the physiological

conditions that the erythrocyte has typically to cope with: the energetic load (utilization of ATP),

the oxidative load (consumption of GSH or, equivalently, NADPH) and the concentrations of the

two external metabolites glucose and lactate in the blood. Changes of the energetic load are due

to changes in the activity of the Na+ /K+-ATPase, accounting for about 70% of the total ATP

utilization in the erythrocyte, as well as to preservation of red cell membrane deformability (Weed

et al., 1969). Under conditions of osmotic stress (Dariyerli et al., 2004) or mechanical stress

exerted during passage of the cell through thin capillaries (Kodı́cek, 1986), the ATP demand may

increase by a factor of 35. The oxidative load of erythrocytes may rise by two orders of magnitude

in the presence of oxidative drugs or intake of fava beans (McMillan et al., 2001). The average

concentration of glucose in the blood amounts to 5.5 mM, but may vary between 3.0 mM in acute

hypoglycaemia to 15 mM in severe untreated diabetes mellitus. The concentration of lactate in the

blood is mainly determined by the extent of anaerobic glycolysis in skeletal muscle. It may rise

from its normal value of 1 mM up to 8 mM during intensive physical exercise of long duration

(Petibois and Deleris, 2004).

Stationary load characteristics for the 29 metabolites and 30 fluxes were constructed by varying

the values of each of the four load parameters kATPase (rate constant for ATP utilization), kox
(rate constant for GSH consumption), glucose concentration, and lactate concentration, within the

following physiologically feasible ranges:

1
2k

0
ATPase ≤ kATPase ≤ 2k0

ATPase small variation of the energentic load
1
5k

0
ATPase ≤ kATPase ≤ 5k0

ATPase large variation of the energetic load
1
50k

0
ox ≤ kox ≤ 50k0

ox variation of the oxidative load

3 mM ≤ [Gluc] ≤ 15 mM variation of blood glucose concentration

1 mM ≤ [Lac] ≤ 8 mM variation of blood lactate concentration

k0
ATPase = 1.6h−1 and k0

ox = 0.03h−1 , respectively, denote the reference values for the

chosen in vivo state of the cell. Differences between the load characteristics obtained by means

of the exact model and the approximate models composed of the various types of simplified rate

equations were evaluated by the NRMSD value defined in Experimental procedures. NRMSD
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Simplified rate law

Reaction MA (%) PL (%) LL (%) LLst (%) MM (%)

GlcT 16.5 1.3 10.1 90.1 16.0

HK 43.5 8.8 9.1 62.8 19.4

GPI 5.7 1.5 12.1 99.0 0.0

PFK 83.3 60.5 58.7 90.8 79.9

ALD 33.6 2.0 22.2 78.3 0.2

TPI 7.0 1.0 16.0 99.8 0.0

GAPD 21.2 1.7 32.6 99.5 0.1

PGK 54.7 52.1 24.6 97.5 52.4

DPGM 0.0 0.0 9.7 33.2 0.0

DPGase 0.0 0.0 9.5 35.2 0.0

PGM 0.5 0.1 17.2 86.7 0.0

EN 0.4 0.1 16.1 68.2 0.0

PK 37.6 37.5 40.5 50.2 37.4

LDH 0.0 0.0 29.1 92.6 0.0

LDH(P) 1.4 0.1 8.4 62.4 1.1

ATPase 0.7 0.1 0.3 46.9 0.0

AK 14.6 3.0 18.1 100.0 0.3

G6PD 12.3 9.4 22.5 42.8 10.6

GSSGR 3.7 1.0 15.7 102.0 4.7

GSHox 0.0 0.0 0.0 89.5 0.0

EP 0.9 0.2 17.1 100.0 0.0

KI 0.2 0.1 17.7 98.9 0.2

TK1 28.6 1.5 29.7 50.2 0.7

TA 25.3 3.6 20.5 98.0 2.5

PRPPS 10.2 0.2 8.7 49.1 0.8

TK2 33.2 3.0 30.5 97.9 0.9

PT 0.0 0.0 25.5 100.0 0.0

LacT 0.0 0.0 25.5 100.0 0.0

PyrT 0.0 0.0 25.5 100.0 0.0

Table 6.2: Differences between simplified and detailed rate laws. The differences between sim-

plified and detailed rate laws for the individual reactions of the erythrocyte network are given as

NRMSD values defined in Experimental procedures. Differences larger than 20% are in italic;

differences larger than 50% are marked in bold. The scatter grams of the paired rate values for

each reaction are given in Bulik et al. (2009b). 6PGD, 6-phosphogluconate dehydrogenase; AK,

adenylate kinase; ALD, aldolase; DPGase, 2,3-bisphosphoglycerate phosphatase; EN, enolase;

EP, ribose phosphate epimerase; GAPD, glyceraldehyde phosphate dehydrogenease; GlcT, glu-

cose transport; GPI, glucose-6-phosphate isomerase; GSSGR, glutathione reductase; KI, ribose

phosphate isomerase; LDH(P), lactate dehydrogenase (NADP dependent); PGK, phosphoglycer-

ate kinase; PGM, 3-phosphoglycerate mutase; PRPPS, phosphoribosylpyrophosphate synthetase;

PyrT, pyruvate transport; TA, transaldolase; TPI, triose phosphate isomerase; TK1, transketolase

1; TK2, transketolase 2.

values were computed across the range of the perturbed parameters for which a stationary solution

was found with the approximate models. All individual load characteristics and the associated

NRMSD values are contained in Bulik et al. (2009b). For an overall assessment of the predictive

capacity of the approximate models, we computed mean NRMSD values by averaging across the

individual NRMSD values for metabolites and fluxes (Table 6.3). In some cases, the approximate

models failed to yield a stationary solution within a part of the full variation range of the perturbed
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load parameter. This is also depicted in the last four columns of Table 6.3.

6.2.4 Energetic load characteristics

Inspection of the NRMSD values in Table 6.3 (first and second columns) demonstrates that none

of the approximate models provided a satisfactory reproduction of the true energetic load charac-

teristics. The stoichiometric version of the LL yielded poor solutions. For the other approximate

models, the average error in the prediction of stationary load characteristics ranged from 13.7%

to 34.8% for small variations of the energetic load parameter, and from 22.3% to 50.9 for large

variations. Considering that fixing all predicted fluxes and metabolite concentrations to zero gives

an NRMSD value of 100%, we have to conclude that NRMSD value larger than 10% are un-

acceptably high. This conclusion is underpinned by the load characteristics for ATP shown in

Figure 6.2. According to the exact model, the maximum of the ATP consumption rate appears at

a 3.3-fold increased value of kATPase as compared to the value k0
ATPase = 1.6h−1 . At values

of kATPase exceeding seven-fold of its normal value, no stationary states can be found; that is,

kmax = 7k0
ATPase = 11.2h−1 represents an upper threshold for the energetic load that still can

be maintained by the glycolysis of the red cell. The nonmonotone shape of the load character-

istics for ATP is accounted for by the kinetic properties of PFK, which is strongly controlled by

the allosteric effectors AMP, ADP and ATP. The occurrence of a bifurcation at the critical value

kmaxATPase is an important feature of the energy metabolism of erythrocytes (Ataullakhanov et al.,

1981). It is a consequence of the autocatalytic nature of glycolysis, which needs a certain amount

of ATP for the ’sparking’ reactions of HK and PFK in the upper part (Sel’kov, 1975). As shown

in Figure 6.2, all approximate models completely failed to predict this important feature of the

energetic load characteristics.
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Figure 6.2: Erythrocyte energetic load characteristics. The diagrams show the total rate of ATP

consumption versus the energetic load given as percentage of the energetic load kATPase = 1.6
mM of the reference state. Each diagram shows the load characteristics calculated by means of

the mechanistic model (blue line), the approximate model fully based on simplified rate laws (red

line), and the hybrid model (green line). Unstable steady states are indicated by dotted lines.
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Range of load parameter values
Mean NRMSD with stable solution (%)
Energetic Energetic Oxidative External External Energetic Oxidative External External

Simplified Variant of load 20-500% load 20-500% load 2-5000% glucose lactate load 20-500% load 2-5000% glucose lactate
rate law kinetic model of normal of normal of normal 3-15mM 1-8mM of normal of normal of normal of normal

PL Hybrid 7.6 3.3 0.3 0.0 2.6 100 100 100 100

Fully simplified 38.0 23.9 5.0 0.5 5.1 100 100 100 100
MM Hybrid 8.9 3.4 1.4 0.1 2.6 100 100 100 100

Fully simplified 50.9 39.1 17.2 19.2 5.3 46 100 100 100
LL Hybrid 9.6 3.3 40.4 0.1 1.4 61 100 100 100

Fully simplified 22.3 13.7 41.0 0.4 5.9 84 100 100 100
MA Hybrid 14.2 3.7 16.2 0.1 3.4 100 91 100 100

Fully simplified 42.8 34.8 12.9 293.7 5.6 20 22 89 100
LLst Hybrid 95.9 40.1 98.9 1.9 10.6 100 100 100 100

Fully simplified 383.8 69.7 142.4 14.6 14.0 100 100 100 100

Table 6.3: Load characteristics. Mean NRMSD between the load characteristics calculated by

means of the mechanistic kinetic model and the kinetic model either fully based on simplified

rate laws (approximate model) or based on a mixture of simplified and detailed rate laws (hybrid

model, values in bold). The heading designates the type of load parameter varied and the range

of variation relative to the normal value of the reference state. The last four columns show the

percentage of the total variation range of the load parameter where the simplified models yielded

stable steady states. More detailed information is given in Bulik et al. (2009b). The mean NRMSD

was obtained by averaging across the NRMSD values of all 29 metabolites and 30 fluxes of the

model. NRMSD values were computed over the part of the variation range of the load parameter

where the simplified model yielded a stable steady state.

Oxidative load characteristics

The true load characteristics are less complex than in the case of varying energetic load (Bulik

et al., 2009b). Increasing rates of GSH consumption are paralleled by increasing rates of NADPH

consumption. A decrease in the NADPH /NADP ratio activates G6PD and results in a monotone,

quasilinear increase of the rate through the oxidative pentose pathway, whereas the much higher

flux through glycolysis remains almost unaltered. Hence, those simplified rate equations capable

of approximating reasonably well the kinetics of G6PD, the central regulatory enzyme in oxidative

stress conditions, should also work reasonably well in the approximate kinetic model. Indeed, the

NRMSD values in Table 6.3 (third column) clearly reflect the quality with which the simplified

rate laws approximate the kinetics of G6PD (see Table 6.2): the approximate models based on

PL-, MM- and MA-type rate equations provided a reasonably good reproduction of the exact load

characteristics, whereas the approximate model based on LL-type rate equations performed poorly

(mean NRMSD 41%).

Glucose characteristics

The approximate models performed generally better when external glucose levels were varied than

for alterations of the energetic and oxidative load. The only exception is the model variant based

on MA-type rate laws (mean RMSD = 293.7%). This is plausible because the linear MA-type

rate law cannot describe substrate saturation. However, in the erythrocyte, the HK catalysing the

first reaction step of glycolysis is completely saturated with glucose (Km value for glucose is

about 0.1 mm); that is, even large variations in the blood level of glucose are hardly sensed by

the cell. Indeed, the mechanistic rate law of the HK actually does not depend on the external

glucose concentration, and thus the detailed network model yields identical flux patterns for the

whole interval of external glucose concentrations studied. The nonlinear rate equations of the LL,

MM and PL type are at least partially able to describe substrate saturation, and thus provide a

reasonably good description of the HK kinetics.
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Lactate characteristics

Increasing lactate concentrations in the blood and thus within the erythrocyte cause a ’back-

pressure’ to the lactate dehydrogenase (LDH) reaction, thus lowering the NAD /NADH ratio. This

implies a decrease of the glycolytic flux, as NAD is a substrate of GAPD. The flux changes remain

moderate even at high lactate concentrations, as GAPD has little control over glycolysis for a wide

range of NAD concentrations. The induced changes in the flux pattern elicited by increasing lac-

tate concentrations are small and monotone, and therefore can be predicted with sufficient quality

by the approximate models, except for the variant based on stoichiometric LL-type rate laws.

In summary, the LLst provided unsatisfactory results for all test cases. The four other variants of

the approximate models clearly failed to reproduce with acceptable quality the true load charac-

teristics for variations of the energetic and oxidative load. However, they performed significantly

better for changes of the external metabolites glucose and lactate. Overall, using the NRMSD

values and the relative range of stable model solutions as quality criteria, the approximate models

based on PL-type rate laws performed best, followed by the LL variant. Except for the PL variant,

all other variants of approximate models failed in some test cases to provide stationary solutions

for all parameter variations.

6.2.5 Calculation of stationary system states calculated with kinetic hybrid models

In order to improve the quality of the approximate models, we tested a model variant (in the fol-

lowing referred to as hybrid model) in which we used detailed mechanistic rate equations for a

small set of the most relevant regulatory enzymes but simplified rate equations for the remaining

enzymes. The regulatory importance of the enzymes involved in the network was assessed by

applying the method of structural kinetic modelling (see Experimental procedures). This method

is based on a statistical resampling of the Jacobian matrix of the reaction network. It requires as

input only the stoichiometric matrix of the network and measured metabolite concentrations, as

well as fluxes in a specific working state of the system. The central entities of SKM are so-called

saturation parameters. They quantify the impact of metabolites on enzyme activities. SKM pro-

vides a ranking of enzymes and related saturation parameters according to their relative influences

on the stability of the network in the chosen reference state. Table 6.4 shows the 10 saturation

parameters with the highest average rank in three different statistical tests. To keep the number of

enzymes for which detailed rate equations have to be established as low as possible, we decided

to designate only three enzymes as being of central regulatory importance: PFK, HK and PK.

For these three enzymes, we used detailed rate equations, whereas for all other enzymes we used

various types of simplified rate equations as listed in Table 6.1.

The NRMSD values in Table 6.3 demonstrate that the hybrid models yielded, in most cases,

considerably better predictions of the true load characteristics than the full approximate models.

The span of load parameter values for which a stationary solution was found also increased. To

illustrate the improvements achieved, Figure 6.2 compares the load characteristics for ATP con-

sumption obtained with the exact model, with the full approximate models, and with the hybrid

models. Only the hybrid model based on LL rate laws failed to reproduce the shape of the true

load characteristics.

Taking arbitrarily an NRMSD value of 10% as the upper threshold for a good prediction, the

number of good predictions increased from only seven to 19. Intriguingly, the hybrid models

based on PL- and MM-type rate laws now produced acceptable load characteristics for all five

perturbation experiments tested. Only the stoichiometric variant of the LL-type rate laws still gave
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Metabolite Enzyme Average rank

Fru1,6P2 PFK 1.3

Glc6P HK 3.3

PEP PK 4.0

ADP HK 4.0

Fru6P PFK 6.3

1,3PG DPGM 7.0

ADP PFK 7.3

ATP ATPase 9.0

2,3PG DPGM 10.0

ADP PK 10.7

Table 6.4: Ranking of saturation parame-

ters for erythrocyte energy metabolism. Av-

erage ranking of saturation parameters accord-

ing to their impact on the dynamic stability of

the network assessed by analysis of the eigen-

values of the resampled Jacobian matrix us-

ing three different statistical measures: correla-

tion coefficient (Pearson), mutual information,

and P-value of the Kolmogorov-Smirnov test.

Fru6P, fructose 6-phosphate; Fru1,6P2, fruc-

tose 1,6-bisphosphate; PEP, phosphoenolpyru-

vate; 1,3PG, 1,3-bisphosphoglycerate; 2,3PG,

2,3-bisphosphoglycerate.

unacceptably poor predictions in four of the five perturbation experiments. In particular, much

better reproduction of the energetic and oxidative load characteristics could be achieved.

6.2.6 Test case 2 - a metabolic network of the purine salvage in hepatocytes

As a second test case to check the feasibility of our hybrid modelling approach, we have chosen the

purine nucleotide salvage metabolism of hepatocytes. This study has been confined to the use of

the most simple types of simplified rate laws, the MA and the stoichiometric LL type. This choice

was motivated by the fact that these two types of rate laws require a minimum of parameters and

thus currently will certainly be the most frequently used ones in the kinetic modelling of complex

metabolic networks.

Salvage metabolism plays an important role in the regulation of the purine nucleotide pool of

the cell. The central metabolites here are AMP and GMP, which serve as sensors of the energetic

status of the cell (Hardie, 2003). Under conditions of enhanced utilization or attenuated synthesis

of ATP or GTP, the concentrations of the related monophosphates increase, due to the fast equilib-

rium maintained among the mononucleotides, dinucleotides and trinucleotides by adenylate kinase

and guanylate kinase, respectively. This increase in AMP or GMP is accompanied by enhanced

degradation of these metabolites by either deamination or dephosphorylation, giving rise to a re-

duction in the total pool of purine nucleotides. The physiological significance of this degradation

is not fully understood. It can be argued that diminishing the concentration of AMP under condi-

tions of energetic stress shifts the equilibrium of the adenylate kinase reaction towards AMP and

ATP, and thus promotes the utilization of the energy-rich phosphate bond of ADP (Murray, 1971).

Remarkably, some of the degradation products (adenosine, IMP, hypoxanthine, and guanine) can

be salvaged, i.e. reconverted into AMP or GMP. Hence, under resting conditions, the depleted pool

of purine nucleotides can be refilled without a notable rate increase of de novo synthesis.

The reaction scheme of this pathway (Figure 6.3) and the related kinetic model have been

adopted from an earlier publication of our group (Bartel and Holzhütter, 1990).

We used the full mechanistic model to calculate the stationary reference state of the network

at an ATP consumption rate of 20.8µM ·s−1 and a GTP consumption rate of 0.19µM ·s−1. On the

basis of the stoichiometric matrix of the network and the flux rates and metabolite concentrations

of the reference state, we applied the SKM method to identify those enzymes and reactants exerting

the most significant influence on the stability of the system (Table 6.5). This analysis revealed the

enzymes AMP deaminase and adenylosuccinate synthase to have the largest impact on the stability

of the system. On the basis of this information, we constructed kinetic hybrid models, using,
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Figure 6.3: Hepatocyte purine metabolism. Reaction scheme of hepatocyte purine metabolism.

The consumption and synthesis of ATP and GTP as well as the de novo synthesis of purines are

overall reactions. Metabolites in grey boxes are in fast equilibrium. IMP, inosine monophos-

phate; XMP, xanthosine monophosphate; PRPP, phosphoribosyl pyrophosphate; R1P ribosyl 1-

phosphate; v1, adenylate kinase; v2, guanylate kinase; v3, nucleotide diphosphate kinase; v4-v7,

5’-nucleotidase; v8, AMP deaminase; v9, adenylosuccinate synthetase; v10, adenylosuccinase;

v11, adenosine deaminase; v12-v15, nucleoside phosphorylase; v16-v17, xanthine oxidase; v18,

IMP dehydrogenase; v19 adenosine kinase; v20, guanine deaminase; v21, GMP synthetase; v22-

v23, hypoxanthineguanine phosphoribosyltransferase; v24, ATP synthesis; v25, ATP consump-

tion; v26, GTP synthesis; v27, GTP consumption; v28, purine de novo synthesis; v29, uric acid

export.

for these two enzymes, the original mechanistic rate equations but modelling all other enzymes

by simplified rate equations of either the MA type or the LL (stoichiometric) type, respectively.

For comparison, we also constructed the fully reduced model by replacing all rate equations by

their simplified counterparts. To check the performance of the simplified models, we simulated

a physiologically relevant case where the cell is exposed to transient hypoxia 30 min in duration

(e.g. owing to the complete occlusion of the hepatic artery) followed by a recovery period with

a full oxygen supply. As shown in Figure 6.4, the fully approximated MA variant provides a

reasonable description of adenine nucleotide behaviour during the anoxic period but completely

fails to adequately describe the time-courses during the subsequent reoxygenation period. The

LL (stoichiometric) approach describes the entire time-course quite well, even though the AMP

concentration does not decline during the hypoxia period, and the depletion of the total pool of

adenine nucleotides is clearly underestimated. Evidently, both types of simplified rate equations
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Figure 6.4: Hepatocyte anoxic sim-

ulation. The diagrams show the ade-

nine nucleotides (ATP, blue; ADP,

green; AMP, red) and the total ade-

nine pool (turquoise) for hepatocyte

purine metabolism. After a short ini-

tial period, the ATP synthesis is set

to zero (indicated by arrow) for 30

min. After this anoxic interval, ATP

synthesis is reset to its normal in vivo

rate. The recovery of the adenine nu-

cleotides for the next 60 min is also

shown. Each panel displays a differ-

ent model. The hybrid (third and fifth

panel) models are closer to the full

model (first panel) than the fully sim-

plified models.

perform significantly better when incorporated into the hybrid model.

6.3 Experimental procedures

6.3.1 Distance measure

The distance between the paired values x̃i and xi, (i = 1, 2, ...n) of any variable X computed by

the exact and the approximate model, respectively, was measured by the NRMSD:

NRMSD(X) =

[∑n
i=1(xi − x̃i)

2

∑n
i=1 x̃

2
i

]1/2

6.3.2 Parameterization of simplified rate equations

The concentrations of substrates [S], products [P] and allosteric effectors [E] of the corresponding

enzyme were randomly varied within concentration intervals bounded by half and two-fold the

reference concentrations. The conservation rules of the original model were kept. This parameter-

ization procedure simulates an ideal situation where the flux rates through the individual reactions

and the concentration values of the respective reactants are being measured within the intact net-

work operating in its cellular environment (i.e. either in the intact cell or at least in a cell lysate)

and adopting a sufficiently large spectrum of different states elicited by external perturbations. In
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Average

Flux Enzyme Metabolite rank

v9 Adenylosuccinate synthetase GDP 1.7

v8 AMP-deaminase IMP 2.0

v9 Adenylosuccinate synthethase GTP 3.0

v9 Adenylosuccinate synthethase IMP 5.3

v18 IMP dehydrogenase IMP 5.7

v18 IMP dehydrogenase XMP 6.0

v21 GMP synthethase XMP 7.0

v10 Adenylosuccinase Adenylosuccinate 10.7

v8 AMP-deaminase AMP 11.0

v21 GMP synthetase ATP 11.3

Table 6.5: Ranking of saturation parameters for hepatocyte purine metabolism. Average ranking

of saturation parameters according to their impact on the dynamic stability of the network assessed

by analysis of the eigenvalues of the resampled Jacobian matrix using three different statistical

measures: correlation coefficient (Pearson), mutual information, and P-value of the Kolmogorov-

Smirnov test.

this case, the measured flux rates - here represented by the values of the mechanistic rate law - are

influenced by allosteric effectors and other kinetic effects (e.g. reversible chemical modifications,

and binding of enzymes to other proteins or membranes), although these regulatory influences are

not explicitly considered in the simplified rate equations. Numerical values of the unknown pa-

rameters of a simplified rate equation were determined by minimizing the NRMSD given by the

above equation of the predicted flux. Minimization was performed using the nonlinear optimiza-

tion program solver 6.5 for excel. In these calculations, the random variation of the concentrations

of reactants preserved the conservation rules of the system, e.g. constancy of the total concentra-

tion of adenine and pyridine nucleotides. Each reaction was trained separately and then corrected

for the reference state of the erythrocyte network. For the LL rate law, we additionally tested a

recently proposed variant (Smallbone et al., 2007) in which the coefficients are identical with the

stoichiometric coefficient of the respective reactant; that is, for the monomolecular reaction S→
P, the rate law simply reads v = v0 ·

(
1 + log

(
S/S0

)
− log

(
P/P 0

))
.

6.3.3 Construction of load characteristics

A system is stationary when it satisfies the equation dS/dt = 0, with dS/dt = Nv(S), N being

the stoichiometric matrix, S the vector of metabolite concentrations, and v(S) the vector of fluxes

of the system. The load characteristics were calculated by varying a load parameter within a preset

range of physiologically reasonable values. For each value of the load parameter, the steady state

was computed by determining the metabolites S so that the above stationary condition is fulfilled.

The numerical calculations were carried out with Matlab (MathWorks, Natick, MA, USA) Version

7.5.0.338. The stability of each solution was determined by evaluation of the eigenvalues of the

Jacobian matrix [J = dv(S)/dS].

6.3.4 Identification of regulatory enzymes by the SKM method

Quantification of the regulatory importance of the enzymes involved in the network was performed

by applying the SKM method (Grimbs et al., 2007a; Steuer et al., 2006). This method is based on

linearization of the kinetic equations with respect to a stationary working state of the system for



6.4. DISCUSSION 93

which experimental data on fluxes and metabolite concentrations are available. The correspond-

ing Jacobian matrix is decomposed into a product of two matrices, one depending on the flux rates

and metabolite concentrations, and the other being constituted of so-called saturation parameters

quantifying the influence that a small change in the concentration of an arbitrary metabolite has

on the flux through a given reaction. If the change in the reaction rate is zero (meaning that the

metabolite is neither a substrate nor an allosteric effector of the catalysing enzyme or, alterna-

tively, that the enzyme is saturated with the metabolite), the corresponding saturation parameter is

zero. If, at the other extreme, the change in the reaction rate is proportional to the change in the

concentration of the metabolite, the saturation parameter equals unity. The saturation parameter

thus has a strong similarity to the so-called elasticity coefficient used in metabolic control theory

(Heinrich and Schuster, 1996; Fell, 1996).

At given values of the saturation parameters, one may compute the eigenvalues of the Jacobian

matrix that determine the kinetic modes of the system elicited by small perturbations of the chosen

working state. In particular, the largest eigenvalue indicates whether or not the working state is

(locally) stable. The basic idea of SKM is to generate in a random fashion a large set of putative

saturation parameter values for each enzyme. This results in an equally large set of Jacobian ma-

trices containing the information on the stability of the system. As the interaction of nonreactant

metabolites with enzymes in the system is generally unknown, the respective entries in the matrix

are fixed to zero to reduce complexity and computational costs. The nonzero entries of the satu-

ration matrix were sampled in the range [0, xst], with xst being the stoichiometric coefficient of

the metabolite in the catalysed reaction. Various statistical methods, such as correlation analysis,

mutual information analysis, or the Kolmogorov-Smirnov test, can be used to assign a statistical

measure to each possible saturation parameter, evaluating its linkage with changes in the largest

eigenvalue of the Jacobian matrix. Fixing a reasonable threshold value for the statistical mea-

sure used, one arrives at a restricted list of potential regulatory enzymes and relevant metabolites

controlling their rate (for further details, see Grimbs et al. (2007a)).

6.4 Discussion

Complex cellular functions such as growth, aging, spatial movement and excretion of chemi-

cal compounds are brought about by a giant network of molecular interactions. Kinetic models

of cellular reaction networks still represent the only elaborated mathematical framework that al-

lows temporal changes and spatial distribution of the constituting molecules to be related to the

underlying chemical conversions and transport processes in a causal manner. With the establish-

ment of systems biology as a new field of study, a tremendous effort has been made to develop

high-throughput screening methods enabling the simultaneous monitoring of huge sets of different

molecules (mRNAs, proteins, and organic metabolites). These methods have revealed unexpect-

edly vivid dynamics of gene products and related metabolites. However, in most cases, these

dynamics appear to be enigmatic and hardly explicable in a causal manner, because up to now not

enough effort has been made to elucidate and kinetically characterize the biochemical processes

behind the observed changes in levels of molecule. In contrast, enzyme kinetics – a field that has

shaped the face of biochemistry over decades – is currently considered to be old-fashioned. As

a result, kinetic modelling of cellular reaction pathways is today seriously hampered by the un-

availability of reliable rate laws for the processes involved in a network under consideration. For

lack of anything better, it is common practice in the contemporary literature to base kinetic mod-

els on simplified rate laws. Such an approach may work reasonably well for small perturbations

of a well-characterized working state. This conclusion is almost trivial, as sufficiently close to a

steady state, the complex nonlinear kinetic rate laws can be reasonably well approximated even

by simple linear rate laws of the MA type. Indeed, most of the studied approximate models of
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the erythrocyte network performed sufficiently well for changes of the external concentrations of

glucose and lactate. The reason is that the metabolism of this cell is controlled by the demand

for energy and redox equivalents, and not by the offer of substrates. Even larger variations in the

concentrations of glucose and lactate give rise to only small changes in the activity of the sensing

enzymes HK and LDH, and thus represent small metabolic challenges.

The point is, however, that in most biological, medical and biotechnological applications,

small perturbations are not of great interest. Instead, one wants to make predictions about how

the system behaves in cases of large perturbations, e.g. a sudden increase in the ATP demand

when starting muscular work, the pharmacological inhibition of an enzyme, a sudden change in

pH, the depletion of an essential substrate, or the presence of a toxic compound. As revealed by

our analysis, under such conditions, kinetic models composed of simplified rate laws may lead

to completely wrong predictions of the system’s response, because the kinetic properties of those

enzymes with decisive regulatory impact are not adequately captured. One may argue that this

disappointingly poor performance is due to the fact that the simplified rate equations used in our

analysis do not capture regulatory effects as exerted, for example, by allosteric effectors. First,

such knowledge is currently available for only a small percentage of enzymes. Second, it is not

acceptable to fill the gaps in our knowledge of regulatory properties by making the assumption

that the same regulatory effectors are operative at isoenzymes in different species or different

compartments of the same cell type. For example, the glycolytic enzyme PK can be isolated from

mammalian tissues as four isoenzymes (L, R, M1 and M2). Each isoenzyme exhibits different

kinetic properties that reflect the particular metabolic requirements of the expressing tissue (Bond

et al., 2000; Jurica et al., 1998). Finally, if regulatory effectors have been elucidated by careful

kinetic characterization of an enzyme, there are sufficient data available to set up a mechanistic

rate law instead of a simplified one. Therefore, our decision to incorporate into the simplified rate

laws only the chemistry of the reaction appears to be justified.

As a feasible compromise between the use of kinetic models fully based on either simplified

or mechanistic rate laws, we propose here the use of hybrid models composed of simplified rate

equations for the majority of reactions but detailed rate equations for a limited set of regulatory

enzymes. Our approach relies on biochemically substantiated evidence that kinetic control of

cellular metabolism is not democratically distributed across all participating enzymes and trans-

porters. Rather, in all pathways hitherto studied in more detail, there exists a narrow set of key

regulatory enzymes that are targeted by allosteric effectors and often also regulated by reversible

phosphorylation. Accordingly, kinetic models should incorporate the kinetic properties of these

central regulatory enzymes with sufficient accuracy, whereas the majority of the other ’workhorse’

enzymes can be modelled with simplified rate equations.

To demonstrate the feasibility of the proposed hybrid approach, we have applied it to two

well-studied metabolic systems, the redox and energy metabolism of erythrocytes, and the purine

salvage metabolism of hepatocytes. In both cases, existing comprehensive kinetic models have

been used as reference standards irrespective of the problem of to what extent these reference

standards actually recapitulate all available biochemical knowledge of the considered networks.

In fact, both reference models do not include all reactions that have been reported in the KEGG

database, and some of the parameter values, in particular those of the thermodynamic equilibrium

constants, need revision in the light of new measurements. Nevertheless, both reference models

have been shown to correctly reflect basic dynamic features of the underlying pathways. Several

elaborated kinetic models of erythrocyte metabolism have been recently compared (du Preez et al.,

2008) and shown to adequately describe stationary load characteristics despite the use of different

sets of parameters for the involved enzymes.

In the investigation of the salvage metabolism, we anticipated a typical situation when only a

minimal amount of data is available. The SKM method requires data on metabolite concentrations
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and fluxes for one working state of the system. Both of the simplified approaches used (MA and

LLst) can be parameterized with such data, whereas the more advanced models (LL, PL and MM)

require more data to train the rate law parameters. Importantly, even the two most simple hybrid

approaches yielded satisfactory results, and the more sophisticated models should perform even

better.

The crucial problem in our approach is to identify the key regulatory enzymes and their main

effectors. This problem is closely related to the determination of flux control coefficients and

elasticity coefficients defined in metabolic control analysis (Heinrich and Schuster, 1996). Ex-

perimentally, this task can be tackled by measuring stationary load characteristics recorded upon

inhibitor titration of individual enzymes (Fell, 1996; Small, 1993). Alternatively, one may apply

a dynamic approach to estimate control coefficients from transient metabolite trajectories elicited

by perturbations of the network (Delgado et al., 1993; Kresnowati et al., 2005). Whereas these

methods are very expensive from the experimental point of view, the concept of structural kinetic

modelling (Grimbs et al., 2007a) requires as input only the stoichiometry of the network and data

on metabolite concentrations and fluxes in a typical working state of the network. Using this

method, we identified the three glycolytic enzymes HK, PFK and PK as the putative most relevant

regulatory enzymes of the network. This insight is not new, but here it was derived just from the

topology of the network and metabolic data of a single reference state, whereas it took decades of

biochemical research combined with mathematical modelling to unravel the central regulatory role

of these enzymes. It has to be noted, however, that selecting a limited set of relevant regulatory

enzymes from a ranked list of statistical scores is, to some extent, arbitrary. One way to remove

this arbitrariness might be to include a successively enlarged set of putative regulatory enzymes

in the construction of the kinetic hybrid model and to stop the procedure if there is no significant

change of the computed trajectories and load characteristics relevant to the questions addressed by

the model.

For the kinetic characterization of selected regulatory enzymes, in vitro experiments still seem

to be the method of choice, because they allow a systematic search for allosteric effectors and a

variation of the enzyme ligands in a sufficiently broad concentration range. In some cases, the

derivation of a detailed rate law can be facilitated by searching enzyme databases (Barthelmes

et al., 2007; Wittig et al., 2006) for rate laws already established for the same enzyme from other

cell types. If the three-dimensional protein structures are known, it is even possible to estimate

numerical values of kinetic constants for structurally and mechanistically similar enzymes (Gab-

doulline et al., 2007).

Taken together, the development of hybrid models could be a realistic strategy to speed up the

kinetic analysis of cellular reaction networks.





Chapter 7

General conclusion

The presented work used mathematical and computational approaches to cover various aspects

of metabolic network modelling, especially regarding the limited availability of detailed kinetic

knowledge on reaction rates. It was shown that precise mathematical formulations of problems are

needed i) to find appropriate and, if possible, efficient algorithms to solve them, and ii) to deter-

mine the quality of the found approximate solutions. Furthermore, some means were introduced to

gain insights on dynamic properties of metabolic networks either directly from the network struc-

ture or by additionally incorporating steady-state information. Finally, an approach to identify key

reactions in a metabolic networks was introduced, which helps to develop simple yet useful kinetic

models.

The rise of novel techniques renders genome sequencing increasingly fast and cheap (Roth-

berg and Leamon, 2008). In the near future, this will allow to analyze biological networks not

only for species but also for individuals (Hood et al., 2004). Hence, automatic reconstruction of

metabolic networks provides itself as a means for evaluating this huge amount of experimental

data. This was discussed in Chapter 2. A mathematical formulation as an optimization problem

was presented, taking into account existing knowledge and experimental data as well as the proba-

bilistic predictions of various bioinformatical methods. The reconstructed networks are optimized

for having large connected components of high accuracy, hence avoiding fragmentation into small

isolated subnetworks. The usefulness of this formalism was exemplified on the reconstruction

of the sucrose biosynthesis pathway in Chlamydomonas reinhardtii. However, the problem was

shown to be computationally demanding and therefore necessitates efficient approximation algo-

rithms. The development of algorithms with provable approximation quality remains as an open

problem.

The problem of minimal nutrient requirements for genome-scale metabolic networks was an-

alyzed in Chapter 3. Given a metabolic network and a set of target metabolites, the inverse scope

problem has as it objective determining a minimal set of metabolites that have to be provided in

order to produce the target metabolites. These target metabolites might stem from experimental

measurements and therefore are known to be produced by the metabolic network under study, or

are given as the desired end-products of a biotechological application. The inverse scope problem

was shown to be computationally hard to solve. However, we assume that the complexity strongly

depends on the number of directed cycles within the metabolic network. This might guide the

development of efficient approximation algorithms. Furthermore, in the mathematical framework

of the inverse scope problem, a reaction is assumed to take place if all substrates are available in

principle, without taking into account the stoichiometry of the reaction. Hence, mass-balance is

not considered. A way to overcome this problem might be achieved by using Petri nets (Heiner

and Koch, 2004) as models of metabolic networks.

Assuming mass-action kinetics, chemical reaction network theory (CRNT), introduced in
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Chapter 4, allows for eliciting conclusions about multistability directly from the structure of

metabolic networks. Although CRNT is based on mass-action kinetics originally, it was also

shown how to incorporate further reaction schemes by emulating molecular enzyme mechanisms.

CRNT was used to compare several models of the Calvin cycle, which differ in size and level

of abstraction. Definite results were obtained for small models, but the available set of theorems

and algorithms provided by CRNT could not be applied to larger models due to the computational

limitations of the currently available implementations of the provided algorithms. Therefore, im-

plementing improved versions of these algorithms would be a compulsive step to apply CRNT to

metabolic networks of medium to large size.

Structural kinetic modelling was presented in Chapter 5. Given the stoichiometry of a metabolic

network together with steady-state fluxes and concentrations, this sampling approach allows to an-

alyze the dynamic behavior of the metabolic network, even if the explicit rate equations are not

known. In particular, this approach was used to study the stabilizing effects of allosteric regulation

in a model of human erythrocytes. Furthermore, the reactions of that model could be ranked ac-

cording to their impact on stability of the steady state. The most important reactions in that respect

were identified as hexokinase, phosphofructokinase and pyruvate kinase, which are known to be

highly regulated and almost irreversible. In general, the sampling technique could possibly be

improved by restricting the parameter space to account for possible thermodynamic dependencies

between kinetic parameters within a metabolic pathway (Liebermeister and Klipp, 2006).

In Chapter 6 kinetic modelling approaches using standard rate equations have been compared

and evaluated against reference models for erythrocytes and hepatocytes. The results from this

simplified kinetic models could simulate acceptably the temporal behavior for small changes

around a given steady state, but failed to capture important characteristics for larger changes.

The aforementioned approach to rank reactions according to their influence on stability was used

to identify a small number of key reactions. These reactions were modelled in detail, including

knowledge about allosteric regulation, while all other reactions were still described by simplified

reaction rates. These so-called hybrid models could capture the characteristics of the reference

models significantly better than the simplified models alone. The resulting hybrid models might

serve as a good starting point for kinetic modelling of genome-scale metabolic networks, as they

provide reasonable results in the absence of experimental data, regarding, for instance, allosteric

regulations, for a vast majority of enzymatic reactions. As the identification of important reactions

is crucial for constructing hybrid models, further approaches to identify such key reactions could

also be included to cover additional (structural) network properties apart from stability.

Implementation of the introduced algorithms was carried out in the free statistical program-

ming language R and in MATLAB. To allow for further applications besides the examples dis-

cussed in Chapter 5 and 6 and to provide a comprehensive software package, an interface to the

Systems Biology Markup Language (Hucka et al., 2003) should be developed as a next step.

The presented approaches and methods contribute to alleviating the complex and challenging

task of modelling metabolic networks and improve the quality of simulations and predictions.

Naturally, the proposed methods can be further improved, as already mentioned above and in the

discussion and conclusion of the individual chapters. However, incorporating these improvements

is beyond the scope of this work and will be addressed in future works.
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Handorf, T., Ebenhöh, O., Kahn, D., and Heinrich, R. (2006). Hierarchy of metabolic compounds

based on their synthesising capacity. Syst Biol (Stevenage), 153(5):359–363.

Hardie, D. G. (2003). Minireview: the AMP-activated protein kinase cascade: the key sensor of

cellular energy status. Endocrinology, 144(12):5179–5183.

Heiner, M. and Koch, I. (2004). Petri net based model validation in systems biology. Lecture

Notes in Computer Science, 3099:216–237.

Heinrich, R. and Rapoport, T. A. (1974). A linear steady-state treatment of enzymatic chains.

General properties, control and effector strength. Eur J Biochem, 42(1):89–95.

Heinrich, R. and Schuster, S. (1996). The regulation of cellular system. Chapman & Hall, New

York.

Heldt, H. W., Chon, C. J., and Maronde, D. (1977). Role of orthophosphate and other factors in the

regulation of starch formation in leaves and isolated chloroplasts. Plant Physiol, 59(6):1146–

1155.

http://www.nature.com/msb/journal/v3/n1/suppinfo/msb4100186_S1.html
http://www.nature.com/msb/journal/v3/n1/suppinfo/msb4100186_S1.html


BIBLIOGRAPHY 105

Henry, C. S., Jankowski, M. D., Broadbelt, L. J., and Hatzimanikatis, V. (2006). Genome-scale

thermodynamic analysis of Escherichia coli metabolism. Biophys J, 90(4):1453–1461.

Heymans, M. and Singh, A. K. (2003). Deriving phylogenetic trees from the similarity analysis

of metabolic pathways. Bioinformatics, 19 Suppl 1:i138–i146.

Holzhütter, H.-G. (2004). The principle of flux minimization and its application to estimate sta-

tionary fluxes in metabolic networks. Eur J Biochem, 271(14):2905–2922.

Holzhütter, H.-G., Jacobasch, G., and Bisdorff, A. (1985). Mathematical modelling of metabolic

pathways affected by an enzyme deficiency. A mathematical model of glycolysis in normal and

pyruvate-kinase-deficient red blood cells. Eur J Biochem, 149(1):101–111.

Hood, L., Heath, J. R., Phelps, M. E., and Lin, B. (2004). Systems biology and new technologies

enable predictive and preventative medicine. Science, 306(5696):640–643.

Hoppe, A., Hoffmann, S., and Holzhütter, H.-G. (2007). Including metabolite concentrations

into flux balance analysis: thermodynamic realizability as a constraint on flux distributions in

metabolic networks. BMC Syst Biol, 1:23.

Horn, F. and Jackson, R. (1972). General mass action kinetics. Arch. Rational Mech. Anal.,

B47:81–116.

Hucka, M., Finney, A., Sauro, H. M., Bolouri, H., Doyle, J. C., Kitano, H., Arkin, A. P., Bornstein,

B. J., Bray, D., Cornish-Bowden, A., Cuellar, A. A., Dronov, S., Gilles, E. D., Ginkel, M.,

Gor, V., Goryanin, I. I., Hedley, W. J., Hodgman, T. C., Hofmeyr, J.-H., Hunter, P. J., Juty,

N. S., Kasberger, J. L., Kremling, A., Kummer, U., Novre, N. L., Loew, L. M., Lucio, D.,

Mendes, P., Minch, E., Mjolsness, E. D., Nakayama, Y., Nelson, M. R., Nielsen, P. F., Sakurada,

T., Schaff, J. C., Shapiro, B. E., Shimizu, T. S., Spence, H. D., Stelling, J., Takahashi, K.,

Tomita, M., Wagner, J., Wang, J., and Forum, S. B. M. L. (2003). The systems biology markup

language (sbml): a medium for representation and exchange of biochemical network models.

Bioinformatics, 19(4):524–531.

Huson, D. H. and Bryant, D. (2006). Application of phylogenetic networks in evolutionary studies.

Mol Biol Evol, 23(2):254–267.

Hwang, D., Rust, A. G., Ramsey, S., Smith, J. J., Leslie, D. M., Weston, A. D., de Atauri, P.,

Aitchison, J. D., Hood, L., Siegel, A. F., and Bolouri, H. (2005). A data integration methodology

for systems biology. Proc Natl Acad Sci U S A, 102(48):17296–17301.

Jacobasch, G. and Rapoport, S. M. (1996). Hemolytic anemias due to erythrocyte enzyme defi-

ciencies. Mol Aspects Med, 17(2):143–170.

Jeong, H., Mason, S. P., Barabási, A. L., and Oltvai, Z. N. (2001). Lethality and centrality in

protein networks. Nature, 411(6833):41–42.

Jeong, H., Tombor, B., Albert, R., Oltvai, Z. N., and Barabási, A. L. (2000). The large-scale

organization of metabolic networks. Nature, 407(6804):651–654.

Jonsson, P. (1998). Near-optimal nonapproximability results for some NPO PB-complete prob-

lems. Information Processing Letters, 68(5):249–253.

Joshi, A. and Palsson, B. Ø. (1989). Metabolic dynamics in the human red cell. part I–A compre-

hensive kinetic model. J Theor Biol, 141(4):515–528.



106 BIBLIOGRAPHY

Joshi-Tope, G., Gillespie, M., Vastrik, I., D’Eustachio, P., Schmidt, E., de Bono, B., Jassal, B.,

Gopinath, G. R., Wu, G. R., Matthews, L., Lewis, S., Birney, E., and Stein, L. (2005). Reactome:

a knowledgebase of biological pathways. Nucleic Acids Res, 33(Database issue):D428–D432.

Jurica, M. S., Mesecar, A., Heath, P. J., Shi, W., Nowak, T., and Stoddard, B. L. (1998). The

allosteric regulation of pyruvate kinase by fructose-1,6-bisphosphate. Structure, 6(2):195–210.

Kacser, H. and Burns, J. (1973). The control of flux. Symp Soc Exp Biol, 27:65 – 104.

Kahlem, P. and Birney, E. (2006). Dry work in a wet world: computation in systems biology. Mol

Syst Biol, 2:40.

Kanehisa, M., Goto, S., Kawashima, S., Okuno, Y., and Hattori, M. (2004). The KEGG resource

for deciphering the genome. Nucleic Acids Res, 32(Database issue):D277–D280.

Karp, R. M. (1972). Reducibility among combinatorial problems. In Miller, R. E. and Thatcher,

J. W., editors, Complexity of computer computations, Proceedings of a Symposium in the Com-

plexity of Computer Computations, pages 85–103. Plenum Press, New York and London.

Kell, D. B. (2004). Metabolomics and systems biology: making sense of the soup. Curr Opin

Microbiol, 7(3):296–307.

Khanin, R. and Wit, E. (2006). How scale-free are biological networks. J Comput Biol, 13(3):810–

818.

Kirkpatrick, D. G. and Hell, P. (1978). On the completeness of a generalized matching problem.

In Proceedings of the tenth annual ACM symposium on Theory of computing, Annual ACM

Symposium on Theory of Computing, pages 240–245. ACM, New York.

Kitano, H. (2002a). Computational systems biology. Nature, 420(6912):206–210.

Kitano, H. (2002b). Systems biology: a brief overview. Science, 295(5560):1662–1664.

Klamt, S. and Stelling, J. (2002). Combinatorial complexity of pathway analysis in metabolic

networks. Mol Biol Rep, 29(1-2):233–236.

Klamt, S. and Stelling, J. (2003). Two approaches for metabolic pathway analysis? Trends

Biotechnol, 21(2):64–69.

Klipp, E., Herwig, R., Kowald, A., Wierling, C., and Lehrach, H. (2005). Systems Biology in

Practice: Concepts, Implementation and Application. Wiley-VCH.

Kodı́cek, M. (1986). Enhanced glucose consumption in erythrocytes under mechanical stress. Cell

Biochem Funct, 4(2):153–155.

Kompala, D. S., Ramkrishna, D., and Tsao, G. T. (1984). Cybernetic modeling of microbial

growth on multiple substrates. Biotechnology and Bioengineering, 26(11):1272–1281.

Kotera, M., McDonald, A. G., Boyce, S., and Tipton, K. F. (2008). Functional group and substruc-

ture searching as a tool in metabolomics. PLoS ONE, 3(2):e1537.

Kresnowati, M. T. A. P., van Winden, W. A., and Heijnen, J. J. (2005). Determination of elas-

ticities, concentration and flux control coefficients from transient metabolite data using linlog

kinetics. Metab Eng, 7(2):142–153.



BIBLIOGRAPHY 107

Kumar, P. and Shoukri, M. (2007). Copula based prediction models: an application to an aortic

regurgitation study. BMC Med Res Methodol, 7(1):21.
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