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Abstract. This paper studies the Gevrey regularity of weak solutions of a class of linear
and semilinear Fokker-Planck equations.

1. Introduction

Much attention has been paid to the study of the spatially homogeneous Boltzmann equa-
tion without the angular cut-offs in recent years (see [2, 3, 8, 22] and references therein).
These studies demonstrate that the singularity of the collision cross-section improves the
regularity on weak solutions for the Cauchy problem. For instance, one can obtain, from
these studies, the C∞ regularity of weak solutions for the spatially homogeneous Boltzmann
operator when there are no angular cut-offs. In the local setting, the Gevrey regularity has
been first proved in [21] for the initial data that has the same Gevrey regularity. A more
general result on the Gevrey regularity is obtained in [17] for the spatially homogeneous lin-
ear Boltzmann equation with any initial Cauchy data. Hence, one sees a similar smoothness
effect for the homogeneous Boltzmann equations as in the case of the heat equation.

The consideration for the inhomogeneous equation seems to be a relatively open field.
There is no general result in this study yet. A recent work in [1] investigated a kinetic
equation with the diffusion coefficient as a nonlinear function of the velocity variable. In [1],
making us of the uncertainty principle and microlocal analysis, a C∞ regularity result was
obtained when there is no angular cut-off in the linear spatially inhomogeneous Boltzmann
equation.

In this paper, we study the Gevrey regularity of the weak solutions for the following
Fokker-Planck operator in R2n+1

L = ∂t + v · ∂x − a(t, x, v)4v,(1.1)
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where 4v is the Laplace operator in the velocity variables v and a(t, x, v) is a strictly positive
function in R2n+1.

The motivation of studying such an equation is dependent on the study of inhomogenous
Boltzmann equation without angular cutoffs, Landau equation (see [15]) and a non-linear
Vlasov-Fokker-Planck equation (see [11, 12]).

To state our main results, we first recall the definition of Gevrey class functions. Let U
be an open subset of RN and f be a real function defined in U . We say f ∈ Gs(U)(s ≥ 1) if
f ∈ C∞(U) and for any compact subset K of U , there exists a constant C = CK , depending
only on K, such that for all multi-indices α ∈ NN and for all x ∈ K

|∂αf(x)| ≤ C
|α|+1
K (|α|!)s.(1.2)

Denote by Ū the closure of U in RN . we say f ∈ Gs(Ū) if f ∈ Gs(W ) for some open
neighborhood W of Ū . The estimate (1.2) for x ∈ K is equivalent to the following L2-estimate
(See, for instance, Chen-Rodino[5, 6] or Rodino[18]):

‖∂αf‖L2(K) ≤ C
|α|+1
K (|α|)s|α|.

In what follows, we shall use the definition based on the above L2 estimate for the Gevrey
functions.

We say that an operator P is Gs-hypoelliptic in U if for any u ∈ D′ and Pu ∈ Gs(U) it
then holds that u ∈ Gs(U). Likewise, we say an operator P is C∞ hypoelliptic in U if for any
u ∈ D′ and Pu ∈ C∞(U) it then holds that u ∈ C∞(U).

When the operator L satisfies the well-known Hörmander condition, then a famous re-
sult of Hörmander [13] says that L is C∞ hypoelliptic. In the aspect of the Gevrey class,
Derridj-Zuily [7] studied the Gs-hypoellipticity for the second order degenerate operators of
Hörmander type, and proved that L is Gs-hypoelliptic when s > 6.

In this paper, we first improve the result in [7] for the Fokker-Planck operator (1.1). In
fact, similar to the result of [19], we have obtained the following optimal estimate for Gevrey
index s ≥ 3:

Theorem 1.1. For any s ≥ 3, if the positive coefficient a(t, x, v) is in Gs(R2n+1), then the
operator L given in (1.1) is Gs-hypoelliptic in R2n+1.

Remark: A. Our proof of Theorem 1.1 actually shows that the result in Theorem 1.1 holds
even for the following more general operators:

L̃ = ∂t + A(v) · ∂x −
n∑

j,k=1

ajk(t, x, v)∂2
vjvk

,

defined over a domain U in R2n+1. Here, A is a non-singular n × n constant matrix,(
ajk(t, x, v)

)
is a positive definite matrix over U with all entries being in the Gs(U)-class.

B. Our result in Theorem 1.1 is of the local nature. Namely, if there exists a weak solution
in D′, then this solution is in the Gevrey class in the interior of the domain. Hence, interior
regularity of a weak solution does not depend much on the regularity of the initial Cauchy
date.
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Our second result is concerned with the Gevrey regularity of a non-linear version of (1.1).
We consider the following semi-linear equation:

(1.3) Lu = ∂tu + v · ∇xu− a(t, x, v)4vu = F (t, x, v, u,∇vu),

where F (t, x, v, w, p) is a non-linear function of real variables (t, x, v, w, p). We prove the
following:

Theorem 1.2. Let u be a weak solution of the equation (1.3). Assume that u ∈ L∞loc(R2n+1)
and ∇vu ∈ L∞loc(R2n+1). Then

u ∈ Gs(R2n+1)

for any s ≥ 3, if the positive coefficient a(t, x, v) ∈ Gs(R2n+1) and the nonlinear function
F (t, x, v, w, p) ∈ Gs(R2n+2+n).

Remark: C. If the non-linear term F (t, x, v, w, p) is independent of p or F is of the form:
∇vG(t, x, v, u), then it is enough to suppose in Theorem 1.2 that the weak solution u ∈
L∞loc(R2n+1).

The paper is organized as follows : In Section 2, we obtain a sharp subelliptic estimate
for the Fokker-Planck operator L via a direct computation. We then prove the Gevrey
hypoellipticity of L. In Section 3, we prove the Gevrey regularity for the weak solution of
the semi-linear Fokker-Planck equation (1.3).

2. Subelliptic estimates

As usual, we write ‖ · ‖κ, κ ∈ R, for the classical Sobolev norm in Hκ(R2n+1), and (h, k)
for the inner product of h, k ∈ L2(R2n+1). For f , g ∈ C∞

0 (R2n+1), by the Hölder and Young
inequality, we have that for any ε > 0,

|(f, g)| ≤ ‖h‖κ‖g‖−κ ≤ ε‖h‖2
κ

2
+
‖g‖2−κ

2ε
.(2.1)

We also recall the following interpolation inequality in the Sobolev space: For any ε > 0 and
r1 < r2 < r3, it holds that

‖h‖r2 ≤ ε‖h‖r3 + ε−(r2−r1)/(r3−r2)‖h‖r1 .(2.2)

Let Ω be an open subset of R2n+1. We denote by Sm = Sm(Ω),m ∈ R, the symbol
space of the classical pseudo-differential operators and P = P (t, x, v,Dt, Dx, Dv) ∈ Op(Sm)
a pseudo-differential operator of symbol p(t, x, v; τ, ξ, η) ∈ Sm. If P ∈ Op(Sm), then P is a
continuous operator from Hκ

c (Ω) to Hκ−m
loc (Ω). Here Hκ

c (Ω) is the subspace of Hκ(R2n+1)
consisting of the distributions having their compact support in Ω, and Hκ−m

loc (Ω) consists of
the distributions h such that φh ∈ Hκ−m(R2n+1) for any φ ∈ C∞

0 (Ω). For more properties
concerning the pseudo-differential operators, we refer the reader to the book [20]. Observe
that if P1 ∈ Op(Sm1), P2 ∈ Op(Sm2), then [P1, P2] ∈ Op(Sm1+m2−1).

We next prove a sharp sub-elliptic estimate for the operator L. Our proof is based on the
work of Bouchut [4] and Morimoto-Xu [15].
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Proposition 2.1. Let K be a compact subset of R2n+1. Then for any r ≥ 0, there exists a
constant CK,r, depending only on K and r, such that for any f ∈ C∞

0 (K),

‖f‖r ≤ CK,r{ ‖Lf‖r−2/3 + ‖f‖0 }.(2.3)

For brevity, we will write, in this section, CK for a constant that may be different in
a different context. We proceed with the following three lemmas, which establishes the
regularity result in the variables v, x and t, respectively.

Lemma 2.2. For any r ≥ 0, there exists a constant CK,r such that for any f ∈ C∞
0 (K),

‖∇vf‖r ≤ CK,r(‖Lf‖r + ‖f‖r).

Lemma 2.1 indicates the regularity gain of order 1 in the variable v. It can be obtained
directly by the positivity of the coefficient a and the compact supported property of f . For
the space variable x, we have the following sub-elliptic estimate:

Lemma 2.3. There exists a constant CK such that for any f ∈ C∞
0 (K),

‖D2/3
x f‖0 ≤ CK(‖Lf‖0 + ‖f‖0),

where D
2/3
x = (−4x)1/3.

This result is due to [4]. It follows from the estimates:

‖D2/3
x f‖0 ≤ CK ‖4vf‖1/3

0 ‖∂tf + v · ∂xf‖2/3
0 ,

and
‖4vf‖0 ≤ CK( ‖Lf‖0 + ‖f‖0 ).

For the time variable t, we have the regularity result of order 2/3, namely, we have the
following:

Lemma 2.4. There exists a constant CK such that for any f ∈ C∞
0 (K),

‖∂tf‖−1/3 ≤ CK(‖Lf‖0 + ‖f‖0).

In fact, we have

‖∂tf‖−1/3 = ‖Λ−1/3∂tf‖0 ≤ ‖Λ−1/3(∂t + v · ∂x)f‖0 + ‖Λ−1/3v · ∂xf‖0,

where Λ = (1 + |Dt|2 + |Dx|2 + |Dv|2)1/2. From Lemma 2.3, we have

‖Λ−1/3v · ∂xf‖0 ≤ CK‖D2/3
x f‖0 ≤ CK(‖Lf‖0 + ‖f‖0).

The estimate for the term ‖Λ−1/3(∂t + v · ∂x)f‖0 can be obtained by a direct computation as
in [15].

Proof of Proposition 2.1. By Lemma 2.2, Lemma 2.3 and Lemma 2.4, we have

(2.4) ‖f‖2/3 ≤ CK{ ‖Lf‖0 + ‖f‖0 }.
Moreover, choose a function ψ ∈ C∞

0 (R2n+1) with ψ|K ≡ 1 and supp ψ being contained in a
neighborhood of K. Then, for any f ∈ C∞

0 (K) and r ≥ 0, we have

‖f‖r = ‖ψf‖r ≤ CK{ ‖ψΛr−2/3f‖2/3 + ‖[Λr−2/3, ψ]f‖2/3 }.
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By virtue of (2.4) and the interpolation inequality (2.2), we have

‖f‖r ≤ CK{ ‖LψΛr−2/3f‖0 + ‖f‖r−2/3 }
≤ Cε,K{ ‖LψΛr−2/3f‖0 + ‖f‖0 }+ ε‖f‖r.

Letting ε sufficiently small, we get

‖f‖r ≤ CK{ ‖Lf‖r−2/3 + ‖f‖0 + ‖[L, ψΛr−2/3]f‖0 }.
Next, a direct calculation yields

[L, ψΛr−2/3] = [∂t + v · ∂x, ψΛr−2/3]−
n∑

j=1

{ [a, ψΛr−2/3]∂2
vj

+a[∂vj , [∂vj , ψΛr−2/3] ] + 2a[∂vj , ψΛr−2/3]∂vj }.
From Lemma 2.2, it thus follows that

‖[L, ψΛr−2/3]f‖0 ≤ CK{ ‖f‖r−2/3 +
n∑

j=1

‖∂vjf‖r−2/3 }

≤ CK{ ‖Lf‖r−2/3 + ‖f‖r−2/3 }.
From the estimates above, we deduce that

‖f‖r ≤ CK{ ‖Lf‖r−2/3 + ‖f‖0 + ‖f‖r−2/3 }.
Applying the interpolation inequality (2.2) again and making ε small enough, we see the
proof of Proposition 2.1.

We next consider the commuting property of L with differential operators and cut-off
functions.

Proposition 2.5. Let K be a compact subset of R2n+1. Then for any r ≥ 0, there are
constants CK,r, CK,r,ϕ such that for any f ∈ C∞

0 (K), we have

‖[L, D]f‖r ≤ CK,r{ ‖Lf‖r+1−2/3 + ‖f‖0 },
and

‖[L, ϕ]f‖r ≤ CK,r,ϕ{ ‖Lf‖r−1/3 + ‖f‖0 }.
Here ϕ ∈ C∞

0 (R2n+1) and D is one of the differential operators: ∂t, ∂x or ∂v.

Proof. By using the positivity of the coefficient a, we have

‖4vf‖r ≤ CK{ ‖Lf‖r + ‖f‖r+1 }.
Notice that [L, D] = [∂t + v · ∂x, D]− [a, D]4v. We have

‖[L, D]f‖r ≤ CK{ ‖f‖r+1 + ‖4vf‖r }.
The first estimate of Proposition 2.5 is thus deduced by the two inequalities above and the
sub-elliptic estimate (2.3).

To treat ‖[L, ϕ]f‖r, we use the sub-elliptic estimate (2.3), which gives

‖∇vf‖r ≤ CK(‖Lf‖r−1/3 + ‖f‖0).
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Now a simple verification shows that

‖[L, ϕ]f‖r ≤ CK

{ ‖f‖r +
n∑

j=1

‖∂vjf‖r

}

≤ CK,r

{ ‖Lf‖r−1/3 + ‖f‖0

}
.

This completes the proof of Proposition 2.5.

We are now at a position to prove the Gevrey hypoellipticity of L . We need the following
result due to M. Durand [9]:

Proposition 2.6. Let P be a linear differential operator with smooth coefficients in RN
y and

let %, ς be two fixed positive numbers. If for r ≥ 0, compact subset K ⊆ RN and ϕ ∈ C∞(RN ),
there exist constants CK,r and CK,r(ϕ) such that for all f ∈ C∞

0 (K), the following conditions
are fulfilled:

(H1) ‖f‖r ≤ CK,r(‖Pf‖r−% + ‖f‖0),
(H2) ‖[P, Dj ]f‖r ≤ CK,r(‖Pf‖r+1−ς + ‖f‖0),
(H3) ‖[P, ϕ]f‖r ≤ CK,r(ϕ)(‖Pf‖r−ς + ‖f‖0),

where

Dj =
1
i

∂

∂yj
, j = 1, 2, · · · , N.

Then for s ≥ max(1/ς, 2/%), P is Gs(RN ) hypoelliptic, provided that the coefficients of P are
in the class of Gs(RN ).

Proposition 2.1 shows that the operator L satisfies Condition (H1) with % = 2/3. Proposi-
tion 2.5 assures the conditions (H2) and (H3) with ς = 1/3. Thus, L is Gs(R2n+1)-hypoelliptic
for s ≥ 3. This completes the proof of Theorem 1.1.

3. Gevrey regularity of nonlinear equations

Let u ∈ L∞loc(R2n+1) be a weak solution of (1.3). We will prove u ∈ C∞(R2n+1). To this
aim, we need the following nonlinear composition result (see for example [23]):

Lemma 3.1. Let F (t, x, v, w, p) ∈ C∞(R2n+2+n) and r ≥ 0. If u,∇vu ∈ L∞loc(R2n+1) ∩
Hr

loc(R2n+1), then F
(·, u(·),∇vu(·)) ∈ Hr

loc(R2n+1) with

(3.1)
∥∥φ1F

(·, u(·),∇vu(·))
∥∥

r
≤ C̄ { ‖φ2u‖r + ‖φ2∇vu‖r } ,

where φ1, φ2 ∈ C∞
0 (R2n+1), φ2 = 1 on the support of φ1, and C̄ is a constant depending only

on r, φ1, φ2.

Remark: D. If the nonlinear term F is independent of p or in the form of

∇v(F (t, x, v, u))

and if u ∈ L∞loc(R2n+1) ∩Hr
loc(R2n+1), then it holds that F

(·, u(·),∇vu(·)) ∈ Hr
loc(R2n+1).
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Lemma 3.2. Let u,∇vu ∈ Hr
loc(R2n+1), r ≥ 0. Then we have

(3.2) ‖ϕ1∇vu‖r ≤ C ‖ϕ2u‖r ,

where ϕ1, ϕ2 ∈ C∞
0 (R2n+1), ϕ2 = 1 on the support of ϕ1, and C is a constant depending only

on r, ϕ1, ϕ2.

In fact, we have
‖ϕ1∇vu‖r ≤ ‖[∇v, ϕ1]u‖r + ‖∇vϕ1u‖r .

Clearly, the first term on the right is bounded by C ‖ϕ2u‖r. For the second term , combining
the second inequality in Lemma 2.2 with (3.1), we see the desired estimate (3.2). This
completes the proof of Lemma 3.2.

Now we are ready to prove

Proposition 3.3. Let u be a weak solution of (1.3) such that u,∇vu ∈ L∞loc(R2n+1). Then u
is in C∞(R2n+1).

In fact, from the subelliptic estimate (2.3) and the fact that Lu(·) = F (·, u(·),∇vu(·)), it
follows that

‖ψ1u‖r+2/3 ≤ C̄{ ‖ψ2F
(·, u(·),∇vu(·))‖r + ‖ψ2u‖0 },(3.3)

where ψ1, ψ2 ∈ C∞
0 (R2n+1) and ψ2 = 1 on the support of ψ1. Combining (3.1), (3.2) with

(3.3), we have u ∈ H∞
loc(R2n+1) by the standard iteration prcedure. This completes the proof

of Proposition 3.3.

Now starting from a smooth solution, we prove the Gevrey regularity. It suffices for us to
work on the open unit ball

Ω = {(t, x, v) ∈ R2n+1 : t2 + |x|2 + |v|2 < 1}.
Set

Ωρ =
{
(t, x, v) ∈ Ω :

(
t2 + |x|2 + |v|2)1/2

< 1− ρ
}
, 0 < ρ < 1.

Let U be an open subset of R2n+1. Denote by Hr(U) the space consisting of the functions
which are defined in U and can be extended to Hr(R2n+1). Define

‖u‖Hr(U) = inf
{‖ũ‖Hs(Rn+1) : ũ ∈ Hs(R2n+1), ũ|U = u

}
.

We denote ‖u‖r,U = ‖u‖Hr(U), and

‖Dju‖r =
∑

|β|=j

‖Dβu‖r.

In order to treat the nonlinear term F on the right hand of (1.3), we need the following
two lemmas. The first one (see [23] for example) concerns weak solutions, and the second
is an analogue of Lemma 1 in [10]. In the sequel, Cj > 1 will be used to denote constants
depending only on n or the function F .

Lemma 3.4. Let r > (2n+1)/2 and u1, u2 ∈ Hr(R2n+1). Then u1u2 ∈ Hr(R2n+1), moreover

‖u1u2‖r ≤ C̃‖u1‖r‖u2‖r,(3.4)

where C̃ is a constant depending only on n, r.
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Lemma 3.5. Let Mj be a sequence of positive numbers. Assume that for some B0 > 0, the
Mj satisfy the monotonicity condition:

(3.5)
j!

i!(j − i)!
MiMj−i ≤ B0Mj , (i = 1, 2, · · · , j; j = 1, 2, · · · ).

Suppose F (t, x, v, u, p) satisfies that

(3.6)
∥∥

(
Dj

t,x,vD
l
uDm

p F
) (·, u(·),∇vu(·))

∥∥
r+n+1,Ω

≤ Cj+l+m
1 Mj−2Mm+l−2, j, m + l ≥ 2,

where r is a real number satisfying r + n + 1 > (2n + 1)/2. Then there exist two constants
C2, C3 such that for any H0,H1 satisfying H0,H1 ≥ 1 and H1 ≥ C2H0, if u(t, x, v) satisfies
the following conditions

(3.7) ‖Dju‖r+n+1,Ωρ̃ ≤ H0, 0 ≤ j ≤ 1,

(3.8) ‖Dju‖r+n+1,Ωρ̃ ≤ H0H
j−2
1 Mj−2, 2 ≤ j ≤ N,

(3.9) ‖DvD
ju‖r+n+1,Ωρ̃ ≤ H0H

j−2
1 Mj−2, 2 ≤ j ≤ N,

then for all α with |α| = N ,∥∥ψNDα
[
F

(·, u(·),∇vu(·))]∥∥
r+n+1

≤ C3H0H
N−2
1 MN−2,(3.10)

where ψN ∈ C∞
0 (Ωρ̃) is an arbitrary function.

Proof of Lemma 3.5: Denote p = (p1, p2, · · · , pn) = ∇vu and k = (k1, k2 · · · , kn). From
Faa di Bruno’ formula, ψNDα[F (·, u(·),∇vu(·))] is the linear combination of terms of the
form

(3.11)
ψN∂|α̃|+l+|k|F

∂α̃
t,x,v∂ul∂pk1

1 · · · ∂pkn
n

l∏

j=1

Dγju ·
n∏

i=1

ki∏

ji=1

Dβji (∂viu),

where |α̃|+ l + |k| ≤ |α| and
l∑

j=1

γi +
n∑

i=1

ki∑

ji

βji = α− α̃.

Choose a function ψ̃ ∈ C∞
0 (Ωρ̃) such that ψ̃ = 1 on Supp ψN . Notice that n + 1 + r >

(2n + 1)/2. Applying Lemma 3.4, we have
(3.12) ∥∥∥∥ ψN∂|α̃|+l+|k|F

∂α̃
t,x,v∂ul∂p

k1
1 ···∂pkn

n

∏l
j=1 Dγju ·∏n

i=1

∏ki
ji=1 Dβji (∂viu)

∥∥∥∥
r+n+1

=
∥∥∥∥ ψN∂|α̃|+l+|k|F

∂α̃
t,x,v∂ul∂p

k1
1 ···∂pkn

n

∏l
j=1 ψ̃Dγju ·∏n

i=1

∏ki
ji=1 ψ̃∂viD

βji u

∥∥∥∥
r+n+1

≤ C̃
∥∥ψN (∂|α̃|+l+|k|F )

∥∥
r+n+1

·∏l
j=1

∥∥∥ψ̃Dγju
∥∥∥

r+n+1
×∏n

i=1

∏ki
ji=1

∥∥∥ψ̃∂viD
βji u

∥∥∥
r+n+1

≤ C0

∥∥(∂|α̃|+l+|k|F )
∥∥

r+n+1,Ω
·∏l

j=1 ‖Dγju‖r+n+1,Ωρ̃
×∏n

i=1

∏ki
ji=1

∥∥∂viD
βji u

∥∥
r+n+1,Ωρ̃

.
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With (3.7)-(3.9) and (3.12) at our disposal, our consideration is now similar to that in [10].
Indeed, the only difference is that we need to replace the Hölder norm |u|j by ‖Dju‖r+n+1,Ωρ̃

and
∥∥DvD

ju
∥∥

r+n+1,Ωρ̃
. Hence, the same argument as the proof of Lemma 1 in [10] yields

(3.10). This completes the proof of Lemma 3.5.

Proposition 3.6. Let s ≥ 3. Suppose u ∈ C∞(Ω̄) is a solution of (1.3), a(t, x, v) ∈
Gs(R2n+1), F (t, x, v, w, p) ∈ Gs(R2n+2+n) and a ≥ c0 > 0. Then there is a constant A
such that for any r ∈ [0, 1] and any N ∈ N, N ≥ 3,

(E)r,N ‖Dαu‖r+n+1,Ωρ + ‖DvD
αu‖r−1/3+n+1,Ωρ

≤ A|α|−1

ρs(|α|−3)

(
(|α| − 3)!

)s(N/ρ)sr, ∀ |α| = N, ∀ 0 < ρ < 1.

From (E)r,N , we immediately obtain

Proposition 3.7. Under the same assumption as in Proposition 3.6, we have u ∈ Gs(Ω).

In fact, for any compact sunset K of Ω, we have K ⊂ Ωρ0 for some ρ0 with 0 < ρ0 < 1.
For any α with |α| ≥ 3, letting r = 0 in (E)r,N , we have

‖Dαu‖L2(K) ≤ ‖Dαu‖n+1,Ωρ0
≤ A|α|−1

ρ0
s(|α|−3)

(
(|α| − 3)!

)s ≤ (
A

ρ0
s

)|α|+1(|α|!)s.

This completes the proof of Proposition 3.7.

The result of Theorem 1.2 can be directly deduced from Proposition 3.3 and Proposition
3.7.

Proof of Proposition 3.6. We apply an induction argument on N . Assume that (E)r,N−1

holds for any r with 0 ≤ r ≤ 1. We will show that (E)r,N still holds for any r ∈ [0, 1]. For
an α with |α| = N, and for a ρ with 0 < ρ < 1, choose a function ϕρ,N ∈ C∞

0 (Ω (N−1)ρ
N

) such
that ϕρ,N = 1 in Ωρ. It is easy to see that

sup |Dγϕρ,N | ≤ Cγ(ρ/N)−|γ| ≤ Cγ(N/ρ)|γ|, ∀ γ.

We will verify the estimate in (E)r,N by the following lemmas.

Lemma 3.8. For r = 0, we have

‖Dαu‖n+1,Ωρ + ‖DvD
αu‖−1/3+n+1,Ωρ

≤ C7A
|α|−2

ρs(|α|−3)

(
(|α| − 3)!

)s
, ∀ 0 < ρ < 1.

Proof of Lemma 3.8: Write |α| = |β| + 1. Then |β| = N − 1. Denote N−1
N ρ by ρ̃. In the

sequel, we will often apply the following inequalities:
1

ρsk
≤ 1

ρ̃sk
=

1
ρsk

× ( N

N − 1
)sk ≤ C4

ρsk
, k = 1, 2, · · · , N − 3.

Notice that ϕρ,N = 1 in Ωρ. Hence

‖Dαu‖n+1,Ωρ ≤ ‖ϕρ,NDαu‖n+1 ≤ ‖ϕρ,NDβu‖1+n+1 + ‖(Dϕρ,N )Dβu‖n+1

≤ C5{ ‖Dβu‖1+n+1,Ωρ̃ + (N/ρ)‖Dβu‖n+1,Ωρ̃ }.
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Since (E)r,N−1 holds by assumption for any r with 0 ≤ r ≤ 1 , we have immediately

‖Dβu‖1+n+1,Ωρ̃ + (N/ρ)‖Dβu‖n+1,Ωρ̃

≤ A|β|−1

ρ̃s(|β|−3)

(
(|β| − 3)!

)s(N/ρ̃)s + (N/ρ)
A|β|−1

ρ̃s(|β|−3)

(
(|β| − 3)!

)s

≤ 2A|α|−2

ρ̃s(|α|−3)

(
(|α| − 3)!

)s(
N/(N − 3)

)s

≤ C6A
|α|−2

ρs(|α|−3)

(
(|α| − 3)!

)s
.

Thus

‖Dαu‖n+1,Ωρ ≤
C5C6A

|α|−2

ρs(|α|−3)

(
(|α| − 3)!

)s
.(3.13)

The same argument as above shows that

‖DvD
αu‖−1/3+n+1,Ωρ

≤ C5C6A
|α|−2

ρs(|α|−3)

(
(|α| − 3)!

)s
.

This along with (3.13) yields the conclusion.

Lemma 3.9. For 0 ≤ r ≤ 1/3, we have

‖Dαu‖r+n+1,Ωρ + ‖DvD
αu‖r−1/3+n+1,Ωρ

≤ C35A
|α|−2

ρs(|α|−3)

(
(|α| − 3)!

)s(N/ρ)rs, ∀ 0 < ρ < 1.

Proof of Lemma 3.9: We first verify Lemma 3.9 for r = 1/3, namely, we first show that

‖Dαu‖1/3+n+1,Ωρ
+ ‖DvD

αu‖n+1,Ωρ ≤ C35A|α|−2

ρs(|α|−3)

(
(|α| − 3)!

)s(N/ρ)s/3, ∀ 0 < ρ < 1.

We divide our discussions in the following four steps.

Step 1. We claim that

(3.14) ‖[L, ϕρ,NDα]u‖−1/3+n+1 ≤ C19A|α|−2

ρs(|α|−3)

(
(|α| − 3)!

)s(N/ρ)s/3.

In fact, write L = X0 − a4v with X0 = ∂t + v · ∂x. Then a direct verification shows that

‖[L, ϕρ,NDα]u‖−1/3+n+1 ≤ ‖[X0, ϕρ,NDα]u‖−1/3+n+1 + ‖a[4v, ϕρ,NDα]u‖−1/3+n+1

+‖ϕρ,N [a, Dα]4vu‖−1/3+n+1

=: (I) + (II) + (III).

Denote [X0, Dα] by Dα0 . Then |α0| ≤ |α| and

(I) ≤ ‖[X0, ϕρ,N ]Dαu‖n+1 + ‖ϕρ,NDα0u‖n+1

≤ C8

{
(N/ρ)‖Dαu‖n+1,Ωρ̃ + ‖Dα0u‖n+1,Ωρ̃

}
.

Notice that s ≥ 3. By Lemma 3.8, we have

(3.15) (I) ≤ C8

(
N/ρ + 1

)
C7A|α|−2

ρ̃s(|α|−3)

(
(|α| − 3)!

)s ≤ C9A|α|−2

ρs(|α|−3)

(
(|α| − 3)!

)s(N/ρ)s/3.
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Next we will estimate (II). It is easy to see that

(3.16)
‖[4v, ϕρ,N ]Dαu‖−1/3+n+1 ≤ 2‖[Dv, ϕρ,N ]DvD

αu‖−1/3+n+1

+‖[Dv, [Dv, ϕρ,N ] ]Dαu‖−1/3+n+1.

We first consider the first term on the right hand side. By Lemma 3.8 again, we have

‖[Dv, ϕρ,N ]DvD
αu‖−1/3+n+1 ≤ (N/ρ)‖DvD

αu‖−1/3+n+1,Ωρ̃

≤ (N/ρ)
C7A

|α|−2

ρ̃s(|α|−3)

(
(|α| − 3)!

)s

≤ C10A
|α|−2

ρs(|α|−3)

(
(|α| − 3)!

)s(N/ρ)s/3.

(3.17)

Next we treat ‖[Dv, [Dv, ϕρ,N ] ]Dαu‖−1/3+n+1. We compute

‖[Dv, [Dv, ϕρ,N ] ]Dαu‖−1/3+n+1

≤ ‖(D2ϕρ,N )Dβu‖2/3+n+1 + ‖(D3ϕρ,N )Dβu‖−1/3+n+1

≤ C11

{
(N/ρ)2‖Dβu‖2/3+n+1,Ωρ̃

+ (N/ρ)3‖Dβu‖n+1,Ωρ̃

}

≤ C11

{
(N/ρ)2

A|β|−1

ρ̃s(|β|−3)

(
(|β| − 3)!

)s(N/ρ̃)2s/3

+(N/ρ)3
A|β|−1

ρ̃s(|β|−3)

(
(|β| − 3)!

)s }

≤ C11

{
(N/ρ)2(N/ρ̃)−s/3 A|α|−2

ρ̃s(|α|−3)

(
(|α| − 3)!

)s

+(N/ρ)3(N/ρ̃)−s A|α|−2

ρ̃s(|α|−3)

(
(|α| − 3)!

)s }

≤ C12A
|α|−2

ρs(|α|−3)

(
(|α| − 3)!

)s(N/ρ)s/3.

This along with (3.16) and (3.17) shows that

(II) ≤ C13A
|α|−2

ρs(|α|−3)

(
(|α| − 3)!

)s(N/ρ)s/3.(3.18)

It remains to treat (III). By Leibniz’ formula,

(III) ≤
∑

0<|γ|≤|α|

( α
γ

)∥∥ϕρ,N (Dγa)4vD
α−γu

∥∥
−1/3+n+1

≤
∑

0<|γ|≤|α|

( α
γ

)∥∥Dγa‖n+1,Ω · ‖ϕρ,N4vD
α−γu

∥∥
−1/3+n+1

.

Since a ∈ Gs(R2n+1), then

‖Dγa‖n+1,Ω ≤ C
|γ|−2
14

(
(|γ| − 3)!

)s
, |γ| ≥ 3,
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and

‖Dγa‖n+1,Ω ≤ C14, |γ| = 1, 2.

Moreover, notice that |α|−|γ|+1 ≤ N. Applying Lemma 3.8, we have for any γ, |γ| ≤ |α|−2,

‖ϕρ,N4vD
α−γu‖−1/3+n+1 ≤ ‖DvD

α−γ+1u‖−1/3+n+1,Ωρ̃

≤ C7A
|α|−|γ|+1−2

ρ̃s(|α|−|γ|−2)

(
(|α| − |γ| − 2)!

)s

≤ C15A
|α|−|γ|+1−2

ρs(|α|−|γ|−2)

(
(|α| − |γ| − 2)!

)s
.

Consequently, we compute

∑

2≤|γ|≤|α|−2

( α
γ

)∥∥Dγa‖n+1,Ω · ‖ϕρ,N4vD
α−γu

∥∥
−1/3+n+1

≤
∑

2≤|γ|≤|α|−2

( α
γ

)
C
|γ|−2
14

(
(|γ| − 2)!

)s C15A
|α|−|γ|+1−2

ρs(|α|−|γ|−2)

(
(|α| − |γ| − 2)!

)s

≤ C15A
|α|−2

ρs(|α|−3)

∑

2≤|γ|≤|α|−2

(C14

A

)|γ|−1|α|!((|γ| − 2)!
)s−1((|α| − |γ| − 2)!

)s−1

≤ C15A
|α|−2

ρs(|α|−3)

(
(|α| − 3)!

)s
∑

2≤|γ|≤|α|−2

(C14

A

)|γ|−1|α|(|α| − 1)(|α| − 2)
(|α| − 3)s−1

≤ C16A
|α|−2

ρs(|α|−3)

(
(|α| − 3)!

)s(N/ρ)s/3
∑

2≤|γ|≤|α|−2

(C14

A

)|γ|−1
.

Making A large enough such that
∑

2≤|γ|≤|α|−2

(
C14
A

)|γ|−1 ≤ 1, then we get

∑

2≤|γ|≤|α|−2

( α
γ

)∥∥Dγa‖n+1,Ω · ‖ϕρ,N4vD
α−γu

∥∥
−1/3+n+1

≤ C16A
|α|−2

ρs(|α|−3)

(
(|α| − 3)!

)s(N/ρ)s/3.

For |γ| = 1, |α| − 1 or |α|, we can compute directly

( α
γ

)∥∥Dγa‖n+1,Ω · ‖ϕρ,N4vD
α−γu

∥∥
−1/3+n+1

≤ C17A
|α|−2

ρs(|α|−3)

(
(|α| − 3)!

)s(N/ρ)s/3.

Combination of the above two inequalities give that

(III) ≤ C18A
|α|−2

ρs(|α|−3)

(
(|α| − 3)!

)s(N/ρ)s/3.

This along with (3.15) and (3.18) yields the conclusion (3.14).
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Step 2. We next claim that

(3.19) ‖ϕρ,NDα[F
(·, u(·),∇vu(·))]‖−1/3+n+1 ≤ C21A|α|−2

ρs(|α|−3)

(
(|α| − 3)!

)s(N/ρ)s/3.

We first prove F and u satisfy the conditions in (3.7)-(3.9) for some Mj . By Lemma 3.8,
we have

(3.20) ‖Dju‖−1/3+n+1,Ωρ̃
≤ ‖Dju‖n+1,Ωρ̃ ≤

C7A
j−2

ρ̃s(j−3)

(
(j − 3)!

)s
, 3 ≤ j ≤ N,

(3.21) ‖DvD
ju‖−1/3+n+1,Ωρ̃

≤ C7A
j−2

ρ̃s(j−3)

(
(j − 3)!

)s
, 3 ≤ j ≤ N,

and

(3.22) ‖Dju‖−1/3+n+1,Ωρ̃
≤ C7, 0 ≤ j ≤ 2.

Since F ∈ Gs(R2n+1 × R), then
(3.23)
‖(Dk

t,x,v∂
l
uDm

p F )
(·, u(·),∇vu(·))‖−1/3+n+1,Ω ≤ Ck+l

20

(
(k − 3)!

)s((l − 3)!
)s

, k,m + l ≥ 3.

Define Mj ,H0,H1 by setting

H0 = C7, H1 = A, M0 = C7, Mj =

(
(j − 1)!

)s

ρ̃s(j−1)
, j ≥ 1.

We can choose A large enough such that H1 = A ≥ C2H0. Then (3.20)-(3.23) can be
rewritten as

‖Dju‖−1/3+n+1,Ωρ̃
≤ H0, 0 ≤ j ≤ 1,(3.24)

‖Dju‖−1/3+n+1,Ωρ̃
≤ H0H

j−2
1 Mj−2, 2 ≤ j ≤ |α| = N,(3.25)

‖DvD
ju‖−1/3+n+1,Ωρ̃

≤ H0H
j−2
1 Mj−2, 2 ≤ j ≤ |α| = N,(3.26)

‖(Dk
t,x,v∂

l
uDm

p F )‖−1/3+n+1,Ω ≤ Ck+l
20 Mk−2Mm+l−2, k,m + l ≥ 2.(3.27)

For each j, notice that s ≥ 3. Hence

(3.28)

j!
i!(j−i)!MiMj−i = j!

i(j−i)

(
(i− 1)!

)s−1((j − i− 1)!
)s−1

ρ̃−s(i−1)ρ̃−s(j−i−1)

≤ (j!)
(
(j − 2)!

)s−1
ρ̃−s(j−1)

≤ j
(j−1)s−1 (j − 1)!

(
(j − 1)!

)s−1
ρ̃−s(j−1)

≤ Mj .
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Thus Mj satisfy the monotonicity condition (3.5). In view of (3.24)-(3.28) and making use
of Lemma 3.5, we have

‖ϕρ,NDα[F (·, u(·))]‖−1/3+n+1 ≤ C3H0H
|α|−2
1 M|α|−2

≤ C3C7A
|α|−2

ρ̃s(|α|−3)

(
(|α| − 3)!

)s

≤ C21A
|α|−2

ρs(|α|−3)

(
(|α| − 3)!

)s(N/ρ)s/3.

This completes the proof of conclusion (3.19).

Step 3. We verify in this step the following:

‖Lϕρ,NDαu‖−1/3+n+1 ≤
C23A

|α|−2

ρs(|α|−3)

(
(|α| − 3)!

)s(N/ρ)s/3.(3.29)

In fact,

‖Lϕρ,NDαu‖−1/3+n+1 ≤ C22{ ‖[L, ϕρ,NDα]u‖−1/3+n+1 + ‖ϕρ,NDαLu‖−1/3+n+1 }
= C22

{‖[L, ϕρ,NDα]u‖−1/3+n+1

+
∥∥ϕρ,NDα[F

(·, u(·),∇vu(·))]
∥∥
−1/3+n+1

}
.

This along with (3.14), (3.19) in step 1 and step 2 yields immediately the conclusion (3.29).

Step 4. We claim that

(3.30) ‖ϕρ,NDαu‖1/3+n+1 + ‖ϕρ,NDvD
αu‖1/3−1/3+n+1 ≤ C31A|α|−2

ρs(|α|−3)

(
(|α| − 3)!

)s(N/ρ)s/3.

In fact, applying the subelliptic estimate (2.3), we obtain

‖ϕρ,NDαu‖1/3+n+1 ≤ C24{ ‖Lϕρ,NDαu‖−1/3+n+1 + ‖ϕρ,NDαu‖n+1 }.
Combining Lemma 3.8 and (3.29) in Step 3, we have

‖ϕρ,NDαu‖1/3+n+1 ≤
C25A

|α|−2

ρs(|α|−3)

(
(|α| − 3)!

)s(N/ρ)s/3.(3.31)

Now it remains to treat ‖ϕρ,NDvD
αu‖1/3−1/3+n+1, and

‖ϕρ,NDvD
αu‖1/3−1/3+n+1 ≤ ‖Dvϕρ,NDαu‖n+1 + ‖[Dv, ϕρ,N ]Dαu‖n+1.

First, we treat the first term on the right. By a direct calculation, it follows that

‖Dvϕρ,NDαu‖2
n+1

= Re
(Lϕρ,NDαu, a−1Λ2n+2ϕρ,NDαu

)− Re
(
X0ϕρ,NDαu, a−1Λ2n+2ϕε,kεD

αu
)

= Re
(Lϕρ,NDαu, a−1Λ2n+2ϕρ,NDαu

)− 1
2
(
ϕρ,NDαu, [a−1Λ2n+2, X0]ϕρ,NDαu

)

−1
2
(
ϕρ,NDαu, [Λ2n+2, a−1]X0ϕρ,NDαu

)

≤ C26

{ ‖Lϕρ,NDαu‖2
−1/3+n+1 + ‖ϕρ,NDαu‖2

1/3+n+1

}
.
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This along with (3.29) and (3.31) shows that

‖Dvϕρ,NDαu‖r−1/3+n+1 ≤
C27A

|α|−2

ρs(|α|−3)

(
(|α| − 3)!

)s(N/ρ)s/3.

Moreover Lemma 3.8 yields

‖[Dv, ϕρ,N ]Dαu‖n+1 ≤ C28(N/ρ)‖Dαu‖n+1,Ωρ̃

≤ C28C7A
|α|−2

ρ̃s(|α|−3)

(
(|α| − 3)!

)s(N/ρ)s/3

≤ C29A
|α|−2

ρs(|α|−3)

(
(|α| − 3)!

)s(N/ρ)s/3.

From the above two inequalities, we have

‖ϕρ,NDvD
αu‖1/3+n+1 ≤

C30A
|α|−2

ρs(|α|−3)

(
(|α| − 3)!

)s(N/ρ)s/3.

This completes the proof of Step 4.

It’s clear for any ρ, 0 < ρ < 1,

‖Dαu‖1/3+n+1,Ωρ
+‖DvD

αu‖1/3−1/3+n+1,Ωρ
≤ ‖ϕρ,NDαu‖1/3+n+1+‖ϕρ,NDvD

αu‖1/3−1/3+n+1.

It thus follows from Step 4 that the conclusion in Lemma 3.9 is true for r = 1/3.
Moreover for any 0 < r < 1/3, using the interpolation inequality (2.2), we have

‖Dαu‖r+n+1,Ωρ ≤ ‖ϕρ,NDαu‖r+n+1

≤ ε‖ϕρ,NDαu‖1/3+n+1 + ε−r/(1/3−r)‖ϕρ,NDαu‖n+1

≤ ε
C31A

|α|−2

ρs(|α|−3)

(
(|α| − 3)!

)s(N/ρ)s/3 + ε−r/(1/3−r) C32A
|α|−2

ρs(|α|−3)

(
(|α| − 3)!

)s
,

Taking ε = (N/ρ)s(r−1/3), then

‖Dαu‖r+n+1,Ωρ ≤
C33A

|α|−2

ρs(|α|−3)

(
(|α| − 3)!

)s(N/ρ)rs.

Similarly,

‖DvD
αu‖r−1/3+n+1,Ωρ

≤ C34A
|α|−2

ρs(|α|−3)

(
(|α| − 3)!

)s(N/ρ)rs.

This completes the proof of Lemma 3.9.

Inductively, we have the following

Lemma 3.10. For any r with 1/3 ≤ r ≤ 2/3,

‖Dαu‖r+n+1,Ωρ + ‖DvD
αu‖r−1/3+n+1,Ωρ

≤ C38A
|α|−2

ρs(|α|−3)

(
(|α| − 3)!

)s(N/ρ)sr, ∀ 0 < ρ < 1.

(3.32)

Moreover, the above inequality still holds for any r with 2/3 ≤ r ≤ 1.
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Proof of Lemma 3.10: Repeating the proof of Lemma 3.9, we have (3.32) for 1/3 ≤ r ≤ 2/3.
When 2/3 ≤ r ≤ 1, the consideration is a little different. The conclusion in Step 1 in the
above proof still holds for r = 1. For the corresponding Step 2, we have to make some
modification to prove

∥∥ϕρ,NDα[F
(·, u(·),∇vu(·))]

∥∥
1/3+n+1

≤ C36A|α|−2

ρs(|α|−3)

(
(|α| − 3)!

)s(N/ρ)s.

From (3.32) with 1/3 ≤ r ≤ 2/3, it follows that

‖Dju‖1/3+n+1,Ωρ̃
≤ C37A

j−2

ρ̃s(j−3)

(
(j − 3)!

)s(j/ρ̃)s/3, 3 ≤ j ≤ N,

‖DvD
ju‖1/3+n+1,Ωρ̃

≤ ‖DvD
ju‖2/3−1/3+n+1,Ωρ̃

≤ C37A
j−2

ρ̃s(j−3)

(
(j − 3)!

)s(j/ρ̃)2s/3, 3 ≤ j ≤ N,

and

‖Dju‖1/3+n+1,Ωρ̃
≤ C37, 0 ≤ j ≤ 2,

Hence we need to define a new sequence M̄j by setting

M̄0 = C37, M̄j =

(
(j − 1)!

)s

ρ̃s(j−1)

(
(j + 2)/ρ̃

)2s/3
, j ≥ 1.

For each j, notice that s ≥ 3. Hence a direct computation shows that for 0 < i < j,

j!
i!(j−i)!M̄iM̄j−i = j!

i(j−i)

(
(i− 1)!

)s−1((j − i− 1)!
)s−1

×(i + 2)2s/3(j − i + 2)2s/3ρ̃−s(j−2)ρ̃−4s/3

≤ 4(j!)
(
(j − 2)!

)s−1(j + 2)2s/3−1(j + 1)2s/3−1ρ̃−s(j−1)ρ̃−2s/3ρ̃s−2s/3

≤ 4j(j+1)2s/3−1

(j−1)s−1 (j − 1)!
(
(j − 1)!

)s−1
ρ̃−s(j−1)

(
(j + 2)/ρ̃

)2s/3

≤ C39M̄j .

In the last inequality, we used the fact that s− 1 ≥ 2s/3. Thus M̄j satisfy the monotonicity
condition (3.5). Now the remaining argument is identical to that in the proof of Lemma 3.9.
Thus (3.32) holds for r = 1 and thus for 2/3 ≤ r ≤ 1 by the interpolation inequality (2.2).
This completes the proof of Lemma 3.10.

Recall C7, C35 and C35 are the constants appearing in Lemma 3.8, Lemma 3.9 and Lemma
3.10. Now make A sufficiently large such that A ≥ max{C7, C35, C38}. Then, by the above
three Lemmas, we see that the estimate in (E)r,N holds for any r ∈ [0, 1]. This complete the
proof of Proposition 3.6.
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(1973), 309-336.
[8] L. Desvillettes, B. Wennberg, Smoothness of the solution of the spatially homogeneous Boltzmann equa-

tion without cutoff. Comm. Partial Differential Equations 29 (2004), no. 1-2, 133–155.
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