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Abstract
In this article we construct the fundamental solutions for the wave equation arising in the de Sitter
model of the universe. We use the fundamental solutions to represent solutions of the Cauchy problem
and to prove the LP — L9-decay estimates for the solutions of the equation with and without a source
term.
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0 Introduction and Statement of Results

In this paper we construct the fundamental solutions for the wave equation arising in the de Sitter model
of the universe and use the fundamental solutions to find representations of the solutions to the Cauchy
problem as well as the decay rates for them.

After averaging on a suitable scale, our universe is homogeneous and isotropic; therefore, the properties
of the universe can be properly described by treating the matter as a perfect homogeneous fluid. In the
models of the universe proposed by Einstein [7] and de Sitter [6] the line element is connected with the
proper mass density and the proper pressure in the universe by the field equations for a perfect fluid. There
are two alternatives, which lead to the solutions of Einstein and de Sitter, respectively [15, Sec.132].

The homogeneous and isotropic cosmological models possess highest symmetry that makes them more
amenable to rigorous study. Among them we mention FLRW (Friedmann-Lematre-Robertson-Walker) mod-
els. The simplest class of cosmological models can be obtained if we assume additionally that the metric of
the slices of constant time is flat and that the spacetime metric can be written in the form

ds* = —dt* + a*(t)(da? + dy? + dz?)

with an appropriate scale factor a(t). Although on the made assumptions, the spatially flat FLRW models
appear to give a good explanation of our universe. The assumption that the universe is expanding leads to
the positivity of the time derivative %a(t). A further assumption that the universe obeys the accelerated
expansion suggests that the second derivative %a(t) is positive. A substantial amount of the observational
material can be satisfactorily interpreted in terms of the models, which take into account existing acceleration
of the recession of distant galaxies.

The time dependence of the function a(t) is determined by the Einstein field equations for gravity. The
Einstein equations with the cosmological constant A have form

1
R;w - §guuR = 787TGT[LV - Ag/wa

where term Ag,,, can be interpreted as an energy-momentum of the vacuum. Even a small value of A could
have drastic effects on the evolution of the universe. Under the assumption of FLRW symmetry the equation
of motion in the case of positive cosmological constant A leads to solution

a(t) = a(0)eVi?,
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which produces models with exponentially accelerated expansion. The model described by the last equation
is usually called the de Sitter model.

The unknown of principal importance in the Einstein equations is a metric g. It comprises the basic
geometrical feature of the gravitational field, and consequently explains the phenomenon of the mutual
gravitational attraction of substance. In the presence of matter these equations contain a non-vanishing
right hand side —87G7T),,. In general, the matter fields described by the function ¢ must satisfy some
equations of motion, and in the case of the scalar field, the equation of motion is that ¢ should satisfy the
wave equation generated by the metric g. In the de Sitter universe the equation for the scalar field with
mass m and potential function V' is (See, e.g. [8, 19].)

Gu + gy — e AN p=—mPp—V'(¢), (0.1)
while for the massless scalar field the equation is
gy + nuy — e 2 A= —V'(u). (0.2)

Here A is the Laplacian on the flat metric. The time inversion transformation ¢ — —t reduces the last
equation to the mathematically equivalent equation

gy — nug — €2 Nu ==V (u). (0.3)
Thus, written out explicitly in coordinates the wave equation on de Sitter spacetime takes the form
u +nHup —e 2T Au=0. (0.4)

In [19] the following ansatz for the formal solutions of the last equation is suggested

oo

Z (Am(a:)e_mHt + Bm(x)te_mHt>.

m=0
It is shown that such solutions can be parametrized by Ay and A,,. It is also claimed in [19] that any solution
has an asymptotic expansion of the type derived on a formal level.

In the case of de Sitter universe the line element may be written [15, Sec.134]
ds?> = =2 dt* + ezct/R(dx2 +dy? + dz?).

The coordinates ¢, x, y, z can take all values from —oo to co. Here R is the “radius” of the universe. The
de Sitter model allows us to get an explanation of the actual red shift of spectral lines observed by Hubble
and Humanson [15]. In a certain sense all solutions look like the de Sitter solution at late times [11]. We
write the de Sitter line element in the form

ds® = —dt* + 27 (da? + dy? + d2?),

where H = /A /3 is Hubble constant. The spacetime metric in the higher dimensional analogue of de Sitter
space is
ds* = —dt* + ' ((dz')? + ... + (dz"™)?).

It is a simplified version of the multidimensional cosmological models with the metric tensor given by
g=—e2Og2 4 20' g 4 2"

and can be chosen as a starting point for the study. The multidimensional cosmological models have attracted
a lot of attention during recent years in constructing mathematical models of an anisotropic universe (see,
e.g. [5, 11] and references therein).

We take a principal part of the equation (0.4) as an initial model that can be treated first:
OPu—e M Au=0. (0.5)

For simplicity, we set H = 1. The time inversion transformation t — —t reduces the last equation to the

mathematically equivalent equation
OPu—e*Au=0. (0.6)



Hence, if we can find the fundamental solution for the linear equation (0.6) associated with (0.3), then it
generates the fundamental solution for the linear equation (0.5) associated with (0.2).

The equation (0.6) is strictly hyperbolic. That implies the well-posedness of the Cauchy problem for (0.6)
in the different functional spaces. The coefficient of the equation is an analytic function and Holmgren’s
theorem implies a local uniqueness in the space of distributions. Moreover, the speed of propagation is
finite, namely, it is equal to e’ for every ¢t € R. The second-order strictly hyperbolic equation (0.6) possesses
two fundamental solutions resolving the Cauchy problem. They can be written microlocally in terms of the
Fourier integral operators [12], which give a complete description of the wave front sets of the solutions. The
distance between two characteristic roots A1 (¢,&) and Aa(t, €) of the equation (0.6) is

|>\1(ta€)_)‘2(t7£)|:6t‘§|a teRa geRn

It tends to zero as t approaches —oo. Thus, the operator is not uniformly (that is for all ¢ € R) strictly
hyperbolic. Moreover, the finite integrability of the characteristic roots, f_ooo [Ai(t,€)|dt < oo, leads to the
existence of so-called “horizon” for that equation. More precisely, any signal emitted from the spatial point
zo € R™ at time to € R remains inside the ball |z — x| < e’ for all time ¢t € (—o00, ). The equation (0.6) is
neither Lorentz invariant nor invariant with respect to usual scaling and that brings additional difficulties.
In particular, it can cause a nonexistence of the L? — L7 decay for the solutions in the backward direction of
time. In [23] it is mentioned the model equation with permanently bounded domain of influence, power decay
of characteristic roots, and without LP — LY decay for the solutions that illustrates that phenomenon. The
above mentioned LP — L7 decay estimates are some of the important tools for studying nonlinear equations
(see, e.g. [18, 20]).

The equation (0.6) was investigated in [9, 10] by the second author. More precisely, in [9, 10] the resolving
operator for the Cauchy problem

afu — e Au=0, u(z,0) = o(x), u(z,0)=p1(z), (0.7)

is written as a sum of the Fourier integral operators with the amplitudes given in terms of the Bessel functions
and in terms of confluent hypergeometric functions. In particular, it is proved in [9, 10] that for ¢ > 0 the
solution of the Cauchy problem (0.7) is given by

2 . ¢ 1 3
- ilz-£+(e"—1)[€]] Z.1: 95t £.3.9;
u(z,t) Z(27r)” /]Rn {e H+(2, 1; 2ie |§|)H,(2,3,2z|§|)
3

761-[95.5,(@,%]]{7(%; 13 20 [€]) Hy (55 3; 201€]) HIEPF (0 (€)dg

/{ei[x.a(et_n\sum(%;1;2¢et|§|)H,(%;1;2¢|§|)

el I (2 giet€) H (3 1:201e]) b () (€)de

; 1
2m)"

In the notations of [3] the last functions are H_(a;v;2) = €™ U(a;7;2) and Hy(o;v;2) = €W (y —
a;7y; —2), where function ¥(a;¢; z) is defined in [3, Sec.6.5]. Here F(p)(§) is a Fourier transform of ¢(x).

The typical LP — L7 decay estimates obtained in [9, 10] by dyadic decomposition of the phase space
contain some loss of regularity. More precisely, it is proved that for the solution v = u(z,t) to the Cauchy
problem (0.7) with n > 2, po(x) € C§°(R™) and ¢1(z) = 0 for all large ¢ > T > 0, the following estimate is
satisfied . L

lu(z, )] La@ny < C(1+ et)fi(nil)(giq)||<P0||WPN(RH)7 (0.8)

where 1 < p <2, %—i—% =1, and %(n—i—l)(%—%) <N < %(n—i—l)(%—%)—«—l and WY (R™) is the Sobolev space.
In particular, the loss of regularity, NV, is positive, unless p = ¢ = 2. This loss of regularity phenomenon exists
for the classical wave equation as well. Indeed, it is well-known (see, e.g., [13, 14, 17]) that for the Cauchy
problem uy; — Au =0, u(z,0) = ¢(x), wu(x,0) =0, the estimate |[u(x,t)|psrn) < Cllo(@)|Larn) fails
to fulfill even for small positive ¢ unless ¢ = 2. The obstacle is created by the distinguishing feature of the
(different from translation) Fourier integral operators of order zero, which compose a resolving operator.

According to Theorem 1 [10], for the solution u = u(x,t) to the Cauchy problem (0.7) with n > 2,
wo(z) = 0 and ¢;(x) € C§°(R™) for all large t > T > 0 and for any small € > 0, the following estimate is
satisfied L

(@, )] Lageny < Ce(1+ )1+ )"l @y,



+1
where 1<p <2, L} = 1o = max{es ()~ 1) = ) 2 - D= SN <2 (- D

The nonlinear equations (0.1) and (0.2) are those we would like to solve, but the linear problem is a
natural first step. Exceptionally efficient tool for the studying nonlinear equations is a fundamental solution
of the associate linear operator.

In the construction of the fundamental solutions for the operator (0.6) we follow the approach proposed
in [22] that allows us to represent the fundamental solutions as some integral of the family of the fundamental
solutions of the Cauchy problem for the wave equation without source term. The kernel of that integral
contains Gauss’s hypergeometric function. In that way, many properties of the wave equation can be extended
to the hyperbolic equations with the time dependent speed of propagation. That approach was successfully
applied in [24, 25] by the first author to investigate the semilinear Tricomi-type equations.

The operator of the equation (0.6) is
S:=07 — A,
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where x € R, t € R, and A is the Laplace operator, A := ijl a7
J

(Green’s function, propagator in the literature on Physics) E = E(x,t; zg, to),

We look for the fundamental solution

Ett - EQtAE = 5($ - JZO,t - t0)7

with a support in the “forward light cone” Dy (z,t0), xo € R", tg € R, and for the fundamental solution
with a support in the “backward light cone” D_(zg,tg), zg € R", to € R, defined as follows

D, (zo,t0) = {(x,t) ER™; |z — 20| <ef —efo } ) (0.9)
D_(z0,to) = {(m,t) € R™1; |z — o] < — (et — et0) } (0.10)

In fact, any intersection of D_ (zg, tg) with the hyperplane ¢t = const < t; determines the so-called dependence
domain for the point (xo,to), while the intersection of D, (zg,to) with the hyperplane ¢t = const > ty is the
so-called domain of influence of the point (xg,%p). The equation (0.6) is non-invariant with respect to time
inversion. Moreover, the domain of influence is wider than any given ball if time const > tg is sufficiently
large, while the dependence domain is permanently, for all time const < tg, in the ball of the radius e®.

Define for tg € R in the domain D (zg,to) U D_(xg,tp) the function

1 11 t __ ,to)2 _ _ 2
E(z,t;$07t0) = F(*, = 1’ (6 € ) (LL’ 1’0) ) ’
SE e P 22 (e = (a =)’
where F(a,b;c;() is the hypergeometric function (See, e.g. [3].). Let E(z,t;0,b) be a function (0.11), and
set

(0.11)

E(z,t;0,t9) in D4(0,%0),
0 elsewhere ’

E(x,t;0,t9) in D_(0,t0),

Ey(z,t;0,t) := {
(@ ) 0 elsewhere

E_(z,t;0,tp) := {

Since function E = E(x,t;0,t0) is smooth in D (0,%g), it follows that F (z,t;0, t9) and E_(z,t;0, o)
are locally integrable functions and they define distributions whose supports are in D (0,to) and D_(0,tg),
respectively. The next theorem gives our first result.

Theorem 0.1 Suppose that n = 1. The distributions Ey(x,t;0,t0) and E_(x,t;0,t9) are the fundamental
solutions for the operator S := 0% — €*' 02 relative to point (0,t), that is

2 2

0 0
SEL(z,t;0,t0) = d(x,t — to) or ﬁEi(;v,t; 0,tp) — th@Ei(xﬂf; 0,tp) = d(x,t —tp).

To motivate one construction for the higher dimensional case n > 1 we follow the approach suggested in
[22] and represent fundamental solution E (x,t;0,%) as follows

t_ _tg
e‘—e , 1 11 (et —eto)2 —42
E 0.t _ Estmng - 1o~ - 7
+(Z‘, I 0) Lto_et (m,r) (et+et0)2_r2 (2’2’ 7(€t+€t0)2—7"2

) dT, t > to,

where the distribution E*""9(z, t) is the fundamental solution of the Cauchy problem for the string equation:

2 ) 2 ) ) )
wEstmng _ @Estrzng — 0’ Estrzng ({L‘7 O) _ 5(1_)7 E:trzng($7 0) =0.



Hence, E5!""9(z,t) = 1{6(z +t) + §(x — t)}. The kernel (0.11) is the even function of z while E5""9(z,t)
is even with respect to t. The integral makes sense in the topology of the space of distributions. The
fundamental solution E_(x,t;0,t) for t < tg admits a similar representation.

We appeal to the wave equation in Minkowski spacetime to obtain in the next theorem very similar
representations of the fundamental solutions of the higher dimensional equation in de Sitter spacetime with
n > 1.

Theorem 0.2 Ifx € R", n > 1, and A is the Laplace operator, then for the operator

02 9
S::ﬁ—etA

the fundamental solution E ,(x,t;x0,t0) (= Etn(z — x0,t;0,t0)), with a support in the forward cone
D4 (zo,t0), o €R", to € R, suppE, ,, C Di(xo,t0), is given by the following integral (t > to)

to 1 (1 1 .(et_et0)2_,r.2

E.;,_,n(.T—l'o,t;O,to) ZQA E (x—xo,r) (et+eto)2 _/r-2 5,5, ,(et_'_eto)z_’rz) d’l". (012)

Here the function E*(x,t;b) is a fundamental solution to the Cauchy problem for the wave equation
Ef — AEY =0, E“(z,0)=6(), E(z,0)=0.

The fundamental solution E_ ,(x,t;x0,t0) (= E—n(x — x0,t;0,%0)) with a support in the backward cone
D_(z9,t0), xo €R", to € R, suppE_,, C D_(z0,%0), is given by the following integral (t < to)

0 t to)2 2
1 11 (ef—et)>—r

E_n(x — 0,0, t) = —2 E¥(z — xo, Sl
(@ =20 ) /et,eto (@ = 20,7) (et + eto)2 — 2 (2 277 (et 4 eto)2 — 2

> dr. (0.13)

In particular, the formula (0.12) shows that Huygens’s Principle is not valid for the waves propagating
in the de Sitter model of the universe. Fields satisfying a wave equation in the de Sitter model of universe
can be accompanied by tails propagating inside the light cone. This phenomenon will be discussed in the
spirit of [21] in the forthcoming paper.

Next we use Theorem 0.1 to solve the Cauchy problem for the one-dimensional equation
gy — € ugy = fla,t), t>0, zeR, (0.14)

with vanishing initial data,
u(z,0) = uy(x,0) =0. (0.15)

Theorem 0.3 Assume that the function f is continuous along with its all second order derivatives, and that
for every fized t it has a compact support, suppf(-,t) C R. Then the function u = u(z,t) defined by

B ' et —eb 1 1 1. .(et_eb)Q_(m—y)Q
u(:c,t) = /0 db/w(eteb) f(yvb) \/(et ¥ 66)2 _ (CL‘ _ y)2F <27 5’ 1’ (€t + eb)2 - (.1‘ - y)2> dy

is a C%-solution to the Cauchy problem for the equation (0.14) with vanishing initial data, (0.15).

The representation of the solution of the Cauchy problem for the one-dimensional case (n = 1) of the
equation (0.6) without source term is given by the next theorem.

Theorem 0.4 The solution u = u(x,t) of the Cauchy problem
gy — €Uy = 0, u(z,0) = po(x), ut(x,0) = p1(x), (0.16)

with g, p1 € C§°(R) can be represented as follows

€

wole+

[gpo(:v +el —1)+po(z — e + 1)} + /0‘3 ) [po(z — 2) + po(x + 2)| Ko(z,t) dz

N |

u(z,t) =

+

/etl {@1(93 —2)+ p1(z + z)]Kl(z,t)dZ,
0



where the kernels Ko(z,t) and K1(z,t) are defined by

Ko(z,t) = —(%E@’t?o’“)) =0
1
(R NV CES e
TGt Y )+2(et—1)F<;,;;1§EZt_|__32:z2>}

11

1 — 2t QF(_,, r
X[( e+ 22 (et r1)2— 22
2

1 11 (ef=1)2—-=2
Ki(z,t) = E(2,40,0) = ————x— (7,7; 7) 0<z<e' —1.
1(2 ) (Z ) (1+€t)2—2:2 279 (6t+1)2722 Szx€

The kernel Ko(z,t) has singularity at z = e! — 1. The kernels Ky(2,t) and K;(z,t) play leading roles in
the derivation of decay estimates. Their main properties are listed and proved in Section 8.

Next we turn to the higher-dimensional equation with n > 1.
Theorem 0.5 Ifn is odd, n = 2m + 1, m € N, then the solution u = u(z,t) to the Cauchy problem

ug(x,0) =0, (0.17)

gy — e2'Au = f, u(z,0) =0,

with  f € C®°(R") and with the vanishing initial data is given by the next expression

18 Lopn—2
/ db/ < r8r> wnlcén)/Sn_lf(:r—i-ry»b) dSy> i
t_ o by2 2
1 (1 1 (e —e) 7"1)7 (0.18)

(et + eb)2 _ 2

>< p— p— A
27277 (et 4 eb)2 —r?

where c(()n) =1-3-...-(n—2). Constant w,_; is the area of the unit sphere S"~1 C R".
If n is even, n = 2m, m € N, then the solution u = u(z,t) is given by the next expression

1 o\ 2l f(x+ry,b)
db/ drl Z(== / 2 qv,
/ ( r8r> wnaes W) VIl Y
1 11 t_ ¢b)2
515 ;—(6 <) ; : (0.19)
(el + eb)2 — 2 27277 (et + eb)2 — 12

X

Here B?(0) := {ly| < 1} is the unit ball in R™, while cén) =1-3-...-(n—1).

Thus, in both cases, of even and odd n, one can write

1 11 (et —eb)?—r2
t)y=2 [ db d b Fl-, =1, —mF—— 2
u(z, / / ro(z,r;b) A (2,27 e —2 ) (0.20)

where the function v(z,t;b) is a solution to the Cauchy problem for the wave equation
Utt*AU:Oa U(I’7O,b):f(£€,b)7 vt(xao;b):()'
The next theorem gives representation of the solutions of equation (0.6) with the initial data prescribed
at t =0.

Theorem 0.6 The solution u = u(x,t) to the Cauchy problem
g — e Au=0, u(x,0)=po(r), uiz,0)=p(z) (0.21)

with @o, p1 € CP(R™), n > 1, can be represented as follows:

1
u(z,t) = e*%UWO(x,¢(t))+2/O Vo (2, 0(t)s) Ko(0(t)s, t)o(t) ds

42 /0 v, (@, $()8) KL (B(D)s, (1) ds, z €R™, t>0, ¢(t) :=¢' —1,  (0.22)



by means of the kernels Ky and K; are defined in Theorem 0.4. Here for ¢ € C§°(R™) and for x € R",
n=2m+1, meN,

9 /1 0\ 2
v (@, 6(t)s) = (ar(rar) 5 [ ey dsy>

“n-1% r=¢(t)s
while forx e R™, n=2m, me N |

0 (1 o\ 2rnt 1

vo(z, P(t)s) := —(f—) 771/ ———op(zr+ry)dV,
@ or\ror wn_lcé ) Jer) VI= Y2 Y

The function vy, (z, p(t)s) coincides with the value v(x, $(t)s) of the solution v(x,t) of the Cauchy problem

r=se(t)

v — Av =0, v(z,0)=p(x), v (z,0)=0.

As a consequence of the theorems above we obtain in Sections 9-10 for n > 1 the following decay estimate

t
I(=2)"*u(@, £) | paqny < Ce'PmG=a) / (14t = )£ (2, b)l| Loy db
0
s—m(i_1 _
+C(e" = 1) 757D {[lpo(@) | Loqny + 1 (@)l|Loey (1 + )1 —e7")} (0.23)
provided that s > 0,1 <p <2 141 =1 1(nt1) (l
- Y — % p q ’ 2 P

to Theorem 7.1 the estimate (0.23) is valid for n =1 and s = 0 as well as if pg(x) = 0 and ¢1(x) = 0. Case
of n =1, f(z,t) = 0, and non-vanishing ¢;(x) and ¢;(z) is discussed in Section 8.

— %) <2s<n (% — %) < 2s+1. Moreover, according

The paper is organized as follows. In Section 1 we construct the fundamental solutions of the operator
(0.6) for the case of n = 1. Then in Section 2 we apply the fundamental solutions to solve the Cauchy
problem with the source term and with the vanishing initial data given at ¢ = 0. More precisely, we give
a representation formula for the solutions. In Section 3 we prove several basic properties of the function
E(z,t;y,b). In Sections 4-5 we use formulas of Section 3 to derive and to complete the list of representation
formulas for the solutions of the Cauchy problem for the case of one-dimensional spatial variable. The
higher-dimensional equation with the source term is considered in Section 6, where we derive a representation
formula for the solutions of the Cauchy problem with the source term and with the vanishing initial data
given at t = 0. In same section this formula is used to derive the fundamental solutions of the operator
and to complete the proof of Theorem 0.6. Then in Sections 7-10 we establish the LP — L2 decay estimates.
Applications of all these results to the nonlinear equations will be done in the forthcoming paper.

1 Fundamental Solutions. Proof of Theorem 0.1

In the characteristic coordinates [ and m,

l=2+¢, m=x—¢e (1.1)
the operator
82 o 62
ST
reads
2 2 2
LY SR B ST Y
ot? 0x? olom  2(l—m)\ol  Im
Consider point (z,t) = (0,b), then two backward characteristics meet the z line at the points © = a and
x = —a, a := ¢(b). Note that the point (I,m) = (¢(b), —¢(b)) represents point (0,b) in characteristic

coordinates. The following lemma is an analog of (2.2)[2], where the Tricomi equation is considered.



Lemma 1.1 The function
3 _ 11 (I—a)(m=0)
: = (] — 2, _ V2p(Z Z.q.
E(l,m;a,b) = (1 —b) (a —m) (2727 T ))

solves the equation

0? 1 0 0
- < ZVYE(l,mia,b) =0. 1.2
{azam 2(l—m)(8l 8m>} (l,m;a,b) =0 (1.2)
Proof. Indeed, after simple calculations, taking into account (23) of [3, v.1, Sec.2.8]
d 11 1 11 1 11
aF <2,271,Z> = 22(1_Z)F<_272,17Z> _%F (2,2,1,Z> s (13)
we obtain
1 ~ip (L L (- a)( —b)
l—a)(m—b l—a)(m—b
_ (a_m)F( % % 1’ El b))((m a)) (l_ ) (% % 1’ El b))((m a;)
2(1 = a)Vl—bya—m(l—m) '
while

_1 _1 l—a
Om ((l—b) 2(a—m) 2F(;,; 1; W))
- 0F (=3 bt {Eamg) + (- mF (3 55 (=g )
2v/1 —by/a —m(b—m)(l —m) ’

where, for the hypergeometric functions F' (7 % z) and F' (f%, %, 1; z) according to Sec. 2.1.3 [3, v.1] we
have from the Euler’s formula

11 2 ! 2\—1/2 2y—1/2 11 2 (! 2\—1/2 2\1/2
F —Liz) == (1-1¢%) (1 —2t%) dt, F —Liz)=—=[ (1-1t%) (1 — 2t*)*/=dt.
272 T Jo 272 7 Jo

These functions coincide with the complete elliptic integrals of the first and second kind, K(z) and E(z),
respectively,

11 11
K(z )*—F —.1,2%), E(z):zF —=, =122 .
2 22 2 2°2

(See (10) of [3, v.1, Sec. 4.8, page 196] and Sec. 13.8 [3, v.2, page 317].) Then to calculate the second
derivative we use (21) of Sec. 2.8 [3, v.1]

d 11 1 11 11
—F==.=:1: = —F(=-=.=:1: 7F 1:
dz ( 29’ z) 2 ( 279’ Z) 2 (2 2’ Z)

and obtain

l—a)(m—>b l—a)(m—>b
(b= DF (=4, 5,1, 42200 1 (1= m)F (3, 4;1; =gt

1
A= aT—bv/a—m(b—m)(l — m)?

><[(2ab—al—bl+12—(a+b)m+m2)F<—

1
2
+(l—m)(a—b—l—|—m)F<



as well as
1 0 0
st (51~ o
B 1
4(a — )VI—by/a—m(b—m)(l —m)?

x[((bl)lermm2+a(2b+l+m))F(;7;;1;(l—a)(m_2))

)E(z, m; a, b)

et (b o =2 |

Hence (1.2) holds. The lemma is proved. O
Consider operator
ey L (20 ]
h T olom T 2(0—m)\ol  Om (1 —m)?
that is the formally adjoint to the operator
0? 1 0 9]
Seh = Bam 2(1 —m) (E B %)

of the equation (1.2). The following lemma, is an analog of (2.4)[2].

Lemma 1.2 Ifv is a solution of the equation S}, v =0, then u = (I —m)~'v is a solution to Sepu = 0, and
vice versa.

Proof. Indeed, direct calculations lead to

Qv*(lfm)gquu iv*(l—m)iu—u o v=_1-m) o u+iu——u
a ol " om om T olom Om ol om ol
Then
N 0? 0
Schv = (Z — m)mu + %U — au
1 0 0 1
0? 1 0 0
- (l_m){amaz”_zam)<az“_amu)}_
Lemma is proved. O

In the next lemma the Riemann function is presented.

Proposition 1.3 The function
_ _ 11  (I—a)(m->0)
mia,b) = (1= m)E(mia,b) = (1= m)(I = b) "2 (a = m) " 2F (5, 5315 )
Rt.mia,) = (L= m)B(mia.b) = (1= m)(1 =)~ —m) ™2 (G, 51
is the unique solution of the equation S} v = 0 that satisfies the following conditions:

. 1 ,

(i) R = mR along the line m = b;
. 1

(ii) Ry, = =)
(iii) R(a,b;a,b) = 1.

R along the linel = a;

Proof. It can be easily proven by the direct calculations. (|

Next we use Riemann function R(l,m;a,b) and function E(z,t;zo, to) defined by (0.11) to complete the
proof of Theorem 0.1, which gives the fundamental solution with a support in the forward cone D (zg,tg),



xg € R™, tp € R, and the fundamental solution with a support in the backward cone D_(zg,tg), g € R,
to € R, defined by (0.9) and (0.10), respectively.

Proof of Theorem 0.1. We present a proof for E(x,t;0,b) since for E_(x,t;0,b) it is similar. First, we
note that the operator S is formally self-adjoint, S = §*. We must show that

< E,,Sp>=p(0,b), for every ¢ € C5°(R?).
Since E(xz,t;0,b) is locally integrable in R?, this is equivalent to showing that

/ By (z,t;0,0)S¢(x,t) dr dt = p(0,b), for every ¢ € C5°(R?). (1.4)
R2

In the mean time D(x,t)/D(l,m) = (I—m)~! is the Jacobian of the transformation (1.1). Hence the integral
in the left-hand side of (1.4) is equal to

/ By (2,40, b)Sp(, t) do dt = / dt/( B b)E(:c £0,0)S(x, ) dx

/_e / E(l,m;eb, —e?) (I —m) ™' dl dm(l —m)2{816;m i 2(lim) (% _ a?n)}w'

We will write ¢(I, m) for the function ¢(z,t) in the characteristic variables I, m. Then using the Riemann
function R constructed in Proposition 1.3 we have

// Ei(z,40,0)Sp(z,t) dedt
R

/76/ R(l,m;eb ){azaam (lim) (gl_a?n)}gpdldm.

Integrating by parts several times and applying Proposition 1.3, we obtain (1.4). Indeed,
e 02 1 0 0
l - - — dld
/ / R(l,m; e ){618771 (z—m)<az am)}‘p "
agﬁ l=00 —e a(p
_ b
= /_ [R(lme )3m]l , / / <8l (1,m; e, )) 8mdldm

/_e/ R(,m; e, )(1 )(gz ;;)godldm.

On the other hand, using the properties of Riemann function R we obtain

—eb 6(,0 l=00
b
/ [R(l,m,e , )8m]l . dm

— 00

b

= —/ R(e’,m;eb, —eb)aimgo(eb,m) dm

— 0o

_eb

= —R(eb, _eb; eb, _eb)@ ‘l:eb,m:*eb + /

— 0o

O bbb b
(amR(e,m,e7 e))go(e,m)dm

—e
1 b b _ b b
- (p‘l:eb,mzfeb - /OO mR(e ymie’, —e)p(e”,m)dm,

—e o0 a . b aw
/_ /€h (mR(l,m,e, )) I dldm
= / QR(Z —ebieb, —e?) ) o(l, —e’) dl - /—e/ R(l,m; e’ —eb) ) pdldm
b \OU 8l8 T
_ = 1 bbb b _/_e/ b _ b
= /Eb 2(l—(—eb))R(l’ e’;e’,—e’)p(l,—e’) dl L. 8l8mR(l’m’€’ e’) | pdldm.
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Then

/76/ R(l,m; e, )(1 )%fdldm

- -/ R(e,m,eb, eb)2(eb (et m) dm — /7/ ( ( R(l,m: e, eb)Q(lim))>gpdldm

an
e I
/ / R(l,m;eb ) 50— m) om dldm
/ R(l,—e’; b —eb);gp(l —e?) dl—/Eb/oo 9 R(l,m; e’ —eb)# pdldm
ob ’ Y 2(1 — (—eb)) " oo Jeb \OM R 2(l—=m) '
One more application of Proposition 1.3 completes the proof of Theorem 0.1. O

2 Application to the Cauchy Problem: Source Term and n =1

Consider now the Cauchy problem for the equation (0.14) with vanishing initial data (0.15). For every
(z,t) € D4 (0,b) one has —(e! —e®) <z < e — ¢, so that

1 11 t_ . b\2 _ .2
E(l‘,t;o,b) — F ( —1: (ee)x)

(et +eb)2—22 \272" 7 (et +eb)? —a?

The coefficient of the equation (0.6) is independent of xz, therefore E (z,t; y,b) = Ey(x — y,¢;0,b). Using
the fundamental solution from Theorem 0.1 one can write the convolution

u(a, ) // E. (0.6, )f(y,b)dbdy—/odb/ Eo (v — y,0,b)f(y,b) dy,

which is well-defined since suppf C {t > 0}. Then according to the definition of the function E, we obtain
the statement of the Theorem 0.3. Thus, Theorem 0.3 is proven.

Remark 2.1 The argument of the hypergeometric function is nonnegative and bounded,

o< (et — e¥)? — 22

bt ot b
_m<l forall be(0,t), z€ (e’ —e', et —¢e”).
1. (efmeh)?oz?
21270 (efel)2—22

follows forc=a+bLtm, (m=0,1,2,...) from formula 15.3.10 of [1, Ch.15]:

The hypergeometric function F ( ) at b = t has a logarithmic singularity. Indeed, this

Fla,bia+b;2) = lf((z);(?) ; (“()1:!()?” 26(n + 1) — (@ +n) — b+ n) — In(1 — )] (1 — 2)"

where |arg(l —z)| <7, |1 —z| < 1.

The following corollary is a manifestation of the time-speed transformation principle introduced in [22].
It implies the existence of an operator transforming the solutions of the Cauchy problem for the string
equation to the solutions of the Cauchy problem for the inhomogeneous equation with time-dependent speed
of propagation. One may think of this transformation as a “two-stage” Duhamel’s principal, but unlike the
last one, it reduces the equation with the time-dependent speed of propagation to the one with the speed of
propagation independent of time.

Corollary 2.2 The solution u = u(m t) of the Cauchy problem (0.14)-(0.15) can be represented as follows

1 11 t_ b2 _ 2
xth/ db/ dzvxzb) F 7,7;1;w ,
Grap—=2 \22 a2
where the functions v(x,t;T) := %(f(x +t,7)+ flx —t,7)), T € [0,00), form a one-parameter family of
solutions to the Cauchy problem for the string equation, that is,

Vit — Vg = 0, ’U(QL‘,O;T):f(.T,T), ’Ut(x70;7—)20'

11



Proof. From the theorem we have

- t o 1 1 1_ . (et — eb)2 — ,22
u(z,t) = /db/ S_Eb)dzf(z—l-z,b)\/mF <2’2’1’(et+eb)2—z2)
! 11 (ef —eh)?—22
/db/ deZ'f’fL' b) (€t+€b)2 F(2 2,17W>
L (ef —eb)2 — 22
/db/ dzf —z+uz,b) (et+e”)2_z2F(2 271’(6t+€)22)
2 [ [ bt e+ gt (L SR

@rap—2 \22 (e =22

The corollary is proven. O

3 Some Properties of the Function E(x,t;y,b)

For b € R the function E(z,t;y,b) in the domain Dy (y,b) U D_(y,b) is defined by (0.11), where F(a7 b; c; C)
is the hypergeometric function. In this section we collect some elementary auxiliary formulas to make proofs
of the main theorems more transparent. For the simplicity we consider case n = 1 in detail. The case of
n > 1 is very similar.

Proposition 3.1 One has

E(mvt;yvb) :E(x—y,t;O,b) ’ E(LE,t;O,b) :E(—x,t;(),b), (31)
1 1
E(z,t;0,In(e! — - 3.2
@0 o) = o 2)
1
gb( PE(e® — e t;0,0)) = Ze_t/er/Q, (3.3)
9 (% 9 (4 0 o 1/20-b/2 L _1/2 /2
%(beE( —ét tOb)) ab(beEe — et t;0,0)) = (%(be e ):Ze e’ “(2+0), (3.4)
1
yﬂzlfgfeb 5‘(1 (z—y,1:0,0) = T66_2(b+t)eb/2€t/2(eb —e'), (3.5)
1
yﬂthrgt%»eb %E(x -y, ty 07 b) = T66_2(b+t)eb/26t/2(_eb + et)v (36)
o2t
{a (:rtOb)} _ Vel(— de'+o) (3.7)
ob b=In(et—z) 16v el —x
t_
9E (. 1:0,0) = ! {(1€2t+2’2)F< 1(21)2)
b 2((et —1)2 = 22)y/(1 + et)? — 22 (et +1)2 -2
t

+2(e! = 1)F (; ; 1; M) } . (38)

Proof. The properties (3.1) and (3.2) are evident. To prove (3.3) and (3.4) we write
11 1
E(eb — €', :0,b) = (2¢°) 7 (2¢! )2F< , ,1;0> =3
that implies (3.3) and (3.4). To prove (3.5) we denote
(et —e

Iy ot Ut
@+ ==y

and obtain

EE(:U —y,t;,0,0) =

1 : 1 11
5 —S(@—ytere) I~z tyte +e) IR (2,2;1;,2)

5(
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-1 11
+((e"+€")? — (z—y)?) 2 F] <2,2;1;z) a%z. (3.10)
It is easily seen that
9 _ 8=yt
ox” [z —y)?— (e +eb)22’
Here )
. _ . 9 _ti-bv
yﬂa:l}g?”febz N O’ yﬂzl}kl}iltfeb 6$Z N 2(6 c )’
while according to (23) [3, Sec.2.8 v.1] we have
11 1 11 1 11
ZF 777717 = 7}? _777717 _7F 777717 .
0 (22 Z) 2:(1— 2) ( 272 Z) 22 (22 Z)
Consequently,
11 1 1 11 11
li O.F (=, -1,2) = lim— Fl—=,21,2)-F(= 21, :
yosatel—eb (2 2 Z) zlﬂ%QZ{lz ( 272 Z) (2 2 Z)}
In fact (See, e.g.[3].),
11 1 11 1
F(7,7;1; ):1 - 2 F(—f,f;l; ):1—7 2 11
55 L% +4z—|—0(z) and 55 L% 4z+0(z) as z—0 (3.11)

imply

11 1 1 1 1 1
li Fl= 21 = lim — 1-—= ) - (14 = 2 ==, 12
yﬂﬂ,ebaz (2727 Z) Z%22{1_2< TR )) ( + 12T 0G )>} 1 (3.12)

Thus, according to (3.10) we obtain

0 1
lim —FE(x—y,t0,b) = lim —f(x—y—l—et+eb)7%(—x+y+et+eb)7%
y—ztet—eb OX y—aztet—eb 2

Nl

1
+ lim  —(z—y+e +eb)” (—m+y+et+eb)7%

y—ax+tet—ed 2

by )by T e )
= _%(—et +et el +eh) 3 — e+ et +eb)2

+%(—€t +el et +e) (el — e el +e) 2

(—e el et +eb) T (el — el et + eb)—%%(e—b et
= )R+ L) e+ ) ) L (e - o)
_ %66—2(b+t)e§€%(eb _ et

To prove (3.7) we write

%E(x,t;o,b) = <((€t+eb)2 x2)§> F

Il
|
8
o
—
8
-
+
3
o
S~—
—~
—
8
o
+
3
o
N—
[\
|
8
[\v]
SN—
(NI
|
7N
—_
| —
—_
8
|
—
)
“
|
8
o
S—
[\v]
N~~~



+((et—|—eb)2—:c2) zFZI 171; ;x2_(et_eb)2 g(et_eb)2 z?
27277 x2 — (et +eb)? ) b (et + eb)? — x2
_ bt bt b2 i (112 —(ef —e)?
= e =) I (s S

1 11 2 _ (ot ,b)\2
+((et+eb)2—x2) 2 p <’;1;$ 7(6 eb)

y —2€b(et _ eb)[(et + eb)z _ 1.2] _ [(et _ eb)Q _ x2]2eb(6t 4 eb)
[(et + eb)2 _ xZP
3 11 C62_(et_eb)2
_ byt b t b\2 _ .2\ "2 Z .-
e’(e' +e¥)((e" +e")? — 2?) F(2’2’1’x2—(et+eb)2>
2 (Et _ eb)?) 4€b6t132 _ 46b6t(62t _ €2b)
I(

2 (et + eb)2 et + eb)2 — 22]2,/(e? + €b)? — a2 '

11 =z
F(= 20
+ z <2a 27 ) x
On the other hand (3.12) implies

0 ) gt byt N2 2\~ 11
|:8bE(x’t’O7b):| B {e (e e )((e +e) 1‘) }b:ln(e‘fw)F 272’170

b=In(et—x)
+F! (;7 %; 1;0> debet 2 — 4ebet(e2t _ egb)

[(et + e)2 — 22]2\/(et + €b)? — 2

] b=In(et—x)

= — [eb(et + eb)((et +e%)? — Iz)ig]b:m(et,m)
1 debeta? — debet (e — 2)
+Z (et + €b)2 — 22]2, /(e + )2 — 22 (3.13)
et+e x et+e 2% | (et —a)
Then
—2t t t
bt | bN((t L N2 2\ t t toot —3 e Vel(2e! — 1)
e’(e"+e e +e’) —x = (e —x)(2e" —x)(4de*(e" — x = 3.14
[ (e =)= )26 ) (el (e ) i B
and
ebeth _ ebet(62t _ e?b) L e—2t\/67x (3 15)
[(e! + €b)2 — 22]2, (el + eb)2 — 22 btn(et o) ove — 2 .
Hence (3.13), (3.14), and (3.15) prove (3.7).
To prove (3.8) we use (3.7) and
3} s (11 (et —eb)?—22
7E . _ _ b/ t b t b\2 o u2\— F Z 1
ob (Z7t’07b) 6(6 —|—8)((€ +6) Z) 2 29’ 7(et+eb)2_22
o 91 0 11 (et —eh)?—22
- Iz :
e e =27 " b <2’2’ " (et 4 eb)?2 — 22
If we denote
C7(615_6172_2,2 <7(61‘/_1)2_22
(et +eb)2 — 227 07 (et +1)2— 22"
then
QC  debel(e?® — e2) + 42%ele! %’ _det(1— e?) + 42%¢!
o> [(et + eb)2 — 22]2 ’ Oblb=0  [(et +1)2 — 22]2
Hence
OF : 11
S5 (510,00 = —(e + (e +1)* =2 FF (2, 5 1;40)

1 11 4et(1 — e?) + 42%¢!
t 1 2 2 3 F Z 21 .
+[(e" + 1) — 2| 2 F; 55 ; o (CESEErE
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According to (1.3) we obtain

(- 1:0.0
3 11
= Dl -2 (G )

. 1 1 11 1 11 4et (1 — e?') + 4z%¢!
+[(€ +1)2_22] |:2C0(1_<-0)F<_272717C0> _T@F (272717<0>:| [(et+1)2_22]2
= Dl -2 (G )

t(q1 2t 2t
+[(et+1)2—z2]_32[€((61ti)Q)Jr;e] [ 1COF(—;,;;1;60) —FG,;;l;Coﬂ :

The term with F (%, %; 1; CO) contains a factor

et _ 6215 22€t
<d+mw+n2zﬂ%wulfflﬂ[@_miiz]

(e' +D)[(e! —1)* = 2%] + 2[e'(1 — e*) + 22¢!]

9

where
(! +D)[(e" —1)* = 2%] + 2[e' (1 — e*) + 2%] = (—e' +1D)[(e" +1)* - 2.
The coefficient of F (—%, % 1; (0) is

2[et(1 — e2t) + 22e] 1

3 1 1—e? 422
[(et+1)2_22]_§ t =3 .
G e S CE = P e VR
The formula (3.8) and, consequently, the proposition are proven. O

4 The Cauchy Problem: Second Datum and n =1

In this section we prove Theorem 0.4 in the case of po(x) = 0. More precisely, we have to prove that the
solution u(z,t) of the Cauchy problem (0.16) with ¢o(z) = 0 and ¢;(x) = p(x) can be represented as follows

um¢%=Aéq[@@+@+w@—2ﬂKﬂaﬂM=iél%@+¢®$+@@—¢@ﬁﬂKdM®&ﬂww%»Mi)

where ¢(t) = €' — 1. The proof of the theorem is splitted into several steps.
Proposition 4.1 The solution u = u(z,t) of the Cauchy problem (0.16) with vo(x) =0 and ¢1(z) = p(x)

can be represented as follows

Lol 1
u(z,t) = / db[ie_t/zebm@ +b) + 1—6b6_3t/26b/2(eb - et)} [(p(x et —e¥) + oz — e +eb)
0

t eref‘feb a 2
+/ bezbdb/ dygp(y)(a—) E(x —y,t;0,b).
0 T Y

—(et—eb)
Proof. We look for the solution u = u(x,t) of the form u(z,t) = w(x,t) + tp(x). Then uy — e*uy, = 0
implies
Wit — €2tw:vz = tezt@@)(x)7 ’LU(JI, 0) = 07 wt(a:,O) =0.

We set f(z,t) = te?*p(?) (x) and due to Theorem 0.3 obtain

b

t $+etfe
w(z,t) = / be?? db/ dy <p(2)(y)E(x —y,t;0,0).
0

z—(et—eb)
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Then we integrate by parts:

t
w(x,t) = be%db Wz + et —ebE—et—i—eb,t;O,b — mm—et—&—ebEet—eb,t;OJ)
¥ ¥

/ be? db/ dy go(l)(y)(%E(x —y,t;0,0).

(et—e?)

But

(1) t by b Y
¥ (x+e e) € abso

by one more integration by parts imply

(x+e —e) and oW (z—ef +e¥) =€ (z — et + )

g

w(zx,t)
b=t

[beb ( —p(x+et —e)E(—e' + e t;0,b) — p(z — e + ) E(e! — €, t;0, b))}

b=0

/t db| —p(z+e' —e )g(bebE( et +eb ;0 b)) fga(xfetJreb)g(bebE(et —eb 0 b))
o ab » Yy M ab Y )

t xr+e —eb a
- e [ dy ¢ (y) - Ex — y,1;0,)
0 x 6y

_(et_eb)
= —2te'p(z)E(0,t;0,t)
/t db| — oz +et —eb) = 0 (bebE( et +e ;0 b)) — oz —e' + eb)g(bebE(et —eb ;0 b))
o ab » Yy M ab Y )

b

t rte —e o
- / be? db/ dy oM (y)=—E(x — y,1;0,b).
0 T ay

—(et—eb)

Since FE(0,t;0,t) =e~*/2 we obtain
u(x,t)
_ tdb B ( +t7 )g(bbE( t+ bt‘Ob))* ( 7t+ b)g(bbE(tibt.Ob))
= ; pla+ e =) 5 (be el + e, t;0, pla —e'+e") 5 (b E(e’ — €10,

b

t ztel—e o
- / be? db/ dy oM (y)=—E(x —y,1;0,b).
0 T 6y

_(et_eb)

Then we apply (3.4) of Proposition 3.1 to derive the next representation

u(z,t) / db e t/? b/2(2—|—b)< (x4 et —e®) + oz et—|—eb))

a:—i—e —e
be2bdb/ dy oM (y )aayE(x—y,t;O,b).

_(et_eb)

The integration by parts and a@E( —y,t0,0) = —%E(x —y,t;0,0) imply

t
1
u(z,t) = /0 dbze_t/er/Q(Q +0) (4,0(3; +el—e")+ox—e + eb)>
+

t
0
2b t_ b _ .
/Obe dbp(xz+e e)[—axE(x y,t,(),b)}

y=z+et—eb

t
0

_ 2b — (et —e")|=E(x —y,t:

/obe dbol = (e e))[é)x (2 y7t’0’b)]y:m—(e‘—eb)

t :1:+etfe 8 2
be2? db/ d — ) E(x —y,t0,b).
+/0 e S w(y)(ay> (z —y,t;0,b)
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The application of (3.5) and (3.6) from Proposition 3.1 leads to
bl
u(z,t) = / dbze*t/Zeb/2(2 +b) [ap(:c +et —e®) oz —e + eb)}
0

/ pe2b db e~ 2(0+0) /261/2 (b _ gt {(p(x_‘_et — ) 4 ol — (et — )

x+e 76 8 2
2b _ .
/be db/ dw )(ay) E(r —y,1;0,b)

(et—eb

= / dbzeft/zeb/z(Z +b) [go(x +el—et)+p(z—e + eb)}
0

t
1
+/ db 16b e 3t/260/2 (b —et)[go(x—l—et—eb)—i—go(x—et—i—eb)}

:L’+e 76 a 2
2b R
/ be db/ dy(p )<6y) E(x —y,t;0,b).

(et—eb

Finally,

bl 1

u(z,t) = / db[ie_t/zeb/Q(Q +0b) + 1—6be_3t/26b/2(eb - et)} [(p(x et —e¥) + oz — e +eb)
0
t eref‘feb a 2
+/ be?t db/ dy o(y) (—) E(z —y,t;0,b). (4.2)
—(et—eb 8y
0 z—(et—eb)

To get last representation we have used (3.1) and (3.9). The proposition is proven. O

Corollary 4.2 The solution uw = u(x,t) of the Cauchy problem (0.16) with ¢o(x) =0 and p1(x) = p(x) can
be represented as follows

bl 1
u(z,t) = / db[ie_t/2eb/2(2+b)+ 16b e 3t/20/2 (b —et)} [@(m—l—et—eb)—i—gp(x—et—i—eb)
0

+ /Ot pe2b db/oetEb dz [cp(a: —2)+ p(z+ z)} (%)2E(z,t; 0,b)

as well as by (4.1), where

I PRSI Sty ¢ 1 /ln(etz) o 0 )2 ,
Kl(z,t)—Lle (2+In(e" —2)) T z1In(e z)}m—k ; be (82) E(z,t;0,b)db. (4.3)

Proof of corollary. In this proof we drop subindex of ¢;. To prove (4.1) with K (z,t) defined by (4.3) we
apply (4.2) and write

bl 1
/ db[ze*t/zebﬂ@ +b)+ 1—6be*3t/26b/2(eb - et)} [cp(:n +et—e¥) + oz —e + eb)}
0

t r+et—eb a 2
+/ be2bdb/ dyey) =— ) E(y —z,t;,0,b
0 x—(et—eb) )(ay) ( )

Lol 1
/ db[ie_t/geb/Q(Z +b)+ Ebe_?’tﬂebm(eb - et)} [(p(x +et —eb)+ oz —e + eb)}
0

t et—e
a 2
bzbdb/ d — ) E(z,t;0,b
+/0 ‘ —(et—eb) ZQP(ZJFI)(&Z) (2 )

bl 1
/ dbbe‘t/zebm@—i—b)—i— 16b —3t/2e0/2(eb —et)} {@(m—i—et—eb)—l—ga(x—et—i—eb)]
0

+ /Ot pe2b db/OEtEb dz [(p(m —z)+ oz + z)} <%>2E(z,t; 0,b).
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Next we make change z = ¢ — ¢!, dz = e’db, and b = In(z + €') in

Lol 1
/ db[fe_t/er/Q(Q +b) + —be 3282 (e — et)] [go(x +el —e’) +plr—e + eb)}
. “la 16

e —1
_ R Ry by L e t_ L
= /0 [(p(x +2)+p(z z)] [46 (2 +In(e" — 2)) T z1In(e z)} - Zdz.
Then
et 1 1 1
u(z,t) = / [g@(x +2)+ p(x — z)} [Ze_t/2(2 +1In(e’ — 2)) — Ee_3t/2z In(e’ — z)} ——dz
0 et — 2z

et—1 In(e’—z) I \2
_ (9 .
+/0 dz [go(x z) + oz + z)} /0 dbbe (82) E(z,t;0,0)

) /et_l Mx_z)W(HZ)]KI(z,t)dz,
0

where K1(z,t) is defined by (4.3). Corollary is proven. O
The next lemma completes the proof of Theorem 0.4.

Lemma 4.3 The kernel Ki(z,t) defined by (4.3) coincides with one given in Theorem 0.4.

Proof. We have by integration by parts

In(et—2) I\ 2 In(e’—z) O\ 2
2b E . _ E .
/0 be (Taz) (,;0,b)db /O b(—ab> (2,1;0,b)db

= In(e’ — 2)

%E(z,t; 0, b)] — B(z,t,0,In(e" — 2)) + E(z,t;0,0).
b=In(et—z)

On the other hand, (3.2) and (3.7) of Proposition 3.1 imply

In(et—2) 2 .
/ be%(ag) E(2,t;0,b)db = In(e' — Z)QE(Z,t; 0,In(e’ — 2)) — %e*?(elt —2)7% + E(2,t0,0)
0 Z

Ob
e Vet (—det +2) 1 . 1
= In(ef — 2 ——e 2(el —2)72 + E(2,t0,0).
(¢ = ) e = S = )+ B 80.0)
Thus, for the kernel K;(z,t) defined by (4.3) we have
1 1 1
Ki(z,t) = [fe_t/Q(Z +In(e! — 2)) — —e 32z In(e! — z)]
4 16 ot — 2
e Vet (—del +2) 1 . 1
+1In(ef — 2 ——e 2 + E(z,t;0,0
( ) 16vet — 2 2 et —z ( )
1 1 1
= [Ze*t/2 In(e’ — 2) — 1*6673t/221H(€t — z)} —
e 2 /et (—4det + 2)
+1In(et — 2 + E(2,t;0,0
( ) 16vel — 2 ( )
= E(z,t0,0).
The last line can be easily transformed into K;(z,t) of Theorem 0.4. Lemma is proven. O

5 The Cauchy Problem: First Datum and n =1

In this section we prove Theorem 0.4 in the case of ¢;(x) = 0. Thus, we have to prove for the solution
u = u(x,t) of the Cauchy problem (0.16) with ;(x) = 0 the representation given by Theorem 0.4 in the
case of ¢ (x) = 0, which is equivalent to

) = 3 [eulo+ e = 1)+ golo =+ 0] + [ [oole = 010)5) + (e + 60)9)] Ko(o(t)s, o) ds.

where ¢(t) = e' — 1. The proof of this case consists of the several steps.
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Proposition 5.1 The solution uw = u(x,t) of the Cauchy problem (0.16) can be represented as follows

l\?\w
1ole+

t
1
e~ [gpo(a:—i—e — 1)+ oz — et —|—1)] —I—/ 16%67 [gpg(sc—ket—eb)—&—goo(x—et—i-eb) db
0

N —

u(z,t) =

_|_

16
:che 76 a 2
deb/ d E(z —y,t0,b).
/ o Y oy )(ay) (x —y,t;0,b)

Proof. We set u(z,t) = w(x,t) + ¢o(z), then

¢
1 3
/ e_Qte%e%(eb —et) [gpo(x +et —e¥) + oz —et + eb)} db
0

Wy — 2wy, = 62t<p07m, w(z,0) =0, we(z,0) =0.
Next we plug f(z,t) = €' 4 in the formula given by Theorem 0.3 and obtain
'r—i—e —P
w(z,t) / deb/ dy<p )( VE(x —y,t;0,b).
z—(et—eb)

Then we integrate by parts
¢
w(z,t) = / 2 ab ( m(x + et — et E(—e! + €b,t;0,b) — cp(()l)(x —el +e)B(et — € t;0, b))
ztel—eb o
/ s [yl g Bl - .60.).
z— (et —eb) Y

On the other hand,

(1)(£E-|—€ b) _ _e—bi ($+6t _ eb)’ s0(()1)(!% — et +€b) — e_b%w)(x _ et +eb)

"o

¢ 0 0
w(z,t) = / e’ db (—%apo(as + et —eP)E(—et 4 €, t;0,b) — %goo(x —e' +e)B(e! — € t;0, b))
z-‘re —e a
/ 2bdb/ dy " (5) - Bw — y,0,b).
(et—e?) 83/
One more integration by parts leads to
w(z,t)

= —2e'p(x)E(0,t;0,t)
— (—gpo(a: +e' —1)E(—e" +1,t;0,0) — po(z — €' + 1)E(e! — 1, 0,0))

—/t db( o(z + e —eb)§b< bE(—et—i—eb,t;O,b)) wo(z —e' +e )gb( bE(et—ebJ;O,b)))

x+e —eb 1 a
/ 2 db/ dy o8 () - Bl — y,1;0,0)
Y

(et —e?)

—po(x )+§6 2<<p0(x—|—e — 1)+ oz — €t —|—1))

¢ 0 0
_ _ b bt b g _ ot b bt _ b g
/ db( o(z +é e)ab(e E(—e +e,t,0,b)) wo(z —e —|—e)ab<e E(e e,t,O,b)))

x+e —eb a
/ P [yl g Bl - .60.).
o Y

(et=e?)
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‘We have used

l\')\»—l

1
E(0,t;0,t) = 5e—'f E(e' —1,t,0,0) = E(1 — €',t;0,0) =

b

Hence

1 _:
u(z,t) = 56_5 (@()(iﬂ +et — 1)+ po(x — et + 1))

/t db( ooz + e — eb)gb( PE(—et + eb,t;O,b)) — oz — et + eb)%(ebE(et - eb,t;(),b)))

z4et —eb 1 8
/ 2 db/ dy o$ (4) = Bz — y,£;0,b)
P oy

(et—e?)
Next we apply (3.1) and (3.3) of Proposition 3.1 and the integration by parts to obtain
u(z,t)
L t t S t b
= e ° (goo(ache — 1)+ po(z—ce +1)) db4e2e 2 (goo(ache —e) 4oz —e +e ))

t o y=x+et—e® a+el —e O\ 2
_ 2b R 2b R
/0 e db{wo(y)*ayE(w y7t,0,b)} / db/x dy o )<8y) E(x —y,t0,b).

y=z—(et—e® (et—eb)
We have due to (3.5) and (3.6) of Proposition 3.1

1 . b :
u(z,t) = 56_% (on(x +et —1) + oz — et + 1)) +/ dbze%e_f (@(](ZC +et —e¥) + po(x — et + eb))
0

t
_/ o2b db[— ooz + et — eb)%e—Q(b+t)eb/26t/2(eb e
0

1
+ oz — (et — eb))T6€—2(b+t)eb/26t/2(_eb + et)}

m-i-e —e a 2
2b _ .
/ db/ dy eo(y )(&y) E(z —y,t0,0),

(et—eb)

which coincides with the desired representation. The proposition is proven.
Completion of the proof of Theorem 0.4. We make change z = e’ —¢e?, dz = e?db, and b = In(z +¢)
in the second and third terms of the representation given by the previous proposition:

‘1 .
/fe%e E{on(ere —e)+<po(xfet+eb)}db
0

0

4
D T b b
+/ 1—66_ tezez (e —et)[gpo(ac—f—et—e)—i—goo(ac—et—l—e)} db
0
ef—1
— 1 -5 _ L 2t 1
= /O be T ezz} — {(po(x—z)—l-goo(x—&—z)}dz.

Next we consider the last term apply (3.1), and change the order of integration:

x+e 76 a 2
2b _ .
[ af . waw(g) B0y

/ deb/ [0 x—z)+<po(x+Z)](§Z>2E(zvt%0’b)

In(ef—2) 92
_ 2b 9 )
/0 dz[gpo(z z)+<p0(x+z)} /0 e db(az) E(z,t;0,0).

e~ 2b (%)2 E(z,t;0,b) the last integral is equal to

On the other hand, due to (%)2 E(z,t;0,b) =
In(e’—2) 9\ 2
d —2)+ + / — ) E(2,t;0,b)db
/ z[gpo x—z)+ oz z)} ; ((’9()) (z )

/0 dz|o(z — 2) —&—apo(x—l—z)Hgb (ztOln(e—z))—%E(ztOO)
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According to (3.7) and (3.8) we have

Theorem 0.4 is proven. O

6 n-Dimensional Case, n > 1

The proof of Theorem 0.5. Let us consider the case z € R", where n = 2m + 1, m € N. First for the given
function u = u(x,t) we define the spherical means of u about point z:

1
Iu(l’,?",t) = / u(x+ry,t) dSya
Sn—l

Wn—1

where w,,_1 denotes the area of the unit sphere S"~! C R™. Then we define an operator €2, by

O, (u) () = (%g)m_lr%”*lfu(x,r, 1.

or
One can show that there are constants cg»n), 7=0,...,m—1, where n = 2m+1, with c(()n) =1-3-5---(n—2),
such that X
La\m1 , m— n_aj
(?E) 2 lo(r) =1 z c§- )TJ%QD(T) )
§=0

One can recover the functions according to

1
u(z,t) = }13(1) I,(z,rt) = Thir%) WQ,.(u)(x,t) , (6.1)
ey

. 1 , 1
}1_1)% WQT(U)(QT,O), u(z,0) = lim NOM

U(JJ,O) r—0
Co'T Co'T

Q- (0su)(z,0). (6.2)

It is well known that A,Q,.h = aa—;QTh for every function h € C2(R™). Therefore we arrive at the following
mixed problem for the function v(x,r,t) := Q. (u)(z,r,t):

v,y t) — e (z, 7, t) = F(a,r,t) forall t>0,7r>0, z€R",
v(z,0,t) =0 forall t>0, ze€R”

v(x,r,0) =0, wve(x,r,0)=0 forall r>0, ze&R",
F(z,rt):=Q.(f)(z,t), F(x,0,t)=0, forall xzeR".

It must be noted here that the spherical mean I,, defined for » > 0 has an extension as even function for
r < 0 and hence §2,.(u) has a natural extension as an odd function. That allows replacing the mixed problem

with the Cauchy problem. Namely, let functions v and F be the continuations of the functions v and F,
respectively, by

~ _ fov(z,rt), if r>0 ~ [ F(z,r,t), if r>0
(@, r,t) = {—v(m,—r,t), ifr<0’ F(x’r’t)_{—F(x,—r,t), ifr<0’

Then v solves the Cauchy problem

Dz, 7, t) — 0 (2, r,t) = F(z,r,t) forall t>0, reR, zecR",
o(z,7,0) =0, v(x,r,00=0 forall reR, zeR™
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Hence according to Theorem 0.3 one has the representation

1

'r+e 76
v(z,rt) /db/ drl xrl,b)
\/(et 4 eb)2 _

Since u(z,t) = lim, o (0(z,7, t)/(cé )r)), we consider the case with r < ¢ in the above representation to
obtain:

1 11 t b2 2
r—>0 (e —eb) (et + eb) — 22 2 2 (et +e ) -z

= (n)/ db/ d?"1 hm {ﬁ(a:,r—i—rl,b)—|—ﬁ(x,r—r1,b)}
X ! r(l 1.1.w
(et+€b)2_r% 279’ ’(et—&—eb)Q—r% :

Then by definition of the function F we replace lim, g %{ﬁ(m, r—ry,b)+ }N?(x, r+r, b)} with

11, (et—e")?—(r—r)?
= (sl T irr)

2<%F(x, 7, b)) in the last formula. The definitions of F(z,r,t) and of the operator 2, yield:

=71

10 S 2m—1
u(z,t) = (n) / db/ ( (r 87‘) T I (z,m, t)) .
X L F },1;1;—(&7617)27@ ,
(et +eb)2—72 \2727 7 (el +€b)% —r7
where z € R", n =2m+ 1, m € N. Thus the solution to the Cauchy problem is given by (0.18). We employ
the method of descent to complete the proof for the case with even n, n = 2m, m € N. Theorem 0.5 is
proven. [l

Proof of (0.12) and (0.13). We set f(z,b) = 0(x)d(t —to) in (0.18) and (0.19), and we obtain (0.12) and
(0.13), where if n is odd,

1 (9 16 n;?,l
Ev t) ;= o 25 4
(x’ ) wn711'3'5. (n—2)8 (t 8t> t (|1‘| )a
while for n even we have
2 010\ T 1
Ew t = I e s .
(737 ) wn71135(n_1)8t<t8t> \/mXBt(w)

Here xp, () denotes the characteristic function of the ball By(z) := {x € R"; |z| < t}. Constant w,, 1 is the
area of the unit sphere S"~! C R™. The distribution 6(|x| —t) is defined by

8(1 1= 1), 1) >:/||tf(x) dv forall feCPE(R™.

The proof of Theorem 0.6. First we consider case of ¢q(x) = 0. More precisely, we have to prove that the
solution u(z,t) of the Cauchy problem (0.21) with ¢g(x) = 0 can be represented by (0.22) with ¢g(z) = 0.
The next lemma will be used in both cases.

Lemma 6.1 Consider the mized problem
vy — e, =0 forall t>0, r>0,
v(r,0) =79(r), v(r,0) =7(r) forall r>0,
v(0,t) =0 forall t>0,
and denote by To(r) and T1(r) the continuations of the functions 1o(r) and 71(r) for negative r as odd

functions:  To(—r) = —70(r) and T1(—r) = —11(r) for all r > 0, respectively. Then solution v(r,t) to the
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mized problem is given by the restriction of (4.1) tor > 0:

e % [7—0(7“ +et 1) +T(r—et + 1)} + /O [To(r — @(t)s) + To(r + ¢(t)s)| Ko(o(t)s, t)o(t) ds

N =

v(r,t) =
+ /01 {?1 (r + ¢(t)s) +7 (r - ¢(f)5>} Ki(¢(t)s, t)o(t) ds,

where Ko(z,t) and K1(z,t) are defined in Theorem 0.4 and ¢(t) = e* — 1.

Proof. This lemma is a direct consequence of Theorem 0.4. O

Now let us consider the case x € R™, where n = 2m+ 1. First for the given function u = u(x,t) we define
the spherical means of u about point . One can recover the functions by means of (6.1), (6.2), and

. 1 .
@i(x) = }E%I%( ) = lim 797“(501')(56)’ i=0,1.

r—0 (”)

Then we arrive at the following mixed problem

vie(z,7,t) — e vy (2, 7,t) =0 forall t>0,r>0, z€R”,
v(z,0,t) =0 forall t>0, xze€R",
v(z,r,0) =0, wvz,r,0)=®(z,r) forall r>0, zeR™,

with the unknown function v(z,r,t) := Q,(u)(x,r,t), where

Bi(e,r) = ()@ = (3 50)" P [ e ry)as (63)
AC) . r\¥i ror W1 Jgn i Y .
®,;(z,0) =0, i=0,1, for all zeR". (6.4)

Then, according to Lemma 6.1 and u(z,t) = lim,_o (v(z,, t)/(cgn)r)), we obtain:

u(z,t) = (n) lim r/ (@1 (2,7 + 6(1)s) + 1 (2.7~ 6(1)8) ]| K1 (6(2)s, (1) ds
The last limit is equal to

2/01 (8<I>1(x,r)> Ki(o(t)s, t)o(t) ds

or r=¢(t)s

a 1 a ; P 2
_ /O ( Ga)  — /3 nlgol(m—f—ry)dSy)T¢(t)SK1(¢(t)s,t)¢(t)ds.

Thus, Theorem 0.6 in the case of @g(z) = 0 is proven.

Now we turn to the case of ¢1(x) = 0. Thus, we arrive at the following mixed problem

vie(z,7,t) — e vy (2,7, t) =0 forall t>0,r>0, z€R”,
v(z,r,0) = ®o(x,r), vi(x,r,00=0 forall r>0, zeR",
v(z,0,t) =0 forall t>0, xe€R"™,

with the unknown function v(z,r,t) := Q,(u)(x,r,t) defined by (6.3), (6.4). Then, according to Lemma 6.1

and u(z,t) = lim, o (v(z,r t)/(cé")r)), we obtain:

1
u(z,t) = NOK }E,n?{(%(x r4e —1) 4 &gz, 7 — e —l—l)}
o

2 (1~ -
+ W A 7111% 277. [@0(.%, r— ¢(t)8) + @O(xa T+ (j)(t)S):I Ko((j)(t)& t)d)(t) dS,
€

. ( ol ) ot )/1 (;@0(33 r>>T_ Ko(¢(t)s, t)o(t) ds

Co #(t)s

1
e 21)% x,d(t)) + 2/ Vo (@ $)Ko(o(t)s, t)o(t) ds.
0

Theorem 0.6 is proven.
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7 LP — L7 Decay and L? — L9 Estimates for the Solutions of One-
dimensional Equation, n =1

Consider now the Cauchy problem for the equation (0.14) with the source term and with vanishing initial
data (0.15).

Theorem 7.1 For every function f € C?(R x [0,00)) such that f(-,t) € C§*(R,) the solution u = u(x,t) of
the Cauchy problem (0.14), (0.15) satisfies inequality

t
(@, D)o,y < oert/(1+t—b)||f(a:,b)||Lp(Rz)db
0

/o111 1,1
forallt>0,wherel<p<p,§—p p,,p<2,p+p,f1.

Proof. Using the fundamental solution from Theorem 0.1 one can write the convolution
00 00 i o)
uet)= [ [ Bwtpnranady = [ @] By sonrw0d.
—00J —0 0 —00

Due to Young’s inequality we have

lu(z, ) Lam,) < ¢k

¢ $(t)—$(b) 1/p
db(/ E(af,t;07b)|”dw> 1 (2, 0) || Lo (.,
—(6(t)— (b))

S~

where1<p<p’,$*1—

=3 + = = 1. The integral in parentheses can be transformed as follows

11, 1
pp o

d(t)—o(b) et=t—1 t—b _ 1\2 _ .2\ P
/ |E(x, t;0,b)|Pdz = er*bﬂ/ (" +1)2 —12) 5 F <1, Lyl -0 - 7"2) dr.

—(3(t) = (b)) 0 2727 7 (et +1)2 —r
Lemma 7.2 For all z > 1 the following estimate

[t (L s

z—1 r2\"” _ 1 3 (z—1)
z—|—1§2—r2> dr <C(l+Inz)(z—1)(24+1) pF(§’g;§; EZ+1;2)

1s fulfilled, provided that 1 < p < p/, % = = 1. In particular, if p < 2, then

1

p/
=1 s (11 —1)2—r2\”

/0 ((z+1)2r2)2F(2,2;1;Ez+1;2_:2) dr < C(l+z)(z—1)(z+1)"".

Proof. We rewrite the argument of the hypergeometric function as follows

(z—1)2—r? 3 4z
(z+1)2—7r2 (z+1)2—r2"
If
r>/(z+1)2 =38z, (7.1)
th
h A Sl o = ! (7.2)
(z+1)2—-r2 =2 (z+1)2—7r2 ~ 2 '
for such r and z implies
(il ,___ 4 N\ _.o (7.3)
272" (z+1)2=r2 )|~ '
Hence for p > 0 we have
z—1 P 2
p 11 4 1 3 -1
/ (z+1)*=r?)"2F (,;1;1—222> dr <C(z—1)(z+1)"PF (,p;;(z )2)
VG282 272 (z+1)2—r 27272 (z+1)

24



If
r<+(24+1)?-8z and z>6,

then 8 < 82 < (2 +1)? — 72 < (2 + 1)?, implies
11 4z
Flz,n1-——2 )<
(5311 )| <€

/« /(2+1)2—82

0

(i) <ctome

Hence

(G + 12 =28 (5,

< Cl+ln2)(z—-1)(z+ 1)_pF(%7 g%

The lemma is proven.

Completion of the proof of Theorem 7.1. Thus for p < 2 and z = e!~* we have
(@, )l|Le@,) < C/Ot er (14 2)(z = )0 (z + )7 £(@,b)l| o e, db
< c/ot e (141 —b) (e — 1)VP(et 0 4 1) 7Y F(2,0) | Loe,) db
< c/ot 6%717(1 +t— b)eﬁf%e_“rb”f(x, b)llzr(r,) db.
The last inequality implies the estimate of the statement of theorem. Theorem 7.1 is proven.
Proposition 7.3 The solution uw = u(xz,t) of the Cauchy problem
u = gy =0, u(@,0) =po(z),  w(x,0)=pi(z),

with po, @1 € C§°(R) satisfies the following estimate

lu(z, t)]lL,@ < C (leo(@)llL, @ + A +t)ei(@)L,®) forall te(0,00).

(7.4)

Proof. First we consider the equation without source term but with the second datum that is the case of
o = 0. For the convenience we drop subindex of 1. Then we apply the representation given by Theorem 0.4

for the solution u = u(z,t) of the Cauchy problem with ¢g = 0, and obtain

et—1
Ju(z, )| Lor) < 2||‘P($)||LQ(R)/O [ Ky ()| dr .

To estimate the last integral we write

t

e"—1
/ |Kyi(r,t)|dr < I(e"),
0

where for z = e > 1 we denote

2 (,_1)2
11 (z 1)>dr.

z—1 1
Li(z) = ——F (=, = 1;
1(2) /0 JAt22 (2 2 R (z1 1)
Then, according to Lemma 7.2 (where p = 1) we have for that integral the following estimate

L) <C(1+1).
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Finally, (7.5) to (7.7) imply the L? — L7 estimate (7.4) for the case of ¢ = 0.

Next we consider the equation without source but with the first datum, that is, the case of ¢; = 0.
We apply the representation given by Theorem 0.4 for the solution v = u(x,t) of the Cauchy problem with
¢1 = 0, and obtain

t

e’ —1
lu(z, t)|lpowy < €_5||<P0($)HM(R)+2||900(37)Hm(R)/ |Ko(z,t)]dz.
0

t
Thus, we have to estimate the integral foe -1 |Ko(r,t)| dr. The following lemma completes the proof of
proposition.
Lemma 7.4 The kernel Ko(r,t) has an integrable singularity at v = e* — 1, more precisely, one has

t

e"—1
/ |Ko(r,t)|dr < C forall te][0,00).
0

t 2 2
Proof. Consider the argument % of the hypergeometric function and its derivative. Denote z = e?,

then 0 < EZ:;BE::; = g;};j::j < 1. The formula (3.11) describes the behavior of those functions at the

neighbourhood of zero. Hence, if € > 0 is small, then for all z and r such that

EZ ; 32 o <e (7.8)
one has
11 (z=1)2—r2  1(z—1)2—72 (z—1)2—r2\?
F(iZ’Q’l’(2+1)2—r2)1i4(z+1)2—r2+O<((z—|—l)2—r2>) (7.9)

Consider therefore two zones,

Zi(e,z) = {(z,r)’mge,ogrgz—l}, (7.10)
Zy(e,z) = {(z,r)’5<g;1;z::z, <r<z—1}. (7.11)

We split integral into two parts:

et—1
| ol = Ko(rt)ldr + | (Ko, 1)] dr
0 (z,m)EZ1(e,2)

(z,7)EZ2(e,2)

In the first zone we have

11 (2—12 1 L1, (=12
02 ( = 33t ) + 26~ 0P (5 g )
= (G- | ”2“2‘3”2)()((&;32::2)) o

Consider therefore,

1 ==l 1
A = / —_—dr < / —_—dr < il for all z €[1,00),
(z,r)€Z1(,2) \/ (2 + 1)% — 12 0o V(z+1)2—r2 2
1
Ay = / f3—z2—2z+7"2|dr
(zr€Zi(e,z) (2 +1)2 = 12)y /(2 +1)% —r?

z—1 1

< 0/ 4
0 Vi(z+1)2 —r2

< g for all z €[1,00),
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and

22422-3-1r2 (2-1)%—r?

A3 = / dr
(rezies) V/(z+1)2 =12 ((z+1)2 —r2)?
2 a2

< / 2°+2z2—-3—r 12 _dr

(2,m)EZ1(e,2) (Z + 1)2 —r2 (Z =+ 1) -r
1

< / 1
(z1)€Z1(e,2) \/ (2 + 1) — 12

< g for all z €[1,00).

Finally,
1
/ dr
(zrezi(ez) (2 =12 =1r?) /(2 +1)? =12
11 (2—1)2—72 11 (2—1)%2—12
1 22 2F(777~1-7> 2 le(f LT )
x|(L=z" ) 2y Gy (z=DF (55 T+ 1)2 2
< C for all z €[1,00).
In the second zone we have
(z—1)2 - 1 1
< -t < 1 < . 1
6_(z—l—l) —7“2_ — (z=1)2—=1r2 7 g[(z+1)2 —r?] (7.13)

According to the formula 15.3.10 of [3, Ch.15] the hypergeometric functions obey the estimates

(-3 3)
272’

This allows to prove the estimate for the integral over the second zone

<C(1-In(l—=)) forall zelel). (7.14)

11
< F(*’ﬂl; )
C  and ’ 55 T

/ 1
dr
(z1)€Za(es) (2= 1) =12)y/(z2+1)? —r?
11 (=122 11, (2—1)2 =72
1—224+rm)F(— =, 52— ) +2(z = D)F( =, =5 1
x|(L= 2"+ ( 22’ ’(z+1)2—r2)+ (z=1) (2’2’ ’(z+1)2—r2)
< C for all €[1,00). (7.15)

Indeed, for the argument of the hypergeometric functions we have

(3_1)2_7"2 4z 4z
< =1- 1, ——<1-— for all Z .
E_(z+1)277"2 (z+1)2—r2< ’ (z+1)2—r2< e forall (z,7)€ Zs(e,2)
Hence,
11 (2—1)2—r2

To prove (7.15) we have to estimate the following two integrals

A = / 1 _ 22 + T2 d'l",
! (2,m)EZ2(g,2) ( z— 1 — 7"2 Z 12— 2 ‘ )|
A5 = / |(Z_1)(1+IHZ)|dT
(2,m)EZ5(e,2) ((Z — 1) — ’[“2) (z + ) _ T2

We apply (7.13) to A4 and obtain

1

z—1
—dT‘SCE/ ! dTSCEa
(zm)€Za(e,2) /(2 +1)2 — 12 0 Viz4+1)2 —r2
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while

1
As < Ci(z—1)1+Inz / dr
’ e : (zr)eZa(ez) (2 +1)2 =r?)\/(z+1)% —r?
z—1 1
< C.lz—1)(1+1 d
< C(z—1)(1+ nz)/o CESEETOEE r
1
1
Thus, (7.15) is proven. Lemma is proven. O

8 Some Estimates of the Kernels Ky and K;. L? — L9 Decay Esti-
mates for Equation with n = 1 and without Source Term

Theorem 8.1 Let u = u(z,t) be a solution of the Cauchy problem
u — gy =0, u(@,0) =go(z),  w(z,0)=¢i(z),
with po, 1 € C§°(R). If p € (1,2), then

_t i _
(e, )lzae,) < e 2 leo@)lzacr,) + Cole’ = Dre ™ po(@)|oe.)
+CA+t)(e = 1) 1 —e o1 (@) e,

for allt € (0,00). Herel<p<p/, L=

11 1,1 _ —
=3 sty =L 1Ifp=1, then

lu(z, )| Lar) < C (leo(@)lpa@) + 1+ )llo1(@)|Low))  for all t e (0,00). (8.1)

For p = 1 we apply Proposition 7.3. To prove this theorem for p # 1 we need some auxiliary estimates
for the kernels Ky and K;. We start with the case of ¢y = 0, where the kernel K; appears. The application
of Theorem 0.4 and Young’s inequality lead to

et—1 1/p
lu(@, t)|lpar,) < 2(/ |K1(33’t)|pd$> (@)l ®.,),
0

ot 1/p
- .+ % = 1. Now we have to estimate the integral (f ! | K1 (x,t)\pdx)

where1<p<p’,%=p p,,; 0

Proposition 8.2 We have

1/p

(/e - |K1(x,t)|”dx> < C+t)(er - 1)1/p_1(1 —e™ forall te(0,00).
0

p 1/p
d;z;) .
1 11 (2-12-2%/|"

T 22 ey —a2
the right-hand side. According to Lemma 7.2 we obtain that for all z > 1 the following estimate

z—1
/0

Proof. One can write

1/p

(/OEt_1|K1(x,t)|pdx> < (/Oet_l

z—1
Denote z := ¢! > 1 and consider the first integral /
0

1 F(l 1.1. (et—l)Q—xQ)
Grep_a @2 (@riz_q

dz of

dr < C(1+1Inz2)"(z —1)(z + 1)7PF<%’ 5 g; Ez . 32)

1 F(l 1.1. (z—1)2—x2)
(I+2)2—22 \272 7 (2+1)? —2?
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is fulfilled, provided that 1 <p < p/, ¢ =+ =, - + 5y = 1. In particular, if p < 2, then

_ 1)2 —T2

z—1 /p
(/0 ((2“)2_7"2)_“(;’;;1;Ezﬂw)pdr)l < C(l+m2)(z—DYe(z+1)7 .

Proposition is proven. O
Thus, the theorem in the case of ¢y = 0 is proven.

Now we turn to the case of 7 = 0, where the kernel K, appears. The application of Theorem 0.4 leads to

ef—1
[u(z, )l Lae,) < e Zllvo(@)llLae,) + / [po(x = 2) + oz + 2)] Ko(2,) dz
0

L4(Ry)
Similarly to the case of the second datum we arrive at
et—1 l/p
lu(@, )lzee.) < e 2 lleo(@)Lew.) + lleo(@)llLe,) (/0 |K0(T7t)|pd7’>
oy . . . et—1 1/p
The next proposition gives an estimate for the integral ( Jo | Ko(r, t)\pdr> .
Proposition 8.3 Let 1 <p < p/, % = % - %, %—&— % =1, and p € [1,2). We have
et—1 1/p
(/ | Ko(r, t)|”dr> < Cyle - 1)%(et + 17t forall te(0,00).
0
Proof. We turn to the integral (z = e* > 1)
I - /Zl 1 P
S R (R O IV e e
1/p
11, (2—1)2—r2 11 (z=1)2=r%/
1—22 2F(—77'1'7) 2 —lF(f 7'1'7) d .
X( Z+T) 2’27 7(24’1)277{'2 + (Z ) 2727 7(Z+1)277'2 r

The formula (3.11) describes the behavior of those functions at the neighbourhood of zero. Hence, if € > 0
is small, the for all z and r such that (7.8) holds, one has (7.9). Consider therefore two zones, Z; (e, z) and
Zs(e, z), defined in (7.10) and (7.11), respectively. We split integral into two parts:

t

e'—1
/ |Ko(r, )" dr = / |K0(r,t)\pd7“+/ |Ko(r,t)|” dr.
0 (z,r)EZ1(e,2) (2,m)EZ5(e,2)

In the proof of Lemma 7.4 the relation (7.12) was checked in the first zone. If 1 < z < M with some constant
M, then the argument of the hypergeometric functions is bounded,

7127 2
Ez‘HHSCM<1 forall r e (0,z2—1), (8.2)

and we obtain

</()Z1|K0(T,t)pdr>1/p < C(/()Zl (Z+11)2_T2 pdr>1/‘)
< C <(z - (= + 1)*PF(%’ g; ;; Ez—i_i;z))l/l)

< Clz-DYP(z4+1)7t.

Thus, we can restrict ourselves to the case of large z > M in both zones.
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Consider therefore for p € (1,2) the integrals over the first zone

) P a1 1 p
P N N ,
(zmezi(es) |V (z+1)2 =12 0 Gz +1)2—12
o/l p 3 (z2—1)2
< Oz-1 H—rF(=, 2.2
< CE-DE+)7F(3.55 o 1)2)
< Cl-1)(=+1)"°*
and
1 _ 12— 2\ 2
A7 = / (22 +22—-3~— r2) ((z )2 T2> dr
ez | (=12 =r?)/(z+1)* = r? (z4+1)2 =7
z—1 1 P
< [ ==
0 (z+1)2 —r2
< Cl-1)(E+1)"".
In the second zone for the argument of the hypergeometric functions we have
(z —1)%2 —r2 4z 4z
< =1- l, ——m—<1-— for all Z
Tt (z+1)2—r2< ’ (z+1)2—r2< e forall (z,r) € Z2(e,2),
and
L < ! 0<r< 1
r<z-1.
(z—=1)22 =712~ ¢[(z+1)2—r?]’ - -
Hence,
11 (2—1)2-12 4z
2. < _ < .
‘F<2’ 2 G —7’2) <C|1 ln7(2+ nr—2) = C(l+1nz) forall (z,7)€ Zs(e,2)
We have to estimate the following two integrals
1 p
As = / (22 =1—7%)] dr,
(zeza(e) | (2 =12 =r2)/(2 +1)% =12
p
1
Ay = / (z=1)(1+1nz)| dr.
(zr)eZa(ez) | (2 = 1)2 = r2) /(2 +1)2 —r?
We apply (7.13) and obtain
1 p
Ag < / (22 =1 =72 dr
(=n)€Za(es) | (2 +1)2 =72) /(2 + 1) — 72
z—1 1 p
< [ =
0 (z+1)%2—r2
(1l p 3 (z—1)?
< 1 Nrp(= P.2.
< Ce-DGEHDTE(3 55 L)
< Cl-1(+1),
while
Ag < Cz—=DP(1+ lnz)p/ ((z+ 1)2 — 7‘2)73”/2611"
(z,m)EZ5(e,2)
a1 3p 3 (2—1)?
< _ 14 P _ 3p I A
< Clz—1(1+l2) (= D+ )P (5,555 o 1)2)

< Clz-1)(z+1)7".

The proposition is proven.
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9 [P — L7 Decay Estimates for the Equation with Source, n > 1

For the wave equation the Duhamel’s principle allows to reduce the case of source term to the case of
the Cauchy problem without source term and consequently to derive the LP — L9-decay estimates for the
equation. For (0.6) the Duhamel’s principle is not applicable straightforward and we have to appeal to the
representation formula of Theorem 0.5. In fact, one can regard that formula as an expansion of the two-stage
Duhamel’s principle. In this section we consider the Cauchy problem (0.17) for the equation with the source
term with zero initial data.

Theorem 9.1 Let u = u(z,t) be solution of the Cauchy problem (0.17). Then for n > 1 one has the
following decay estimate

H(_A)isu(x,t)HLq(Rn)
t et_eb . . ,
L 11 —eb)2 =
< 0 [ 1@l [ dr G 2F< .1.<ee>r>
0 0 ,

(et +eb)2 — 2727 7 (el +eb)? — 12

providedthat520,1<p§2,%—i—%:l,%(n—i—l)( )<23<n(7—5) —1—|-n( )<28.

Proof. According to the representation (0.20) and to the results of [4, 16] for the wave equation, we have

—A)” (x,t)||Lq(Rn

11 (et —e?)?2 — 72
< c/ db/ (7)o ) %ﬂ ( e rer—z)
t b
€T (i1 1 11 (et —eb)?2—r2
< C [ db b)|| e ®n 25—y =) F 77'1'— d
- /0 I D)ller )/0 " n (et +eb)2 —r2 27277 (et 4 eb)2 — 2 "
The theorem is proven. 0
We are going to transform the estimate of the last theorem to more cosy form. To this aim we estimate

for 2s — n(% — %) > —1 the last integral of the right hand side. If we replace e’ /e’ > 1 with z > 1, then the

integral will be simplified.

Lemma 9.2 Assume that 0 > 2s — n(% — é) > —1. Then

z—1 2 2
1 1 1 1 1 _1 -
/ p2een(i-bh L g (,;1;M) dr < Cz Yz — 1) G- (1 4 1nz),
0 (z+1)2—1r2 2727 (z+ 1)

for all z > 1.

Proof. If 1 < z < M with some constant M, then the argument of the hypergeometric functions is bounded,

see (8.2), and
-1 2,2
/z pren-b 1 F(l 1,1,(2_1)2_T2) dr
0 (z+1)2—r2 \272" " (z+1)2—r

< C’M(z—l)lws_"(%_%), forall 1<z<M.

Hence, we can restrict ourselves to the case of large z, that is z > M. In particular, we choose M > 6 and
split integral into two parts:

z—1 2 2
/ L N S (1, Lo 1)2 = rz) dr
0 (z+1)2—7r2 \2°2 " (z+1)2—r
Y (z41)2-82 25—n( _l) 1 11 4z
= r R — T *,*;1;1 o T2 2 dr
0 (z+1)2—r2 \272 (z4+1)2=r

+/z—1 2s—n(L-1) 1 F(l 1 1:1 4z )d
r P e 5, 5 sl = 55 | dr.
V(E+1)2 -8z VE+1)2—r2 \2 2 (z4+1)2—1r2
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For the second part we have (7.1) and z > M > 6, then (7.2) and (7.3) imply

z—1
1 11 4
/ 7“257"(%7%)—F (, — 11— 222> dr
V(E+1)2-82 ViE+1)2—r2 \2°2 (z+1)2—7r

z—1
< c / onGeh L g
0 (z+1)2 -2

< C(1+ 2)28_"(%_%) forall z2>M >6.
For the first integral r < /(2 +1)2 -8z and 2> M >6 imply 8z < (z+1)? —r?. It follows

11 4z 4z
Flzu1i-—— l<Cm|—b—
<2’2” (z+1)2—r2>|_ n((z+1)2—r2>

Ve (1) 1 11 4z
A R — Pl B B dr
0 (z+1)2—r2 \2°2 (z+1)2 —r2

<C(l+Inz).

Then we obtain

1
—dr
(z+1)2—1r2

< Cl+Inz)(1+2)2>"Gd).

z—1
< 0(1+1nz)/ 7“257”(%7%)
0

Lemma is proven. 0

Corollary 9.3 Let u = u(z,t) be solution of the Cauchy problem (0.17). Then for n > 1 one has the
following decay estimate

t
s—n(t-1
I(=8)*u(z, Dl pagny < CetZnG=1) / 172, ) oy (1 + € — b) b (9.1)
0
. 1 1 _ 1 1 1 1 1 1 1
provided that s >0, 1 < p < 2, ];—l-a—l, 5(n+1) (5—5) §25§n<5—5), —1—|—n(5—5) < 2s.

Proof. Indeed, from Theorem 9.1 we derive

1 1

t
(=) *u(z,t)|| pamn)y < C/O £ (2, )| o ()55 ) db

e'7"—1 2s—n(1-1) t—b _ 1)\2 _ 72
x/ dl l - F(l,l;l;(e 7 Dl )
0 (et=b +1)2 —¢2 272777 (et +1)2 — 2

Next we apply Lemma 9.2 with z = e!~% and arrive at (9.1). Corollary is proven. (]

10 LP— L% Decay Estimates for the Equation without Source, n > 1

The LP — Li-decay estimates for the energy of the solution of the Cauchy problem for the wave equation
without source can be proved by the representation formula, L; — Lo, and Ly — Lo estimates, interpolation
argument. (See, e.g., [18, Theorem 2.1].) There is also a proof of the LP — L9-decay estimates for the solution
itself, that is based on the microlocal consideration and dyadic decomposition of the phase space. (See, e.g.,
[4, 16].) The last one was applied in [9, 10] to the equation (0.6) and its result is given by (0.8) that contains
some loss of regularity. The application of the first approach includes the step with the Granwall inequality
that brings some inaccuracy in the result. To avoid the loss of regularity and obtain more sharp estimates
we appeal to the representation formula provided by Theorem 0.6.

Theorem 10.1 The solution u = u(x,t) of the Cauchy problem (0.21) satisfies the following LP — L estimate
s s—n(l_1 _
I(=2) " u(@, ) Le@ny < Cle" —=1)* 767 {Jlpo(@)l| Lo@n) + lo1llLr@n (1 + )1 — e}
for all t € (0,00), provided that s > 0, 1 < p < 2, %—l—l =1, %(n—s—l)(l—l) < 28 < n(%—%),

q p q
1 1
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Proof. We start with the case of g = 0. Due to Theorem 0.6 for the solution u = u(x,t) of the Cauchy
problem (0.21) with ¢ = 0 and to the results of [4, 16] we have:

ef—1
(i _1
1(=A) " u(x, )] Larn) < CII%HLP(RT»)/O 2 DK (8| dr

To continue we need the following lemma.

Lemma 10.2 The following inequality holds

z—1
/ PG K ()] dr < C(14+n2)z 7 (z = )M GTD forall 2> 1.
0

Proof. In fact, we have to estimate the integral:
z—1 2 2
11 1 11 —1)—
I3 = / T2S—n(5—a) F<777;1; (Z )2 TQ)dTa
0 (z+1)2—r2 \272" " (z+1)2—7r
where 2 = e!'. The estimate for I3 is given by Lemma 9.2. Thus, for the case of g = 0 the theorem is
proven.

Next we turn to the case of ¢; = 0. Due to Theorem 0.6 for the solution v = u(x,t) of the Cauchy
problem (0.21) with ¢1 = 0 and to the results of [4, 16] we have:

[(=A) " u(z, )] La(rn)

ef—1
L —n(:-1 s—n(i-1
< Cemi(ef —1)*7G q)llsoo(w)\lm(w)+Cllsoo(z)IILp(Rn)/ r2 7D | Ko (r, 1)) dr
0

The following proposition gives the remaining estimate for the last integral, fozfl 7’25_"(%_5)| Ko(r,t)|dr,
and completes the proof of the theorem.

Proposition 10.3 If 2s — n(%} - %) > —1, then

z—1
/ P2 G =D | Ko (r, 1) dr < Oz~ Mz — DH2EG-D forall 2> 1.
0

Proof. We follow the arguments have been used in the proof of Proposition 8.3. If 1 < z < M with some
constant M, then the argument of the hypergeometric functions is bounded (8.2), and we have

2s—n(%—%)dr

z—1
/ P2 G0 Ko (r, )] dr - <
0

z—1 1
| =

< Cu(z— 1)1+2S_"(%_%), l<z< M.

Thus, we can restrict ourselves to the case of large z > M in both zones Zi (e, z) and Zs(e, z), defined in
(7.10) and (7.11), respectively. In the first zone we have (7.12). Consider therefore the following inequalities,

1
A = / Y k) I S
()21 (e.2) (z41)% —r?
z—1 L 1
< C/ VAL k) B S—
0 (z+1)2 —r2
< G739 forall ze [1,00),
2 2
All — / T'QSin(%itlz) 1 |3—Z —22+T | ,
(z,r)€Z1(e,2) (Z + 1)2 —r2 (Z + 1)2 —r?
z—1
<o o
0 (z+1)2 —r2
< G739 forall ze [1,00),
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and

—1)2 _ 2\ 2
Ap = / r2s (=) 1 ((Z 1)2 7“2) dr
(2m)€Z1(e,2) (z=12=72)/z+ 12 =72 \(2+1)*—7r
< / p2s-n(3-1) 1 L
> (2,7)EZ1 (g,2) (2+1)2_T2 (Z+1)2—r2
< oG- 1 1,
> (2,r)E€Z1(e,2) (z+1)2 —r2 4z
< 022 GO forall ze [1,00).
Finally,
1
7,,25 rL(———

/ dr
(z,7)EZ1(g,2) ((Z — 1)2 — 7'2) (Z + 1)2 —7r2

11 (2—1)2—r2 11 (z—1)2—0?
e p( <L Ly B L ooy
X [(1—2%+7r%) 272z 1)2 12 +2(z - 1) 27277 (24 1)2 — r2

< 2 "G9) forall ze [1,00).

—_

In the second zone we use (7.13), (7.14), and (7.16). Thus, we have to estimate the next two integrals:

S e e,
(z,m)€Z3(e,2) ( z — 1 \/Hli | ‘

1 1

Ay = / p2enG—a [(z—=1)(1+1Inz)|dr.
(2:7)€22(=,2) ((z=1)2—r ) (z+1)2 =12

We apply (7.13) to 413 and obtain

1 1
Az < Ce p2s—(5—3) 21— 2| dr
(2,7)€2a(=,2) [(z4+1)2 =r?] \/(z +1)2 —r2 |

z—1
< Cg/ preen(i-ty L
0 (z+1)2—1r2

< 026 forall ze [1,00),

while
Ay < (22— 1)(1+1nz)/ P2 —g ! dr
(2:1)€Za(e,2) ((z =12 =r?)/(z+1)% —r?
< Ce(z—-1) (1+lnz)/z 11"25 n(5=3) L dr.
: (417 )7

For 0 > a > —1 and z > M the following integral can be easily estimated:

/Z—l “ 1 d
o Gz

z/2 z—1
= / r® 1 dr+/ r¢ 1 dr
I (GRS VR e WP (FER Ve e

16 z/2 a z—1 1
— 2 3dr + i/ dr

<
— 9 ) 49 ) 0 ((z41)2 —r2)3/2
< Oz dtetledr 4 0z03/2
< CZa_3/2
Then Ay < Co(z —1) (1 +1nz)2%73/2 < C.2% The proposition is proven. O

Acknowledgements
This work was initiated during the author’s visit in the Institute of Mathematics of the Potsdam University in

June-July, 2001. The authors would like to thank Prof. B.-W. Schulze for the support and kind hospitality.

34



References

1]

[17]
[18]

[19]

[20]

M. Abramowitz, I. A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathe-
matical tables, National Bureau of Standards Applied Mathematics Series, 55, 1964, Washington, DC.

J. Barros-Neto, I. M. Gelfand, Fundamental solutions for the Tricomi operator. I,I[III, Duke Math. J.
98(3) (1999) 465-483; 111(3) (2002) 561-584; 117(2)(2003) 385-387; 128(1) (2005) 119-140.

H. Bateman, A. Erdelyi, Higher Transcendental Functions. v.1,2, McGraw-Hill, New York, 1953.
P. Brenner, On LP — L9 estimates for the wave-equation. Math. Zeitschrift 145 (1975) 251-254.

M. Brozos-Vézquez, E. Garcia-Rio, and R. Vazquez-Lorenzo, Locally conformally flat multidimensional
cosmological models and generalized Friedmann-Robertson-Walker spacetimes, J. Cosmol. Astropart.
Phys. JCAP12(2004)008 doi:10.1088/1475-7516,/2004,/12/008.

W. De Sitter, On Einstein’s Theory of Gravitation, and its astronomical consequences.IL,III. Royal
Astronimcal Society. 77 (1917) 155-184; 78 (1917) 3-28.

A. Einstein, Kosmologische Betrachtungen zur allgemeinen Relativitdtstheorie, Sitzungsber Preuss.
Akad. Wiss. Berlin (1917) 142-152.

H. Friedrich, A. Rendall, The Cauchy problem for the Einstein equations. Einstein’s field equations and
their physical implications. Lecture Notes in Phys., 540, Springer, Berlin (2000) 127-223.

A. Galstian, L, — L, decay estimates for the equation with exponentionally growing coefficient, Preprint
2001/24, ISSN 1437-739X, Institut fr Mathematik, Uni Potsdam, 2001.

A. Galstian, L,-L, decay estimates for the wave equations with exponentially growing speed of propa-
gation. Appl. Anal. 82 (3) (2003) 197-214.

J. M. Heinzle, A. Rendall, Power-law inflation in spacetimes without symmetry. Commun. Math. Phys.
269 (2007) 1-15.

L. Hormander, The analysis of linear partial differential operators. IV. Fourier integral operators.
Grundlehren der Mathematischen Wissenschaften, 275. Springer-Verlag, Berlin, 1994.

W. Littman, The wave operator and L, norms. J. Math. Mech. 12 (1963) 55-68.

W. Littman, C. McCarthy, N. Riviere, The non-existence of LP estimates for certain translation-invariant
operators. Studia Math. 30 (1968) 219-229.

C. Mgller, The theory of relativity. Oxford, Clarendon Press, 1952.

H. Pecher, LP-Abschétzungen und klassische Losungen filir nichtlineare Wellengleichungen.I, Math.
Zeitschrift. 150 (1976) 159-183.

J. C. Peral, L estimates for the wave equation. J. Funct. Anal. 36 (1) (1980) 114-145.

R. Racke, Lectures on Nonlinear Evolution Equations, Aspects of Mathematics, Vieweg, Braun-
schweig/Wiesbaden, 1992.

A. Rendall, Asymptotics of solutions of the Einstein equations with positive cosmological constant. Ann.
Henri Poincaré 5 (6) (2004) 1041-1064.

J. Shatah, M. Struwe, Geometric wave equations. Courant Lecture Notes in Mathematics, 2. New York
University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society,
Providence, RI, 1998.

S. Sonego, V. Faraoni, Huygens’ principle and characteristic propagation property for waves in curved
space-times, J. Math. Phys. 33(2) (1992) 625-632.

K. Yagdjian, A note on the fundamental solution for the Tricomi-type equation in the hyperbolic domain,
J. Differential Equations 206 (2004) 227-252.

35



[23] K. Yagdjian, Global existence in the Cauchy problem for nonlinear wave equations with variable speed
of propagation, New trends in the theory of hyperbolic equations. Edited by Michael Reissig and Bert-
Wolfgang Schulze. 301-385, Oper. Theory Adv. Appl., 159, Birkh&user, Basel, 2005.

[24] K. Yagdjian, Global existence for the n-dimensional semilinear Tricomi-type equations, Comm. Partial
Diff. Equations 31 (2006) 907-944.

[25] K. Yagdjian, Self-similar solutions of semilinear wave equation with variable speed of propagation. J.
Math. Anal. Appl. 336 (2007), 1259-1286.

(Received on August 27, 2007)

36



	0 Introduction and Statement of Results
	1 Fundamental Solutions. Proof of Theorem 0.1
	2 Application to the Cauchy Problem: Source Term and n = 1
	3 Some Properties of the Function E(x, t; y, b)
	4 The Cauchy Problem: Second Datum and n = 1
	5 The Cauchy Problem: First Datum and n = 1
	6 n-Dimensional Case, n > 1
	7 Lp − Lq Decay and Lq − Lq Estimates for the Solutions of Onedimensional Equation, n = 1
	8 Some Estimates of the Kernels K0 and K1. Lp − Lq Decay Estimates for Equation with n = 1 and without Source Term
	9 Lp − Lq Decay Estimates for the Equation with Source, n > 1
	10 Lp−Lq Decay Estimates for the Equation without Source, n > 1
	References

