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Introduction

Boundary value problems for elliptic differential operators on manifolds with
conical points or edges can be studied from the point of view of solvability in
weighted Sobolev spaces. Numerous authors have contributed to this sub-
ject, see, Kondratyev [10], Kondratyev and Oleynik [11], Maz’ja and Ross-
mann [12], or the bibliography of [9]. The present paper is aimed at studying
a number of specific boundary value problems for the Laplacian in a wedge,
under mixed elliptic conditions, and from the point of view of ellipticity with
respect to a principal symbolic hierarchy, which is a triple (σψ(·), σ∂(·), σ∧(·))
consisting of interior, boundary and edge symbols. The main issue here is to
characterise those weights γ ∈ R such that the problem in question, inter-
preted as an operator in scales of weighted edge spaces, admits extra edge
conditions and has a parametrix in a corresponding pseudo-differential edge
algebra. In particular, we compute the index of the Fredholm family σ∧(A)
which is responsible for the difference of the number of edge conditions of
trace and potential type.

We employ the edge calculus of [14], here in the variant of boundary value
problems with the transmission property at the smooth part of the boundary,
and with a new (compared with [14]) scale of weighted edge spaces, suggested
by Airapetyan and Witt [1], and Tarkhanov [18]. For the computation of
the index of edge symbols we employ the results of the author’s joint paper
with Dines [2] and of [5].

1 Tools from the edge calculus

1.1 The edge formulation of boundary value problems

Consider a differential operator

Ã =
∑
|α̃|≤μ

cα̃(x, y)Dα̃
x,y

in R
2
x × R

q
y with coefficients cα̃ ∈ C∞(R2 × R

q), and restrict A to a wedge
Kα × R

q

Kα := {reiφ : r ∈ R+, 0 ≤ φ ≤ α},
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for some 0 < α ≤ 2π, where (r, φ) ∈ R+×S1 are polar coordinates in R
2\{0}.

In the case α = 2π we distinquish the components {(r, 0) : r ∈ R+} and
{(r, 2π) : r ∈ R+} of the boundary, i.e., K2π consists of the set R

2 \ {0}, slit
along Rx1,+, where ∂K2π consists of two components of Rx1,+. The operator
Ã takes the form of an edge-degenerate operator

A = r−μ
∑

j+|β|≤μ

ajβ(r, y)(−r
∂

∂r
)j(rDy)α

with coefficients ajβ(r, y) ∈ C∞(R+ × R
q,Diffμ−(j+|β|)(Iα)), Iα := [0, α],

where Diffν(Iα) denotes the space of all differential operators of order ν on
Iα with smooth coefficients up to the end points. We are mainly interested
in the Laplacian

Ã = Δ :=
2∑

j=1

∂2

∂xj
2 + ΔRq

for ΔRq :=
∑q

l=1
∂2

∂y2
l

where μ = 2 and

A = r−2{(r ∂

∂r
)2 + ∂2

φ + r2ΔRq}. (1)

Concerning the boundary conditions at I± × R
q with I± := {α±} × R+,

for α− := 0, α+ := α we first consider operators

B± := r−μ±
∑

j+|β|≤μ±

b±,jβ(r, y)(−r
∂

∂r
)j(rDy)β

with coefficients b±,jβ(r, y) ∈ C∞(R+ × R
q,Diffμ±−(j+|β|)(Iα)) and set

T± := r±B± (2)

where r± means the restriction of a distribution in Hs
loc(int Kα) to I± ×

R
q, s > 1

2 . To illustrate our approach we will assume that B± have constant
coefficients.

The operators
T± := r± (3)

represent Dirichlet conditions,

T± := r±r−1∂φ (4)

Neumann, and
T− := r−, T+ := r+r−1∂φ (5)

(or T− := r−r−1∂φ, T+ := r+) Zaremba conditions. The boundary value
problem

Au = f in intKα × R
q, T±u = g± on I± × R

q (6)
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will be identified with a column matrix of operators A := t(A T− T+).
Incidentally we also write T := t(T− T+) and A = t(A T ). Moreover,
instead of Kα we mainly consider the stretched cone R+ × Iα =: I∧α .

The principal interior symbol σψ(A) is nothing other than the homoge-
neous principal symbol σψ(A) of the operator A. For (1) we obtain

σψ(A)(ρ, ϑ, η) = r−2((−irρ)2 − |ϑ|2 − r2|η|2),

where (ρ, ϑ, η) denote the covariables of (r, φ, y) ∈ I∧α × R
q. Observe that

σ̃ψ(A)(ρ, ϑ, η) := r2σψ(A)(r−1ρ, ϑ, r−1η)

is smooth up to r = 0. The principal boundary symbol of A is defined by

σ∂(A) := t(σ∂(A) σ∂(T ))

for σ∂(T ) := t(σ∂(T−) σ∂(T+)), where

σ∂(A)(ρ, η) := r−2σψ(A)(ρ,Dφ, η) : Hs(R+) → Hs−2(R+),

σ∂(T±)(ρ, η) := r±r−μ±σψ(B±)(ρ, η) : Hs(R+) → C,

(ρ, η) �= 0; here Hs(R+) := Hs(R)|R+ with the standard Sobolev space
Hs(R) of smoothness s ∈ R, and σψ(B±) are the homogeneous principal
symbols of the operators B± of order μ±. The operator family

σ̃∂(A)(ρ, η) := t(r2σ∂(A)(r−1ρ, r−1η) rμ−σ∂(T−)(r−1ρ, r−1η)
rμ+σ∂(T+)(r−1ρ, r−1η))

is smooth up to r = 0. In order to explain the so-called principal edge symbol
we introduce some weighted function spaces.

1.2 Weighted spaces on infinite cones and principal edge
symbols

Let us first recall some weighted spaces on R+. Consider the Mellin transform
Mu(w) :=

∫ ∞
0 rw−1u(r)dr, first on u ∈ C∞

0 (R+), where Mu(w) is an entire
function in w ∈ C, and then extented to more general classes of distributions
(also with values in several kinds of Fréchet spaces). Then the Mellin covari-
able w will often range on a weight line Γ 1

2
−γ , γ ∈ R,Γβ := {w ∈ C : Rew =

β}. Recall that the weighted Mellin transform Mγ : C∞
0 (R+) → Mu|Γ 1

2−γ

extends to an isomorphism Mγ : rγL2(R+) → L2(Γ 1
2
−γ) (here function and

distribution spaces on Γβ with respect to the variable Im w ∈ R are denoted
in the usual manner with Γβ instead of R). Together with the inverse M−1

γ

we can form Mellin pseudo-differential operators

opγ
M (f)u(r) :=

∫ ∫ ∞

0

( r

r′
)−( 1

2
−γ+iρ)

f(r, r′, w)u(r′)
dr′

r′
d̄ρ, (7)
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d̄ρ := (2π)−1dρ, for any amplitude function f(r, r′, w) ∈ C∞(R+ × R+,
Sμ(Γ 1

2
−γ)) (with Sμ(Γβ) denoting Hörmander’s space of symbols of order μ

with constant coefficients and covariable Im w ∈ Γβ), cf. also Definition 1.5
below.

In this exposition by a cut-off function ω(r) on the half axis we under-
stand any ω ∈ C∞

0 (R+) which is equal to 1 near r = 0.

Definition 1.1 For s, γ ∈ R we define

(i) Hs,γ(R+) to be the completion of C∞
0 (R+) with respect to the norm

{ 1
2πi

∫
Γ 1

2−γ

(1 + |w|2)s|Mγu(w)|2dw
} 1

2
,

(ii) Ks,γ(R+) := {ωu + (1 − ω)v : u ∈ Hs,γ(R+), v ∈ Hs(R+)}
for any cut-off function ω.

More generally, we form the space Hs,γ(R+ × R) as the completion of
C∞

0 (R+ × R) with respect to the norm

{ 1
2πi

∫
R

∫
Γ1−γ

(1 + |w|2 + |ϑ|2)s|MγFu(w,ϑ)|2dwdϑ
} 1

2

with the Fourier transform F = Fφ→ϑ on R and set

Hs,γ(I∧α ) := Hs,γ(R+ × R)|R+×(0,α).

Moreover, let

Ks,γ(I∧α ) := {ωu + (1 − ω)v : u ∈ Hs,γ(I∧α ), v ∈ Hs(R2)|int Kα} (8)

for any cut-off function ω(r) on the half-axis, and α < 2π. In this definition
we tacitly identify I∧α with the angle Kα ⊂ R

2 and interpret 1 − ω as 1 −
ω(|x|), x ∈ R

2. The case α = 2π needs a separate definition, since K2π

consists of the plane with a slit along the positive x1-half-axis. But this case
can be covered as well by taking sums of corresponding elements supported
by [ε, π] and [−ε,−π] for some 0 < ε < π.

The spaces Hs,γ(·) and Ks,γ(·) can be endowed with Hilbert space scalar
products and corresponding norms.

In the sequel we identify I± with R±. Observe that the operators r± :
C∞

0 (I∧α ) → C∞
0 (R±) extend to continuous operators

r± : Ks,γ(I∧α ) → Ks− 1
2
,γ− 1

2 (R±), Hs,γ(I∧α ) → Hs− 1
2
,γ− 1

2 (R±)

for every s > 1
2 , γ ∈ R. With the operator A = t(A T− T+) we associate

the so-called principal edge symbol

σ∧(A)(η) := (σ∧(A)(η) σ∧(T−)(η) σ∧(T+)(η)), (9)
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η �= 0, where

σ∧(A)(η) := r−2((r∂r)2 + ∂2
φ − r2|η|2),

σ∧(T±)(η) := r±r−μ±
∑

j+|β|≤μ±

b±,jβ(−r∂r)j(rη)β .

It represents a family of continuous operators

σ∧(A)(η) : Ks,γ(I∧α ) → Ks−2,γ−2(I∧α )

⊕ Ks−μ−− 1
2
,γ−μ−− 1

2 (R−) ⊕Ks−μ+− 1
2
,γ−μ+− 1

2 (R+) (10)

for arbitrary s > max {μ− + 1
2 , μ+ + 1

2}. If we endow the Ks,γ-spaces with
the group actions

κ
(1)
λ : u(r, φ) → λu(λr, φ), u ∈ Ks,γ(I∧α ),

κ
(0)
λ : v(r) → λ

1
2 v(λr), v ∈ Ks,γ(R±),

λ ∈ R+ (cf. also Section 1.3 below), we obtain the (so-called twisted)
homogeneities

σ∧(A)(λη) = λ2κ
(1)
λ σ∧(A)(η)(κ(1)

λ )−1,

σ∧(T±)(λη) = λμ±+ 1
2 κ

(0)
λ σ∧(T±)(η)(κ(1)

λ )−1

for all λ ∈ R+. For every fixed η �= 0 the operators σ∧(A)(η) are boundary
value problems on the infinite cone Kα which belong to the cone algebra.
As such they have the principal symbols of that calculus, especially, the
so-called conormal symbol, defined as

σcσ∧(A)(w) := t(σcσ∧(A)(w) σcσ∧(T−)(w) σcσ∧(T+)(w)), (11)

where
σcσ∧(A)(w) := w2 + ∂2

φ : Hs(int Iα) → Hs−2(int Iα), (12)

σcσ∧(T±)(w) := r±
μ±∑
j=0

b±,j0w
j : Hs(int Iα) → C, (13)

w ∈ C, here with r± in the meaning of the restriction to the end points {α±}
of the interval Iα.

In Section 2 below we will characterise the Fredholm property and the
index of σ∧(A)(η) under standard ellipticity conditions for T±, together with
the non-bijectivity points of σcσ∧(A)(w) in the complex plane.

Remark 1.2 For every s ∈ R there is a family of isomorphisms

L(β, δ;α, γ) : Ks,γ(I∧α ) → Ks,δ(I∧β ) (14)
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for every fixed δ ∈ R and β ∈ (0, 2π] which can be constructed by a sim-
ple dilation of the opening angle α and multiplying functions by a factor
ω(r)rδ−γ+(1−ω(r)). This is particularly simple for 0 < α < 2π, 0 < β < 2π,
what concerns the contribution of Hs(R2)|int Kα , see the formula (8), but
a simple modification allows us to assume also the opening angles to be
2π. Then ||L(β, δ;α, γ)||L(Ks,γ (I∧α ),Ks,δ(I∧β )) is continuous in ((β, δ), (α, γ)) ∈
(0, 2π] × R × (0, 2π] × R.

1.3 Weighted edge spaces and symbols with twisted homo-
geneity

We now establish so-called weighted edge spaces in which our boundary
value problems are expected to have a parametrix.

A Hilbert space E is said to be equipped with a group action κ =
{κλ}λ∈R+ if κλ : E → E,λ ∈ R+, is a group of isomorphisms, κλκλ′ =
κλλ′ , λ, λ′ ∈ R+, and if λ → κλe defines a continuous map R+ → E for every
e ∈ E.

We then denote by Ws(Rq, E), s ∈ R, the completion of S(Rq, E) (the
space of Schwartz functions with values in E) with respect to the norm
||〈η〉sκ−1

〈η〉û(η)||L2(Rq ,E), where û = Fy→ηu is the Fourier transform in R
q

(applied to vector-valued functions), and κ−1
〈η〉 acts on the values of û(η) (as

usual, 〈η〉 := (1 + |η|2) 1
2 ). If necessary, we also write Ws(Rq, E)κ if we want

to indicate the dependence of the space on the choice of κ.

Example 1.3 Let g ∈ R and set

Ks,γ;g(I∧α ) := 〈r〉−gKs,γ(I∧α ),

s, γ, g ∈ R, endowed with the group action

κ
(1),g
λ : u(r, φ) → λ1+gu(λr, φ).

Then we can form the weighted edge spaces

Ws(Rq,Ks,γ;g(I∧α ))κ(1),g .

In a similar manner we have Ks,γ;g(R±) := 〈r〉−gKs,γ(R±), κ(0),g
λ : u(r) →

λ
1
2
+gu(λr), with the spaces Ws(Rq,Ks,γ;g(R±))κ(0),g .

Remark 1.4 The general definition of the spaces Ws(Rq, E) was intro-
duced in [14], based on the observations of [13] for the case E = Ks,γ(X∧),
and then systematically employed in the pseudo-differential edge calculus.
Here X is an arbitrary compact C∞ manifold (with or without boundary),
and Ks,γ(X∧) are natural analogues of the former Ks,γ-spaces on the open
infinite stretched cone X∧ = R+ × X; the group action κ = {κλ}λ∈R+ on
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Ks,γ(X∧) is defined by κλ : u(r, x) → λ
n+1

2 u(λr, x), λ ∈ R+, n = dim X, cf.
[15], [3], [9]. Certain applications of weighted edge spaces to hyperbolic prob-
lems, see Airapetyan and Witt [1], suggested to modify the spaces Ks,γ(X∧)
to Ks,γ;g(X∧) := 〈r〉−gKs,γ(X∧) for certain g ∈ R, with a corresponding
adapted group action, namely, κg

λ : u(r, x) → λg+ n+1
2 u(λr, x). Motivated by

the question of invariance with respect to the transition maps of a maximal
system of singular wedge charts Tarkhanov [18] studied the case g = s − γ
and verified the property

Hs
comp(X

∧ × R
q) ⊂ Ws(Rq,Ks,γ;g(X∧))κg ⊂ Hs

loc(X
∧ × R

q). (15)

For the case g = 0 the relation (15) was checked before in [15]. In [7, Section
7.1.2] the case of arbitrary g ∈ R is studied, and the property (15) is shown.
On the other hand the spaces

Ws(Rq,Ks,γ;g(X∧))κg (16)

are mutually non-equivalent for different g, although outside any neighbour-
hood of the edge R

q they coincide in the sense of (15). Concerning other
nice properties of the spaces (16) for g = s − μ, see [18] and also [16].

Definition 1.5 Let E and Ẽ be Hilbert spaces with group action κ and
κ̃, respectively, and let μ ∈ R, U ⊆ R

p open.

(i) The space Sμ(U × R
q;E, Ẽ) of symbols of order μ is defined to be the

set of all smooth functions a : Uy × R
q
η → L(E, Ẽ), such that

supy∈K,η∈Rq〈η〉−μ+|β|||κ̃−1
〈η〉{D

α
y Dβ

η a(y, η)}κ〈η〉||L(E,Ẽ)

is finite for every K ⊂⊂ U, and multi-indices α ∈ N
p, β ∈ N

q.

(ii) We define S(μ)(U × (Rq \ {0});E, Ẽ) as the set of all smooth a(μ) :
U × (Rq \ {0}) → L(E, Ẽ) such that

a(μ)(y, λη) = λμκ̃λa(μ)(y, η)κ−1
λ

for all λ ∈ R+, (y, η) ∈ U × (Rq \ {0}).

(iii) Sμ
cl(U × R

q;E, Ẽ) is defined to be the subspace of all a(y, η) as in (i)
such that for any excision function χ(η) (i.e., χ ∈ C∞(Rq), χ(η) = 0
for |η| < c0, χ(η) = 1 for |η| > c1 for some constants 0 < c0 < c1)
we have a(y, η)−χ(η)

∑N
j=0 a(μ−j)(y, η) ∈ Sμ−(N+1)(U ×R

q;E, Ẽ) for
every N ∈ N.

If we want to indicate the dependence of the symbol spaces on κ, κ̃ we
also write

Sμ
(cl)(U × R

q;E, Ẽ)κ,κ̃

8



rather than Sμ
(cl)(U ×R

q;E, Ẽ) (subscript ‘(cl)’ is used when a consideration
is valid both in the classical and non-classical case).

By Sμ
(cl)(R

q;E, Ẽ) we denote the subspace of symbols with constant co-
efficients (i.e., independent of y ∈ U).

Example 1.6 (i) For the operator (1) we have

σ∧(A)(η) ∈ S2
cl(R

q;Ks,γ;g(I∧α ),Ks−2,γ−2;g(I∧α ))

for every s, γ, g ∈ R.

(ii) For the operators (2) (and, for simplicity, constant b±,jβ) we have

σ∧(T±)(η) ∈ S
μ±+ 1

2
cl (Rq;Ks,γ;g(I∧α ),Ks−μ±− 1

2
,γ−μ±− 1

2
;g(R±))

for every s > max {μ− + 1
2 , μ+ + 1

2}, γ, g ∈ R.

Remark 1.7 Let E,κ and Ẽ, κ̃ be as in Definition 1.5, a(η) ∈ Sμ(Rq;
E, Ẽ)κ,κ̃. Then Op(a) defined by

Op(a)u(y) =
∫ ∫

ei(y−y′)ηa(η)u(y′)dy′d̄η,

d̄η := (2π)−qdη, induces a continuous operator

Op(a) : Ws(Rq, E)κ → Ws−μ(Rq, Ẽ)κ̃

for every s ∈ R. There are continuity results of a similar kind for much
more general symbols a, especially, with variable coefficients, see [15] or
[17]. However, for the main purposes here it suffices the case with constant
coefficients.

Proposition 1.8 The operators in the boundary value problem (6) in-
duce a continuous operator

A : Ws(Rq,Ks,γ;g(I∧α )) →

Ws−2(Rq,Ks−2,γ−2;g(I∧α ))
⊕

Ws−μ−− 1
2 (Rq,Ks−μ−− 1

2
,γ−μ−− 1

2
;g(R−))

⊕
Ws−μ+− 1

2 (Rq,Ks−μ+− 1
2
,γ−μ+− 1

2
;g(R+))

for every s > max{μ−+ 1
2 , μ++ 1

2}, γ, g ∈ R. (The weighted edge spaces refer
to the group actions κ(1),g and κ(0),g, respectively.)

Proof. The result immediately follows from Remark 1.7 together with
Example 1.6. �
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2 Fredholm property and index of edge symbols

2.1 Ellipticity on the infinite cone

As noted before the operators (10) belong to the cone algebra of boundary
value problems on the infinite stretched cone I∧α with the boundary com-
ponents R±, for every fixed η �= 0. Concerning the boundary conditions we
assume (3), (4), or (5); they satisfy the Shapiro-Lopatinskij condition. For
the orders μ± we have

μ± = 0 for (3), μ± = 1 for (4), (17)

and
μ− = 0, μ+ = 1 for (5). (18)

The general formulations are valid for all these cases.
On the infinite stretched cone I∧α we have the principal symbolic hierar-

chy of operators of the cone calculus, where r → ∞ is treated as a conical
exit of the configuration to ∞, see, for instance, [9, Section 3.3], namely,

σ(σ∧(A)) := (σψσ∧(A), σ∂σ∧(A), σcσ∧(A), σEσ∧(A), σE′σ∧(A)), (19)

σ∧(A) = σ∧(A)(η) = t(σ∧(A)(η) σ∧(T−)(η) σ∧(T+)(η)) for fixed η �= 0.
The meaning of the components is as follows:

(i) the interior symbol σψσ∧(A)(r, ρ, ϑ) := r−2((−irρ)2 − ϑ2);

(ii) the boundary symbol

σ∂,±σ∧(A)(r, ρ) := r−2((−irρ)2 + ∂2
φ) : Hs(R+) → Hs−2(R+)

(referring to (r, ρ) ∈ T ∗I± \ 0),

σ∂σ∧(T±)(r, ρ) = r±r−μ±
μ±∑
j=0

b±,j0(−irρ)j : Hs(R+) → C

with b±,j0 being interpreted as differential operators with respect to
φ ∈ Iα;

(iii) the conormal symbol is given by the formulas (11), (12), (13) and
defines continuous operators

σcσ∧(A)(w) : Hs(int Iα) → Hs−2(int Iα) ⊕ C
2;

(iv) the interior exit symbol, expressed in Euclidean coordinates x ∈ Kα

far from x = 0
σEσ∧(A) := σEσ∧(A)

with the components

σE1σ∧(A) := −|ξ|2 − |η|2, σE2σ∧(A) := −|ξ|2;
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(v) the boundary exit symbol in Euclidean coordinates x ∈ Kα far from
x = 0

σE′,±σ∧(A) := t(σE′σ∧(A) σE′σ∧(T±))

which we express for the boundary component I− that may be iden-
tified with the positive x1-half-axis (for the component over I+ the
symbols can be considered by a rotation such that it also coincides
with Rx1,+ and its behaviour is then analogous). We then have

σE′
1
σ∧(A) = −|ξ1|2 +

∂2

∂x2
2

− |η|2 : Hs(R+) → Hs−2(R+),

σE′
2
σ∧(A) = −|ξ1|2 +

∂2

∂x2
2

: Hs(R+) → Hs−2(R+).

For σ∧(T ) we consider, for instance, the case (5) where

σE′
j
σ∧(T−) = r0

and (after the above mentioned rotation)

σE′
j
σ∧(T+) = r0

∂

∂x2

with r0 denoting the operator of restriction to x2 = 0,

σE′
j
σ∧(T±) : Hs(R+) → C,

j = 1, 2.

Theorem 2.1 The operator (10) for any fixed η �= 0 is Fredholm for
s > 3

2 and for those γ ∈ R where

σcσ∧(A)(w) : Hs(int Iα) → Hs−2(int Iα) ⊕ C
2 (20)

is a family of isomorphisms for all w ∈ Γ1−γ .

Proof. Let us consider the case of boundary conditions (5) (the cases
(3), (4) can be treated in an analogous manner). From the general calculus
of boundary value problems on an infinite cone (see [9, Section 2.2 and 3.3])
it is known that the operator (10) is Fredholm if and only if all components
of (19) are elliptic. For σcσ∧(A) that is exactly the condition formulated in
the theorem. The ellipticity of the other components is to be understood as
follows.

(i) σψσ∧(A)(r, ρ, ϑ) �= 0 for (ρ, ϑ) �= 0 and for all r ∈ R+, σ̃ψσ∧(A)(r, ρ, ϑ)
:= r2σψσ∧(A)(r, r−1ρ, ϑ) �= 0 for (ρ, ϑ) �= 0 and for all r ∈ R+, up to
r = 0.

11



(ii) σ∂,±σ∧(A)(r, ρ) : Hs(R+) → Hs−2(R+) ⊕ C is an isomorphism for all
(r, ρ) ∈ T ∗I± \ 0,

σ̃∂,±σ∧(A)(r, ρ) := t
(
r2σ∂σ∧(A)(r, r−1ρ) rμ±σ∂σ∧(T±)(r, r−1ρ)

)
: Hs(R+) → Hs−2(R+) ⊕ C

is an isomorphism for all ρ �= 0, up to r = 0, in both cases for s > 3
2 .

(iv)

σE1σ∧(A)(η)(ξ) �= 0 for all ξ ∈ R
2,

σE2σ∧(A)(ξ) �= 0 for all ξ ∈ R
2 \ {0}.

(v) For the minus component:

σE′
1,−σ∧(A)(η)(ξ1) = t(−|ξ1|2 + ∂2

x2
− |η|2 r0)

: Hs(R+) → Hs−2(R+) ⊕ C

is an isomorphism for all ξ1 ∈ R,

σE′
2,−σ∧(A)(ξ1) = t(−|ξ1|2 + ∂2

x2
r0)

: Hs(R+) → Hs−2(R+) ⊕ C

is an isomorphism for all ξ1 ∈ R \ {0}, in both cases for s > 3
2 .

The condition for the +-component is analogous. It remains to observe that
(i), (ii), (iv), and (v) are satisfied for our problem. �

2.2 The index of edge symbols

We now compute the index of (10), η �= 0, for the case of the boundary
conditions (3), (4), and (5). To this end we first establish the weights where
the corresponding conormal symbols (20) are bijective.

In order to distinguish the Dirichlet, Neumann, and Zaremba case (3),
(4), and (5), we now write for the corresponding operators A1,A2, and A3,
respectively.

Let us set
Ci := σ∧(Ai)(0), i = 1, 2, 3, (21)

which can be interpreted as continuous operators

Ci : Hs,γ(I∧α ) → Hs−2,γ−2
i (I∧α ), (22)

i = 1, 2, 3, where

Hs−2,γ−2
1 (I∧α ) := Hs−2,γ−2(I∧α ) ⊕Hs− 1

2
,γ− 1

2 (R−) ⊕Hs− 1
2
,γ− 1

2 (R+), (23)

Hs−2,γ−2
2 (I∧α ) := Hs−2,γ−2(I∧α ) ⊕Hs− 3

2
,γ− 3

2 (R−) ⊕Hs− 3
2
,γ− 3

2 (R+), (24)

Hs−2,γ−2
3 (I∧α ) := Hs−2,γ−2(I∧α ) ⊕Hs− 1

2
,γ− 1

2 (R−) ⊕Hs− 3
2
,γ− 3

2 (R+). (25)
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Theorem 2.2 For every s > 3
2 the operators (22) are isomorphisms for

(i) the case i = 1 for all γ �= kπ
α + 1, k ∈ Z \ {0};

(ii) the case i = 2 for all γ �= kπ
α + 1, k ∈ Z;

(iii) the case i = 3 for all γ �= (2k+1)π
2α + 1, k ∈ Z.

Proof. According to [8, Section 122] the Dirichlet, Neumann, and Zaremba
problems in an infinite strip of width α define isomorphisms in Sobolev
spaces Hs,δ(Rx1 × int Iα) := e−x1δHs(int Iα) of smoothness s ∈ N, s ≥ 2,
with corresponding exponential weights δ at ±∞, except for a discrete set
of δ ∈ R. The solutions are given by

uj,δ(x) =
1
2π

∫ ∞+iδ

−∞+iδ
eiλx1

{ ∫ α

0
Pj(λ;x2, y)f̂(λ, y)dy

+ K−,j(λ;x2, 0)ĝ−(λ) + K+,j(λ;x2, α)ĝ+(λ)
}

dλ (26)

for any right sides f(x) ∈ Hs−2,δ(R × int Iα), g±(x1) ∈ Hs,δ(R), where

P1(λ;x2, y) :=
cos iλ(|x2 − y| − α) − cos iλ(x2 + y − α)

2iλ sin(iλα)
,

K±,1(λ;x2, α±) := ±∂yP1(λ;x2, α±);

P2(λ;x2, y) :=
cos iλ(|x2 − y| − α) + cos iλ(x2 + y − α)

2iλ sin(iλα)
,

K±,2(λ;x2, α±) := ±P2(λ;x2, α±);

P3(λ;x2, y) :=
sin iλ(|x2 − y| − α) − sin iλ(x2 + y − α)

2iλ cos(iλα)
,

K−,3(λ;x2, 0) := −∂yP3(λ;x2, y),
K+,3(λ;x2, α) := −P3(λ;x2, y).

Clearly the formula (26) can only be valid when

δ �= kπ

α
, k ∈ Z \ {0} for j = 1, δ �= kπ

α
, k ∈ Z for j = 2,

δ �= (2k + 1)π
2α

, k ∈ Z for j = 3.

A transformation of the infinite strip to the angle I∧α , induced by Rx1 →
R+,r, r := e−x1 , transforms the spaces Hs,δ(int Iα×R) to the ones occurring
in (22), with γ = δ +1. Then we obtain the corresponding isomorphisms for
s ∈ N, s ≥ 2, and γ as in assertions (i), (ii), and (iii), respectively. Since the
operators belong to the cone algebra of boundary value problems, it follows
that the isomorphisms (22) are true for arbitrary s > 3

2 , cf. also [7, Section
6.2.1]. �

13



Remark 2.3 In Theorem 2.2 the infinite stretched cone I∧α has a slightly
different meaning than in (10). While in (10) we keep in mind the relation-
ship with the ‘true’ cone (R+ × Iα)/({0} × Iα) = Kα ∪ {0}, with 0 as the
tip and conical exit at ∞, the cone of Theorem 2.2 is a spindle with two
conical points, one at zero and another one at ∞. Accordingly, the symbolic
structures and ellipticities in both cases are different. In the second case
which is simpler there are two conormal symbols, namely, at 0 and ∞, re-
spectively. The Fredholm property of (22) is equivalent to the ellipticity of
those operators in the cone algebra. The principal symbolic hierarchy on the
spindle which is responsible for the ellipticity in this case is a tuple

σ(·) = (σψ(·), σ∂(·), σc,0(·), σc,∞(·))

consisting of interior and boundary symbols as before, moreover, of the
conormal symbol σc,0(·) at 0 which is equal to σc(·) from the preceding sec-
tion, and an analogous conormal symbol σc,∞(·) for the conical point at ∞.

Using Theorem 2.2 which expresses a special case of Fredholm property
and by virtue of the necessity of the ellipticity for the Fredholm property
we obtain the following properties.

Corollary 2.4 The conormal symbols

σc,0(Ci)(w) : Hs(int Iα) → Hs−2(int Iα) ⊕ C
2, (27)

s > 3
2 , are bijective for all w ∈ Γ1−γ and γ as in Theorem 2.2 for the corre-

sponding cases i = 1, 2, 3. Clearly a similar property is true of σc,∞(Ci)(w).

In fact, we have

σc,0(C1)(w) = t(w2 + ∂2
φ r− r+), (28)

σc,0(C2)(w) = t(w2 + ∂2
φ r−∂φ r+∂φ), (29)

σc,0(C3)(w) = t(w2 + ∂2
φ r− r+∂φ), (30)

where r±u := u(α±) for α− := 0, α+ := α. The point w = 0 is a non-
bijectivity point only for the Neumann case. For w = a+ ib, w �= 0, a simple
calculation gives us

ker (w2 + ∂2
φ) = {c1e

−bφeiaφ + c2e
bφe−iaφ : c1, c2 ∈ C}.

Then the boundary conditions yield

e−bαeiaα − ebαe−iaα = 0,

or, b = 0, a = kπ
α , k ∈ Z \ {0}, in the case i = 1, 2, and

e−bαeiaα + ebαe−iaα = 0,
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or, b = 0, a = (2k+1)π
2α , k ∈ Z in the case i = 3.

Recall that
σc(Ai)(w) = σc,0(Ci)(w), i = 1, 2, 3. (31)

The conormal symbols are holomorphic operator functions in w, cf. (28),
(29), (30).

Theorem 2.5 The points w ∈ C where (27) is not bijective are

(i) wk = kπ
α , k ∈ Z \ {0}, for the case i = 1;

(ii) wk = kπ
α , k ∈ Z, for the case i = 2;

(iii) wk = (2k+1)π
2α , k ∈ Z, for the case i = 3.

All these points are simple (cf. the general notion on meromorphic oper-
ator functions of Gohberg and Sigal [4]), except for the point w0 in the case
(ii) which is a second order zero.

Let us now define the spaces

Ks−2,γ−2
i (I∧α ), i = 1, 2, 3

in a similar manner as (23), (24), (25), by formally replacing H by K, and
let also

Ks−2,γ−2;g
i (I∧α ) := 〈r〉−gKs−2,γ−2

i (I∧α ),

i = 1, 2, 3, with the multiplication by 〈r〉−g in every component.

Theorem 2.6 For every s > 3
2 , g ∈ R, the operators

σ∧(Ai)(η) : Ks,γ;g(I∧α ) → Ks−2,γ−2;g
i (I∧α ) (32)

are Fredholm for the same weights as in Theorem 2.2 in the cases i = 1, 2, 3.

Proof. By virtue of Theorem 2.1, Corollary 2.4 and relation (31) the
result follows for the case g = 0. However, the exit calculus admits arbitrary
power weights at ∞; so it suffices to use the fact that ellipticity and Fredholm
property are independent of g. �

We now state the Fredholm indices of (32) for the case α = π which is a
result from [2] for i = 3; for the cases i = 1, 2 the values can be obtained by
similar methods, see also [7, Section 5.3.4].

Theorem 2.7 For every s > 3
2 , g ∈ R, the operators (32) for α = π are

Fredholm for

15



(i) the case i = 1 for all γ �= k + 1, k ∈ Z \ {0}, where

indσ∧(A1)(η) =

⎧⎨
⎩

−k for γ ∈ (k + 1, k + 2), k ≥ 1,
−(k + 1) for γ ∈ (k + 1, k + 2), k ≤ −2,

0 for γ ∈ (0, 2);

(ii) the case i = 2 for all γ �= k, k ∈ Z, where

ind σ∧(A2)(η) =
{

−k for γ ∈ (k + 1, k + 2), k ≥ −1,
−(k + 1) for γ ∈ (k + 1, k + 2), k ≤ −2;

(iii) the case i = 3 for all γ �= k + 1
2 , k ∈ Z, where

ind σ∧(A3)(η) = −(k + 1) for γ ∈ (k +
1
2

+ 1, k +
3
2

+ 1).

Let us now interpret Theorem 2.1 as follows. Set

γ1k(α) =
kπ

α
+ 1, k ∈ Z \ {0}, γ2k(α) =

kπ

α
+ 1, k ∈ Z,

γ3k(α) =
(2k + 1)π

2α
+ 1, k ∈ Z,

for 0 < α ≤ 2π. Let σ∧(Ai(α, γ))(η) denote the operators (10) for the
opening angle α and the weight γ, i = 1, 2, 3, i.e., we have operators

σ∧(Ai(α, γ)) : Ks,γ(I∧α ) → Ks−2,γ−2
i (I∧α ). (33)

Then Theorem 2.1 tells us that there are integers ιik(α, γ) such that

ind σ∧(Ai(α, γ)) = ιik(α, γ) for γik(α) < γ < γi(k+1)(α)

for all k ∈ Z \ {0} for i = 1 and k ∈ Z for i = 2, 3. The numbers ιik(π, γ)
are known by Theorem 2.7.

Now according to Remark 1.2 there are natural families of isomorphisms

Ls(α, γ) : Ks,γ(I∧α ) → Ks,γ(I∧π ), (34)

Ls−2
i (α, γ − 2) : Ks−2,γ−2

i (I∧α ) → Ks−2,γ−2
i (I∧π ), (35)

where we choose the first component of (35) (for the case s − 2, γ − 2) as
(34), and such that Ls(π, γ) and Ls−2

i (π, γ − 2) are the respective identity
maps.

The operators Bi(α, γ) := Ls−2
i (α, γ − 2)σ∧(Ai(α, γ))(Ls(α, γ))−1 (for

any fixed η �= 0) are continuous in (α, γ) ∈ (0, 2π]×R and Fredholm for the
parameters (α, γ) in the set

Uik := {(α, γ) ∈ (0, 2π] × R : γik(α) < γ < γi(k+1)(α)}
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for k ∈ Z \ {0} when i = 1, and k ∈ Z when i = 2, 3. We have

ind Bi(α, γ) = indσ∧(Ai(α, γ))

and, in particular, indBi(π, γ) = indσ∧(Ai(π, γ)) = ιik(π, γ).
Moreover, since the sets Uik are connected for all i, k, we have ιik(α, δ) =

ιik(π, γ) when (α, δ), (π, γ) ∈ Uik.
Using Theorem 2.7 we thus obtain the following results.

Theorem 2.8 For every s > 3
2 , g ∈ R, the Fredholm operators (32) have

the index

(i) for all k ∈ Z \ {0}

indσ∧(A1)(η) =

⎧⎪⎨
⎪⎩

−k for γ ∈ (kπ
α + 1, (k+1)π

α + 1), k ≥ 1,
−(k + 1) for γ ∈ (kπ

α + 1, (k+1)π
α + 1), k ≤ −2,

0 for γ ∈ (−π
α + 1, π

α + 1);

(ii) for all k ∈ Z

indσ∧(A2)(η) =

{
−k for γ ∈ (kπ

α + 1, (k+1)π
α + 1), k ≥ −1,

−(k + 1) for γ ∈ (kπ
α + 1, (k+1)π

α + 1), k ≤ −2;

(iii) for all k ∈ Z

indσ∧(A3)(η) = −(k + 1) for γ ∈
((2k + 1)π

2α
+ 1,

(2k + 3)π
2α

+ 1
)
.

3 Elliptic edge conditions and parametrices

3.1 Elliptic edge conditions

Our next objective is to complete the families of Fredholm operators of
Theorem 2.6 to families of isomorphisms

σ∧(Ai)(η) :=
(

σ∧(Ai)(η) σ∧(Ki)(η)
σ∧(Ti)(η) σ∧(Qi)(η)

)
:

Ks,γ;g(I∧α )
⊕

C
j−

→
Ks−2,γ−2;g

i (I∧α )
⊕

C
j+

, (36)

η �= 0, where j+ − j− = indσ∧(Ai)(η) is known from Theorem 2.8, j± =
j±(i, γ), i = 1, 2, 3, for γ in the admitted weight intervals. The process
of choosing the so-called trace and potential edge symbols σ∧(Ti)(η) and
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σ∧(Ki)(η), respectively, and of the j+ × j− matrices of homogeneous func-
tions σ∧(Qi)(η) on T ∗

R
q \ {0} is known for the case g = 0, see, for instance,

[14], [3], [6], or [9]. In the present case for arbitrary g ∈ R we want to
take care of the group actions in Ks,γ;g(I∧α ) and Ks,γ;g(R±), respectively, see
Example 1.3. We first construct isomorphisms (36) for |η| = 1, smoothly
depending on η (which is as for g = 0) and then extend them by correspond-
ing twisted homogeneities, associated with the group actions. The orders of
homogeneity are completely arbitrary, but we can make a convenient choice.

Writing

Ws,γ;g(I∧α × R
q) := Ws(Rq,Ks,γ;g(I∧α ))κ(1),g ,

Ws−2,γ−2;g
i (I∧α × R

q) := Ws−2(Rq,Ks−2,γ−2;g(I∧α ))κ(1),g

⊕ Ws−μ−− 1
2 (Rq,Ks−μ−− 1

2
,γ−μ−− 1

2
;g(R−))κ(0),g

⊕ Ws−μ+− 1
2 (Rq,Ks−μ+− 1

2
,γ−μ+− 1

2
;g(R+))κ(0),g

where μ± = 0 for i = 1, μ± = 1 for i = 2, and μ− = 0, μ+ = 1 for i = 3, the
aim is to associate with (36) a continuous operator

Ai :
Ws,γ;g(I∧α × R

q)
⊕

Hs(Rq, Cj−)
→

Ws−2,γ−2;g
i (I∧α × R

q)
⊕

Hs−2(Rq, Cj+)
(37)

for every s > max {μ− + 1
2 , μ+ + 1

2}. This determines the choice of the
homogeneities. While for the upper left corners we have homogeneities as
in Example 1.6, for the other entries we require

σ∧(Ti)(λη) = λ2σ∧(Ti)(η)(κ(1),g
λ )−1, (38)

and, writing σ∧(K0,i)(η) = (σ∧(Ki)(η), σ∧(K±,i)(η)), according to the three
components in the target spaces,

σ∧(K0,i)(λη) = λ2κ
(1),g
λ σ∧(K0,i)(η) (39)

σ∧(K±,i)(λη) = λμ±+ 1
2 κ

(0),g
λ σ∧(K±,i)(η) (40)

for all λ ∈ R+. Knowing σ∧(Ti)(η), σ∧(Ki)(η) for |η| = 1, the relations (38),
(39), and (40) allow us to define the symbols for all η �= 0 by extensions by
the corresponding homogeneities. The orders of the entries of σ∧(Qi)(η) are
2 in the standard sense. If χ(η) is any excision function we now define

Ti := Op(χσ∧(Ti)), Ki := Op(χσ∧(Ki)), Qi := Op(χσ∧(Qi)).

According to Remark 1.7 this gives us continuous operators (37) (see also
Proposition 1.8).
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3.2 Parametrices in weighted edge spaces

On the (stretched) wedge I∧α ×R
q we have a pseudo-differential block matrix

algebra of boundary value problems with extra trace and potential data on
the edge R

q and for the spaces in (37) for arbitrary g ∈ R, similarly as in the
case g = 0. The technicalities for g = 0 may be found, for instance, in [9],
see also [7]. An inspection of the details shows that the case of arbitrary g
works in a similar manner. In particular, we obtain the following theorem.

Theorem 3.1 For every s > 3
2 the operator (37) has a parametrix Pi

in the edge algebra of boundary value problems, i = 1, 2, 3.

The parametrix Pi may be found with symbols in the edge calculus of
constant coefficients with respect to y, and Pi induces continuous operators
in the opposite direction than (37).

The remainders
I − PiAi, I − AiPi

are smoothing in the edge calculus. In particular, when we localise them
by composing with functions ϕ(r, φ, y), ψ(r, φ, y) ∈ C∞

0 (R+ × Iα ×R
q), they

will be compact in the involved spaces.

Corollary 3.2 (Elliptic regularity) u ∈ W−∞,γ;g(I∧α × R
q) ⊕ H−∞(Rq,

C
j−), Aiu ∈ Ws−2,γ−2;g

i (I∧α × R
q) ⊕ Hs−2(Rq, Cj+) for any s > 3

2 implies
u ∈ Ws,γ;g

i (I∧α × R
q) ⊕ Hs(Rq, Cj−), i = 1, 2, 3.

3.3 Concluding remarks

The main elements of our results can be carried over to manifolds with
edge and boundary, locally modelled on wedges as considered here. Let us
replace for the moment Iα by any compact C∞ manifold X of dimension
n (with or without boundary). Concerning the spaces (16) one has to be
careful with the chosen atlas close to the edge. For general g ∈ R we impose
some conditions. For the invariance it is enough that the transition maps of
stretched local wedges χ : (r, x, y) → (r̃, x̃, ỹ) are independent of r for small
r.

In general it is required that χ is the restriction of a diffeomorphism
χ : R × X × R

q → R × X × R
q to R+ ×X × R

q,χ(r, x, y) = (r̃, x̃, ỹ), where
r̃(0, x, y) = 0, x → x̃(0, x, y) defines a diffeomorphism X → X, smoothly
depending on y, and y → ỹ(0, x, y) a diffeomorphism R

q → R
q, independent

of x. This corresponds to transition maps of wedges X� × R
q → X� ×

R
q,X� = (R+ × X)/({0} × X) in the category of manifolds with edge, cf.

[9, Section 4.1.1]. As noted in Remark 1.4 the spaces for g = s − γ have
important properties. More precisely, Ws

loc(R
q,Ks,γ;g(X∧))κg (which can

be defined by locally finite sums of elements of (16) with bounded support
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with respect to y) are invariant under the transition maps for all χ of the
above-mentioned kind when g = s − γ.

Boundary value problems on a manifold M with edges are formulated
as locally finite sums, with summands coming from operators on wedges,
localised by functions from a partition of unity and then pulled back to the
manifold itself (in the pseudo-differential case we also add global smoothing
operators).

In particular, we can proceed in this way for the Laplacian in R
m,m =

2 + q, restricted to a, say, lense-shaped domain with edge on the boundary
of codimension 1 and locally modelled on wedges of opening angle α (in this
case it would be natural to assume 0 < α ≤ π, otherwise, ‘lense-shaped’
has to be replaced by another notation; α = 2π corresponds to a crack
situation). Then our problems (together with the extra edge conditions) give
rise to Fredholm operators in weighted edge spaces and have parametrices
in the edge pseudo-differential calculus. Note that for α = π (i.e., when
the boundary is smooth and the edge is an interface there) our problems
for i = 3 correspond to the classical Zaremba problem, see [2], while the
cases i = 1, 2 correspond to Dirichlet and Neumann data with jumps over
the interface.

Other problems, e.g., with jumping oblique derivatives of specific kind
(see [5]) can be treated within our approach as well.

Let us finally note that there are also natural subalgebras of edge oper-
ators with (discrete and continuous) asymptotics. The singular functions of
such asymptotics have a particularly natural shape in the frame of Ws,γ;g-
spaces, similarly as is known for g = 0 from [15].
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Section 3-i werjum.
In the following we prove the condition (??). Using equation (30) with

(??) the left hand side of (??) is equal to

c

2πi

∫
|ζ|=1

γ(ζ) − ζf(ζ)
(ζ − cζ)(1 − zζ)

dζ

− 1
π

∫
|ζ|<1

f(ζ)P (z, ζ)dξdη +
1

2πi

∫
|ζ|=1

(γ(ζ) − ζf(ζ))Q(z, ζ)dζ

−
∞∑

k=1

ck(k + 1)
1
π

∫
|ζ|<1

f(ζ)P̃ (z, ζ)dξdη +
∞∑

k=1

ck 1
2πi

∫
|ζ|=1

(γ(ζ) − ζf(ζ))Q̃(z, ζ)dζ,

where

P (z, ζ) :=
1
π

∫
|ζ̃|<1

z

(1 − zζ̃)2(ζ − ζ̃)2
dξ̃dη̃, Q(z, ζ) :=

1
π

∫
|ζ̃|<1

z

(1 − zζ̃)2(1 − ζ̃ζ)2(ζ2 − c)
dξ̃dη̃,

P̃ (z, ζ) :=
1
π

∫
|ζ̃|<1

z

(1 − zζ̃)2
(ζ − ζ̃)k

(ζ − ζ̃)k+1
dξ̃dη̃, Q̃(z, ζ) :=

1
π

∫
|ζ̃|<1

z

(1 − zζ̃)2
(ζ − ζ̃)k

(ζ − ζ̃)k+1

dξ̃.dη̃

ζ − cζ̃
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