On Existence of Solutions for Some Hyperbolic-Parabolic Type Chemotaxis Systems*

Hua CHEN and Shaohua WU School of Mathematics and Statistics Wuhan University, China

Abstract: In this paper, we discuss the local and global existence of week solutions for some hyperbolic-parabolic systems modelling chemotaxis.

Key words: Hyperbolic-parabolic system, KS model, Chemotaxis.

2000 MR Subject Classification 35A07, 35K50, 35M10, 35L10, 47D03

1 Introduction

The earliest model for chemosensitive movement has been developed by Keller and Segel [1,2,3], which we call it as KS model. Assume that in absence of any external signal the spread of a population u(t,x) is described by the diffusion equation

$$u_t = d\Delta u,\tag{1}$$

where d > 0 is the diffusion constant. We define the net flux as $j = -d\nabla u$. If there is some external signal s, we just assume that it results in a chemotactic velocity β . Then the flux is

$$j = -d\nabla u + \beta u. \tag{2}$$

To be more specific, we assume that the chemotactic velocity β has the direction of the gradient ∇s and that the sensitivity χ to the gradient depends on the signal concentration s(t,x), then $\beta = \chi(s)\nabla s$.

We use this modified flux in (2) to obtain the parabolic chemotaxis equation

$$u_t = \nabla(d\nabla u - \chi(s)\nabla s \cdot u). \tag{3}$$

If $\chi(s)$ is positive, which means that the chemotactic velocity is in direction of s, we call it positive bias, whereas $\chi < 0$ is called negative bias.

To our general knowledge, the external signal is produced by the individuals and decays, which is described by a nonlinear function g(s, u). We assume that the spatial spread of the external signal is driven by diffusion. Then the full system for u and s reads

^{*}Research supported by the NSFC

$$u_t = \nabla(d\nabla u - \chi(s)\nabla s \cdot u),\tag{4}$$

$$\tau s_t = d\Delta s + g(s, u),\tag{5}$$

the time constant $0 \le \tau \le 1$ indicates that the spatial spread of the organisms u and the signal s are on different time scales. The case $\tau = 0$ corresponds to a quasi-steady state assumption for the signal distribution. When we assume that the spatial spread of external signal is driven by wave motion, then the equation (5) would be replaced by

$$s_{tt} = d\Delta s + g(s, u). (6)$$

The full system for u and s becomes

$$u_t = \nabla(d\nabla u - \chi(s)\nabla s \cdot u),\tag{7}$$

$$s_{tt} = d\Delta s + g(s, u), \tag{8}$$

which is called as hyperbolic-parabolic chemotaxis system.

2 Main Results

Let us consider the following problem:

$$u_{t} = \nabla(\nabla u - \chi u \nabla v) \quad in \quad (0, T) \times \Omega,$$

$$v_{tt} = \Delta v + g(u, v) \quad in \quad (0, T) \times \Omega,$$

$$\frac{\partial u}{\partial n} = \frac{\partial v}{\partial n} = 0, \quad on \quad (0, T) \times \partial \Omega,$$

$$(9)$$

with initial data

$$u(0,\cdot) = u_0, \quad v(0,\cdot) = \varphi, \quad v_t(0,\cdot) = \psi \quad in \quad \Omega,$$

where $\Omega \subset \mathbf{R}^n$, a bounded open domain with smooth boundary $\partial \Omega$, χ is a nonnegative constant.

Choose a constant σ , which satisfies

$$1 < \sigma < 2 \tag{10}$$

and

$$n < 2\sigma < n + 2 \tag{11}$$

It is easy to check that (10) and (11) can be simultaneously satisfied in the case of $1 \le n \le 3$.

Our main results are

Theorem 4.1. Under the conditions (10) and (11), if $g(u,v) = -\gamma v + f(u)$ and $f \in C^2(\mathbf{R})$, then for each initial data $u_0 \in H^{\sigma}(\Omega) \cap \{\frac{\partial u}{\partial n} = 0 \text{ on } \partial\Omega\}, \ \varphi \in H^2(\Omega) \cap \{\frac{\partial v}{\partial n} = 0 \text{ on } \partial\Omega\}, \ \psi \in H^1(\Omega)$, the problem (9) has a unique local solution $(u,v) \in X_{t_0} \times Y_{t_0}$ for some $t_0 > 0$.

Theorem 5.1. Let n=1 and $\sigma=\frac{5}{4}$, if $g(u,v)=-\gamma v+f(u)$ and $f\in C_0^2(\mathbf{R})$, then for each initial data $u_0\in H^\sigma(\Omega)\cap\{\frac{\partial u}{\partial n}=0\ \ on\ \ \partial\Omega\}$ and $u_0\geq 0,\ \varphi\in H^2(\Omega)\cap\{\frac{\partial v}{\partial n}=0\ \ on\ \ \partial\Omega\}$ and $\psi\in H^1(\Omega)$, the problem (9) has a unique global solution $(u,v)\in X_\infty\times Y_\infty$.

Where we define

$$X_{t_0} = C([0, t_0], H^{\sigma}(\Omega) \cap \{\frac{\partial u}{\partial n} = 0 \text{ on } \partial\Omega\})$$

$$Y_{t_0} = C([0, t_0], H^2(\Omega) \cap \{\frac{\partial v}{\partial n} = 0 \text{ on } \partial\Omega\}) \cap C^1([0, t_0], H^1(\Omega))$$

3 Some Basic Lemmas

For $g(u, v) = -\gamma v + f(u)$, and γ is a constant, $f(x) \in C^2(\mathbf{R})$. We divide the system (9) into two pars:

$$\begin{cases}
 u_t = \nabla(\nabla u - \chi u \nabla v) & in \quad (0, T) \times \Omega \\
 \frac{\partial u}{\partial n} = 0 & on \quad (0, T) \times \partial \Omega \\
 u(0, \cdot) = u_0 & in \quad \Omega,
\end{cases}$$
(12)

and

$$\begin{cases} v_{tt} = \Delta v - \gamma v + f(u) & in \quad (0, T) \times \Omega \\ \frac{\partial v}{\partial n} = 0 & on \quad (0, T) \times \partial \Omega \\ v(0, \cdot) = \varphi, \quad v_t(0, \cdot) = \psi \quad in \quad \Omega. \end{cases}$$
(13)

We have

Lemma 3.1. For any T > 0, and

$$\varphi \in H^2(\Omega) \cap \{\frac{\partial u}{\partial n} = 0 \text{ on } \partial\Omega\}, \ \psi \in H^1(\Omega), \ f(u(t, .)) \in C([0, T]; H^1(\Omega)),$$

then (13) has a unique solution v, satisfying

$$v \in C([0,T]; H^2(\Omega) \cap \{\frac{\partial v}{\partial n} = 0 \text{ on } \partial\Omega\}), \ v_t \in C([0,T]; H^1(\Omega)), \ v_{tt} \in C([0,T]; L^2(\Omega)),$$

and

$$||v(t, \cdot)||_{H^{2}(\Omega)} + ||v_{t}(t, \cdot)||_{H^{1}(\Omega)} \leq e^{cT} (||\varphi||_{H^{2}(\Omega)} + ||\psi||_{H^{1}(\Omega)} + \int_{0}^{T} ||f(u(\tau, \cdot))||_{H^{1}(\Omega)} d\tau), \quad \forall \ t \in [0, T],$$

$$(14)$$

where c > 0 is a constant which is independent of T.

Proof: Set $v_t = w$, we have following system

$$\begin{cases} v_t = w, \\ w_t = \Delta v - \gamma v + f(u). \end{cases}$$
 (15)

Thus we can write it in a abstract form:

$$\begin{cases}
U_t = LU + F(U) & \text{in } X = H^1(\Omega) \times L^2(\Omega), \\
U_0 = U(0, x) = (\varphi, \psi),
\end{cases}$$
(16)

where $L(v,w)=(w,\triangle v-v)$ for $(v,w)\in D(L),\,D(L)=H^2(\Omega)\cap\{\frac{\partial v}{\partial n}=0\,\,on\,\,\partial\Omega\}\times H^1(\Omega)$ and $F(v, w) = (0, (1 - \gamma)v + f(u)).$

Define the inner product in X as

$$<(v,w),(v',w')>_{X}=(v,v')_{H^{1}}+(w,w')_{L^{2}},$$

where $(\cdot,\cdot)_{H^1}$ and $(\cdot,\cdot)_{L^2}$ represent the inner products in H^1 and L^2 respectively, then X is a Hilbert space.

For $U = (v, w) \in D(L)$, we have

$$\langle LU, U \rangle_{X} = \langle (w, \triangle v - v), (v, w) \rangle_{X}$$

$$= (w, v)_{H^{1}} + (\triangle v - v, w)_{L^{2}}$$

$$= (w, v)_{H^{1}} + (\triangle v, w)_{L^{2}} - (v, w)_{L^{2}}$$

$$= (w, v)_{H^{1}} - (\nabla v, \nabla w)_{L^{2}} - (v, w)_{L^{2}}$$

$$= 0$$

$$(17)$$

Otherwise, for $U = (v, w) \in D(L)$, $U' = (v', w') \in X$,

$$\langle L(v, w), (v', w') \rangle_{X}$$

$$= \langle (w, \triangle v - v), (v', w') \rangle_{X}$$

$$= (w, v')_{H^{1}} + (\triangle v - v, w')_{L^{2}}$$

$$= (w, v')_{H^{1}} + (\triangle v, w')_{L^{2}} - (v, w')_{L^{2}}$$

$$(18)$$

If $\langle L(v,w),(v',w')\rangle_X$ is bounded for each $(v,w)\in D(L)$, then $(w,v')_{H^1},(\triangle v,w')_{L^2}$ and $(v, w')_{L^2}$ are bounded for each $(v, w) \in D(L)$, which means that

$$v' \in H^2 \cap \{\frac{\partial v}{\partial n} = 0 \text{ on } \partial\Omega\}, \quad w' \in H^1,$$
 (19)

that implies $D(L^*) \subset D(L)$. On the other hand, from (17) and the lemma in [6, p9], we know that

$$L^* = -L$$
.

Thus we know that L is a generator of a unitary operator group. It is easy to check that for $f(u(t,\cdot)) \in C([0,T], H^1(\Omega)),$

$$F: X \to X$$

and

$$||F(U_1) - F(U_2)||_X \le c ||U_1 - U_2||_X \quad U_i \in X, \ i = 1, 2,$$

where $\|(v,w)\|_X^2 = \|v\|_{H^1}^2 + \|w\|_{L^2}^2$. Now we can declare that (16) has a unique solution

$$U \in C^1([0,T],X) \cap C([0,T],D(L)) \text{ for each } U_0 \in D(L),$$
 (20)

which means that for each $(\varphi, \psi) \in D(L)$, (13) has a unique solution

$$v \in C([0,T], H^2(\Omega) \cap \{\frac{\partial v}{\partial n} = 0 \text{ on } \partial\Omega\}), \ v_t \in C([0,T], H^1(\Omega)) \text{ and } v_{tt} \in C([0,T], L^2(\Omega)).$$

Next, we estimate the norm of v. By using the semigroup notation $T(t) = e^{tL}$, we have

$$U = T(t)U_0 + \int_0^t T(t-s)F(U)ds.$$
 (21)

Since $L = -L^*$, and in terms of (17), we have that

$$\langle LU, U \rangle_X = 0$$
 for each $U \in D((L),$

and

$$< L^*U, U>_X = < -LU, U>_X = 0 \text{ for each } U \in D(L).$$

Hence L generates a strongly continuous contractive semigroup on Hilbert space X(cf. [4, 5]), in other words, we have

$$||e^{tL}|| = ||T(t)|| \le 1.$$
 (22)

So we know that

$$\begin{split} &\|U(t)\|_{H^{2}\times H^{1}} \leq \|T(t)U_{0}\|_{H^{2}\times H^{1}} + \int_{0}^{t} \|T(t-s)F(U(s))\|_{H^{2}\times H^{1}} \, ds \\ &\leq \|U_{0}\|_{H^{2}\times H^{1}} + \int_{0}^{t} \|F(U)\|_{H^{2}\times H^{1}} \, ds \\ &= \|\varphi\|_{H^{2}} + \|\psi\|_{H^{1}} + \int_{0}^{t} \|(1-\gamma)v + f(u)\|_{H^{1}} ds \\ &\leq \|\varphi\|_{H^{2}} + \|\psi\|_{H^{1}} + c \int_{0}^{t} \|v\|_{H^{1}} ds + \int_{0}^{t} \|f(u)\|_{H^{1}} ds \\ &\leq \|\varphi\|_{H^{2}} + \|\psi\|_{H^{1}} + c \int_{0}^{t} \|U\|_{H^{2}\times H^{1}} ds + \int_{0}^{T} \|f(u)\|_{H^{1}} ds, \quad 0 \leq t \leq T. \end{split}$$

From Gronwall's inequality, we know that

$$\begin{split} & \|U\|_{H^2 \times H^1} \leq e^{ct} (\|\varphi\|_{H^2} + \|\psi\|_{H^1} + \int_0^T \|f(u)\|_{H^1} ds) \\ & \leq e^{cT} (\|\varphi\|_{H^2} + \|\psi\|_{H^1} + \int_0^T \|f(u)\|_{H^1} ds), \end{split} \qquad 0 \leq t \leq T, \tag{24}$$

which implies the estimate (14) and the uniqueness follows.

If Ω is a bounded open domain with smooth boundary, in which we can consider the Neumann boundary condition. As we known that the $e^{t\triangle}$ defines a holomorphic semigroup on the Hilbert space $L^2(\Omega)$, so we have that

$$f \in L^2(\Omega) \Rightarrow \left\| e^{t\triangle} f \right\|_{H^2(\Omega)} \le \frac{c}{t} \left\| f \right\|_{L^2(\Omega)},$$
 (25)

where $D(\Delta) = \{u \in H^2(\Omega), \frac{\partial u}{\partial n} = 0 \text{ on } \partial \Omega\}.$ Applying interpolation to (25), it yields

$$\left\| e^{t\triangle} f \right\|_{H^{\sigma}(\Omega)} \leq c t^{-\frac{\sigma}{2}} \left\| f \right\|_{L^{2}(\Omega)} \quad for \ 0 \leq \sigma \leq 2, \ 0 < t \leq 1. \tag{26}$$

Take $Y = H^{\sigma}(\Omega) \cap \{\frac{\partial u}{\partial n} = 0 \text{ on } \partial\Omega\}$ and $Z = L^{2}(\Omega)$, $\Phi(u) = -\chi \nabla v \nabla u - \chi \Delta v \cdot u$. Then For $v \in Y_{t_0}$, and from the lemma in [4, p273], we can declare that

Lemma 3.2. For each $u_0 \in Y$ and $v \in Y_{t_0}$, σ and n satisfy the conditions (10) and (11), then the problem (12) has a unique solution

$$u \in X_{t_0} = C([0, t_0], H^{\sigma}(\Omega) \cap \{\frac{\partial u}{\partial n} = 0 \text{ on } \partial\Omega\}).$$

Proof: If we can show that $\Phi: Y \to Z$ is a locally Lipschitz map, then the lemma 3.2 is true. In fact, for arbitrary $u_1, u_2 \in Y$ and $v \in Y_{t_0}$, the difference

$$\Phi(u_1) - \Phi(u_2) = -\chi \nabla v \nabla (u_1 - u_2) - \chi \triangle v \cdot (u_1 - u_2).$$

That is

$$\begin{split} &\|\Phi(u_1) - \Phi(u_2)\|_Z = \|\Phi(u_1) - \Phi(u_2)\|_{L^2} \\ &\leq &\|\chi \nabla v \nabla (u_1 - u_2)\|_{L^2} + \|\chi \triangle v \cdot (u_1 - u_2)\|_{L^2} \,. \end{split}$$

By Sobolev imbedding theorems, we have

$$H^{1}(\Omega) \hookrightarrow L^{\infty}(\Omega), \text{ for } n = 1,$$

$$H^{1}(\Omega) \hookrightarrow L^{q}(\Omega), \quad 1 < q < \infty, \text{ for } n = 2,$$

$$H^{1}(\Omega) \hookrightarrow L^{\frac{2n}{n-2}}(\Omega), \text{ for } n = 3.$$

Thus in terms of (10) and (11), we know that $H^1(\Omega) \hookrightarrow L^{\frac{n}{\sigma-1}}(\Omega)$ and $H^{\sigma-1}(\Omega) \hookrightarrow L^{\frac{2n}{n-2(\sigma-1)}}(\Omega)$ for n=2,3.

Firstly we estimate $\|\chi \nabla v \nabla (u_1 - u_2)\|_{L^2}$. If n = 1, then

$$\|\chi \nabla v \nabla (u_1 - u_2)\|_{L^2}$$

$$\leq \chi \|\nabla (u_1 - u_2)\|_{L^2} \|\nabla v\|_{L^{\infty}}$$

$$\leq c \|u_1 - u_2\|_{H^1} \|\nabla v\|_{H^1}$$

$$\leq c \|u_1 - u_2\|_{H^{\sigma}} \|v\|_{H^2}.$$

If n = 2, 3, then

$$\begin{split} & \|\chi \nabla v \nabla (u_1 - u_2)\|_{L^2} \\ & \leq \chi \, \|\nabla (u_1 - u_2)\|_{L^{\frac{2n}{n-2(\sigma-1)}}} \, \|\nabla v\|_{L^{\frac{n}{\sigma-1}}} \\ & \leq c \, \|u_1 - u_2\|_{H^\sigma} \, \|v\|_{H^2} \, . \end{split}$$

Hence for n = 1, 2, 3, we have that

$$\|\chi \nabla v \nabla (u_1 - u_2)\|_{L^2} \le c \|u_1 - u_2\|_{H^{\sigma}} \|v\|_{H^2}.$$

Similarly, we have

$$\|\chi \triangle v \cdot (u_1 - u_2)\|_{L^2}$$

$$\leq c \|v\|_{H^2} \|u_1 - u_2\|_{L^{\infty}}$$

$$\leq c \|u_1 - u_2\|_{H^{\sigma}} \|v\|_{H^2}.$$

Thus we have proved that

$$\|\Phi(u_1) - \Phi(u_2)\|_{Z} \le c \|u_1 - u_2\|_{Y} \|v\|_{H^2}$$

as required.

Lemma 3.3. Under the conditions (10) and (11), if $u \in X_{t_0}$ is a solution of (12), the there exists a constant c which is independent of t_0 , such that

$$||u||_{X_{t_0}} \le c ||u_0||_{\sigma,2} + c t_0^{1-\frac{\sigma}{2}} ||v||_{Y_{t_0}} \cdot ||u||_{X_{t_0}},$$
 (27)

where $\|\cdot\|_{k,p}$ is the norm of Sobolev space $W^{k,p}$.

Proof: Let $T(t) = e^{t\Delta}$, then

$$u(t) = T(t)u_0 - \chi \int_0^t T(t-s)\nabla v \nabla u ds - \chi \int_0^t T(t-s)\Delta v \cdot u ds.$$

By (26), we have $T(t): L^2(\Omega) \to H^{\sigma}(\Omega)$ with norm $c_{\sigma} t^{-\frac{\sigma}{2}}$. Thus

$$\left\| \int_0^t T(t-s) \nabla v \nabla u ds \right\|_{\sigma,2} \le c_{\sigma} t^{1-\frac{\sigma}{2}} \sup_{0 \le s \le t} \left\| \nabla v(s,\cdot) \nabla u(s,\cdot) \right\|_2$$

where we use $\|\cdot\|_p$ as the norm of L^p .

By Sobolev imbedding theorem, $H^1(\Omega) \hookrightarrow L^{\infty}(\Omega)$ for n = 1, we have

$$\begin{split} \| \nabla v \nabla u \|_2 & \leq \| \nabla v \|_{\infty} \cdot \| \nabla u \|_2 \\ & \leq c \, \| v \|_{2,2} \cdot \| u \|_{1,2} \\ & \leq c \, \| v \|_{2,2} \cdot \| u \|_{\sigma,2} \, . \end{split}$$

For n=2,3, we have $H^1(\Omega)\hookrightarrow L^{\frac{n}{\sigma-1}}(\Omega),\ H^{\sigma-1}(\Omega)\hookrightarrow L^{\frac{2n}{n-2(\sigma-1)}}(\Omega),\ \text{thus }f^2\in L^{\frac{n}{n-2(\sigma-1)}},\ g^2\in L^{\frac{n}{n-2(\sigma-1)}}$ if $f\in H^1$ and $g\in H^{\sigma-1}$. By using Cauchy inequality, we get

$$\left\|f^2g^2\right\|_1 \le \left\|f^2\right\|_{\frac{n}{2(\sigma-1)}} \cdot \left\|g^2\right\|_{\frac{n}{n-2(\sigma-1)}}$$

which implies $||fg||_2 \le ||f||_{\frac{n}{\sigma-1}} \cdot ||g||_{\frac{2n}{n-2(\sigma-1)}}$. Thus

$$\begin{split} &\|\nabla v \nabla u\|_{2} \leq \|\nabla v\|_{\frac{n}{\sigma-1}} \cdot \|\nabla u\|_{\frac{2n}{n-2(\sigma-1)}} \\ &\leq c \, \|\nabla v\|_{1,2} \cdot \|\nabla u\|_{\frac{2n}{n-2(\sigma-1)}} \\ &\leq c \, \|v\|_{2,2} \cdot \|\nabla u\|_{\sigma-1,2} \leq c \, \|v\|_{2,2} \cdot \|u\|_{\sigma,2} \, . \end{split}$$

Now we obtain that, for $0 \le t \le t_0$,

$$\begin{split} & \left\| \int_0^t \tau(t-s) \nabla v \nabla u ds \right\|_{\sigma,2} \leq c_\sigma t^{1-\frac{\sigma}{2}} \sup_{0 \leq s \leq t} \| \nabla v \nabla u \|_2 \\ & \leq C t^{1-\frac{\sigma}{2}} \sup_{0 \leq s \leq t} \| v \|_{2,2} \cdot \| u \|_{\sigma,2} \leq C t_0^{1-\frac{\sigma}{2}} \| u \|_{X_{t_0}} \cdot \| v \|_{Y_{t_0}} \,. \end{split}$$

Meanwhile

$$\begin{split} & \left\| \int_0^t T(t-s) \Delta v \cdot u \right\|_{\sigma,2} \\ & \leq c_{\sigma} t^{1-\frac{\sigma}{2}} \sup_{0 \leq s \leq t} \left\| \Delta v \cdot u \right\|_2 \\ & \leq c_{\sigma} t_0^{1-\frac{\sigma}{2}} \sup_{0 \leq s \leq t_0} \left\| u \right\|_{L^{\infty}} \cdot \left\| \Delta v \right\|_{L^2} \\ & \leq C t_0^{1-\frac{\sigma}{2}} \sup_{0 \leq s \leq t_0} \left\| u \right\|_{\sigma,2} \cdot \sup_{0 \leq s \leq t_0} \left\| v \right\|_{2,2} \\ & \leq C t_0^{1-\frac{\sigma}{2}} \left\| u \right\|_{X_{t_0}} \cdot \left\| v \right\|_{Y_{t_0}}. \end{split}$$

Finally we can deduce that

$$\begin{aligned} \|u(t)\|_{\sigma,2} &\leq \|T(t)u_0\|_{\sigma,2} + \chi \left\| \int_0^t T(t-s)\nabla v \nabla u ds \right\|_{\sigma,2} \\ &+ \chi \left\| \int_0^t T(t-s)\Delta v \cdot u ds \right\|_{\sigma,2} \\ &\leq C \left\| u_0 \right\|_{\sigma,2} + \chi c c_\sigma t_0^{1-\frac{\sigma}{2}} \left\| u \right\|_{X_{t_0}} \cdot \left\| v \right\|_{Y_{t_0}}, \quad 0 \leq t \leq t_0, \end{aligned}$$

which implies

$$||u||_{X_{t_0}} \le C ||u_0||_{\sigma,2} + Ct_0^{1-\frac{\sigma}{2}} ||u||_{X_{t_0}} ||v||_{Y_{t_0}}.$$

Lemma 3.3 is proved.

4 Local Existence of Solutions

In this section, we establish the local solution of the system (9). Our main result is as follows:

Theorem 4.1. If σ and n satisfy the conditions (10) and (11), $g(u,v) = -\gamma v + f(u)$ and $f \in C^2(\mathbf{R})$, then for each initial data $u_0 \in H^{\sigma}(\Omega) \cap \{\frac{\partial u}{\partial n} = 0 \text{ on } \partial\Omega\}, \ \varphi \in H^2(\Omega) \cap \{\frac{\partial v}{\partial n} = 0 \text{ on } \partial\Omega\}, \ \psi \in H^1(\Omega)$, the problem (9) has a unique local solution $(u,v) \in X_{t_0} \times Y_{t_0}$ for some $t_0 > 0$.

Proof: Consider $w \in X_{t_0}$, $w(0, x) = u_0(x)$ and let v = v(w) denote the corresponding solution of the equation:

$$v_{tt} = \Delta v - \gamma v + f(w) \quad in \quad (0, t_0) \times \Omega,$$

$$\frac{\partial v}{\partial n} = 0 \qquad on \quad (0, t_0) \times \partial \Omega,$$

$$v(0) = \varphi \quad in \quad \Omega,$$

$$v_t(0) = \psi \quad in \quad \Omega.$$
(28)

By Lemma 3.1, we have $v \in Y_{t_0}$, and

$$||v(t)||_{H^{2}(\Omega)} \leq e^{c_{1}t_{0}} (||\varphi||_{H^{2}(\Omega)} + ||\psi||_{H^{1}(\Omega)} + \int_{0}^{t_{0}} ||f(w(\tau, \cdot))||_{H^{1}(\Omega)} d\tau), \quad \forall \ t \in [0, t_{0}].$$

$$(29)$$

Secondly, for the solution v of (28), we define u = u(v(w)) to be the corresponding solution of

$$\begin{array}{lll} u_t = \nabla(\nabla u - \chi u \nabla v) & in & (0, t_0) \times \Omega, \\ \frac{\partial u}{\partial n} = 0 & on & (0, t_0) \times \partial \Omega, \\ u(0, x) = u_0(x) = w(0, x) & in & \Omega. \end{array} \tag{30}$$

If we define Gw = u(v(w)), then Lemma 3.2 shows that

$$G: X_{t_0} \to X_{t_0}$$
.

Take $M = 2c \|u_0\|_{\sigma,2}$ and a ball

$$B_M = \left\{ w \in X_{t_0} \mid w(0, x) = u_0(x), \ \|w(t, \cdot)\|_{\sigma, 2} \le M, \ 0 \le t \le t_0 \right\},\,$$

where the constant $c \ge 1$ is given by (27). Then we combine the estimates (27) and (29) to obtain

$$\begin{split} \|Gw\|_{X_{t_0}} &\leq c \, \|u_0\|_{\sigma,2} + ct_0^{1-\frac{\sigma}{2}} \, \|v\|_{Y_{t_0}} \cdot \|Gw\|_{X_{t_0}} \\ &\leq c \, \|u_0\|_{\sigma,2} + ct_0^{1-\frac{\sigma}{2}} e^{c_1t_0} (\|\varphi\|_{H^2} + \|\psi\|_{H^1} \\ &+ \int_0^{t_0} \|f(w(\tau,\cdot))\|_{H^1} d\tau) \cdot \|Gw\|_{X_{t_0}} \, . \end{split}$$

Since $||w||_{1,2} \leq ||w||_{\sigma,2} \leq M$, and $f \in C^2(\mathbf{R})$, we can deduce that

$$\|f(w(\tau,\cdot))\|_{1,2} \leq \|f\|_{C^2[-M,M]} \cdot M + \|f(0)\|_{L^2} \,,$$

which shows that $||Gw||_{X_{t_0}} \leq 2c ||u_0||_{\sigma,2}$ for $t_0 > 0$ small enough.

Thus we have proved that, for $t_0 > 0$ small enough, G maps B_M into B_M . Next, we can prove that, for t_0 small enough, G is a contract mapping. In fact, let $w_1, w_2 \in X_u$, and v_1, v_2 denote the corresponding solutions of (28). Then the difference $Gw_1 - Gw_2$ satisfies:

$$\begin{split} ⋙_1 - Gg_2 = u_1 - u_2 \\ &= -\chi \int_0^t T(t-s) u_1 \Delta v_1 ds - \chi \int_0^t T(t-s) \nabla u_1 \nabla v_1 ds \\ &+ \chi \int_0^t T(t-s) u_2 \nabla v_2 ds + \chi \int_0^t T(t-s) \nabla u_2 \nabla v_2 ds \\ &= -\chi \int_0^t T(t-s) (u_1 \Delta v_1 - u_2 \Delta v_2) ds - \chi \int_0^t T(t-s) (\nabla u_1 \nabla v_1 - \nabla u_2 \nabla v_2) ds. \end{split}$$

Next, we have

$$\begin{split} & \left\| \int_0^t T(t-s)(u_1 \Delta v_1 - u_2 \Delta v_2) ds \right\|_{\sigma,2} \\ & \leq \left\| \int_0^t T(t-s)u_1(\Delta v_1 - \Delta v_2) ds \right\|_{\sigma,2} + \left\| \int_0^t T(t-s)(u_1 - u_2) \Delta v_2 ds \right\|_{\sigma,2}. \end{split}$$

Since

$$\left\| \int_{0}^{t} T(t-s) u_{1}(\Delta v_{1} - \Delta v_{2}) ds \right\|_{\sigma,2}$$

$$\leq c t_{0}^{1-\frac{\sigma}{2}} \sup_{0 \leq t \leq t_{0}} \left\| u_{1}(\Delta v_{1} - \Delta v_{2}) \right\|_{2}$$

$$\leq c t_{0}^{1-\frac{\sigma}{2}} \sup_{0 \leq t \leq t_{0}} \left\| u_{1} \right\|_{L^{\infty}} \cdot \left\| \Delta (v_{1} - v_{2}) \right\|_{2}$$

$$\leq C M t_{0}^{1-\frac{\sigma}{2}} \sup_{0 \leq t \leq t_{0}} \left\| v_{1} - v_{2} \right\|_{2,2},$$
(31)

and

$$\left\| \int_{0}^{t} T(t-s)(u_{1}-u_{2}) \Delta v_{2} ds \right\|_{\sigma,2}$$

$$\leq c t_{0}^{1-\frac{\sigma}{2}} \sup_{0 \leq t \leq t_{0}} \|(u_{1}-u_{2}) \Delta v_{2}\|_{2}$$

$$\leq c t_{0}^{1-\frac{\sigma}{2}} \sup_{0 \leq t \leq t_{0}} \|v_{2}\|_{2,2} \cdot \|u_{1}-u_{2}\|_{L^{\infty}}$$

$$\leq c t_{0}^{1-\frac{\sigma}{2}} \|v_{2}\|_{Y_{t_{0}}} \cdot \|u_{1}-u_{2}\|_{X_{t_{0}}}.$$
(32)

Thus we have that

$$\begin{split} & \left\| \int_{0}^{t} T(t-s)(u_{1} \Delta v_{1} - u_{2} \Delta v_{2}) ds \right\|_{\sigma,2} \\ & \leq C t_{0}^{1-\frac{\sigma}{2}} \left\| v_{1} - v_{2} \right\|_{Y_{t_{0}}} \\ & + C t_{0}^{1-\frac{\sigma}{2}} \left\| v_{2} \right\|_{Y_{t_{0}}} \cdot \left\| u_{1} - u_{2} \right\|_{X_{t_{0}}}, \quad 0 \leq t \leq t_{0}. \end{split}$$

$$(33)$$

Similarly, we have

$$\begin{split} & \left\| \int_0^t T(t-s) (\nabla u_1 \nabla v_1 - \nabla u_2 \nabla v_2) ds \right\|_{\sigma,2} \\ & \leq \left\| \int_0^t T(t-s) (\nabla u_1 \nabla v_1 - \nabla u_2 \nabla v_1) ds \right\|_{\sigma,2} \\ & + \left\| \int_0^t T(t-s) (\nabla u_2 \nabla v_1 - \nabla u_2 \nabla v_2) ds \right\|_{\sigma,2}. \end{split}$$

Here

$$\begin{split} & \left\| \int_0^t T(t-s) (\nabla u_1 \nabla v_1 - \nabla u_2 \nabla v_1) ds \right\|_{\sigma,2} \\ & \leq c t_0^{1-\frac{\sigma}{2}} \sup_{0 \leq t \leq t_0} \left\| \nabla v_1 \cdot \nabla (u_1 - u_2) \right\|_2, \quad 0 \leq t \leq t_0. \end{split}$$

As we have done in Lemma 3.3, we can deduce that

$$\left\| \int_0^t T(t-s)(\nabla u_1 \nabla v_1 - \nabla u_2 \nabla v_1) ds \right\|_{\sigma,2} \\ \leq C t_0^{1-\frac{\sigma}{2}} \left\| v_1 \right\|_{Y_{t_0}} \cdot \left\| u_1 - u_2 \right\|_{X_{t_0}}, \quad 0 \leq t \leq t_0.$$
(34)

And we have similarly that

$$\begin{split} & \left\| \int_{0}^{t} T(t-s) (\nabla u_{2} \nabla v_{1} - \nabla u_{2} \nabla v_{2}) ds \right\|_{\sigma,2} \\ & \leq c t_{0}^{1-\frac{\sigma}{2}} \sup_{0 \leq t \leq t_{0}} \left\| \nabla u_{2} \cdot \nabla (v_{1} - v_{2}) \right\|_{2} \\ & \leq c t_{0}^{1-\frac{\sigma}{2}} \left\| u_{2} \right\|_{X_{t_{0}}} \cdot \left\| v_{1} - v_{2} \right\|_{Y_{t_{0}}} \\ & \leq c M t_{0}^{1-\frac{\sigma}{2}} \left\| v_{1} - v_{2} \right\|_{Y_{t_{0}}}, \quad 0 \leq t \leq t_{0}. \end{split}$$

$$(35)$$

Then

$$\left\| \int_{0}^{t} T(t-s) (\nabla u_{1} \nabla v_{1} - \nabla u_{2} \nabla v_{2}) ds \right\|_{\sigma,2}
\leq C t_{0}^{1-\frac{\sigma}{2}} \left\| v_{1} \right\|_{Y_{t_{0}}} \cdot \left\| u_{1} - u_{2} \right\|_{X_{t_{0}}} + C t_{0}^{1-\frac{\sigma}{2}} \left\| v_{1} - v_{2} \right\|_{Y_{t_{0}}}, \quad 0 \leq t \leq t_{0}.$$
(36)

Combining the estimates (33) and (36), we have

$$\begin{split} & \|Gw_1 - Gw_2\|_{\sigma,2} = \|u_1 - u_2\|_{\sigma,2} \\ & \leq Ct_0^{1 - \frac{\sigma}{2}} \|v_1 - v_2\|_{Y_{t_0}} + Ct_0^{1 - \frac{\sigma}{2}} \|v_2\|_{Y_{t_0}} \cdot \|u_1 - u_2\|_{X_{t_0}} \\ & + Ct_0^{1 - \frac{\sigma}{2}} \|v_1\|_{Y_{t_0}} \cdot \|u_1 - u_2\|_{X_{t_0}} + Ct_0^{1 - \frac{\sigma}{2}} \|v_1 - v_2\|_{Y_{t_0}} \,, \end{split}$$

which implies

$$\begin{split} & \|Gw_1 - Gw_2\|_{X_{t_0}} \\ & \leq 2Ct_0^{1-\frac{\sigma}{2}} \left\|v_1 - v_2\right\|_{Y_{t_0}} + Ct_0^{1-\frac{\sigma}{2}} (\left\|v_2\right\|_{Y_{t_0}} + \left\|v_1\right\|_{Y_{t_0}}) \cdot \left\|Gw_1 - Gw_2\right\|_{X_{t_0}}. \end{split}$$

Also, we have

$$||v_1 - v_2||_{2,2} \le e^{c_1 t_0} \int_0^{t_0} ||f(w_1) - f(w_2)||_{H^1} d\tau$$

$$\le e^{c_1 t_0} ||f||_{C^2[-M,M]} \int_0^{t_0} ||w_1 - w_2||_{H^{\sigma}} d\tau,$$

and

$$\begin{split} \|v_1\|_{2,2} &\leq e^{c_1t_0} (\|\varphi\|_{H^2} + \|\psi\|_{H^1} + \int_0^{t_0} \|f(w_1(\tau))\|_{H^1} d\tau) \\ &\leq e^{c_1t_0} (\|\varphi\|_{H^2} + \|\psi\|_{H^1} + c \int_0^{t_0} (\|w_1(\tau)\|_{H^\sigma} + \|f(0)\|_{H^1}) d\tau) \\ &\leq e^{c_1t_0} (\|\varphi\|_{H^2} + \|\psi\|_{H^1} + ct_0 (M + \|f(0)\|_{L^2})) \\ \|v_2\|_{2,2} &\leq e^{c_1t_0} (\|\varphi\|_{H^2} + \|\psi\|_{H^1} + ct_0 (M + \|f(0)\|_{L^2})). \end{split}$$

Thus for $t_0 > 0$ small enough, G is contract.

From process above, we have proved the existence of solution for the problem (9). Since G is contract, then the solution is unique.

5 Global existence of Solutions for n=1

In this section, we establish the global existence and uniqueness of the solution $(u, v) \in X_{\infty} \times Y_{\infty}$ of (9) in the case of n = 1 and $g(u, v) = -\gamma v + f(u)$. Here we suppose that

$$f(x) \in C_0^2(\mathbf{R}), \quad \sigma = \frac{5}{4}.$$
 (37)

Observe that, for n = 1, $\sigma = \frac{5}{4}$ can simultaneously satisfy the condition (10) and (11). So from the result of Theorem 4.1, the problem (9) has a unique local solution $(u, v) \in X_{t_0} \times Y_{t_0}$ for some $t_0 > 0$ small enough.

Actually we can obtain following more strong result:

Theorem 5.1. If n = 1, $g(u, v) = -\gamma v + f(u)$ and σ and f satisfy the condition (37), then for each initial data $u_0 \in H^{\sigma}(\Omega) \cap \{\frac{\partial u}{\partial n} = 0 \text{ on } \partial \Omega\}$ and $u_0 \geq 0$, $\varphi \in H^2(\Omega) \cap \{\frac{\partial v}{\partial n} = 0 \text{ on } \partial \Omega\}$ and $\psi \in H^1(\Omega)$, the problem (9) has a unique global solution $(u, v) \in X_{\infty} \times Y_{\infty}$.

If $u_0 \ge 0$, then from the first equation of (9), we can deduce that the local solution (u, v) satisfies

$$||u(t,\cdot)||_{L^1} = ||u_0||_{L^1} \tag{38}$$

Next, we have

Lemma 5.2. Let $s \leq 2$, the local solution $(u, v) \in X_{t_0} \times Y_{t_0}$ of (9), for $g(u, v) = -\gamma v + f(u)$, satisfies

$$||v(t,\cdot)||_{H^s} \le e^{ct_0} (c_0 + \int_0^{t_0} ||f(u(\tau,\cdot))||_{H^{s-1}} d\tau), \quad 0 \le t \le t_0, \tag{39}$$

where $c_0 = \|\varphi\|_{H^2} + \|\psi\|_{H^1}$ and c is independent of t_0 .

Proof: For U = (v, w) and $F(U) = (0, (1 - \gamma)v + f(u))$, in terms of (21), we know that

$$U = T(t)U_0 + \int_0^t T(t-\tau)F(U(\tau))d\tau$$

where $w = v_t$ and (u, v) is the solution of (9).

By using (22), we know that

$$||U(t)||_{H^{1}\times L^{2}} \leq ||T(t)U_{0}||_{H^{1}\times L^{2}} + \int_{0}^{t} ||T(t-\tau)F(U(\tau))||_{H^{1}\times L^{2}} d\tau$$

$$\leq ||U_{0}||_{H^{1}\times L^{2}} + \int_{0}^{t} ||F(U(\tau))||_{H^{1}\times L^{2}} d\tau$$

$$= ||\varphi||_{H^{1}} + ||\psi||_{L^{2}} + \int_{0}^{t} ||(1-\gamma)v + f(u)||_{L^{2}} d\tau$$

$$\leq ||\varphi||_{H^{1}} + ||\psi||_{L^{2}} + c \int_{0}^{t} ||v||_{L^{2}} d\tau + \int_{0}^{t} ||f(u)||_{L^{2}} d\tau$$

$$\leq ||\varphi||_{H^{1}} + ||\psi||_{L^{2}} + c \int_{0}^{t} ||U(\tau)||_{H^{1}\times L^{2}} d\tau + \int_{0}^{t_{0}} ||f(u)||_{L^{2}} d\tau, \quad 0 \leq t \leq t_{0}.$$

$$(40)$$

So the Gronwall's inequality indicates

$$||U(t)||_{H^1 \times L^2} \le e^{ct} (||\varphi||_{H^1} + ||\psi||_{L^2} + \int_0^{t_0} ||f(u)||_{L^2} d\tau) \le e^{ct_0} (||\varphi||_{H^2} + ||\psi||_{H^1} + \int_0^{t_0} ||f(u)||_{L^2} d\tau), \quad 0 \le t \le t_0.$$

$$(41)$$

Since $H^s \times H^{s-1} \subset H^1 \times L^2$ for s > 1, we denote $T(t) \mid_{H^s \times H^{s-1}}$ as the restriction of T(t) on $H^s \times H^{s-1}$, the norm of $T(t) \mid_{H^s \times H^{s-1}}$ satisfies also the estimate (22). Thus, by similar process of (40) and (41), we can deduce that

$$||U(t)||_{H^s \times H^{s-1}} \le e^{ct_0} (||\varphi||_{H^2} + ||\psi||_{H^1} + \int_0^{t_0} ||f(u)||_{H^{s-1}} d\tau), \quad 0 \le t \le t_0.$$
 (42)

If s < 1, then $H^1 \times L^2 \subset H^s \times H^{s-1}$, we use Hahn-Banach theorem to get that the operator T(t) can be continuously extended on $H^s \times H^{s-1}$ and the norm of T(t) is invariable. Thus for s < 1, we have also that

$$||U(t)||_{H^s \times H^{s-1}} \le e^{ct_0} (||\varphi||_{H^2} + ||\psi||_{H^1} + \int_0^{t_0} ||f(u)||_{H^{s-1}} d\tau), \quad 0 \le t \le t_0.$$
(43)

Lemma 5.2 can be deduced directly by (41), (42) and (43).

Proof of theorem 5.1:

For the unique local solution $(u, v) \in X_{t_0} \times Y_{t_0}$ of (9), if we take s=1/2 in (39), then

$$\|v(t,\cdot)\|_{H^{\frac{1}{2}}}^{2} \le ce^{t_{0}}(c_{0} + \int_{0}^{t_{0}} \|f(u(\tau,\cdot))\|_{H^{-\frac{1}{2}}}^{2} d\tau), \quad 0 \le t \le t_{0}.$$

$$(44)$$

Since n=1, then from Sobolev imbedding theorems, we can deduce that $W^{0,1}(\Omega) \hookrightarrow H^{-\frac{1}{2}}(\Omega)$. Hence we have

$$\begin{aligned} & \|v(t,\cdot)\|_{H^{\frac{1}{2}}}^{2} \leq ce^{t_{0}}(c_{0} + \int_{0}^{t_{0}} \|f(u(\tau,\cdot))\|_{H^{-\frac{1}{2}}}^{2} d\tau) \\ & \leq ce^{t_{0}}(c_{0} + \int_{0}^{t_{0}} \|f(u(\tau,\cdot))\|_{L^{1}}^{2} d\tau) \\ & \leq ce^{t_{0}}(c_{0} + \int_{0}^{t_{0}} (M_{1} \|u\|_{L^{1}} + \|f(0)\|_{L^{1}})^{2} d\tau) \\ & = ce^{t_{0}}(c_{0} + t_{0}(M_{1} \|u\|_{L^{1}} + \|f(0)\|_{L^{1}})^{2}), \quad 0 \leq t \leq t_{0}, \end{aligned}$$

$$(45)$$

where $M_1 = ||f||_{C^2}$.

On the other hand, for each $s \leq \sigma$ and $0 \leq \sigma_0 < 2$, we have that

$$||u(t,\cdot)||_{H^{s}} \leq c ||u_{0}||_{H^{\sigma}} + ct_{0}^{1-\frac{\sigma_{0}}{2}} ||\nabla(u\nabla v)||_{H^{s-\sigma_{0}}} \leq c ||u_{0}||_{H^{\sigma}} + ct_{0}^{1-\frac{\sigma_{0}}{2}} ||u\nabla v||_{H^{s-\sigma_{0}+1}}, \quad 0 \leq t \leq t_{0},$$

$$(46)$$

Especially for $s = -\frac{1}{2} + \frac{1}{4}$ and $\sigma_0 = 2 - \frac{1}{8}$, we have

$$\|u(t,\cdot)\|_{H^{-\frac{1}{2}+\frac{1}{4}}} \le c \|u_0\|_{H^{\sigma}} + ct_0^{\frac{1}{16}} \|u\nabla v\|_{H^{-1-\frac{1}{8}}}, \quad 0 \le t \le t_0.$$

$$(47)$$

By Sobolev imbedding theorems and (45),

$$\begin{aligned} & \|u\nabla v\|_{H^{-1-\frac{1}{8}}} \leq c \|u\|_{H^{-1-\frac{1}{8}}} \cdot \|\nabla v\|_{W^{-1-\frac{1}{8},\infty}} \\ & \leq c \|u\|_{H^{-1}} \cdot \|\nabla v\|_{H^{-\frac{1}{2}}} \\ & \leq c \|u\|_{L^{1}} \cdot \|v\|_{H^{\frac{1}{2}}} \\ & \leq c \|u_{0}\|_{L^{1}} \cdot e^{\frac{1}{2}t_{0}} (c_{0}^{\frac{1}{2}} + t_{0}^{\frac{1}{2}} (M_{1} \|u_{0}\|_{L^{1}} + \|f(0)\|_{L^{1}})), \quad 0 \leq t \leq t_{0}. \end{aligned}$$

$$(48)$$

Thus

$$||u(t,\cdot)||_{H^{-\frac{1}{4}}} \le c ||u_0||_{H^{\sigma}} + ct_0^{\frac{1}{16}} ||u\nabla v||_{H^{-1-\frac{1}{8}}}$$

$$\le c ||u_0||_{H^{\sigma}} + ct_0^{\frac{1}{16}} ||u_0||_{L^1} \cdot e^{\frac{1}{2}t_0} (c_0^{\frac{1}{2}} + t_0^{\frac{1}{2}} (M_1 ||u_0||_{L^1} + ||f(0)||_{L^1})), \quad 0 \le t \le t_0.$$

$$(49)$$

Take $s = \frac{1}{2} + \frac{1}{4} = \frac{3}{4}$ in (39), then (39) and (49) give

$$\begin{aligned} &\|v(t,\cdot)\|_{H^{\frac{3}{4}}}^{2} \leq ce^{t_{0}}(c_{0} + \int_{0}^{t_{0}} \|f(u(\tau,\cdot))\|_{H^{\frac{3}{4}-1}}^{2} d\tau) \\ &\leq ce^{t_{0}}(c_{0} + t_{0}(M_{1} \sup_{0 \leq \tau \leq t_{0}} \|u(\tau,\cdot)\|_{H^{-\frac{1}{4}}} + \|f(0)\|_{H^{-\frac{1}{4}}})^{2}) \\ &\leq ce^{t_{0}}(c_{0} + t_{0}(M_{1}(c \|u_{0}\|_{H^{\sigma}} + ct_{0}^{\frac{1}{16}} \|u_{0}\|_{L^{1}} \cdot e^{\frac{1}{2}t_{0}}(c_{0}^{\frac{1}{2}} \\ &+ t_{0}^{\frac{1}{2}}(M_{1} \|u_{0}\|_{L^{1}} + \|f(0)\|_{L^{1}})) + \|f(0)\|_{H^{-\frac{1}{4}}}))^{2}), \quad 0 \leq t \leq t_{0}. \end{aligned}$$

$$(50)$$

Take $s=-\frac{1}{2}+\frac{1}{4}+\frac{1}{4}=0$ and $\sigma_0=2-\frac{1}{8}$ in (46) again, we obtain that

$$||u(t,\cdot)||_{L^{2}} \leq c ||u_{0}||_{H^{\sigma}} + ct_{0}^{1-\frac{\sigma_{0}}{2}} ||\nabla(u\nabla v)||_{H^{-\sigma_{0}}}$$

$$\leq c ||u_{0}||_{H^{\sigma}} + ct_{0}^{\frac{1}{16}} ||u\nabla v||_{H^{-\sigma_{0}+1}}$$

$$\leq c ||u_{0}||_{H^{\sigma}} + ct_{0}^{\frac{1}{16}} ||u\nabla v||_{H^{-1+\frac{1}{8}}}, \quad 0 \leq t \leq t_{0}.$$

$$(51)$$

Since we know that

$$\begin{aligned} & \|u\nabla v\|_{H^{-1+\frac{1}{8}}} \le c \|u\|_{H^{-1+\frac{1}{8}}} \cdot \|\nabla v\|_{W^{-1+\frac{1}{8},\infty}} \\ & \le c \|u\|_{H^{-\frac{1}{4}}} \cdot \|\nabla v\|_{H^{-\frac{1}{2}+\frac{1}{4}}} \\ & \le c \|u\|_{H^{-\frac{1}{4}}} \cdot \|v\|_{H^{\frac{3}{4}}}, \quad 0 \le t \le t_0. \end{aligned}$$

$$(52)$$

We can get that

$$\begin{split} &\|u(t,\cdot)\|_{L^{2}} \leq c \,\|u_{0}\|_{H^{\sigma}} + ct_{0}^{1-\frac{\sigma_{0}}{2}} \,\|\nabla(u\nabla v)\|_{H^{-\sigma_{0}}} \\ &\leq c \,\|u_{0}\|_{H^{\sigma}} + ct_{0}^{\frac{1}{16}} \,\|u\nabla v\|_{H^{-1+\frac{1}{8}}} \\ &\leq c \,\|u_{0}\|_{H^{\sigma}} + ct_{0}^{\frac{1}{16}} \cdot \|u\|_{H^{-\frac{1}{4}}} \cdot \|v\|_{H^{\frac{3}{4}}} \,, \quad 0 \leq t \leq t_{0}. \end{split} \tag{53}$$

From (49) and (50), we have obtained that $||u(t,\cdot)||_{L^2}$ grows by a bounded manner in time.

Again we take $s = \frac{1}{2} + \frac{1}{4} + \frac{1}{4} = 1$ in (39), then (39) and (53) imply that $||v(t, \cdot)||_{H^1}$ grows also by a bounded manner in time.

Taking $s = -\frac{1}{2} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} = \frac{1}{4}$ and $\sigma_0 = 2 - \frac{1}{8}$ in (46) once more, since $||v(t,\cdot)||_{H^1}$ grows by a bounded manner in time, similar to which we have done in (51), (52) and (53), we can deduce that $||u(t,\cdot)||_{H^{\frac{1}{4}}}$ grows by a bounded manner in time.

Let us repeat processes above four times, we can prove that $\|u(t,\cdot)\|_{H^{\frac{5}{4}}}$ and $\|v(t,\cdot)\|_{H^2}$ grow by a bounded manner in time, as required.

References

- [1] E. Keller, Mathematical aspects of bacterial chemotaxis, Antibiotics and Chemotherapy, 19, 79-93, (1974).
- [2] E.F. Keller and L.A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol. 26, 399-415, (1970).
- [3] E.F. Keller and L.A. Segel, Travelling bands of chemotactic bacteria: A theoretical analysis, J. Theor. Biol., 30, 235-248, (1971).
- [4] M.E. Taylor, Partial Differential Equations III, Springer, New York, (1996).

- [5] B. Zeidler, Nonlinear Functional Analysis and its Applications III, Springer, New York, (1985).
- $\left[6\right]$ Alain Haraux, Nonlinear Evolution Equations Global Behavior of Solutions, Springerverlag