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Abstract. Mixed elliptic problems are characterised by conditions that have a
discontinuity on an interface of the boundary of codimension 1. The case of a smooth
interface is treated in [3]; the investigation there refers to additional interface con-
ditions and parametrices in standard Sobolev spaces. The present paper studies a
necessary structure for the case of interfaces with conical singularities, namely, corner
conormal symbols of such operators. These may be interpreted as families of mixed
elliptic problems on a manifold with smooth interface. We mainly focus on second
order operators and additional interface conditions that are holomorphic in an extra
parameter. In particular, for the case of the Zaremba problem we explicitly obtain
the number of potential conditions in this context. The inverses of conormal symbols
are meromorphic families of pseudo-differential mixed problems referring to a smooth
interface. Pointwise they can be computed along the lines [3].
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Introduction

This paper studies the conormal symbolic structure of mixed elliptic prob-
lems when the interface has conical singularities. The situation is as follows.
Let X be the closure of an open bounded set G ⊂ R

d with boundary Y ,
and let Y be subdivided into subsets Y±, such that Y = Y− ∪ Y+, Y± ⊂ Y
closed, where Z := Y+ ∩ Y− is a submanifold of Y with conical singularity v
and Zreg := Z \ {v} of codimension 1 in Y . Let A be an elliptic differential
operator of second order in G = intX with smooth coefficients up to the
boundary, and consider the mixed boundary value problem

Au = f in G, T±u = g± on int Y±, (1)

with boundary operators T± := r±B± for differential operators B± of order
μ±, given in a neighbourhood of Y± in R

d, satisfying the Shapiro-Lopatinskij
condition, uniformly up to Z from the respective sides. Here r± denotes the
operators of restriction to intY±. A well known case is the so called Zaremba
problem for the Laplacian A = Δ with Dirichlet/Neumann conditions on
the minus/plus side of the boundary. The problem is now to understand the
regularity of solutions and parametrices of the operator A = t(A T− T+)
in suitable weighted Sobolev spaces, both near Zreg and v (for simplicity, we
consider one conical singularity; the case with finitely many such points is
similar). This problem has been studied in [5], based on earlier papers [1] for
the case of smooth Z (with regularity in weighted edge Sobolev spaces) and
[3] in standard Sobolev spaces. In [1] the interface Z is regarded as a smooth
edge on the boundary of X, in [5] the regular part Zreg of Z is also a smooth
edge, but v plays the role of a corner point, and we established the elliptic
regularity of solutions in weighted corner Sobolev spaces. The operators in
this case are described by a principal symbolic hierarchy σ = (σψ, σ∂ , σ∧, σc)
with σψ being the standard homogeneous principal symbol of A, σ∂ the pair
of boundary symbols on the ± sides of the boundary, σ∧ the edge symbol on
Zreg and σc the corner conormal symbol. There are two weights (γ, δ) ∈ R

2

in the corner Sobolev spaces, and the ellipticity with respect to σ∧ refers to
the ‘cone weight’ γ, that of σc to the corner weight δ. In the Zaremba case
we proved that for a suitable set of admissible weights γ the ellipticity with
respect to σc is satisfied for all δ, except for a discrete set of exceptional
weights. The complete answer employed extra interface conditions on Zreg,
depending on γ, the number of which was also computed.
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The present paper is aimed at studying the meromorphic corner conor-
mal symbolic structure in more detail. In some parameter-dependent cases
we can organise the extra interface data in such a way that the conormal
symbol is bijective on a prescribed weight line.

1 Mixed problems in an infinite cylinder

In contrast to the notation in the introduction we now slightly change the
context and consider mixed elliptic problems in an infinite cylinder.

Let N = Ω be the closure of a smooth bounded domain in R
m and let

M := 2N denote double (obtained by gluing together two copies N± of N
along the common boundary to a closed compact C∞ manifold; we then
identify N with N+). Let Hs(R × M) denote the cylindrical Sobolev space
on R × M of smoothness s ∈ R. Let us briefly recall the definition. The
space Lμ

cl(M ; Rl
λ) of parameter-dependent (with parameter λ ∈ R

l) pseudo-
differential operators on M of order μ contains an element Rμ(λ) which is
parameter-dependent elliptic and induces isomorphisms Rμ(λ) : Hs(M) →
Hs−μ(M) for all s ∈ R, λ ∈ R

l. Then Hs(R × M) is defined as the closure
of C∞

0 (R, C∞(M)) with respect to the norm

{ ∫
R

||Rs(τ)(Fu)(τ)||2L2(M)dτ
} 1

2

where Rs(τ) ∈ Ls
cl(M ; Rτ ) is an order reducing element as mentioned before,

and F is the Fourier transform in t ∈ R. The space L2(M) refers to a fixed
Riemannian metric on M . Moreover, let

Hs(R × intN) := {u|R×int N : u ∈ Hs(R × 2N)}.

In order to investigate conormal symbols in a corner situation we now study
mixed elliptic problems in an infinite cylinder. In order to avoid too compli-
cated notation we assume X,Y = ∂X, Y± and Z as before, but now assume Z
to be a C∞ submanifold of Y of codimension 1, Y− ∪ Y+ = Y, Y− ∩ Y+ = Z.
According to the above definition we have the cylindrical Sobolev spaces
Hs(R × intX),Hs(R × int Y±),Hs(R × Z). Let us set

Hs,δ(R × intX) := e−tδHs(R × int X)

and
Hs,δ(R × intY±) := e−tδHs(R × int Y±).

Let
A =

∑
|α|≤2

aα(t, x)Dα
t,x
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be an elliptic differential operator of second order with coefficients aα ∈
C∞(R × X). Moreover, let T± := r±B± be boundary operators with r±
being the restriction to R × int Y± and

B± =
∑

|β|≤μ±

bβ,±(t, x)Dβ
t,x

differential operators with coefficients bβ,± ∈ C∞(R × U±), where U± are
open neighbourhoods of Y±. We assume that the boundary operators T±
are elliptic on Y± with respect to A, i.e., satisfy the Shapiro-Lopatinskij
condition uniformly up to Z from the respective ±-sides. Under suitable
assumptions on the coefficients for |t| → ∞ we then obtain continuous op-
erators

A =

⎛
⎝ A

T−
T+

⎞
⎠ : Hs,δ(R × int X) →

Hs−2,δ−2(R × int X)
⊕

Hs−μ−− 1
2
,δ−μ−(R × intY−)

⊕
Hs−μ+− 1

2
,δ−μ+(R × int Y+)

(2)

for every fixed choice of δ and for all s ∈ R, s > max {μ± + 1
2}. Let us

compare (2) with a mixed boundary value problem on the infinite stretched
cone (int X)∧ = R+ × intX 	 (r, x) that we obtain by substituting the
diffeomorphism R → R+, t → e−t = r. To this end we introduce the space

Hs,γ(M∧), s, γ ∈ R, M∧ := R+ × M 	 (r, x),

for a closed compact C∞ manifold M of dimension d as the completion of
the space C∞

0 (R+, C∞(M)) with respect to the norm
{ 1

2πi

∫
Γ d+1

2 −γ

||Rs(Im w)Mr→wu(w)||2L2(M)dw} 1
2 , where Mr→w is the Mellin

transform Mr→wu(w) =
∫ ∞
0 rw−1u(r)dr on u(r) ∈ C∞

0 (R+, C∞(M)) (which
is holomorphic in w), Γβ := {w ∈ C : Re w = β}, and Rs(τ) ∈ Ls

cl(M ; Rτ )
is an order reducing family of order s. If X is a compact C∞ manifold with
C∞ boundary ∂X we define

Hs,γ((int X)∧) := {u|(int X)∧ : u ∈ Hs,γ((2X)∧)},

where 2X is the double of X, obtained by gluing together two copies X±
along the common boundary ∂X, with X+ being identified with X. Then
v(t, x) → u(r, x), defined by u(e−t, x) = v(t, x), induces an isomorphism

Hs,δ(R × X) → Hs,γ(X∧)

for γ = δ + d+1
2 , d = dim X.

4



The operator A then takes the form

A := r−2
2∑

j=0

aj(r)(−r∂r)j ,

i.e., is a Fuchs type differential operator on the infinite stretched cone
(int X)∧ = R+ × intX, with coefficients aj ∈ C∞(R+ × Diff2−j(X)). More-
over, the boundary operators are transformed into

T± := r±B± for B± := r−μ±
μ±∑
k=0

bk,±(r)(−r∂r)k

with coefficients bk,± ∈ C∞(R+,Diffμ±−k(U±)) for U± as above. Assum-
ing the coefficients aj and bk,± to be independent of r for large r, obtain
continuous operators

A :=

⎛
⎝ A

T−
T +

⎞
⎠ : Hs,γ((int X)∧) →

Hs−2,γ−2((int X)∧)
⊕

Hs−μ−− 1
2
,γ−μ−− 1

2 ((int Y−)∧)
⊕

Hs−μ+− 1
2
,γ−μ+− 1

2 ((int Y+)∧)

(3)

for all s ∈ R, s > max {μ± + 1
2}. Here and in future δ is fixed and chosen

below in a suitable way.
The operator (3) represents a mixed boundary value problem in a cone

(int X)∧ with a subdivision of ∂X∧ into Y ∧± , where now the interface Z∧

(written in stretched form) has conical singularities (in this description at
r = 0). According to the calculus of operators on a manifold with conical
points the operator (3) has a conormal symbol, defined as the operator
family

σc(A)(w) :=

⎛
⎝ σc(A)

σc(T−)
σc(T +)

⎞
⎠ (w) : Hs(int X) →

Hs−2(int X)
⊕

Hs−μ−− 1
2 (int Y−)
⊕

Hs−μ+− 1
2 (int Y+)

holomorphic in w ∈ C, where

σc(A)(w) =
2∑

j=0

aj(0)wj, σc(T±)(w) = r±
μ±∑
k=0

bk,±(0)wk.
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2 Reduction to the boundary

Let us consider another boundary operator

T = rB for B = r−μ
μ∑

k=0

bk(r)(−r∂r)k

with coefficients bk ∈ C∞(R+ × Diffμ−k(U)) for a neighbourhood U of Y .
Let us assume, as above, that aj, bk are independent of r for large r. Then
the operator

D :=
( ∑2

j=0 aj(r)(−r∂r)j

r
∑μ

k=0 bk(r)(−r∂r)k

)
: Hs,γ((int X)∧) →

Hs−2,γ((int X)∧)
⊕

Hs−μ− 1
2
,γ(Y ∧)

(4)
for all γ, s ∈ R, s > μ + 1

2 , represents a boundary value problem on X∧.
Assume that T satisfies the Shapiro-Lopatinskij condition with respect to
A (in the Fuchs type sense, cf. [6]). Then the conormal symbol

σc(D)(w) :=
( ∑2

j=0 aj(0)wj

r
∑μ

k=0 bk(0)wk

)
(5)

is a holomorphic (operator-valued) function in w ∈ C and defines a parameter-
dependent elliptic family of boundary value problems on X with the param-
eter τ = Imw. There is then a countable set D ⊂ C with finite intersection
D ∩ {w ∈ C : c ≤ Rew ≤ c′} for every c ≤ c′ such that the operators (5)
define isomorphisms

σc(D)(w) : Hs(int X) →
Hs−2(int X)

⊕
Hs−μ− 1

2 (Y )

for all w ∈ C \D and all sufficiently large s ∈ R. Since the main purpose of
our investigation is to determine admissible corner weights of mixed prob-
lems from now on for simplicity we assume the coefficients aj and bk to be
independent of r. We then have

D = op
γ− d

2
M (σc(D))

defines isomorphisms (4) for all γ ∈ R such that Γ d+1
2

−γ ∩ D = ∅ and all
sufficiently large s ∈ R. Here, Γβ := {w ∈ C : w = β + iτ, τ ∈ R}.

We have

op
γ− d

2
M (σc(D)) =

1
2πi

∫
Γ d+1

2 −γ

∫ ∞

0

( r

r′
)−w

σc(D)(w)u(r′)
dr′

r′
dw

=
1
2π

r−
d+1
2

+γ

∫ ∞

−∞

∫ ∞

0

( r

r′
)−iτ

σc(D)(
d + 1

2
− γ + iτ)(r′)

d+1
2

−γu(r′)
dr′

r′
dτ.
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As noted before the transformation u(r, x) → u(e−t, x) induces an isomor-
phism Hs, d+1

2 (X∧) → Hs(R × int X) for all s ∈ R. Hence it follows an
operator

D := opδ(d) = F−1d(w)F : Hs,δ(R × int X) →
Hs−2,δ(R × int X)

⊕
Hs−μ− 1

2
,δ(R × Y ),

(6)

where d(w) := t(e(w) t(w)) = σc(D)(w),w = iw, that is an isomorphism
for all δ ∈ R such that Iδ ∩ D = ∅. Here Iβ := {w ∈ C : Im w = β}, β ∈ R,
and D = {w ∈ C : iw ∈ D}.

If M is a compact C∞ manifold by Lμ
cl(M ; Rl) we denote the space of

all classical pseudo-differential operators of order μ ∈ R on M depending on
a parameter λ ∈ R. Moreover, if F is a Fréchet space and U � C an open
set by A(U,F ) we denote the space of all holomorphic functions in U with
values in F .

We now employ the fact that for every constants c ≤ c′ there exists a
holomorphic operator function

r(w) ∈ A(C, L
s−μ− 1

2
cl (Y ))

such that
r(τ + iβ) ∈ L

s−μ− 1
2

cl (Y ; Rτ )

for every β ∈ R, uniformly in compact β-intervals, and

r(τ + iβ) : Hs−μ− 1
2 (Y ) → L2(Y )

is a family of isomorphisms for all τ ∈ R and all c ≤ β ≤ c′ (s ∈ R is now
fixed). Then, in particular, we obtain an isomorphism

opδ(r) : Hs−μ− 1
2
,δ(R × Y ) → H0,δ(R × Y ),

δ ∈ R. We will choose r(w) as follows.
Let α ∈ R (which plays the role of s − μ − 1

2 ), and fix a collar neigh-
bourhood ∼= [−1, 1] × Z of the interface Z ⊂ Y. Choose local coordinates
(n, z) ∈ [−1, 1]×U for an open set U ⊂ R

d−2 with covariables (ν, ζ) ∈ R
d−1,

and form a symbol of the following kind:

pα
−(n, ν, ζ, λ) :=

(
f

(
ν

C〈ζ, λ〉
)
〈ζ, λ〉 − iν

)αω(n)

〈ν, ζ, λ〉α(1−ω(n)). (7)

Here ω ∈ C∞
0 (−1, 1) is a real-valued function, 0 ≤ ω ≤ 1, that is equal to 1

in a neighbourhood of the origin, λ ∈ R
l, and f(ν) ∈ S(R) is a function such

that f(0) = 1 and suppF−1f ⊂ R− (with the Fourier transform on the n-
axis). We then have pα−(n, ν, ζ, λ) ∈ Sα

cl(R × R
d−1+l
ν,ζ,λ ), and pα− is elliptic with
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respect to the covariable (ν, ζ, λ) when C > 0 is chosen sufficiently large. On
Y we now define a parameter-dependent elliptic operator pα−(λ) ∈ Lα

cl(Y ; Rl)
taking pα−(n, ν, ζ, λ) as local amplitude functions in the collar neighbourhood
of Z and 〈η, λ〉α outside that neighbourhood, with η being the covariable on
Y . The precise (standard) construction in terms of an open covering of Y
by charts, a subordinate partition unity, etc., may be found in [3]. In similar
manner, starting from pα

+(n, ν, ζ, λ), defined as the complex conjugate of (7),
we obtain a family pα

+(λ) ∈ Lα
cl(Y ; Rl).

By virtue of the specific properties of the symbol (7) in a neighbourhood
of Z we have the following results.

Let es
+ : Hs(int Y+) → Hs(Y ) denote a continuous operator such that

r+es
+ = idHs(int Y+). Moreover, for s > −1

2 we consider e+ : Hs(int Y+) →
Hmin (s,0)(Y ), the operator of extension by 0 to the opposide side of Y .

Theorem 2.1 There is a constant M > 0 such that the operators

pα
−(λ) : Hs(int Y ) → Hs−α(Y )

and
r+pα

−(λ)es
+ : Hs(int Y+) → Hs−α(int Y+)

are isomorphisms for all λ ∈ R
l, |λ| ≥ M. For s > −1

2 also

r+pα
−(λ)e+ : Hs(int Y+) → Hs−α(int Y+)

is a family of isomorphisms for all λ ∈ R
l, |λ| ≥ M. We then have (r+pα−(λ)e+)−1 =

r+(pα−)−1(λ)e+. An analogous result holds for p+(λ) when we interchange +
and − signs.

Let Lα
cl(Y ; C × R

l) denote the space of all h(w, λ) ∈ A(C, Lα
cl(Y ; Rl

λ))
such that

h(τ + iβ, λ) ∈ Lα
cl(Y ; R1+l

τ,λ )

for all β ∈ R, uniformly in compact β-intervals. Let us now replace the pa-
rameter λ by (τ, λ) ∈ R

1+l and consider the corresponding families pα±(τ, λ).
Choose a ψ(b) ∈ C∞

0 (R) such that ψ(b) ≡ 1 in a neighbourhood of b = 0.
Then, setting

rα±(w, λ) :=
∫

R

e−iwb
{ ∫

R

ψ(b)eiτbpα
±(τ, λ)d̄τ

}
db (8)

we obtain an operator function in Lα
cl(Y ; C × R

l).

Theorem 2.2 For every constants c ≤ c′ there exists an M > 0 such
that

rα±(w, λ) : Hs(Y ) → Hs−α(Y )

8



and
r+rα−(w, λ)es

+ : Hs(int Y+) → Hs−α(int Y+),

r−rα+(w, λ)es
− : Hs(int Y−) → Hs−α(int Y−, )

are isomorphisms for all c ≤ Im w ≤ c′ and all λ ∈ R
l, |λ| ≥ M. For s > −1

2
also

r+rα−(w, λ)e+ : Hs(int Y+) → Hs−α(int Y+),

r−rα+(w, λ)e− : Hs(int Y−) → Hs−α(int Y−)

are families of isomorphisms for those w and λ.

A proof may be found in [4].
In the following we also use the notation es± and e± for the corresponding

extension operators Hs,δ(R× (int Y±)) → Hs,δ(R×Y ), s ∈ R, and Hs,δ(R×
(int Y±)) → Hmin (s,0),δ(R × Y ), s ∈ R, s > −1

2 , respectively, for any δ ∈ R.

Corollary 2.3 Let r−(w, λ) denote the operator function of Theorem
2.2. Then

opδ(rα−)(λ) : Hs,δ(R × Y ) → Hs−α,δ(R × Y ),

r+opδ(rα−)(λ)es
+ : Hs,δ(R × intY+) → Hs−α,δ(R × int Y+)

for δ, s ∈ R and

r+opδ(rα−)(λ)e+ : Hs,δ(R × intY+) → Hs−α,δ(R × int Y+)

for δ, s ∈ R, s > −1
2 , are isomorphisms for all |λ| ≥ M for a suitable M > 0.

Analogous relations hold when we interchange + and − signs.

We now fix a λ1 ∈ R
l, |λ1| > M, and set rα±(w) := rα±(w, λ1). It is known

that there is a meromorphic inverse (rα±)−1(w), and we then have

opδ((rα±)−1) = (opδ(rα±))−1.

Similarly, the operators r+opδ(rα−)es
+, r+opδ(rα−)e+ and r−opδ(rα+)es−, r−opδ(rα+)e−

can be inverted.
From the operator (6) we now pass to a reduction of orders to 0 on the

boundary. As above we write d(w) := t(e(w) t(w)) and form

diag (1, opδ(rα+))opδ(d) = opδ

(
e

rα+t

)
: Hs,δ(R×intX) →

Hs−2,δ(R × int X)
⊕

L2,δ(R × Y )

where α = s − μ − 1
2 . The order reduction with the + operator is taken for

convenience; we could take any other order reduction as well.
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With the restriction operators r± to R× intY± and the extensions e± by
zero to R × int Y we have an isomorphism

(e− e+) :
L2,δ(R × Y−)

⊕
L2,δ(R × Y+)

→ L2,δ(R × Y )

with the inverse t(r− r+).
Similarly as in the calculus of pseudo-differential boundary value prob-

lems the operator function d(w) has a meromorphic inverse d−1(w) =:
(g(w) k(w)).

Remark 2.4 It is known that the Laurent coefficients of d−1 are smooth-
ing operators of finite rank, more precisely, smoothing in the calculus of
boundary value problems on X with the transmission property at Y.

Let us now form the operator

L := (opδ(g) opδ(k(rα+)−1)e− opδ(k(rα+)−1)e+)

:

Hs−2,δ(R × intX)
⊕

L2,δ(R × Y−)
⊕

L2,δ(R × Y+)

→ Hs,δ(R × int X)

which is an isomorphism (recall that α = s − μ − 1
2). Multiplying L from

the left by A, cf. the formula (2), we obtain the operator

AL :

Hs−2,δ(R × intX)
⊕

L2,δ(R × Y−)
⊕

L2,δ(R × Y+)

→

Hs−2,δ(R × int X)
⊕

Hs−μ−− 1
2
,δ(R × intY−)
⊕

Hs−μ+− 1
2
,δ(R × int Y+)

. (9)

By virtue of DD−1 = diag (1, 1) we obtain the operator AL in the form

AL =

⎛
⎝ 1 0 0

T−G T−KR−1e− T−KR−1e+

T+G T+KR−1e− T+KR−1e+

⎞
⎠

where we employ the abbreviation G := opδ(g), K := opδ(k), R := opδ(rα+), α =
s − μ − 1

2 .
We also want to reduce the Sobolev spaces on the R× intY∓ on the right

of (9) to zero. To this end we take the elements r
α∓
± (w), α∓ = s − μ∓ − 1

2 .
Set

R− := r−opδ(rα−
+ )e−, R+ := r+opδ(rα+

− )e+

10



for s > max {μ+, μ−}. Setting R := diag (1, R−, R+), and multiplying (9)
from the left by R we get an operator

A0 := RAL =

⎛
⎝ 1 0 0

R−T−G R−T−KR−1e− R−T−KR−1e+

R+T+G R+T+KR−1e− R+T+KR−1e+

⎞
⎠

with the 2 × 2 lower right corner

(
R−T−KR−1e− R−T−KR−1e+

R+T+KR−1e− R+T+KR−1e+

)
:

L2,δ(R × Y−)
⊕

L2,δ(R × Y+)
→

L2,δ(R × Y−)
⊕

L2,δ(R × Y+)
.

(10)
The latter operator represents the reduction of our mixed problem to the
boundary, combined with suitable reductions of orders.

3 Ellipticity with interface conditions

We assume that the boundary condition T− is the restriction of T to intY−,
that means, μ = μ−, or α = α−. In that case, since the order reducing
operators R and R− are connected by the relation R− = r−Re−, we obtain

R−T−KR−1e− = idL2,δ(R×Y−) (11)

and
R−T−KR−1e+ = 0. (12)

In fact, from T = rB for a differential operator B in a neighbourhood of
Y it follows that T− = r−rB which implies that rBK = 1 and

R−T−KR−1e− = r−Re−r−R−1e−,

i.e., we obtain (11). Moreover, (12) is equal to r−Re−r−R−1e+ which van-
ishes because of r−R−1e+ = r−opδ(r−α

+ )e+ = 0. Thus the operator (10) is a
triangular matrix with the lower right corner

F := R+T+KR−1e+ : L2,δ(R × Y+) → L2,δ(R × Y+). (13)

The operator (13) can be written in the form

F = opδ(f)

for a meromorphic operator family

f(w) = r+r
α+
− (w)e+t+(w)k(w)r−α−

+ (w)e+ : L2(Y+) → L2(Y+).
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The operators f(w) are parameter-dependent elliptic of order zero, with the
parameter Rew = τ ∈ R. The homogeneous principal boundary symbol
σ∂(f)(z, τ, ζ) is a family of continuous operators

σ∂(f)(z, τ, ζ) : L2(R+) → L2(R+), (14)

independent of the choice of δ and homogeneous in the sense

σ∂(f)(z, λτ, λζ) = σ∂(f)(z, τ, ζ)

for every λ ∈ R+, (τ, ζ) �= 0.
By construction the operator family f(w) depends on s ∈ R. We now

assume s ∈ R to be chosen in such a way that (14) is a family of Fredholm
operators for all (τ, ζ) �= 0. The criterion for that is that the subordinate
conormal symbol has no zeros on the line Γ 1

2
. This property will be checked

in our concrete example below. In the case of the Fredholm property we
have a K-theoretic index element

indS∗Zσ∂(f) ∈ K(S∗Z);

here S∗Z is defined as the compact space {(z, τ, ζ) ∈ R × T ∗Z : |τ, ζ| =
1} with the canonical projection π1 : S∗Z → Z. Another condition to be
imposed is

indS∗Zσ∂(f) ∈ π∗
1K(Z).

There is a block matrix family of isomorphisms

(
σ∂(f)(z, τ, ζ) σ∂(k)(z, τ, ζ)
σ∂(t)(z, τ, ζ) σ∂(q)(z, τ, ζ)

)
: π∗

1

⎛
⎝ L2(R+)

⊕
J−

⎞
⎠ → π∗

1

⎛
⎝ L2(R+)

⊕
J+

⎞
⎠

for suitable J± ∈ Vect(Z) between the corresponding pull backs with respect
to π1.

We now choose a system of charts χj : Uj → R
d−2 on Z for an open

covering (Uj)j=1,...,N of Z. Let (ϕj)j=1,...,N be a subordinate partition of
unity and (ψj)j=1,...,N a system of functions ψj ∈ C∞

0 (Uj) such that ψj ≡ 1
on suppϕj for all j. Moreover, let σ, σ̃ ∈ C∞(Y+) be supported in a collar
neighbourhood of Z, σ̃ ≡ 1 in a neighbourhood of suppσ, and σ ≡ 1 in a
neighbourhood of Z. We then define the operator family

N∑
j=1

(
σϕj(χ∗

j × id) 0
0 ϕjχ

∗
j

)
Opz(gj)(τ)

(
(χ∗

j × id)−1σ̃ψj 0
0 (χ∗

j )
−1ψj

)

(15)

where gj(z, τ, ζ) is given by χ(τ, ζ)
(

0 σ∂(k)
σ∂(t) σ∂(q)

)
(z, τ, ζ) in local coor-

dinates with respect to the charts χj : Uj → R
d−2 and χj × id : Uj × [0, 1) →

12



R
d−2×R+ on Z and in a collar neighbourhood of Z with the normal variable

in [0, 1).
Now (15) is a block matrix family of operators

g(τ) :=
(

0 g12

g21 g22

)
(τ) :

L2(Y+)
⊕

L2(Z, J−)
→

L2(Y+)
⊕

L2(Z, J+)
.

Moreover, (
f(τ + iδ) g12(τ)
g21(τ) g22(τ)

)
(16)

is a family of Fredholm operators which defines isomorphisms for |τ | > C
for some constant C > 0. Similarly as (8) we now pass to a holomorphic
operator function

g(w) :=
∫

R

e−iwb
{ ∫

ψ(b)e−iτbg(τ)d̄τ
}

db

for a ψ ∈ C∞
0 (R) that is equal to 1 near the origin (clearly, the inte-

grals may be carried out for the entries separately). We then have g(w) =
(gij(w))i,j=1,2 with g11(w) = 0. This gives us a family of operators

(
f(w) g12(w)

g21(w) g22(w)

)
:

L2(Y+)
⊕

L2(Z, J−)
→

L2(Y+)
⊕

L2(Z, J+)
(17)

which is meromorphic in w ∈ C.

Proposition 3.1 There is a discrete set M ⊂ R such that (17) is a
family of isomorphisms for all w = τ + iδ, τ ∈ R, δ ∈ R \ M.

Proof. The family (17) is parameter-dependent elliptic in the class of
boundary value problems on Y+ (of order zero and without the transmission
property at Z), cf. [2], [8], with parameter τ = Re w. The meromorphy is
clear by construction; gij(w) are even holomorphic for all i, j. Let us assume
for the moment that also f(w) is holomorphic in the complex plane. The
operators (16) are parameter-dependent elliptic and the principal parameter-
dependent interior and boundary symbols are independent of δ. The same
is true of (17), i.e., (17) is Fredholm for every w ∈ C and a holomorphic
operator function. Moreover, there is a constant c > 0 such that (16) are
isomorphisms for all |τ | > c. Thus our operator function satisfies a well
known condition on holomorphic Fredholm families which are isomorphic for
at least one value of the complex parameter. This gives us the invertibility
for all w with Im w outside some discrete set.

In the case that f(w) is meromorphic we can argue in a similar manner
when we take into account that the Laurent coefficients are smoothing and
of finite rank, cf. Remark 2.4. �
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We have (17) as a meromorphic operator function which is invertible for
all w ∈ C \ N for some discrete set N ⊂ C such that N ∩ {c ≤ Im w ≤ c′}
is finite for every c ≤ c′. Our next objective is to pass from the sym-
bol a(w) : Hs(int X) → H̃s−2(int X) for H̃s−2(int X) := Hs−2(int X) ⊕
Hs−μ−− 1

2 (int Y−)⊕Hs−μ+− 1
2 (int Y+) to an operator function ã(w) by adding

extra entries of trace and potential type such that ã(w) : Hs(int X) ⊕
L2(Z, J−) → H̃s−2(int X) ⊕ L2(Z, J+) are meromorphic and invertible in
such a sense. To this end we form the block matrix operator family

⎛
⎝ 1 0 0

m(w) f(w) g12(w)
0 g21(w) g22(w)

⎞
⎠ :

L2(Y−)
⊕

L2(Y+)
⊕

L2(Z, J−)

→

L2(Y−)
⊕

L2(Y+)
⊕

L2(Z, J+)

(18)

for the meromorphic operator function m(w) := r+r
α+
− (w)e+t+(w)k(w)r−α−

+ (w)e−
which has the property

opδ(m) = R+T+KR−1e−.

Moreover, for n±(w) := r±r
α±
∓ (w)e±t±(w)g(w) we have

opδ(n±) = R±T±G.

Setting

ã0(w) =

⎛
⎜⎜⎝

1 0 0 0
n−(w) 1 0 0
n+(w) m(w) f(w) g12(w)

0 0 g21(w) g22(w)

⎞
⎟⎟⎠ :

Hs−2(int X)
⊕

L2(Y−)
⊕

L2(Y+)
⊕

L2(Z, J−)

→

Hs−2(int X)
⊕

L2(Y−)
⊕

L2(Y+)
⊕

L2(Z, J+)

gives us an operator Ã0 = opδ(ã0) that has A0 as the upper left corner.
Setting l(w) := diag (g(w), k(w)(rα+(w))−1e−, k(w)(rα−(w))−1e+) and r(w) :=

diag (1, r−r
α−
+ (w)e−, r+r

α+
− (w)e+) we have L = opδ(l) and R = opδ(r).

Moreover, let

l̃(w) := diag (l(w), idL2(Z,J−))

and

r̃(w) = diag (r(w), idL2(Z,J+)).

14



We then obtain an operator function

ã(w) := r̃−1(w)ã0(w)̃l−1(w) :
Hs(int X)

⊕
L2(Z, J−)

→

Hs−2(int X)
⊕

Hs−μ−− 1
2 (int Y−)
⊕

Hs−μ+− 1
2 (int Y+)
⊕

L2(Z, J+)

. (19)

Remark 3.2 We have

ã(w) =
(

a(w) kZ(w)
tZ(w) qZ(w)

)

where a(w) is the symbol of the original mixed problem (2). The other entries
play the role of trace, potential, etc., symbols with respect to the interface Z.

Theorem 3.3 There is a discrete set N ⊂ C, N ∩{c ≤ Im w ≤ c′} finite
for every c ≤ c′, such that ã(w) is a family of isomorphisms for all w ∈ C\N.

Proof. From Proposition 3.1 we have an operator function of the as-
serted kind. Thus (18) as well as ã0(w) also have this property. Finally,
ã(w) itself is as desired, since the factors at ã0(w) on the left hand side of
(19) preserve this structure. �

Corollary 3.4 The operator

Ã := opδ(ã) :
Hs(R × intX)

⊕
L2(R × Z, J−)

→

Hs−2(R × intX)
⊕

Hs−μ−− 1
2 (R × int Y−)
⊕

Hs−μ+− 1
2 (R × intY+)
⊕

L2(R × Z, J+)

is an isomorphism for all δ ∈ R such that Iδ ∩ N = ∅.

4 The Zaremba problem

Let us consider the Zaremba problem

A =

⎛
⎝ Δ

T−
T+

⎞
⎠ : Hs,δ(R × int X) →

Hs−2,δ−2(R × int X)
⊕

Hs− 1
2
,δ(R × int Y−)

⊕
Hs− 3

2
,δ−1(R × int Y+)
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on a cylinder R×X for the Laplace operator Δ with Dirichlet and Neumann
conditions on Y− and Y+, respectively, where X := {x = (x1, x2) ∈ R

2 :
|x| ≤ 1} and R

2 identified with the complex plane, Y− := {x = eiφ : 0 ≤
φ ≤ α}, Y+ := {x = eiφ : α ≤ φ ≤ 2π} for some 0 < α < 2π. We have

Δv = e2t{∂2
t v − ∂tv + ΔXv},

T−v = v(t, eiφ)|0≤φ≤α, (20)
T+v = ρ−1∂φv(t, eiφ)|α≤φ≤2π,

v(t, x) ∈ Hs,δ(R × intX), where ρ is the exterior normal direction to Y. We
have

A =

⎛
⎝ A

T−
T+

⎞
⎠ : Hs,δ(R × int X) →

Hs−2,δ−2(R × int X)
⊕

Hs− 1
2
,δ(R × intY−)

⊕
Hs− 1

2
,δ(R × intY+)

,

for every fixed δ and all s ∈ R, s > 3
2 . After the diffeomorphism

Hs,δ(R × X) → Hs,γ(X∧), R → R+, e−t → r,

γ = δ + 3
2 , the operators in (20) take the form

Δu = r−2{(r∂r)2u + r∂ru + ΔXu},
T−u = u(r, eiφ)|0≤φ≤α,

T +u = ρ−1∂φu(r, eiφ)|α≤φ≤2π,

and we get the continuous operators

A =

⎛
⎝ Δ

T−
T +

⎞
⎠ : Hs,γ((int X)∧) →

Hs−2,γ−2((int X)∧)
⊕

Hs− 1
2
,γ((int Y−)∧)

⊕
Hs− 3

2
,γ((int Y+)∧)

,

v(t, x) = u(e−t, x), for every fixed γ and for all s ∈ R, s > 3
2 . The corre-

sponding conormal symbols have the form

σc(Δ)(w)u = w2u−wu+ΔXu, σc(T−)u = u(eiϕ)|0≤ϕ≤α, σc(T +)u = ρ−1∂φu|α≤ϕ≤2π,

u ∈ Hs(X).
Let us take as another boundary operator ru := Tu = u(r, eiφ) which

represents the Dirichlet condition on Y . Then we have

D =
(

(r∂r)2 + r∂r + ΔX

r

)
: Hs,γ((int X)∧) →

Hs−2,γ−2((int X)∧)
⊕

Hs− 1
2
,γ− 1

2 (Y ∧)
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for all s, γ ∈ R, s > 1
2 , and

σc(D)(w)u =
(

w2u − wu + ΔXu
ru

)
,

u ∈ Hs(X). We have
D = opγ−1

M (σc(D))

and
D = opδ(d)

for d(w) = t(e(w) t(w)), where e(w) = −w2−iw+ΔX , t(w) = r. According
to [7, Section 11.1] the symbol d(w) defines isomorphisms

Hs(int X) →
Hs−2(int X)

⊕
Hs− 1

2 (Y )

for all w = τ + iδ, δ ∈ [−1, 0]. Let us fix such a δ.
In this case we have α = α− = s − 1

2 , α+ = s − 3
2 as order reduction

operators we take

r
s− 3

2− (w) = (f(
ν

C〈τ〉)〈τ〉 − iν)s−
3
2 , r

−s+ 1
2

+ (w) = (f(
ν

C〈τ〉)〈τ〉 − iν)−s+ 1
2 ,

w = τ + iδ.
The corresponding family (14) is a family of Fredholm operators for all

(τ, ζ) �= 0 if s /∈ Z + 1
2 , cf. [3, Proposition 3.1].

In our example we have

σ∂(f)(τ) = r+op(b)(τ)e+ (21)

for b(ν, τ) = (f( ν
C|τ |)|τ | − iν)s−

3
2 |ν, τ |(f( ν

C|τ |)|τ | − iν)−s+ 1
2 .

According to the result from [3, Section 3.1] we have that the operator
(21) is

(i) bijective for 1
2 < s < 1

2 ,

(ii) surjective for 1
2 < s + j < 3

2 , j ∈ N, where dim ker σ∂(f)(τ) = j,

(iii) injective for 1
2 < s + j < 3

2 ,−j ∈ N, where dim coker σ∂(f)(τ) = −j.

Then there is a family of isomorphisms

(σ∂(f)(τ) σ∂(k)(τ)) :
L2(R+)

⊕
Z × C

j−
→ L2(R+)

for j− := [s − 1
2 ].
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Remark 4.1 In problems of Zaremba type, given as meromorphic fam-
ilies of conormal symbols there is also a parameter-dependent variant, i.e.,
where w is replaced by (w, λ) and (Re w, λ) ∈ R

1+l is the parameter. The
construction of extra conditions (here of potential type) can also be per-
formed λ-depending. Then for every weight δ there is a λ such that ã(w, λ),
the parameter-dependent version of ã(w), is a family of isomorphisms (19)
for all Re w = δ, provided that |λ| is chosen sufficiently large.
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