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Abstract

In this paper, the monotone method is extended to the initial-boundary value problems of
nonlocal PDE system of first order, both quasi-monotone and non-monotone. A comparison
principle is established, and a monotone scheme is given.
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1 Introduction

In this paper, we concerned with the following initial-boundary value problem of nonlocal PDE

system of first order:

Dyts + Do (g3 (2)us) = Fy(t, 2,101, - -ty PL(ut(£,-)); -+ Pr(tm(t, ), a<a<b 0<t<T,
gi@)uilt,a) = / ’ Bu(Epus(t €)de, 0<t<T,
u; (0, 2) = ¢i(z), a<zx<b.
i=1,---.m
b o

where P;(u;(t,-)) :/ w;(t, x)dx.
a
The problem arises in many applications to biology and chemistry(see [2, 3, 4, 5, 1]). For
example, size structured populations dynamics i.e., population evolution with m species where

individuals are distinguished by size, can be formulated into (1)(for convenience, let m = 2) with
By = —ci(t,z,ur, ug, Pr(ui(t, ), Pa(ua(t,)))ur,
Fy = _CQ(tv €T, Ui, u2, Pl(ul(t7 ))’ PQ(u2(t7 ')))u27

where u;,7 = 1,2 are the populations in size x and at time ¢ , Pj(u;(¢,-)) and Py(usa(t,-)) are total

population at time ¢, g;, §; and ¢; are growth rates, reproduction rates and mortality rates of the
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ith species, respectively. The mortality rates c;,7 = 1,2 depend on the relationship between the

species, e.g., for predator-prey system, they may read

Y1 P (ua(t,-))
1+ O[lpql (ul (t, ))’
Yo Po(ur(t,-))
T+ as PP (t, )’

c1 = —p1 —

C2 = —H2 —

where u; and uo denote the populations of predator and prey species, respectively, and u;, 1 = 1,2

are natural death rates, or for cooperation population system,

o =y Pt ) Po(ua(t, )
1= 1+a1P2(u1(t,-)) ’
P ) Palus(t, )
2= TH2 1+062P1(U,1(t,-)) ’

or for competition population system,

o Y Pi(ui(t, ) Pa(ua(t,-))
L= 1+(11P1(U1(7f,-)) ’

o =y 2Pt ) Po(ua(t, )
2= TH 1 + ang(ul (t, ))

The monotone method is a useful measure in studying differential equations. Over the past
decades, many authors have successfully applied the monotone method to nonlinear differential
equations, see[?, 6, 7, 7, 7, ?, ?]. However, the monotone method is used to be only applicable to
ODE, elliptic and parabolic PDE and systems, which depends on the maximum principle strongly.
Several years ago, A.S. Ackleh and K. Deng developed a new monotone method to nonlocal PDE
of first order, see [2, 3, 4]. They introduced a weak partial order in a competitive function space,
and then proved the comparison principle. That is to say, the weak order implies the strong order.
In this paper, our main goal is to extend the monotone method to the above problem by coupled
solution technique.

The paper is organized as follows. In Section 2, the existence and uniqueness of the solution
of (1) is shown. In Section 3, we introduce the concept of lower and upper solutions to quasi-
monotone system and prove the comparison principle. In Section 4, we define two monotone
sequences which convergent to the solution to (1). Section 5 and 6 devote to the non-monotone
system, by introducing a new definition of lower and upper solutions and corresponding monotone

sequences, the comparison principle and convergence result are proved.

2 Existence and uniqueness

Let U = <u17 T 7um)7 Up = (¢17 e 7¢m)7 P<U(t7 )) = (Pl(ul(t7 ))7 e 7Pm(um(t7 )))(OI’ P(U) for
short), H = (Lz(a, b))m and H! = (Hl(a, b))m We first impose that the following hypotheses.



H1) g; € C'[a,b], gi(z) > 0, in [a,b] and g;(b) =0, i =1,2,---,m.
H2) 3; € Cla,b] and B;(x) > 0,i=1,2,---,m.
H3) ¢i(v) € H'(a,b),i = 1,2,---,m, Jf{){ gi(x)¢;(x) = 0, and satisfy the compatibility condi-
tion .
s@)éi(a) = [ Bi@)ou(a)da.

H4) Let F(t,U) = (Fi(t, -, U(t,-), P(U(t,")), -, Fn(t, U(t,-), P(U(t,")))), then

F(t,U): 0,7) x (£3(a,0)" = (L3(a,0))"

is a continuously differentiable mapping.

Consider .
i t
7 AU + F(t,U)
U(0) = Uy,

where the linear operator A(t,U) : [0,7] x H D domA — H is defined by

A= (—i(glm), Ty —;(gmum)>

with
b
domA = {U € H‘ UecH', lirlr)17 giu; =0, (giu;)(a) = / Bi(z)u(t, z)dz, i =1,2,--- ,m.}

Making use of Lemmas 2.1-2.6 of [8], it is easy to prove that A is the infinitesimal generator of a
Co—semigroup S(t).
Theorem 1. Suppose that (H1)-(H4) hold. Then problem(1) has a unique solution for 0 <t <T.

The proof follows from Theorem 1.5 in §6.1 of [7].

3 Quasi-monotone systems

The problem (1) is called to be quasi-monotone, if every Fj is monotone w.r.t. every u;,j # i and
Pj, 5=1,---,m. To define the upper solution and lower solution for the quasi-monotone systems,
we first introduce the following notations.

Let

U(t,x) = (ur(t, ), -, um(t,x)), V(t,x) = (vi(t,z), -, vm(t,x)) : Dp — R™,

P(U) = (Pl(ul(tﬂ ))7 M) Pm(um(tv )))7

Q(V) = (Qu(vi(t;-)), -+, Qm(vm(t;-)));



A;, B; C {1,2,---,m} be the first and second increasing index sets of function Fj, respectively, i.e.,
F; is increasing w.r.t u; if j € A;, and decreasing w.r.t. u; if j ¢ A;, and is increasing w.r.t P; if

J € B;, and decreasing w.r.t. P; if j ¢ B;;

W(U’ V7 A’L) = (Wl(U7 ‘/’ AZ)? B Wm(Ua V7 A’L))a
Z(PvaBZ) = (ZI(P)Q7Bi)7 o 'va(P’Q7Bi))7

where
ui(t,x), j€ A,
Wi,V A = D T
’Uj(t,l‘), ]¢ Ai7
Pj(uy(t,-)) B 2
i (UWj t) *))s j € by
Zj(Pa Q? B’L) = Y j ‘
Qj(’l)j(t, ))7 J g—f B;.
For convenience, we might assume that ¢ € A;,7 = 1,2,---. Otherwise, we could transform it
into such a case via taking u; = vie Mit ;= 1,2 ... m, where M;,i = 1,2,---,m are constants

such that M; + 0,,F; > 0. The existence of constants M;,¢ = 1,2,---,m is guarantied by the
condition (H4).

Definition 1. A couple of functions U (t,x) and V (t, z) are called a couple of lower-upper solutions
of (1) on Dy = (a,b) x [0,T] if all the following hold:

o (i) U(t,x),V(t,z) € C(Dr) N L®(Dr);
o (ii) U(0,2) < Up(z) = (¢1(2), -+, dm(2)) < V(0 2);

o (iii) for every t € (0,T) and every set of nonnegative test functions & (t,z) € CY(Dr), i =

1727”'7m7

b t b b
/a wilt, 2)6(t, 2)dz < /0 &(7a) / Bi(2)us(r, ) dzdr + / 6:(2)6(0, 2)dz
t b
+/0 /a [0:&i(T, ) + gi(2)0:&i (T, z)|wi(T, x)dxdT (3)

t b
+ / / Fy(r,z, W(U,V, A;), Z(P,Q, B)))&(r, x)dadr,
0 Ja

b t b b
/aw(t,x)&(t,x)dxz /Oﬁi(r,a)/a ﬁi(x)vi(r,x)da:dT—i—/a ¢i(2)&i(0, z)dx
+/t /b[affz'(ﬂw) + 9i(2)0:& (1, 2)]vy (7, ) dwdT (4)
0 Ja

¢ %
+/ / Fi(r,2, W(V,U, A;), Z(Q, P, B;) )& (7, x)dxdr.
0 Ja

Here, U and V are also called upper solution and lower solution to (1), respectively.



Theorem 2(Comparison Principle). Suppose that the problem (1) is quasi-monotone satisfying

the conditions (H1)-(H4). Let U and V be a pair of lower and upper solution of (1), then
U<V, ie, w(t,z) <w(t,x), i=1,2,---,m, ae. on Dr.
Proof: Let w;(t,x) = u;(t,x) — vi(t,x) ,i =1,2,---. Then
w;i(0,z) = u;(0,2) —v;(0,2) <0, i =1,2,---,m, in [a,b] (5)
and, for any nonnegative test function &(t,z) € CY(Drp),i =1,2,---,m,
fwmmymwwg/%m$mmxm+/gfa/@ Yui(r, ) ddr
+/ / [0-€i(T, x) + gi(x)0:& (T, x)w; (T, x)dxdT
+;/0 /a &(1,2)Aij (1, 2)w; (T, x)dzdr (6)
j=

éjl [ [ aitr.0Bstr.a) [ wstr, vy,

where

&
<O
—~
\_P#
&
I

(_1)01(”)aujﬂ(ta TyUV1y° vj—ly 9ij(t,$),'dj+1, ccy Um, Z(P7 Qa BZ))a
Blj(tvx) = (_1)02(ij)8PjFi(ta$7 W(Vvv Ua Al)a le to 7Qj71777ij(t)7 F)j+17 to >Pm)7 (7)
iaj = 1525"'7m7

WITH 0;;(t, ) between w;(t,x) and v;(t, x), n;;(t) between P;j(u;(t,-)) and Q;(v;(t,-)), while

.. O) ]GAw .. 07 jEBl)
o1(ij) = ‘ oa(ij) = .
17 J ¢ Ai7 17 J g Bz
Due to the monotonicity, we know that A;; >0, B;; >0, 7,5 = 1,2,---,m on Dy. Then we
find

m m b
/ / & (T, x) ZA” T, 2)w; (T, x) —I—ZB”‘(T,Z‘)/ wj(y,T)dy] dxdr
=1 =1 a
- " " (8)
//fz‘(TﬂU ZA TJ:)—FZB”Tm/w (y, 7)dy| dxdr,
0 Ja =1 =1
i=1,2,--.m.
Consider
0-&i(T,x) + gi(2)0.&i(T,2) =0, 0<T<t, a<xz<b,
&i(r,b) =0, 0<7<t, i=1,2,--,m, (9)

&i(t, ) = xi(x), a<z<b



where x;(z) € C§°(a,b) and 0 < x;(z) < 1.
The existence of &(t,z) € C*(Dr) follows from the fact that by s = ¢ — 7, (9) can be rewritten
into
0s&i(s,x) — gi(2)0z&i(s,2) =0, 0<s<t a<xz<b,

&i(s,0) =0, 0<s<t, i=1,2,--- m.
(s, ) = xi(z), a<z<b

Clearly, 0 < & < 1,i=1,2,---,m. Substituting such & and (8) into (6) yields

/ab w;(t, z)xi(z)dr < /ab wj((),x)ﬁi(o, x)dx + /Ot /ab Lﬁ:{ aijwj(T,:c)] dxdr, (10)

1=1,2,---,m,
where
ag = max[fi(z) + Au(t, ) + (b—a)Bi(t,z)], i=1,2,---,m,
Dr
aij = HlaX[Al](t?x) + (b_ G)Bw(t,l‘)], 17,7 = 1727 cee,Mm, j 7é i7
Dr

which are all positive due to the hypotheses.
Since (10) holds for every x;,i = 1,2, ---,m, we can choose two sequences {Xl(")},i =1,2,---,m

on [a, b] converging to, respectively,

1, ifw(t,z) >0,
Xi = i=1,2,---,m.
0, otherwise

Thus
b t b m
/w;r(t,:v)dxg/ / Zaijwjdmdn', i=1,2,---,m, (11)
a 0 a :
7=1

which by Gronwall’s inequality leads to
b
/ wi(t,2)dr =0, i=1,2,---,m.
a

The theorem is proved.

4 Convergence of monotone sequences for quasi-monotone sys-
tems

In this section, we construct two monotone sequences of upper and lower solutions for quasi-
monotone system and show they converge to the solution.

Let Uy(t,z) = U(t,z) and Vy(t,z) = V(t,x)) are a pair of upper and lower solutions of (1).



For k=1,2,--+ let Ug(t,z) = (ugk)(t,af), o uf)(t, 2)) and Vi(t, x) = (v%k)(t, ), oW (¢, 2))

m

satisfy

0l + 8, (gidl™) = Fy(t, 2, W(Uy_1, Vieer, Ai), Z(Peey, Qur, Bi))  (t,x) € Dr,

gi(a)ugk) (t,a) = b,@(m) (k) (t,z)dx, 0<t<T, (12)
Uz('k) (0,2) = ¢z‘(1’)7a a<x<b,
and
oo™ + 0u (i) = Fi(t, e, W(Vier, Upo1, A1), Z(Qi-1, Pi1, Bi)),  (t,@) € Dr,
gme@ﬂJz/xﬂ)f“( z)dz, 0o<t<T, (13)
vaﬂg:@@; a<ax<b,
i=1,2,---,m.

where P, = P(Uk),Qr = Q(Vk). The solvability of (12) and (13), which are nonlocal initial
boundary value problems of nonhomogeneous linear equations, is guarantied by the theorem 1.
We first show that Uy < U; < V] < V.
Let W(t,x) = (wi(t,x), -, wn(t,x)) = Up(t,x) — Uy(t,x). Then w;,i = 1,2,---,m satisfy
(5-6) with W(0,2) = 0 and A;(t,z) = B;;(t,x) = 0,4, =1,2,---,m. Then, Uy < U;. Similarly,
it can be proved also that V; < V4.

By the monotonicity, we see that
E(tax7W(U0a%aA) (P(]’Q()a )) ( W(Ula‘/laA) Z(PthaBi))
(t x W(‘/Ov U07 ) (QO)P07 )) ( W(‘/LUla ) (QlaPla ))

=1,2,-

Hence, it is easy to see that U; and V; are also a couple of lower and upper solutions to (1). Then,
by theorem 2,
Ul(tax) < Vl(t7$)7 on DT-

Thus, by induction, U and Vi, k = 1,2, -- - are couples of lower and upper solutions to (1), and
satisfy that

D <U1 <Up <+ <U < <V <o < Vo <V <V, in D

Theorem 3. Suppose that (H1)-(H4) hold and the system (1) is quasi-monotone. Furthermore,

suppose that Uy and Vj are a pair of lower and upper solutions to (1). Then, there exist monotone



sequences {Uy(t,z)} and {Vi(t,x)} which converge to the unique solution U(t,z) uniformly for

0 <t <T. Moreover, the order of convergence is linear.

Proof: We first note that, from the pointwise convergence and the boundedness of the pair of

lower and upper solutions {U (¢, z)} and {Vj(¢, )}, one can easily obtain the following convergence

using the dominate convergence theorem

T T
L 10 = Uiat =0, [ Vi) = Vst )l =0, ask oo (14)

From the solution representation formula, we have

Ut) = S(t)® + /0 " S(t— N F(r U, (15)
Ui(t) = S(t)® + /Ot St —1)B(1,Uk—1(7), Vi—1(7))dT (16)
and .
Vi(t) = S(6) + /0 S(t — )B(r, Vi1 (7), Up_1(7))dr (17)
where

B(t,U, V)= (Fi(t,-,

= (¢1(), -+ dm(),

W(Ua V7A1)7 Z(Pa Qv Bl))7 T Fm(ta %y W(U7 V7 Am)7 Z(P7 Q? Bm)))

Since S(t) is a Cy—semigroup, there exist positive constants My and a such that

IS < Moe.

By (H4), both F(¢t,U) and B(t,U, V) are continuous in ¢ and Lipschitz continuous in U uniformly
for 0 <t <T and Uy < U,V <V, there is a positive number M; such that

1U:(t) = U@ <

IN

IA

IVe(t) = U@)]]

IAN A

IN

[ 18t = DB Uy 1), Vi 7)) = (U

Moe® [ My (U -+(r) = U] + Wia(r) ~ U dr

t (18)
MoMuf“T/O UUk(T) = U@ + [IVe(r) = U()]]) dr
+MoMye” /Ot IUk(7) = Upa (D + [IVie(7) = Viea (7)) d7
[t = DB Vi 1), U 1) = (U
Moe“t/ My (Vi1 (7) = U ()| + [Up—1(r) = U(7)]]) d7
0 (19)

MoMe®™ [ (IVilr) = U@l + [Ux(r) = U] dr

+M0M1€“T/O UK(T) = Up—a (DI + Vi (7) = Via (7)[]) dr



Using Gronwall’s inequality, we then obtain

1Uk() = U@+ [[Va(t) - U@
< MyMyeleT oM o [0 ) — Uy ()] + Vi) Ve s (D) dr
— 0, as k — o
As for the linear convergence, in view of (6-19), we have that
1UL(t) = U@+ [[Va(t) = U@
< My [ (Ur) = U+ V(o) - U dr
s [ (IU6) = Vsl + 10() = Viea (7))
where Mz = MoMie®’. By Gronwall’s inequality again, we finally obtain

sup (||Ux(t) = U@ + [IVa(t) = U@®)])) < TMze™ sup ([|Up-1(t) = U@ + Vi () = U @)]]) -
[0,7] [0,7]

The proof is complete.

5 Non-quasi-monotone system

From the condition (H4), we know that there are positive numbers l;;, L;j,4,j = 1, - -, m such that
aquz+lz]ZOa 8P]F7,+Ll]203 Za]:17277m
for all uy,--+,um, P1,--+, Pn, € R, (t,z) € Dr.

Definition 2. A couple of functions U(t,z) and V (¢, z) are called a couple of lower-upper solution
of (1) on Dy = (a,b) x [0,T] if all the following hold:

o (i)U(t,z),V(t,x) € C(Dp)N L>¥(Dr);
o (ii) U(0,z) < Up(x) = (¢1(x)," -+, ¢pm(x)) < V(0,2);
o (iii) fort € (0,T) and every set of nonnegative test functions &(t,x) € C*(Dr), i =1,2,---,m
/ ui(t, )& (t, x)dx < /fZTa / Bi(x UlT.CCd{L‘dT—l-/ ?i(2)& (0, z)dx
+/ / [0:& (T, z) + gi()0:& (T, ) |ui (T, x)dxdr
+/0 /a Fi(r,z,U, P)& (1, x)dxdr (20)
m " b
+Z / / 1 (uj (r, @) — v (7, ))& (, @) dawdr

+Z//LJUJ»<%m>mmmmf



/abvl(t )&t 7)dw > /gma / Bi(z vmxdxd7+/ 6:(2)E:(0, 2)da
+// [0-&i(7, @) + gi(2) (7, 2)]vi (7, x)dwdT
+/ / Fy(7,2,V, Q)& (r, z)dadr o
+Z/ / 1ii (v (7, @) — ;i (, ))& (7, @) dwdr

+Z/ / Lij(Qj(vj(t, ) — Pj(uj(7,)))&i(7, x)dwdr

Theorem 4. Suppose that the conditions (H1), (H2) and (H4) hold. Let (U,V) be a couple
lower-upper solution of (1) defined as Definition 2. Then

U<V, ie, wu(t,z) <w(t,z), i=1,2,---,m, ae. onDrp

Proof: Let w;(t,z) = ui(t,z) —vi(t,z) ,i =1,2,---,m. Then

/ab w;(t, )& (t, x)dr < /Ot fi(T,ba) /ab Bi(z)wi(t, z)dzdT
/ / [0:8i(T, ) + 9i(2) 028 (T, @) |wi (T, ) drdT

+/ / (1,2,U, P) —|—2Z lijuj (7, x) + Lij Pj(u;(T, )))) & (r, z)dxdr

7j=1

/ / (1,2,V,Q) + 22 lijvi(7,z) + Li;Q;(v;(T, )))) & (7, x)dxdr

(22)
By the condition (H4),

A ( (0, U, P) + 23 (s (r, ) + Lig P >>>) &i(r, 2)dudr

7=1
/ / ( T,z,V,Q) + Z lijvj(,x) + Li;Qj(v;(T, )))) & (r, z)dxdr
== Z// 7'.7}"1)17"',Uj_l,Uj,Uj+1,"',um,P)—E(T,%,Ul,"',Uj_l,'l)j,Uj+1,"‘,Um,P)

+ 205 (uj(7, ) — vi(7,x))) &(T, ) dadr

+Z// TmVQla"'an 17 +1, Pm)_Fi(T?x’V7Qla"'7Q]’*1’Qjapj+1>'"
+ 2L45(Pj(uj (7, ) — Qi (vy(7,-)))) &7, x)dadr

//( Aijw; T:E)+Bijpj(wg‘+(7'a‘))) & (T, x)dxdr

IA

(23)

10

s Pm)



where

Al] = I%aX {8UjFi(T7$7/U17 T 7Uj—170ij7uj+17 T ,um,P) + 211]}
T

B;j = max {8Psz‘(TaSU,V7Q17 Q=15 Mijs Piv1s -+ Pm) + 2Lij}

T
with 6;;(, ) between u;(t,x) and v;(t, x), 1;;(t) between Pj(u;(t,-)) and Q;(v;(t,-)).

Hence

/abwz(t x)&i(t, x)dr < / &i(r,a / Bi(z)w;i (T, z)dzdr
/ / 0-8i(7, @) + 9i(2) 00 i(7, @)Jwi (7, x)dwdr (24)

+/ / Z (A,]w (1,2) +sz/ w (1, y)dy) & (7, x)dxdr

Then, similar to the proof of of theorem 2, we can obtain the conclusion.

6 Convergence of monotone sequences for non-quasi-monotone
system

For non-quasi-monotone system, we reconstruct monotone sequences of upper and lower solutions

as follows:
ol + du(gil) = Filt,a, Uy, P(Uy—1)) — 3 L (ul?) —alFY)
m =1 (t,l') € Drp,
=3 Liy(Py(uf”) = Py ),
b ; I\ I\ VAN (25)
giayu?(t,a) = | Bi(a)u(t,)dz, 0<t<T,
uz(k)(ovx) = ¢z(x)v a<x<b,
and
o) + 00 (gi0") = Filt, 2, Vier, QVimr)) — 3 L (0l — olFY)
m i=1 (t,ﬂj) € Dp,
=3 L@y (v = Qi)
b ]; J VAN I\"g (26)
gi(a)vi(k)(t, a) = ﬂi(x)vgk) (t,z)dx, 0<t<T,
0(0,2) = (), a<x<b,
1=1,2,---,m

We show again that Uy < Uy < Vi < V), which are defined above.

11



Let W(t,x) = (w1(t,x), - ,wn(t,z)) = Up(t,x) — Ui(t, z) again. Then

/ab“%(t 2)&i(t, v)dx < /fz (T,a) / Bi(x)w;(7, x)dzdr
+ / [ 0r6i(r,2) + i@, ), )t
S [ 0 ) = o s

t rb
=S [ [ i) - @l 1)) dad

(27)

By the fact that u(-o)(t x) < J( )(t,x) (t,x) € Dy and Pj( 50)( t,)) <Qjv (0)( )),t € 10,71,

/abe(t x)&i(t, x)dx < / &i(m,a / Bi(z)w; (1, 2)dxdr
+/ / 0:&i(7, ) + gi(2)0uli (T, 2)|wi (1, ) dxdT

72/ / lijwi (T, 2)& (T, x)dxdr
_Z/ / L;ijPj(w;(t, ))& (T, x)dxdr,

that is (5—6) with U}Z(O,l') = O,Z = 1,2, e,y Aij = _lij7 Bij = _Lija 7,,] = 1,2, e, M. Then,Ug <
Uy. Similarly, V5 < V4.
To show U; < Wi, let Wi(t,z) = (w\(t,2), -, w®(t,2)) = Ui(t,z) — Vi(t,z),i = 0,1, then

) m

Wo(t,z) < 0. Hence, for every set of positive function & € C1(Dr),i =1,2,---,m

/ab wgl)(t,x)fi(t,x)d:c = /t &i(r,a) /b Bi(x 2(1)(7' x)dxdr

- / / 0:i(r.2) + 9u()a(m, )l (7, @) ddr

+/ / (7,2, Uy, P(Uo)) = Fy(r, 2, Vo, Q(Vo)) & (7, ) dedlr

—Z/ / lij(w](l)(T x) — wj(»o)(T,x)){i(T,x)d:ch

=3 [ [ LB @) = B (7, )6 (ra)dadr

t b
— /051-(7',@) ; ﬁi(a:)wgl)(T,a:)dxdT
+ [ [10:600) + au6s (.l ) dnds
t b m
+ / / Z[(Aiﬁzij)w@)(m)_zijw](.”(T,x)]gi(T,x)dxdT

+ / / Z (Bij + Liy) P (0™ (7,)) — 1y Pyuw'D (7, )] (7, 2) dadr
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where

A’L] - 8qui(Ta$7ugl)7' ' '7u§1217Cij7u§3217 e 7u7(7?)7P(U0))

(1) (1) (0) (0) (29)
Bij = 0OpFi(r,2, U, Pr(uy "), -+, Pio1(u2), migs Pia (wi)s - Pn(ugy)

(0)

with (;; between u;’ and u§ ), EO)) and Pj(ug»l)). Due to that 0y, F; + lij > 0,

Op, F; + Lij > 0 and ug ) < < 5 ) for all 1,7 =1,2,---,m, we have that

ni; between Pj(

/ab (t x)&i(t, z)dx < / &i(r,a / Bi(x il (1, z)dzdr
+ / 0:6(7, @) + gi(2)0u(r, 7)™ (7, z)dwdr

/t /bil”wj('l)(T )& (T, x)dxdr
/ / Z%P w (7, )& (7, 2)dwdr

that is (5—6) with Wl (0,$) = 0, Ai]’ = _lij and Bi]’ = —Li]’,i,j == 1, 2, e, M. Similar to the pI‘OOf
above, we see that U; < Vj.
Next, we show that (Uy,V)) is also a couple of lower-upper solution to (1). From the facts

proved above, we know that
Fy(t,2, Uy, P(U)) — Fi(t, 2, U, P(U1) + 3 [l (ul” — u$) + Liy (P (") — Py (u))]

Z (Agj + 1) (W = ul) + (B + Lig) (P (al”) — P(u{V))] < 0

where A;; and B;; are given in (29), and

3 1] 1 ) ‘|’ LZ](Q]( ) - PJ(U;gl)))] S 0.

Jj=1

Putting them into

/b Ot 2)¢(t, 2)da /&m / Bi( E”m)dde/ 91(2):(0, 2)dz
—1—/ / [0-&i (T, x) + gi(x)0:&i (T, )] 51)(T,£U)d.1‘d7‘
+ / / (7., Up, P(Uo))(7, ) dwdlr (30)
_jz:l/o /a L ( ugl (1,x) —uio (1,2))& (T, x)dzdr

m t b
- Lij(P(u{V(t,-)) — Pj(ul” (7, )))&i(r, ) dzdr,
0
j=1 @
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yields that

b(l) ; x)axr t‘Ta b‘.’I,'u(»l)T.’IJ xaT b‘.iL" x)axr
/u (t, 2)&(t, 2)dz < /0%( ,b>/a Bi(x)ul) (7, z)dzd +/a 6:(2)&:(0, 2)d
+ /0 / [0:6:(7, ) + g:(2) 00t (7, @)D (7, 2) daedr
t b
+ [ [ B0 PO ) dodr (31)

— (1w (1)
+ E lij(u; (1, 2) —v; (7, 2))& (T, x)dxdr
j=1 0 Ja
— [ (1) (1)
3 [ [ LB ) = Q0 )& a)dodr,
j=170 Ja
Similarly, we have also that

b’l)(l) XT)C4 X )ax t‘Ta b‘l’?)(l)’fl' TaT b‘.f‘ xX)ax
[ o )6t w) o = /05;( ,b>/a@< ol (raydadr + [ 6(2)6:(0.2)d
4 /0 / [0-6:(7, 7) + gi(2)0ats(, )0V (7, ) dadr
t b
+ [ [ B i PR ) dedr (32)

mo ot b.-’U(l)Tl‘—u(l)T:L' (. DV dwdr

+%/O /abl”( i ( ’ ) ) ( ) ))5@( 3 )d d
t 07 1 U-(l) . — 1 U(l) T," AT, )arat
+;A A LZ](Q]( 7 (t7 )) P]( 7 ( ) )))&( 5 )d dr.

That implies that (Uy, V1) is a couple of lower-upper solution to (1).
Thus, by induction, {(U, Vi)}ieo is mixed-quasi-monotone sequence of coupled lower-upper

solutions to (1) satisfying
Up<Ui1<Up <+ SUp < <V <o <V <V <V, in D

Theorem 5. Suppose that (H1)-(H4) hold. Furthermore , suppose that (Uy, Vy) is a couple of
lower-upper solution to (1). Then, there exist monotone sequences {Uy(t, )} and {Vj(t,z)} which
converge to the unique solution U (t,x) uniformly for 0 <t < T. Moreover, the order of convergence

is linear.

Proof: Similar to the proof of Theorem 3, we define the operator

B(t, Uy, Uk—1) = F(t,Up—1) — M(Up — Up—1) — A2 (P(Uy) — P(Uk—1)),
where A1 = (1ij)mxm, A2 = (Lij)mxm, then we have that

Uk(t) = S(t)® + /Ot S(t — 7)B(r,Up(7), Up—1(7))dr. (33)

14



where S(t) is a Co—semigroup mentioned above satisfying ||S(¢)| < Moe®. On the same time,

|1B(t, Ug, Up—1) — F(t,U)||
= [|F(t,Ur-1) + M(Up = Up—1) + A2(P(Uy) — P(Up—1)) — F(t,U)]]
< Mi||Ug—1 = Ul + M2||Ug — Up—1]|

where M; is Lipshcitz constant of F and My = |A1]| + (b — a)||A2]|. Thus,

1Ux(t) = U@)]]

IN

[ (6= DB Ul Vs (7)) = FUlldr

M, Moe /0 WU () = U dr (34)

A

(M, +M2)Moeat/ U (7) = U (7)||dr

t
0
Using Gronwall’s inequality, we then obtain

t
|UR(E) = U@ < (My + My)Mpel@T oM e"p(“T”t/O 1Uk(7) = U1 (7)]l|d7

— 0, as k — oo.

As for the linear convergence, in view of (?7), we have that
t t
U0 U@ < My [ |Uu(r) = U@ldr + M [ [0ea(®) = U()dr

where Mz = (2M; + My)Mye®™ and My = (My + M) Mye®”. By Gronwall’s inequality again, we

finally obtain

sup [[Ux (t) — U (1) < TMae™™ sup Uy () = U(1)]]-
[0,7] [0,T]

It can be shown similarly that {V}} converges linearly to U.

The proof is complete.
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