
A linearized DPLL calculus with clause learning

Holger Arnold∗

March 8, 2009

Abstract

Many formal descriptions of DPLL-based SAT algorithms either do
not include all essential proof techniques applied by modern SAT solvers
or are bound to particular heuristics or data structures. This makes it
difficult to analyze proof-theoretic properties or the search complexity
of these algorithms. In this paper we try to improve this situation by
developing a nondeterministic proof calculus that models the functioning
of SAT algorithms based on the DPLL calculus with clause learning. This
calculus is independent of implementation details yet precise enough to
enable a formal analysis of realistic DPLL-based SAT algorithms.

1 Introduction

The problem of determining whether a propositional logic formula has a model
is called the Boolean satisfiability (SAT) problem. Programs solving this prob-
lem (SAT solvers) have applications in the verification of hardware and software
systems and many other areas. Most complete SAT solvers currently available
are based on some variant of the DPLL calculus extended with clause learning.
The calculus commonly referred to as the DPLL calculus is the propositional
part of the calculus given by Davis et al. [6, 7] in the 1960s. The clause learn-
ing extension allows to add derived clauses to the original formula during proof
search. As clause learning is typically initiated and directed by conflicts, the
respective calculus is referred to as conflict-directed (or conflict-driven) back-
tracking and learning (CDBL). Clause learning is related to the superresolution
calculus of Lieberherr [10] and other lemma learning methods. It had already
been an established technique in the constraint programming community before
Marques-Silva and Sakallah [12] introduced clause learning to the SAT world.

In contrast to other recent advances in the development of efficient SAT
solvers, clause learning is not merely an implementation technique, but ac-
tually strengthens the resulting proof system in terms of proof complexity.
Alekhnovich et al. [1] showed that the proof systems of general resolution and
regular resolution can be exponentially separated. Based on this result, Beame
et al. [3] constructed a family of formulas providing an exponential separation
between the DPLL calculus extended by clause learning and the original DPLL
calculus.

∗Universität Potsdam, Institut für Informatik, August-Bebel-Str. 89, 14482 Potsdam, Ger-
many. See http://holgerarnold.net for contact information.

1

http://holgerarnold.net

The prevailing method of analyzing the proof complexity of DPLL-based
calculi is based on the fact that for every search tree corresponding to a run
of a DPLL algorithm on an unsatisfiable formula a resolution proof can be
computed. This makes it possible to adapt proof complexity results that have
been established for various resolution refinements to the DPLL calculus [3, 5, 9].
Although this method has been very successful, it is not sufficient for analyzing
the search complexity of DPLL algorithms, as it considers only the end result
of the search — the proof, — but not the complexity of finding it.1

In addition to its strength in proof-complexity, which is first of all a theoreti-
cal result, the DPLL calculus with clause learning has also turned out to be very
efficient in practice. It is particularly suitable for solving SAT problems stem-
ming from real-world applications. Considering the practical relevance of this
calculus, it is surprising that there are only few formal descriptions of DPLL-
based algorithms that contain all essential proof techniques but are not bound
to specific heuristics or data structures. For instance, many articles on this sub-
ject explain in detail dynamic literal selection strategies such as “variable state
independent decaying sum” and data structures for efficient constraint propa-
gation such as “watched literal lists” [8, 11, 13, 15]. These details are important
to implementers but are irrelevant for analyzing proof-theoretic properties or
for proving bounds on the search complexity of the calculus.

In this paper we try to improve this situation. We develop a nondeterminis-
tic proof calculus that models the functioning of SAT algorithms based on the
DPLL calculus with clause learning. This calculus is independent of implemen-
tation details like literal selection heuristics and data structures. Nevertheless,
it describes the essential proof techniques implemented in modern SAT solvers
sufficiently precise to enable a formal analysis of realistic DPLL-based SAT
algorithms.

We develop our calculus first in a general form, called Linearized DPLL (LD),
and prove that this calculus is sound and terminating (Section 2.1). We then
show that the original DPLL calculus can be described as an instance of the LD
calculus and prove that this specialization is proof confluent and complete (Sec-
tion 2.2). After that we do the same for the CDBL calculus that is implemented
in many current SAT solvers (Section 2.3). We particularly elaborate on the
process of deriving implied clauses from conflicts by linear resolution. We also
show how conflict graphs, which are often used as graphical representations of
this derivation process, correspond to proof steps in a CDBL proof.

In many respects, our calculus is similar to the Abstract DPLL procedure
by Nieuwenhuis et al. [14]. The two calculi differ, however, in their approach
to clause learning. The calculus by Nieuwenhuis et al. models clause learning
only on a very general level. It contains proof rules that basically allow to
replace the current clause set by any logically equivalent set of clauses, but
the calculus does not suggest a method for deriving the clauses to be added
or removed. In contrast to this, the specialization of the LD calculus to the
CDBL calculus, which is the subject of section 2.3, directly models the resolution
process that current SAT solvers implement to derive implied clauses, but it is
still general enough to cover different proof strategies. Examples of efficient
implementations of this calculus, whose sources are publicly available, are the

1For instance, every satisfiable formula has a trivial proof that is just of a description of a
model of the formula. Yet it can still be difficult for a DPLL algorithm to find it.

2

SAT solvers MiniSat [8], NanoSAT [4], and zChaff [13, 16].

1.1 Formal preliminaries

An atomic formula or atom is an element of some discrete set of propositional
symbols. Atoms are also called propositional variables, but we do not use this
terminology in this text. The operators ¬, ∧, and ∨ denote logical negation,
conjunction, and disjunction. If p is an atom, then p is a positive literal and
¬p is a negative literal. The complement l of a literal l is ¬p if l = p, and it
is p if l = ¬p. A clause is a formula of the form l1 ∨ · · · ∨ lm, where l1, . . . , lm
are literals. A formula is in conjunctive normal form if it can be written as
C1 ∧ · · · ∧Cn, where C1, . . . , Cn are clauses. A clause can be represented by the
set of its literals, and a formula in conjunctive normal form can be represented
by the set of its clauses. An interpretation is a mapping of formulas to truth
values that is generated by a mapping of atomic formulas to truth values and is
extended to non-atomic formulas by using the classical semantics of the logical
operators. If an interpretation does not define truth values for all atoms of
a formula, then the interpretation is partial. An interpretation M satisfies a
formula F if M maps the formula to true; M is then called a model of F . If F
is in conjunctive normal form, then M is a model of F if it maps at least one
literal of each clause of F to true. A formula F entails a formula G, written
F |= G, if every model of F is also a model of G. If F |= ¬G, then F is said
to falsify G. Two formulas F and G are logically equivalent, written F ≡ G,
if F |= G and G |= F . Unless otherwise stated, we assume formulas to be in
conjunctive normal form. There are efficient algorithms for computing from a
formula F a formula F ′ in conjunctive normal form such that F ′ is satisfiable if
and only if F is satisfiable (although F and F ′ will in general not be logically
equivalent).

2 The linearized DPLL calculus

The LD calculus can be used to find a model of a propositional logic formula
in conjunctive normal form or to prove that no such model exists. The original
DPLL calculus is usually presented as a branching calculus, which means that
to close a proof it is generally necessary to close several distinct branches. A
branching calculus, however, is not particularly suitable for being extended by
clause learning. The problem is that the learned clauses are global information.
This would necessitate a mechanism for transferring information between in-
dependent branches, which is in conflict with the local nature of the branches.
Therefore we present the DPLL calculus in a linearized form.

During proof search, the LD calculus maintains a non-contradictory, non-
redundant set of literals called the context.2 It contains the literals that are
assumed to be true in a given state of the proof and so constitutes a partial
interpretation of the formula. This context is incrementally extended by assum-
ing literals and deriving the consequences of these assumptions. Extending the
context by an assumption is called a decision, and literals added to the context
by this means are called decision literals. The process of deriving consequences

2The term context as well as the notation M ` F have been adopted from the Model
Evolution Calculus by Baumgartner and Tinelli [2].

3

of decisions is called propagation, and literals added to the context that way
are called propagated literals.3 The sequence of decision literals and propagated
literals in a context forms a linear encoding of a position in the branch structure
as it is present in a DPLL proof.

When the input formula is falsified by the current context, this situation is
called a conflict. To resolve a conflict, some decisions and their consequences
have to be retracted, which corresponds to the closure of one or more branches
in a branching calculus. In a conflict-directed SAT solver the occurrence of a
conflict initiates an analysis of its reasons, where a reason can be described by a
set of literals whose conjunction falsifies the input formula. One or more clauses
that prevent conflicts caused by the same reasons from occurring in subsequent
proof steps are then added to the input formula. This process is referred to as
clause learning. The proof search continues until either a model satisfying the
input formula has been found or a conflict occurs that cannot be resolved. In
the latter case, the formula is proved unsatisfiable, which corresponds to the
situation where all branches have been closed in a branching calculus.

The LD calculus manipulates sequents of the form M ` F , where M is a
context and F is a set of clauses containing the clauses of the input formula and
those learned in previous proof steps (and not deleted afterward). A context
is a linearly ordered set of literals. When viewed as a formula, a context is
interpreted as the conjunction of its literals. If l is a decision literal in a given
context, this fact is pointed out by writing ld. When a context is written in the
form M0, l

d
1 , M1, . . . , l

d
k, Mk, it is implicitly assumed that ld1 , . . . , ldk are the only

decision literals in that context.4 The decision literals partition the elements of
a context into decision levels. If M0, l

d
1 , M1, . . . , l

d
k, Mk is a context with decision

literals ld1 , . . . , ldk, then the literals in M0 are assigned decision level 0, and for
all i ∈ {1, . . . , k}, the literals in Mi and ldi are assigned decision level i. The
decision level of a proof state M ` F is the maximum of the decision levels of
literals in M . If S is a set of literals, then S = {l | l ∈ S} denotes the set of
complements of literals in S. By F |M we denote the formula F evaluated under
the context M , which is defined by

F |M = {C \M | C ∈ F and C ∩M = ∅}.

A formula F is satisfiable by an interpretation that is consistent with a context
M if and only if F |M is satisfiable. A formula F is falsified by the context M
if and only if F |M contains the empty clause. The set of literals occurring in
a formula F is denoted by lit(F). In the following, contexts are designated by
the letter M , formulas by F , clauses by C, and literals by l.

2.1 The LD calculus

In this subsection we present the rules of the LD calculus. It is formulated very
similarly to the system described by Nieuwenhuis et al. [14]. The calculus is
devised in such a way that the original DPLL calculus as well as the CDBL
calculus implemented in SAT solvers built on clause learning can be described

3Although the terms “decision literal” and “propagated literal” are commonly used, they
are somewhat misleading because they are not referring to properties of the literals, but to
their role within the context.

4As customary, a one-element set {x} is denoted by x and a (disjunctive) set union A∪B
is denoted by A, B where the meaning is clear from the context.

4

as instances of the LD calculus. The relation between these calculi is formally
characterized in subsections 2.2 and 2.3.

Definition 1. The LD calculus (Linearized DPLL) is defined by the following
set of rules:

Start ∅ ` F

Unsatisfiable
M,M ′ ` F

�
if
{ ∅ ∈ F |M and

M contains no decision literals

Decide(l)
M ` F

M, ld ` F
if
{

l ∈ lit(F) and
M ∩ {l, l} = ∅

Propagate(l)
M ` F

M, l ` F
if {l} ∈ F |M

Back(C, l′, l)
M, ld, M ′ ` F

M, l′ ` F
if


C, l′ ⊆ lit(F),
F |= C ∨ l′,
M ∩ {l′, l′} = ∅, and
{C}|M = {∅}

Learn(C)
M ` F

M ` F,C
if
{

C ⊆ lit(F) and
F |= C

Delete(C)
M ` F,C

M ` F
if F |= C

A proof of the formula F in the LD calculus starts with ∅ ` F and is closed
when either � has been derived by means of the Unsatisfiable rule, in which
case F has been proved unsatisfiable, or a state M ` F ′ has been derived such
that F ′|M = ∅. In the latter case F is satisfiable and every interpretation
consistent with M is a model of F .

In the remainder of this subsection the LD calculus is proved sound and
terminating. Naturally, these properties carry over to any instance of the LD
calculus.

2.1.1 Soundness of LD

We begin with some simple technical observations. If M ` F ′ can be derived
from ∅ ` F in the LD calculus, then the conditions of the rules trivially ensure
that F ′ and F are logically equivalent, lit(F ′) and lit(M) are both subsets of
lit(F), and M contains at most one literal of each atom occurring in F (note
that a literal l can only be appended to a context M if M ∩ {l, l} = ∅, as for all
literals l ∈M , F |M contains neither l nor l). The latter means that the context
is non-redundant and non-contradictory.

The following lemma contains the main argument in the soundness proof.
It states that propagated literals are entailed by the conjunction of the input
formula and the decision literals assigned at previous decision levels.

5

Lemma 2. If M ` F can be derived in the LD calculus such that the context
M has the form M0, l

d
1 , M1, . . . , l

d
k, Mk, where ld1 , . . . , ldk are the decision literals

of M , then F, ld1 , . . . , ldi |= Mi for all i ∈ {0, . . . , k}.

Proof. We prove the statement by induction on the length of the derivation of
M ` F . If the proof of M ` F consists only of a Start step, then M = ∅, and the
statement holds trivially. Now assume that M ` F has been derived in m > 1
steps and that the statement holds for all derivations of length less than m. We
split our argument depending on the rule applied in the last step of the proof
of M ` F , which must be an application of one of the rules Decide, Propagate,
Back, Learn, or Delete:

1. If the rule applied in the last step of the proof is Decide, then this step
can be written as

Decide(lk)
M ′ ` F

M ′, ldk ` F
,

where M ′ = M0, l
d
1 , M1, . . . ,Mk−1. Thus Mk = ∅ and the statement

follows from the induction hypothesis.

2. In case the rule applied in the last step of the proof is Propagate, this step
can be written as

Propagate(l)
M ′ ` F

M ′, l ` F
,

where

M ′ = M0, l
d
1 , M1, . . . , l

d
k, M ′k,

Mk = M ′k, l,

such that {l} ∈ F |M ′ . By the induction hypothesis, F, ld1 , . . . , ldk entails
the context M0, . . . ,Mk−1, M

′
k. Further, any model of F consistent with

M ′ must map the literal l to true. Consequently, F, ld1 , . . . , ldk entails l and
hence it also entails Mk.

3. If the rule applied in the last step of the proof is Back, then the proof
must contain a state M ′ ` F ′ derived in less than m steps such that the
derivation of M ` F can be written in the form

...
M ′ ` F ′

...

Back(C, l′, l)
M ′, ld, M ′′ ` F

M ′, l′ ` F
,

where

M ′ = M0, l
d
1 , M1, . . . , l

d
k, M ′k,

Mk = M ′k, l′,

such that F |= C ∨ l′ and {C}|M ′ = {∅}. By the induction hypothesis,
F, ld1 , . . . , ldk entails the context M0, . . . ,Mk−1, M

′
k. Because of F |= C ∨ l′

and {C}|M ′ = {∅}, any model of F that is consistent with M ′ must map
the literal l′ to true. Consequently, F, ld1 , . . . , ldk entails l′ and hence it also
entails Mk.

6

4. If the rule applied in the last step of the proof is Learn or Delete, then this
step can either be written as

Learn(C)
M ` F ′

M ` F
or as Delete(C)

M ` F ′

M ` F
,

where F ′ ≡ F . The statement then follows from the induction hypothesis.
�

Proposition 3 (Soundness). If M,M ′ ` F ′ can be derived from ∅ ` F in the
LD calculus such that ∅ ∈ F ′|M and M contains no decision literals, then F is
unsatisfiable. If M ` F ′ can be derived from ∅ ` F in the LD calculus such that
F ′|M = ∅, then F is satisfiable and every interpretation consistent with M is a
model of F .

Proof. Assume that M,M ′ ` F ′ can be derived from ∅ ` F such that ∅ ∈
F ′|M and M contains no decision literals. Then no interpretation consistent
with M can satisfy F ′, as no interpretation can satisfy the empty clause. But
lemma 2 shows that M is entailed by F ′, as M contains no decision literals.
Consequently, F ′ must be unsatisfiable. Because F and F ′ are equivalent, F
must be unsatisfiable as well.

On the other hand, assume that M ` F ′ can be derived from ∅ ` F such
that F ′|M = ∅. As the context M is non-contradictory, it generates a partial
interpretation that maps at least one literal in each clause of F ′ to true. Hence
every interpretation consistent with M is a model of F ′, and therefore also a
model of F . �

2.1.2 Termination of LD

The following proposition shows that the LD calculus can actually be used to
build a decision procedure for clausal propositional logic.

Proposition 4 (Termination). Every derivation in the LD calculus that con-
tains no infinite sequence of consecutive Learn and Delete steps is finite.

Proof. When one of the rules Decide, Propagate, and Back is applied to a proof
state with decision level d, then either the context is extended by a literal
or the number of literals with a decision level less than d is increased. But the
number of literals in the context is bounded, as the context is non-redundant and
contains only literals of the input formula. Therefore the length of a derivation
without Learn and Delete steps is bounded as well.

The formalization of this argument has been adopted from Zhang [15]. Let
n(M,k) denote the number of literals with decision level k in the context M
and consider the discrete function fm defined as

fm(M) =
m∑

k=0

n(M,k)
(m + 1)k

.

Note that 1/(m+1)k > m/(m+1)k+1 for all k with 0 < k ≤ m. Let M and M ′

be two contexts occurring in a derivation. Then fm(M) > fm(M ′) if and only
if there exists a decision level k with 0 ≤ k < m such that n(M,k) > n(M ′, k)
and n(M,k′) = n(M ′, k′) for any k′ < k.

7

Consider the sequence ∅, M1, M2, . . . of contexts in a proof derived from of
∅ ` F , and let m be the number of atoms in F . If Mi+1 is a context that arises
from a context Mi by an application of one of the rules Decide and Propagate,
then fm(Mi+1) > fm(Mi) because Mi must be a subset of Mi+1. If Mi+1

arises from Mi by an application of the Back rule, then Mi must have the form
M ′, ld, M ′′ for some decision literal l with decision level k and Mi+1 must have
the form M ′, l′ for some propagated literal l′. But then Mi+1 contains one more
literal with decision level k−1 than Mi and therefore fm(Mi+1) > fm(Mi). Thus
in a derivation without applications of the rules Learn and Delete the value of
fm is strictly increasing. But the range of fm is bounded from above by m;
this value is reached when all literals are assigned decision level 0. Hence every
derivation without applications of the rules Learn and Delete must be finite.

The rules Learn and Delete do not modify the context of the state they are
applied to. Consequently, every infinite derivation in the LD calculus must
contain an infinite sequence of consecutive Learn and Delete steps. �

2.2 The DPLL calculus

In this subsection we show that the original calculus by Davis et al. [6, 7] can
be described in a linearized form as an instance of the LD calculus.

Definition 5. The DPLL calculus (Davis-Putnam-Logemann-Loveland) is de-
fined by the rules Start, Unsatisfiable, Decide, and Propagate from the LD calculus
(see definition 1) and the following rule:

BackDP(l)
M, ld, M ′ ` F

M, l ` F
if
{ ∅ ∈ F |M,ld,M ′ and

M ′ contains no decision literals

All rules of the DPLL calculus leave the clause set unmodified and no learning
is done at all. What has been omitted from the DPLL calculus, compared with
Davis and Putnam’s original formulation, is the Affirmative-Negative rule (or
Pure-Literal rule, as it is called today) that allows the propagation of literals
occurring only positively or only negatively in the formula. The reason for this
omission is that such literals are not entailed by the conjunction of formula and
context (cf. lemma 2), and handling them would unnecessarily complicate the
conditions of the rules. Most implementations of the calculus do not use this
rule anyway.

2.2.1 Soundness of DPLL

The following lemma shows that the DPLL calculus is an instance of the LD
calculus. As a result, it inherits the soundness and termination properties from
the LD calculus (propositions 3 and 4).

Lemma 6. If M ` F can be derived in the DPLL calculus, then every BackDP

step in the derivation can be replaced by a Back step such that the resulting
derivation is a valid proof in the LD calculus.

Proof. We proof the statement by induction on the length of the derivation. A
derivation of length 1 can only consist of a Start step, for which the statement

8

holds trivially. Now assume that M ` F has been derived in m > 1 steps and
that the statement holds for all derivations of length less than m. We need only
consider the case where the last step of the derivation is an application of the
Back rule. The derivation of M ` F can then be written as

...

BackDP(l)
M ′, ld, M ′′ ` F

M ′, l ` F
,

where M = M ′, l, such that ∅ ∈ F |M ′,ld,M ′′ and M ′′ contains no decision literals.
Because M ′, ld, M ′′ falsifies F and M ′′ is entailed by F,M ′, ld by lemma 2, the
formula F is already falsified by M ′, ld. Let C = M ′. Then {C}|M ′ = {∅},
F |= C ∨ l, and C ⊆ lit(F). By the induction hypothesis, M ′ ∩ {l, l} = ∅. Thus
the above derivation can be replaced by

...

Back(C, l, l)
M ′, ld, M ′′ ` F

M ′, l ` F
,

which is a valid proof in the LD calculus. �

2.2.2 Proof confluence and completeness of DPLL

The following lemma shows that as long as a DPLL proof has not been closed,
there is always a rule of the calculus that can be applied, which is a necessary
condition for a proof confluent calculus.

Lemma 7. If M ` F has been derived in the DPLL calculus and F |M 6= ∅,
then at least one rule of the calculus can be applied to this state.

Proof. Assume that M falsifies F . If M contains no decision literals, then the
Unsatisfiable rule can be applied. If M contains a decision literal, then it can be
written as M = M ′, ld, M ′′ such that M ′′ contains no decision literals. In this
case, the Back rule can be applied.

On the other hand, assume that M does not falsify F . Because of F |M 6= ∅,
the formula F must contain at least one literal l such that M ∩ {l, l} = ∅. If
F contains a clause C such that {C}|M = {l′} for some literal l′, then the
Propagate rule can be applied. If F contains no such clause, then the Decide
rule can be applied. �

It should be emphasized that the proof of lemma 7 is constructive and gives
rise to an algorithm for deciding the satisfiability of propositional clause sets
by creating derivations in the DPLL calculus. Whenever there are multiple
possible choices in the algorithm, the actual decision taken has no influence on
the correctness and proof confluence of the procedure (a property referred to as
don’t-care non-determinism), although different choices might result in different
proof lengths. We can now conclude that the DPLL calculus is a proof confluent
and complete calculus for clausal propositional logic.

Proposition 8 (Proof confluence and completeness). Let ∅ ` F, . . . , M ` F be
derivation in the DPLL calculus. If F is unsatisfiable, then � can be derived
from M ` F . If F is satisfiable, then M ′ ` F can be derived from M ` F such
that F |M ′ = ∅.

9

Proof. By lemma 6 and propositions 3 and 4, the DPLL calculus is sound and
terminating (note that the representation of a DPLL proof in the LD calculus
contains no Learn or Delete steps). By lemma 7, the derivation ∅ ` F, . . . , M ` F
can be continued as long as the proof is not closed, and because the calculus is
terminating, it will eventually be closed. By the soundness of the calculus, the
result will be � if F is unsatisfiable, and it will be a state M ′ ` F such that
F |M ′ = ∅ if F is satisfiable (where M ′ = M in case the proof had already been
closed). �

2.3 Conflict-directed backtracking and learning

In this subsection we show that the conflict-directed backtracking calculus with
clause learning that it is implemented in many current SAT solvers can also be
described as an instance of the LD calculus. Clause learning is typically induced
and directed by conflicts in these solvers, and the learned clauses are derived
from a conflicting clause by linear resolution.5

Definition 9. The CDBL calculus (conflict-directed backtracking and learning)
is defined by the rules Start, Unsatisfiable, Decide, and Propagate from the LD
calculus (see definition 1) and the following rules:

Conflict(C)
M ` F

C |M ` F
if

{
C ∈ F ,
{C}|M = {∅}, and
M contains a decision literal

Resolve(C ′, l)
C ∨ l |M, l,M ′ ` F

C ∨ C ′ |M, l,M ′ ` F
if

 C ′ ⊆ lit(F),
F |= C ′ ∨ l, and
{C ′}|M = {∅}

Back-and-Learn(l′, l)
C ∨ l′ |M, ld, M ′ ` F

M, l′ ` F,C ∨ l′
if
{

M ∩ {l′, l′} = ∅ and
{C}|M = {∅}

When a conflict occurs, the proof state is extended by a clause falsified by
the current context. This clause forms the starting point for a sequence of linear
resolution steps used to derive a clause that is then added as a lemma to the
original formula. The family of learning schemes defined by above rules can
be referred to as UIP learning because the linear resolution derivation always
ends at a so-called unique implication point (a term coined by Marques-Silva
and Sakallah [12]). Of course, many extensions of this scheme are possible and
are actually implemented in various SAT solvers. A straightforward extension
would be to learn more than one clause per conflict, for example by adding a
subset of all clauses derived in the resolution steps.

The Delete rule has been deliberately omitted from the calculus to simplify
the conditions of the remaining rules. The results proved in this subsection also
hold for the CDBL calculus extended by Delete, provided that the conditions
of the rules are tightened such that the Conflict rule must be applied whenever
possible. SAT solvers usually implement the calculus in this way.

5A resolution derivation is called linear if each resolution step except the first involves the
resolvent of the previous step.

10

2.3.1 Soundness of CDBL

The following lemma shows that in a CDBL derivation every sequence of proof
steps applying the rules Conflict, Resolve, and Back-and-Learn, which are not
available in the LD calculus, can be replaced by applications of the rules Back
and Learn. This means that the CDBL calculus can (in an extended sense) also
be considered an instance of the LD calculus. Using the result that any such
sequence of proof steps is finite, which is shown later in the proof of lemma 11,
it follows that the CDBL calculus inherits the soundness and termination prop-
erties from the LD calculus (propositions 3 and 4).

Lemma 10. If M ` F can be derived in the CDBL calculus, then every sequence
starting with a Conflict step, followed by a (possibly empty) sequence of Resolve
steps, and ending with a Back-and-Learn step in the derivation can be replaced
by a Back step and a Learn step such that the resulting derivation is a valid proof
in the LD calculus.

Proof. Without loss of generality we assume that the derivation of M ` F
contains only one sequence starting with a Conflict step, followed by a (possibly
empty) sequence of Resolve steps, and ending with a Back-and-Learn step and
that the Back-and-Learn step is the last step in the proof. The general result
follows by induction on the length of the proof. The derivation of M ` F can
then be written as

...
M ′ ` F ′

Conflict(C0 ∨ l0)
C0 ∨ l0 |M0, l0, M

′
0 ` F ′

Resolve(C ′0, l0)
C1 ∨ l1 |M1, l1, M

′
1 ` F ′

...
Ck ∨ lk |Mk, ld, M ′k ` F ′

Back-and-Learn(lk)
Mk, lk ` F ′, Ck ∨ lk

where F = F ′ ∪ {Ck ∨ lk}, M = Mk, lk, and M ′ = Mk, ld, M ′k = Mi, li, M
′
i

for all i ∈ {0, . . . , k − 1}. By the conditions of the rules Conflict and Resolve,
the formula F ′ contains the clause C0 ∨ l0 and for all i ∈ {0, . . . , k − 1}, the
clause Ci+1 ∨ li+1 arises by resolving Ci ∨ li with a clause C ′i ∨ li entailed by
F ′ on the literal li. By the soundness of resolution [6], F ′ |= Ck ∨ lk, and
trivially Ck ∨ lk ⊆ lit(F ′). The condition of the Back-and-Learn rule ensures
that Mk ∩ {lk, lk} = ∅ and {Ck}|Mk

= {∅}. The above derivation of M ` F can
therefore be replaced by

...
Mk, ld, M ′k ` F ′

Back(Ck, lk, l)
Mk, lk ` F ′

Learn(Ck ∨ lk)
Mk, lk ` F ′, Ck ∨ lk

which is a valid proof in the LD calculus. �

11

2.3.2 Conflict resolution

The following lemma shows that when a conflict occurs in a CDBL proof, either
the formula to be proved is unsatisfiable and the proof can be closed or a sub-
proof resolving the conflict and extending the formula to be proved by an implied
clause can be produced.

Lemma 11. If M ` F can be derived in the CDBL calculus such that F con-
tains a clause C, where {C}|M = {∅}, then either the proof can be closed by
applying the Unsatisfiable rule or a sub-proof starting with a Conflict step, fol-
lowed by a (possibly empty) finite sequence of Resolve steps, and ending with a
Back-and-Learn step can be derived from M ` F .

Proof. As {C}|M = {∅}, every literal of C must be mapped to false by M . Let l0
be the last literal in M (recall that contexts are ordered sets) whose complement
occurs in C. Then C and M can be written as C = C0∨ l0 and M = M0, l0, M

′
0,

where C0 ∩M ′0 = ∅. If the context M0, l0 contains no decision literals, then
the Unsatisfiable rule can be applied to M ` F because C is already falsified by
M0, l0. If the context M0, l0 contains a decision literal, then a sub-proof can be
started by applying the Conflict rule:

M ` F
Conflict(C0 ∨ l0)

C0 ∨ l0 |M0, l0, M
′
0 ` F

...

Consider a state Si = Ci ∨ li | Mi, li, M
′
i ` F derived in the sub-proof such

that
F |= Ci ∨ li, {Ci}|Mi

= {∅}, Ci ∩M ′i = ∅. (∗)

The first state S0, derived by means of the Conflict rule, fulfills these conditions,
and we will see that this invariant is preserved by applications of the Resolve
rule.

If all literals in Ci have a strictly lower decision level than li, then the state Si

can also be written as Si = Ci∨li | Li, l
d, L′i, li, M

′
i ` F such that Ci∩{l, L′i} = ∅

and L′i contains no decision literals. Then Li ∩ {li, li} = ∅ and {Ci}|Li = {∅},
which means that the sub-proof can be closed by applying the Back-and-Learn
rule:

...
Ci ∨ li | Li, l

d, L′i, li, M
′
i ` F

Back-and-Learn(li, l)
Li, li ` F,Ci ∨ li

On the other hand, if there are literals in Ci with the same decision level as li
(note that Ci cannot contain literals with higher decision levels than li because
Ci ∩M ′i = ∅), then li must be a propagated literal, which means that there
must be a clause C ′i∨ li entailed by F such that {C ′i}|Mi = {∅}, as otherwise the
literal li could not have been propagated. Thus the Resolve rule can be applied
to the state Si:

12

...
Ci ∨ li |Mi, li, M

′
i ` F

Resolve(C ′i, li) Ci ∨ C ′i |Mi, li, M
′
i ` F

...
By the soundness of resolution, F |= Ci ∨ C ′i. Further, {Ci ∨ C ′i}|Mi

= {∅}
and Ci ∨ C ′i ∩ {li, M ′i} = ∅. This means that the result of the Resolve step can
be written in the form Si+1 = Ci+1 ∨ li+1 |Mi+1, li+1, M

′
i+1 ` F such that li+1

is the last literal in M whose complement occurs in Ci ∨C ′i and Si+1 fulfills the
invariant (∗). The above Resolve step can therefore be written as

...
Ci ∨ li |Mi, li, M

′
i ` F

Resolve(C ′i, li)
Ci+1 ∨ li+1 |Mi+1, li+1, M

′
i+1 ` F

...
All literals of Ci∨C ′i precede li in the context M , hence li+1 also precedes li

in M . On the other hand, the clause Ci∨C ′i still contains a literal with the same
decision level as li. Thus in any sequence S0, S1, S2, . . . of states generated as
described above by an initial Conflict step and a sequence of Resolve steps there
is a state Sk such that no further Resolve step, but only a Back-and-Learn step
closing the sub-proof can be applied to Sk. �

2.3.3 Conflict resolution using the conflict graph

The proof of the preceding lemma describes an effective strategy for resolving
conflicts occurring in a CDBL proof. How this strategy works can be clearly
visualized by means of the conflict graph.

Definition 12. Consider the following derivation of a conflict in the CDBL
calculus:

...

Conflict(C0 ∨ l0)
M ` F

C0 ∨ l0 |M0, l0, M ′0 ` F
,

where M = M0, l0, M
′
0 and l0 is the last literal in M whose complement occurs

in the clause C0 ∨ l0. Then F |= C0 ∨ l0, {C0}|M0 = {∅}, and C0 ∩M ′0 = ∅. A
conflict graph associated with this conflict is a minimal directed graph G, whose
nodes are literals, satisfying the following conditions:

1. The graph G contains the nodes l0, l0, and the edge l0 → l0.

2. Let C0 = l1 ∨ · · · ∨ lk. Because of {C0}|M0 = {∅}, the context M0 must
contain the literals l1, . . . , lk. For every i ∈ {1, . . . , k} the graph G contains
the node li and the edge li → l0.

3. For every node l of G that is a propagated literal in M let Cl = l1∨· · ·∨lk∨l
be a clause in F such that the literals l1, . . . , lk precede l in M . The
formula F must contain such a clause, as otherwise l could not have been
propagated. For every i ∈ {1, . . . , k} the graph G contains the node li and
the edge li → l.

13

A conflict graph encodes dependencies between the literals in the context
that are related to the conflict to be analyzed. As decision literals do not depend
on other literals, every decision literal becomes a node without incoming edges
in the conflict graph. For every propagated literal, however, there must be a
reason clause that caused the propagation of this literal. The propagated literal
therefore depends on the complements of the other literals in the reason clause,
which must precede it in the context. In the conflict graph this dependency is
expressed by edges running from the literals it depends on to the propagated
literal. Since there can be more than one reason for every propagation, many
conflict graphs can be associated with a single conflict. The choice of a particular
graph is part of the strategy of an implementation of the calculus.

Using the conflict graph the derivation of an implied clause by linear reso-
lution can be illustrated in the following way: Each of the clauses, denoted by
Ci ∨ li in the proof of lemma 11, derived by an application of either the Conflict
rule or the Resolve rule corresponds to a subset Ri of the nodes of the conflict
graph G satisfying the following conditions:

1. Ri contains the node l0,

2. Ri does not contain a node that is a decision literal in M , and

3. no node contained in Ri occurs in the context M at a smaller position
than a node of G not contained in Ri.

The clause Ci ∨ li, corresponding to the set Ri, is the set of the complements of
the start nodes of edges incoming to Ri, i.e., edges l → l′ of the conflict graph
such that l /∈ Ri and l′ ∈ Ri. Every Resolve step can be viewed as an extension
of the set Ri by one node of the conflict graph in the reverse order of their
occurrence in the context M , resulting in the set Ri+1.

The resolution process can be finished (corresponding to an application of
the Back-and-Learn rule) when the set of start nodes of edges incoming to Ri

contains only a single literal that has the same decision level as l0 (note that
all literals in the set Ri have the same decision level, as Ri is never extended
by a decision literal). Such a literal is referred to as a unique implication point
of the conflict graph. A unique implication point has the property that it is
contained in every path in the conflict graph running from the decision literal
with the maximal decision level to the literals l0 or l0. Every conflict graph
contains at least one unique implication point because the decision literal with
the maximal decision level in the conflict graph is a unique implication point.6

This guarantees that the resolution process eventually terminates. The end
of the resolution derivation at a unique implication point coincides with an
application of the Back-and-Learn rule in the proof.

Figure 1 shows an example of a conflict graph. It belongs to a proof state
M ` F where the formula F contains the clauses C1 = (c∨d∨e), C2 = (a∨e∨f),
C3 = (b ∨ e ∨ g), C4 = (f ∨ g ∨ h), C5 = (f ∨ g ∨ h), and the context M
has the form M = a(1) . . . b(3) . . . c(4) . . . d(6) . . . e . . . f . . . g . . . h (decision literals
are annotated with their decision levels). The formula F and the context M
are conflicting because {C5}|M = {∅}. The shaded areas contain (in order of
decreasing lightness) the node sets that correspond to the clauses (f ∨ g ∨ h),

6A conflict graph may also contain more than one unique implication point, which adds a
degree of freedom to the calculus, but makes the term “unique” a bit deceptive.

14

h

h

g

f

e

d(6)

c(4)

b(3)

a(1)

Figure 1: Example of a conflict graph. The current context contains the decision
literals a, b, c, d, and the propagated literals e, f , g, h. A conflict occurred
because the formula to be proved contains the clause (f ∨ g ∨ h), which is
falsified by the current context. The shaded areas contain (in order of decreasing
lightness) the node sets that correspond to the clauses (f∨g∨h), (f∨g), (b∨e∨f),
and (a∨ b∨ e), which are successively derived in the linear resolution steps until
the unique implication point e is reached.

(f ∨ g), (b ∨ e ∨ f), and (a ∨ b ∨ e), which are successively derived in the linear
resolution steps. The literal e is a unique implication point of this conflict graph
because all paths from the node d(6) to one of the nodes h and h run through
it. Equivalently, it is the only literal in the set {a, b, e}, corresponding to the
derived clause (a ∨ b ∨ e), that has the same decision level as the literal h.

2.3.4 Proof confluence and completeness of CDBL

The following lemma shows that as long as a CDBL proof has not been closed,
there is always a rule of the calculus that can be applied.

Lemma 13. If M ` F has been derived in the CDBL calculus and F |M 6= ∅,
then at least one of the rules of the calculus can be applied to this state.

Proof. Assume that M falsifies F . Then F contains a clause C such that
{C}|M = {∅}. If all elements of M whose complements are contained in C
have decision level 0, then the Unsatisfiable rule can be applied. Otherwise, a
sub-proof starting with a Conflict step, followed by a (possibly empty) sequence
of Resolve steps, and ending with a Back-and-Learn step can be derived from
M ` F , as shown in the proof of lemma 11.

On the other hand, assume that M does not falsify F . Because F |M 6= ∅, F
must contain at least one literal l such that M∩{l, l} = ∅. If F contains a clause
C such that {C}|M = {l′} for some literal l′, then the Propagate rule can be
applied. If F contains no such clause, then the Decide rule can be applied. �

Note again that the proofs of lemmas 11 and 13 are constructive and there-
fore immediately suggest an algorithm for deciding the satisfiability of propo-
sitional clause sets by creating derivations in the CDBL calculus. Now we can

15

conclude that the CDBL calculus is a proof confluent and complete calculus for
clausal propositional logic.

Proposition 14 (Proof confluence and completeness). Let ∅ ` F, . . . , M ` F ′

be a derivation in the CDBL calculus. If F is unsatisfiable, then � can be
derived from M ` F ′. If F is satisfiable, then M ′ ` F ′′ can be derived from
M ` F ′ such that F ′′|M ′ = ∅.

Proof. In the representation of a CDBL proof in the LD calculus every Learn
step is accompanied by a Back step. Hence it is not possible to create a CDBL
derivation whose representation in the LD calculus contains an infinite sequence
of consecutive Learn and Delete steps. By lemma 10 and propositions 3 and 4,
the CDBL calculus is sound and terminating. By lemma 13, the derivation ∅ `
F, . . . , M ` F ′ can be continued as long as the proof is not closed, and because
the calculus is terminating, it will eventually be closed. By the soundness of the
calculus, the result will be � if F is unsatisfiable, and it will be a state M ′ ` F ′′

such that F ′′|M ′ = ∅ if F is satisfiable (where M ′ = M in case the proof had
already been closed). �

Acknowledgment. I wish to thank Tim Richter for carefully reading a pre-
liminary version of this paper and for providing many comments on how to
improve it.

References

1. Michael Alekhnovich, Jan Johannsen, Toniann Pitassi, and Alasdair
Urquhart. An exponential separation between regular and general reso-
lution. In Proceedings of the 34th Annual ACM Symposium on Theory of
Computing, pages 448–456. ACM, 2002.

2. Peter Baumgartner and Cesare Tinelli. The model evolution calculus. In
Franz Baader, editor, Automated Deduction — CADE-19, 19th Interna-
tional Conference on Automated Deduction, Proceedings, volume 2741 of
Lecture Notes in Computer Science, pages 350–364. Springer, 2003.

3. Paul Beame, Henry Kautz, and Ashish Sabharwal. Towards understand-
ing and harnessing the potential of clause learning. Journal of Artificial
Intelligence Research, 22:319–351, 2004.

4. Armin Biere. The evolution from Limmat to NanoSAT. Technical Report
444, Department of Computer Science, ETH Zürich, 2004. NanoSAT is
available at http://fmv.jku.at/nanosat.

5. Joshua Buresh-Oppenheim and Toniann Pitassi. The complexity of resolu-
tion refinements. In Proceedings of the 18th Annual IEEE Symposium on
Logic in Computer Science, pages 138–147. IEEE Computer Society, 2003.

6. Martin Davis and Hillary Putnam. A computing procedure for quantifica-
tion theory. Journal of the ACM, 7(3):201–215, 1960.

7. Martin Davis, George Logemann, and Donald Loveland. A machine program
for theorem-proving. Communications of the ACM, 5(7):394–397, 1962.

16

http://fmv.jku.at/nanosat

8. Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In Enrico
Giunchiglia and Armando Tacchella, editors, Theory and Applications of
Satisfiability Testing, 6th International Conference, Proceedings, volume
2919 of Lecture Notes in Computer Science, pages 502–518. Springer, 2003.
MiniSat is available at http://www.minisat.se.

9. Allen Van Gelder. Pool resolution and its relation to regular resolution and
DPLL with clause learning. In Geoff Sutcliffe and Andrei Voronkov, editors,
Logic for Programming, Artificial Intelligence and Reasoning, 12th Interna-
tional Conference, Proceedings, volume 3835 of Lecture Notes in Computer
Science, pages 580–594. Springer, 2005.

10. Karl Lieberherr. Complexity of superresolution. Notices of the American
Mathematical Society, 24:A–433, 1977.

11. Inês Lynce and João P. Marques-Silva. Efficient data structures for back-
track search SAT solvers. Annals of Mathematics and Artificial Intelligence,
43(1):137–152, 2005.

12. João P. Marques-Silva and Karem A. Sakallah. GRASP — a new search
algorithm for satisfiability. In Proceedings of the 1996 IEEE/ACM Interna-
tional Conference on Computer-Aided Design, pages 220–227. IEEE Com-
puter Society, 1996.

13. Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and
Sharad Malik. Chaff: Engineering an efficient SAT solver. In Proceedings of
the 38th Design Automation Conference, DAC 2001, pages 530–535. ACM,
2001.

14. Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Abstract DPLL
and abstract DPLL modulo theories. In Franz Baader and Andrei Voronkov,
editors, Logic for Programming, Artificial Intelligence and Reasoning, 11th
International Conference, Proceedings, volume 3452 of Lecture Notes in
Computer Science, pages 36–50. Springer, 2005.

15. Lintao Zhang. Searching for Truth: Techniques for Satisfiability of Boolean
Formulas. PhD thesis, Princeton University, Department of Electrical En-
gineering, 2003.

16. Lintao Zhang, Conor F. Madigan, Matthew W. Moskewicz, and Sharad Ma-
lik. Efficient conflict driven learning in a Boolean satisfiability solver. In Pro-
ceedings of the 2001 IEEE/ACM International Conference on Computer-
Aided Design, pages 279–285. IEEE Press, 2001. zChaff is available at
http://www.princeton.edu/~chaff/zchaff.html.

17

http://www.minisat.se
http://www.princeton.edu/~chaff/zchaff.html

	Abstract
	1 Introduction
	1.1 Formal preliminaries

	2 The linearized DPLL calculus
	2.1 The LD calculus
	2.1.1 Soundness of LD
	2.1.2 Termination of LD

	2.2 The DPLL calculus
	2.2.1 Soundness of DPLL
	2.2.2 Proof confluence and completeness of DPLL

	2.3 Conflict-directed backtracking and learning
	2.3.1 Soundness of CDBL
	2.3.2 Conflict resolution
	2.3.3 Conflict resolution using the conflict graph
	2.3.4 Proof confluence and completeness of CDBL

	References

