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The second-order nonlinear optical susceptibilities x ( 2 ) of several phenylhydrazone and stilbazium salt dyes in 
Langmuir-Blodgett monolayers have been determined from second-harmonic-generation measurements. Three of 
the substances demonstrated x ( 2 ) values greater than 10~ 6 electrostatic units, although two of the three did not 
absorb light significantly at the second-harmonic wavelength. 

1. INTRODUCTION 

T h e high quadra t i c nonl inear i t ies of organic mater ia l s , the i r 
wide t r anspa rency range over t h e visible and t h e near- infra­
red spec t rum, a n d the i r shor t response t ime associated wi th 
thei r off-resonance nonl inear p roper t ies qualify t h e m for 
various appl ica t ions in t h e field of optical signal processing, 
such as amplifiers, f requency conver ters , a n d modula to r s . 
An increasing n u m b e r of organic mater ia l s are now shown to 
exhibi t second-order nonl inear efficiencies t h a t are several 
orders of magn i tude higher t h a n in L iNbC>3. 1 _ 4 For exam­
ple, t he quadra t i c nonl inear suscept ibi l i ty d<i\ of iV-4-nitro-
phenyl-L-prol inol ( N P P ) crystals is 200 X 10~ 9 e lect ros ta t ic 
un i t s (esu) , 5 a value corresponding to an e n h a n c e m e n t of 2 
orders of magn i tude of t h e nonl inear efficiency over LiNbCta 

Higher nonl inear coefficients could be ob ta ined by using 
more-complex s t ruc tures , such as s t i lbene derivat ives or 
merocyan ines . 6 , 7 T h e molecular hyperpolar izabi l i t ies /3 of 
these compounds a re a m o n g the largest known for organics, 
b u t in mos t cases t h e molecular un i t s crystallize in cent ro-
symmet r ic space groups and , therefore , show no second-
order nonl inear optical effects. 

T h e L a n g m u i r - B l o d g e t t ( L - B ) t e c h n i q u e 8 , 9 is one of t h e 
various m e t h o d s used as a m e a n s of imposing a noncen t ro -
symmet r ic s t ruc tu re onto a mate r i a l t h a t crystallizes in a 
cen t rosymmet r ic s t ruc tu re . L - B films for use in quad ra t i c 
nonl inear optics can be ordered in a s tat is t ical ly noncen t ro -
symmet r i c la t t ice . 

One of t h e foremost features of t h e L - B t echn ique is t h e 
abili ty to control t h e film th ickness in the deposi t ion pro­
cess. In addi t ion , t h e index of refraction can be modified, if 
required, for optical applications. For example, one can 
modify t h e n u m b e r of C H 2 g roups forming the hydrophobic 
tail , t h u s s imul taneously act ing on t h e layer th ickness a n d 
on the index of re f rac t ion . 1 0 In pr inciple , these proper t ies 

qualify L - B films for giving rise to two-dimensional optical 
waveguides, a n d various s tud ies have a l ready been carr ied 
out in th is f i e l d . 1 1 - 1 3 However, mos t of t he L - B films have a 
t endency to form microdomains in t h e range 2-200 yum a n d 
are responsible for losses due to sca t ter ing of t he optical 
wave propaga t ing in the waveguide. However, it is possible, 
by using an appropr i a t e t h e r m a l t r e a t m e n t , to obta in larger 
domains (2 m m ) in a crystal l ine form, for example , in azo-
benzene molecu les , 1 4 which are good cand ida tes for qua­
dra t ic exper iments . 

Nonl inear -opt ica l charac ter iza t ion of L - B molecules is 
usual ly achieved by measur ing t h e second-harmonic (SH) 
signal emi t t ed by t h e L - B film depos i ted upon a subs t ra te . 
T h e measu remen t s can be carr ied ou t e i ther in t ransmiss ion 
or in reflection. T h e S H in tens i ty can be enhanced signifi­
cant ly by resonance if e i ther or b o t h of t he fundamen ta l a n d 
harmonic frequencies are close to an absorp t ion band . In 
th ick materials^ t h e proximi ty of t h e resonance induces a 
s t rong a t t enua t ion t h a t is no t compat ib le wi th the observa­
tion of a S H signal; on the contrary , L - B films, by vi r tue of 
thei r th inness , do no t in t roduce a s t rong a t t enua t ion of t he 
signal a n d are therefore par t icu lar ly su i ted to t h e observa­
t ion of resonance-enhanced t ransverse effects. T h e S H sig­
nal emi t t ed by a monolayer can therefore be de tec ted a n d 
subsequen t ly can be used to measu re t h e corresponding hy-
perpolar izabi l i ty /3 a n d suscept ibi l i ty x ( 2 ) of t h e depos i ted 
L - B molecule. 

Second-harmonic genera t ion (SHG) from monolayers of 
highly polarizable dyes was repor ted for t he first t ime by 
Akts ipe t rov et al.,xb t he corresponding x ( 2 ) being of t h e order 
of t h a t of L iNb03- S H G has been d e m o n s t r a t e d in mono­
layers of merocyanine,16 hemicyanines,1 7 amidonitrostil-
b e n e s , 1 8 a n d azobenzene der iva t ives . 1 9 Z - t y p e 1 9 - 2 1 a n d Y-
t ype a l t e rna t ed m u l t i l a y e r s 1 8 ' 2 2 , 2 3 have been s tudied; t he cor­
responding S H signals increase wi th the n u m b e r of active 

  



   

T a b l e 1. M o l e c u l a r S t r u c t u r e , T h i c k n e s s P e r L a y e r 1, A r e a P e r M o l e c u l e , 
W a v e l e n g t h of t h e M a x i m u m Absorpt ion B a n d X m a x , R e f r a c t i v e I n d e x n at 633 

nm, D e p o s i t i o n P r e s s u r e p, and D e p o s i t i o n R a t e v o f D y e M o n o l a y e r s 

M o l e c u l a r s t r u c t u r e a n d 
d e s i g n a t i o n 

1(A) A r e a / 
molecule ^ max n 

P 
(mN.ml 

V 

(cm/mn) 

H 3 7C,rO-0-CH=CH-^N-CH 3 

1 

27 35 A* 360 1.6 25 1.0 

H Q 

M V ) ^ C H = C H _ @ N - C H 3 

2 

26 53 A* 475 1.6 35 1.0 

H35C, - C - 0 - @ - C H = N - N-Q-N02 

° 3 

27.5 245 A* 412 1.57 35 1.0 

H37C 1 8-°-C^ cH=N- N - < Q - N 0 2 

4 

30 2 65A* 420 1.58 35 1.0 

H 3 3 C 1 6 -O - 0 -CH=N-N^ 0^N0 2 

5 

27.5 2 6 A* 420 1.61 35 1.0 

layers according to a s u b q u a d r a t i c , 2 0 q u a d r a t i c , 1 9 or super-
q u a d r a t i c 2 1 dependence , depend ing on t h e s t ruc tu re a n d t h e 
deposi t ion condi t ions of t h e samples . Linear electro-optic 
effects of a monolayer of hemicyanine have also been dem­
o n s t r a t e d . 2 4 , 2 5 Only a few molecules have been s tud ied u p to 
now, and it would be of in te res t to invest igate new com­
p o u n d s t h a t combine good film qua l i ty wi th large nonl inear-
optical susceptibi l i t ies. 

In th is paper we repor t some /3 measu remen t s on two 
families of nonl inear molecules, s t i lbazium salt der ivat ives 
and a new class of nonl inear dyes, pheny lhydrazone deriva­
tives. T h e nonl inear behavior of t h e molecules is s tud ied in 
monolayers, for various donor (R—O—, R 2 N — , R—CO—O—) 
groups associated with the same acceptor ( = H N + — R for 
s t i lbazium salts , — N O 2 for t he phenylhydrazone) . T h e mo­
lecular s t ruc tures of these compounds are given in T a b l e 1. 

2. SYNTHESIS OF THE COMPOUNDS 

T h e syn the t ic routes to the compounds are shown in Fig. 1. 
T h e in te rmedia tes for t h e s t i lbazium sal ts as well as for t h e 
phenylhydrazones are a romat ic a ldehydes t h a t are syn the ­
sized by e ther format ion or esterification of 4-hydroxybenz-
a ldehyde . 4-(AT,A^-Dihexadecyl)-aminobenzaldehyde is 
p repared by Vilsmeier synthes is from t h e respect ive anil ine 
compound. 

T h e s t i lbazium salts 1 a n d 2 are p repa red from the a lde­
hydes a n d 2 -methy l -N-methy lpyr id in ium iodide t h rough an 
a ldol-condensat ion react ion, a n d t h e phenylhydrazones 3 ,4 , 
and 5 are ob ta ined th rough condensa t ion of t h e a ldehydes 
wi th p -n i t ropheny lhydraz ine . 

3. PREPARATION AND CHARACTERIZATION 
OF MONOLAYERS 

A. Monolayer Isotherms 
All compounds were character ized in monolayers a t t h e g a s -
water interface by i so therm m e a s u r e m e n t s . 2 6 C o m p o u n d 1 

exhibi ts only a solid analog phase in t h e t e m p e r a t u r e range 
from 20 to 40°C. At 20°C t h e b reakdown pressure range is 
40 mN/rn , a n d t h e area requi red a t t h a t po in t is 0.28 n m 2 / 
molecule. T h i s large area r equ i r emen t implies t h a t t h e 
packing wi thin t h e monolayer is control led mainly by t h e 
packing of t h e head group a n d no t by a t igh t packing of t h e 
hydrocarbon tails of t h e amphiph i l e . T h i s t igh t packing of 
hydroca rbon chains would lead t o a n a rea r e q u i r e m e n t of 
approximate ly 0.2 nm 2 /mo lecu l e for a s imple chain com­
pound . 

T h e double-chain compound 2 exhibi ts a solid analog 
phase a t 20°C a n d b o t h solid a n d fluid analog phases a t 
higher t e m p e r a t u r e s (see Fig. 2). T h e area a t t h e collapse 
poin t of t h e monolayer is 0.4 nm 2 /mo lecu l e . T h u s we can 
assume t h a t t h e monolayer packing here is control led by a 
dense packing of t h e two hydroca rbon chains . 

T h e spreading behavior of t h e phenylhydrazones is illus­
t r a t e d in Fig. 3 for compounds 3 a n d 4. C o m p o u n d 5 h a s 
a lmost t h e same i so therm as compound 4; t h e collapse p res ­
sure, however, is abou t 5 m N / m lower. 

T h e e thers as well as t h e esters exhibi t only solid analog 
phases , even a t 40°C. T h e collapse pressures are approxi ­
mate ly 60 m N / m a t 20°C, a n d t h e area requi red a t t h e 
collapse poin t by t h e e thers 4 a n d 5 is 0.25 nm 2 /mo lecu l e , 
whereas t h e collapse po in t of t he es ter 3 is somewha t smal ler 
(0.22 nm 2 /mo lecu le ) . T h u s the hydrocarbon chains canno t 
be packed densely. T h e monolayer packing is control led 
main ly by t h e head group. T h e ester can be packed be t t e r 
t h a n t h e e ther compound . 

B. Langmuir-Blodgett Monolayer Films 
All subs tances were depos i ted using a L a u d a Langmui r 
t rough in a clean room dur ing t h e ups t roke on b o t h sides of 
glass microscope slides a t 20°C. T h e spreading a n d deposi­
t ion condi t ions are descr ibed in Append ix A. T h e slides 
were cleaned and r ende red hydrophi l ic by t r e a t m e n t wi th a 
1:4 mix tu re of 30% H 2 0 a n d concen t ra ted H2SO4 a n d were 
t hen r insed with Mill ipore purif ied water . 

Spec t ra were recorded of t he monolayers a n d of as m a n y 
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(1) W (3) 
Fig. 1. Reaction scheme for synthesis of compounds 1-5. 
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Fig. 2. Temperature dependence of the spreading behavior of compound 2. 
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Fig. 3. Spreading behavior of compounds 3 and 4 at 20°C. 

0.6 

as 40 layers of t h e dyes in the wavelength range 300-1000 n m 
on a P e r k i n - E l m e r spec t ropho tomete r . T h e absorp t ion 
spectra of t he monolayers are shown in Fig. 4. 

For phenylhydrazone derivat ives, t he shape of t h e absorp­
t ion peaks is very s imilar for t h e t h r ee compounds . T h e 
wavelength X m a x corresponding to the m a x i m u m of t h e ab ­
sorpt ion b a n d is exactly t h e same for 4 and 5, t h e s t ruc tu re of 
t he chromophores being ident ical in b o t h cases. On t h e 
contrary , t h e X m a x value is 115 n m higher for 2 t h a n for 1. 
T h e higher value can be accounted for by t h e s t rong elec­
t ron-donor charac ter of t h e d i subs t i tu t ed amino group in 2 
compared with t h e poor e lect ron-donor proper t ies of t h e 
e ther group in 1. C o m p o u n d 2 has its m a x i m u m absorp t ion 
wavelength close to the ha rmon ic wavelength X = 532 nm, 
and a s t rong e n h a n c e m e n t of /3 owing to t h e proximi ty of t h e 
resonance can be expected. 

T h e film thicknesses I and refractive indices n of t he films 
a t 633 n m were de t e rmined by performing el l ipsometric 
measu remen t s on as m a n y as 30 layers on silicon subs t ra tes . 
Compounds 1 a n d 2 d id no t bui ld s table mul t i layers ; t h u s 
the refractive indices could no t be de t e rmined directly. T a ­
ble 1 summarizes t h e deposi t ion condi t ions for t h e monolay­
ers on glass and t h e resul ts of t he el l ipsometric measure ­
men t s . T h e th ickness per layer I is de t e rmined by measur ­
ing t h e th ickness t of N Y-type monolayers (N = 10, 20, or 
30) by el l ipsometric techniques , t h e value of / being given by 
/ = t/N. Th i s value could be smaller t h a n the length of t he 
isolated molecule, because a par t ia l in t e rpene t ra t ion of t h e 
a l iphat ic chains belonging to two adjacent monolayers is 
possible. Hence , for monolayers , t h e re levant molecular 
length corresponds to t h e value of t h e isolated molecule; t h e 
measured values m u s t therefore be corrected by considering 
the actual in te ra tomic dis tances of each chemical bond. In 
fact, compar ison be tween the exper imenta l / values mea­
sured here a n d t h e molecular lengths calculated from inter­

a tomic bond dis tances leads t o similar values for pheny l ­
hydrazone derivatives; t h e d iscrepancy does no t exceed 3% 
in any case. 

On t h e contrary , / m e a s u r e m e n t s of s t i lbazium sal ts , car­
ried ou t on two layers only, lead to a th ickness per layer of 20 
A, whereas t h e calculated value is 27 A for 1 a n d 26 A for 2. 
T h e discrepancy occurs because t h e el l ipsometric t echn ique 
is no t accura te for a very smal l n u m b e r of L - B layers. For 
t h e reasons men t ioned above, t h e refractive indices for st i l­
baz ium salts could no t be de te rmined . T h e n values for t h e 
phenylhydrazone derivat ives are very similar; however, a 
slight increase of n is observed when t h e length of t he ali-

0.04 

0.00 
300 500 700 

Wave length (nm) 

Fig. 4. Ultraviolet-visible absorption spectra of monolayers of 
compounds 1-5 on glass substrates: 1, ; 2, ; 3, ; 
4, ; 5, . 



   

pha t ic chain is decreased, as evidenced by compar ing com­
pounds 4 a n d 5, which differ only by t h e n u m b e r of -f CH2-)-
groups in t h e hydrophobic tail . T h i s p rope r ty could be used 
to control wi th good accuracy the refractive index of a L - B 
layer in view of appl ica t ions such as mode coupling in a 
p lanar waveguide. 

4. EXPERIMENTAL SETUP FOR NONLINEAR 
MEASUREMENTS 
T h e exper imenta l s e tup for t h e S H G m e a s u r e m e n t s is illus­
t r a t ed in Fig. 5. T h e exper iments were carried ou t using a 
Q-switched N d 3 + : Y A G laser (X = 1.064 /an) . T w o X/4 pla tes 
were used to vary the polar izat ion direct ion, a n d the laser 
energy was able to be a t t e n u a t e d by using neu t ra l -dens i ty 
filters. T h e fundamenta l b e a m was t h e n focused upon t h e 
sample (focal length 60 cm). T h e sample was set on a rota­
t ion stage moni to red by a s tepp ing motor so as to vary the 
incidence angle 6 of t h e fundamen ta l beam, t h e ro ta t ion axis 
being vertical a n d perpendicu la r to t h e laser beam. S H G 
signals were recorded a t various values of 0, ranging from 
- 5 0 ° to + 5 0 ° . T h e t r a n s m i t t e d ha rmon ic light was de tec t ­
ed after t h e remain ing fundamen ta l was filtered off by a 
photomul t ip l ie r a n d was sampled , averaged, a n d recorded 
synchronously. T h i s de tec t ion sys tem can measu re weak 
harmonic signals by using a pho tomul t ip l i e r wi th a very low 
dark cur ren t a n d by improving t h e synchronizat ion be tween 
the S H pulse a n d the trigger of t he boxcar. If one works a t 
large in tegrat ion scales (10 sec), t h e noise level does no t 
exceed 0.1 mV; t h e m i n i m u m x ( 2 ) value of L - B films t h a t can 
be de tec ted is therefore of t h e order of 2 X 10~ 9 esu. T h e 
measu remen t s were ca l ibra ted agains t t h e S H Make r fringes 
emi t t ed by a 2-mm-th ick qua r t z p la te . T h e macroscopic 
second-order suscept ibi l i ty x ( 2 ) of t he L - B sample was de ter ­
mined relat ive to the dn coefficient of qua r t z (dn = 1.2 X 
1 0 - 9 esu). In addi t ion , t h e reference used consisted of t he 
S H signal Ir2" p roduced by a nonl inear organic powder of 
N P P i r rad ia ted by an addi t iona l fundamen ta l b e a m a n d 
sampled and averaged by t h e same lock-in amplifier as t he 
S H signal ILB

2w emi t t ed by the L - B films. T h e signal / l b 2 " 
is divided by the reference Ir2o} a n d recorded. T h i s s e tup 
considerably reduces t h e var ia t ions of t h e S H signal owing to 
laser f luctuat ions a n d therefore improves t h e rap id i ty a n d 
the sensit ivi ty of t he measu remen t s . 

T h e rad ia t ion emi t t ed by t h e L - B films is identified as S H 

2 / 1 
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-A 
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Fig. 6. Normalized SHG as a function of the incidence angle 0 for 2. 

radia t ion by its nar row spect ra l width , i ts pulse dura t ion 
shor ter t h a n t h a t of t he fundamen ta l beam, a n d its q u a d r a t ­
ic dependence on inc ident laser energy. Regions of t he 
samples free from t h e film gave no de tec tab le signal, con­
firming t h a t t he observed rad ia t ion is emi t t ed by the film 
only. T h e ha rmonic peak is p polarized, i n d e p e n d e n t of t h e 
polar izat ion of t he fundamen ta l beam. In th is work we 
focused only on S H G from p-polar ized fundamen ta l beams . 

5. NONLINEAR OPTICAL PROPERTIES 

T h e dependence of t he emi t t ed in tens i ty wi th respect to t h e 
incidence angle shows a wel l -contras ted fringing p a t t e r n re­
sult ing from interference be tween the ha rmonic beams pro­
duced by t h e front a n d the back layers (Fig. 6). Because t h e 
optical p a t h in t h e L - B layers (of t h e order of a few tens of 
angs t roms) is m u c h smaller t h a n t h e coherence length (of 
t h e order of a few tens of micrometers ) , th is p a t t e r n has no 
connect ion whatsoever wi th M a k e r fringes. I t originates 
from dispersion of t h e refractive index of t he subs t r a t e no2w 

- nc " , which in t roduces a dephas ing factor be tween ha r ­
monic waves genera ted a t t he front and back sides, respec­
tively, of t h e s u b s t r a t e . 2 7 no" a n d ug2w are t h e fundamen ta l 
and ha rmonic refractive indices of t h e glass subs t ra te , re­
spectively. T h e dephas ing factor varies wi th t he optical 
p a t h in t h e subs t r a t e as t h e p la te is ro ta ted , as was previous­
ly demonstrated for third-harmonic generation in polydiacetyl-
ene L - B mul t i l aye r s . 2 7 T h e interfringe 86 is given by 

86 = 
21/ cos 0(tan 6G" - t an 6G

2o}) 
(1) 

Fig. 5. Experimental setup for determination of the SHG suscepti­
bility. 

where L is t h e th ickness of t he subs t ra te , dow a n d 6q2w are t h e 
angles of incidence of t he fundamen ta l a n d ha rmonic beams , 
respectively, inside t h e glass subs t ra te , a n d X is t he funda­
men ta l wavelength. In the p a t t e r n ske tched here , t he ex­
per imenta l interfringe be tween t h e second and t h e th i rd 
fringes is 8.6°. Tak ing L = 1 m m , nG

a = 1.508 06, a n d nG

2» = 
1.520 83, 86 = 8.7°. T h i s resul t confirms t h e origin of th is 
S H fringe p a t t e r n resul t ing from the dispersion of t h e refrac­
tive index of t he subs t ra te . 

F r o m the envelope function of t he S H fringe p a t t e r n we 
can infer bo th t h e x ( 2 ) value of t he sample a n d the average 
t i l t angle 0 between the charge-transfer axis of the molecules 
a n d the normal to t h e subs t ra te . x ( 2 ) a n d 0 are adjusted to 
give t h e best fit be tween the theore t ica l a n d t h e exper imen-



   

ta l envelope function of t h e fringes. T h e second-harmonic 
in tensi ty from t h e L - B sample is given by 

KhBl 
T 2u> _ J?(o n o>,2a a u>,2a> „ a>,2co „ u>,2u r\ 
•'LB 7^~*{U> "F > "G 'nF >nG » V' 

X [ x ( 2 ) ] 2 ( E w ) 4 cos SQ, (2) 

where t h e function F includes factors re la ted t o t h e t r ans -
mi t t ance and reflectance of t h e various interfaces as a func­
t ion of angles of incidence in t h e film for fundamen ta l or 
harmonic beams Of or Op*01, respectively, a n d in t h e glass 
subs t ra te 0QW or 0G2u- F d e p e n d s also on t h e refractive index 
a t fundamen ta l (harmonic) frequencies in t h e film nf {n^) 
and in glass rig01 (nc2u) a n d on t h e angle 0. x ( 2 ) is t h e nonl in­
ear coefficient of t h e L - B film of th ickness I, t h e project ion 
factors depend ing on t h e t i l t angle 4> being t a k e n in to ac­
count in t h e envelope function F. 8Q, describing t h e phase 
difference be tween t h e two ha rmon ic beams , ha s t h e form 

8Q = ==^- ( n G

2 w cos 0G

2a - nG» cos 0G<°). (3) 

KLB is a factor i n d e p e n d e n t of t h e or ienta t ion of t h e sample , 
including t h e absorpt ion coefficient of t h e film a t co a n d 2co. 
X ( 2 ) values are de te rmined by compar ison of t h e ampl i tude of 
t h e envelope of t h e interference fringes wi th t h e signal from 
t h e qua r t z reference p la te . T h i s cal ibrat ion e l iminates t h e 
t e rm (E")4, where Eu is t h e ampl i tude of t h e inc ident funda­
men ta l field, which canno t be measured direct ly when cur­
rent ly available N d 3 + : Y A G laser cavities are used. 

T h e molecular hyperpolar izabi l i t ies are deduced from t h e 
X ( 2 ) values by using a molecular -or iented gas mode l in which 

x ( 2 ) = JV/2a>(^)2/3< ( 4 ) 

Here / » > = [(n"- 2 '") 2 + 2]/3 is a local field factor a n d N is t h e 
n u m b e r of molecules per un i t volume, equal to a/I, where a is 
t he surface densi ty of t h e monolayer . Therefore 

y(2)l 
a _ A. 1 /fr\ 

f^n2a' 

T a b l e 2. x ( 2 ) » ft and Ti l t A n g l e 0 for D y e M o n o l a y e r s 

Molecule 4><") X'^IO/esu) p (x10%su ) Ref. 

1 50 0.51 0.15 
This 

wo rk 

2 50 6.25 2.0 
/ / 

3 65 0.56 0.11 
/ / 

4 60 1.80 0.40 
/ / 

5 55 1.70 0.33 
i/ 

Merocyanine 9 - 4.06 16 

Hemicyanine 43 0.95 0.31 17 

D P N A 65 1.60 
i 

0.31 10 

[The val idi ty of t h e Lorenz approx ima t ion involved in E q . 
(4) is no t str ict ly verified in t h e case of monomolecular layers 
placed a t t h e glass-air interface- T h i s mode l would be more 
nearly valid for th ick mul t imolecular L - B samples . T h e r e ­
fore t he (3 value given by Eq . (5) corresponds to t h e hyperpo-
larizabil i ty of a monolayer t h a t would b e su r rounded by L - B 
layers of t he same n a t u r e r a the r t h a n t o t h e /3 value of a 
monolayer placed a t t h e glass-air interface.] 

0, x ( 2 ) , a n d /? values for t h e five molecules s tud ied here are 
given in Tab le 2. I t is of in te res t to compare these values 
wi th nonl inear d a t a measu red in o the r L - B molecules, such 
as merocyanines a n d hemicyanines or diazost i lbene deriva­
tives, a n d to examine t h e influence of some e lect ron-donor 
or e lec t ron-a t t rac tor subs t i t uen t s on t h e nonl inear p roper ­
t ies of L - B molecules. T h e relat ive errors on x ( 2 ) a n d /3 do 
no t exceed 10%. 

6. DISCUSSION 

In each of t he two families repor ted here , t h e acceptor group 
remains t he same, and the donor group is modified. The re ­
fore the electron-donor character of these subs t i tuents can be 
compared. Of the phenylhydrazone derivatives, 4 and 5 have 
similar /3 values when the exper imental errors are t aken into 
account; t h e hyperpolarizabii i ty is slightly s t ronger for t h e 
highest chain length (4). Th i s small increase of (3 with re­
spect to t h e chain length is probably due t o a slight induct ive 
effect of t he hydrophobic tail , t he electron-donor character of 
a linear alkyl subs t i tuent R = C r tH2n+i increasing with t he 
n u m b e r of carbons n. Comparison between 3 a n d 4 or 3 a n d 5 
indicates t h a t t he ester subs t i tuen t — H 3 5 C 1 7 — C O O — 
is a very poor e lect ron-donor group, t h e corresponding /3 
value being m u c h smal ler t h a n for t h e o ther L - B molecules 
repor ted u p t o now for quasi - ident ical resonance effects ( the 
wavelength of t h e absorp t ion m a x i m u m being a lmost t h e 
same for 3 and for 4 or 5). T h e resul ts ob ta ined on t h e two 
st i lbazium salts confirm t h e s t rong e lec t ron-donor charac ter 
of t h e d i subs t i tu t ed amino group ( I ^ C i e ^ N — when com­
pared wi th t h e H 3 7 C 8 — 0 — group of compound 1. In th i s 
last case, t h e small /3 value can be accounted for by t h e weak 
e lect ron-donor charac ter of t h e e the r s u b s t i t u e n t a n d by t h e 
weaker resonance effect be tween t h e ha rmonic frequency 
and the first absorp t ion peak of t h e molecule, which lies a t 
360 n m ; b o t h p h e n o m e n a have a cumula t ive influence on t h e 
weakening of ft On t h e o ther hand , t he e lec t ron-donor 
power of t h e ( R ^ N — group in 2 is reinforced by t h e pres ­
ence of two long a l iphat ic chains grafted on to t h e n i t rogen 
a tom. In addi t ion, t h e presence of two hydrophobic tai ls on 
a L - B molecule ins tead of one should increase t h e s tabi l i ty 
and therefore t h e order ing of t h e monolayer . B u t t h e m o s t 
i m p o r t a n t fea ture is t h e prox imi ty of t h e m a x i m u m absorp­
t ion wavelength X m a x to t h e ha rmon ic frequency, leading to a 
large e n h a n c e m e n t of t h e nonl inear i ty . In fact, t h e x ( 2 ) 

value is high (more t h a n 2 orders of m a g n i t u d e h igher t h a n 
for LiNbOs) , and t h e hyperpolar izabi i i ty is a t least six t imes 
higher t h a n for t he hemicyanine r epor ted in Ref. 17. In fact, 
2 exhibi ts one of t h e h ighes t q u a d r a t i c nonl inear i t ies ever 
measured , i ts j8 value coming ju s t beh ind t h a t of t h e mero ­
cyanine descr ibed in Ref. 16. Indeed t h e value for x ( 2 ) of 6.5 
X 10~ 6 esu is t h e larges t explicitly r epor t ed volume suscept i ­
bili ty known [x ( 2 ) was no t given for t h e merocya­
nine] . Ano the r factor t h a t could be responsible for th is 



  

H 

(B) 

T h e (B) form corresponds t o a conjugated sys tem in to which 
has been subs t i tu t ed the s t ronges t e lec t ron-donor g roup 
— 0 ~ and t h e s t ronges t e lect ron-acceptor group pyr id in ium 
ion. T h e large charge t ransfer resul t ing from th is s t ruc tu re 
is responsible for i ts high value. 

Therefore these m e a s u r e m e n t s have, confirmed t h e classi­
fication of various chemical groups following an increasing 
e lect ron-donor charac ter : 

R—0—C < R—0— < — N ^ < — N ^ < — 0 -

CH 3 C n H 2 M + i 

a n d an increasing e lect ron-acceptor character : 

- N 0 2 < N + - C „ H 2 n + 1 < N+—CH 3 

7. CONCLUSION 

W e have measured x ( 2 ) a n d /3 values of var ious nonl inear 
molecules a n d i l lus t ra ted some molecular-engineer ing rules 
for t h e e lect ron-donor and t h e e lect ron-acceptor charac te r 
of some subs t i tuen t s . T h e coupling of t h e bes t donor a n d 
acceptor groups led to an exceptional ly nonl inear L - B mole­
cule, with a /? value of 2 X 1 0 ~ 2 7 esu. S H G m e a s u r e m e n t s on 
L - B monolayers of nonl inear molecules are convenient 
m e a n s for de te rmin ing t h e /3 values of var ious s t ruc tu res . 

 

T h e highly efficient compound repor ted here seems to be 
promising for fur ther invest igat ions on mul t i layers and for 
appl icat ions in forming p lanar waveguides for quadra t i c 
nonl inear in teract ions . Some s tudies on highly efficient 
mult i layers are current ly in progress. 

APPENDIX A 

A. Synthesis of Compounds 

Compound 1 
5.8 g (42 mmol) of d ry K 2 C 0 3 is suspended in a solut ion of 4.9 
g (40 mmol) of 4-hydroxybenzaldehyde , 13.3 g (40 mmol) of 
1-bromooctadecane, a n d 50 mg (0.3 mmol) of K I in 300 ml of 
d ry a c e t o n e . 2 8 T h e suspension is refluxed for 48 h and 
filtered when still hot . 300 ml of hexane is added , a n d the 
solution is washed with 10% N a 2 C 0 3 in water . After t h e 
residual water is removed with Na2S04, t h e solvent is evapo­
ra t ed unde r reduced pressure , a n d t h e c rude react ion prod­
uc t is recrystall ized from hexane (melt ing poin t , 74°C; yield, 
80%). • 

1.1 g (2.9 mmol) of 4-octadecyloxybenzaldehyde, 1.7 g (3 
mmol) of A^-methyl-4-methylpyridinium iodide, a n d 1 ml of 
p iper id ine are dissolved in 50 ml of e thanol and refluxed for 
5 h. After i t is cooled t o room t e m p e r a t u r e , t h e react ion 
mix tu re is filtered. T h e prec ip i ta te is collected, dissolved in 
chloroform, a n d washed with 1 M H I a n d water . After 
evapora t ion of t h e solvent in vacuo t h e p r o d u c t is recrystal­
lized from hexane a n d me thano l [melting point , > 2 0 0 ° C 
(decomposed); yield, 86%]. 

Compound 2 
10 g (18.5 mmol) of iV,A/-dihexadecylaniline is dissolved in 
20 g (270 mmol) of freshly dist i l led d i m e t h y l f o r m a m i d e . 2 9 , 3 0 

T h e solution is cooled down to 5°C, and 2.8 g (18.3 mmol) of 
POCI3 is added within 5 min. T h e mix tu re is s t i r red for 1 h 
a t 20° C a n d t h e n for 3 h a t 80° C. After i t is cooled down 
again, t he mix tu re is hydrolyzed by slowly adding 40 g of ice-
cold water and is t h e n neut ra l ized with approx imate ly 10 ml 
of 5 M N a O H . T h e prec ip i t a te is collected a n d recrysta l ­
lized from methano l , hexane , a n d e thanol (melt ing point , 
57°C; yield, 48%). 

1.7 g (3 mmol) of 4-( iV,N-dihexadecyl)-aminobenzalde-
hyde , 0.7 g (3 mmol) of A/-methyl-4-methylpyr id in ium io­
dide and 1 ml of p iper id ine are dissolved in 50 ml of e thanol 
a n d refluxed for 3 h. After t h e mix tu re is cooled t o room 
t e m p e r a t u r e , t h e prec ip i ta te is collected, dissolved in chloro­
form, a n d washed with 1 M H I a n d water . After, evapora t ion 
of t h e solvent t h e p r o d u c t is recrystal l ized several t imes 
from e thanol [melting point , > 2 0 0 ° C (decomposed) ; yield, 
81%]. 

Compound 3 
6.11 g (50 mmol) of 4-hydroxybenza ldehyde and 8 ml of 
t r i e thy lamine are dissolved in 200 ml of absolu te me thy lene 
ch lo r ide . 2 8 T h e solut ion is cooled down to 5°C, and a solu­
t ion of 15.1 g (50 mmol) of s tear ic acid chloride in 100 ml of 
absolu te me thy lene chloride is added wi th in 20 min . After 
being hea ted to room t e m p e r a t u r e , t h e react ion mix tu re is 
washed with 1 M HC1, water , 5% Na2C03, and again wi th 
water . After removal of res idual wate r wi th Na2S04 t h e 

exceptionally large hyperpolar izabi l i ty is t h e n a t u r e of t he 
subs t i tuen t grafted on to t h e pyr id in ium ion: t h e long ali­
pha t i c chain used in Ref. 6 has a higher e lec t ron-donor char­
acter t h a n the CH3 g roup grafted onto 2 a n d therefore has a 
t endency to reduce t h e e lec t ron-a t t rac tor power of t h e pyr i ­
d in ium ion. In pr inciple , th is effect is no t s t rong, b u t previ­
ous (8 measu remen t s , carr ied ou t by electric-field-induced 
S H G ( E F I S H G ) in solution, on N-oc tadecy lmerocyan ine 
( N O M ) , 6 and on iV-methylmerocyanine ( N M C ) , 7 led to simi­
lar conclusions: t he /? value is 5-10 t imes smaller for N O M 
t h a n for N M C , a l though t h e fundamen ta l wavelength used 
for N O M (X = 1.318 nm) is closer to t h e resonance t h a n t h e 
wavelength used for N M C (X = 1.89 jam). (The solvent was 
dimethylsulfoxide for N M C a n d m e t h a n o l or pyr id ine for 
NOM.) Al though such resul ts m u s t be considered carefully, 
t he E F I S H G measu remen t s seem to confirm th is influence 
of t h e chain length on t h e e lec t ron-a t t rac tor charac ter of t h e 
pyr id in ium ion. T h e highest /? value known current ly is t h a t 
of t he merocyanine indicated in T a b l e 2. T h i s molecule can 
be descr ibed by the two mesomer ic s t ruc tures : 



   

solvent is evapora ted in vacuo. T h e crude react ion p r o d u c t 
is recrystall ized twice from m e t h a n o l (melt ing poin t , 60°C; 
yield, 66%). 

3.89 g (10 mmol) of t h e s tear ic acid ester of 4-hydroxyben-
zaldehyde is added to a solut ion of 1.53 g (10 mmol) of 4-
n i t rophenylhydraz ine in a mix tu re of 10 ml of glacial acetic 
acid, 10 ml of water , a n d 100 ml of e thanol . T h e mix tu re is 
s t i r red for 2 h a t room t e m p e r a t u r e , a n d t h e p rec ip i t a t e is 
collected and recrystall ized repea ted ly from methano l , e thyl 
aceta te , and ace tone (melt ing point , 134°C; yield, 24%). 

Compound 4 
1.2 g (7.8 mmol) of 4-n i t rophenylhydraz ine is dissolved in a 
mix tu re of 10 ml of glacial acet ic acid, 10 ml of water , a n d 100 
ml of e t h a n o l . 2 8 T o t h a t 2.7 g (9.7 mmol) of octadecyloxy-
benza ldehyde is added , and t h e mix tu re is s t i r red for 2 h a t 
room t e m p e r a t u r e . T h e prec ip i ta te is collected a n d recrys­
tallized repea ted ly from hexane a n d m e t h a n o l (melt ing 
point , 112°C; yield, 68%). 

Compound 5 
C o m p o u n d 5 is synthesized according to t h e same procedure 
as for compound 4, s ta r t ing from 3.47 g (10 mmol) of 4-
hexadecyloxybenzaldehyde a n d 1.53 g (10 mmol) of 4-ni t ro­
pheny lhydraz ine (melt ing po in t , 117°C; yield, 66%). 

B. Film-Balance Measurements 
T h e water used for all f i lm-balance exper imen t s was pur i ­
fied wi th a Mil l ipore water purif icat ion sys tem (Milli-Q, 4 
bowl). T h i s sys tem was fed wi th deionized water . 

Chloroform was used as solvent for spreading compounds 
1 and 2, and methy lene chloride was used for compounds 3, 
4, a n d 5. All solvents were pu rchased from Merck (Uvasol). 
T h e concent ra t ion of t h e spreading solut ions was 0.5 mg/ml . 

T h e i so therms were measured wi th a commercia l comput ­
er-control led film balance (Fi lmwaage 2, M G W Lauda ) wi th 
a sweep t ime of 10 min /curve . T h e same film balance in 
combina t ion with t h e corresponding film lift was used for 
t h e deposi t ion exper iments . 

T h e cleanliness of t h e film balance a n d t h e pur i ty of t h e 
water were checked rout ine ly by measur ing i so therms of a 
well-known compound (palmit ic acid, reference for G C ) . 3 1 

T h e pu r i ty of t h e spreading solvents was also checked by th is 
me thod . 
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